
INSTRUCTOR’S MANUAL
TO ACCOMPANY

OPERATING-
SYSTEM

CONCEPTS
SEVENTH EDITION

ABRAHAM SILBERSCHATZ
Yale University

PETER BAER GALVIN
Corporate Technologies

GREG GAGNE
Westminster College

Preface

This volume is an instructor’s manual for the Seventh Edition of Operating-
System Concepts, by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.
It consists of answers to the exercises in the parent text.

Although we have tried to produce an instructor’s manual that will aid
all of the users of our book as much as possible, there can always be im-
provements (improved answers, additional questions, sample test questions,
programming projects, alternative orders of presentation of the material, addi-
tional references, and so on). We invite you to help us in improving this manual.
If you have better solutions to the exercises or other items which would be of
use with Operating-System Concepts, we invite you to send them to us for con-
sideration in later editions of this manual. All contributions will, of course, be
properly credited to their contributor.

Internet electronic mail should be addressed to os-book@cs.yale.edu.
Physical mail may be sent to Avi Silberschatz, Department nof Computer Sci-
ence, Yale University 51 Prospect Street, New Haven, CT 06520, USA.

A. S.
P. B. G
G. G.

iii

Contents

Chapter 1 Introduction . 1

Chapter 2 Operating-System Structures . 9

Chapter 3 Processes . 15

Chapter 4 Threads . 23

Chapter 5 CPU Scheduling . 27

Chapter 6 Process Synchronization . 33

Chapter 7 Deadlocks . 47

Chapter 8 Memory Management . 55

Chapter 9 Virtual Memory . 61

Chapter 10 File-Systems Interface . 71

Chapter 11 File-Systems Implementation . 75

Chapter 12 Mass Storage Structure . 91

Chapter 13 I/O Systems . 93

Chapter 14 Protection . 99

Chapter 15 Security . 105

Chapter 16 Network Structures . 111

Chapter 17 Distributed Communication . 117

Chapter 18 Distributed-File Systems . 121

Chapter 19 Multimedia Systems . 127

Chapter 20 Embedded Systems . 131

Chapter 21 The Linux System . 137

Chapter 22 Windows XP . 145

Chapter 23 Influential Operating Systems . 149

v

1C H A P T E R

Introduction

Chapter 1 introduces the general topic of operating systems and a handful of
important concepts (multiprogramming, time sharing, distributed system, and
so on). The purpose is to show why operating systems are what they are by
showing how they developed. In operating systems, as in much of computer
science, we are led to the present by the paths we took in the past, and we can
better understand both the present and the future by understanding the past.

Additional work that might be considered is learning about the particular
systems that the students will have access to at your institution. This is still just
a general overview, as specific interfaces are considered in Chapter 3.

Exercises

1.1 In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared ma-
chine as in a dedicated machine? Explain your answer.

Answer:

a. Stealing or copying one’s programs or data; using system re-
sources (CPU, memory, disk space, peripherals) without proper
accounting.

b. Probably not, since any protection scheme devised by humans
can inevitably be broken by a human, and the more complex
the scheme, the more difficult it is to feel confident of its correct
implementation.

1

2 Chapter 1 Introduction

1.2 The issue of resource utilization shows up in different forms in differ-
ent types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems

b. Workstations connected to servers

c. Handheld computers

Answer:

a. Mainframes: memory and CPU resources, storage, network band-
width.

b. Workstations: memory and CPU resouces

c. Handheld computers: power consumption, memory resources.

1.3 Under what circumstances would a user be better off using a time-
sharing system rather than a PC or single-user workstation?
Answer: When there are few other users, the task is large, and the
hardware is fast, time-sharing makes sense. The full power of the system
can be brought to bear on the user’s problem. The problem can be solved
faster than on a personal computer. Another case occurs when lots of
other users need resources at the same time.
A personal computer is best when the job is small enough to be exe-
cuted reasonably on it and when performance is sufficient to execute the
program to the user’s satisfaction.

1.4 Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (a) handheld devices
and (b) real-time systems.

a. Batch programming

b. Virtual memory

c. Time sharing

Answer: For real-time systems, the operating system needs to support
virtual memory and time sharing in a fair manner. For handheld systems,
the operating system needs to provide virtual memory, but does not
need to provide time-sharing. Batch programming is not necessary in
both settings.

1.5 Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?
Answer: Symmetric multiprocessing treats all processors as equals, and
I/O can be processed on any CPU. Asymmetric multiprocessing has one
master CPU and the remainder CPUs are slaves. The master distributes
tasks among the slaves, and I/O is usually done by the master only.
Multiprocessors can save money by not duplicating power supplies,
housings, and peripherals. They can execute programs more quickly
and can have increased reliability. They are also more complex in both
hardware and software than uniprocessor systems.

Exercises 3

1.6 How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?
Answer: Clustered systems are typically constructed by combining
multiple computers into a single system to perform a computational
task distributed across the cluster. Multiprocessor systems on the other
hand could be a single physical entity comprising of multiple CPUs. A
clustered system is less tightly coupled than a multiprocessor system.
Clustered systems communicate using messages, while processors in a
multiprocessor system could communicate using shared memory.
In order for two machines to provide a highly available service, the state
on the two machines should be replicated and should be consistently
updated. When one of the machines fail, the other could then take-over
the functionality of the failed machine.

1.7 Distinguish between the client–server and peer-to-peer models of dis-
tributed systems.
Answer: The client-server model firmly distinguishes the roles of the
client and server. Under this model, the client requests services that are
provided by the server. The peer-to-peer model doesn’t have such strict
roles. In fact, all nodes in the system are considered peers and thus may
act as either clients or servers - or both. A node may request a service
from another peer, or the node may in fact provide such a service to
other peers in the system.
For example, let’s consider a system of nodes that share cooking recipes.
Under the client-server model, all recipes are stored with the server. If
a client wishes to access a recipe, it must request the recipe from the
specified server. Using the peer-to-peer model, a peer node could ask
other peer nodes for the specified recipe. The node (or perhaps nodes)
with the requested recipe could provide it to the requesting node. Notice
how each peer may act as both a client (i.e. it may request recipes) and
as a server (it may provide recipes.)

1.8 Consider a computing cluster consisting of two nodes running a database.
Describe two ways in which the cluster software can manage access to
the data on the disk. Discuss the benefits and disadvantages of each.
Answer: Consider the following two alternatives: asymmetric cluster-
ing and parallel clustering. With asymmetric clustering, one host runs
the database application with the other host simply monitoring it. If
the server fails, the monitoring host becomes the active server. This is
appropriate for providing redundancy. However, it does not utilize the
potential processing power of both hosts. With parallel clustering, the
database application can run in parallel on both hosts. The difficulty
implementing parallel clusters is providing some form of distributed
locking mechanism for files on the shared disk.

1.9 How are network computers different from traditional personal com-
puters? Describe some usage scenarios in which it is advantageous to
use network computers.
Answer: A network computer relies on a centralized computer for
most of its services. It can therefore have a minimal operating system

4 Chapter 1 Introduction

to manage its resources. A personal computer on the other hand has
to be capable of providing all of the required functionality in a stand-
alone manner without relying on a centralized manner. Scenarios where
administrative costs are high and where sharing leads to more efficient
use of resources are precisely those settings where network computers
are preferred.

1.10 What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?
Answer: An interrupt is a hardware-generated change-of-flow within
the system. An interrupt handler is summoned to deal with the cause
of the interrupt; control is then returned to the interrupted context and
instruction. A trap is a software-generated interrupt. An interrupt can
be used to signal the completion of an I/O to obviate the need for device
polling. A trap can be used to call operating system routines or to catch
arithmetic errors.

1.11 Direct memory access is used for high-speed I/O devices in order to
avoid increasing the CPUś execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are com-
plete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

Answer: The CPU can initiate a DMA operation by writing values
into special registers that can be independently accessed by the device.
The device initiates the corresponding operation once it receives a com-
mand from the CPU. When the device is finished with its operation, it
interrupts the CPU to indicate the completion of the operation.
Both the device and the CPU can be accessing memory simultaneously.
The memory controller provides access to the memory bus in a fair
manner to these two entities. A CPU might therefore be unable to issue
memory operations at peak speeds since it has to compete with the
device in order to obtain access to the memory bus.

1.12 Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.
Answer: An operating system for a machine of this type would need to
remain in control (or monitor mode) at all times. This could be accom-
plished by two methods:

a. Software interpretation of all user programs (like some BASIC,
Java, and LISP systems, for example). The software interpreter
would provide, in software, what the hardware does not provide.

Exercises 5

b. Require meant that all programs be written in high-level lan-
guages so that all object code is compiler-produced. The compiler
would generate (either in-line or by function calls) the protection
checks that the hardware is missing.

1.13 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?
Answer: Caches are useful when two or more components need to ex-
change data, and the components perform transfers at differing speeds.
Caches solve the transfer problem by providing a buffer of intermediate
speed between the components. If the fast device finds the data it needs
in the cache, it need not wait for the slower device. The data in the cache
must be kept consistent with the data in the components. If a component
has a data value change, and the datum is also in the cache, the cache
must also be updated. This is especially a problem on multiprocessor
systems where more than one process may be accessing a datum. A com-
ponent may be eliminated by an equal-sized cache, but only if: (a) the
cache and the component have equivalent state-saving capacity (that is,
if the component retains its data when electricity is removed, the cache
must retain data as well), and (b) the cache is affordable, because faster
storage tends to be more expensive.

1.14 Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems

b. Multiprocessor systems

c. Distributed systems

Answer: In single-processor systems, the memory needs to be updated
when a processor issues updates to cached values. These updates can be
performed immediately or in a lazy manner. In a multiprocessor system,
different processors might be caching the same memory location in its
local caches. When updates are made, the other cached locations need to
be invalidated or updated. In distributed systems, consistency of cached
memory values is not an issue. However, consistency problems might
arise when a client caches file data.

1.15 Describe a mechanism for enforcing memory protection in order to pre-
vent a program from modifying the memory associated with other pro-
grams.
Answer: The processor could keep track of what locations are asso-
ciated with each process and limit access to locations that are outside
of a program’s extent. Information regarding the extent of a program’s
memory could be maintained by using base and limits registers and by
performing a check for every memory access.

1.16 What network configuration would best suit the following environ-
ments?

6 Chapter 1 Introduction

a. A dormitory floor

b. A university campus

c. A state

d. A nation

Answer:

a. A dormitory floor - A LAN.

b. A university campus - A LAN, possible a WAN for very large
campuses.

c. A state - A WAN.

d. A nation - A WAN.

1.17 Define the essential properties of the following types of operating sys-
tems:

a. Batch

b. Interactive

c. Time sharing

d. Real time

e. Network

f. Parallel

g. Distributed

h. Clustered

i. Handheld

Answer:

a. Batch. Jobs with similar needs are batched together and run
through the computer as a group by an operator or automatic
job sequencer. Performance is increased by attempting to keep
CPU and I/O devices busy at all times through buffering, off-line
operation, spooling, and multiprogramming. Batch is good for ex-
ecuting large jobs that need little interaction; it can be submitted
and picked up later.

b. Interactive. This system is composed of many short transactions
where the results of the next transaction may be unpredictable.
Response time needs to be short (seconds) since the user submits
and waits for the result.

c. Time sharing. This systems uses CPU scheduling and multipro-
gramming to provide economical interactive use of a system. The
CPU switches rapidly from one user to another. Instead of having
a job defined by spooled card images, each program reads its next
control card from the terminal, and output is normally printed
immediately to the screen.

Exercises 7

d. Real time. Often used in a dedicated application, this system
reads information from sensors and must respond within a fixed
amount of time to ensure correct performance.

e. Network. Provides operating system features across a network
such as file sharing.

f. SMP. Used in systems where there are multiple CPU’s each run-
ning the same copy of the operating system. Communication takes
place across the system bus.

g. Distributed.This system distributes computation among several
physical processors. The processors do not share memory or a
clock. Instead, each processor has its own local memory. They
communicate with each other through various communication
lines, such as a high-speed bus or local area network.

h. Clustered. A clustered system combines multiple computers into
a single system to perform computational task distributed across
the cluster.

i. Handheld. A small computer system that performs simple tasks
such as calendars, email, and web browsing. Handheld systems
differ from traditional desktop systems with smaller memory and
display screens and slower processors.

1.18 What are the tradeoffs inherent in handheld computers?
Answer: Handheld computers are much smaller than traditional desk-
top PC’s. This results in smaller memory, smaller screens, and slower
processing capabilities than a standard desktop PC. Because of these
limitations, most handhelds currently can perform only basic tasks such
as calendars, email, and simple word processing. However, due to their
small size, they are quite portable and, when they are equipped with
wireless access, can provide remote access to electronic mail and the
world wide web.

2C H A P T E ROperating-
System
Structures

Chapter 3 is concerned with the operating-system interfaces that users (or
at least programmers) actually see: system calls. The treatment is somewhat
vague since more detail requires picking a specific system to discuss. This
chapter is best supplemented with exactly this detail for the specific system the
students have at hand. Ideally they should study the system calls and write
some programs making system calls. This chapter also ties together several
important concepts including layered design, virtual machines, Java and the
Java virtual machine, system design and implementation, system generation,
and the policy/mechanism difference.

Exercises

2.1 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.
Answer: One class of services provided by an operating system is to
enforce protection between different processes running concurrently in
the system. Processes are allowed to access only those memory locations
that are associated with their address spaces. Also, processes are not
allowed to corrupt files associated with other users. A process is also not
allowed to access devices directly without operating system interven-
tion. The second class of services provided by an operating system is to
provide new functionality that is not supported directly by the underly-
ing hardware. Virtual memory and file systems are two such examples
of new services provided by an operating system.

2.2 List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.
Answer:

9

10 Chapter 2 Operating-System Structures

• Program execution. The operating system loads the contents (or
sections) of a file into memory and begins its execution. A user-level
program could not be trusted to properly allocate CPU time.

• I/O operations. Disks, tapes, serial lines, and other devices must be
communicated with at a very low level. The user need only specify
the device and the operation to perform on it, while the system
converts that request into device- or controller-specific commands.
User-level programs cannot be trusted to only access devices they
should have access to and to only access them when they are
otherwise unused.

• File-system manipulation. There are many details in file creation,
deletion, allocation, and naming that users should not have to
perform. Blocks of disk space are used by files and must be tracked.
Deleting a file requires removing the name file information and
freeing the allocated blocks. Protections must also be checked to
assure proper file access. User programs could neither ensure
adherence to protection methods nor be trusted to allocate only free
blocks and deallocate blocks on file deletion.

• Communications. Message passing between systems requires
messages be turned into packets of information, sent to the network
controller, transmitted across a communications medium, and
reassembled by the destination system. Packet ordering and data
correction must take place. Again, user programs might not
coordinate access to the network device, or they might receive
packets destined for other processes.

• Error detection. Error detection occurs at both the hardware and
software levels. At the hardware level, all data transfers must be
inspected to ensure that data have not been corrupted in transit. All
data on media must be checked to be sure they have not changed
since they were written to the media. At the software level, media
must be checked for data consistency; for instance, do the number
of allocated and unallocated blocks of storage match the total
number on the device. There, errors are frequently
process-independent (for instance, the corruption of data on a disk),
so there must be a global program (the operating system) that
handles all types of errors. Also, by having errors processed by the
operating system, processes need not contain code to catch and
correct all the errors possible on a system.

2.3 Describe three general methods for passing parameters to the operating
system.
Answer:

a. Pass parameters in registers

b. Registers pass starting addresses of blocks of parameters

c. Parameters can be placed, or pushed, onto the stack by the program,
and popped off the stack by the operating system.

Exercises 11

2.4 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.
Answer: One could issue periodic timer interrupts and monitor what
instructions or what sections of code are currently executing when the
interrupts are delivered. A statistical profile of which pieces of code
were active should be consistent with the time spent by the program
in different sections of its code. Once such a statistical profile has been
obtained, the programmer could optimize those sections of code that are
consuming more of the CPU resources.

2.5 What are the five major activities of an operating system in regard to file
management?
Answer:

• The creation and deletion of files

• The creation and deletion of directories

• The support of primitives for manipulating files and directories

• The mapping of files onto secondary storage

• The backup of files on stable (nonvolatile) storage media

2.6 What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?
Answer: Each device can be accessed as though it was a file in the file
system. Since most of the kernel deals with devices through this file in-
terface, it is relatively easy to add a new device driver by implementing
the hardware-specific code to support this abstract file interface. There-
fore, this benefits the development of both user program code, which
can be written to access devices and files in the same manner, and device
driver code, which can be written to support a well-defined API. The
disadvantage with using the same interface is that it might be difficult
to capture the functionality of certain devices within the context of the
file access API, thereby either resulting in a loss of functionality or a loss
of performance. Some of this could be overcome by the use of ioctl oper-
ation that provides a general purpose interface for processes to invoke
operations on devices.

2.7 What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
a new command interpreter using the system-call interface provided by
the operating system?
Answer: It reads commands from the user or from a file of commands
and executes them, usually by turning them into one or more system
calls. It is usually not part of the kernel since the command interpreter is
subject to changes. An user should be able to develop a new command
interpreter using the system-call interface provided by the operating
system. The command interpreter allows an user to create and manage
processes and also determine ways by which they communicate (such
as through pipes and files). As all of this functionality could be accessed

12 Chapter 2 Operating-System Structures

by an user-level program using the system calls, it should be possible
for the user to develop a new command-line interpreter.

2.8 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?
Answer: The two models of interprocess communication are message-
passing model and the shared-memory model. The message-passing
model controls the

2.9 Why is the separation of mechanism and policy desirable?
Answer: Mechanism and policy must be separate to ensure that systems
are easy to modify. No two system installations are the same, so each
installation may want to tune the operating system to suit its needs.
With mechanism and policy separate, the policy may be changed at will
while the mechanism stays unchanged. This arrangement provides a
more flexible system.

2.10 Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example of a
situation in which a native method is useful.
Answer: Java programs are intended to be platform I/O independent.
Therefore, the language does not provide access to most specific system
resources such as reading from I/O devices or ports. To perform a system
I/O specific operation, you must write it in a language that supports
such features (such as C or C++.) Keep in mind that a Java program
that calls a native method written in another language will no longer be
architecture-neutral.

2.11 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.
Answer: The virtual memory subsystem and the storage subsystem
are typically tightly-coupled and requires careful design in a layered
system due to the following interactions. Many systems allow files to
be mapped into the virtual memory space of an executing process. On
the other hand, the virtual memory subsystem typically uses the storage
system to provide the backing store for pages that do not currently re-
side in memory. Also, updates to the filesystem are sometimes buffered
in physical memory before it is flushed to disk, thereby requiring care-
ful coordination of the usage of memory between the virtual memory
subsystem and the filesystem.

2.12 What is the main advantage of the microkernel approach to system de-
sign? How do user programs and system services interact in a microker-
nel architecture? What are the disadvantages of using the microkernel
approach?
Answer: Benefits typically include the following (a) adding a new
service does not require modifying the kernel, (b) it is more secure as
more operations are done in user mode than in kernel mode, and (c) a
simpler kernel design and functionality typically results in a more reli-
able operating system. User programs and system services interact in a

Exercises 13

microkernel architecture by using interprocess communication mecha-
nisms such as messaging. These messages are conveyed by the operating
system. The primary disadvantage of the microkernel architecture are
the overheads associated with interprocess communication and the fre-
quent use of the operating system’s messaging functions in order to
enable the user process and the system service to interact with each
other.

2.13 In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?
Answer: The modular kernel approach requires subsystems to interact
with each other through carefully constructed interfaces that are typi-
cally narrow (in terms of the functionality that is exposed to external
modules). The layered kernel approach is similar in that respect. How-
ever, the layered kernel imposes a strict ordering of subsystems such
that subsystems at the lower layers are not allowed to invoke opera-
tions corresponding to the upper-layer subsystems. There are no such
restrictions in the modular-kernel approach, wherein modules are free
to invoke each other without any constraints.

2.14 What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
Answer: The system is easy to debug, and security problems are easy
to solve. Virtual machines also provide a good platform for operating
system research since many different operating systems may run on one
physical system.

2.15 Why is a just-in-time compiler useful for executing Java programs?
Answer: Java is an interpreted language. This means that the JVM inter-
prets the bytecode instructions one at a time. Typically, most interpreted
environments are slower than running native binaries, for the interpre-
tation process requires converting each instruction into native machine
code. A just-in-time (JIT) compiler compiles the bytecode for a method
into native machine code the first time the method is encountered. This
means that the Java program is essentially running as a native appli-
cation (of course, the conversion process of the JIT takes time as well
but not as much as bytecode interpretation.) Furthermore, the JIT caches
compiled code so that it may be reused the next time the method is en-
countered. A Java program that is run by a JIT rather than a traditional
interpreter typically runs much faster.

2.16 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?
Answer: A guest operating system provides its services by mapping
them onto the functionality provided by the host operating system. A
key issue that needs to be considered in choosing the host operating
system is whether it is sufficiently general in terms of its system-call
interface in order to be able to support the functionality associated with
the guest operating system.

14 Chapter 2 Operating-System Structures

2.17 The experimental Synthesis operating system has an assembler incorpo-
rated within the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the sys-
tem call must take through the kernel. This approach is the antithesis of
the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and to system-performance
optimization.
Answer: Synthesis is impressive due to the performance it achieves
through on-the-fly compilation. Unfortunately, it is difficult to debug
problems within the kernel due to the fluidity of the code. Also, such
compilation is system specific, making Synthesis difficult to port (a new
compiler must be written for each architecture).

2.18 In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows32 or POSIX API. Be sure to include all necessary
error checking, including ensuring that the source file exists. Once you
have correctly designed and tested the program, if you used a system
that supports it, run the program using a utility that traces system calls.
Linux systems provide the ptrace utility, and Solaris systems use the
truss or dtrace command. On Mac OS X, the ktrace facility provides
similar functionality.
Answer: Please refer to the supporting Web site for solution.

3C H A P T E R

Processes

In this chapter we introduce the concepts of a process and concurrent execution;
These concepts are at the very heart of modern operating systems. A process
is is a program in execution and is the unit of work in a modern time-sharing
system. Such a system consists of a collection of processes: Operating-system
processes executing system code and user processes executing user code. All
these processes can potentially execute concurrently, with the CPU (or CPUs)
multiplexed among them. By switching the CPU between processes, the oper-
ating system can make the computer more productive. We also introduce the
notion of a thread (lightweight process) and interprocess communication (IPC).
Threads are discussed in more detail in Chapter 4.

Exercises

3.1 Describe the differences among short-term, medium-term, and long-
term scheduling.
Answer:

• Short-term (CPU scheduler)—selects from jobs in memory those
jobs that are ready to execute and allocates the CPU to them.

• Medium-term—used especially with time-sharing systems as an
intermediate scheduling level. A swapping scheme is implemented
to remove partially run programs from memory and reinstate them
later to continue where they left off.

• Long-term (job scheduler)—determines which jobs are brought into
memory for processing.

The primary difference is in the frequency of their execution. The short-
term must select a new process quite often. Long-term is used much less
often since it handles placing jobs in the system and may wait a while
for a job to finish before it admits another one.

15

16 Chapter 3 Processes

3.2 Describe the actions taken by a kernel to context-switch between pro-
cesses.
Answer: In general, the operating system must save the state of the
currently running process and restore the state of the process sched-
uled to be run next. Saving the state of a process typically includes the
values of all the CPU registers in addition to memory allocation. Con-
text switches must also perform many architecture-specific operations,
including flushing data and instruction caches.

3.3 Consider the RPC mechanism. Describe the undesirable circumstances
that could arise from not enforcing either the "at most once" or "exactly
once" semantics. Describe possible uses for a mechanism that had neither
of these guarantees.
Answer: If an RPC mechanism could not support either the “at most
once” or “at least once” semantics, then the RPC server cannot guaran-
tee that a remote procedure will not be invoked multiple occurrences.
Consider if a remote procedure were withdrawing money from a bank
account on a system that did not support these semantics. It is possible
that a single invocation of the remote procedure might lead to multiple
withdrawals on the server.
For a system to support either of these semantics generally requires
the server maintain some form of client state such as the timestamp
described in the text.
If a system were unable to support either of these sematics, then such
a system could only safely provide remote procedures that do not alter
data or provide time-sensitive results. Using our bank accunt as an
example, we certainly require “at most once” or “at least once” semantics
for performing a withdrawal (or deposit!) However, an inquiry into an
account balance or other accunt information such as name, address, etc.
does not require these semantics.

3.4 Using the program shown in Figure 3.24, explain what will be output at
Line A.
Answer: Please refer to the supporting Web site for source code solution.

3.5 What are the benefits and detriments of each of the following? Consider
both the systems and the programmers’ levels.

a. Symmetric and asymmetric communication

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

Answer:

a. Symmetric and asymmetric communication - A benefit of sym-
metric communication is that it allows a rendezvous between the
sender and receiver. A disadvantage of a blocking send is that a
rendezvous may not be required and the message could be de-
livered asynchronously; received at a point of no interest to the

Exercises 17

sender. As a result, message-passing systems often provide both
forms of synchronization.

b. Automatic and explicit buffering - Automatic buffering provides
a queue with indefinite length; thus ensuring the sender will never
have to block while waiting to copy a message. There are no spec-
ifications how automatic buffering will be provided; one scheme
may reserve sufficiently large memory where much of the mem-
ory is wasted. Explicit buffering specifies how large the buffer
is. In this situation, the sender may be blocked while waiting for
available space in the queue. However, it is less likely memory
will be wasted with explicit buffering.

c. Send by copy and send by reference - Send by copy does not
allow the receiver to alter the state of the parameter; send by ref-
erence does allow it. A benefit of send by reference is that it allows
the programmer to write a distributed version of a centralized ap-
plication. Java’s RMI provides both, however passing a parameter
by reference requires declaring the parameter as a remote object
as well.

d. Fixed-sized and variable-sized messages - The implications of
this are mostly related to buffering issues; with fixed-size mes-
sages, a buffer with a specific size can hold a known number
of messages. The number of variable-sized messages that can be
held by such a buffer is unknown. Consider how Windows 2000
handles this situation: with fixed-sized messages (anything < 256
bytes), the messages are copied from the address space of the
sender to the address space of the receiving process. Larger mes-
sages (i.e. variable-sized messages) use shared memory to pass
the message.

3.6 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8, For-
mally, it can be expressed as:

f ib0 = 0
f ib1 = 1
f ibn = f ibn−1 + f ibn−2

Write a C program using the fork() system call that that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait() call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.
Answer: Please refer to the supporting Web site for source code solution.

3.7 Repeat the preceding exercise, this time using the CreateProcess() in
the Win32 API. In this instance, you will need to specify a separate pro-

18 Chapter 3 Processes

gram to be invoked from CreateProcess(). It is this separate program
that will run as a child process outputting the Fibonacci sequence. Per-
form necessary error checking to ensure that a non-negative number is
passed on the command line.
Answer: Please refer to the supporting Web site for source code solution.

3.8 Modify the Date server shown in Figure 3.19 so that it delivers random
one-line fortunes rather than the current date. Allow the fortunes to
contain multiple lines. The date client shown in Figure 3.20 can be used
to read the multi-line fortunes returned by the fortune server.
Answer: Please refer to the supporting Web site for source code solution.

3.9 An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! the
server will respond with the exact data it received from the client—that
is, Hello there!

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept() method. When a client connection is received, the server will
loop, performing the following steps:

• Read data from the socket into a buffer.

• Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.
The date server shown in Figure 3.19 uses thejava.io.BufferedReader

class. BufferedReader extends the java.io.Reader class, which is
used for reading character streams. However, the echo server cannot
guarantee that it will read characters from clients; it may receive binary
data as well. The class java.io.InputStreamdeals with data at the byte
level rather than the character level. Thus, this echo server must use an
object that extends java.io.InputStream. The read() method in the
java.io.InputStream class returns −1 when the client has closed its
end of the socket connection.
Answer: Please refer to the supporting Web site for source code solution.

