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Preface 

"Damn the torpedoes! 
Full speed ahead." 

-Admiral Farragut 

Programming is the art of expressing solutions to problems so that a computer 
can execute those solutions. Much of the effort in programming is spent fmding 
and refining solutions. Often, a problem is only fully understood through the 
process of programming a solution for it. 

This book is for someone who has never programmed before but is willing 
to work hard to learn. It helps you understand the principles and acquire the 
practical skills of programming using the C++ programming language. My aim 
is for you to gain sufficient knowledge and experience to perform simple useful 
programming tasks using the best up-to-date techniques. How long will that 
take? As part of a first-year university course, you can work through this book in 
a semester (assuming that you have a workload of four courses of average diffi
culty). If you work by yourself, don't expect to spend less time than that (maybe 
15 hours a week for 14 weeks). 

Three months may seem a long time, but there's a lot to learn and you'll be 
writing your first simple programs after about an hour. Also, all learning is grad
ual: each chapter introduces new useful concepts and illustrates them with exam
ples inspired by real-world uses. Your ability to express ideas in code - getting a 
computer to do what you want it to do - gradually and steadily increases as you 
go along. I never say, .. Learn a month's worth of theory and then see if you can 
use it." 

xxiii 
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Why would you want to program? Our civilization runs on software. With· 
out understanding software you are reduced to believing in "magic" and will be 
locked out of many of the most interesting, profitable, and socially useful techni
cal fields of work. When I talk about programming, I think of the whole spec
trum of computer programs from personal computer applications with G Uls 
(graphical user interfaces), through engineering calculations and embedded sys
tems control applications (such as digital cameras, cars, and cell phones), to text 
manipulation applications as found in many humanities and business applica
tions. Like mathematics, programming- when done well- is a valuable intellec
tual exercise that sharpens our ability to think. However, thanks to feedback 
from the computer, programming is more concrete than most forms of math, and 
therefore accessible to more people. It is a way to reach out and change the world 

- ideally for the better. Finally, programming can be great fun. 
Why C++? You can't learn to program without a progranmung language, 

and C++ directly supports the key concepts and techniques used in real-world 
software. C++ is one of the most widely used programming languages, found in 
an unsurpassed range of application areas. You fmd C++ applications every· 
where from the bottom of the oceans to the surface of Mars. C++ is precisely 
and comprehensively defmed by a nonproprietary international standard. Qyal· 
ity and/or free implementations are available on every kind of computer. Most of 
the programming concepts that you will learn using C++ can be used directly in 
other languages, such as C, C#, Fortran, andjava. Fmally, I simply like C++ as 
a language for writing elegant and efficient code. 

This is not the easiest book on beginning programming; it is not meant to 
be. I just aim for it to be the easiest book from which you can learn the basics of 
real-world programming. That's quite an ambitious goal because much modern 
software relies on techniques considered advanced just a few years ago. 

My fundamental assumption is that you want to write programs for the use 
of others, and to do so responsibly, providing a decent level of system quality: 
that is, I assume that you want to achieve a level of professionalism. Consc· 
quently, I chose the topics for this book to cover what is needed to get started 
with real-world programming. not just what is easy to teach and learn. If you 
need a technique to get basic work done right, I describe it. demonstrate concepts 
and language facilities needed to support the technique, provide exercises for it, 
and expect you to work on those exercises. If you just want to understand toy 
programs, you can get along with far less than I present. On the other hand, I 
won't waste your time with material of marginal practical importance. If an idea 
is explained here, it's because you'll almost certainly need it. 

If your desire is to use the work of others without understanding how things 
arc done and witl10ut adding significantly to the code yourself, tills book is not 
for you. If so, please consider whether you would be better served by another 
book and another language. If that is approximately your view of programming, 
please also consider from where you got that view and whether it in fact is adc· 
quate for your needs. People often underestimate the complexity of program-



P R E FAC E 

ming as well as its value. I would hate for you to acquire a dislike for program
ming because of a mismatch between what you need and the pa11 of the software 
reality I describe. There are many parts of the "information technology" world 
that do not require knowledge of programming. This book is aimed to serve 
those who do want to write or understand nontrivial programs. 

Because of its structure and practical aims, this book can also be used as a 
second book on programming for someone who already knows a bit of C++ or 
for someone who programs in another language and wants to learn C++. If you 
fit into one of those categories, I refrain from guessing how long it will take you 
to read this book, but I do encourage you to do many of the exercises. This will 
help you to counteract the common problem of writing programs in older. famil
iar styles rather than adoptirlg newer techniques where these are more appropri
ate. If you have learned C++ in one of the more traditional ways, you'll find 
something surprising and useful before you reach Chapter 7. Unless your name 
is Stroustrup, what I discuss here is not "your father's C++." 

Programming is learned by writirlg programs. In this, programming is similar 
to other endeavors with a practical component. You cannot learn to swim, to play 
a musical instrument, or to drive a car just from reading a book - you must prac
tice. Nor can you learn to program without reading and writirlg lots of code. This 
book focuses on code examples closely tied to explanatory text and diagrams. You 
need those to understand the ideals, concepts, and principles of programming and 
to master the language constructs used to express them. That's essential, but by it
self, it will not give you the practical skills of programming. For that, you need to 
do the exercises and get used to the tools for writirlg, compiling, and running pro
grams. You need to make your own mistakes and learn to correct them. There is 
no substitute for writing code. Besides, that's where the fun is! 

On the other hand, there is more to programming - much more - than fol· 
lowing a few rules and reading the manual. This book is emphatically not fo
cused on "the syntax of C++." Understanding the fundamental ideals, principles, 
and techniques is the essence of a good progranuner. Only well-designed code 
has a chance of becoming part of a correct, reliable, and maintainable system. 
Also, "the fundamentals" are what last: they will still be essential after today's 
languages and tools have evolved or been replaced. 

What about computer science, software engineering, information technol· 
ogy, etc.? Is that all programming? Of course not! Programming is one of the 
fundamental topics that underlie everything in computer-related fields, and it has 
a natural place in a balanced course of computer science. I provide brief intro
ductions to key concepts and techniques of algorithms, data structures, user in
terfaces, data processing, and software engineering. However, this book is not a 
substitute for a thorough and balanced study of those topics. 

Code can be beautiful as well as useful. This book is written to help you see 
that, to understand what it means for code to be beautiful, and to help you to 
master the principles and acquire the practical skills to create such code. Good 
luck with programming! 

XXV 



xxvi P R E FACE 

A note to students 
Of the 1 000+ first-year students we have taught so far using drafts of this book at 
Texas A&M University, about 60% had programmed before and about 40% had 
never seen a line of code in their lives. Most succeeded, so you can do it, too. 

You don't have to read this book as part of a course. I assume that the book 
will be widely used for self-study. However, whether you work your way through 
as part of a course or independently, try to work with others. Programming has 
an - unfair - reputation as a lonely activity. Most people work better and learn 
faster when they are part of a group with a common aim. Learning together and 
discussing problems with friends is not cheating! It is the most efficient - as well 
as most pleasant - way of making progress. If nothing else, working with friends 
forces you to articulate your ideas, which is just about the most efficient way of 
testing your understanding and making sure you remember. You don't actually 
have to personally discover the answer to every obscure language and program
ming environment problem. However, please don't cheat yourself by not doing 
the drills and a fair number of exercises (even if no teacher forces you to do 
them). Remember: programming is (among other things) a practical skill that 
you need to practice to master. If you don't write code (do several exercises for 
each chapter), reading this book will be a pointless theoretical exercise. 

Most students - especially thoughtful good students - face times when they 
wonder whether their hard work is worthwhile. When (not iJ) this happens to you, 
take a break, reread t11e preface, and look at Chapter 1 ("Computers, People, and 
Programming") and Chapter 22 ("Ideals and History"). There, I try to articulate 
what I find exciting about programming and why I consider it a crucial tool for 
making a positive contribution to the world. If you wonder about my teaching phi
losophy and general approach, have a look at Chapter 0 ("Notes to the Reader"). 

You might find the weight of this book worrying, but it should reassure you 
that part of the reason for the heft is that I prefer to repeat an explanation or add an 
example rat11er than have you search for t11e one and only explanation. The other 
major part of the reason is that the second half of the book is reference material and 
"additional material" presented for you to explore only if you are interested in 
more information about a specific area of programming, such as embedded sys· 
tems programming, text analysis, or numerical computation. 

And please don't be too impatient. Learning any major new and valuable 
skill takes time and is worth it. 

A note to teachers 
No. This is not a traditional Computer Science 101 course. It is a book about 
how to construct working software. As such, it leaves out much of what a com· 
puter science student is traditionally exposed to (Turing completeness, state rna· 
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chines, discrete math, Chomsky grammars, etc.). Even hardware is ignored on 
the assumption that students have used computers in various ways since kinder
garten. This book does not even try to mention most important CS topics. It is 
about programming (or more generally about how to develop software), and as 
such it goes into more detail about fewer topics than many traditional courses. It 
tries to do just one thing well, and computer science is not a one-course topic. If 
this book/course is used as part of a computer science, computer engineering, 
electrical engineering (many of our first students were EE majors). information 
science, or whatever program, I expect it to be taught alongside other courses as 
part of a well-rounded introduction. 

Please read Chapter 0 ("Notes to the Reader") for an explanation of my 
teaching philosophy, general approach, etc. Please try to convey those ideas to 
your students along the way. 

Support 
The book's support website, www.stroustrup.com/Programming, contains a va
riety of materials supporting the teaching and learning of programming using 
tlus book. The material is likely to be improved with time, but for starters, you 
can find: 

Slides for lectures based on the book 

An instructor's guide 

Header flies and implementations of libraries used in the book 

Code for examples in the book 

Solutions to selected exercises 

Potentially useful links 
Errata 

Suggestions for improvements are always welcome. 
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ing from our experiences, improving the course and the book. My use of "we" in 
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Notes to the Reader 

"When the terrain disagrees with the map, 
trust the terrain." 

-Swiss army proverb 

T
his chapter is a grab bag of information; it aims to give you 

an idea of what to expect from the rest of the book. Please 

skim through it and read what you find interesting. A teacher 

will fmd most parts immediately useful. If you are reading this 

book without the benefit of a good teacher, please don't try to 

read and understand everything in this chapter; just look at "The 

structure of this book" and the first part of the "A philosophy of 

teaching and learning" sections. You may want to return and 

reread this chapter once you feel comfortable writing and execut

ing small programs. 
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0.1 The structure of this book 
0.1.1 General approach 
0.1.2 Drills, exercises, etc. 
0.1.3 What comes after this bookJ 

0.2 A philosophy of teaching and 
learning 
0.2.1 The order of topics 
0.2.2 Programming and programming 

language 
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0.3 Programming and computer science 

0.4 Creativity and problem solving 

0.5 Request for feedback 

0.6 References 

0.7 Biographies 

0.1 The structure of this book 
lbis book consists of four parts and a collection of appendices: 

Part I, "'llu: Basics," presents the fundamental concepts and techniques of 
programming together with the C++ language and library facilities 
needed to get started writing code. lbis includes the type system, arith
metic operations, control structures, error handling, and the design, im
plementation, and use of functions and user-defined types. 

Part II, "Input and Output," describes how to get numeric and text data 
from the keyboard and from ftles, and how to produce corresponding 
output to the screen and to ftles. Then, it shows how to present numeric 
data, text, and geometric shapes as graphical output, and how to get 
input into a program from a graphical user interface (G Ul). 

Part Ill, "Data and Algoritlmu," focuses on the C++ standard library's con
tainers and algorithms framework (the STL, standard template library). 
It shows how containers (such as vector, list, and map) are implemented 
(using pointers, arrays, dynamic memory, exceptions, and templates) 
and used. It also demonstrates the design and use of standard library al
gorithms (such as sort, find, and inner_product). 
Part Jv, "Broadening the View," offers a perspective on programming 
through a discussion of ideals and history, through examples (such as 
matrix computation, text manipulation, testing, and embedded systems 
programming), and through a brief description of the C language. 

Appendices provide useful information that doesn't fit into a tutorial presen
tation, such as surveys of C++ language and standard library facilities, 
and descriptions of how to get started with an integrated development en
vironment (IDE) and a graphical user interface (G Ul) library. 



0.1 THE STRUCTURE OF THIS BOOK 

Unfortunately. the world of programming doesn't really fall into four cleanly sep
arated parts. l11ereforc, the "parts'' of this book provide only a coarse classifica
tion of topics. We consider it a useful classification (obviously, or we wouldn't 
have used it). but reality has a way of escaping neat classifications. For example, 
we need to usc input operations far sooner than we can give a thorough explana
tion of C++ standard 110 streams (input/output streams). W here the set of topics 
needed to present an idea conflicts with the overall classification, we explain the 
minimum needed for a good presentation, rather than just referring to the com
plete explanation elsewhere. Rigid classifications work much better for manuals 
than for tutorials. 

The order of topics is determined by programming techniques. rather than 
programming language features; see §0.2. For a presentation organized around 
language features, see Appendix A. 
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To ease review and to help you if you miss a key point during a first reading fj 
where you have yet to discover which kind of information is crucial, we place 
three kinds of "alert markers'' in the margin: 

Blue: concepts and techniques (this paragraph is an example of that) 

Green: advice 

Red: warning 

0.1.1 General approach 
In this book, we address you directly. That is simpler and clearer than the con
ventional "professional'' indirect form of address, as found in most scientific pa
pers. By "you" we mean ''you, the reader," and by "we" we refer either to 
''ourselves. the author and teachers," or to you and us working together through 
a problem, as we might have done had we been in the same room. 

This book is designed to be read chapter by chapter from the beginning to I 1 
tl1e end. Often, you '11 want to go back to look at something a second or a third U 
time. In fact, that's the only sensible approach, as you'll always dash past some 
details that you don't yet see the point in. In such cases, you'll eventually go back 
again. However, despite the index and the cross-references. this is not a book that 
you can open on any page and start reading with any expectation of success. 
Each section and each chapter assume understanding of what came before. 

Each chapter is a reasonably self-contained unit, meant to be read in "one sit
ting" (logically, if not always feasible on a student's tight schedule). That's one 
major criterion for separating the text into chapters. Other criteria include that a 
chapter is a suitable unit for drills and exercises and that each chapter presents 
some specific concept, idea, or technique. This plurality of criteria has left a few 
chapters uncomfortably long, so please don't take "in one sitting'' too literally. In 
particular, once you have thought about the review questions. done the drill, and 
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worked on a few exercises, you'll often find that you have to go back to reread a 
few sections and that several days have gone by. We have clustered the chapters 
into "parts" focused on a major topic. such as input/output. These parts make 
good units of review. 

Common praise for a textbook is "It answered all my questions just as I 
thought of them!" That's an ideal for minor teclmical questions, and early read
ers have observed the phenomenon with this book. However, that cannot be the 
whole ideal. We raise questions that a novice would probably not think of. We 
aim to ask and answer questions that you need to consider to write quality soft
ware for the use of others. Learning to ask the right (often hard) questions is an 
essential part of learning to think as a programmer. Asking only the easy and ob
vious questions would make you feel good, but it wouldn't help make you a pro
grammer. 

We try to respect your intelligence and to be considerate about your tin1e. In 
our presentation, we aim for professionalism rather than cuteness, and we'd 
rather understate a point than hype it. We try not to exaggerate the importance 
of a progranlming technique or a language feature, but please don't underesti
mate a simple statement like "This is often useful." If we quietly emphasize tl1at 
something is important, we mean that you'll sooner or later waste days if you 
don't master it. Our use of humor is more linllted than we would have preferred. 
but experience shows that people's ideas of what is fmmy differ dramatically and 
that a failed attempt at humor can be confusing. 

We do not pretend tl1at our ideas or the tools offered are perfect. No tool, li
brary, language, or technique is "the solution" to all of the many challenges fac
ing a programmer. At best, it can help you to develop and express your solution. 
We try hard to avoid "white lies"; that is, we refrain from oversin1plified explana
tions that are clear and easy to understand, but not true in the context of real lan
guages and real problems. On the other hand. this book is not a reference; for 
more precise and complete descriptions of C++. see Bjame Stroustrup, 77U' C++ 
Programmu1g La11guage, Special Edition (Addison-Wesley, 2000) , and the ISO C++ 
standard. 

0.1 .2 Dril ls, exercises, etc. 

Programming is not just an intellectual activity, so writing programs is necessary 
to master progranlming skills. We provide two levels of programming practice: 

Drills: A drill is a very simple exercise devised to develop practical, al
most mechanical skills. A drill usually consists of a sequence of modifica
tions of a single program. You should do every drill. A drill is not asking 
for deep understanding, cleverness, or initiative. We consider the drills 
part of the basic fabric of the book. If you haven't done the drills, you 
have not ''done" the book. 
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Exercises: Some exercises are trivial and others are very hard, but most 
arc intended to leave some scope for initiative and imagination. If you 
are serious, you'll do quite a few exercises. At least do enough to know 
which are difficult for you. Then do a few more of those. l11at's how 
you 'll learn the most. The exercises are meant to be manageable without 
exceptional cleverness, rather than to be tricky puzzles. However, we 
hope that we have provided exercises that are hard enough to challenge 
anybody and enough exercises to exhaust even the best student's avail
able time. We do not expect you to do them all, but feel free to try. 

In addition, we recommend that you (every student) take part in a small project 
(and more if time allows for it) . A project is intended to produce a complete useful 
program. Ideally, a project is done by a small group of people (e.g., three people) 
working together for about a month while working through the chapters in Part 
III. Most people find the projects the most fun and what ties everything together. 

Some people like to put the book aside and try some examples before read
ing to the end of a chapter; others prefer to read ahead to the end before trying to 
get code to run. To support readers with the former preference, we provide sim
ple suggestions for practical work labeled "Try this:" at natural breaks in the 
text. A Try this is generally in the nature of a drill focused narrowly on the topic 
that precedes it. If you pass a Try this without trying - maybe because you are 
not near a computer or you fmd the text riveting - do return to it when you do 
the chapter drill; a Try this either complements the chapter drill or is a part of it. 

At the end of each chapter you'll find a set of review questions . They are in
tended to point you to the key ideas explained in the chapter. One way to look at 
the review questions is as a complement to the exercises : the exercises focus on the 
practical aspects of progranlffiing, whereas the review questions try to help you ar
ticulate the ideas and concepts. In that, they resemble good interview questions. 

The "Terms" section at the end of each chapter presents the basic vocabulary 
of programming and of C++. If you want to understand what people say about 
programming topics and to articulate your own ideas, you should know what 
each means. 

Learning involves repetition. Our ideal is to make every important point at 
least twice and to reinforce it with exercises . 

0.1 .3 What comes after this book? 

5 

At the end of this book, will you be an expert at progranlffiing and at C++? Of • , 
course not! When done well, programming is a subtle, deep, and highly skilled U 
art building on a variety of technical skills. You should no more expect to be an 
expert at programming in four months than you should expect to be an expert in 
biology, in math, in a natural language (such as Chinese, English, or Danish), or 
at playing the violin in four months - or in half a year, or a year. What you 
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should hope for, and what you can expect if you approach this book seriously, is 
to have a really good start that allows you to write relatively simple useful pro
grams, to be able to read more complex programs, and to have a good concep
tual and practical background for further work. 

The best follow-up to this initial course is to work on a real project develop
ing code to be used by someone else. Mter that, or (even better) in parallel with a 
real project, read either a professional-level general textbook (such as Stroustrup, 
The C++ Programming Language) , a more specialized book relating to the needs of 
your project (such as Q5 for GUI, or ACE for distributed programming) , or a 
textbook focusing on a particular aspect of C++ (such as Koenig and Moo, Accel
erated C++; Sutter's Exceptional C++; or Gamma et al., Design Patterns) . For com
plete references, see §0.6 or the Bibliography section at the back of the book. 

Eventually, you should learn another programming language. We don't con
sider it possible to be a professional in the realm of software - even if you are not 
primarily a programmer - without knowing more than one language. 

0.2 A philosophy of teaching and learning 
What are we trying to help you learn? And how are we approaching the process 
of teaching? We try to present the minimal concepts, techniques, and tools for 
you to do effective practical programs, including 

Program organization 

Debugging and testing 

Class design 

Computation 

Function and algorithm design 

Graphics (two-dimensional only) 

Graphical user interfaces (G Uls) 

• Text manipulation 

Regular expression matching 

Ftles and stream input and output (1/0) 

Memory management 

Scientifidnumerical/engineering calculations 

Design and programming ideals 
• The C++ standard library 

Software development strategies 

C-language progranml.ing tedmiques 
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Working our way through these topics , we cover the programming techniques 
called procedural progranuning (as with the C programming language), data ab
straction, object-oriented programming, and generic programming. The main 
topic of this book is Jnvgramming, that is, the ideals, techniques, and tools of ex
pressing ideas in code. The C++ programming language is our main tool, so we 
describe many of C++'s facilities in some detail. But please remember that C++ 
is just a tool, rather than the main topic of this book. This is "programming using 
C++,'' not "C++ with a bit of programming theory." 

Each topic we address serves at least two purposes : it presents a technique, 
concept, or principle and also a practical language or library feature. For exam
ple, we use the interface to a two-dimensional graphics system to illustrate the usc 
of classes and inheritance. This allows us to be economical with space (and your 
time) and also to emphasize that programming is more than simply slinging code 
together to get a result as quickly as possible. The C++ standard library is a 
major source of such .. double duty" examples - many even do triple duty. For 
example, we introduce the standard library vector, use it to illustrate widely use
ful design techniques, and show many of the programming techniques used to 
implement it. One of our aims is to show you how major library facilities are im
plemented and how they map to hardware. We insist that craftsmen must under
stand their tools, not just consider them .. magical." 