3.10 In Exercise 3.6, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well.

This program will be structured using POSIX shared memory as de-
scribed in Section 3.5.1. The program first requires creating the data
structure for the shared-memory segment. This is most easily accom-
plished using a struct. This data structure will contain two items: (1)
a fixed-sized array of size MAX SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate

Exercises 19

- sequence size where sequence size ≤ MAX SEQUENCE. These items
can be represented in a struct as follows:

#define MAX SEQUENCE 10

typedef struct {
long fib sequence[MAX SEQUENCE];
int sequence size;

} shared data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is ≤ MAX SEQUENCE.

b. Create a shared-memory segment of size shared data.

c. Attach the shared-memory segment to its address space.

d. Set the value of sequence size to the parameter on the command
line.

e. Fork the child process and invoke the wait() system call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child’s address space as well. The child
process will then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait() system call; the parent process
will invoke wait(), which will cause it to be suspended until the child
process exits.
Answer: Please refer to the supporting Web site for source code solution.

3.11 Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication mech-
anisms, including shared-memory segments. Much of the information
for the command comes from the data structure struct shmid ds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

• int shm segsz—size of the shared-memory segment

• short shm nattch—number of attaches to the shared-memory
segment

20 Chapter 3 Processes

• struct ipc perm shm perm—permission structure of the
shared-memory segment

The struct ipc perm data structure (which is available in the file
/usr/include/sys/ipc.h) contains the fields:

• unsigned short uid—identifier of the user of the
shared-memory segment

• unsigned short mode—permission modes

• key t key (on Linux systems, key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget() system call. Permissions are
identified according to the following:

Mode Meaning

0400

0200

0040

0020

0004

0002

Read permission of owner.

Write permission of owner.

Read permission of group.

Write permission of group.

Read permission of world.

Write permission of world.

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statement mode & 0400 evaluates to true, the permis-
sion mode allows read permission by the owner of the shared-memory
segment.
Shared-memory segments can be identified according to a user-specified
key or according to the integer value returned from the shmget() system
call, which represents the integer identifier of the shared-memory seg-
ment created. The shm ds structure for a given integer segment identifier
can be obtained with the following shmctl() system call:

/* identifier of the shared memory segment*/
int segment id;
shm ds shmbuffer;

shmctl(segment id, IPC STAT, &shmbuffer);

If successful, shmctl() returns 0; otherwise, it returns -1.
Write a C program that is passed an identifier for a shared-memory

segment. This program will invoke the shmctl() function to obtain its
shm ds structure. It will then output the following values of the given
shared-memory segment:

• Segment ID

• Key

Exercises 21

• Mode

• Owner UID

• Size

• Number of attaches

Answer: Please refer to the supporting Web site for source code solution.

4C H A P T E R

Threads

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Many modern operating
systems now provide features for a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems and covers how to use Java to create and manipulate threads.
We have found it especially useful to discuss how a Java thread maps to the
thread model of the host operating system.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution
Answer: (1) Any kind of sequential program is not a good candidate
to be threaded. An example of this is a program that calculates an in-
dividual tax return. (2) Another example is a "shell" program such as
the C-shell or Korn shell. Such a program must closely monitor its own
working space such as open files, environment variables, and current
working directory.

4.2 Describe the actions taken by a thread library to context switch between
user-level threads.
Answer: Context switching between user threads is quite similar to
switching between kernel threads, although it is dependent on the
threads library and how it maps user threads to kernel threads. In
general, context switching between user threads involves taking a user
thread of its LWP and replacing it with another thread. This act typically
involves saving and restoring the state of the registers.

4.3 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

23

24 Chapter 4 Threads

Answer: When a kernel thread suffers a page fault, another kernel
thread can be switched in to use the interleaving time in a useful manner.
A single-threaded process, on the other hand, will not be capable of
performing useful work when a page fault takes place. Therefore, in
scenarios where a program might suffer from frequent page faults or
has to wait for other system events, a multi-threaded solution would
perform better even on a single-processor system.

4.4 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

Answer: The threads of a multithreaded process share heap memory
and global variables. Each thread has its separate set of register values
and a separate stack.

4.5 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-processor
system?
Answer: A multithreaded system comprising of multiple user-level
threads cannot make use of the different processors in a multiprocessor
system simultaneously. The operating system sees only a single process
and will not schedule the different threads of the process on separate
processors. Consequently, there is no performance benefit associated
with executing multiple user-level threads on a multiprocessor system.

4.6 As described in Section 4.5.2, Linux does not distinguish between pro-
cesses and threads. Instead, Linux treats both in the same way, allowing
a task to be more akin to a process or a thread depending on the set of
flags passed to the clone() system call. However, many operating sys-
tems—such as Windows XP and Solaris—treat processes and threads
differently. Typically, such systems use a notation wherein the data struc-
ture for a process contains pointers to the separate threads belonging to
the process. Contrast these two approaches for modeling processes and
threads within the kernel.
Answer: On one hand, in systems where processes and threads are
considered as similar entities, some of the operating system code could
be simplified. A scheduler, for instance, can consider the different pro-
cesses and threads in equal footing without requiring special code to
examine the threads associated with a process during every scheduling
step. On the other hand, this uniformity could make it harder to impose
process-wide resource constraints in a direct manner. Instead, some ex-
tra complexity is required to identify which threads correspond to which
process and perform the relevant accounting tasks.

4.7 The program shown in Figure 4.11 uses the Pthreads API. What would
be output from the program at LINE C and LINE P?

Exercises 25

Answer: Output at LINE C is 5. Output at LINE P is 0.

4.8 Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of user-
level threads.

Answer: When the number of kernel threads is less than the number
of processors, then some of the processors would remain idle since the
scheduler maps only kernel threads to processors and not user-level
threads to processors. When the number of kernel threads is exactly
equal to the number of processors, then it is possible that all of the
processors might be utilized simultaneously. However, when a kernel-
thread blocks inside the kernel (due to a page fault or while invoking
system calls), the corresponding processor would remain idle. When
there are more kernel threads than processors, a blocked kernel thread
could be swapped out in favor of another kernel thread that is ready to
execute, thereby increasing the utilization of the multiprocessor system.

4.9 Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.
Answer: Please refer to the supporting Web site for source code solution.

4.10 Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
Answer: Please refer to the supporting Web site for source code solution.

4.11 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8, For-
mally, it can be expressed as:

f ib0 = 0
f ib1 = 1
f ibn = f ibn−1 + f ibn−2

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should
work as follows: The user will enter on the command line the number
of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is

26 Chapter 4 Threads

probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by the
child thread. Because the parent thread cannot begin outputting the Fi-
bonacci sequence until the child thread finishes, this will require having
the parent thread wait for the child thread to finish using the techniques
described in Section 4.3.
Answer: (Please refer to the supporting Web site for source code solu-
tion.)

4.12 Exercise 3.9 in Chapter 3 specifies designing an echo server using the
Java threading API. However, this server is single-threaded meaning
the server cannot respond to concurrent echo clients until the current
client exits. Modify the solution to Exercise 3.9 such that the echo server
services each client in a spearate request
Answer: Please refer to the supporting Web site for source code solution.

5C H A P T E R

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating systems. By switch-
ing the CPU among processes, the operating system can make the computer
more productive. In this chapter, we introduce the basic scheduling concepts
and discuss in great length CPU scheduling. FCFS, SJF, Round-Robin, Priority,
and the other scheduling algorithms should be familiar to the students. This
is their first exposure to the idea of resource allocation and scheduling, so it
is important that they understand how it is done. Gantt charts, simulations,
and play acting are valuable ways to get the ideas across. Show how the ideas
are used in other situations (like waiting in line at a post office, a waiter time
sharing between customers, even classes being an interleaved Round-Robin
scheduling of professors).

A simple project is to write several different CPU schedulers and compare
their performance by simulation. The source of CPU and I/O bursts may be
generated by random number generators or by a trace tape. The instructor can
make the trace tape up in advance to provide the same data for all students. The
file that I used was a set of jobs, each job being a variable number of alternating
CPU and I/O bursts. The first line of a job was the word JOB and the job number.
An alternating sequence of CPU n and I/O n lines followed, each specifying a
burst time. The job was terminated by an END line with the job number again.
Compare the time to process a set of jobs using FCFS, Shortest-Burst-Time,
and Round-Robin scheduling. Round-Robin is more difficult, since it requires
putting unfinished requests back in the ready queue.

Exercises

5.1 Why is it important for the scheduler to distinguish I/O-bound programs
from CPU-bound programs?
Answer: I/O-bound programs have the property of performing only
a small amount of computation before performing IO. Such programs
typically do not use up their entire CPU quantum. CPU-bound programs,

27

28 Chapter 5 CPU Scheduling

on the other hand, use their entire quantum without performing any
blocking IO operations. Consequently, one could make better use of the
computer’s resouces by giving higher priority to I/O-bound programs
and allow them to execute ahead of the CPU-bound programs.

5.2 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time

b. Average turnaround time and maximum waiting time

c. I/O device utilization and CPU utilization

Answer:

• CPU utilization and response time: CPU utilization is increased if the
overheads associated with context switching is minimized. The
context switching overheads could be lowered by performing
context switches infrequently. This could however result in
increasing the response time for processes.

• Average turnaround time and maximum waiting time: Average
turnaround time is minimized by executing the shortest tasks first.
Such a scheduling policy could however starve long-running tasks
and thereby increase their waiting time.

• I/O device utilization and CPU utilization: CPU utilization is
maximized by running long-running CPU-bound tasks without
performing context switches. I/O device utilization is maximized by
scheduling I/O-bound jobs as soon as they become ready to run,
thereby incurring the overheads of context switches.

5.3 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. � = 0 and �0 = 100milliseconds

b. � = 0.99 and �0 = 10milliseconds

Answer: When � = 0 and �0 = 100milliseconds, the formula always
makes a prediction of 100 milliseconds for the next CPU burst. When � =
0.99 and �0 = 10milliseconds, the most recent behavior of the process
is given much higher weight than the past history associated with the
process. Consequently, the scheduling algorithm is almost memory-less,
and simply predicts the length of the previous burst for the next quantum
of CPU execution.

5.4 Consider the following set of processes, with the length of the CPU-burst
time given in milliseconds:

Exercises 29

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts illustrating the execution of these pro-
cesses using FCFS, SJF, a nonpreemptive priority (a smaller pri-
ority number implies a higher priority), and RR (quantum = 1)
scheduling.

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the schedules in part a results in the minimal average
waiting time (over all processes)?

Answer:

a. The four Gantt charts are

b. Turnaround time

FCFS RR SJF Priority
P1 10 19 19 16
P2 11 2 1 1
P3 13 7 4 18
P4 14 4 2 19
P5 19 14 9 6

c. Waiting time (turnaround time minus burst time)

FCFS RR SJF Priority
P1 0 9 9 6
P2 10 1 0 0
P3 11 5 2 16
P4 13 3 1 18
P5 14 9 4 1

d. Shortest Job First

5.5 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin

30 Chapter 5 CPU Scheduling

d. Priority

Answer: Shortest job first and priority-based scheduling algorithms
could result in starvation.

5.6 Consider a variant of the RR scheduling algorithm where the entries in
the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be the major advantages and disadvantages of this
scheme?

c. How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?

Answer:

a. In effect, that process will have increased its priority since by
getting time more often it is receiving preferential treatment.

b. The advantage is that more important jobs could be given more
time, in other words, higher priority in treatment. The conse-
quence, of course, is that shorter jobs will suffer.

c. Allot a longer amount of time to processes deserving higher pri-
ority. In other words, have two or more quantums possible in the
Round-Robin scheme.

5.7 Consider a system running ten I/O-bound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every millisecond of CPU computing and that each I/O operation takes
10 milliseconds to complete. Also assume that the context switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

Answer:

• The time quantum is 1 millisecond: Irrespective of which process is
scheduled, the scheduler incurs a 0.1 millisecond context-switching
cost for every context-switch. This results in a CPU utilization of
1/1.1 * 100 = 91%.

• The time quantum is 10 milliseconds: The I/O-bound tasks incur a
context switch after using up only 1 millisecond of the time
quantum. The time required to cycle through all the processes is
therefore 10*1.1 + 10.1 (as each I/O-bound task executes for 1
millisecond and then incur the context switch task, whereas the
CPU-bound task executes for 10 milliseconds before incurring a
context switch). The CPU utilization is therefore 20/21.1 * 100 = 94%.

Exercises 31

5.8 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user’s process?
Answer: The program could maximize the CPU time allocated to it
by not fully utilizing its time quantums. It could use a large fraction
of its assigned quantum, but relinquish the CPU before the end of the
quantum, thereby increasing the priority associated with the process.

5.9 Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not run-
ning), its priority changes at a rate �; when it is running, its priority
changes at a rate �. All processes are given a priority of 0 when they
enter the ready queue. The parameters � and � can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from � > � > 0?

b. What is the algorithm that results from � < � < 0?

Answer:

a. FCFS

b. LIFO

5.10 Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

Answer:

a. FCFS—discriminates against short jobs since any short jobs arriv-
ing after long jobs will have a longer waiting time.

b. RR—treats all jobs equally (giving them equal bursts of CPU time)
so short jobs will be able to leave the system faster since they will
finish first.

c. Multilevel feedback queues—work similar to the RR algorithm—
they discriminate favorably toward short jobs.

5.11 Using the Windows XP scheduling algorithm, what is the numeric pri-
ority of a thread for the following scenarios?

a. A thread in the REALTIME PRIORITY CLASS with a relative pri-
ority of HIGHEST.

b. A thread in the NORMAL PRIORITY CLASS with a relative pri-
ority of NORMAL.

c. A thread in the HIGH PRIORITY CLASS with a relative priority
of ABOVE NORMAL.

32 Chapter 5 CPU Scheduling

Answer:

a. 26

b. 8

c. 14

5.12 Consider the scheduling algorithm in the Solaris operating system for
time sharing threads:

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume a thread with priority 35 has used its entire time quantum
without blocking. What new priority will the scheduler assign this
thread?

c. Assume a thread with priority 35 blocks for I/O before its time
quantum has expired. What new priority will the scheduler assign
this thread?

Answer:

a. 160 and 40

b. 35

c. 54

5.13 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (Recent CPU usage / 2) + Base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, process P2 is 18,
and process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
Answer: The priorities assigned to the processes are 80, 69, and 65
respectively. The scheduler lowers the relative priority of CPU-bound
processes.

6C H A P T E R

Process
Synchronization

Chapter 6 is concerned with the topic of process synchronization among con-
currently executing processes. Concurrency is generally very hard for students
to deal with correctly, and so we have tried to introduce it and its problems
with the classic process coordination problems: mutual exclusion, bounded-
buffer, readers/writers, and so on. An understanding of these problems and
their solutions is part of current operating-system theory and development.

We first use semaphores and monitors to introduce synchronization tech-
niques. Next, Java synchronization is introduced to further demonstrate a
language-based synchronization technique. We conclude with a discussion of
how contemporary operating systems provide features for process synchro-
nization and thread safety.

Exercises

6.1 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, P0 and
P1, share the following variables:

boolean flag[2]; /* initially false */
int turn;

The structure of process Pi (i == 0 or 1) is shown in Figure 6.25; the other
process is Pj (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.
Answer: This algorithm satisfies the three conditions of mutual ex-
clusion. (1) Mutual exclusion is ensured through the use of the flag
and turn variables. If both processes set their flag to true, only one
will succeed. Namely, the process whose turn it is. The waiting process
can only enter its critical section when the other process updates the
value of turn. (2) Progress is provided, again through the flag and turn
variables. This algorithm does not provide strict alternation. Rather, if a

33

34 Chapter 6 Process Synchronization

process wishes to access their critical section, it can set their flag vari-
able to true and enter their critical section. It only sets turn to the value
of the other process upon exiting its critical section. If this process wishes
to enter its critical section again - before the other process - it repeats
the process of entering its critical section and setting turn to the other
process upon exiting. (3) Bounded waiting is preserved through the use
of the TTturn variable. Assume two processes wish to enter their respec-
tive critical sections. They both set their value of flag to true, however
only the thread whose turn it is can proceed, the other thread waits.
If bounded waiting were not preserved, it would therefore be possible
that the waiting process would have to wait indefinitely while the first
process repeatedly entered - and exited - its critical section. However,
Dekker’s algorithm has a process set the value of turn to the other pro-
cess, thereby ensuring that the other process will enter its critical section
next.

6.2 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n − 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in
Figure 6.26. Prove that the algorithm satisfies all three requirements for
the critical-section problem.
Answer: This algorithm satisfies the three conditions. Before we show
that the three conditions are satisfied, we give a brief explanation of
what the algorithm does to ensure mutual exclusion. When a process i
requires access to critical section, it first sets its flag variable to want in
to indicate its desire. It then performs the following steps: (1) It ensures
that all processes whose index lies between turn and i are idle. (2)
If so, it updates its flag to in cs and checks whether there is already
some other process that has updated its flag to in cs. (3) If not and
if it is this process’s turn to enter the critical section or if the process
indicated by the turn variable is idle, it enters the critical section. Given
the above description, we can reason about how the algorithm satisfies
the requirements in the following manner:

• Mutual exclusion is ensured: Notice that a process enters the critical
section only if the following requirements is satisfied: no other
process has its flag variable set to in cs. Since the process sets its
own flag variable set to in cs before checking the status of other
processes, we are guaranteed that no two processes will enter the
critical section simultaneously.

• Progress requirement is satisfied: Consider the situation where
multiple processes simultaneously set their flag variables to in cs
and then check whether there is any other process has the flag

Exercises 35

variable set to in cs. When this happens, all processes realize that
there are competing processes, enter the next iteration of the outer
while(1) loop and reset their flag variables to want in. Now the
only process that will set its turn variable to in cs is the process
whose index is closest to turn. It is however possible that new
processes whose index values are even closer to turn might decide
to enter the critical section at this point and therefore might be able
to simultaneously set its flag to in cs. These processes would then
realize there are competing processes and might restart the process
of entering the critical section. However, at each iteration, the index
values of processes that set their flag variables to in cs become
closer to turn and eventually we reach the following condition:
only one process (say k) sets its flag to in cs and no other process
whose index lies between turn and k has set its flag to in cs. This
process then gets to enter the critical section.

• Bounded-waiting requirement is met: The bounded waiting
requirement is satisfied by the fact that when a process k desires to
enter the critical section, its flag is no longer set to idle. Therefore,
any process whose index does not lie between turn and k cannot
enter the critical section. In the meantime, all processes whose index
falls between turn and k and desire to enter the critical section
would indeed enter the critical section (due to the fact that the
system always makes progress) and the turn value monotonically
becomes closer to k. Eventually, either turn becomes k or there are
no processes whose index values lie between turn and k, and
therefore process k gets to enter the critical section.

6.3 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.
Answer: Busy waiting means that a process is waiting for a condition to
be satisfied in a tight loop without relinquish the processor. Alternatively,
a process could wait by relinquishing the processor, and block on a
condition and wait to be awakened at some appropriate time in the
future. Busy waiting can be avoided but incurs the overhead associated
with putting a process to sleep and having to wake it up when the
appropriate program state is reached.

6.4 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.
Answer: Spinlocks are not appropriate for single-processor systems
because the condition that would break a process out of the spinlock
could be obtained only by executing a different process. If the process is
not relinquishing the processor, other processes do not get the opportu-
nity to set the program condition required for the first process to make
progress. In a multiprocessor system, other processes execute on other
processors and thereby modify the program state in order to release the
first process from the spinlock.

36 Chapter 6 Process Synchronization

6.5 Explain why implementing synchronization primitives by disabling in-
terrupts is not appropriate in a single-processor system if the synchro-
nization primitives are to be used in user-level programs.
Answer: If a user-level program is given the ability to disable interrupts,
then it can disable the timer interrupt and prevent context switching from
taking place, thereby allowing it to use the processor without letting
other processes to execute.

6.6 Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.
Answer: Interrupts are not sufficient in multiprocessor systems since
disabling interrupts only prevents other processes from executing on the
processor in which interrupts were disabled; there are no limitations on
what processes could be executing on other processors and therefore the
process disabling interrupts cannot guarantee mutually exclusive access
to program state.

6.7 Describe how the Swap() instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.
Answer:

do {
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = Swap(&lock, &key);

waiting[i] = FALSE;

/* critical section */

j = (i+1) % n;
while ((j != i) && !waiting[j])

j = (j+1) % n;
if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;

/* remainder section */
} while (TRUE);

6.8 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will not
accept another incoming connection until an existing connection is re-
leased. Explain how semaphores can be used by a server to limit the
number of concurrent connections.
Answer: A semaphore is initialized to the number of allowable open
socket connections. When a connection is accepted, the acquire() method
is called, when a connection is released, the release() method is called. If

Exercises 37

the system reaches the number of allowable socket connections, subse-
quent calls to acquire() will block until an existing connection is termi-
nated and the release method is invoked.

6.9 Show that, if the wait() and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.
Answer: A wait operation atomically decrements the value associated
with a semaphore. If two wait operations are executed on a semaphore
when its value is 1, if the two operations are not performed atomically,
then it is possible that both operations might proceed to decrement the
semaphore value thereby violating mutual exclusion.

6.10 Show how to implement the wait() and signal() semaphore opera-
tions in multiprocessor environments using the TestAndSet() instruc-
tion. The solution should exhibit minimal busy waiting.
Answer: Here is the pseudocode for implementing the operations:
int guard = 0;
int semaphore value = 0;

wait()
{

while (TestAndSet(&guard) == 1);
if (semaphore value == 0) {

atomically add process to a queue of processes
waiting for the semaphore and set guard to 0;

} else {
semaphore value--;
guard = 0;

}
}

signal()
{

while (TestAndSet(&guard) == 1);
if (semaphore value == 0 &&

there is a process on the wait queue)
wake up the first process in the queue
of waiting processes

else
semaphore value++;

guard = 0;
}

6.11 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.
Answer: Please refer to the supporting Web site for source code solution.

38 Chapter 6 Process Synchronization

6.12 Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization prob-
lems.
Answer: A semaphore can be implemented using the following monitor
code:
monitor semaphore {

int value = 0;
condition c;

semaphore increment() {
value++;
c.signal();

}

semaphore decrement() {
while (value == 0)
c.wait();
value--;

}
}

A monitor could be implemented using a semaphore in the following
manner. Each condition variable is represented by a queue of threads
waiting for the condition. Each thread has a semaphore associated with
its queue entry. When a thread performs a wait operation, it creates
a new semaphore (initialized to zero), appends the semaphore to the
queue associated with the condition variable, and performs a blocking
semaphore decrement operation on the newly created semaphore. When
a thread performs a signal on a condition variable, the first process in the
queue is awakened by performing an increment on the corresponding
semaphore.

6.13 Write a bounded-buffer monitor in which the buffers (portions) are em-
bedded within the monitor itself.
Answer:

monitor bounded_buffer {
int items[MAX_ITEMS];
int numItems = 0;
condition full, empty;

void produce(int v) {
while (numItems == MAX_ITEMS)

full.wait();
items[numItems++] = v;
empty.signal();

}

int consume() {
int retVal;
while (numItems == 0)

Exercises 39

empty.wait();
retVal = items[--numItems];

full.signal();
return retVal;

}
}

6.14 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.13 mainly suitable for small portions.

a. Explain why this is true.

b. Design a new scheme that is suitable for larger portions.

Answer: The solution to the bounded buffer problem given above
copies the produced value into the monitor’s local buffer and copies
it back from the monitor’s local buffer to the consumer. These copy
operations could be expensive if one were using large extents of memory
for each buffer region. The increased cost of copy operation means that
the monitor is held for a longer period of time while a process is in the
produce or consume operation. This decreases the overall throughput
of the system. This problem could be alleviated by storing pointers to
buffer regions within the monitor instead of storing the buffer regions
themselves. Consequently, one could modify the code given above to
simply copy the pointer to the buffer region into and out of the monitor’s
state. This operation should be relatively inexpensive and therefore the
period of time that the monitor is being held will be much shorter,
thereby increasing the throughput of the monitor.

6.15 Discuss the tradeoff between fairness and throughput of operations in
the readers-writers problem. Propose a method for solving the readers-
writers problem without causing starvation.
Answer: Throughput in the readers-writers problem is increased by
favoring multiple readers as opposed to allowing a single writer to
exclusively access the shared values. On the other hand, favoring readers
could result in starvation for writers. The starvation in the readers-
writers problem could be avoided by keeping timestamps associated
with waiting processes. When a writer is finished with its task, it would
wake up the process that has been waiting for the longest duration.
When a reader arrives and notices that another reader is accessing the
database, then it would enter the critical section only if there are no
waiting writers. These restrictions would guarantee fairness.

6.16 How does the signal() operation associated with monitors differ from
the corresponding operation defined for semaphores?
Answer: The signal() operations associated with monitors is not
persistent in the following sense: if a signal is performed and if there are
no waiting threads, then the signal is simply ignored and the system does
not remember the fact that the signal took place. If a subsequent wait
operation is performed, then the corresponding thread simply blocks. In
semaphores, on the other hand, every signal results in a corresponding

40 Chapter 6 Process Synchronization

increment of the semaphore value even if there are no waiting threads. A
future wait operation would immediately succeed because of the earlier
increment.

6.17 Suppose the signal() statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.
Answer: If the signal operation were the last statement, then the lock
could be transferred from the signalling process to the process that is the
recipient of the signal. Otherwise, the signalling process would have to
explicitly release the lock and the recipient of the signal would have to
compete with all other processes to obtain the lock to make progress.

6.18 Consider a system consisting of processes P1, P2, ..., Pn, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.
Answer: Here is the pseudocode:
monitor printers {

int num avail = 3;
int waiting processes[MAX PROCS];
int num waiting;
condition c;

void request printer(int proc number) {
if (num avail > 0) {
num avail--;
return;
}
waiting processes[num waiting] = proc number;
num waiting++;
sort(waiting processes);
while (num avail == 0 &&

waiting processes[0] != proc number)
c.wait();
waiting processes[0] =

waiting processes[num waiting-1];
num waiting--;
sort(waiting processes);
num avail--;

}

void release printer() {
num avail++;
c.broadcast();

}
}

6.19 A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several

Exercises 41

processes, subject to the following constraint: The sum of all unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.
Answer: The pseudocode is as follows:
monitor file access {

int curr sum = 0;
int n;
condition c;

void access file(int my num) {
while (curr sum + my num >= n)
c.wait();
curr sum += my num;

}

void finish access(int my num) {
curr sum -= my num;
c.broadcast();

}
}

6.20 When a signal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two different ways in which signaling can be performed?
Answer: The solution to the previous exercise is correct under both
situations. However, it could suffer from the problem that a process
might be awakened only to find that it is still not possible for it to make
forward progress either because there was not sufficient slack to begin
with when a process was awakened or if an intervening process gets
control, obtains the monitor and starts accessing the file. Also, note that
the broadcast operation wakes up all of the waiting processes. If the
signal also transfers control and the monitor from the current thread to
the target, then one could check whether the target would indeed be
able to make forward progress and perform the signal only if it it were
possible. Then the “while” loop for the waiting thread could be replaced
by “if” condition since it is guaranteed that the condition will be satisfied
when the process is woken up.

6.21 Suppose we replace the wait() and signal() operations of monitors
with a single construct await(B), where B is a general Boolean expres-
sion that causes the process executing it to wait until B becomes true.

a. Write a monitor using this scheme to implement the readers–
writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that
it can be implemented efficiently? (Hint: Restrict the generality of
B; see Kessels [1977].)

42 Chapter 6 Process Synchronization

Answer:

• The readers-writers problem could be modified with the following
more generate await statements: A reader can perform
“await(active writers == 0 && waiting writers == 0)” to check that
there are no active writers and there are no waiting writers before it
enters the critical section. The writer can perform a
“await(active writers == 0 && active readers == 0)” check to ensure
mutually exclusive access.