Some topics will be of greater interest to some programmers than to others. 
However, we encourage you not to prejudge your needs (how would you know 
what you 'll need in the future?) and at least look at every chapter. If you read this 
book as part of a course, your teacher will guide your selection. 
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We characterize our approach as "depth-first." It is also .. concrete-first" and fJ 
"concept-based." First, we quickly (well, relatively quickly, Chapters 1-11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we 
present a lot of tools and techniques in minimal detail. We focus on simple con-
crete code exan1ples because people grasp the concrete faster than the abstract. 
That's simply the way most humans learn. At this initial stage, you should not 
expect to understand every little detail. In particular, you'll find that trying some-
thing slightly different from what just worked can have "mysterious" effects. Do 
try, though! And please do the drills and exercises we provide. Just remember 
that early on you just don't have the concepts and skills to accurately estimate 
what's simple and what's complicated; expect surprises and learn from them. 

We move fast in this initial phase - we want to get you to the point where • 1 

you can write interesting programs as fast as possible. Someone will argue, .. We U 
must move slowly and carefully; we must walk before we can run!" But have you 
ever watched a baby learning to walk? Babies really do run by themselves before 
tl1ey learn the fmcr skills of slow, controlled walking. Similarly, you will dash 
ahead, occasionally stumbling, to get a feel of progranuning before slowing down 
to gain the necessary finer control and understanding. You must run before you 
can walk ! 
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It is essential that you don't get stuck in an attempt to learn "everything" 
about some language detail or technique. For example, you could memorize all of 
C++'s built·in types and all the rules for their use. Of course you could, and 
doing so might make you feel knowledgeable. However, it would not make you a 
programmer. Skipping details will get you "burned" occasionally for lack of 
knowledge, but it is the fastest way to gain the perspective needed to write good 
programs. Note that our approach is essentially the one used by children learning 
their native language and also the most effective approach used to teach foreign 
languages. We encourage you to seek help from teachers, friends, colleagues, in
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as
sured that nothing in these early chapters is fundamentally difficult. However, 
much will be unfamiliar and might therefore feel difficult at first. 

Later, we build on the initial skills to broaden your base of knowledge and 
skills. We use examples and exercises to solidify your understanding, and to pro
vide a conceptual base for programming. 

We place a heavy emphasis on ideals and reasons. You need ideals to guide 
you when you look for practical solutions - to know when a solution is good and 
principled. You need to understand the reasons behind those ideals to under
stand why they should be your ideals, why aiming for them will help you and the 
users of your code. Nobody should be satisfied with "because that's the way it is" 
as an explanation. More importantly, an understanding of ideals and reasons al
lows you to generalize from what you know to new situations and to combine 
ideas and tools in novel ways to address new problems. Knowing "why" is an es
sential part of acquiring programming skills. Conversely, just memorizing lots of 
poorly understood rules and language facilities is limiting, a source of errors, and 
a massive waste of time. We consider your time precious and try not to waste it. 

Many C++ language-technical details are banished to appendices and manu
als, where you can look tl1em up when needed. We assume that you have the ini
tiative to search out information when needed. Use the index and the table of 
contents. Don't forget the online help facilities of your compiler, and tl1e web. Re
member, though, to consider every web resource highly suspect until you have 
reason to believe better of it. Many an authoritative-looking website is put up by 
a programming novice or someone with something to sell. Others arc simply out
dated. We provide a collection of links and information on our support website: 
www.stroustrup.com/Programming. 

Please don't be too impatient for "realistic'' examples. Our ideal example is 
the shortest and simplest code that directly illustrates a language facility, a con
cept, or a technique. Most real-world examples are far messier than ours, yet do 
not consist of more than a combination of what we demonstrate. Successful com· 
mercia! programs with hundreds of thousands of lines of code are based on tech
niques that we illustrate in a dozen 50-line programs. The fastest way to 
understand real-world code is through a good understanding of the fundamentals. 



0 . 2  A P H i lOSOPHY OF TEAC H I N G  AND l EARN ING  

On the other hand, we do not use "cute examples involving cuddly animals" 
to illustrate our points. We assume that you aim to write real programs to be 
used by real people, so every example that is not presented as language-technical 
is taken from a real-world use. Our basic tone is that of professionals addressing 
(future) professionals. 

0.2.1 The order of topics 

l11ere are many ways to teach people how to program. Clearly, we don't sub
scribe to the popular "the way I learned to program is the best way to learn" the-
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ories. To ease learning, we early on present topics that would have been 
considered advanced only a few years ago. Our ideal is for the topics we present f) 
to be driven by problems you meet as you learn to program, to flow smoothly 
from topic to topic as you increase your understanding and practical skills. The 
major flow of this book is more like a story than a dictionary or a hierarchical 
order. 

It is impossible to learn all the principles, techniques, and language facilities 
needed to write a program at once. Consequently, we have to choose a subset of 
principles, techniques, and features to start with. More generally, a textbook or a 
course must lead students through a series of subsets. We consider it our respon
sibility to select topics and to provide emphasis. We can't just present everything, 
so we must choose; what we leave out is at least as important as what we leave in 
- at each stage of the journey. 

For contrast, it may be useful for you to see a list of (severely abbreviated) 
characterizations of approaches that we decided not to take: 

"C first": l11is approach to learning C++ is wasteful of students' time 
and leads to poor programming practices by forcing students to ap· 
proach problems with fewer facilities, techniques, and libraries than nec
essary. C++ provides stronger type checking than C, a standard library 
with better support for novices, and exceptions for error handling. 

&ttom-up: This approach distracts from learning good and effective pro
gramming practices. By forcing students to solve problems with insuffi
cient support from the language and libraries, it promotes poor and 
wasteful programming practices. 

"ijjou present Jomething, you must present it folly ": This approach implies a 
bottom-up approach (by drilling deeper and deeper into every topic 
touched) . It bores novices with technical details they have no interest in 
and quite likely will not need for years to come. Once you can program, 
you can look up technical details in a manual. Manuals are good at that, 
whereas they are awful for initial learning of concepts. 



10 CHAPTER  0 • NOTES  TO THE R E A D E R  

70p-duum: This approach, working from first principles toward details, 
tends to distract readers from the practical aspects of programming and 
force them to concentrate on high-level concepts before they have any 
chance of appreciating their importance. For example, you simply can't 
appreciate proper software development principles before you have 
learned how easy it is to make a mistake in a program and how hard it 
can be to correct it. 

"AbJtradjirst": Focusing on general principles and protecting the student 
from nasty real-world constraints can lead to a disdain for real-world 
problems, languages, tools, and hardware constraints. Often, this ap· 
proach is supported by "teaching languages" that cannot be used later 
and (deliberately) insulate students from hardware and system concerns. 

Sojlware engineering principleJ jirJt: This approach and the abstract-first ap· 
proach tend to share the problems of the top-down approach: without 
concrete examples and practical experience, you simply cannot appreci
ate the value of abstraction and proper software development practices. 

"Object-uriented.from day one": Object-oriented programming is one of the 
best ways of organizing code and programming efforts, but it is not the 
only effective way. In particular, we feel that a grounding in the basics of 
types and algoritlunic code is a prerequisite for appreciation of the design 
of classes and class hierarchies. We do use user-defined types (what some 
people would call "objects") from day one, but we don't show how to de
sign a class until Chapter 6 and don't show a class hierarchy until Chap· 
ter 12. 

"Just believe in magic": This approach relies on demonstrations of power· 
ful tools and techniques without introducing the novice to the underly
ing techniques and facilities. This leaves the student guessing - and 
usually guessing wrong - about why things are the way they are, what it 
costs to use them, and where they can be reasonably applied. This can 
lead to overrigid following of familiar patterns of work and become a 
barrier to further learning. 

Naturally, we do not claim that these other approaches are never useful. In fact, 
we use several of these for specific subtopics where their strengths can be appre· 
ciated. However, as general approaches to learning programming aimed at real
world use, we reject them and apply our alternative: concrete-first and depth·first 
with an emphasis on concepts and techniques. 

0.2.2 Programming and programming language 

We teach programming first and treat our chosen programming language as sec
ondary, as a tool. Our general approach can be used with any general·purpose 
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programming language. Our primary aim is to help you learn general concepts, 
principles, and techniques. However, those cannot be appreciated in isolation. 
For example, details of syntax, the kinds of ideas that can be directly expressed, 
and tool support differ from programming language to programming language. 
However, many of the fundamental techniques for producing bug·free code, such 
as writing logically simple code (Chapters 5 and 6), establishing invariants 
(§9.4.3) , and separating interfaces from implementation details (§9.7 and 
§14.1-2) , vary little from programming language to programming language. 

Programming and design techniques must be learned using a programming 
language. Design, code organization, and debugging are not skills you can ac
quire in the abstract. You need to write code in some programming language and 
gain practical experience with that. lbis implies that you must learn the basics of 
a programming language. We say "the basics" because the days when you could 
learn all of a major industrial language in a few weeks are gone for good. The 
parts of C++ we present were chosen as the subset that most directly supports 
the production of good code. Also, we present C++ features that you can't avoid 
encountering either because they are necessary for logical completeness or are 
common in the C++ community. 

0.2.3 Portability 

11  

It is  common to write C++ to run on a variety of machines. Major C++ applica- •\ 
tions run on machines we haven't ever heard of! We consider portability and the use U 
of a variety of machine architectures and operating systems most important. Essen-
tially every example in this book is not only ISO Standard C++, but also portable. 
Unless specifically stated, the code we present should work on every C++ imple
mentation and has been tested on several machines and operating systems. 

The details of how to compile, link, and run a C++ program differ from system 
to system. It would be tedious to mention the details of every system and every 
compiler each time we need to refer to an implementation issue. In Appendix E, we 
give the most basic information about getting started using V.sual Studio and 
Microsoft C++ on a Wmdows machine. 

If you have trouble with one of the popular, but rather elaborate, IDEs (inte· 
grated development environments) , we suggest you try working from the com
mand line; it's surprisingly simple. For example, here is the full set of commands 
needed to compile, link, and execute a simple program consisting of two source 
ftles, my_file1 .cpp and my_file2.cpp, using the GNU C++ compiler, g++, on a 
Unix or Linux system: 

g++ -o my_program my_file1 .cpp my_file2.cpp 
my_program 

Yes, that really is all it takes. 
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0.3 Programming and computer science 
Is programming all that there is to computer science? Of course not! The only 
reason we raise this question is that people have been known to be confused 
about this. We touch upon major topics from computer science, such as algo
rithms and data structures, but our aim is to teach programming: the design and 
implementation of programs. That is both more and less than most accepted no
tions of computer science: 

More, because programming involves many technical skills that are not 
usually considered part of any science 

LeSJ, because we do not systematically present the foundation for the 
parts of computer science we use 

The aim of this book is to be part of a course in computer science (if becoming a 
computer scientist is your aim), to be the foundation for the first of many courses 
in software construction and maintenance (if your aim is to become a program
mer or a software engineer) , and in general to be part of a greater whole. 

We rely on computer science throughout and we emphasize principles, but 
we teach programming as a practical skill based on theory and experience, rather 
than as a science. 