• The system would have to check which one of the waiting threads
have to be awakened by checking which one of their waiting
conditions are satisfied after a signal. This requires considerable
complexity as well as might require some interaction with the
compiler to evaluate the conditions at different points in time. One
could restrict the boolean condition to be a disjunction of
conjunctions with each component being a simple check (equality
or inequality with respect to a static value) on a program variable.
In that case, the boolean condition could be communicated to the
runtime system, which could perform the check every time it needs
to determine which thread to be awakened.

6.22 Write a monitor that implements an alarm clock that enables a calling pro-
gram to delay itself for a specified number of time units (ticks). You may
assume the existence of a real hardware clock that invokes a procedure
tick in your monitor at regular intervals.
Answer: Here is a pseudocode for implementing this:

monitor alarm {
condition c;

void delay(int ticks) {
int begin time = read clock();
while (read clock() < begin time + ticks)
c.wait();

}

void tick() {
c.broadcast();

}
}

6.23 Why do Solaris, Linux, and Windows 2000 use spinlocks as a synchro-
nization mechanism only on multiprocessor systems and not on single-
processor systems?
Answer: Solaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems. Spinlocks are
not appropriate for single-processor systems because the condition that
would break a process out of the spinlock could be obtained only by
executing a different process. If the process is not relinquishing the pro-
cessor, other processes do not get the opportunity to set the program

Exercises 43

condition required for the first process to make progress. In a multipro-
cessor system, other processes execute on other processors and thereby
modify the program state in order to release the first process from the
spinlock.

6.24 In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary?
Answer: If the transaction needs to be aborted, then the values of
the updated data values need to be rolled back to the old values. This
requires the old values of the data entries to be logged before the updates
are performed.

6.25 Show that the two-phase locking protocol ensures conflict serializability.
Answer: A schedule refers to the execution sequence of the operations
for one or more transactions. A serial schedule is the situation where
each transaction of a schedule is performed atomically. If a schedule
consists of two different transactions where consecutive operations from
the different transactions access the same data and at least one of the
operations is a write, then we have what is known as a conflict. If a
schedule can be transformed into a serial schedule by a series of swaps
on nonconflicting operations, we say that such a schedule is conflict
serializable.
The two-phase locking protocol ensures conflict serializabilty because
exclusive locks (which are used for write operations) must be acquired
serially, without releasing any locks during the acquire (growing) phase.
Other transactions that wish to acquire the same locks must wait for
the first transaction to begin releasing locks. By requiring that all locks
must first be acquired before releasing any locks, we are ensuring that
potential conflicts are avoided.

6.26 What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?
Answer: If the transactions that were issued after the rolled-back trans-
action had accessed variables that were updated by the rolled-back trans-
action, then these transactions would have to rolled-back as well. If they
have not performed such operations (that is, there is no overlap with the
rolled-back transaction in terms of the variables accessed), then these
operations are free to commit when appropriate.

6.27 Assume that a finite number of resources of a single resource type must
be managed. Processes may ask for a number of these resources and
—once finished—will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently. When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

44 Chapter 6 Process Synchronization

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX RESOURCES 5
int available resources = MAX RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease count() function:

/* decrease available resources by count resources */
/* return 0 if sufficient resources available, */
/* otherwise return -1 */
int decrease count(int count) {

if (available resources < count)
return -1;

else {
available resources -= count;

return 0;
}

}

When a process wants to return a number of resources, it calls the de-
crease count() function:

/* increase available resources by count */
int increase count(int count) {

available resources += count;

return 0;
}

The preceding program segment produces a race condition. Do the fol-
lowing:

a. Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphore, fix the race condition.

Answer:

• Identify the data involved in the race condition: The variable
available resources.

• Identify the location (or locations) in the code where the race
condition occurs: The code that decrements available resources and
the code that increments available resources are the statements that
could be involved in race conditions.

Exercises 45

• Using a semaphore, fix the race condition: Use a semaphore to
represent the available resources variable and replace increment
and decrement operations by semaphore increment and semaphore
decrement operations.

6.28 The decrease count() function in the previous exercise currently re-
turns 0 if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
resources:

while (decrease count(count) == -1)
;

Rewrite the resource-manager code segment using a monitor and con-
dition variables so that the decrease count() function suspends the
process until sufficient resources are available. This will allow a process
to invoke decrease count() by simply calling

decrease count(count);

The process will only return from this function call when sufficient
resources are available.
Answer:

monitor resources
{

int available_resources;
condition resources_avail;

int decrease_count(int count)
{

while (available_resources < count)
resources_avail.wait();

available_resources -= count;
}

int increase_count(int count)
{

available_resources += count;
resources_avail.signal();

}

7C H A P T E R

Deadlocks

Deadlock is a problem that can only arise in a system with multiple active
asynchronous processes. It is important that the students learn the three basic
approaches to deadlock: prevention, avoidance, and detection (although the
terms prevention and avoidance are easy to confuse).

It can be useful to pose a deadlock problem in human terms and ask why
human systems never deadlock. Can the students transfer this understanding
of human systems to computer systems?

Projects can involve simulation: create a list of jobs consisting of requests
and releases of resources (single type or multiple types). Ask the students to al-
locate the resources to prevent deadlock. This basically involves programming
the Banker’s Algorithm.

The survey paper by Coffman, Elphick, and Shoshani [1971] is good sup-
plemental reading, but you might also consider having the students go back to
the papers by Havender [1968], Habermann [1969], and Holt [1971a]. The last
two were published in CACM and so should be readily available.

Exercises

7.1 Consider the traffic deadlock depicted in Figure 7.1.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule for avoiding deadlocks in this system.

Answer:

a. The four necessary conditions for a deadlock are (1) mutual exclu-
sion; (2) hold-and-wait; (3) no preemption; and (4) circular wait.
The mutual exclusion condition holds as only one car can occupy
a space in the roadway. Hold-and-wait occurs where a car holds
onto their place in the roadway while they wait to advance in

47

48 Chapter 7 Deadlocks

•
•
•

•
•
•

• • •

• • •

Figure 7.1 Traffic deadlock for Exercise 7.1.

the roadway. A car cannot be removed (i.e. preempted) from its
position in the roadway. Lastly, there is indeed a circular wait as
each car is waiting for a subsequent car to advance. The circular
wait condition is also easily observed from the graphic.

b. A simple rule that would avoid this traffic deadlock is that a car
may not advance into an intersection if it is clear they will not be
able to immediately clear the intersection.

7.2 Consider the deadlock situation that could occur in the dining-philosophers
problem when the philosophers obtain the chopsticks one at a time. Dis-
cuss how the four necessary conditions for deadlock indeed hold in this
setting. Discuss how deadlocks could be avoided by eliminating any one
of the four conditions.
Answer: Deadlock is possible because the four necessary conditions
hold in the following manner: 1) mutual exclusion is required for chop-
sticks, 2) the philosophers tend to hold onto the chopstick in hand while
they wait for the other chopstick, 3) there is no preemption of chopsticks
in the sense that a chopstick allocated to a philosopher cannot be forcibly
taken away, and 4) there is a possibility of circular wait. Deadlocks could
be avoided by overcoming the conditions in the following manner: 1)
allow simultaneous sharing of chopsticks, 2) have the philosophers relin-
quish the first chopstick if they are unable to obtain the other chopstick,
3) allow for chopsticks to be forcibly taken away if a philosopher has
had a chopstick for a long period of time, and 4) enforce a numbering of
the chopsticks and always obtain the lower numbered chopstick before
obtaining the higher numbered one.

Exercises 49

7.3 A possible solution for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization ob-
jects A · · · E , deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, etc.) We can prevent
the deadlock by adding a sixth object F . Whenever a thread wants to ac-
quire the synchronization lock for any object A· · · E , it must first acquire
the lock for object F . This solution is known as containment: The locks
for objects A · · · E are contained within the lock for object F . Compare
this scheme with the circular-wait scheme of Section 7.4.4.
Answer: This is probably not a good solution because it yields too large
a scope. It is better to define a locking policy with as narrow a scope as
possible.

7.4 Compare the circular-wait scheme with the deadlock-avoidance schemes
(like the banker’s algorithm) with respect to the following issues:

a. Runtime overheads

b. System throughput

Answer: A deadlock-avoidance scheme tends to increase the runtime
overheads due to the cost of keep track of the current resource allocation.
However, a deadlock-avoidance scheme allows for more concurrent use
of resources than schemes that statically prevent the formation of dead-
lock. In that sense, a deadlock-avoidance scheme could increase system
throughput.

7.5 In a real computer system, neither the resources available nor the de-
mands of processes for resources are consistent over long periods (months).
Resources break or are replaced, new processes come and go, new re-
sources are bought and added to the system. If deadlock is controlled
by the banker’s algorithm, which of the following changes can be made
safely (without introducing the possibility of deadlock), and under what
circumstances?

a. Increase Available (new resources added).

b. Decrease Available (resource permanently removed from system)

c. Increase Max for one process (the process needs more resources
than allowed, it may want more)

d. Decrease Max for one process (the process decides it does not need
that many resources)

e. Increase the number of processes.

f. Decrease the number of processes.

Answer:

a. Increase Available (new resources added) - This could safely be
changed without any problems.

b. Decrease Available (resource permanently removed from system)
- This could have an effect on the system and introduce the possi-

50 Chapter 7 Deadlocks

bility of deadlock as the safety of the system assumed there were
a certain number of available resources.

c. Increase Max for one process (the process needs more resources
than allowed, it may want more) - This could have an effect on
the system and introduce the possibility of deadlock.

d. Decrease Max for one process (the process decides it does not need
that many resources) - This could safely be changed without any
problems.

e. Increase the number of processes - This could be allowed assum-
ing that resources were allocated to the new process(es) such that
the system does not enter an unsafe state.

f. Decrease the number of processes - This could safely be changed
without any problems.

7.6 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock-free.
Answer: Suppose the system is deadlocked. This implies that each
process is holding one resource and is waiting for one more. Since there
are three processes and four resources, one process must be able to obtain
two resources. This process requires no more resources and, therefore it
will return its resources when done.

7.7 Consider a system consisting of m resources of the same type, being
shared by n processes. Resources can be requested and released by pro-
cesses only one at a time. Show that the system is deadlock free if the
following two conditions hold:

a. The maximum need of each process is between 1 and m resources

b. The sum of all maximum needs is less than m + n

Answer: Using the terminology of Section 7.6.2, we have:

a.
∑n

i = 1 Maxi < m + n

b. Maxi ≥ 1 for all i
Proof: Needi = Maxi − Allocationi
If there exists a deadlock state then:

c.
∑n

i = 1 Allocationi = m

Use a. to get:
∑

Needi + ∑
Allocationi = ∑

Maxi < m + n
Use c. to get:

∑
Needi + m < m + n

Rewrite to get:
∑n

i = 1 Needi < n
This implies that there exists a process Pi such that Needi = 0. Since
Maxi ≥ 1 it follows that Pi has at least one resource that it can release.
Hence the system cannot be in a deadlock state.

7.8 Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular

Exercises 51

request could be satisfied without causing deadlock given the current
allocation of chopsticks to philosophers.
Answer: The following rule prevents deadlock: when a philosopher
makes a request for the first chopstick, do not satisfy the request only
if there is no other philosopher with two chopsticks and if there is only
one chopstick remaining.

7.9 Consider the same setting as the previous problem. Assume now that
each philosopher requires three chopsticks to eat and that resource re-
quests are still issued separately. Describe some simple rules for deter-
mining whether a particular request could be satisfied without causing
deadlock given the current allocation of chopsticks to philosophers.
Answer: When a philosopher makes a request for a chopstick, allocate
the request if: 1) the philosopher has two chopsticks and there is at least
one chopstick remaining, 2) the philosopher has one chopstick and there
is at least two chopsticks remaining, 3) there is at least one chopstick
remaining, and there is at least one philosopher with three chopsticks, 4)
the philosopher has no chopsticks, there are two chopsticks remaining,
and there is at least one other philosopher with two chopsticks assigned.

7.10 We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker’s scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.
Answer: Consider a system with resources A, B, and C and processes
P0, P1, P2, P3, and P4 with the following values of Allocation:

Allocation
A B C

P0 0 1 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

And the following value of Need:

Need
A B C

P0 7 4 3
P1 0 2 0
P2 6 0 0
P3 0 1 1
P4 4 3 1

If the value of Available is (2 3 0), we can see that a request from process
P0 for (0 2 0) cannot be satisfied as this lowers Available to (2 1 0) and no
process could safely finish.

52 Chapter 7 Deadlocks

However, if we were to treat the three resources as three single-resource
types of the banker’s algorithm, we get the following:
For resource A (which we have 2 available),

Allocated Need
P0 0 7
P1 3 0
P2 3 6
P3 2 0
P4 0 4

Processes could safely finish in the order of P1, P3, P4, P2, P0.
For resource B (which we now have 1 available as 2 were assumed
assigned to process P0),

Allocated Need
P0 3 2
P1 0 2
P2 0 0
P3 1 1
P4 0 3

Processes could safely finish in the order of P2, P3, P1, P0, P4.
And finally, for For resource C (which we have 0 available),

Allocated Need
P0 0 3
P1 2 0
P2 2 0
P3 1 1
P4 2 1

Processes could safely finish in the order of P1, P2, P0, P3, P4.
As we can see, if we use the banker’s algorithm for multiple resource
types, the request for resources (0 2 0) from process P0 is denied as it
leaves the system in an unsafe state. However, if we consider the banker’s
algorithm for the three separate resources where we use a single resource
type, the request is granted. Therefore, if we have multiple resource
types, we must use the banker’s algorithm for multiple resource types.

7.11 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Exercises 53

7.12 Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request
be granted immediately?

Answer:

a. What is the content of the matrix Need? The values of Need for
processes P0 through P4 respectively are (0, 0, 0, 0), (0, 7, 5, 0), (1,
0, 0, 2), (0, 0, 2, 0), and (0, 6, 4, 2).

b. Is the system in a safe state? Yes. With Available being equal to (1,
5, 2, 0), either process P0 or P3 could run. Once process P3 runs, it
releases its resources which allow all other existing processes to
run.

c. If a request from process P1 arrives for (0,4,2,0), can the request
be granted immediately? Yes it can. This results in the value of
Available being (1, 1, 0, 0). One ordering of processes that can finish
is P0, P2, P3, P1, and P4.

7.13 What is the optimistic assumption made in the deadlock-detection algo-
rithm? How could this assumption be violated?
Answer: The optimistic assumption is that there will not be any form
of circular-wait in terms of resources allocated and processes making
requests for them. This assumption could be violated if a circular-wait
does indeed in practice.

7.14 Write a multithreaded Java program that implements the banker’s al-
gorithm discussed in Section 7.5.3. Create n threads that request and
release resources from the banker. A banker will only grant the request
if it leaves the system in a safe state. Ensure that access to shared data is
thread-safe by employing Java thread synchronization as discussed in
Section 7.8.
Answer: (Please refer to the supporting Web site for source code solu-
tion.)

7.15 A single-lane bridge connects the two Vermont villages of North Tun-
bridge and South Tunbridge. Farmers in the two villages use this bridge
to deliver their produce to the neighboring town. The bridge can be-
come deadlocked if both a northbound and a southbound farmer get on
the bridge at the same time (Vermont farmers are stubborn and are un-
able to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).
Answer:

54 Chapter 7 Deadlocks

semaphore ok to cross = 1;

void enter bridge() {
ok to cross.wait();

}

void exit bridge() {
ok to cross.signal();

}
7.16 Modify your solution to Exercise 7.15 so that it is starvation-free.

Answer:

monitor bridge {
int num waiting north = 0;
int num waiting south = 0;
int on bridge = 0;
condition ok to cross;
int prev = 0;

void enter bridge north() {
num waiting north++;
while (on bridge ||

(prev == 0 && num waiting south > 0))
ok to cross.wait();
num waiting north--;
prev = 0;

}

void exit bridge north() {
on bridge = 0;
ok to cross.broadcast();

}

void enter bridge south() {
num waiting south++;
while (on bridge ||

(prev == 1 && num waiting north > 0))
ok to cross.wait();
num waiting south--;
prev = 1;

}

void exit bridge south() {
on bridge = 0;
ok to cross.broadcast();

}
}

8C H A P T E R

Memory
Management

Although many systems are demand paged (discussed in Chapter 10), there
are still many that are not, and in many cases the simpler memory management
strategies may be better, especially for small dedicated systems. We want the
student to learn about all of them: resident monitor, swapping, partitions,
paging, and segmentation.

Exercises

8.1 Explain the difference between internal and external fragmentation.
Answer: Internal Fragmentation is the area in a region or a page that
is not used by the job occupying that region or page. This space is
unavailable for use by the system until that job is finished and the page
or region is released.

8.2 Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linkage
editor is used to combine multiple object modules into a single program
binary. How does the linkage editor change the binding of instructions
and data to memory addresses? What information needs to be passed
from the compiler to the linkage editor to facilitate the memory binding
tasks of the linkage editor?
Answer: The linkage editor has to replace unresolved symbolic ad-
dresses with the actual addresses associated with the variables in the
final program binary. In order to perform this, the modules should keep
track of instructions that refer to unresolved symbols. During linking,
each module is assigned a sequence of addresses in the overall program
binary and when this has been performed, unresolved references to sym-
bols exported by this binary could be patched in other modules since
every other module would contain the list of instructions that need to
be patched.

55

56 Chapter 8 Memory Management

8.3 Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and
600 KB (in order), how would each of the first-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
order)? Which algorithm makes the most efficient use of memory?
Answer:

a. First-fit:

b. 212K is put in 500K partition

c. 417K is put in 600K partition

d. 112K is put in 288K partition (new partition 288K = 500K - 212K)

e. 426K must wait

f. Best-fit:

g. 212K is put in 300K partition

h. 417K is put in 500K partition

i. 112K is put in 200K partition

j. 426K is put in 600K partition

k. Worst-fit:

l. 212K is put in 600K partition

m. 417K is put in 500K partition

n. 112K is put in 388K partition

o. 426K must wait

In this example, Best-fit turns out to be the best.

8.4 Most systems allow programs to allocate more memory to its address
space during execution. Data allocated in the heap segments of programs
is an example of such allocated memory. What is required to support
dynamic memory allocation in the following schemes:

a. contiguous-memory allocation

b. pure segmentation

c. pure paging

Answer:

• contiguous-memory allocation: might require relocation of the
entire program since there is not enough space for the program to
grow its allocated memory space.

• pure segmentation: might also require relocation of the segment
that needs to be extended since there is not enough space for the
segment to grow its allocated memory space.

• pure paging: incremental allocation of new pages is possible in this
scheme without requiring relocation of the program’s address space.

Exercises 57

8.5 Compare the main memory organization schemes of contiguous-memory
allocation, pure segmentation, and pure paging with respect to the fol-
lowing issues:

a. external fragmentation

b. internal fragmentation

c. ability to share code across processes

Answer: ontiguous memory allocation scheme suffers from external
fragmentation as address spaces are allocated contiguously and holes
develop as old processes dies and new processes are initiated. It also
does not allow processes to share code, since a process’s virtual memory
segment is not broken into non-contiguous finegrained segments. Pure
segmentation also suffers from external fragmentation as a segment of a
process is laid out contiguously in physical memory and fragmentation
would occur as segments of dead processes are replaced by segments of
new processes. Segmentation, however, enables processes to share code;
for instance, two different processes could share a code segment but have
distinct data segments. Pure paging does not suffer from external frag-
mentation, but instead suffers from internal fragmentation. Processes are
allocated in page granularity and if a page is not completely utilized, it
results in internal fragmentation and a corresponding wastage of space.
Paging also enables processes to share code at the granularity of pages.

8.6 On a system with paging, a process cannot access memory that it does
not own; why? How could the operating system allow access to other
memory? Why should it or should it not?
Answer: An address on a paging system is a logical page number and
an offset. The physical page is found by searching a table based on the
logical page number to produce a physical page number. Because the
operating system controls the contents of this table, it can limit a process
to accessing only those physical pages allocated to the process. There is
no way for a process to refer to a page it does not own because the page
will not be in the page table. To allow such access, an operating system
simply needs to allow entries for non-process memory to be added to
the process’s page table. This is useful when two or more processes
need to exchange data—they just read and write to the same physical
addresses (which may be at varying logical addresses). This makes for
very efficient interprocess communication.

8.7 Compare paging with segmentation with respect to the amount of mem-
ory required by the address translation structures in order to convert
virtual addresses to physical addresses.
Answer: Paging requires more memory overhead to maintain the trans-
lation structures. Segmentation requires just two registers per segment:
one to maintain the base of the segment and the other to maintain the
extent of the segment. Paging on the other hand requires one entry per
page, and this entry provides the physical address in which the page is
located.

58 Chapter 8 Memory Management

8.8 Program binaries in many systems are typically structured as follows.
Code is stored starting with a small fixed virtual address such as 0. The
code segment is followed by the data segment that is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual address space and is allowed to
grow towards lower virtual addresses. What is the significance of the
above structure on the following schemes:

a. contiguous-memory allocation

b. pure segmentation

c. pure paging

Answer: 1) Contiguous-memory allocation requires the operating sys-
tem to allocate the entire extent of the virtual address space to the pro-
gram when it starts executing. This could be much higher than the actual
memory requirements of the process. 2) Pure segmentation gives the
operating system flexibility to assign a small extent to each segment at
program startup time and extend the segment if required. 3) Pure paging
does not require the operating system to allocate the maximum extent of
the virtual address space to a process at startup time, but it still requires
the operating system to allocate a large page table spanning all of the
program’s virtual address space. When a program needs to extend the
stack or the heap, it needs to allocate a new page but the corresponding
page table entry is preallocated.

8.9 Consider a paging system with the page table stored in memory.

a. If a memory reference takes 200 nanoseconds, how long does a
paged memory reference take?

b. If we add associative registers, and 75 percent of all page-table
references are found in the associative registers, what is the effec-
tive memory reference time? (Assume that finding a page-table
entry in the associative registers takes zero time, if the entry is
there.)

Answer:

a. 400 nanoseconds; 200 nanoseconds to access the page table and
200 nanoseconds to access the word in memory.

b. Effective access time = 0.75 × (200 nanoseconds) + 0.25 × (400
nanoseconds) = 250 nanoseconds.

8.10 Why are segmentation and paging sometimes combined into one scheme?
Answer: Segmentation and paging are often combined in order to im-
prove upon each other. Segmented paging is helpful when the page table
becomes very large. A large contiguous section of the page table that is
unused can be collapsed into a single segment table entry with a page-
table address of zero. Paged segmentation handles the case of having
very long segments that require a lot of time for allocation. By paging
the segments, we reduce wasted memory due to external fragmentation
as well as simplify the allocation.

Exercises 59

8.11 Explain why it is easier to share a reentrant module using segmentation
than it is to do so when pure paging is used.
Answer: Since segmentation is based on a logical division of memory
rather than a physical one, segments of any size can be shared with only
one entry in the segment tables of each user. With paging there must be
a common entry in the page tables for each page that is shared.

8.12 Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 0,430

b. 1,10

c. 2,500

d. 3,400

e. 4,112

Answer:

a. 219 + 430 = 649

b. 2300 + 10 = 2310

c. illegal reference, trap to operating system

d. 1327 + 400 = 1727

e. illegal reference, trap to operating system

8.13 What is the purpose of paging the page tables?
Answer: In certain situations the page tables could become large enough
that by paging the page tables, one could simplify the memory allocation
problem (by ensuring that everything is allocated as fixed-size pages
as opposed to variable-sized chunks) and also enable the swapping of
portions of page table that are not currently used.

8.14 Consider the hierarchical paging scheme used by the VAX architecture.
How many memory operations are performed when an user program
executes a memory load operation?
Answer: When a memory load operation is performed, there are three
memory operations that might be performed. One is to translate the
position where the page table entry for the page could be found (since
page tables themselves are paged). The second access is to access the
page table entry itself, while the third access is the actual memory load
operation.

60 Chapter 8 Memory Management

8.15 Compare the segmented paging scheme with the hashed page tables
scheme for handling large address spaces. Under what circumstances is
one scheme preferrable over the other?
Answer: When a program occupies only a small portion of its large
virtual address space, a hashed page table might be preferred due to
its smaller size. The disadvantage with hashed page tables however is
the problem that arises due to conflicts in mapping multiple pages onto
the same hashed page table entry. If many pages map to the same entry,
then traversing the list corresponding to that hash table entry could in-
cur a significant overhead; such overheads are minimal in the segmented
paging scheme where each page table entry maintains information re-
garding only one page.

8.16 Consider the Intel address translation scheme shown in Figure 8.22.

a. Describe all the steps that the Intel 80386 takes in translating a
logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation hardware?

c. Are there any disadvantages to this address-translation system? If
so, what are they? If not, why is it not used by every manufacturer?

Answer:

a. The selector is an index into the segment descriptor table. The seg-
ment descriptor result plus the original offset is used to produce
a linear address with a dir, page, and offset. The dir is an index
into a page directory. The entry from the page directory selects the
page table, and the page field is an index into the page table. The
entry from the page table, plus the offset, is the physical address.

b. Such a page translation mechanism offers the flexibility to allow
most operating systems to implement their memory scheme in
hardware, instead of having to implement some parts in hardware
and some in software. Because it can be done in hardware, it is
more efficient (and the kernel is simpler).

c. Address translation can take longer due to the multiple table
lookups it can invoke. Caches help, but there will still be cache
misses.

9C H A P T E R

Virtual
Memory

Virtual memory can be a very interesting subject since it has so many different
aspects: page faults, managing the backing store, page replacement, frame
allocation, thrashing, page size. The objectives of this chapter are to explain
these concepts and show how paging works.

A simulation is probably the easiest way to allow the students to program
several of the page-replacement algorithms and see how they really work.
If an interactive graphics display can be used to display the simulation as it
works, the students may be better able to understand how paging works. We
also present an exercise that asks the student to develop a Java program that
implements the FIFO and LRU page replacement algorithms.

Exercises

9.1 Give an example that illustrates the problem with restarting the block
move instruction (MVC) on the IBM 360/370 when the source and des-
tination regions are overlapping.
Answer: Assume that the page boundary is at 1024 and the move
instruction is moving values from a source region of 800:1200 to a target
region of 700:1100. Assume that a page fault occurs while accessing
location 1024. By this time the locations of 800:923 have been overwritten
with the new values and therefore restarting the block move instruction
would result in copying the new values in 800:923 to locations 700:823,
which is incorrect.

9.2 Discuss the hardware support required to support demand paging.
Answer: For every memory access operation, the page table needs to
be consulted to check whether the corresponding page is resident or
not and whether the program has read or write privileges for accessing
the page. These checks would have to be performed in hardware. A
TLB could serve as a cache and improve the performance of the lookup
operation.

61

62 Chapter 9 Virtual Memory

9.3 What is the copy-on-write feature and under what circumstances is it
beneficial to use this feature? What is the hardware support required to
implement this feature?
Answer: When two processes are accessing the same set of program
values (for instance, the code segment of the source binary), then it is
useful to map the corresponding pages into the virtual address spaces
of the two programs in a write-protected manner. When a write does
indeed take place, then a copy must be made to allow the two programs
to individually access the different copies without interfering with each
other. The hardware support required to implement is simply the fol-
lowing: on each memory access, the page table needs to be consulted to
check whether the page is write-protected. If it is indeed write-protected,
a trap would occur and the operating system could resolve the issue.

9.4 A certain computer provides its users with a virtual-memory space of
232 bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.
Answer: The virtual address in binary form is

0001 0001 0001 0010 0011 0100 0101 0110

Since the page size is 212, the page table size is 220. Therefore the low-
order 12 bits “0100 0101 0110” are used as the displacement into the page,
while the remaining 20 bits “0001 0001 0001 0010 0011” are used as the
displacement in the page table.

9.5 Assume we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty page
is available or the replaced page is not modified, and 20 milliseconds if
the replaced page is modified. Memory access time is 100 nanoseconds.
Assume that the page to be replaced is modified 70 percent of the time.
What is the maximum acceptable page-fault rate for an effective access
time of no more than 200 nanoseconds?
Answer:

0.2 �sec = (1 − P) × 0.1 �sec + (0.3P) × 8 millisec + (0.7P) × 20 millisec
0.1 = −0.1P + 2400 P + 14000 P
0.1 � 16,400 P

P � 0.000006

9.6 Assume that you are monitoring the rate at which the pointer in the
clock algorithm (which indicates the candidate page for replacement)
moves. What can you say about the system if you notice the following
behavior:

a. pointer is moving fast

b. pointer is moving slow

Exercises 63

Answer: If the pointer is moving fast, then the program is accessing a
large number of pages simultaneously. It is most likely that during the
period between the point at which the bit corresponding to a page is
cleared and it is checked again, the page is accessed again and therefore
cannot be replaced. This results in more scanning of the pages before
a victim page is found. If the pointer is moving slow, then the virtual
memory system is finding candidate pages for replacement extremely
efficiently, indicating that many of the resident pages are not being ac-
cessed.

9.7 Discuss situations under which the least frequently used page-replacement
algorithm generates fewer page faults than the least recently used page-
replacement algorithm. Also discuss under what circumstance does the
opposite holds.
Answer: Consider the following sequence of memory accesses in a
system that can hold four pages in memory. Sequence: 1 1 2 3 4 5 1.
When page 5 is accessed, the least frequently used page-replacement
algorithm would replace a page other than 1, and therefore would not
incur a page fault when page 1 is accessed again. On the other hand, for
the sequence “1 2 3 4 5 2,” the least recently used algorithm performs
better.

9.8 Discuss situations under which the most frequently used page-replacement
algorithm generates fewer page faults than the least recently used page-
replacement algorithm. Also discuss under what circumstance does the
opposite holds.
Answer: Consider the sequence in a system that holds four pages in
memory: 1 2 3 4 4 4 5 1. The most frequently used page replacement algo-
rithm evicts page 4 while fetching page 5, while the LRU algorithm evicts
page 1. This is unlikely to happen much in practice. For the sequence “1
2 3 4 4 4 5 1,” the LRU algorithm makes the right decision.

9.9 The VAX/VMS system uses a FIFO replacement algorithm for resident
pages and a free-frame pool of recently used pages. Assume that the
free-frame pool is managed using the least recently used replacement
policy. Answer the following questions:

a. If a page fault occurs and if the page does not exist in the free-
frame pool, how is free space generated for the newly requested
page?

b. If a page fault occurs and if the page exists in the free-frame pool,
how is the resident page set and the free-frame pool managed to
make space for the requested page?

c. What does the system degenerate to if the number of resident
pages is set to one?

d. What does the system degenerate to if the number of pages in the
free-frame pool is zero?

Answer:

64 Chapter 9 Virtual Memory

• When a page fault occurs and if the page does not exist in the
free-frame pool, then one of the pages in the free-frame pool is
evicted to disk, creating space for one of the resident pages to be
moved to the free-frame pool. The accessed page is then moved to
the resident set.

• When a page fault occurs and if the page exists in the free-frame
pool, then it is moved into the set of resident pages, while one of the
resident pages is moved to the free-frame pool.

• When the number of resident pages is set to one, then the system
degenerates into the page replacement algorithm used in the
free-frame pool, which is typically managed in a LRU fashion.

• When the number of pages in the free-frame pool is zero, then the
system degenerates into a FIFO page replacement algorithm.

9.10 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

Which (if any) of the following will (probably) improve CPU utilization?
Explain your answer.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk or multiple controllers with multiple
hard disks.

g. Add prepaging to the page fetch algorithms.

h. Increase the page size.

Answer: The system obviously is spending most of its time paging,
indicating over-allocation of memory. If the level of multiprogramming
is reduced resident processes would page fault less frequently and the
CPU utilization would improve. Another way to improve performance
would be to get more physical memory or a faster paging drum.

a. Get a faster CPU—No.

b. Get a bigger paging drum—No.

c. Increase the degree of multiprogramming—No.

d. Decrease the degree of multiprogramming—Yes.

Exercises 65

e. Install more main memory—Likely to improve CPU utilization as
more pages can remain resident and not require paging to or from
the disks.

f. Install a faster hard disk, or multiple controllers with multiple
hard disks—Also an improvement, for as the disk bottleneck is
removed by faster response and more throughput to the disks,
the CPU will get more data more quickly.

g. Add prepaging to the page fetch algorithms—Again, the CPU will
get more data faster, so it will be more in use. This is only the case
if the paging action is amenable to prefetching (i.e., some of the
access is sequential).

h. Increase the page size—Increasing the page size will result in
fewer page faults if data is being accessed sequentially. If data
access is more or less random, more paging action could ensue
because fewer pages can be kept in memory and more data is
transferred per page fault. So this change is as likely to decrease
utilization as it is to increase it.

9.11 Suppose that a machine provides instructions that can access memory
locations using the one-level indirect addressing scheme. What is the
sequence of page faults incurred when all of the pages of a program
are currently non-resident and the first instruction of the program is
an indirect memory load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated to this process?
Answer: The following page faults take place: page fault to access the
instruction, a page fault to access the memory location that contains a
pointer to the target memory location, and a page fault when the target
memory location is accessed. The operating system will generate three
page faults with the third page replacing the page containing the instruc-
tion. If the instruction needs to be fetched again to repeat the trapped
instruction, then the sequence of page faults will continue indefinitely.
If the instruction is cached in a register, then it will be able to execute
completely after the third page fault.

9.12 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discarding that page if it has not been used
since the last examination. What would you gain and what would you
lose by using this policy rather than LRU or second-chance replacement?
Answer: Such an algorithm could be implemented with the use of a
reference bit. After every examination, the bit is set to zero; set back
to one if the page is referenced. The algorithm would then select an
arbitrary page for replacement from the set of unused pages since the
last examination.
The advantage of this algorithm is its simplicity - nothing other than a
reference bit need be maintained. The disadvantage of this algorithm is
that it ignores locality by only using a short time frame for determining
whether to evict a page or not. For example, a page may be part of
the working set of a process, but may be evicted because it was not

66 Chapter 9 Virtual Memory

referenced since the last examination (i.e. not all pages in the working
set may be referenced between examinations.)

9.13 A page-replacement algorithm should minimize the number of page
faults. We can do this minimization by distributing heavily used pages
evenly over all of memory, rather than having them compete for a small
number of page frames. We can associate with each page frame a counter
of the number of pages that are associated with that frame. Then, to
replace a page, we search for the page frame with the smallest counter.

a. Define a page-replacement algorithm using this basic idea. Specif-
ically address the problems of (1) what the initial value of the
counters is, (2) when counters are increased, (3) when counters
are decreased, and (4) how the page to be replaced is selected.

b. How many page faults occur for your algorithm for the following
reference string, for four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

Answer:

a. Define a page-replacement algorithm addressing the problems of:

1. Initial value of the counters—0.

2. Counters are increased—whenever a new page is associ-
ated with that frame.

3. Counters are decreased—whenever one of the pages asso-
ciated with that frame is no longer required.

4. How the page to be replaced is selected—find a frame with
the smallest counter. Use FIFO for breaking ties.

b. 14 page faults

c. 11 page faults

9.14 Consider a demand-paging system with a paging disk that has an aver-
age access and transfer time of 20 milliseconds. Addresses are translated
through a page table in main memory, with an access time of 1 microsec-
ond per memory access. Thus, each memory reference through the page
table takes two accesses. To improve this time, we have added an asso-
ciative memory that reduces access time to one memory reference, if the
page-table entry is in the associative memory.
Assume that 80 percent of the accesses are in the associative memory
and that, of the remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?
Answer:

Exercises 67

effective access time = (0.8) × (1 �sec)
+ (0.1) × (2 �sec) + (0.1) × (5002 �sec)

= 501.2 �sec
= 0.5 millisec

9.15 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?
Answer: Thrashing is caused by underallocation of the minimum num-
ber of pages required by a process, forcing it to continuously page fault.
The system can detect thrashing by evaluating the level of CPU utiliza-
tion as compared to the level of multiprogramming. It can be eliminated
by reducing the level of multiprogramming.

9.16 Is it possible for a process to have two working sets? One representing
data and another representing code? Explain.
Answer: Yes, in fact many processors provide two TLB’s for this very
reason. As an example, the code being accessed by a process may retain
the same working set for a long period of time. However, the data the
code accesses may change, thus reflecting a change in the working set
for data accesses.

9.17 Consider the parameter � used to define the working-set window in
the working-set model. What is the effect of setting � to a small value
on the page fault frequency and the number of active (non-suspended)
processes currently executing in the system? What is the effect when �

is set to a very high value?
Answer: When � is set to a small value, then the set of resident pages for
a process might be underestimated allowing a process to be scheduled
even though all of its required pages are not resident. This could result
in a large number of page faults. When � is set to a large value, then
a process’s resident set is overestimated and this might prevent many
processes from being scheduled even though their required pages are
resident. However, once a process is scheduled, it is unlikely to generate
page faults since its resident set has been overestimated.

9.18 Assume there is an initial 1024 KB segment where memory is allocated
using the Buddy System. Using Figure 9.27 as a guide, draw the tree
illustrating how the following memory requests are allocated:

• request 240 bytes

• request 120 bytes

• request 60 bytes

• request 130 bytes

Next, modify the tree for the following releases of memory. Perform
coalescing whenever possible:

• release 240 bytes

• release 60 bytes

68 Chapter 9 Virtual Memory

• release 120 bytes

Answer: The following allocation is made by the Buddy system: The
240 byte request is assigned a 256 byte segment. The 120 byte request is
assigned a 128 byte segement, the 60 byte request is assigned a 64 byte
segment and the 130 byte request is assigned a 256 byte segment. After
the allocation, the following segment sizes are available: 64 bytes, 256
bytes, 1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K, and 512K.
After the releases of memory, the only segment in use would be a 256
byte segment containing 130 bytes of data. The following segments will
be free: 256 bytes, 512 bytes, 1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K,
and 512K.

9.19 The slab allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this doesn’t scale well with multiple CPUs. What could be done to address
this scalability issue?
Answer: This had long been a problem with the slab allocator - poor
scalability with multiple CPUs. The issue comes from having to lock the
global cache when it is being accesses. This has the effect of serializing
cache accesses on multiprocessor systems. Solaris has addressed this by
introducing a per-CPU cache, rather than a single global cache.

9.20 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifications
to the virtual memory system are provide this functionality?
Answer: The program could have a large code segment or use large-
sized arrays as data. These portions of the program could be allocated to
larger pages, thereby decreasing the memory overheads associated with
a page table. The virtual memory system would then have to maintain
multiple free lists of pages for the different sizes and should also need
to have more complex code for address translation to take into account
different page sizes.

9.21 Write a program that implements the FIFO and LRU page-replacement
algorithms presented in this chapter. First, generate a random page-
reference string where page numbers range from 0..9. Apply the ran-
dom page-reference string to each algorithm and record the number
of page faults incurred by each algorithm. Implement the replacement
algorithms such that the number of page frames can vary from 1..7.
Assume that demand paging is used.
Answer: Please refer to the supporting Web site for source code solution.

9.22 The Catalan numbers are an integer sequence Cn that appear in tree
enumeration problems. The first Catalan numbers for n = 1, 2, 3, ... are
1, 2, 5, 14, 42, 132, A formula generating Cn is

Cn = 1
(n+1)

(2n
n

) = (2n)!
(n+1)!n!

Design two programs that communicate with shared memory using
the Win32 API as outlined in Section 9.7.2. The producer process will

Exercises 69

generate the Catalan sequence and write it to a shared memory object.
The consumer process will then read and output the sequence from
shared memory.

In this instance, the producer process will be passed an integer pa-
rameter on the command line specifying the number of Catalan numbers
to produce, i.e. providing 5 on the command line means the producer
process will generate the first 5 Catalan numbers.
Answer: Please refer to the supporting Web site for source code solution.

10C H A P T E R

File-System
Interface

Files are the most obvious object that operating systems manipulate. Every-
thing is typically stored in files: programs, data, output, etc. The student should
learn what a file is to the operating system and what the problems are (provid-
ing naming conventions to allow files to be found by user programs, protec-
tion).

Two problems can crop up with this chapter. First, terminology may be
different between your system and the book. This can be used to drive home
the point that concepts are important and terms must be clearly defined when
you get to a new system. Second, it may be difficult to motivate students
to learn about directory structures that are not the ones on the system they
are using. This can best be overcome if the students have two very different
systems to consider, such as a single-user system for a microcomputer and a
large, university time-shared system.

Projects might include a report about the details of the file system for the
local system. It is also possible to write programs to implement a simple file
system either in memory (allocate a large block of memory that is used to
simulate a disk) or on top of an existing file system. In many cases, the design
of a file system is an interesting project of its own.

Exercises

10.1 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?
Answer: Let F1 be the old file and F2 be the new file. A user wishing
to access F1 through an existing link will actually access F2. Note that
the access protection for file F1 is used rather than the one associated
with F2.

71

72 Chapter 10 File-System Interface

This problem can be avoided by insuring that all links to a deleted file
are deleted also. This can be accomplished in several ways:

a. maintain a list of all links to a file, removing each of them when
the file is deleted

b. retain the links, removing them when an attempt is made to
access a deleted file

c. maintain a file reference list (or counter), deleting the file only
after all links or references to that file have been deleted.

10.2 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or just maintain one table that contains references to files
that are being accessed by all users at the current time? If the same file
is being accessed by two different programs or users, should there be
separate entries in the open file table?
Answer: By keeping a central open-file table, the operating system
can perform the following operation that would be infeasible other-
wise. Consider a file that is currently being accessed by one or more
processes. If the file is deleted, then it should not be removed from
the disk until all processes accessing the file have closed it. This check
could be performed only if there is centralized accounting of number
of processes accessing the file. On the other hand, if two processes are
accessing the file, then separate state needs to be maintained to keep
track of the current location of which parts of the file are being accessed
by the two processes. This requires the operating system to maintain
separate entries for the two processes.

10.3 What are the advantages and disadvantages of a system providing
mandatory locks instead of providing advisory locks whose usage is
left to the users’ discretion?
Answer: In many cases, separate programs might be willing to tolerate
concurrent access to a file without requiring the need to obtain locks and
thereby guaranteeing mutual exclusion to the files. Mutual exclusion
could be guaranteed by other program structures such as memory locks
or other forms of synchronization. In such situations, the mandatory
locks would limit the flexibility in how files could be accessed and
might also increase the overheads associated with accessing files.

10.4 What are the advantages and disadvantages of recording the name
of the creating program with the file’s attributes (as is done in the
Macintosh Operating System)?
Answer: By recording the name of the creating program, the operat-
ing system is able to implement features (such as automatic program
invocation when the file is accessed) based on this information. It does
add overhead in the operating system and require space in the file
descriptor, however.

10.5 Some systems automatically open a file when it is referenced for the first
time, and close the file when the job terminates. Discuss the advantages

Exercises 73

and disadvantages of this scheme as compared to the more traditional
one, where the user has to open and close the file explicitly.
Answer: Automatic opening and closing of files relieves the user from
the invocation of these functions, and thus makes it more convenient
to the user; however, it requires more overhead than the case where
explicit opening and closing is required.

10.6 If the operating system were to know that a certain application is going
to access the file data in a sequential manner, how could it exploit this
information to improve performance?
Answer: When a block is accessed, the file system could prefetch the
subsequent blocks in anticipation of future requests to these blocks. This
prefetching optimization would reduce the waiting time experienced
by the process for future requests.

10.7 Give an example of an application that could benefit from operating
system support for random access to indexed files.
Answer: An application that maintains a database of entries could
benefit from such support. For instance, if a program is maintaining
a student database, then accesses to the database cannot be modeled
by any predetermined access pattern. The access to records are random
and locating the records would be more efficient if the operating system
were to provide some form of tree-based index.

10.8 Discuss the merits and demerits of supporting links to files that cross
mount points (that is, the file link refers to a file that is stored in a
different volume).
Answer: The advantage is that there is greater transparency in the
sense that the user does not need to be aware of mount points and create
links in all scenarios. The disadvantage however is that the filesystem
containing the link might be mounted while the filesystem containing
the target file might not be, and therefore one cannot provide trans-
parent access to the file in such a scenario; the error condition would
expose to the user that a link is a dead link and that the link does indeed
cross filesystem boundaries.

10.9 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.
Answer: With a single copy, several concurrent updates to a file may
result in user obtaining incorrect information, and the file being left in
an incorrect state. With multiple copies, there is storage waste and the
various copies may not be consistent with respect to each other.

10.10 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a different set of failure semantics
from that associated with local file systems.
Answer: The advantage is that the application can deal with the failure
condition in a more intelligent manner if it realizes that it incurred an
error while accessing a file stored in a remote filesystem. For instance, a
file open operation could simply fail instead of hanging when accessing
a remote file on a failed server and the application could deal with the

74 Chapter 10 File-System Interface

failure in the best possible manner; if the operation were to simply
hang, then the entire application hangs which is not desirable. The
disadvantage however is the lack of uniformity in failure semantics
and the resulting complexity in application code.

10.11 What are the implications of supporting UNIXconsistency semantics for
shared access for those files that are stored on remote file systems.
Answer: UNIXconsistency semantics requires updates to a file to be
immediately available to other processes. Supporting such a semantics
for shared files on remote file systems could result in the following
inefficiencies: all updates by a client have to be immediately reported
to the fileserver instead of being batched (or even ignored if the updates
are to a temporary file), and updates have to be communicated by the
fileserver to clients caching the data immediately again resulting in
more communication.

11C H A P T E R

File-System
Implementation

In this chapter we discuss various methods for storing information on sec-
ondary storage. The basic issues are device directory, free space management,
and space allocation on a disk.

Exercises

11.1 Consider a file system that uses a modifed contiguous-allocation scheme
with support for extents. A file is a collection of extents, with each ex-
tent corresponding to a contiguous set of blocks. A key issue in such
systems is the degree of variability in the size of the extents. What are
the advantages and disadvantages of the following schemes:

a. All extents are of the same size, and the size is predetermined.

b. Extents can be of any size and are allocated dynamically.

c. Extents can be of a few fixed sizes, and these sizes are predeter-
mined.

Answer: If all extents are of the same size, and the size is predeter-
mined, then it simplifies the block allocation scheme. A simple bit map
or free list for extents would suffice. If the extents can be of any size and
are allocated dynamically, then more complex allocation schemes are
required. It might be difficult to find an extent of the appropriate size
and there might be external fragmentation. One could use the Buddy
system allocator discussed in the previous chapters to design an ap-
propriate allocator. When the extents can be of a few fixed sizes, and
these sizes are predetermined, one would have to maintain a separate
bitmap or free list for each possible size. This scheme is of intermediate
complexity and of intermediate flexibility in comparison to the earlier
schemes.

75

76 Chapter 11 File-System Implementation

11.2 What are the advantages of the variation of linked allocation that uses
a FAT to chain together the blocks of a file?
Answer: The advantage is that while accessing a block that is stored
at the middle of a file, its location can be determined by chasing the
pointers stored in the FAT as opposed to accessing all of the individual
blocks of the file in a sequential manner to find the pointer to the target
block. Typically, most of the FAT can be cached in memory and therefore
the pointers can be determined with just memory accesses instead of
having to access the disk blocks.

11.3 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the
system reconstruct the free-space list? Explain your answer.

b. Consider a file system similar to the one used by UNIX with
indexed allocation. How many disk I/O operations might be
required to read the contents of a small local file at /a/b/c? Assume
that none of the disk blocks is currently being cached.

c. Suggest a scheme to ensure that the pointer is never lost as a
result of memory failure.

Answer:

a. In order to reconstruct the free list, it would be necessary to
perform “garbage collection.” This would entail searching the
entire directory structure to determine which pages are already
allocated to jobs. Those remaining unallocated pages could be
relinked as the free-space list.

b. The free-space list pointer could be stored on the disk, perhaps
in several places.

c.

11.4 Some file systems allow disk storage to be allocated at different levels
of granularity. For instance, a file system could allocate 4 KB of disk
space as a single 4-KB block or as eight 512-byte blocks. How could
we take advantage of this flexibility to improve performance? What
modifications would have to be made to the free-space management
scheme in order to support this feature?
Answer: Such a scheme would decrease internal fragmentation. If a
file is 5KB, then it could be allocated a 4KB block and two contiguous
512-byte blocks. In addition to maintaining a bitmap of free blocks,
one would also have to maintain extra state regarding which of the
subblocks are currently being used inside a block. The allocator would
then have to examine this extra state to allocate subblocks and coallesce
the subblocks to obtain the larger block when all of the subblocks
become free.

11.5 Discuss how performance optimizations for file systems might result
in difficulties in maintaining the consistency of the systems in the event
of computer crashes.

Exercises 77

Answer: The primary difficulty that might arise is due to delayed
updates of data and metadata. Updates could be delayed in the hope
that the same data might be updated in the future or that the updated
data might be temporary and might be deleted in the near future.
However, if the system were to crash without having committed the
delayed updates, then the consistency of the file system is destroyed.

11.6 Consider a file system on a disk that has both logical and physical block
sizes of 512 bytes. Assume that the information about each file is al-
ready in memory. For each of the three allocation strategies (contiguous,
linked, and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished
in this system? (For the indexed allocation, assume that a file is
always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was
block 10) and want to access logical block 4, how many physical
blocks must be read from the disk?

Answer: Let Z be the starting file address (block number).

a. Contiguous. Divide the logical address by 512 with X and Y the
resulting quotient and remainder respectively.

1. Add X to Z to obtain the physical block number. Y is the
displacement into that block.

2. 1

b. Linked. Divide the logical physical address by 511 with X and Y
the resulting quotient and remainder respectively.

1. Chase down the linked list (getting X + 1 blocks). Y + 1
is the displacement into the last physical block.

2. 4

c. Indexed. Divide the logical address by 512 with X and Y the
resulting quotient and remainder respectively.

1. Get the index block into memory. Physical block address
is contained in the index block at location X. Y is the dis-
placement into the desired physical block.

2. 2

11.7 Fragmentation on a storage device could be eliminated by recom-
paction of the information. Typical disk devices do not have relocation
or base registers (such as are used when memory is to be compacted),
so how can we relocate files? Give three reasons why recompacting and
relocation of files often are avoided.
Answer: Relocation of files on secondary storage involves considerable
overhead — data blocks would have to be read into main memory and
written back out to their new locations. Furthermore, relocation regis-
ters apply only to sequential files, and many disk files are not sequential.
For this same reason, many new files will not require contiguous disk
space; even sequential files can be allocated noncontiguous blocks if

78 Chapter 11 File-System Implementation

links between logically sequential blocks are maintained by the disk
system.

11.8 In what situations would using memory as a RAM disk be more useful
than using it as a disk cache?
Answer: In cases where the user (or system) knows exactly what data
is going to be needed. Caches are algorithm-based, while a RAM disk is
user-directed.

11.9 Consider the following augmentation of a remote-file-access protocol.
Each client maintains a name cache that caches translations from file
names to corresponding file handles. What issues should we take into
account in implementing the name cache?
Answer: One issue is maintaining consistency of the name cache. If
the cache entry becomes inconsistent, then it should be either updated
or its inconsistency should be detected when it is used next. If the in-
consistency is detected later, then there should be a fallback mechanism
for determining the new translation for the name. Also, another related
issue is whether a name lookup is performed one element at a time
for each subdirectory in the pathname or whether it is performed in a
single shot at the server. If it is perfomed one element at a time, then
the client might obtain more information regarding the translations for
all of the intermediate directories. On the other hand, it increases the
network traffic as a single name lookup causes a sequence of partial
name lookups.

11.10 Explain why logging metadata updates ensures recovery of a file sys-
tem after a file system crash.
Answer: For a file system to be recoverable after a crash, it must
be consistent or must be able to be made consistent. Therefore, we
have to prove that logging metadata updates keeps the file system in
a consistent or able-to-be-consistent state. For a file system to become
inconsistent, the metadata must be written incompletely or in the wrong
order to the file system data structures. With metadata logging, the
writes are made to a sequential log. The complete transaction is written
there before it is moved to the file system structures. If the system
crashes during file system data updates, the updates can be completed
based on the information in the log. Thus, logging ensures that file
system changes are made completely (either before or after a crash).
The order of the changes are guaranteed to be correct because of the
sequential writes to the log. If a change was made incompletely to the
log, it is discarded, with no changes made to the file system structures.
Therefore, the structures are either consistent or can be trivially made
consistent via metadata logging replay.

11.11 Consider the following backup scheme:

• Day 1. Copy to a backup medium all files from the disk.

• Day 2. Copy to another medium all files changed since day 1.

• Day 3. Copy to another medium all files changed since day 1.

Exercises 79

This contrasts to the schedule given in Section 11.7.2 by having all
subsequent backups copy all files modified since the first full backup.
What are the benefits of this system over the one in Section 11.7.2?
What are the drawbacks? Are restore operations made easier or more
difficult? Explain your answer.
Answer: Restores are easier because you can go to the last backup
tape, rather than the full tape. No intermediate tapes need be read.
More tape is used as more files change.

12C H A P T E RMass
Storage
Structure

In this chapter we describe the internal data structures and algorithms used by
the operating system to implement this interface. We also discuss the lowest
level of the file system the secondary storage structure. We first describe disk-
head-scheduling algorithms. Next we discuss disk formatting and manage-
ment of boot blocks, damaged blocks, and swap space. We end with coverage
of disk reliability and stable-storage.

The basic implementation of disk scheduling should be fairly clear: re-
quests, queues, servicing, so the main new consideration is the actual algo-
rithms: FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK. Simulation may be the best
way to involve the student with the algorithms exercise 12.6 provides a ques-
tion amenable to a small but open-ended simulation study.

The paper by Worthington et al. [1994] gives a good presentation of the
disk-scheduling algorithms and their evaluation. Be suspicious of the results of
the disk scheduling papers from the 1970s, such as Teory and Pinkerton [1972],
because they generally assume that the seek time function is linear, rather than
a square root. The paper by Lynch [1972b] shows the importance of keeping
the overall system context in mind when choosing scheduling algorithms.
Unfortunately, it is fairly difficult to find.

Chapter 2 introduced the concept of primary, secondary, and tertiary stor-
age. In this chapter, we discuss tertiary storage in more detail. First we describe
the types of storage devices used for tertiary storage. Next, we discuss the is-
sues that arise when an operating system uses tertiary storage. Finally, we
consider some performance aspects of tertiary storage systems.

Exercises

12.1 None of the disk-scheduling disciplines, except FCFS, is truly fair (star-
vation may occur).

a. Explain why this assertion is true.

81

82 Chapter 12 Mass-Storage Structure

b. Describe a way to modify algorithms such as SCAN to ensure
fairness.

c. Explain why fairness is an important goal in a time-sharing sys-
tem.

d. Give three or more examples of circumstances in which it is
important that the operating system be unfair in serving I/O
requests.

Answer:

a. New requests for the track over which the head currently resides
can theoretically arrive as quickly as these requests are being
serviced.

b. All requests older than some predetermined age could be “forced”
to the top of the queue, and an associated bit for each could be
set to indicate that no new request could be moved ahead of
these requests. For SSTF, the rest of the queue would have to be
reorganized with respect to the last of these “old” requests.

c. To prevent unusually long response times.

d. Paging and swapping should take priority over user requests.
It may be desirable for other kernel-initiated I/O, such as the
writing of file system metadata, to take precedence over user
I/O. If the kernel supports real-time process priorities, the I/O
requests of those processes should be favored.

12.2 Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The
drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, in FIFO
order, is

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests,
for each of the following disk-scheduling algorithms?

a. FCFS

b. SSTF

c. SCAN

d. LOOK

e. C-SCAN

Answer:

a. The FCFS schedule is 143, 86, 1470, 913, 1774, 948, 1509, 1022,
1750, 130. The total seek distance is 7081.

b. The SSTF schedule is 143, 130, 86, 913, 948, 1022, 1470, 1509, 1750,
1774. The total seek distance is 1745.