0.4 Creativity and problem solving 
The primary aim of this book is to help you to express your ideas in code, not to 
teach you how to get those ideas. Along the way, we give many examples of how 
we can address a problem, usually through analysis of a problem followed by 
gradual refinement of a solution. We consider programming itself a form of prob
lem solving: only through complete understanding of a problem and its solution 
can you express a correct program for it, and only through constructing and test
ing a program can you be certain that your understanding is complete. Thus, 
programming is inherently part of an effort to gain understanding. However, we 
aim to demonstrate this through examples, rather than through "preaching" or 
presentation of detailed prescriptions for problem solving. 

0.5 Request for feedback 
We don't think that the perfect textbook can exist; the needs of individuals differ 
too much for that. However, we'd like to make this book and its supporting ma
terials as good as we can make them. For that, we need feedback; a good text
book cannot be written in isolation from its readers. Please send us reports on 
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errors, typos, unclear text, missing explanations, etc. We'd also appreciate sug· 
gestions for better exercises, better examples, and topics to add, topics to delete, 
etc. Constructive comments will help future readers and we'll post errata on our 
support website: www.stroustrup.com/Programming. 
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0.7 Biographies 
You might reasonably ask, "Who are these guys who want to teach me how to 
program?" So here is some biographical infonnation. I, Bjarne Stroustrup, wrote 
this book, and together with Lawrence "Pete" Petersen, I designed and taught the 
university-level beginner's (first-year) course that was developed concurrently 
with the book, using drafts of the book. 

Bjarne Stroustrup 
I'm the designer and original implementer of the 
C++ programming language. I have used the lan
guage, and many other programming languages, 
for a wide variety of programming tasks over the 
last 30 years or so. I just love elegant and efficient 
code used in challenging applications, such as 
robot control, graphics, games, text analysis, and 
networking. I have taught design, programming. 
and C++ to people of essentially all abilities and 
interests. I'm a founding member of the ISO stan
dards committee for C++ where I serve as the 

chair of the working group for language evolution. 
This is my first introductory book. My other books, such as The C++ Pro

grammi11g umguage and 'flu· Dt•sign mul Evolution cf C++, were written for experi
enced programmers. 

I was born into a blue-collar (working-class) family in Arhus, Denmark, and 
got my master's degree in mathematics with computer science in my hometown 
university. My Ph.D. in computer science is from Cambridge University, Eng
land. I worked for AT&T for about 25 years, first in the famous Computer Sci· 
ence Research Center of Bell Labs - where Unix, C, C++. and so much else 
were invented - and later in AT&T Labs-Research. 

I'm a member of the U.S. National Academy of Engineering. a Fellow of the 
ACM, an IEEE .Fellow, a Bell Laboratories Fellow, and an AT&T Fellow. As the 
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first computer scientist ever, I received the 2005 William Procter Prize for Scien· 
tiftc Achievement from Sigma Xi (the scientific research society) . 

I do have a life outside work. I'm married and have two children, one a med· 
ical doctor and one a Ph.D. student. I read a lot (including history, science fiction, 
crime, and current affairs) and like most kinds of music (including classical, rock, 
blues, and country) . Good food with friends is an essential part of life, and I 
enjoy visiting interesting places and people, all over the world. To be able to 
enjoy the good food, I run. 

For more information, see my home pages : www.research.att.com/- bs and 
www.cs.tamu.edu/people/faculty/bs . In particular, there you can fmd out how to 
pronounce my nan1e. 

Lawrence "Pete" Petersen 
In late 2006, Pete introduced himself as follows : "I 
am a teacher. For almost 20 years, I have taught 
programming languages at Texas A&M. I have 
been selected by students for Teaching Excellence 
Awards five times and in 1996 received the Distin· 
guished leaching Award from the Alumni Associ
ation for the College of Engineering. I am a 
Fellow of the Wakonse Program for Teacl1ing Ex
cellence and a Fellow of the Academy for Educa
tor Development. 

As the son of an army officer, I was raised on 
the move. After completing a degree in philosophy at the University of Washing
ton, I served in the army for 22 years as a Field Artillery Officer and as a Research 
Analyst for Operational Testing. I taught at the Field Artillery Officer's Advanced 
Course at Fort Sill, Oklalloma, from 1971 to 1973. In 1979 I helped organize a 
Test Officer's Training Course and taught it as lead instructor at nine different lo
cations across the United States from 1978 to 1981 and from 1985 to 1989. 

In 1991 I formed a small software company that produced management soft
ware for university departments until 1999. My interests are in teaching, design
ing, and programming software that real people can use. I completed master's 
degrees in industrial engineering at Georgia Tech and in education curriculum 
and instruction at Texas A&M. I also completed a master's program in micro
computers from NTS. My Ph.D. is in information and operations management 
from Texas A&M. 

My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and 
entertain; and we spend as much time as we can with our sons and their fanlilies, 
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas. 
and jordan." 

Sadly, Pete died of lung cancer in 2007. Without him, the course would never 
have succeeded. 
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Postscript 
Most chapters provide a short "postscript" trying to give some perspective on the 
information presented in the chapter. We do that in the realization that the infor
mation can be - and often is - daunting and will only be fully comprehended 
after doing exercises, reading further chapters (which apply the ideas of the chap
ter) , and a later review. Don't panic. Relax; this is natural and expected. You 
won't become an expert in a day, but you can become a reasonably competent 
programmer as you work your way through the book. On the way, you'll en
counter much information, many examples, and many techniques that lots of 
programmers have found stimulating and fun. 



Computers, Peop le, and 
Programm i ng 

"Specialization is for insects." 

-R. A. Heinlein 

I
n this chapter, we present some of the things that we think 

make programming important, interesting, and fun. We also 

present a few fundamental ideas and ideals. We hope to debunk 

a couple of popular myths about programming and program

mers. This is a chapter to skim for now and to return to later 

when you are struggling with some programming problem and 

wondering if it's all worth it. 
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1.4 Computer science 

1.5 Computers are everywhere 
1 .5.1 Screens and no screens 
1.5.2 Shipping 
1.5.3 Telecommunications 
1.5.4 Medicine 
1.5.5 Information 
1 .5.6 A vertical view 
1 .5.7 So whatl 

1 .6 Ideals for programmers 

1 . 1 Introduction 
Like most learning, learning how to program is a chicken and egg problem: We 
want to get started, but we also want to know why what we are about to learn 
matters. We want to learn a practical skill, but also make sure it is not just a pass· 
ing fad. We want to know that we are not going to waste our time, but don't 
want to be bored by still more hype and moralizing. For now, just read as much 
of this chapter as seems interesting and come back later when you feel the need 
to refresh your memory of why the technical details matter outside the class
room. 

This chapter is a personal statement of what we find interesting and impor
tant about programming. It explains what motivates us to keep going in this field 
after decades. This is a chapter to read to get an idea of possible ultimate goals 
and an idea of what kind of person a programmer might be. A beginner's teclmi
cal book inevitably contains much pretty basic stuff. In this chapter, we lift our 
eyes from the technical details and consider the big picture: Why is programming 
a worthwhile activity? What is the role of programming in our civilization? 
Where can a programmer make contributions to be proud of? Where does pro
gramming fit into the greater world of software development, deployment, and 
maintenance? When people talk about "computer science," "software engineer
ing," "information technology," etc., where does programming fit into the pic
ture? What does a programmer do? What skills does a good programmer have? 

To a student, the most urgent reason for understanding an idea, a technique, 
or a chapter may be to pass a test with a good grade - but there has to be more 
to learning than that! To someone working in the software industry, the most ur
gent reason for understanding an idea, a technique, or a chapter may be to fmd 
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something that can help with the current project and that will not annoy the boss 
who controls the next paycheck, promotions, and firings - but there has to be 
more to learning than that! We work best when we feel that our work in some 
small way makes the world a better place for people to live in. For tasks that we 
perform over a period of years (the "things" that professions and careers are 
made of) , ideals and more abstract ideas are crucial. 
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Our civilization runs on software. Improving software and fmding new uses ·� 
for software arc two of the ways an individual can help improve the lives of  U 
many. Progranuning plays an essential role in that. 

1 .2 Software 
Good software is invisible. You can't see it, feel it, weigh it, or knock on it. Software 
is a collection of programs running on some computer. Sometimes, we can see 
the computer. Often. we can see only something that contains the computer, such 
as a telephone, a camera, a bread maker, a car, or a wind turbine. We can see 
what that software docs. We can be annoyed or hurt if it doesn't do what it is 
supposed to do. We can be annoyed or hurt if what it is supposed to do doesn't 
suit our needs. 

How many computers are there in the world? We don't know: billions at 
least. There may be more computers in the world than people. A 2004 estimate 
from rru (International Teleconununication Union, a UN agency) lists 772 mil
lion PCs and most computers are not PCs. 

How many computers do you (more or less directly) use every day? l11ere 
are more than 30 computers in my car, two in my cell phone, one in my MP3 
player, and one in my camera. Then there is my laptop (on which the page you 
are reading is being written) and my desktop machine. The air-conditioning con
troller that keeps the summer heat and humidity at bay is a simple computer. 
There is one controlling the computer science department's elevator. If you use a 
modern television, there will be at least one computer in there somewhere. A bit 
of web surfing gets you into direct contact with dozens - possibly hundreds - of 
servers through a telecommunications system consisting of many thousands of 
computers - telephone switches, routers, and so on. 

No. I do not drive around with 30 laptops on the backseat of my car! The 
point is that most computers do not look like the popular image of a computer 
(with a screen, a keyboard, a mouse, etc. ) ;  they are small "parts" embedded in 
the kind of equipment we usc. So, that car has nothing that looks like a computer, 
not even a screen to display maps and driving directions (though such gadgets 
are popular in other cars).  However, its engine contains quite a few computers, 
doing things like fuel injection control and temperature monitoring. The power
assisted steering involves at least one computer, the radio and the security system 
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contain some, and we suspect that even the open/close controls of the windows 
are computer controlled. Newer models even have computers that continuously 
monitor tire pressure. 

How many computers do you depend on for what you do during a day? You 
eat; if you live in a modem city, getting the food to you is a major effort requiring 
minor miracles of planning, transport, and storage. The management of the dis
tribution networks is of course computerized, as are the communication systems 
that stitch them all together. Modem fanning is highly computerized; next to the 
cow bam you find computers used to monitor the herd (ages, health, milk pro
duction, etc.), farm equipment is increasingly computerized, and the number of 
forms required by the various branches of government can make any honest 
farmer cry. If something goes wrong, you can read all about it in your newspa
per; of course, the articles in that paper were written on computers, set on the 
page by computers, and (if you still read the "dead tree edition") printed by com
puterized equipment - often after having been electronically transmitted to the 
printing plant. Books are produced in the same way. If you have to commute, the 
traffic flows are monitored by computers in a (usually vain) attempt to avoid u·af
fic jams. You prefer to take the train? That train will also be computerized; some 
even operate without a driver, and the train's subsystems, such as announce
ments, braking, and ticketing, involve lots of computers. Today's entertainment 
industry (music, movies, television, stage shows) is among the largest users of 
computers. Even non-cartoon movies use (computer) animation heavily; music 
and photography also tend to be digital (i.e., using computers) for both recording 
and delivery. Should you become ill, the tests your doctor orders will involve 
computers, the medical records are often computerized, and most of the medical 
equipment you '11 encounter if you are sent to a hospital to be cured contains 
computers. Unless you happen to be staying in a cottage in the woods without 
access to any electrically powered gadgets (including light bulbs), you use energy. 
Oil is found, extracted, processed, and distributed through a system using com
puters every step along the way, from the drill bit deep in the ground to your 
local gas (petrol) pump. If you pay for that gas with a credit card, you again exer
cise a whole host of computers. It is the same story for coal, gas, solar, and wind 
power. 