Exercises 83

c. The SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774,
4999, 130, 86. The total seek distance is 9769.

d. The LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774,
130, 86. The total seek distance is 3319.

e. The C-SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774,
4999, 86, 130. The total seek distance is 9813.

f. (Bonus.) The C-LOOK schedule is 143, 913, 948, 1022, 1470, 1509,
1750, 1774, 86, 130. The total seek distance is 3363.

12.3 From elementary physics, we know that when an object is subjected to
a constant acceleration a , the relationship between distance d and time
t is given by d = 1

2 at2. Suppose that, during a seek, the disk in Exercise
12.2 accelerates the disk arm at a constant rate for the first half of the
seek, then decelerates the disk arm at the same rate for the second half
of the seek. Assume that the disk can perform a seek to an adjacent
cylinder in 1 millisecond and a full-stroke seek over all 5000 cylinders
in 18 milliseconds.

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form t = x + y

√
L,

where t is the time in milliseconds and L is the seek distance in
cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
12.2. Determine which schedule is the fastest (has the smallest
total seek time).

d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

Answer:

a. Solving d = 1
2 at2 for t gives t = √

(2d/a).

b. Solve the simultaneous equations t = x + y
√

L that result from
(t = 1, L = 1) and (t = 18, L = 4999) to obtain t = 0.7561 +
0.2439

√
L.

c. The total seek times are: FCFS 65.20; SSTF 31.52; SCAN 62.02; LOOK
40.29; C-SCAN 62.10; (and C-LOOK 40.42). Thus, SSTF is fastest
here.

d. (65.20 − 31.52)/65.20 = 0.52 The percentage speedup of SSTF
over FCFS is 52%, with respect to the seek time. If we include the
overhead of rotational latency and data transfer, the percentage
speedup will be less.

12.4 Suppose that the disk in Exercise 12.3 rotates at 7200 RPM.

84 Chapter 12 Mass-Storage Structure

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found
for part a?

Answer:

a. 7200 rpm gives 120 rotations per second. Thus, a full rotation
takes 8.33 ms, and the average rotational latency (a half rotation)
takes 4.167 ms.

b. Solving t = 0.7561 + 0.2439
√

L for t = 4.167 gives L = 195.58,
so we can seek over 195 tracks (about 4% of the disk) during an
average rotational latency.

12.5 Write a Java program for disk scheduling using the SCAN and C-SCAN
disk-scheduling algorithms.
Answer: Please refer to the supporting Web site for source code solu-
tion.

12.6 Compare the performance of C-SCAN and SCAN scheduling, assum-
ing a uniform distribution of requests. Consider the average response
time (the time between the arrival of a request and the completion of
that request’s service), the variation in response time, and the effective
bandwidth. How does performance depend on the relative sizes of seek
time and rotational latency?
Answer:
There is no simple analytical argument to answer the first part of this
question. It would make a good small simulation experiment for the
students. The answer can be found in Figure 2 of Worthington et al.
[1994]. (Worthington et al. studied the LOOK algorithm, but similar
results obtain for SCAN. Figure 2 in Worthington et al. shows that C-
LOOK has an average response time just a few percent higher than
LOOK but that C-LOOK has a significantly lower variance in response
time for medium and heavy workloads. The intuitive reason for the
difference in variance is that LOOK (and SCAN) tend to favor requests
near the middle cylinders, whereas the C-versions do not have this
imbalance. The intuitive reason for the slower response time of C-LOOK
is the “circular” seek from one end of the disk to the farthest request
at the other end. This seek satisfies no requests. It only causes a small
performance degradation because the square-root dependency of seek
time on distance implies that a long seek isn’t terribly expensive by
comparison with moderate length seeks.
For the second part of the question, we observe that these algorithms
do not schedule to improve rotational latency; therefore, as seek times
decrease relative to rotational latency, the performance differences be-
tween the algorithms will decrease.

12.7 Requests are not usually uniformly distributed. For example, a cylinder
containing the file system FAT or inodes can be expected to be accessed
more frequently than a cylinder that only contains files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

Exercises 85

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better per-
formance by taking advantage of this “hot spot” on the disk.

c. File systems typically find data blocks via an indirection table,
such as a FAT in DOS or inodes in UNIX. Describe one or more
ways to take advantage of this indirection to improve the disk
performance.

Answer:

a. SSTF would take greatest advantage of the situation. FCFS could
cause unnecessary head movement if references to the “high-
demand” cylinders were interspersed with references to cylin-
ders far away.

b. Here are some ideas. Place the hot data near the middle of the
disk. Modify SSTF to prevent starvation. Add the policy that if
the disk becomes idle for more than, say, 50 ms, the operating
system generates an anticipatory seek to the hot region, since the
next request is more likely to be there.

c. Cache the metadata in primary memory, and locate a file’s data
and metadata in close physical proximity on the disk. (UNIX
accomplishes the latter goal by allocating data and metadata in
regions called cylinder groups.)

12.8 Could a RAID Level 1 organization achieve better performance for read
requests than a RAID Level 0 organization (with nonredundant striping
of data)? If so, how?
Answer: Yes, a RAID Level 1 organization could achieve better perfor-
mance for read requests. When a read operation is performed, a RAID
Level 1 system can decide which of the two copies of the block should
be accessed to satisfy the request. This choice could be based on the
current location of the disk head and could therefore result in perfor-
mance optimizations by choosing a disk head which is closer to the
target data.

12.9 Consider a RAID Level 5 organization comprising five disks, with the
parity for sets of four blocks on four disks stored on the fifth disk. How
many blocks are accessed in order to perform the following?

a. A write of one block of data

b. A write of seven continuous blocks of data

Answer: 1) A write of one block of data requires the following: read
of the parity block, read of the old data stored in the target block,
computation of the new parity based on the differences between the
new and old contents of the target block, and the write of the parity
block and the target block. 2) Assume that the seven contiguous blocks
begin at a four-block boundary. A write of seven contiguous blocks
of data could be performed by writing the seven contiguous blocks,

86 Chapter 12 Mass-Storage Structure

writing the parity block of the first four blocks, reading the eight block,
computing the parity for the next set of four blocks and writing the
corresponding parity block onto disk.

12.10 Compare the throughput achieved by a RAID Level 5 organization with
that achieved by a RAID Level 1 organization for the following:

a. Read operations on single blocks

b. Read operations on multiple contiguous blocks

Answer: 1) The amount of throughput depends on the number of
disks in the RAID system. A RAID Level 5 comprising of a parity block
for every set of four blocks spread over five disks can support four
to five operations simultaneously. A RAID Level 1 comprising of two
disks can support two simultaneous operations. Of course, there is
greater flexibility in RAID Level 1 as to which copy of a block could be
accessed and that could provide performance benefits by taking into
account position of disk head. 2) RAID Level 5 organization achieves
greater bandwidth for accesses to multiple contiguous blocks since the
adjacent blocks could be simultaneously accessed. Such bandwidth
improvements are not possible in RAID Level 1.

12.11 Compare the performance of write operations achieved by a RAID Level
5 organization with that achieved by a RAID Level 1 organization.
Answer: RAID Level 1 organization can perform writes by simply
issuing the writes to mirrored data concurrently. RAID Level 5, on the
other hand, would require the old contents of the parity block to be
read before it is updated based on the new contents of the target block.
This results in more overhead for the write operations on a RAID Level
5 system.

12.12 Assume that you have a mixed configuration comprising disks orga-
nized as RAID Level 1 and as RAID Level 5 disks. Assume that the system
has flexibility in deciding which disk organization to use for storing a
particular file. Which files should be stored in the RAID Level 1 disks
and which in the RAID Level 5 disks in order to optimize performance?
Answer: Frequently updated data need to be stored on RAID Level
1 disks while data which is more frequently read as opposed to being
written should be stored in RAID Level 5 disks.

12.13 Is there any way to implement truly stable storage? Explain your an-
swer.
Answer: Truly stable storage would never lose data. The fundamental
technique for stable storage is to maintain multiple copies of the data,
so that if one copy is destroyed, some other copy is still available for
use. But for any scheme, we can imagine a large enough disaster that
all copies are destroyed.

12.14 The reliability of a hard-disk drive is typically described in terms of a
quantity called mean time between failures (MTBF). Although this quantity
is called a “time,” the MTBF actually is measured in drive-hours per
failure.

Exercises 87

a. If a disk farm contains 1000 drives, each of which has a 750,000
hour MTBF, which of the following best describes how often a
drive failure will occur in that disk farm: once per thousand
years, once per century, once per decade, once per year, once per
month, once per week, once per day, once per hour, once per
minute, or once per second?

b. Mortality statistics indicate that, on the average, a U.S. resident
has about 1 chance in 1000 of dying between ages 20 and 21 years.
Deduce the MTBF hours for 20 year olds. Convert this figure from
hours to years. What does this MTBF tell you about the expected
lifetime of a 20 year old?

c. The manufacturer claims a 1-million hour MTBF for a certain
model of disk drive. What can you say about the number of
years that one of those drives can be expected to last?

Answer:

a. 750,000 drive-hours per failure divided by 1000 drives gives 750
hours per failure—about 31 days or once per month.

b. The human-hours per failure is 8760 (hours in a year) divided
by 0.001 failure, giving a value of 8,760,000 “hours” for the MTBF.
8760,000 hours equals 1000 years. This tells us nothing about the
expected lifetime of a person of age 20.

c. The MTBF tells nothing about the expected lifetime. Hard disk
drives are generally designed to have a lifetime of 5 years. If such
a drive truly has a million-hour MTBF, it is very unlikely that the
drive will fail during its expected lifetime.

12.15 Discuss the relative advantages and disadvantages of sector sparing
and sector slipping.
Answer:
Sector sparing can cause an extra track switch and rotational latency,
causing an unlucky request to require an extra 8 ms of time. Sector
slipping has less impact during future reading, but at sector remapping
time it can require the reading and writing of an entire track’s worth of
data to slip the sectors past the bad spot.

12.16 Discuss the reasons why the operating system might require accurate
information on how blocks are stored on a disk. How could the oper-
ating system improve file system performance with this knowledge?
Answer: While allocating blocks for a file, the operating system could
allocate blocks that are geometrically close by on the disk if it had more
information regarding the physical location of the blocks on the disk.
In particular, it could allocate a block of data and then allocate the
second block of data in the same cylinder but on a different surface at a
rotationally optimal place so that the access to the next block could be
made with minimal cost.

12.17 The operating system generally treats removable disks as shared file
systems but assigns a tape drive to only one application at a time.

88 Chapter 12 Mass-Storage Structure

Give three reasons that could explain this difference in treatment of
disks and tapes. Describe additional features that would be required
of the operating system to support shared file-system access to a tape
jukebox. Would the applications sharing the tape jukebox need any
special properties, or could they use the files as though the files were
disk-resident? Explain your answer.
Answer:

a. Disks have fast random-access times, so they give good perfor-
mance for interleaved access streams. By contrast, tapes have
high positioning times. Consequently, if two users attempt to
share a tape drive for reading, the drive will spend most of its
time switching tapes and positioning to the desired data, and rel-
atively little time performing data transfers. This performance
problem is similar to the thrashing of a virtual memory system
that has insufficient physical memory.

b. Tape cartridges are removable. The owner of the data may wish
to store the cartridge off-site (far away from the computer) to
keep a copy of the data safe from a fire at the location of the
computer.

c. Tape cartridges are often used to send large volumes of data
from a producer of data to the consumer. Such a tape cartridge
is reserved for that particular data transfer and cannot be used
for general-purpose shared storage space.

To support shared file-system access to a tape jukebox, the operating
system would need to perform the usual file-system duties, including

• Manage a file-system name space over the collection of tapes

• Perform space allocation

• Schedule the I/O operations

The applications that access a tape-resident file system would need to
be tolerant of lengthy delays. For improved performance, it would be
desirable for the applications to be able to disclose a large number of
I/O operations so that the tape-scheduling algorithms could generate
efficient schedules.

12.18 What would be the effect on cost and performance if tape storage were
to achieve the same areal density as disk storage? (Areal density is the
number of gigabits per square inch.)
Answer: To achieve the same areal density as a magnetic disk, the areal
density of a tape would need to improve by two orders of magnitude.
This would cause tape storage to be much cheaper than disk storage.
The storage capacity of a tape would increase to more than 1 terabyte,
which could enable a single tape to replace a jukebox of tapes in today’s
technology, further reducing the cost. The areal density has no direct
bearing on the data transfer rate, but the higher capacity per tape might
reduce the overhead of tape switching.

Exercises 89

12.19 You can use simple estimates to compare the cost and performance
of a terabyte storage system made entirely from disks with one that
incorporates tertiary storage. Suppose that magnetic disks each hold
10 gigabytes, cost $1000, transfer 5 megabytes per second, and have an
average access latency of 15 milliseconds. Suppose that a tape library
costs $10 per gigabyte, transfers 10 megabytes per second, and has
an average access latency of 20 seconds. Compute the total cost, the
maximum total data rate, and the average waiting time for a pure disk
system. If you make any assumptions about the workload, describe
and justify them. Now, suppose that 5 percent of the data are frequently
used, so they must reside on disk, but the other 95 percent are archived
in the tape library. Further suppose that 95 percent of the requests are
handled by the disk system and the other 5 percent are handled by the
library. What are the total cost, the maximum total data rate, and the
average waiting time for this hierarchical storage system?
Answer: First let’s consider the pure disk system. One terabyte is
1024 GB. To be correct, we need 103 disks at 10 GB each. But since
this question is about approximations, we will simplify the arithmetic
by rounding off the numbers. The pure disk system will have 100
drives. The cost of the disk drives would be $100,000, plus about 20%
for cables, power supplies, and enclosures, i.e., around $120,000. The
aggregate data rate would be 100 × 5 MB/s, or 500 MB/s. The average
waiting time depends on the workload. Suppose that the requests are
for transfers of size 8 KB, and suppose that the requests are randomly
distributed over the disk drives. If the system is lightly loaded, a typical
request will arrive at an idle disk, so the response time will be 15 ms
access time plus about 2 ms transfer time. If the system is heavily
loaded, the delay will increase, roughly in proportion to the queue
length.
Now let’s consider the hierarchical storage system. The total disk space
required is 5% of 1 TB, which is 50 GB. Consequently, we need 5 disks,
so the cost of the disk storage is $5,000 (plus 20%, i.e., $6,000). The cost
of the 950 GB tape library is $9500. Thus the total storage cost is $15,500.
The maximum total data rate depends on the number of drives in the
tape library. We suppose there is only 1 drive. Then the aggregate data
rate is 6 × 10 MB/s, i.e., 60 MB/s. For a lightly loaded system, 95% of
the requests will be satisfied by the disks with a delay of about 17 ms.
The other 5% of the requests will be satisfied by the tape library, with a
delay of slightly more than 20 seconds. Thus the average delay will be
(95×0.017+5×20)/100, or about 1 second. Even with an empty request
queue at the tape library, the latency of the tape drive is responsible
for almost all of the system’s response latency, because 1/20th of the
workload is sent to a device that has a 20 second latency. If the system
is more heavily loaded, the average delay will increase in proportion
to the length of the queue of requests waiting for service from the tape
drive.
The hierarchical system is much cheaper. For the 95% of the requests
that are served by the disks, the performance is as good as a pure-disk
system. But the maximum data rate of the hierarchical system is much
worse than for the pure-disk system, as is the average response time.

90 Chapter 12 Mass-Storage Structure

12.20 Imagine that a holographic storage drive has been invented. Suppose
that a holographic drive costs $10,000 and has an average access time
of 40 milliseconds. Suppose that it uses a $100 cartridge the size of
a CD. This cartridge holds 40,000 images, and each image is a square
black-and-white picture with resolution 6000 × 6000 pixels (each pixel
stores 1 bit). Suppose that the drive can read or write 1 picture in 1
millisecond. Answer the following questions.

a. What would be some good uses for this device?

b. How would this device affect the I/O performance of a comput-
ing system?

c. Which other kinds of storage devices, if any, would become ob-
solete as a result of this device being invented?

Answer: First, calculate performance of the device. 6000×6000 bits per
millisecond = 4394KB per millisecond = 4291 MB/sec(!). Clearly this
is orders of magnitude greater than current hard disk technology, as
the best production hard drives do less than 40MB/sec. The following
answers assume that the device cannot store data in smaller chunks
than 4MB.

a. This device would find great demand in the storage of images,
audio files, and other digital media.

b. Assuming that interconnection speed to this device would equal
its throughput ability (that is, the other components of the system
could keep it fed), large-scale digital load and store performance
would be greaty enchanced. Manipulation time of the digital
object would stay the same of course. The result would be greatly
enhanced overall performance.

c. Currently, objects of that size are stored on optical media, tape
media, and disk media. Presumably, demand for those would
decrease as the holographic storage became available. There are
likely to be uses for all of those media even in the presence of
holographic storage, so it is unlikely that any would become
obsolete. Hard disks would still be used for random access to
smaller items (such as user files). Tapes would still be used for
off-site, archiving, and disaster recovery uses, and optical disks
(CDRW for instance) for easy interchange with other computers,
and low cost bulk storage.
Depending on the size of the holographic device, and its power
requirements, it would also find use in replacing solid state mem-
ory for digital cameras, MP3 players, and hand-held computers.

12.21 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal
density of 1 gigabit per square inch. Suppose that a magnetic tape has
an areal density of 20 megabits per square inch, and is 1/2 inch wide and
1800 feet long. Calculate an estimate of the storage capacities of these
two kinds of storage cartridges. Suppose that an optical tape exists that
has the same physical size as the tape, but the same storage density
as the optical disk. What volume of data could the optical tape hold?

Exercises 91

What would be a marketable price for the optical tape if the magnetic
tape cost $25?
Answer: The area of a 5.25 inch disk is about 19.625 square inches.
If we suppose that the diameter of the spindle hub is 1.5 inches, the
hub occupies an area of about 1.77 square inches, leaving 17.86 square
inches for data storage. Therefore, we estimate the storage capacity of
the optical disk to be 2.2 gigabytes.
The surface area of the tape is 10,800 square inches, so its storage
capacity is about 26 gigabytes.
If the 10,800 square inches of tape had a storage density of 1 gigabit per
square inch, the capacity of the tape would be about 1,350 gigabytes, or
1.3 terabytes. If we charge the same price per gigabyte for the optical
tape as for magnetic tape, the optical tape cartridge would cost about
50 times more than the magnetic tape, i.e., $1,250.

12.22 Discuss how an operating system could maintain a free-space list for a
tape-resident file system. Assume that the tape technology is append-
only, and that it uses the EOT mark and locate, space, and read position
commands as described in Section 12.9.2.1.
Answer: Since this tape technology is append-only, all the free space
is at the end of the tape. The location of this free space does not need
to be stored at all, because the space command can be used to position
to the EOT mark. The amount of available free space after the EOT mark
can be represented by a single number. It may be desirable to maintain
a second number to represent the amount of space occupied by files
that have been logically deleted (but their space has not been reclaimed
since the tape is append-only) so that we can decide when it would pay
to copy the nondeleted files to a new tape in order to reclaim the old
tape for reuse. We can store the free and deleted space numbers on disk
for easy access. Another copy of these numbers can be stored at the end
of the tape as the last data block. We can overwrite this last data block
when we allocate new storage on the tape.

13C H A P T E R

I/O Systems

The role of the operating system in computer I/O is to manage and control I/O
operations and I/O devices. Although related topics appear in other chapters,
here we bring together the pieces to paint a complete picture. In this chapter we
describe I/O Structure, Devices, Device Drivers, Caching, and Terminal I/O.

Exercises

13.1 When multiple interrupts from different devices appear at about the
same time, a priority scheme could be used to determine the order in
which the interrupts would be serviced. Discuss what issues need to
be considered in assigning priorities to different interrupts.
Answer: A number of issues need to be considered in order to deter-
mine the priority scheme to be used to determine the order in which the
interrupts need to be serviced. First, interrupts raised by devices should
be given higher priority than traps generated by the user program; a
device interrupt can therefore interrupt code used for handling system
calls. Second, interrupts that control devices might be given higher pri-
ority than interrupts that simply perform tasks such as copying data
served up a device to user/kernel buffers, since such tasks can always
be delayed. Third, devices that have realtime constraints on when its
data is handled should be given higher priority than other devices.
Also, devices that do not have any form of buffering for its data would
have to be assigned higher priority since the data could be available
only for a short period of time.

13.2 What are the advantages and disadvantages of supporting memory-
mapped I/O to device control registers?
Answer: The advantage of supporting memory-mapped I/O to device
control registers is that it eliminates the need for special I/O instruc-
tions from the instruction set and therefore also does not require the
enforcement of protection rules that prevent user programs from ex-

93

94 Chapter 13 I/O Systems

ecuting these I/O instructions. The disadvantage is that the resulting
flexibility needs to be handled with care; the memory translation units
need to ensure that the memory addresses associated with the device
control registers are not accessible by user programs in order to ensure
protection.

13.3 Consider the following I/O scenarios on a single-user PC.

a. A mouse used with a graphical user interface

b. A tape drive on a multitasking operating system (assume no
device preallocation is available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through
memory-mapped I/O

For each of these I/O scenarios, would you design the operating system
to use buffering, spooling, caching, or a combination? Would you use
polled I/O, or interrupt-driven I/O? Give reasons for your choices.
Answer:

a. A mouse used with a graphical user interface
Buffering may be needed to record mouse movement during
times when higher-priority operations are taking place. Spool-
ing and caching are inappropriate. Interrupt driven I/O is most
appropriate.

b. A tape drive on a multitasking operating system (assume no
device preallocation is available)
Buffering may be needed to manage throughput difference be-
tween the tape drive and the source or destination of the I/O,
Caching can be used to hold copies of data that resides on the
tape, for faster access. Spooling could be used to stage data to
the device when multiple users desire to read from or write to it.
Interrupt driven I/O is likely to allow the best performance.

c. A disk drive containing user files
Buffering can be used to hold data while in transit from user
space to the disk, and visa versa. Caching can be used to hold
disk-resident data for improved performance. Spooling is not
necessary because disks are shared-access devices. Interrupt-
driven I/O is best for devices such as disks that transfer data
at slow rates.

d. A graphics card with direct bus connection, accessible through
memory-mapped I/O
Buffering may be needed to control multiple access and for per-
formance (double-buffering can be used to hold the next screen
image while displaying the current one). Caching and spooling
are not necessary due to the fast and shared-access natures of
the device. Polling and interrupts are only useful for input and
for I/O completion detection, neither of which is needed for a
memory-mapped device.

Exercises 95

13.4 In most multiprogrammed systems, user programs access memory
through virtual addresses, while the operating system uses raw physi-
cal addresses to access memory. What are the implications of this design
on the initiation of I/O operations by the user program and their exe-
cution by the operating system?
Answer: The user program typically specifies a buffer for data to be
transmitted to or from a device. This buffer exists in user space and
is specified by a virtual address. The kernel needs to issue the I/O
operation and needs to copy data between the user buffer and its own
kernel buffer before or after the I/O operation. In order to access the user
buffer, the kernel needs to translate the virtual address provided by the
user program to the corresponding physical address within the context
of the user program’s virtual address space. This translation is typically
performed in software and therefore incurs overhead. Also, if the user
buffer is not currently present in physical memory, the corresponding
page(s) need to obtained from the swap space. This operation might
require careful handling and might delay the data copy operation.

13.5 What are the various kinds of performance overheads associated with
servicing an interrupt?
Answer: When an interrupt occurs the currently executing process
is interrupts and its state is stored in the appropriate process control
block. The interrupt service routine is then dispatch in order to deal
with the interrupt. On completion of handling of the interrupt, the
state of the process is restored and the process is resumed. Therefore, the
performance overheads include the cost of saving and restoring process
state and the cost of flushing the instruction pipeline and restoring the
instructions into the pipeline when the process is restarted.

13.6 Describe three circumstances under which blocking I/O should be used.
Describe three circumstances under which nonblocking I/O should be
used. Why not just implement nonblocking I/O and have processes
busy-wait until their device is ready?
Answer: Generally, blocking I/O is appropriate when the process will
only be waiting for one specific event. Examples include a disk, tape, or
keyboard read by an application program. Non-blocking I/O is useful
when I/O may come from more than one source and the order of the
I/O arrival is not predetermined. Examples include network daemons
listening to more than one network socket, window managers that ac-
cept mouse movement as well as keyboard input, and I/O-management
programs, such as a copy command that copies data between I/O de-
vices. In the last case, the program could optimize its performance by
buffering the input and output and using non-blocking I/O to keep
both devices fully occupied.
Non-blocking I/O is more complicated for programmers, because of
the asynchonous rendezvous that is needed when an I/O occurs. Also,
busy waiting is less efficient than interrupt-driven I/O so the overall
system performance would decrease.

13.7 Typically, at the completion of a device I/O, a single interrupt is raised
and appropriately handled by the host processor. In certain settings,

96 Chapter 13 I/O Systems

however, the code that is to be executed at the completion of the I/O
can be broken into two separate pieces, one of which executes imme-
diately after the I/O completes and schedules a second interrupt for
the remaining piece of code to be executed at a later time. What is the
purpose of using this strategy in the design of interrupt handlers?
Answer: The purpose of this strategy is to ensure that the most critical
aspect of the interrupt handling code is performed first and the less
critical portions of the code is delayed for the future. For instance,
when a device finishes an I/O operation, the device control operations
corresponding to declaring the device as no longer being busy are
more important in order to issue future operations. However, the task
of copying the data provided by the device to the appropriate user or
kernel memory regions can be delayed for a future point when the CPU
is idle. In such a scenario, a latter lower priority interrupt handler is
used to perform the copy operation.

13.8 Some DMA controllers support direct virtual memory access, where the
targets of I/O operations are specified as virtual addresses and a trans-
lation from virtual to physical address is performed during the DMA.
How does this design complicate the design of the DMA controller?
What are the advantages of providing such a functionality?
Answer: Direct virtual memory access allows a device to perform a
transfer from two memory-mapped devices without the intervention
of the CPU or the use of main memory as a staging ground; the device
simply issue memory operations to the memory-mapped addresses of
a target device and the ensuing virtual address translation guarantees
that the data is transferred to the appropriate device. This functionality,
however, comes at the cost of having to support virtual address transla-
tion on addresses accessed by a DMA controller and requires the addi-
tion of an address translation unit to the DMA controller. The address
translation results in both hardware and software costs and might also
result in coherence problems between the data structures maintained
by the CPU for address translation and corresponding structures used
by the DMA controller. These coherence issues would also need to be
dealt with and results in further increase in system complexity.

13.9 UNIX coordinates the activities of the kernel I/O components by ma-
nipulating shared in-kernel data structures, whereas Windows NT uses
object-oriented message passing between kernel I/O components. Dis-
cuss three pros and three cons of each approach.
Answer: Three pros of the UNIX method: Very efficient, low overhead
and low amount of data movement
Fast implementation — no coordination needed with other kernel com-
ponents
Simple, so less chance of data loss
Three cons: No data protection, and more possible side-effects from
changes so more difficult to debug
Difficult to implement new I/O methods: new data structures needed
rather than just new objects
Complicated kernel I/O subsystem, full of data structures, access rou-
tines, and locking mechanisms

Exercises 97

13.10 Write (in pseudocode) an implementation of virtual clocks, including
the queuing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.
Answer: Each channel would run the following algorithm:

/** data definitions **/

// a list of interrupts sorted by earliest-time-first order

List interruptList

// the list that associates a request with an entry in inter-

ruptList

List requestList

// an interrupt-based timer

Timer timer

while (true) {
/** Get the next earliest time in the list **/

timer.setTime = interruptList.next();

/** An interrupt will occur at time timer.setTime **/

/** now wait for the timer interrupt

i.e. for the timer to expire **/

notify(requestList.next());

}

13.11 Discuss the advantages and disadvantages of guaranteeing reliable
transfer of data between modules in the STREAMS abstraction.
Answer: Reliable transfer of data requires modules to check whether
space is available on the target module and to block the sending mod-
ule if space is not available. This check requires extra communication
between the modules, but the overhead enables the system to pro-
vide a stronger abstraction than one which does not guarantee reliable
transfer. The stronger abstraction typically reduces the complexity of
the code in the modules. In the STREAMS abstraction, however, there
is unreliability introduced by the driver end, which is allowed to drop
messages if the corresponding device cannot handle the incoming data.
Consequently, even if there is reliable transfer of data between the mod-
ules, messages could be dropped at the device if the corresponding
buffer fills up. This requires retransmission of data and special code for
handling such retransmissions, thereby somewhat limiting the advan-
tages that are associated with reliable transfer between the modules.