The examples so far are all "operational"; they are directly involved in what 
you are doing. Once removed from that is the important and interesting area of 
design. The clothes you wear, the telephone you talk into, and the coffee ma
chine that dispenses your favorite brew were designed and manufactured using 
computers. The superior quality of modem photographic lenses and the exqui
site shapes in the design of modem everyday gadgets and utensils owe almost 
everything to computer-based design and production methods. The crafts
men/designers/artists/engineers who design our environment have been freed 
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from many physical constraints previously considered fundamental. If you get ill, 
the medicines given to cure you will have been designed using computers. 

Finally, research - science itself - relies heavily on computers. The tele
scopes that probe the secrets of distant stars could not be designed, built, or oper
ated without computers, and the masses of data they produce couldn't be 
analyzed and understood without computers. An individual biology field re
searcher may not be heavily computerized (unless, of course, a camera, a digital 
tape recorder, a telephone, etc. are used), but back in the lab, the data has to be 
stored, analyzed, checked against computer models, and communicated to fellow 
scientists . Modem chemistry and biology - including medical research - use 
computers to an extent undrean1ed of a few years ago and still unimagined by 
most people. The human genome was sequenced by computers. Or - let's be 
precise - the human genome was sequenced by humans using computers. In all 
of these examples, we see computers as something that enables us to do some
thing we would have had a harder time doing without computers. 

Every one of those computers runs software. Without software, they would 
just be expensive lumps of silicon, metal, and plastic: doorstops, boat anchors, 
and space heaters. Every line of that software was written by some individual. 
Every one of those lines that was actually executed was minimally reasonable, if 
not correct. It's amazing that it all works ! We are talking about billions of lines of 
code (program text) in hundreds of programming languages. Getting all that to 
work took a staggering amount of effort and involved an unimaginable number 
of skills. We want further improvements to essentially every service and gadget 
we depend on. Just think of any one service and gadget you rely on; what would 
you like to see improved? If nothing else, we want our services and gadgets 
smaller (or bigger), faster, more reliable, with more features, easier to use, with 
higher capacity, better looking, and cheaper. The likelihood is that the improve
ment you thought of requires some programming. 

1 .3 People 
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Computers are built by people for the use of people. A computer is a very generic .\ 
tool ; it can be used for an unimaginable range of tasks. It takes a program to U 
make it useful to someone. In other words, a computer is just a piece of hardware 
until someone - some programmer - writes code for it to do something useful. 
We often forget about the software. Even more often, we forget about the pro
grammer. 

Hollywood and similar .. popular culture" sources of disinformation have as
signed largely negative images to programmers. For example, we have all seen 
the solitary, fat, ugly nerd with no social skills who is obsessed with video games 
and breaking into other people's computers. He (almost always a male) is as 
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likely to want to destroy the world as he is to want to save it. Obviously, milder 
versions of such caricatures exist in real life, but in our experience they are no 
more frequent among software developers than they are among lawyers, police 
officers, car salesmen, journalists, artists, or politicians. 

Think about the applications of computers you know from your own life. 
Were they done by a loner in a dark room? Of course not; the creation of a suc
cessful piece of software, computerized gadget, or system involves dozens, hun
dreds, or thousands of people performing a bewildering set of roles : for example, 
progranuners, (program) designers, testers, anin1ators , focus group managers, ex
perimental psychologists, user interface designers, analysts, system administra
tors, customer relations people, sound engineers, project managers, quality 
engineers, statisticians, aninlators, hardware interface engineers, requirements 
engineers, safety officers, mathematicians, sales support personnel, troubleshoot
ers, network designers, methodologists, software tools managers, software librar
ians, etc. The range of roles is huge and made even more bewildering by the titles 
varying from organization to organization: one organization's "engineer" may be 
another organization's "progranuner" and yet another organization's "devel
oper," "member of technical staff," or "architect." There are even organizations 
that let their employees pick their own titles. Not all of tl1ese roles directly involve 
programming. However, we have personally seen examples of people performing 
each of the roles mentioned while reading or writing code as an essential part of 
their job. Additionally, a programmer (performing any of these roles, and more) 
may over a short period of time interact with a wide range of people from appli
cation areas, such as biologists, engine designers, lawyers , car salesmen, medical 
researchers, historians, geologists , astronauts, airplane engineers, lumberyard 
managers, rocket scientists, bowling alley builders, journalists, and animators 
(yes, t1Iis is a list drawn from personal experience) . Someone may also be a pro
grammer at times and fill non-programming roles at other stages of a professional 
career. 

The myth of a programmer being isolated is just that: a myth. People who 
like to work on their own choose areas of work where that is most feasible and 
usually complain bitterly about the number of "interruptions" and meetings . Peo
ple who prefer to interact with other people have an easier time because modem 
software development is a team activity. The implication is that social and com
munication skills are essential and valued far more than the stereotypes indicate. 
On a short list of highly desirable skills for a programmer (however you realisti
cally define programmer), you find the ability to communicate well - with people 
from a wide variety of backgrounds - informally, in meetings, in writing, and in 
formal presentations. We are convinced that until you have completed a team 
project or two, you have no idea of what programming is and whether you really 
like it. Among the t1Iings we like about programming are all the nice and interest-
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ing people we meet and the variety of places we get t o  visit as part of our profes
sional lives. 

One implication of all this is that people with a wide variety of skills, inter
ests, and work habits arc essential for producing good software. Our quality of 
life depends on those people - sometimes even our life itself. No one person 
could ftll all the roles we mention here; no sensible person would want every 
role. The point is that you have a wider choice than you could possibly imagine; 
not that you have to make any particular choice. As an individual you will "drift" 
toward areas of work that match your skills, talents, and interests. 

We talk about .. programmers" and .. programming," but obviously program
ming is only part of the overall picture. The people who design a ship or a cell 
phone don't think of themselves as programmers. Progranuning is an important 
part of software development, but not all there is to software development. Simi
larly. for most products, software development is an important part of product 
development, but not all there is to product development. 
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We do not assume that you - our reader - want to become a professional • 1 
programmer and spend the rest of your working life writing code. Even the best U 
programmers - especially the best programmers - spend most of their time not 
writing code. Understanding problems takes serious time and often requires sig
nificant intellectual effort. That intellectual challenge is what many programmers 
refer to when they say that programming is interesting. Many of the best pro
grammers also have degrees in subjects not usually considered part of computer 
science. For example, if you work on software for genomic research, you will be 
much more effective if you understand some molecular biology. If you work on 
programs for analyzing medieval literature, you could be much better ofT reading 
a bit of that literature and maybe even knowing one or more of the relevant lan
guages . In particular, a person with an .. all I care about is computers and pro
gramming" attitude will be incapable of interacting with his or her 
non-programmer colleagues. Such a person will not only miss out on the best 
parts of human interactions (i.e., life) but also be a bad software developer. 

So, what do we assume? Programming is an intellectually challenging set of 
skills that arc part of many important and interesting technical disciplines. In ad
dition, programming is an essential part of our world, so not knowing the basics 
of progranuning is like not knowing the basics of physics, history, biology, or lit
erature. Someone totally ignorant of programming is reduced to believing in 
magic and is dangerous in many technical roles. If you read Dilbert, think of the 
pointy-haired boss as the kind of manager you don't want to meet or (far worse) 
become. In addition, progranuning can be fun. 

But what do we assume you might use programming for? Maybe you will 
use programming as a key tool in your further studies and work without becom
ing a professional programmer. Maybe you will interact with other people profes
sionally and personally in ways where a basic knowledge of programming will be 
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an advantage, maybe as a designer, writer, manager, or scientist. Maybe you will 
do progranuning at a professional level as part of your studies or work. Even if 
you do become a professional programmer it is unlikely that you will do nothing 
but progranuning. 

You might become an engineer focusing on computers or a computer scien
tist, but even then you will not "program all the time." Progranuning is a way of 
presenting ideas in code - a way of aiding problem solving. It is nothing - ab
solutely a waste of time - unless you have ideas that are worth presenting and 
problems worth solving. 

lbis is a book about programming and we have promised to help you learn 
how to program, so why do we emphasize non-progranuning subjects and the 
limited role of programming? A good programmer understands the role of code 
and progranuning technique in a project. A good programmer is (at most times) 
a good team player and tries hard to understand how the code and its production 
best support the overall project. For example, imagine that I worked on a new 
MP3 player and all that I cared about was the beauty of my code and the num
ber of neat features I could provide. I would probably insist on the largest, most 
powerful computer to run my code. I might disdain the theory of sound encod
ing because it is "not progranuning." I would stay in my lab, rather than go out to 
meet potential users, who undoubtedly would have bad tastes in music anyway 
and would not appreciate the latest advances in GUI (graphical user interface) 
progranuning. The likely result would be disaster for the project. A bigger com
puter would mean a costlier MP3 player and most likely a shorter battery life. 
Encoding is an essential part of handling music digitally, so failing to pay atten
tion to advances in encoding techniques could lead to increased memory require
ments for each song (encodings differ by as much as 100% for the same-quality 
output) . A disregard for users' preferences - however odd and archaic they may 
seem to you - typically leads to the users choosing some other product. An es
sential part of writing a good program is to understand the needs of the users and 
the constraints that those needs place on the implementation (i.e., the code) . To 
complete this caricature of a bad programmer, we just have to add a tendency to 
deliver late because of an obsession with details and an excessive confidence in 
the correctness of lightly tested code. We encourage you to become a good pro
grammer, with a broad view of what it takes to produce good software. That's 
where both the value to society and the keys to personal satisfaction lie. 

1 .4 Computer science 
Even by the broadest definition, progranuning is best seen as a part of something 
greater. We can see it as a subdiscipline of computer science, computer engineer
ing, software engineering, information technology, or any other software-related 
discipline. We see programming as an enabling technology for those computer 
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and information fields of science and engineering, as well as for physics, biology, 
medicine, history, literature, and any other academic or research field. 