14C H A P T E R

Protection

The various processes in an operating system must be protected from one
another’s activities. For that purpose, various mechanisms exist that can be
used to ensure that the files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authorization
from the operating system.

In this chapter, we examine the problem of protection in great detail and
develop a unifying model for implementing protection.

It is important that the student learn the concepts of the access matrix,
access lists, and capabilities. Capabilities have been used in several modern
systems and can be tied in with abstract data types. The paper by Lampson
[1971] is the classic reference on protection.

Exercises

14.1 Consider the ring protection scheme in MULTICS. If we were to imple-
ment the system calls of a typical operating system and store them in
a segment associated with ring 0, what should be the values stored in
the ring field of the segment descriptor? What happens during a sys-
tem call when a process executing in a higher-numbered ring invokes
a procedure in ring 0?
Answer: The ring should be associated with an access bracket (b1, b2),
a limit value b3, and a set of designated entry points. The processes that
are allowed to invoke any code stored in segment 0 in an unconstrained
manner are those processes that are currently executing in ring i where
b1 ≤ i ≤ b2. Any other process executing within ring b2 < i ≤ b3
is allowed to invoke only those functions that are designated entry
points. This implies that we should have b1 = 0 and set b2 to be the
highest ring number that comprises of system code that is allowed to
invoke the code in segment 0 in an unconstrained fashion. We should
also store only the system call functions as designated entry points and

99

100 Chapter 14 Protection

we should set b3 to be the ring number associated with user code so
that user code can invoke the system calls.

14.2 The access-control matrix could be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?
Answer: Yes, this approach is equivalent to including the access privi-
leges of domain B in those of domain A as long as the switch privileges
associated with domain B are also copied over to domain A.

14.3 Consider a system in which “computer games” can be played by stu-
dents only between 10 P.M. and 6 A.M., by faculty members between 5
P.M. and 8 A.M., and by the computer center staff at all times. Suggest a
scheme for implementing this policy efficiently.
Answer: Set up a dynamic protection structure that changes the set of
resources available with respect to the time allotted to the three cate-
gories of users. As time changes, so does the domain of users eligible to
play the computer games. When the time comes that a user’s eligibility
is over, a revocation process must occur. Revocation could be immedi-
ate, selective (since the computer staff may access it at any hour), total,
and temporary (since rights to access will be given back later in the
day).

14.4 What hardware features are needed for efficient capability manipula-
tion? Can these be used for memory protection?
Answer: A hardware feature allowing a capability object to be identi-
fied as either a capability of accessible object. Typically, several bits are
necessary to distinguish between different types of capability objects.
For example, 4 bits could be used to uniquely identify 24 or 16 different
types of capability objects.
These could not be used for routine memory protection as they offer
little else for protection apart from a binary value indicating whether
they are a capability object or not. Memory protection requires full
support from virtual memory features discussed in Chapter 9.

14.5 Discuss the strengths and weaknesses of implementing an access matrix
using access lists that are associated with objects.
Answer: The strength of storing an access list with each object is
the control that comes from storing the access privileges along with
each object, thereby allowing the object to revoke or expand the access
privileges in a localized manner. The weakness with associating access
lists is the overhead of checking whether the requesting domain ap-
pears on the access list. This check would be expensive and needs to be
performed every time the object is accessed.

14.6 Discuss the strengths and weaknesses of implementing an access matrix
using capabilities that are associated with domains.
Answer: Capabilities associated with domains provide substantial
flexibility and faster access to objects. When a domain presents a ca-
pability, the system just needs to check the authenticity of the capabil-
ity and that could be performed efficiently. Capabilities could also be

Exercises 101

passed around from one domain to another domain with great ease
allowing for a system with a great amount of flexibility. However, the
flexibility comes at the cost of a lack of control; revoking capabilities
and restricting the flow of capabilities is a difficult task.

14.7 Explain why a capability-based system such as Hydra provides greater
flexibility than the ring protection scheme in enforcing protection poli-
cies.
Answer: The ring-based protection scheme requires the modules to be
ordered in a strictly hierarchical fashion. It also enforces the restriction
that system code in internal rings cannot invoke operations in the ex-
ternal rings. This restriction limits the flexibility in structuring the code
and is unnecessarily restrictive. The capability system provided by Hy-
dra not only allows for unstructured interactions between different
modules, but also enables the dynamic instantiation of new modules
as the need arises.

14.8 Discuss the need for rights amplification in Hydra. How does this
practice compare with the cross-ring calls in a ring protection scheme?
Answer: Rights amplification is required to deal with cross-domain
calls where code in the calling domain does not have the access privi-
leges to perform certain operations on an object but the called procedure
has an expanded set of access privileges on the same object. Typically,
when an object is created by a module, if the module wants to export
the object to other modules without granting the other modules priv-
ileges to modify the object, it could export the object with those kind
of access privileges disabled. When the object is passed back to the
module that created it in order to perform some mutations on it, the
rights associated with the object need to be expanded. A more coarse-
grained approach to rights amplification is employed in Multics. When
a cross-ring call occurs, a set of checks are made to ensure that the call-
ing code has sufficient rights to invoke the target code. Assuming that
the checks are satisfied, the target code is invoked and the ring number
associated with the process is modified to be ring number associated
with the target code, thereby expanding the access rights associated
with the process.

14.9 What is the need-to-know principle? Why is it important for a protec-
tion system to adhere to this principle?
Answer: A process may access at any time those resources that it
has been authorized to access and are required currently to complete
its task. It is important in that it limits the amount of damage a faulty
process can cause in a system.

14.10 Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. The MULTICS ring protection scheme

b. Hydra’s capabilities

c. JVM’s stack-inspection scheme

102 Chapter 14 Protection

Answer: The ring protections scheme in MULTICS does not necessarily
enforce the need-to-know principle. If an object must be accessible in
a domain at ring level j but not accessible in a domain at ring level i ,
then we must have j < i . But this requirement means that every object
accessible in level i must also be accessible in level j .
A similar problem arises in JVM’s stack inspection scheme. When a
sequence of calls are made within a doPrivileged code block, then all
of the code fragments in the called procedure have the same access
privileges as the original code block that performed the doPrivileged
operation, thereby violating the need-to-know principle.
In Hydra, the rights amplification mechanism ensures that only the
privileged code has access privileges to protected objects, and if this
code were to invoke code in other modules, the objects could be ex-
ported to the other modules after lowering the access privileges to the
exported objects. This mechanism provides fine-grained control over
access rights and helps to guarantee that the need-to-know principle is
satisfied.

14.11 Describe how the Java protection model would be sacrificed if a Java
program were allowed to directly alter the annotations of its stack
frame.
Answer: When a Java thread issues an access request in adoPrivileged()
block, the stack frame of the calling thread is annotated according to the
calling thread’s protection domain. A thread with an annotated stack
frame can make subsequent method calls that require certain privi-
leges. Thus, the annotation serves to mark a calling thread as being
privileged. By allowing a Java program to directly alter the annotations
of a stack frame, a program could potentially perform an operation for
which it does not have the necessary permissions, thus violating the
security model of Java.

14.12 How are the access-matrix facility and the role-based access-control
facility similar? How do they differ?
Answer: The roles in a role-based access control are similar to the
domain in the access-matrix facility. Just like a domain is granted access
to certain resources, a role is also granted access to the appropriate
resources. The two approaches differ in the amount of flexibility and
the kind of access privileges that are granted to the entities. Certain
access-control facilities allow modules to perform a switch operation
that allows them to assume the privileges of a different module, and
this operation can be performed in a transparent manner. Such switches
are less transparent in role-based systems where the ability to switch
roles is not a privilege that is granted through a mechanism that is part
of the access-control system, but instead requires the explicit use of
passwords.

14.13 How does the principle of least privilege aid in the creation of protection
systems?
Answer: The principle of least privilege allows users to be given
just enough privileges to perform their tasks. A system implemented
within the framework of this principle has the property that a failure

Exercises 103

or compromise of a component does the minimum damage to the sys-
tem since the failed or compromised component has the least set of
privileges required to support its normal mode of operation.

14.14 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?
Answer: The principle of least privileges only limits the damage
but does not prevent the misuse of access privileges associated with a
module if the module were to be compromised. For instance, if a system
code is given the access privileges to deal with the task of managing
tertiary storage, a security loophole in the code would not cause any
damage to other parts of the system, but it could still cause protection
failures in accessing the tertiary storage.

15C H A P T E R

Security

Exercises

15.1 Buffer-overflow attacks can be avoided by adopting a better program-
ming methodology or by using special hardware support. Discuss these
solutions.
Answer: One form of hardware support that guarantees that a buffer-
overflow attack does not take place is to prevent the execution of code
that is located in the stack segment of a process’s address space. Recall
that buffer-overflow attacks are performed by overflowing the buffer
on a stack frame, overwriting the return address of the function, thereby
jumping to another portion of the stack frame that contains malicious
executable code, which had been placed there as a result of the buffer
overflow. By preventing the execution of code from the stack segment,
this problem is eliminated.
Approaches that use a better programming methodology are typi-
cally built around the use of bounds-checking to guard against buffer-
overflows. Buffer overflows do not not occur in languages like Java
where every array access is guaranteed to be within bounds through
a software check. Such approaches require no hardware support but
result in runtime costs associated with performing bounds-checking.

15.2 A password may become known to other users in a variety of ways. Is
there a simple method for detecting that such an event has occurred?
Explain your answer.
Answer: Whenever a user logs in, the system prints the last time that
user was logged on the system.

15.3 The list of all passwords is kept within the operating system. Thus,
if a user manages to read this list, password protection is no longer

105

106 Chapter 15 Security

provided. Suggest a scheme that will avoid this problem. (Hint: Use
different internal and external representations.)
Answer: Encrypt the passwords internally so that they can only be
accessed in coded form. The only person with access or knowledge of
decoding should be the system operator.

15.4 What is the purpose of using a “salt” along with the user-provided
password? Where should the “salt” be stored, and how should it be
used?
Answer: When a user creates a password, the system generates a
random number (which is the salt) and appends it to the user-provided
password, encrypts the resulting string and stores the encrypted result
and the salt in the password file. When a password check is to be
made, the password presented by the user is first concatenated with
the salt and then encrypted before checking for equality with the stored
password. Since the salt is different for different users, a passwork
cracker cannot check a single candidate password, encrypt it, and check
it against all of the encrypted passwords simultaneously.

15.5 An experimental addition to UNIX allows a user to connect a watch-
dog program to a file. The watchdog is invoked whenever a program
requests access to the file. The watchdog then either grants or denies
access to the file. Discuss two pros and two cons of using watchdogs
for security.
Answer: The watchdog program becomes the primary security mech-
anism for file access. Because of this we find its primary benefits and
detractions. A benefit of this approach is that you have a centralized
mechanism for controlling access to a file - the watchdog program.
By ensuring the watchdog program has sufficient security techniques,
you are assured of having secure access to the file. However, this is
also the primary negative of this approach as well - the watchdog pro-
gram becomes the bottleneck. If the watchdog program is not properly
implemented (i.e. it has a security hole), there are no other backup
mechanisms for file protection.

15.6 The UNIX program COPS scans a given system for possible security
holes and alerts the user to possible problems. What are two potential
hazards of using such a system for security? How can these problems
be limited or eliminated?
Answer: The COPS program itself could be modified by an intruder to
disable some of its features or even to take advantage of its features to
create new security flaws. Even if COPS is not cracked, it is possible for
an intruder to gain a copy of COPS, study it, and locate security breaches
which COPS does not detect. Then that intruder could prey on systems
in which the management depends on COPS for security (thinking it is
providing security), when all COPS is providing is management com-
placency. COPS could be stored on a read only media or file system to
avoid its modification. It could only be provided to bona fide systems
managers to prevent it from falling into the wrong hands. Neither of
these is a foolproof solution, however.

Exercises 107

15.7 Discuss a means by which managers of systems connected to the Inter-
net could have designed their systems to limit or eliminate the damage
done by a worm. What are the drawbacks of making the change that
you suggest?
Answer: “Firewalls” can be erected between systems and the Internet.
These systems filter the packets moving from one side of them to the
other, assuring that only valid packets owned by authorized users are
allowed to access the protect systems. Such firewalls usually make use
of the systems less convenient (and network connections less efficient).

15.8 Argue for or against the judicial sentence handed down against Robert
Morris, Jr., for his creation and execution of the Internet worm discussed
in this chapter.
Answer: An argument against the sentence is that it was simply
excessive. Furthermore, many have now commented that this worm
actually made people more aware of potential vulnerabilities in the
public Internet. An argument for the sentence is that this worm cost
Internet users significant time and money and - considering its apparent
intent - the sentence was appropriate.
We encourage professors to use a case such as this - and the many
similar contemporary cases - as a topic for a class debate.

15.9 Make a list of six security concerns for a bank’s computer system. For
each item on your list, state whether this concern relates to physical,
human, or operating-system security.
Answer: In a protected location, well guarded: physical, human.
Network tamperproof: physical, human, operating system.
Modem access eliminated or limited: physical, human.
Unauthorized data transfers prevented or logged: human, operating
system.
Backup media protected and guarded: physical, human.
Programmers, data entry personnel, trustworthy: human.

15.10 What are two advantages of encrypting data stored in the computer
system?
Answer: Encrypted data are guarded by the operating system’s pro-
tection facilities, as well as a password that is needed to decrypt them.
Two keys are better than one when it comes to security.

15.11 What commonly used computer programs are prone to man-in-the-
middle attacks? Discuss solutions for preventing this form of attack.
Answer: Any protocol that requires a sender and a receiver to agree on
a session key before they start communicating is prone to the man-in-
the-middle attack. For instance, if one were to implement on a secure
shell protocol by having the two communicating machines to identify
a common session key, and if the protocol messages for exchanging the
session key is not protected by the appropriate authentication mech-
anism, then it is possible for an attacker to manufacture a separate
session key and get access to the data being communicated between
the two parties. In particular, if the server is supposed to manufac-
ture the session key, the attacker could obtain the session key from the
server, communicate its locally manufactured session key to the client,

108 Chapter 15 Security

and thereby convince the client to use the fake session key. When the
attacker receives the data from the client, it can decrypt the data, reen-
crypt it with the original key from the server, and transmit the encrypted
data to the server without alerting either the client or the server about
the attacker’s presence. Such attacks could be avoided by using dig-
ital signatures to authenticate messages from the server. If the server
could communicate the session key and its identity in a message that is
guarded by a digital signature granted by a certifying authority, then
the attacker would not be able to forge a session key, and therefore the
man-in-the-middle attack could be avoided.

15.12 Compare symmetric and asymmetric encryption schemes, and discuss
under what circumstances a distributed system would use one or the
other.
Answer: A symmetric encryption scheme allows the same key to be
used for encrypting and decrypting messages. An asymmetric scheme
requires the use of two different keys for performing the encryption and
the corresponding decryption. Asymmetric key cryptographic schemes
are based on mathematical foundations that provide guarantees on the
intractability of reverse-engineering the encryption scheme, but they
are typically much more expensive than symmetric schemes, which do
not provide any such theoretical guarantees. Asymmetric schemes are
also superior to symmetric schemes since they could be used for other
purposes such as authentication, confidentiality, and key distribution.

15.13 Why doesn’t D(kd , N)(E(ke, N)(m)) provide authentication of the sender?
To what uses can such an encryption be put?
Answer: D(kd , N)(E(ke, N)(m)) means that the message is encrypted
using the public key and then decrypted using the private key. This
scheme is not sufficient to guarantee authentication since any entity
can obtain the public keys and therefore could have fabricated the
message. However, the only entity that can decrypt the message is the
entity that owns the private key, which guarantees that the message is
a secret message from the sender to the entity owning the private key;
no other entity can decrypt the contents of the message.

15.14 Discuss how the asymmetric encryption algorithm can be used to
achieve the following goals.

a. Authentication: receiver knows that only the sender could have
generated the message.

b. Secrecy: only the receiver can decrypt the message.

c. Authentication and secrecy: only the receiver can decrypt the
message, and the receiver knows that only the sender could
have generated the message.

Answer: Let ks
e be the public key of the sender, kr

e be the public key of
the receiver, ks

d be the private key of the sender, and ks
e be the private key

of the receiver. Authentication is performed by having the sender send
a message that is encoded using ks

d . Secrecy is ensured by having the

Exercises 109

sender encode the message using kr
e . Both authentication and secrecy

is guaranteed by performing double encryption using both ks
d and kr

e .

15.15 Consider a system that generates 10 million audit records per day. Also
assume that there are on average 10 attacks per day on this system
and that each such attack is reflected in 20 records. If the intrusion-
detection system has a true-alarm rate of 0.6 and a false-alarm rate of
0.0005, what percentage of alarms generated by the system correspond
to real intrusions?
Answer: The probability of occurrence of intrusive records is 10 ∗
20/106 = 0.0002. Using Bayes’ theorem, the probability that an alarm
corresponds to a real intrusion is simply 0.0002 ∗ 0.6/(0.0002 ∗ 0.6 +
0.9998 ∗ 0.0005) = 0.193.

16C H A P T E RDistributed-
System
Structures

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory. The processors com-
municate with one another through various communication networks, such
as high-speed buses or telephone lines. In this chapter, we discuss the gen-
eral structure of distributed systems and the networks that interconnect them.
We contrast the main differences in operating-system design between these
types of systems and the centralized systems with which we were concerned
previously. Detailed discussions are given in Chapters 17 and 18.

Exercises

16.1 What is the difference between computation migration and process
migration? Which is easier to implement, and why?
Answer: Process migration is an extreme form of computation mi-
gration. In computation migration, an RPC might be sent to a remote
processor in order to execute a computation that could be more effi-
ciently executed on the remote node. In process migration, the entire
process is transported to the remote node, where the process continues
its execution. Since process migration is an extension of computation
migration, more issues need to be considered for implementing pro-
cess migration. In particular, it is always challenging to migrate all of
the necessary state to execute the process, and it is sometimes difficult
to transport state regarding open files and open devices. Such a high
degree of transparency and completeness is not required for computa-
tion migration, where it is clear to the programmer that only a certain
section of the code is to be executed remotely and the programmer.

16.2 Contrast the various network topologies in terms of the following at-
tributes:

a. Reliability

111

112 Chapter 16 Distributed-System Structures

b. Available bandwidth for concurrent communications

c. Installation cost

d. Load balance in routing responsibilities

Answer: A fully-connected network provides the most reliable topol-
ogy as if any of the links go down, it is likely there exists another path
to route the message. A partially-connected network may suffer from
the problem that if a specific link goes down, another path to route a
message may not exist. Of the partially-connected topologies, various
levels of reliability exist. In a tree-structured topology, if any of the links
goes down, there is no guarantee that messages may be routed. A ring
topology requires two links to fail for this situation to occur. If a link
fails in a star network, the node connected to that link becomes dis-
connected from the remainder of the network. However, if the central
node fails, the entire network becomes unusable.
Regarding available bandwidth for concurrent communications, the
fully connected network provides the maximum utility followed by
partially connected networks. Tree-structured networks, rings, and star
networks have a linear number of network links and therefore have lim-
ited capability with regards to performing high-bandwidth concurrent
communications. Installation costs follow a similar trend with fully
connected networks requiring a huge investment, while trees, rings,
and stars requiring the least investment.
Fully connected networks and ring networks enjoy symmetry in the
structure and do not suffer from hot spots. Given random commu-
nication patterns, the routing responsibilities are balanced across the
different nodes. Trees and stars suffer from hotspots; the central node
in the star and the nodes in the upper levels of the tree carry much more
traffic than the other nodes in the system and therefore suffer from load
imbalances in routing responsibilities.

16.3 Even though the ISO model of networking specifies seven layers of
functionality, most computer systems use fewer layers to implement a
network. Why do they use fewer layers? What problems could the use
of fewer layers cause?
Answer: A certain network layered-protocol may achieve the same
functionality of the ISO in fewer layers by using one layer to imple-
ment functionality provided in two (or possibly more) layers in the ISO
model. Other models may decide there is no need for certain layers in
the ISO model. For example, the presentation and session layers are ab-
sent in the TCP/IP protocol. Another reason may be that certain layers
specified in the ISO model do not apply to a certain implementation.
Let’s use TCP/IP again as an example where no data-link or physical
layer is specified by the model. The thinking behind TCP/IP is that the
functionality behind the data link and physical layers is not pertinent
to TCP/IP - it merely assumes some network connection is provided -
whether it be Ethernet, wireless, token ring, etc.
A potential problem with implementing fewer layers is that certain
functionality may not be provided by features specified in the omitted
layers.

Exercises 113

16.4 Explain why doubling the speed of the systems on an Ethernet segment
may result in decreased network performance. What changes could
help solve this problem?
Answer: Faster systems may be able to send more packets in a shorter
amount of time. The network would then have more packets traveling
on it, resulting in more collisions, and therefore less throughput relative
to the number of packets being sent. More networks can be used, with
fewer systems per network, to reduce the number of collisions.

16.5 What are the advantages of using dedicated hardware devices for
routers and gateways? What are the disadvantages of using these de-
vices compared with using general-purpose computers?
Answer: The advantages are that dedicated hardware devices for
routers and gateways are very fast as all their logic is provided in
hardware (firmware.) Using a general-purpose computer for a router
or gateway means that routing functionality is provided in software -
which is not as fast as providing the functionality directly in hardware.
A disadvantage is that routers or gateways as dedicated devices may
be more costly than using off-the-shelf components that comprise a
modern personal computer.

16.6 In what ways is using a name server better than using static host tables?
What problems or complications are associated with name servers?
What methods could you use to decrease the amount of traffic name
servers generate to satisfy translation requests?
Answer: Name servers require their own protocol, so they add com-
plication to the system. Also, if a name server is down, host information
may become unavailable. Backup name servers are required to avoid
this problem. Caches can be used to store frequently requested host
information to cut down on network traffic.

16.7 Name servers are organized in a hierarchical manner. What is the pur-
pose of using a hierarchical organization?
Answer: Hierarchical structures are easier to maintain since any
changes in the identity of name servers require an update only at the
next level name server in the hierarchy. Changes are therefore localized.
The downside of this approach, however, is that the name servers at
the top level of the hierarchy are likely to suffer from high loads. This
problem can be alleviated by replicating the services of the top-level
name servers.

16.8 Consider a network layer that senses collisions and retransmits imme-
diately on detection of a collision. What problems could arise with this
strategy? How could they be rectified?
Answer: Delegating the retransmission decisions to the network layer
might be appropriate in many settings. In a congested system, im-
mediate retransmissions might increase the congestion in the system,
resulting in more collisions and lower throughput. Instead, the decision
of when to retransmit could be left to the upper layers, which could
delay the retransmission by a period of time that is proportional to the
current congestion in the system. An exponential backoff strategy is the
most commonly used strategy to avoid over-congesting a system.

114 Chapter 16 Distributed-System Structures

16.9 The lower layers of the ISO network model provide datagram service,
with no delivery guarantees for messages. A transport-layer protocol
such as TCP is used to provide reliability. Discuss the advantages and
disadvantages of supporting reliable message delivery at the lowest
possible layer.
Answer: Many applications might not require reliable message de-
livery. For instance, a coded video stream could recover from packet
losses by performing interpolations to derive lost data. In fact, in such
applications, retransmitted data is of little use since they would arrive
much later than the optimal time and not conform to realtime guaran-
tees. For such applications, reliable message delivery at the lowest level
is an unnecessary feature and might result in increased message traffic,
most of which is useless, thereby resulting in performance degradation.
In general, the lowest levels of the networking stack needs to support
the minimal amount of functionality required by all applications and
leave extra functionality to be implemented at the upper layers.

16.10 What are the implications of using a dynamic routing strategy on ap-
plication behavior? For what type of applications is it beneficial to use
virtual routing instead of dynamic routing?
Answer: Dynamic routing might route different packets through dif-
ferent paths. Consecutive packets might therefore incur different laten-
cies and there could be substantial jitter in the received packets. Also,
many protocols, such as TCP, that assume that reordered packets imply
dropped packets, would have to be modified to take into account that
reordering is a natural phenomenon in the system and does not imply
packet losses. Realtime applications such as audio and video transmis-
sions might benefit more from virtual routing since it minimizes jitter
and packet reorderings.

16.11 Run the program shown in Figure 16.5 and determine the IP addresses
of the following host names:

• www.wiley.com

• www.cs.yale.edu

• www.javasoft.com

• www.westminstercollege.edu

• www.ietf.org

Answer: As of October 2003, the corresponding IP addresses are

• www.wiley.com - 208.215.179.146

• www.cs.yale.edu - 128.36.229.30

• www.javasoft.com - 192.18.97.39

• www.westminstercollege.edu - 146.86.1.2

• www.ietf.org - 132.151.6.21

16.12 Consider a distributed system with two sites, A and B. Consider whether
site A can distinguish among the following:

Exercises 115

a. B goes down.

b. The link between A and B goes down.

c. B is extremely overloaded and its response time is 100 times
longer than normal.

What implications does your answer have for recovery in distributed
systems?
Answer: One technique would be for B to periodically send a I-am-up
message to A indicating it is still alive. If A does not receive an I-am-
up message, it can assume either B – or the network link – is down.
Note that an I-am-up message does not allow A to distinguish between
each type of failure. One technique that allows A to better determine
if the network is down is to send an Are-you-up message to B using an
alternate route. If it receives a reply, it can determine that indeed the
network link is down and that B is up.
If we assume that A knows B is up and is reachable (via the I-am-up
mechanism) and that A has some value N which indicates a normal
response time. A could monitor the response time from B and compare
values to N, allowing A to determine if B is overloaded or not.
The implications of both of these techniques are that A could choose
another host—say C—in the system if B is either down, unreachable,
or overloaded.

16.13 The original HTTP protocol used TCP/IP as the underlying network
protocol. For each page, graphic, or applet, a separate TCP session was
constructed, used, and torn down. Because of the overhead of building
and destroying TCP/IP connections, performance problems resulted
from this implementation method. Would using UDP rather than TCP
be a good alternative? What other changes could you make to improve
HTTP performance?
Answer: Despite the connection-less nature of UDP, it is not a seri-
ous alternative to TCP for the HTTP. The problem with UDP is that it
is unreliable, documents delivered via the web must be delivered reli-
ably. (This is easy to illustrate - a single packet missing from an image
downloaded from the web makes the image unreadable.)
One possibility is to modify how TCP connections are used. Rather
than setting up - and breaking down - a TCP connection for every web
resource, allow persistent connections where a single TCP connection
stays open and is used to deliver multiple web resources.

16.14 Of what use is an address-resolution protocol? Why is it better to use
such a protocol than to make each host read each packet to determine
that packet’s destination? Does a token-passing network need such a
protocol? Explain your answer.
Answer: An ARP translates general-purpose addresses into hardware
interface numbers so the interface can know which packets are for it.
Software need not get involved. It is more efficient than passing each
packet to the higher layers. Yes, for the same reason.

16.15 What are the advantages and the disadvantages of making the com-
puter network transparent to the user?

116 Chapter 16 Distributed-System Structures

Answer: The advantage is that all files are accessed in the same manner.
The disadvantage is that the operating system becomes more complex.