Consider computer science. A 1995 U.S. goverrunent "blue book" defmes it 
like this : "The systematic study of computing systems and computation. The 
body of knowledge resulting from this discipline contains theories for under
standing computing systems and methods; design methodology, algorithms, and 
tools ; methods for the testing of concepts ; methods of analysis and verification; 
and knowledge representation and implementation." As we would expect, the 
Wikipedia entry is less formal: "Computer science, or computing science, is the 
study of the theoretical foundations of information and computation and their 
implementation and application in computer systems. Computer science has 
many sub-fields; some emphasize the computation of specific results (such as 
computer graphics) ,  while others (such as computational complexity theory) re
late to properties of computational problems. Still others focus on the challenges 
in implementing computations. For example, programming language theory 
studies approaches to describing computations, while computer programming ap
plies specific programming languages to solve specific computational problems." 
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Programming is a tool; it is a fundamental tool for expressing solutions to •\ 
fundamental and practical problemc; s o  that they can b e  tested, improved through U 
experiment, and used. Programming is where ideas and theories meet reality. 
This is where computer science can become an experimental discipline, rather 
than pure theory, and impact the world. In this context, as in many others, it is 
essential that programming is an expression of well-tried practices as well as the 
theories. It must not degenerate into mere hacking: just get some code written, 
any old way that meets an immediate need. 

1 .5 Computers are everywhere 
Nobody knows everything there is to know about computers or software. This 
section just gives you a few examples. Maybe you'll see something you like. At 
least you might be convinced that the scope of computer use - and through that, 
programming - is far larger than any individual can fully grasp. 

Most people think of a computer as a small gray box attached to a screen 
and a keyboard. Such computers tend to hide under tables and be good at 
games, messaging and email, and playing music. Other computers, called lap
tops, are used on planes by bored businessmen to look at spreadsheets, play 
games, and watch videos. This caricature is just the tip of the iceberg. Most com
puters work out of our sight and are part of the systems that keep our civilization 
going. Some ftll rooms; others are smaller than a small coin. Many of the most in
teresting computers don't directly interact with a human through a keyboard, 
mouse, or similar gadget. 
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1.5.1 Screens and n o  screens 
The idea of a computer as a fairly large square box with a screen and a keyboard 
is common and often hard to shake ofT. However, consider these two computers : 

Both of these "gadgets" (which happen to be watches) are primarily computers. 
In fact, we cm�ecturc that they are essentially the same model computer with dif
ferent 1 /0 (input/output) systems. The left one drives a small screen (similar to 
the screens on conventional computers, but smaller) and the second drives little 
elccu·ic motors conn·olling traditional clock hands and a disk of numbers for day
of-montll readout. Their input systems are the four buttons (more easily seen on 
the right-hand watch) and a radio receiver. used for synchronization with very 
high-precision "atomic'' clocks. Most of the programs controlling these two com
puters arc shared between them. 

1.5.2 Shipping 

These two photos show a large marine diesel engine and the kind of huge ship 
that it may power: 
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Consider where computers and software play key roles here: 

DeJign: Of course, the ship and the engine were both designed using 
computers. The list of uses is almost endless and includes architectural 
and engineering drawings, general calculations, visualization of spaces 
and parts, and simulations of the performance of parts. 

Co11Struction: A modem shipyard is heavily computerized. The assembly 
of a ship is carefully planned using computers, and the work is done 
guided by computers. Welding is done by robots . In particular, a modem 
double·hulled tanker couldn't be built without little welding robots to do 
tl1e welding from witllln the space between the hulls. There just isn't 
room for a human in there. Cutting steel plates for a ship was one of the 
world's first CAD/CAM (computer-aided design and computer-aided 
manufacture) applications. 

The rogine: The engine has electronic fuel injection and is controlled by a 
few dozen computers. For a lOO,OOO·horsepower engine (like the one in 
the photo) , that's a nontrivial task. For exan1ple, the engine management 
computers continuously adjust fuel mix to minimize the pollution that 
would result from a badly tuned engine. Many of the pumps associated 
with the engine (and other parts of the ship) are themselves computer
ized. 

Management: Ships sail where there is cargo to pick up and to deliver. The 
scheduling of fleets of ships is a continuing process (computerized, of 
course) so that routings change with the weather, with supply and de
mand, and with space and loading capacity of harbors. There are even 
websites where you can watch the position of major merchant vessels at 
any time. The ship in the photo happens to be a container vessel (the 
largest such in the world; 397m long and 56m wide), but other kinds of 
large modem ships are managed in similar ways. 

Monitoring: An oceangoing ship is largely autonomous; that is, its crew 
can handle most contingencies likely to arise before the next port. How
ever, they are also part of a globe-spanning network. The crew has ac
cess to reasonably accurate weather information (from and through -
computerized - satellites).  They have GPS (global positioning system) 
and computer-controlled and computer-enhanced radar. If the crew 
needs a rest, most systems (including the engine, radar, etc.) can be mon
itored (via satellite) from a shipping-line control room. If anytlllng un· 
usual is spotted, or if the connection "back home" is broken, the crew is 
notified. 

Consider the implication of a failure of one of the hundreds of computers explic· 
itly mentioned or in1plied in tills brief description. Chapter 25 ("Embedded Sys· 
tems Progranlming") examines this in slightly more detail. Writing code for a 
modern ship is a skilled and interesting activity. It is also useful. The cost of 

27 



28 C H A PT E R  1 • COMPUTERS ,  P EOPlE ,  A N D  PROG RAM M I N G  

transport is really amazingly low. You appreciate that when you buy something 
that wasn't manufactured locally. Sea transport has always been cheaper than 
land transport; these days one of the reasons is serious use of computers and 
information. 

1.5.3 Telecommunications 
These two photos show a telephone switch and a telephone (that also happens to 
be a camera, an MP3 player, an FM radio, and a web browser) : 

Consider where computers and software play key roles here. You pick up a tele
phone and dial, the person you dialed answers, and you talk. Or maybe you get 
to talk to an answering machine, or maybe you send a photo from your phone 
camera, or maybe you send a text message (hit "send" and let the phone do the 
dialing) . Obviously the phone is a computer. This is especially obvious if the 
phone (like most mobile phones) has a screen and allows more than traditional 
"plain old telephone services," such as web browsing. Actually, such phones tend 
to contain several computers : one to manage the screen, one to talk to the phone 
system, and maybe more. 

The part of the phone that manages the screen, docs web browsing, etc. is 
probably the most familiar to computer users : it just runs a graphical user inter· 
face to "all the usual stuff." What is unknown to and largely unsuspected by most 
users is the huge system that the little phone talks to while doing its job. I dial a 
number in Texas, but you arc on vacation in New York City, yet within seconds 
your phone rings and I hear your "Hello !" over the roar of city traffic. Many 
phones can perform tl1at trick for essentially any two locations on earth and we 
just take it for granted. How did my phone find yours? How is the sound trans
mitted? How is the sound encoded into data packets? The answer could ftll 
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many books much thicker than this one, but it involves a combination of hard· 
ware and software on hundreds of computers scattered over the geographical 
area in question. If you arc unlucky, a few telecommunications satellites (them· 
selves computerized systems) arc also involved - "unlucky" because we cannot 
perfectly compensate for the 20,000-mile detour out into space; the speed of light 
(and therefore the speed of your voice) is finite (light fiber cables are much better: 
shorter, faster, and carrying much more data) . Most of this works remarkably 
well; the backbone telecommunications systems are 99.9999% reliable (for exam
ple, 20 minutes of downtime in 20 years - that's 20/20*365*24*60) . The trouble 
we have tends to be in the conmmnications between our mobile phone and the 
nearest main telephone switch. 

There is software for connecting the phones, for chopping our spoken words 
into data packets to be sent over wires and radio links, for routing those mes· 
sages, for recovering from all kinds of failures, for continuously monitoring the 
quality and reliability of the services, and of course for billing. Even keeping 
track of all tl1e physical pieces of the system requires serious amounts of clever 
software: What talks to what? What parts go into a new system? When do you 
need to do some preventive maintenance? 

Arguably the backbone telecommunications system of the world, consisting 
of semi-independent but interconnected systems, is the largest and most compli
cated man-made artifact. To make things a bit more real : remember, this is not 
just boring old telephony with a few new bells and whistles. The various infra
structures have merged. l11ey are also what the internet (the web) runs on, what 
our banking and trading systems run on, and what carry our television programs 
to the broadcasting stations. So, we can add anotl1er couple of photos to illustrate 
telecommunications: 

l11e room is the "trading floor" of the American stock exchange on New York's 
Wall Street and the map is a representation of parts of the internet backbones (a 
complete map would be too messy to be useful) . 

As it happens, we also like digital photography and the use of computers to 
draw specialized maps to visualize knowledge. 

29 



30 C H APTER  1 • COMPU T ERS ,  P EOPlE ,  A N D  PROGRAM M I N G  

1.5.4 Medicine 
These two photos show a CAT (computed axial tomography) scanner and an op
erating theater for computer-aided surgery (also called "robot-assisted surgery" 
or "robotic surgery") : 

' ,,-_ 
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Consider where computers and software play key roles here. The scanners basi
cally are computers; the pulses they send out are controlled by a computer, and 
the readings are nothing but gibberish until quite sophisticated algorithms are ap
plied to convert them to something we recognize as a (three-din1ensional) image of 
the relevant part of a human body. To do computerized surgery, we must go sev
eral steps further. A wide variety of imaging techniques are used to let the surgeon 
see the inside of the patient, to see the point of surgery with significant enlarge
ment or in better light than would otherwise be possible. With the aid of a com
puter a surgeon can use tools that are too fme for a human hand to hold or in a 
place where a human hand could not reach without mmecessary cutting. The use 
of minimally invasive surgery (laparoscopic surgery) is a simple example of this 
that has minimized the pain and recovery time for millions of people. The com
puter can also help steady the surgeon's "hand" to allow for more delicate work 
than would otherwise be possible. Fmally, a "robotic" system can be operated re
motely, thus making it possible for a doctor to help someone remotely (over the 
internet) . The computers and programming involved are mind-boggling, com
plex, and interesting. The user-interface, equipment control, and imaging chal
lenges alone will keep thousands of researchers, engineers, and programmers 
busy for decades. 

We heard of a discussion among a large group of medical doctors about 
which new tool had provided the most help to them in their work: The CAT 
sca1mer? The MRI scanner? The automated blood analysis machines? lne high
resolution ultrasound machines? PDAs? After some discussion, a surprising 
"winner" of this "competition" emerged: instant access to patient records. Know
ing the medical history of a patient (earlier illnesses, medicines tried earlier, aller
gies, hereditary problems, general health, current medication, etc.) simplifies the 
problem of diagnosis and minimizes the chance of mistakes. 
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1 .5 .5 Information 
These two photos show an ordinary PC (well, two) and part of a server farm:  

We have focused on ''gadgets" for the usual reason: you cam1ot see, feel, or  hear 
software. We cannot present you with a photograph of a neat program, so we 
show you a "gadget" that nms one. However, much software deals directly with 
"infoxn1ation." So let's consider "ordinary uses" of "ordinary computers'' running 
"ordinary software." 

A "server farm" is a collection of computers providing web services. By using 
Coogle (a web search engine) . we found the following information supplied by 
Wikipedia (a web dictionary) . In 2004 it was estimated that Coogle's server farm 
had the following specs : 

719 racks 

63,272 machines 

126.544 CPUs 

253THz of processing power 

1 26,544CB of RAM 

5,062TB of hard drive space 

A CB is a gigabyte, that is, about 1 ,000,000,000 characters. A TB. a terabyte, is 
about 1 ,OOOC B, that is, about 1 ,000,000,000,000 characters. These days. the 
"farms" are much bigger. This is a pretty extreme example, but every major com
pany runs programs on the web to interact with its users/customers. Examples 
arc Amazon (book and other sales), Amadeus (airline ticketing and automobile 
rental) , and eBay (online auctions). Millions of little companies, organizations, 
and individuals also have a presence on the web. Most don't run their own soft
ware, but many do and much of that is not trivial. 

The other, and more traditional , massive computing effort involves account
ing. order processing, payroll, record keeping, billing, inventory management, 
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personnel records, student records, patient records, etc. - the records that essen
tially every organization (commercial and noncommercial, governmental and pri
vate) keeps. These records are the backbone of their respective organizations. As 
a computing effort, processing such records seems simple: mostly some informa
tion (records) is just stored and retrieved and very little is done to it. Examples 
include 

Is my 12 :30 flight to Chicago still on time? 

Has Gilbert Sullivan had the measles? 

Has the coffeemaker that juan Valdez ordered been shipped? 

What kind of kitchen chair didjack Sprat buy in 1996 (or so) ? 

How many phone calls originated from the 212  area code in August of 
2006? 

What was the number of coffeepots sold in january and for what total 
price? 

The sheer scale of the databases involved makes these systems highly complex. 
To that add the need to respond quickly (often in less than two seconds for indi
vidual queries) and to be correct (at least most of the time) . These days, it is not 
unconunon for people to talk about terabytes of data (a byte is the amount of 
memory needed to hold an ordinary character) . That's traditional "data process
ing" and it is merging with "the web" because most access to the databases is 
now though web interfaces. 

This kind of computer use is often referred to as irifomuztion proceJ.Sing. It fo
cuses on data - often lots of data. Tills leads to challenges in the organization 
and transmission of data and lots of interesting work on how to present vast 
amounts of data in a comprehensible form: "user interface" is a very important 
aspect of handling data. For example, think of analyzing a work of older litera
ture (say. Chaucer's Canterbury TaleJ or Cervantes' Do11 OJ1ixote) to figure out what 
the author actually wrote by comparing dozens of versions. We need to search 
through the texts with a variety of criteria supplied by the person doing the 
analysis and to display the results in a way that aids the discovery of salient 
points. Thinking of text analysis, publishing comes to mind : today, just about 
every article, book, brochure, newspaper, etc. is produced on a computer. De
signing software to support that well is for most people still a problem that lacks a 
really good solution. 

1.5.6 A vertical view 
It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur 
and describe its lifestyle and natural environment from studying a single small 
bone. That may be an exaggeration, but tl1ere is something to the idea of looking 
at a simple artifact and thinking about what it implies. Consider this photo show
ing the landscape of Mars taken by a camera on one of NASA's Mars Rovers : 
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I f  you want to do "rocket science," becoming a good programmer is one way. 
The various space programs employ lots of software designers, especially ones 
who can also understand some of the physics, math, electrical engineering, me
chanical engineering, medical engineering, etc. that underlie the manned and un
manned space programs. Getting those two Rovers to drive around on Mars for 
over four years (their estimated design life was three months) is one of the great
est technological triumphs of our civilization. 

The photo was transmitted to earth through a communication channel with 
a 25-minute transmission delay each way; there is a lot of clever programming 
and advanced math to make sure that the picture is transmitted using the mini
mal number of bits without losing any of them. On earth, the photo is then ren
dered using algorithms to restore color and minimize distortion due to the optics 
and electronic sensors. 

The control programs for the Mars Rovers are of course programs - the 
Rovers drive autonomously for 24 hours at a time and follow instructions sent 
from earth the day before. The transmission is managed by programs. 

The operating systems used for the various computers involved in the 
Rovers, the transmission, and the photo reconstruction are programs, as are the 
applications used to write this chapter. The computers on which these programs 
run are designed and produced using CAD/CAM (computer-aided design and 
computer-aided manufacture) programs. The chips that go into those computers 
are produced on computerized assembly lines constructed using precision tools, 
and those tools also use computers (and software) in their design and manufac
ture. The quality control for those long construction processes involves serious 
computation. All that code was written by humans in a high-level programming 
language and translated into machine code by a compiler, which is itself such a 
program. Many of these programs interact with users using GUI and exchange 
data using input/output streams. 

Finally, a lot of programming goes into image processing (including the pro
cessing of the photos from the Mars Rovers), animation, and photo editing (there 
are versions of the Rover photos floating around on the web featuring "Martians"). 
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1 .5.7 So what? 

What do all these "fancy and complicated" applications and software systems 
have to do with learning programming and using C++? The connection is sim
ply that many programmers do get to work on projects like these. These are the 
kinds of things that good programming can help achieve. Also, every example 
used in this chapter involved C++ and at least some of the techniques we de
scribe in this book. Yes, there are C++ programs in MP3 players, in ships, in 
wind turbines, on Mars, and in the human genome project. For more applications 
using C++, see www.research .att/- bs/applications.html . 

1 .6 Ideals for programmers 

What do we want from our programs'? What do we want in general, as opposed 
to a particular feature of a particular program? We want correctness and as part of 
that, relia.b1lil)•. If the program doesn't do what it is supposed to do, and do so in a 
way so that we can rely on it, it is at best a serious nuisance, at worst a danger. 
We want it to be well designed so that it addresses a real need well; it doesn't really 
matter that a program is correct if what it does is irrelevant to us or if it correctly 
does something in a way that annoys us. We also want it to be tiflardahle; I might 
prefer a Rolls-Royce or an executive jet to my usual fom1s of transport, but un
less I'm a zillionaire, cost will enter into my choices. 

These are aspects of software (gadgets, systems) that can be appreciated from 
the outside, by non-programmers. They must be ideals for programmers and we 
must keep them in mind at all times, especially in the early phases of develop
ment, if we want to produce successful software. In addition, we must concern 
ourselves with ideals related to the code itself: our code must be maintainable; that 
is, its structure must be such that someone who didn't write it can understand it 
and make changes. A successful program "lives" for a long time (often for 
decades) and will be changed again and again . For example, it will be moved to 
new hardware, it will have new features added, it will be modified to use new 1/0 
facilities (screens, video, sound), to interact using new natural languages, etc. 
Only a failed program will never be modified . To be maintainable, a program 
must be simple relative to its requirements, and the code must directly represent 
the ideas expressed. Complexity - the enemy of simplicity and maintainability -
can be intrinsic to a problem (in that case we just have to deal with it), but it can 
also arise from poor expression of ideas in code. We must try to avoid that 
through good coding style - style matters! 

This doesn't sound too difficult, but it is. Why? Programming is fundanlen
tally simple: just tell the machine what it is supposed to do. So why can program
ming be most challenging? Computers are fundamentally simple; they can just 
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do a few operations, such as adding two numbers and choosing the next instruc· 
tion to execute based on a comparison of two numbers. The problem is that we 
don't want computers to do simple things. We want "the machine" to do things 
that are difficult enough for us to want help with them, but computers are nit
picking, unforgiving, dumb beasts. Furthermore, the world is more complex than 
we'd like to believe, so we don't really know the implications of what we request. 
We just want a program to .. do something like this" and don't want to be both
ered with technical details. We also tend to assume .. common sense." Unfortu
nately, common sense isn't all that common among humans and is totally absent 
in computers (though some really well-designed programs can imitate it in spe
cific, well-understood cases). 
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This line of thinking leads to the idea that "programming is understanding" : � 
when you can program a task, you understand it. Conversely, when you under- U 
stand a task thoroughly, you can write a program to do it. In other words, we can 
see programming as part of an effort to thoroughly understand a topic. A pro-
gram is a precise representation of our understanding of a topic. 

When you program, you spend significant time trying to understand the task 
you are trying to automate. 

We can describe the process of developing a program as having four stages : f) 
AruJysis: What's the problem? What does the user want? What does the 
user need? What can the user afford? What kind of reliability do we 
need? 

Design: How do we solve the problem? What should be the overall struc
ture of the system? Which parts does it consist of? How do those parts 
communicate with each other? How does the system communicate with 
its users? 

Programming: Express the solution to the problem (the design) in code. 
Write the code in a way that meets all constraints (time, space, money, 
reliability, and so on) . Make sure that the code is correct and maintain· 
able. 

Testing: Make sure the system works correctly under all circumstances re
quired by systematically trying it out. 

Programming plus testing is often called implementah"on. Obviously, this simple split 
of software development into four parts is a simplification. Thick books have been 
written on each of these four topics and more books still about how they relate to 
each other. One important thing to note is that these stages of development are 
not independent and do not occur strictly in sequence. We typically start with 
analysis, but feedback from testing can help improve the programming; problems 
with getting the program working may indicate a problem with the design; and 
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working with the design may suggest aspects of the problem that hitherto had 
been overlooked in the analysis. Actually using the system typically exposes weak
nesses of the analysis. 

The crucial concept here is .feedback. We learn from experience and modify 
our behavior based on what we learn. That's essential for effective software de
velopment. For any large project, we don't know everything there is to know 
about the problem and its solution before we start. We can try out ideas and get 
feedback by programming, but in the earlier stages of development it is easier 
(and faster) to get feedback by writing down design ideas, trying out those design 
ideas, and using scenarios on friends. The best design tool we know of is a black
board (usc a whiteboard instead if you prefer chemical smells over chalk dust). 
Never design alone if you can avoid it! Don't start coding before you have tried 
out your ideas by explaining them to someone. Discuss designs and program
ming techniques with friends, colleagues, potential users, and so on before you 
head for the keyboard. It is amazing how much you can learn from simply trying 
to articulate an idea. After all, a program is nothing more than an expression (in 
code) of some ideas. 

Similarly, when you get stuck implementing a program, look up from the 
keyboard. Think about the problem itself, rather than your incomplete solution. 
Talk with someone: explain what you want to do and why it doesn't work. It's 
amazing how often you find the solution just by carefully explaining the problem 
to someone. Don't debug (find program errors) alone if you don't have to! 

The focus of this book is implementation, and especially programming. We 
do not teach "problem solving" beyond giving you plenty of examples of prob
lems and their solutions. Much of problem solving is recognizing a known prob
lem and applying a known solution technique. Only when most subproblems are 
handled this way will you fmd the time to indulge in exciting and creative "out· 
of-the-box thinking." So, we focus on showing how to express ideas clearly in 
code. 

Direct expression of ideas in code is a fundamental ideal of programming. 
That's really pretty obvious, but so far we are a bit short of good examples . We'll 
come back to this, repeatedly. When we want an integer in our code, we store it 
in an int, which provides the basic integer operations. When we want a string of 
characters, we store it in a string, which provides the most basic text manipula
tion operations. At the most fundamental level, the ideal is that when we have an 
idea, a concept, an entity, something we think of as a "thing," something we can 
draw on our whiteboard, something we can refer to in our discussions, some
thing our (non-computer science) textbook talks about, then we want that some
thing to exist in our program as a named entity (a type) providing the operations 
we think appropriate for it. If we want to do math, we want a complex type for 
complex numbers and a Matrix type for linear algebra. If we want to do graphics, 
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we want a Shape type, a Circle type, a Color type, and a Dialog_box. When we 
want to deal with streams of data, say from a temperature sensor, we want an 
istream type ("i" for input) . Obviously, every such type should provide the ap
propriate operations and only the appropriate operations. These are just a few 
examples from this book. Beyond that, we offer tools and techniques for you to 
build your own types to directly represent whatever concepts you want in your 
program. 