17C H A P T E RDistributed
File
Systems

Exercises

17.1 What are the benefits of a DFS when compared to a file system in a
centralized system?
Answer: A DFS allows the same type of sharing available on a cen-
tralized system, but the sharing may occur on physically and logically
separate systems. Users across the world are able to share data as if they
were in the same building, allowing a much more flexible computing
environment than would otherwise be available.

17.2 Which of the example DFSs discussed in this chapter would handle a
large, multiclient database application most efficiently? Explain your
answer.
Answer: The Andrew file system can handle a large, multiclient
database as scalability is one of its hallmark features. Andrew is de-
signed to handle up to 5,000 client workstations as well. A database
also needs to run in a secure environment and Andrew uses the Ker-
beros security mechanism for encryption.

17.3 Discuss whether AFS and NFS provide the following: (a) location trans-
parency and (b) location independence.
Answer: NFS provides location transparence since one cannot deter-
mine the server hosting the file from its name. (One could however
view the mount-tables to determine the file server from which the cor-
responding file system is mounted, but the file server is not hardcoded
in the name of the file.) NFS does not provide location independence
since files can not be moved automatically between different file sys-
tems. AFS provides location transparence and location independence.

117

118 Chapter 17 Distributed File Systems

17.4 Under what circumstances would a client prefer a location-transparent
DFS? Under which circumstances would she prefer a location-independent
DFS? Discuss the reasons for these preferences.
Answer: Location-transparent DFS is good enough in systems in which
files are not replicated. Location-independent DFS is necessary when
any replication is done.

17.5 What aspects of a distributed system would you select for a system
running on a totally reliable network?
Answer: Since the system is totally reliable, a stateful approach would
make the most sense. Error recovery would seldom be needed, allowing
the features of a stateful system to be used. If the network is very fast
as well as reliable, caching can be done on the server side. On a slower
network caching on both server and client will speed performance,
as would file location-independence and migration. In addition, RPC-
based service is not needed in the absence of failures, since a key part of
its design is recovery during networking errors. Virtual-circuit systems
are simpler and more appropriate for systems with no communications
failures.

17.6 Consider AFS, which is a stateful distributed file system. What actions
need to be performed to recover from a server crash in order to preserve
the consistency guaranteed by the system?
Answer: A server needs to keep track of what clients are currently
caching a file in order to issue a callback when the file is modified.
When a server goes down, this state is lost. A server would then have
to reconstruct this state typically by contacting all of the clients and
having them report to the server what files are currently being cached
by each client.

17.7 Compare and contrast the techniques of caching disk blocks locally, on
a client system, and remotely, on a server.
Answer: Caching locally can reduce network traffic substantially as
the local cache can possibly handle a significant number of the remote
accesses. This can reduce the amount of network traffic and lessen the
load on the server. However, to maintain consistency, local updates to
disk blocks must be updated on the server using either a write-through
or delayed-write policy. A strategy must also be provided that allows
the client to determine if its cached data is stale and needs to be updated.
Caching locally provides is obviously more complicated than having
a client request all data from the server. But if access patterns indicate
heavy writes to the data, the mechanisms for handling inconsistent
data may increase network traffic and server load.

17.8 AFS is designed to support a large number of clients. Discuss three
techniques used to make AFS a scalable system.
Answer: Three techniques that make AFS a scalable system are:

• Caching: AFS performs caching of files and name translations
thereby limiting the number of operations sent to the server.

• Whole-file caching: when a file is opened, the entire contents of the
file is transported to the client and no further interactions with the

Exercises 119

server is required. (This approach is refined in later versions where
large chunks of a file rather than the entire file is transported in a
single operation.)

• Callbacks: It is the server’s responsibility to revoke outdated
copies of files. Clients can cache files and reuse the cached data
multiple times without making requests to the server.

17.9 Discuss the advantages and disadvantages of performing path-name
translation by having the client ship the entire path to the server re-
questing a translation for the entire path name of the file.
Answer: The advantage is that a single network request is sufficient to
perform the path-name translation. Schemes that perform translations
one component at a time incur more network traffic. However, when
translations are performed one component at a time, the translations of
the parent directories are obtained and cached for future reuse, whereas
if the translation of the entire path is performed, translations for none
of the intermediate elements are available in the cache.

17.10 What are the benefits of mapping objects into virtual memory, as Apollo
Domain does? What are the drawbacks?
Answer: Mapping objects into virtual memory greatly eases the shar-
ing of data between processes. Rather than opening a file, locking access
to it, and reading and writing sections via the I/O system calls, memory-
mapped objects are accessible as “normal” memory, with reads and
writes to locations independent of disk pointers. Locking is much eas-
ier also, since one shared memory location can be used as a locking
variable for semaphore access. Unfortunately, memory mapping adds
complexity to the operating system, especially in a distributed system.

17.11 Describe some of the fundamental differences between AFS and NFS
(see Chapter 11).
Answer: Some of the distinctive differences include:

• AFS has a rich set of features whereas NFS is organized around a
much simpler design.

• NFS allows a workstation to act as either a client, a server, or both.
AFS distinguishes between clients and server and identifies
dedicated servers.

• NFS is stateless meaning a server does not maintain state during
client updates of a file. AFS is stateful between the period of when
a client opens a file, updates it, and closes the file. (NFS does not
even allow the opening and closing of files.)

• Caching is a fundamental feature of AFS allowing client-side
caching with cache consistency. In fact, it is an architectural
principle behind AFS to allow clients to cache entire files.
Consistency is provided by servers when cached files are closed.
The server then invalidates cached copies existing on other clients.
Caching is allowed in NFS as well, but because of its stateless
nature modified data must be committed to the server before
results are received back by the client.

120 Chapter 17 Distributed File Systems

• AFS provides session semantics whereas NFS supports UNIX file
consistency semantics.

17.12 Discuss whether clients in the following systems can obtain inconsistent
or stale data from the file server and, if so, under what scenarios this
could occur.

a. AFS

b. Sprite

c. NFS

Answer: Sprite guarantees that clients never see stale data. When
a file is opened for write-sharing by multiple clients, all caching for
the file is disabled and all operations are sent directly to the server.
This scheme guarantees consistency of data. In AFS, writes to files
are performed on local disks, and when the client closes the files, the
writes are propagated to the server, which then issues callbacks on
the various cached copies. During the time the file is written but not
closed, the other clients could be accessing stale data. Also even after
the file is closed, the other clients might access stale data if they had
performed the open on the file before the updating client had closed
it. It is only at the point of time when the next open is performed
on a caching client that the server is contacted and the most recent
data propagated from the server to the client. NFS uses a more ad-hoc
consistency mechanism. Data is flushed from the clients to servers at
periodic intervals and on file close operations. Also a client caching
the file data checks for inconsistencies also at periodic intervals. Any
updates made and flushed to the server during these intervals are not
seen immediately on a client caching the file data.

18C H A P T E R

Distributed
Coordination

Exercises

18.1 Discuss the advantages and disadvantages of the two methods we
presented for generating globally unique timestamps.
Answer: Globally unique timestamps can be generated using either
a centralized or distributed approach. The centralized approach uses a
single site for generating timestamps. A disadvantage of this approach
is that if this site fails, timestamps can no longer be produced.
Generating timestamps using the distributed approach provides more
of a fail-safe mechanism, however care must be taken to ensure the
logical clocks at each site are synchronized.

18.2 The logical clock timestamp scheme presented in this chapter provides
the following guarantee: If event A happens before event B, then the
timestamp of A is less than the timestamp of B. Note, however, that
one cannot order two events based only on their timestamps. The fact
that an event C has a timestamp that is less than the timestamp of event
D does not necessarily mean that event C happened before event D; C
and D could be concurrent events in the system. Discuss ways in which
the logical clock timestamp scheme could be extended to distinguish
concurrent events from events that can be ordered by the happens-before
relationship.
Answer: Vector clocks could be used to distinguish concurrent events
from events ordered by the happens-before relationship. A vector clock
works as follows. Each process maintains a vector timestamp that com-
prises of a vector of scalar timestamp, where each element reflects the
number of events that have occurred in each of the other processes in
the system. More formally, a process i maintains a vector timestamp ti
such that t j

i is equal to the number of events in process j that have oc-

121

122 Chapter 18 Distributed Coordination

curred before the current event in process i . When a local event occurs
in process i , ti

i is incremented by one to reflect that one more event has
occurred in the process. In addition, any time a message is sent from
a process to another process it communicates the timestamp vector of
the source process to the destination process, which then updates its
local timestamp vector to reflect the newly obtained information. More
formally, when s sends a message to d, s communicates ts along with
the message and d updates td such that for all i �= d, ti

d = max(ti
s , ti

d).

18.3 Your company is building a computer network, and you are asked to
write an algorithm for achieving distributed mutual exclusion. Which
scheme will you use? Explain your choice.
Answer: The options are a (1) centralized, (2) fully-distributed, or
(3) token-passing approach. We reject the centralized approach as the
centralized coordinator becomes a bottleneck. We also reject the token-
passing approach for its difficulty in re-establishing the ring in case of
failure.
We choose the fully-distributed approach for the following reasons:

• Mutual exclusion is obtained.

• Freedom from deadlock is ensured.

• Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering.

• The number of messages per critical-section entry is 2 × (n − 1).
This number is the minimum number of required messages per
critical-section entry when processes act independently and
concurrently.

18.4 Why is deadlock detection much more expensive in a distributed envi-
ronment than it is in a centralized environment?
Answer: The difficulty is that each site must maintain its own local
wait-for graph. However, the lack of a cycle in a local graph does not
ensure freedom from deadlock. Instead, we can only ensure the system
is not deadlocked if the union of all local wait-for graphsis acyclic.

18.5 Your company is building a computer network, and you are asked to
develop a scheme for dealing with the deadlock problem.

a. Would you use a deadlock-detection scheme or a deadlock-
prevention scheme?

b. If you were to use a deadlock-prevention scheme, which one
would you use? Explain your choice.

c. If you were to use a deadlock-detection scheme, which one
would you use? Explain your choice.

Answer:

a. Would you use a deadlock-detection scheme, or a deadlock-
prevention scheme?

Exercises 123

We would choose deadlock prevention as it is systematically
easier to prevent deadlocks than to detect them once they have
occurred.

b. If you were to use a deadlock-prevention scheme, which one
would you use? Explain your choice.
A simple resource-ordering scheme would be used; preventing
deadlocks by requiring processes to acquire resources in order.

c. If you were to use a deadlock-detection scheme which one would
you use? Explain your choice.
If we were to use a deadlock detection algorithm, we would
choose a fully-distributed approach as the centralized approach
provides for a single point of failure.

18.6 Under what circumstances does the wait–die scheme perform better
than the wound–wait scheme for granting resources to concurrently
executing transactions?
Answer: In the wound(–)wait scheme an older process never waits
for a younger process; it instead rolls back the younger process and
preempts its resources. When a younger process requests a resource
held by an older process, it simply waits and there are no rollbacks.
In the wait(–)die scheme, older processes wait for younger processes
without any rollbacks but a younger process gets rolled back if it re-
quests a resource held by an older process. This rollback might occur
multiple times if the resource is being held by the older process for a
long period of time. Repeated rollbacks do not occur in the wound(
–)wait scheme. Therefore, the two schemes perform better under dif-
ferent circumstances depending upon when older processes are more
likely to wait for resources held by younger processes or not.

18.7 Consider the centralized and the fully distributed approaches to dead-
lock detection. Compare the two algorithms in terms of message com-
plexity.
Answer: The centralized algorithm for deadlock detection requires
individual processors or sites to report its local waits-for graph to a
centralized manager. The edges in the waits-for graph are combined
and a cycle detection algorithm is performed in the centralized man-
ager. The cost of this algorithm is the cost of communicating the various
waits-for graph to the centralized server. In the distributed approach,
each site builds its own local waits-for graph and predicts whether
there is a possibility of a cycle based on local observations. If indeed
there is a possibility of a cycle, a message is sent along the various
sites that might constitute a cyclic dependency. Multiple sites that are
potentially involved in the cyclic dependency could initiate this opera-
tion simultaneously. Therefore, the distributed algorithm is sometimes
better than the centralized algorithm and is sometimes worse than the
centralized algorithm in terms of message complexity. It is better than
the centralized algorithm since it does not communicate the entire local
waits-for graph to the centralized server. (Also note that that there could
be performance bottlenecks due to the use of the centralized server in
the centralized algorithm.) However, the distributed algorithm could

124 Chapter 18 Distributed Coordination

incur more messages when multiple sites are simultaneously exploring
the existence of a cyclic dependency.

18.8 Consider the following hierarchical deadlock-detection algorithm, in
which the global wait-for graph is distributed over a number of differ-
ent controllers, which are organized in a tree. Each non-leaf controller
maintains a wait-for graph that contains relevant information from the
graphs of the controllers in the subtree below it. In particular, let SA, SB ,
and SC be controllers such that SC is the lowest common ancestor of SA
and SB (SC must be unique, since we are dealing with a tree). Suppose
that node Ti appears in the local wait-for graph of controllers SA and
SB . Then Ti must also appear in the local wait-for graph of

• Controller SC

• Every controller in the path from SC to SA

• Every controller in the path from SC to SB

In addition, if Ti and Tj appear in the wait-for graph of controller SD
and there exists a path from Ti to Tj in the wait-for graph of one of the
children of SD, then an edge Ti → Tj must be in the wait-for graph of
SD.

Show that, if a cycle exists in any of the wait-for graphs, then the
system is deadlocked.
Answer: A proof of this can be found in the article Distributed deadlock
detection algorithm which appeared in ACM Transactions on Database
Systems, Volume 7 , Issue 2 (June 1982), ages: 187 - 208.

18.9 Derive an election algorithm for bidirectional rings that is more efficient
than the one presented in this chapter. How many messages are needed
for n processes?
Answer: The following algorithm requires O(n log n) messages. Each
node operates in phases and performs:

• If a node is still active, it sends its unique node identifier in both
directions.

• In phase k, the tokens travel a distance of 2k and return back to
their points of origin.

• A token might not make it back to the originating node if it
encounters a node with a lower unique node identifier.

• A node makes it to the next phase only if it receives its tokens back
from the previous round.

The node with the lowest unique node identifies is the only that will
be active after log n phases.

18.10 Consider a setting where processors are not associated with unique
identifiers but the total number of processors is known and the proces-
sors are organized along a bidirectional ring. Is it possible to derive an
election algorithm for such a setting?
Answer: It is impossible to elect a leader in a deterministic manner
when the processors do not contain unique identifiers. Since different

Exercises 125

processors have no distinguishing mark, they are assumed to start in
the same state and transmit and receive the same messages in every
timestep. Hence, there is no way to distinguish the processors even
after an arbitarily large number of timesteps.

18.11 Consider a failure that occurs during 2PC for a transaction. For each
possible failure, explain how 2PC ensures transaction atomicity despite
the failure.
Answer: Possible failures include (1) failure of a participating site, (2)
failure of the coordinator, and (3) failure of the network. We consider
each approach in the following:

• Failure of a Participating Site - When a participating site recovers
from a failure, it must examine its log to determine the fate of those
transactions that were in the midst of execution when the failure
occurred. The system will then accordingly depending upon the
type of log entry when the failure occurred.

• Failure of the Coordinator - If the coordinator fails in the midst of
the execution of the commit protocol for transaction T, then the
participating sites must decide on the fate of T. The participating
sites will then determine to either commit or abort T or wait for the
recovery of the failed coordinator.

• Failure of the Network - When a link fails, all the messages in the
process of being routed through the link do not arrive at their
destination intact. From the viewpoint of the sites connected
throughout that link, the other sites appears to have failed. Thus,
either of the approaches discussed above apply.

18.12 Consider the following failure model for faulty processors. Processors
follow the protocol but might fail at unexpected points in time. When
processors fail, they simply stop functioning and do not continue to
participate in the distributed system. Given such a failure model, design
an algorithm for reaching agreement among a set of processors. Discuss
the conditions under which agreement could be reached.
Answer: Assume that each node the following multicast functionality
which we refer to as basic multicast or b-multicast. b-multicast(v): node
simply iterates through all of the nodes in the system and sends an
unicast message to each node in the system containing v.
Also assume that each node performs the following algorithm in a
synchronous manner assuming that node i starts with the value vi .

• At round 1, the node performs b-multicast(vi).

• In each round, the node gathers the values received since the
previous round, computes the newly received values, and
performs a b-multicast of all the newly received values.

• After round f + 1, if the number of failures is less than f , then
each node has received exactly the same set of values from all of
the other nodes in the system. In particular, this set of values
includes all values from nodes that managed to send its local value
to any of the nodes that do not fail.

126 Chapter 18 Distributed Coordination

The above algorithm works only in a synchronous setting and the
message delays are bounded. It also works only when the messages are
delivered reliably.

19C H A P T E R

Real-time
Systems

Chapter 19 introduces real-time computing systems. The requirements of real-
time systems differ from those of many of the systems we have described in
the previous chapters, largely because real-time systems must produce results
within certain deadlines. In this chapter we provide an overview of real-time
computer systems and describe how real-time operating systems must be con-
structed to meet the stringent timing requirements of these systems.

Exercises

19.1 Identify the following environments as either hard or soft real-time.

a. Thermostat in a household.

b. Control system for a nuclear power plant.

c. Fuel economy system in an automobile.

d. Landing system in a jet airliner.

Answer: Hard real-time scheduling constraints are required for the
nuclear power plant and for the jet airliner. In both settings, a delayed
reaction could have disastrous consequences and therefore the sched-
uler would need to satisfy real-time scheduling requirements. On the
other hand, the thermostat and the fuel economy system can be oper-
ated within the context of a scheduler that provides only soft real-time
constraints. Delayed triggering of these devices would only result in
suboptimal use of resources or a slight increase in discomfort.

19.2 Discuss ways in which the priority inversion problem could be ad-
dressed in a realtime system. Also discuss whether the solutions could
be implemented within the context of a proportional share scheduler.
Answer: The priority inversion problem could be addressed by tem-
porarily changing the priorities of the processes involved. Processes

127

128 Chapter 19 Real-time Systems

that are accessing resources needed by a higher-priority process inherit
the higher priority until they are finished with the resources in ques-
tion. When they are finished, their priority reverts to its original value.
This solution can be easily implemented within a proportional share
scheduler; the shares of the high priority processes are simply trans-
ferred to the lower priority process for the duration when it is accessing
the resources.

19.3 The Linux 2.6 kernel can be built with no virtual memory system.
Explain how this feature may appeal to designers of real-time systems.
Answer: By disabling the virtual memory system, processes are guar-
anteed to have portions of its address space resident in physical mem-
ory. This results in a system that does not suffer from page faults and
therefore does not have to deal with unanticipated costs correspond-
ing to paging the address space. The resulting system is appealing to
designers of real-time systems who prefer to avoid variability in per-
formance.

19.4 Under what circumstances is the rate monotonic scheduling inferior to
earliest deadline first scheduling in meeting the deadlines associated
with processes?
Answer: Consider two processes P1 and P2 where p1 = 50, t1 = 25 and
p2 = 75, t2 = 30. If P1 were assigned a higher priority than P2, then the
following scheduling events happen under rate monotonic scheduling.
P1 is scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled at
t = 50, and P2 is scheduled at t = 75. P2 is not scheduled early enough
to meet its deadline. The earliest deadline schedule performs the fol-
lowing scheduling events: P1 is scheduled at t = 0, P2 is scheduled at
t = 25, P1 is scheduled at t = 55, and so on. This schedule actually
meets the deadlines and therefore earliest deadline first scheduling is
more effective than the rate monotonic scheduler.

19.5 Consider two processes P1 and P2 where p1 = 50, t1 = 25 and p2 = 75,
t2 = 30.

a. Can these two processes be scheduled using rate monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the scheduling of these two processes using earliest
deadline first (EDF) scheduling.

Answer: Consider when P1 is assigned a higher priority than P2 with
the rate monotonic scheduler. P1 is scheduled at t = 0, P2 is scheduled
at t = 25, P1 is scheduled at t = 50, and P2 is scheduled at t = 75. P2 is
not scheduled early enough to meet its deadline. When P1 is assigned
a lower priority than P2, then P1 does not meet its deadline since it will
not be scheduled in time.

19.6 What are the various components of interrupt and dispatch latency?
Answer: The interrupt latency comprises of the time required to save
the state of the current process before invoking the specific interrupt
service handler. It therefore comprises of the following tasks: determine
the interrupt time, perform the context switch, and jump to the appro-

Exercises 129

priate ISR. The dispatch latency corresponds to the time required to
stop one process and start another process. It might typically comprise
of the following tasks: preemption of any process running in the kernel,
release of resources required by the process to be scheduled, and the
context switch cost corresponding to scheduling the new process.

19.7 Explain why interrupt and dispatch latency times must be bounded in
a hard real-time system.
Answer: Interrupt latency is the period of time required to perform
the following tasks: save the currently executing instruction, determine
the type of interupt, save the current process state, and then invoke the
appropriate interrupt service routine. Dispatch latency is the cost asso-
ciated with stopping one process and starting another. Both interrupt
and dispatch latency needs to be minimized in order to ensure that
real-time tasks receive immediate attention. Furthermore, sometimes
interrupts are disabled when kernel data structures are being modified,
so the interrupt does not get serviced immediately. For hard real-time
systems, the time-period for which interrupts are disabled must be
bounded in order to guarantee the desired quality of service.

20C H A P T E R

Multimedia
Systems

Exercises

20.1 Provide examples of multimedia applications that are delivered over
the Internet.
Answer: Examples include: streaming audio and video of current
events as they are taking place, realtime video conferencing, and voice
over IP.

20.2 Distinguish between progressive download and real-time streaming.
Answer: Progressive download is the situation where a media file
is downloaded on demand and stored on the local disk. The user is
able to play the media file as it is being downloaded without having
to wait for the entire file to be accessed. Realtime streaming differs
from progressive downloads in that the media file is simply streamed
to the client and not stored on the client disk. A limited amount of
buffering might be used to tolerate variances in streaming bandwidth,
but otherwise the media file is played and discarded without requiring
storage.

20.3 Which of the following types of real-time streaming applications can
tolerate delay? Which can tolerate jitter?

• Live real-time streaming

• On-demand real-time streaming

Answer: Both delay and jitter are important issues for live real-time
streaming. The user is unlikely to tolerate a large delay or significant
jitter. Delay is not an important issue for on-demand real-time stream-
ing as the stream does not contain live clips. These applications can also
tolerate jitter by buffering a certain amount of data before beginning the
playback. In other words, jitter can be overcome by increasing delay,

131

132 Chapter 20 Multimedia Systems

and since delay is not an important consideration for this application,
the increase in delay is not very critical.

20.4 Discuss what techniques could be used to meet quality of service re-
quirements for multimedia applications in the following components
of a system:

• Process scheduler

• Disk scheduler

• Memory manager

Answer: The process scheduler can use the rate monotonic scheduling
algorithm to guarantee that the processor is utilized for meeting the
quality of service requirements in a timely manner. In this scheme,
processes are modeled to be periodic and require a fixed processing
time every time they are scheduled.
The disk scheduler needs to schedule requests in a timely manner and
also minimize the movement of the disk head in order to minimize
disk seek overheads. One option is to use a technique that combines
the disk SCAN technique with the earliest-deadline-first strategy. Tasks
are processed in the order of deadlines. When a batch of requests have
the same or related deadlines, then the SCAN technique is used to
satisfy the batch of requests.
The memory management needs to ensure that unexpected page faults
do not occur during playback of media files. This can be guaranteed
if the required pages are swapped into physical memory before the
multimedia application is scheduled.

20.5 Explain why the traditional Internet protocols for transmitting data are
not sufficient to provide the quality of service guarantees required for a
multimedia system. Discuss what changes are required to provide the
QoS guarantees.
Answer: Internet protocols such as IP and TCP do not typically reserve
resources during connection setup time at the intermediate routers.
Consequently, during congestion, when the buffers in routers fill up,
some of the packets might be delayed or lost, thereby violating any
quality of service requirements. Congestion losses could be avoided if
the Internet uses ciruit switching and reservation of buffer resources to
ensure that packets are not lost.

20.6 Assume that a digital video file is being displayed at a rate of 30 frames
per second; the resolution of each frame is 640 × 480, and 24 bits are
being used to represent each color. Assuming that no compression is
being used, what is the bandwidth necessary to deliver this file? Next,
assuming that the file has been compressed at a ratio of 200 : 1, what is
the bandwidth necessary to deliver the compressed file?
Answer: he bandwidth required for uncompress data is 30×640×480×
3 bytes per second assuming 640 × 480 frames at a rate of 30 frames per
second. This works out to about 26 MB/s. If the file is compressed by a
ratio of 200 : 1, then the bandwidth requirement drops to 135 KB/s.

Exercises 133

20.7 A multimedia application consists of a set containing 100 images, 10
minutes of video, and 10 minutes of audio. The compressed sizes of the
images, video, and audio are 500 MB, 550 MB, and 8 MB, respectively.
The images were compressed at a ratio of 15 : 1, and the video and
audio were compressed at 200 : 1 and 10 : 1, respectively. What were
the sizes of the images, video, and audio before compression?
Answer: The sizes of the images, video, and audio before compression
are 33.33 MB, 2.75 MB, and 0.8 MBrespectively.

20.8 Assume that we wish to compress a digital video file using MPEG-1
technology. The target bit rate is 1.5 Mbps. If the video is displayed
at a resolution of 352 × 240 at 30 frames per second using 24 bits to
represent each color, what is the necessary compression ratio to achieve
the desired bit rate?
Answer: The bit rate required to support uncompressed video is
352*240*30*3/(1024*1024) MB/s = 7.2509 MB/s. The required compres-
sion ratio is therefore 7.2509*8/1.5:1 = 38:1.

20.9 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75,
and t2 = 30.

a. Can these two processes be scheduled using rate monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

Answer: If P1 were assigned a higher priority than P2, then the fol-
lowing scheduling events happen under rate monotonic scheduling.
P1 is scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled
at t = 50, and P2 is scheduled at t = 75. P2 is not scheduled early
enough to meet its deadline. If P1 were assigned a lower priority than
P2, then the following scheduling events happen under rate monotonic
scheduling. P2 is scheduled at t = 0, P1 is scheduled at t = 30, which is
not scheduled early enough to meet its deadline. The earliest deadline
schedule performs the following scheduling events: P1 is scheduled at
t = 0, P2 is scheduled at t = 25, P1 is scheduled at t = 55, and so on.

20.10 The following table contains a number of requests with their associated
deadlines and cylinders. Requests with deadlines occurring within 100
milliseconds of each other will be batched. The disk head is currently
at cylinder 94 and is moving toward cylinder 95. If SCAN-EDF disk
scheduling is used, how are the requests batched together, and what is
the order of requests within each batch?

134 Chapter 20 Multimedia Systems

request deadline cylinder

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

57

300

250

88

85

110

299

300

120

212

77

95

25

28

100

90

50

77

12

2

Answer: Batch 1 (R1, R4, R5), batch 2 (R6, R9), and batch 3 (R2, R3, R7,
R8, R10). Within batch 1, requests are scheduled as: (R5, R1, R4) Within
batch 2, requests are scheduled as: (R9, R6) Within batch 3, requests are
scheduled as: (R2, R8, R7, R3, R10)

20.11 Repeat the preceding question, but this time batch requests that have
deadlines occurring within 75 milliseconds of each other.
Answer: The batches are as follows: Batch 1: (R1), Batch 2: (R4, R5, R6,
R9), Batch 3: (R10), Batch 4: (R2, R3, R7, R8)

20.12 Contrast unicasting, multicasting, and broadcasting as techniques for
delivering content across a computer network.
Answer: Unicasting is the situation where a server sends data to only
one client. If the content is required by multiple clients and if unicast
was the only mechanism available, then the server would have to send
multiple unicast streams to reach the different clients. Broadcasting
allows a server to deliver the content to all of the clients irrespective of
whether they wish to receive the content or not. This technique could
result in unnecessary work for those clients that do not need the content
but still get the broadcast data. Multicasting is a reasonable compromise
where the server can send data to some subset of the clients and requires
support from the network router to intelligently duplicate the streams
at those points in the network where the destination clients are attached
to different sub-networks.

20.13 Describe why HTTP is often insufficient for delivering streaming media.
Answer: HTTP is a stateless protocol where the server does not maintain
any information regarding the clients. This is sufficient for accessing
static data, but for streaming media where the clients might require
the ability to pause the stream and resume it at a later time, a stateless
protocol is insufficient. The server would not be able to keep track of
the current position within the stream for a client and therefore would
not be able to resume the streaming at a later point in time.

Exercises 135

20.14 What operating principle is used by the CineBlitz system in performing
admission control for requests for media files?
Answer: Cineblitz differentiates clients into two classes: those that
require realtime service and those do not. The resources are allocated
such that a fraction of it is reserved for realtime clients and the rest are
allocated to non-realtime clients. Furthermore, when a client requires
realtime service enters the system, it is admitted into the system only
if there are sufficient resources to service the new client. In particular,
when a client makes a request, the system estimates the service time for
the request and the request is admitted only if the sum of the estimated
service times for all admitted requests does not exceed the duration of
service cycle T .

21C H A P T E R

The Linux
System

Linux is a UNIX-like system that has gained popularity in recent years. In this
chapter, we look at the history and development of Linux, and cover the user
and programmer interfaces that Linux presents interfaces that owe a great deal
to the UNIX tradition. We also discuss the internal methods by which Linux
implements these interfaces. However, since Linux has been designed to run
as many standard UNIX applications as possible, it has much in common with
existing UNIX implementations. We do not duplicate the basic description of
UNIX given in the previous chapter.

Linux is a rapidly evolving operating system. This chapter describes specif-
ically the Linux 2.0 kernel, released in June 1996.

Exercises

21.1 What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?
Answer: There are many advantages to writing an operating sys-
tem in a high-level language such as C. First, by programming at a
higher abstraction, the number of programming errors is reduced as
the code becomes more compact. Second, many high-level languages
provide advanced features such as bounds-checking that further mini-
mize programming errors and security loopholes. Also, high-level pro-
gramming languages have powerful programming environments that
include tools such as debuggers and performance profilers that could
be handy for developing code. The disadvantage with using a high-
level language is that the programmer is distanced from the underly-
ing machine which could cause a few problems. First, there could be
a performance overhead introduced by the compiler and runtime sys-
tem used for the high-level language. Second, certain operations and
instructions that are available at the machine-level might not be acces-

137

138 Chapter 21 The Linux System

sible from the language level, thereby limiting some of the functionality
available to the programmer.

21.2 In what circumstances is the system-call sequence fork() exec()most
appropriate? When is vfork() preferable?
Answer: vfork() is a special case of clone and is used to create new
processes without copying the page tables of the parent process. vfork()
differs from fork in that the parent is suspended until the child makes
a call to exec() or exit(). The child shares all memory with its parent,
including the stack, until the child makes the call. This implies con-
straints on the program that it should be able to make progress without
requiring the parent process to execute and is not suitable for certain
programs where the parent and child processes interact before the child
performs an exec. For such programs, the system-call sequence fork()
exec() more appropriate.

21.3 What socket type should be used to implement an intercomputer file-
transfer program? What type should be used for a program that peri-
odically tests to see whether another computer is up on the network?
Explain your answer.
Answer: Sockets of type SOCK STREAM use the TCP protocol for
communicating data. The TCP protocol is appropriate for implement-
ing an intercomputer file-transfer program since it provides a reliable,
flow-controlled, and congestion-friendly, communication channel. If
data packets corresponding to a file transfer are lost, then they are re-
transmitted. Furthermore, the file transfer does not overrun buffer re-
sources at the receiver and adapts to the available bandwidth along the
channel. Sockets of type SOCK DGRAM use the UDP protocol for com-
municating data. The UDP protocol is more appropriate for checking
whether another computer is up on the network. Since a connection-
oriented communication channel is not required and since there might
not be any active entities on the other side to establish a communication
channel with, the UDP protocol is more appropriate.

21.4 Linux runs on a variety of hardware platforms. What steps must the
Linux developers take to ensure that the system is portable to different
processors and memory-management architectures, and to minimize
the amount of architecture-specific kernel code?
Answer: The organization of architecture-dependent and architecture-
independent code in the Linux kernel is designed to satisfy two design
goals: to keep as much code as
possible common between architectures and to provide a clean way of
defining
architecture-specific properties and code. The solution must of course
be consistent with the overriding aims of code maintainability and
performance.
There are different levels of architecture dependence in the kernel, and
different techniques are appropriate in each case to comply with the
design requirements. These levels include:

CPU word size and endianness These are issues that affect the porta-
bility of all software written in C, but especially so for an oper-

Exercises 139

ating system, where the size and alignment of data must be
carefully arranged.

CPU process architecture Linux relies on many forms of hardware
support for its process and memory management. Different pro-
cessors have their own mechanisms for changing between pro-
tection domains (e.g., entering kernel mode from user mode),
rescheduling processes, managing virtual memory, and handling
incoming interrupts.

The Linux kernel source code is organized so as to allow as much of the
kernel as possible to be independent of the details of these architecture-
specific features. To this end, the kernel keeps not one but two separate
subdirectory hierarchies for each hardware architecture. One contains
the code that is appropriate only for that architecture, including such
functionality as the system call interface and low-level interrupt man-
agement code.
The second architecture-specific directory tree contains C header files
that are descriptive of the architecture. These header files contain type
definitions and macros designed to hide the differences between archi-
tectures. They provide standard types for obtaining words of a given
length, macro constants defining such things as the architecture word
size or page size, and function macros to perform common tasks such
as converting a word to a given byte-order or doing standard manipu-
lations to a page table entry.
Given these two architecture-specific subdirectory trees, a large por-
tion of the Linux kernel can be made portable between architectures.
An attention to detail is required: when a 32 bit integer is required, the
programmer must use the explicit int32 type rather than assume than
an int is a given size, for example. However, as long as the architecture-
specific header files are used, then most process and page-table manipu-
lation can be performed using common code between the architectures.
Code that definitely cannot be shared is kept safely detached from the
main common kernel code.

21.5 What are the advantages and disadvantages of making only some of the
symbols defined inside a kernel accessible to a loadable kernel module?
Answer: The advantage of making only some of the symbols defined
inside a kernel accessible to a loadable kernel module is that there are
a fixed set of entry points made available to the kernel module. This
ensures that loadable modules cannot invoke arbitrary code within the
kernel and thereby interfere with the kernel’s execution. By restricting
the set of entry points, the kernel is guaranteed that the interactions
with the module take place at controlled points where certain invariants
hold. The disadvantage with making only a small set of the symbols
defined accessible to the kernel module is the loss in flexibility and
might sometimes lead to a performance issue as some of the details of
the kernel are hidden from the module.

21.6 What are the primary goals of the conflict resolution mechanism used
by the Linux kernel for loading kernel modules?

140 Chapter 21 The Linux System

Answer: Conflict resolution prevents different modules from having
conflicting access to hardware resources. In particular, when multiple
drivers are trying to access the same hardware, it resolves the resulting
conflict.

21.7 Discuss how the clone() operation supported by Linux is used to sup-
port both processes and threads.
Answer: In Linux, threads are implemented within the kernel by a
clone mechanism that creates a new process within the same virtual
address space as the parent process. Unlike some kernel-based thread
packages, the Linux kernel does not make any distinction between
threads and processes: a thread is simply a process that did not create
a new virtual address space when it was initialized.
The main advantage of implementing threads in the kernel rather than
in a user-mode library are that:

• kernel threaded systems can take advantage of multiple processors
if they are available; and

• if one thread blocks in a kernel service routine (for example, a
system call or page fault), other threads are still able to run.

21.8 Would one classify Linux threads as user-level threads or as kernel-level
threads? Support your answer with the appropriate arguments.
Answer: Linux threads are kernel-level threads. The threads are visible
to the kernel and are independently scheduleable. User-level threads,
on the other hand, are not visible to the kernel and are instead manip-
ulated by user-level schedulers. In addition, the threads used in the
Linux kernel are used to support both the thread abstraction and the
process abstraction. A new process is created by simply associated a
newly created kernel thread with a distinct address space, whereas a
new thread is created by simply creating a new kernel thread with the
same address space. This further indicates that the thread abstaction is
intimately tied into the kernel.

21.9 What are the extra costs incurred by the creation and scheduling of a
process, as compared to the cost of a cloned thread?
Answer: In Linux, creation of a thread involves only the creation
of some very simple data structures to describe the new thread. Space
must be reserved for the new thread’s execution context its saved regis-
ters, its kernel stack page and dynamic information such as its security
profile and signal state but no new virtual address space is created.
Creating this new virtual address space is the most expensive part
of the creation of a new process. The entire page table of the parent
process must be copied, with each page being examined so that copy-
on-write semantics can be achieved and so that reference counts to
physical pages can be updated. The parent process’s virtual memory
is also affected by the process creation: any private read/write pages
owned by the parent must be marked read-only so that copy-on-write
can happen (copy-on-write relies on a page fault being generated when
a write to the page occurs).

Exercises 141

Scheduling of threads and processes also differs in this respect. The
decision algorithm performed when deciding what process to run next
is the same regardless of whether the process is a fully independent
process or just a thread, but the action of context-switching to a separate
process is much more costly than switching to a thread. A process
requires that the CPU’s virtual memory control registers be updated to
point to the new virtual address space’s page tables.
In both cases—creation of a process or context switching between pro-
cesses the extra virtual memory operations have a significant cost. On
many CPUs, changing page tables or swapping between page tables is
not cheap: all or part of the virtual address translation look-aside buffers
in the CPU must be purged when the page tables are changed. These
costs are not incurred when creating or scheduling between threads.

21.10 The Linux scheduler implements soft real-time scheduling. What fea-
tures are missing that are necessary for some real-time programming
tasks? How might they be added to the kernel?
Answer: Linux’s “soft” real-time scheduling provides ordering guar-
antees concerning the priorities of runnable processes: real-time pro-
cesses will always be given a higher priority by the scheduler than
normal time-sharing processes, and a real-time process will never be
interrupted by another process with a lower real-time priority.
However, the Linux kernel does not support “hard” real-time func-
tionality. That is, when a process is executing a kernel service routine,
that routine will always execute to completion unless it yields control
back to the scheduler either explicitly or implicitly (by waiting for some
asynchronous event). There is no support for preemptive scheduling of
kernel-mode processes. As a result, any kernel system call that runs for
a significant amount of time without rescheduling will block execution
of any real-time processes.
Many real-time applications require such hard real-time scheduling. In
particular, they often require guaranteed worst-case response times to
external events. To achieve these guarantees, and to give user-mode real
time processes a true higher priority than kernel-mode lower-priority
processes, it is necessary to find a way to avoid having to wait for low-
priority kernel calls to complete before scheduling a real-time process.
For example, if a device driver generates an interrupt that wakes up
a high-priority real-time process, then the kernel needs to be able to
schedule that process as soon as possible, even if some other process is
already executing in kernel mode.
Such preemptive rescheduling of kernel-mode routines comes at a cost.
If the kernel cannot rely on non-preemption to ensure atomic updates
of shared data structures, then reads of or updates to those structures
must be protected by some other, finer-granularity locking mechanism.
This fine-grained locking of kernel resources is the main requirement
for provision of tight scheduling guarantees.
Many other kernel features could be added to support real-time pro-
gramming. Deadline-based scheduling could be achieved by making
modifications to the scheduler. Prioritization of IO operations could be
implemented in the block-device IO request layer.

142 Chapter 21 The Linux System

21.11 Under what circumstances would an user process request an operation
that results in the allocation of a demand-zero memory region?
Answer: Uninitialized data can be backed by demand-zero memory
regions in a process’s virtual address space. In addition, newly malloced
space can also be backed by a demand-zero memory region.

21.12 What scenarios would cause a page of memory to be mapped into an
user program’s address space with the copy-on-write attribute enabled?
Answer: When a process performs a fork operation, a new process is
created based on the original binary but with a new address space that is
a clone of the original address space. One possibility is to not to create a
new address space but instead share the address space between the old
process and the newly created process. The pages of the address space
are mapped with the copy-on-write attribute enabled. Then, when one
of the processes performs an update on the shared address space, a
new copy is made and the processes no longer share the same page of
the address space.

21.13 In Linux, shared libraries perform many operations central to the op-
erating system. What is the advantage of keeping this functionality out
of the kernel? Are there any drawbacks? Explain your answer.
Answer: There are a number of reasons for keeping functionality in
shared libraries rather than in the kernel itself. These include:

Reliability. Kernel-mode programming is inherently higher risk than
user-mode programming. If the kernel is coded correctly so that
protection between processes is enforced, then an occurrence of
a bug in a user-mode library is likely to affect only the currently
executing process, whereas a similar bug in the kernel could
conceivably bring down the entire operating system.

Performance. Keeping as much functionality as possible in user-
mode shared libraries helps performance in two ways. First of
all, it reduces physical memory consumption: kernel memory is
non-pageable, so every kernel function is permanently resident
in physical memory, but a library function can be paged in from
disk on demand and does not need to be physically present all of
the time. Although the library function may be resident in many
processes at once, page sharing by the virtual memory system
means that at most once it is only loaded into physical memory.
Second, calling a function in a loaded library is a very fast oper-
ation, but calling a kernel function through a kernel system ser-
vice call is much more expensive. Entering the kernel involves
changing the CPU protection domain, and once in the kernel,
all of the arguments supplied by the process must be very care-
fully checked for correctness: the kernel cannot afford to make
any assumptions about the validity of the arguments passed in,
whereas a library function might reasonably do so. Both of these
factors make calling a kernel function much slower than calling
the same function in a library.

Exercises 143

Manageability. Many different shared libraries can be loaded by an
application. If new functionality is required in a running system,
shared libraries to provide that functionality can be installed
without interrupting any already-running processes. Similarly,
existing shared libraries can generally be upgraded without re-
quiring any system down time. Unprivileged users can create
shared libraries to be run by their own programs. All of these
attributes make shared libraries generally easier to manage than
kernel code.

There are, however, a few disadvantages to having code in a shared
library. There are obvious examples of code which is completely un-
suitable for implementation in a library, including low-level function-
ality such as device drivers or file-systems. In general, services shared
around the entire system are better implemented in the kernel if they are
performance-critical, since the alternative—running the shared service
in a separate process and communicating with it through interprocess
communication—requires two context switches for every service re-
quested by a process. In some cases, it may be appropriate to prototype
a service in user-mode but implement the final version as a kernel
routine.
Security is also an issue. A shared library runs with the privileges of
the process calling the library. It cannot directly access any resources
inaccessible to the calling process, and the calling process has full ac-
cess to all of the data structures maintained by the shared library. If the
service being provided requires any privileges outside of a normal pro-
cess’s, or if the data managed by the library needs to be protected from
normal user processes, then libraries are inappropriate and a separate
server process (if performance permits) or a kernel implementation is
required.

21.14 The directory structure of a Linux operating system could comprise of
files corresponding to different file systems, including the Linux /proc
file system. What are the implications that arise from having to support
different filesystem types on the structure of the Linux kernel?
Answer: There are many implications to having to support different
filesystem types within the Linux kernel. For one thing, the filesystem
interface should be independent of the data layouts and data structures
used within the filesystem to store file data. For another thing, it might
have to provide interfaces to filesystems where the filedata is not static
data and is not even stored on the disk; instead, the filedata could be
computed every time an operation is invoked to access it as is the case
with the /proc filesystem. These call for a fairly general virtual interface
to sit on top of the different filesystems.

21.15 In what ways does the Linux setuid feature differ from the setuid feature
in standard Unix?
Answer: Linux augments the standard setuid feature in two ways.
First, it allows a program to drop and reacquire its effective uid repeat-
edly. In order to minimize the amount of time that a program executes
with all of its privileges, a program might drop to a lower privilege

144 Chapter 21 The Linux System

level and thereby prevent the exploitation of security loopholes at the
lower-level. However, when it needs to perform privileged operations,
it can switch to its effective uid. Second, Linux allows a process to
take on only a subset of the rights of the effective uid. For instance, an
user can use a process that serves files without having control over the
process in terms of being able to kill or suspend the process.

21.16 The Linux source code is freely and widely available over the Internet
or from CD-Rom vendors. What three implications does this availability
have on the security of the Linux system?
Answer: The open availability of an operating system’s source code
has both positive and negative impacts on security, and it is probably
a mistake to say that it is definitely a good thing or a bad thing.
Linux’s source code is open to scrutiny by both the good guys and the
bad guys. In its favor, this has resulted in the code being inspected by
a large number of people who are concerned about security and who
have eliminated any vulnerabilities they have found.
On the other hand is the “security through obscurity” argument, which
states that attackers’ jobs are made easier if they have access to the
source code of the system they are trying to penetrate. By denying
attackers information about a system, the hope is that it will be harder
for those attackers to find and exploit any security weaknesses that
may be present.
In other words, open source code implies both that security weaknesses
can be found and fixed faster by the Linux community, increasing the
security of the system; and that attackers can more easily find any
weaknesses that do remain in Linux.
There are other implications for source code availability, however. One
is that if a weakness in Linux is found and exploited, then a fix for
that problem can be created and distributed very quickly. (Typically,
security problems in Linux tend to have fixes available to the public
within 24 hours of their discovery.) Another is that if security is a major
concern to particular users, then it is possible for those users to review
the source code to satisfy themselves of its level of security or to make
any changes that they wish to add new security measures.

22C H A P T E R

Windows XP

The Microsoft Windows XP operating system is a 32/64-bit preemptive mul-
titasking operating system for AMD K6/K7, Intel IA32/IA64 and later micro-
processors. The successor to Windows NT/2000, Windows XP is also intended
to replace the MS-DOS operating system. Key goals for the system are secu-
rity, reliability, ease of use, Windows and POSIX application compatibility, high
performance, extensibility, portability and international support. This chapter
discusses the key goals for Windows XP, the layered architecture of the system
that makes it so easy to use, the file system, networks, and the programming in-
terface. Windows XP serves as an excellent case study as an example operating
system.

Exercises

22.1 Under what circumstances would one use the deferred procedure calls
facility in Windows XP?
Answer: Deferred procedure calls are used to postpone interrupt
processing in situations where the processing of device interrupts can
be broken into a critical portion that is used to unblock the device and a
non-critical portion that can be scheduled later at a lower priority. The
non-critical section of code is scheduled for later execution by queuing
a deferred procedure call.

22.2 What is a handle, and how does a process obtain a handle?
Answer: User-mode code can access kernel-mode objects by using a
reference value called a handle. An object handle is thus an identifier
(unique to a process) that allows access and manipulation of a system
resource. When a user-mode process wants to use an object it calls the
object manager’s open method. A reference to the object is inserted in
the process’s object table and a handle is returned. Processes can obtain
handles by creating an object, opening an existing object, receiving a

145

146 Chapter 22 Windows XP

duplicated handle from another process, or by inheriting a handle from
a parent process.

22.3 Describe the management scheme of the virtual memory manager. How
does the VM manager improve performance?
Answer: The VM Manager uses a page based management scheme.
Pages of data allocated to a process that are not in physical memory
are stored in either paging files on disk or mapped to a regular file on
a local or remote file system. To improve performance of this scheme, a
privileged process is allowed to lock selected pages in physical memory
preventing those pages from being paged out. Furthermore, since when
a page is used, adjacent pages will likely be used in the near future,
adjacent pages are prefetched to reduce the total number of page faults.

22.4 Describe an useful application of the no-access page facility provided
in Windows XP?
Answer: When a process accesses a no-access page, an exception is
raised. This feature is used to check whether a faulty program accesses
beyond the end of an array. The array needs to be allocated in a manner
such that it appears at the end of a page, so that buffer overruns would
cause exceptions.

22.5 The IA64 processors contain registers that can be used to address a
64-bit address space. However, Windows XPlimits the address space of
user programs to 8-TB, which corresponds to 43 bits’ worth. Why was
this decision made?
Answer: Each page table entry is 64 bits wide and each page is 8 KB on
the IA64. Consequently, each pagecan contain 1024 page table entries.
The virtual memory system therefore requires three levels of page tables
to translate a virtual address to a physical address in order to address a
8-TB virtual address space. (The first level page table is indexed using
the first 10 bits of the virtual address, the second level page table using
the next 10 bits, and the third level page table is indexed using the next
10 bits, with the remaining 13 bits used to index into the page.) If the
virtual address space is bigger, more levels would be required in the
page table organization, and therefore more memory references would
be required to translate a virtual address to the corresponding physical
address during a TLB fault. The decision regarding the 43-bit address
space represents a trade-off between the size of the virtual address
space and the cost of performing an address translation.

22.6 Describe the three techniques used for communicating data in a lo-
cal procedure call. What different settings are most conducive for the
application of the different message passing techniques?
Answer: Data is communicated using one of the following three
facilities: 1) messages are simply copied from one process to the other,
2) a shared memory segment is created and messages simply contain
a pointer into the shared memory segment, thereby avoiding copies
between processes, 3) a process directly writes into the other process’s
virtual space.

22.7 What manages cache in Windows XP? How is cache managed?

Exercises 147

Answer: In contrast to other operating systems where caching is done
by the file system, Windows XP provides a centralized cache manager
which works closely with the VM manager to provide caching services
for all components under control of the I/O manager. The size of the
cache changes dynamically depending upon the free memory available
in the system. The cache manager maps files into the upper half of the
system cache address space. This cache is divided into blocks which
can each hold a memory-mapped region of a file.

22.8 What is the purpose of the Windows16 execution environment? What
limitations are imposed on the programs executing inside this environ-
ment? What are the protection guarantees provided between different
applications executing inside the Windows16 environment? What are
the protection guarantees provided between an application executing
inside the Windows16 environment and a 32-bit application?
Answer: Windows 16 execution environment provides a virtual envi-
ronment for executing 16-bit applications that use the Window 3.1 ker-
nel interface. The interface is supported in software using stub routines
that call the appropriate Win32 API subroutines by converting 16-bit
addresses into 32-bit addresses. This allows the system to run legacy
applications. The environment can multitask with other processes on
Windows XP. It can contain multiple Windows16 applications, but all
applications share the same address space and the same input queue.
Also one can execute only one Windows16 application at a given point
in time. A Windows16 application can therefore crash other Windows16
applications by corrupting the address space but they cannot corrupt
the address spaces of Win32 applications. Multiple Windows16 execu-
tion environments could also coexist.

22.9 Describe two user-mode processes that Windows XP provides to enable
it to run programs developed for other operating systems.
Answer: Environmental subsystems are user-mode processes layered
over the native executable services to enable Windows XP to run pro-
grams developed for other operating systems. (1) A Win32 application
called the virtual DOS machine (VDM) is provided as a user-mode
process to run MSDOS applications. The VDM can execute or emulate
Intel 486 instructions and also provides routines to emulate MSDOS
BIOS services and provides virtual drivers for screen, keyboard, and
communication ports. (2) Windows-on-windows (WOW32) provides
kernel and stub routines for Windows 3.1 functions. The stub routines
call the appropriate Win32 subroutines, converting the 16-bit addresses
into 32-bit addresses.

22.10 How does the NTFS directory structure differ from the directory struc-
ture used in Unix operating systems?
Answer: The NTFS namespace is organized as a hierarchy of direc-
tories where each directory uses a B+ tree data structure to store an
index of the filenames in that directory. The index root of a directory
contains the top level of the B+ tree. Each entry in the directory contains
the name and file reference of the file as well as the update timestamp
and file size. The Unix operating system simply stores a table of en-

148 Chapter 22 Windows XP

tries mapping names to i-node numbers in a directory file. Lookups
and updates require a linear scan of the directory structure in Unix
systems.

22.11 What is a process, and how is it managed in Windows XP?
Answer: A process is an executing instance of an application contain-
ing one or more threads. Threads are the units of code that are scheduled
by the operating system. A process is started when some other process
calls the CreateProcess routine, which loads any dynamic link libraries
used by the process, resulting in a primary thread. Additional threads
can also be created. Each thread is created with its own stack with a
wrapper function providing thread synchronization.

22.12 What is the fiber abstraction provided by Windows XP? How does it
differ from the threads abstraction?
Answer: A fiber is a sequential stream of execution within a process.
A process can have multiple fibers in it, but unlike threads, only one
fiber at a time is permitted to execute. The fiber mechanism is used to
support legacy applications written for a fiber-execution model.

23C H A P T E RInfluential
Operating
Systems

Now that you understand the fundamental concepts of operating systems (CPU
scheduling, memory management, processes, and so on), we are in a position
to examine how these concepts have been applied in several older and highly
influential operating systems. Some of them (such as the XDS-940 and the THE
system) were one-of-a-kind systems; others (such as OS/360) are widely used.
The order of presentation highlights the similarities and differences of the
systems; it is not strictly chronological or ordered by importance. The serious
student of operating systems should be familiar with all these systems.

Exercises

23.1 Discuss what considerations were taken into account by the computer
operator in deciding in what sequences programs would be run on
early computer systems that were manually operated.
Answer: Jobs with similar needs are batched together and run together
to reduce set-up time. For instance, jobs that require the same compiler
because they were written in the same language are scheduled together
so that the compiler is loaded only once and used on both programs.

23.2 What were the various optimizations used to minimize the discrepancy
between CPU and I/O speeds on early computer systems?
Answer: An optimization used to minimize the discrepancy between
CPU and I/O speeds is spooling. Spooling overlaps the I/O of one job
with the computation of other jobs. The spooler for instance could be
reading the input of one job while printing the output of a different job
or while executing another job.

23.3 Consider the page replacement algorithm used by Atlas. In what ways
is it different from the clock algorithm discussed in an earlier chapter?
Answer: The page replacement algorithm used in Atlas is very dif-
ferent from the clock algorithm discussed in earlier chapters. The Atlas

149

150 Chapter 23 Influential Operating Systems

system keeps track of whether a page was accessed in each period of
1024 instructions for the last 32 periods. Let t1 be the time since the most
recent reference to a page, while t2 is the interval between the last two
references of a page. The paging system then discards any page that has
t1 > t2 + 1. If it cannot find any such page, it discards the page with the
largest t2 - t1. This algorithm assumes that programs access memory in
loops and the idea is to retain pages even if it has not been accessed for
a long time if there has been a history of accessing the page regularly
albeit at long intervals. The clock algorithm, on the other hand, is an
approximate version of the least recently used algorithm and therefore
discards the least recently used page without taking into account that
some of the pages might be infrequently but repeatedly accessed.

23.4 Consider the multilevel feedback queue used by CTSS and Multics.
Consider a program that consistently uses 7 time units everytime it
is scheduled before it performs an I/O operation and blocks. How
many time units are allocated to this program when it is scheduled for
execution at different points of time?
Answer: Assume that the process is initially scheduled for one time
unit. Since the process does not finish by the end of the time quantum,
it is moved to a lower level queue and its time quantum is raised to
two time units. This process continues till it is moved to a level 4 queue
with a time quantum of 8 time units. In certain multilevel systems,
when the process executes next and does not use its full time quantum,
the process might be moved back to a level 3 queue.

23.5 What are the implications of supporting BSD functionality in user mode
servers within the Mach operating system?
Answer: Mach operating system supports the BSD functionality in
user mode servers. When the user process makes a BSD call, it traps
into kernel mode and the kernel copies the arguments to the user level
server. A context switch is then made and the user level performs the
requested operation and computes the results which are then copied
back to the kernel space. Another context switch takes place to the
original process which is in kernel mode and the process eventually
transitions from kernel mode to user mode along with the results of
the BSD call. Therefore, in order to perform the BSD call, there are
two kernel crossings and two process switches thereby resulting in a
large overhead. This is significantly higher than the cost if the BSD
functionality is supported within the kernel.