Programming is part practical, part theory. If you are just practical, you will 
produce non-scalable, unmaintainable hacks. If you are just theoretical, you will 
produce unusable (or unaffordable) toys. 

For a different kind of view of the ideals of programming and a few people 
who have contributed in major ways to software through work with program
ming languages, see Chapter 22, "Ideals and History." 

Review 
Review questions are intended to point you to the key ideas explained in a chap
ter. One way to look at them is as a complement to the exercises : the exercises 
focus on the practical aspects of programming, whereas the review questions try 
to help you articulate the ideas and concepts. In that, they resemble good inter
view questions. 

1 .  What is software? 
2. Why is software important? 
3. Where is software important? 
4. What could go wrong if some software fails? List some examples. 
5. Where does software play an important role? List some examples. 
6. What are some jobs related to software development? List some. 
7. What's the difference between computer science and programming? 
8. Where in the design, construction, and use of a ship is software used? 
9. What is a server farm? 

10. What kinds of queries do you ask online? List some. 
1 1 . What are some uses of software in science? List some. 
1 2. What are some uses of software in medicine? List some. 
13 .  What are some uses of software in entertainment? List some. 
14. What general properties do we expect from good software? 
15 .  What does a software developer look like? 
16. What are the stages of software development? 
1 7. Why can software development be difficult? List some reasons. 
1 8. What are some uses of software that make your life easier? 
19.  What are some uses of software that make your life more difficult? 
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Terms 
These terms present the basic vocabulary of programming and of C++. If you 
want to understand what people say about programming topics and to articulate 
your own ideas, you should know what each means. 

affordability 
analysis 
blackboard 
CAD/CAM 
communications 
correctness 

Exercises 

customer 
design 
feedback 
GUI 
ideals 
implementation 

programmer 
programming 
software 
stereotype 
testing 
user 

1 .  Pick an activity you do most days (such as going to class, eating dinner, 
or watching television) . Make a list of ways computers are directly or in
directly involved. 

2. Pick a profession, preferably one that you have some interest in or some 
knowledge of. Make a list of activities done by people in that profession 
that involve computers. 

3. Swap your list from exercise 2 with a friend who picked a different pro
fession and improve his or her list. When you have both done that, com
pare your results. Remember: There is no perfect solution to an 
open-ended exercise; improvements are always possible. 

4. From your own experience, describe an activity that would not have 
been possible without computers. 

5. Make a list of programs (software applications) that you have directly 
used. List only examples where you obviously interact with a program 
(such as when selecting a new song on an MP3 player) and not cases 
where there just might happen to be a computer involved (such as turn
ing the steering wheel of your car). 

6. Make a list of ten activities that people do that do not involve computers 
in any way, even indirectly. This may be harder than you think! 

7. Identify five tasks for which computers are not used today, but for which 
you think they will be used for at some time in the future. Write a few 
sentences to elaborate on each one that you choose. 

8. Write an explanation (at least 100 words, but fewer than 500) of why 
you would like to be a computer programmer. If, on the other hand, you 
are convinced that you would not like to be a programmer, explain that. 
In either case, present well-thought-out, logical arguments. 
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9. Write an explanation (at least 100 words, but fewer than 500) of what 
role other than programmer you'd like to play in the computer industry 
(independently of whetl1er "programmer" is your first choice) . 

10.  Do you think computers will ever develop to be conscious, thinking be
ings, capable of competing with humans? Write a short paragraph (at 
least 100 words) supporting your position. 

1 1 . List some characteristics that most successful programmers share. Then 
list some characteristics that programmers are popularly assumed to 
have. 

12. Identify at least five kinds of applications for computer programs men
tioned in this chapter and pick the one that you find the most interesting 
and that you would most likely want to participate in someday. Write a 
short paragraph (at least 100 words) explaining why you chose the one 
you did. 

13. How much memory would it take to store (a) this page of text, (b) this 
chapter, (c) all of Shakespeare's work? Assume one byte of memory 
holds one character and just try to be precise to about 20%. 

14. How much memory does your computer have? Main memory? Disk? 

Postscript 
Our civilization runs on software. Software is an area of unsurpassed diversity 
and opportunities for interesting, socially useful, and profitable work. When you 
approach software, do it in a principled and serious manner: you want to be part 
of the solution, not add to the problems. 

We are obviously in awe of the range of software that permeates our techno
logical civilization. Not all applications of software do good, of course, but that is 
another story. Here we wanted to emphasize how pervasive software is and how 
much of what we rely on in our daily lives depends on software. It was all written 
by people like us. All the scientists, mathematicians, engineers, programmers, etc. 
who built the software briefly mentioned here started like you are starting. 

Now, let's get back to the down-to-earth business of learning the technical 
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skills needed to program. If you start wondering if it is worth all your hard work f) 
(most thoughtful people wonder about that sometime), come back and reread this 
chapter, the Preface, and bits of Chapter 0 ("Notes to the Reader") . If you start 
wondering if you can handle it all, remember that millions have succeeded in be
coming competent programmers, designers, software engineers, etc. You can, too. 
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The Bas i cs 





Hel lo, World!  

"Programming is learned 
by writing programs." 

-Brian Kernighan 

H
ere, we present the simplest C++ program that actually 

does anything. The purpose of writing this program is to 

• Let you try your programming environment 

• Give you a first feel of how you can get a computer to do 

things for you 

Thus, we present the notion of a program, the idea of trans

lating a program from human-readable form to machine instruc

tions using a compiler, and fmally executing those machine 

instructions. 
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2.1 Programs 

2.2 The classic first program 

2.3 Compilation 

2.4 Linking 

2.5 Programming environments 

2.1 Programs 

CHAPTER  2 • H E l lO, WORlD !  

To get a computer to do something, you (or someone else) have to tell it exactly 
- in excmciating detail - what to do. Such a description of "what to do" is called 
a program, and programming is the activity of writing and testing such programs. 

In a sense, we have all progranuned before. After all, we have given descrip
tions of tasks to be done, such as "how to drive to the nearest cinema," "how to 
fmd the upstairs bathroom," and "how to heat a meal in the microwave." The dif
ference between such descriptions and programs is one of degree of precision: 
humans tend to compensate for poor instmctions by using common sense, but 
computers don't. For example, "tum right in the corridor, up the stairs, it'll be on 
your left" is probably a fine description of how to get to the upstairs bathroom. 
However, when you look at those simple instmctions, you'll find t11e grammar 
sloppy and the instmctions incomplete. A human easily compensates. For exam· 
ple, assume that you are sitting at the table and ask for directions to the bath
room. You don't need to be told to get up from your chair to get to t11e corridor, 
somehow walk around (and not across or under) the table, not to step on the cat, 
etc. You'll not have to be told not to bring your knife and fork or to remember to 
switch on the light so that you can see the stairs. Opening the door to the bath· 
room before entering is probably also something you don't have to be told. 

In contrast, computers are really dumb. They have to have everything de
scribed precisely and in detail. Consider again "tum right in the corridor, up the 
stairs, it'll be on your left." Where is the corridor? What's a corridor? What is 
"tum right"? What stairs? How do I go up stairs? (One step at a time? Two 
steps? Slide up the banister?) What is on my left? When will it be on my left? To 
be able to describe "tl1ings" precisely for a computer, we need a precisely defined 
language with a specific grammar (English is far too loosely stmctured for that) 
and a well-defined vocabulary for the kinds of actions we want perfom1ed. Such 
a language is called a programming language, and C++ is a programming language 
designed for a wide selection of progranrming tasks. 

If you want greater philosophical detail about computers, programs, and pro
gramming, (re)read Chapter 1. Here, let's have a look at some code, starting with 
a very simple program and the tools and techniques you need to get it to mn. 
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2.2 The classic first program 
Here is a version of the classic first program. It writes "Hello, World!" to your screen: 

// This program outputs the message "Hel lo, World!" to the monitor 

#include "std_lib_facilities.h" 

int main() 
{ 

II C++ programs start by executing the function main 

cout << "Hello, World!\n";  II output "Hel lo, World!" 
return 0; 

Think of this text as a set of instructions that we give to the computer to execute. 
much as we would give a recipe to a cook to follow, or as a list of assembly in· 
structions for us to follow to get a new toy working. Let's discuss what each line 
of this program does, starting with the line 

cout << "Hello, World!\n";  II output "Hel lo, World!" 
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That's the line that actually produces the output. It prints the characters Hello, � 
World ! followed by a newline; that is, after writing Hello, World !, the cursor will U 
be placed at the start of the next line. A cursor is a little blinking character or line 
showing where you can type the next character. 

In C++, string literals are delimited by double quotes (") ; that is, "Hello, 
World !\n" is a string of characters. The \n is a "special character" indicating a 
newline. The name cout refers to a standard output stream. Characters "put into 
cout" using the output operator << will appear on the screen. The name cout is 
pronounced "see-out" and is an abbreviation of "character output stream." You'll 
find abbreviations rather common in programming. Naturally, an abbreviation 
can be a bit of a nuisance the first time you see it and have to remember it, but 
once you start using abbreviations repeatedly, they become second nature, and 
they are essential for keeping program text short and manageable. 

The end of that line 

II output "Hel lo, World!" 

is a comment. Anything written after the token II (that's the character /, called 
"slash," twice) on a line is a comment. Comments are ignored by the compiler 
and written for tl1e benefit of programmers who read the code. Here, we used the 
comment to tell you what tl1e beginning of that line actually did. 
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Comments arc written to describe what the program is intended to do and in 
general to provide information useful for humans that can't be directly expressed 
in code. The person most likely to benefit from the comments in your code is 
you - when you come back to that code next week, or next year. and have for
gotten exactly why you wrote the code the way you did. So, document your pro
grams well. In §7.6.4, we'll discuss what makes good comments. 

A program is written for two audiences. Naturally, we write code for com
puters to execute. However, we spend long hours reading and modifying the 
code. Thus, programmers are another audience for programs. So, writing code is 
also a form of human-to-human conununication. In fact, it makes sense to con
sider the human readers of our code our primary audience : if they (we) don't 
fmd tl1e code reasonably easy to understand, tl1e code is unlikely to ever become 
correct. So. please don't forget: code is for reading - do all you can to make it 
readable. Anyway, the comments are for the benefit of human readers only: the 
computer doesn't look at the text in comments. 

The first line of the program is a typical comment; it simply tells the human 
reader what the progran1 is supposed to do: 

// This program outputs the message "Hel lo, World!"  to the monitor 

Such comments are useful because the code itself says what the program does, 
not what we meant it to do. Also, we can usually explain (roughly) what a pro
granl should do to a human much more concisely tlum we can express it (in de
tail) in code to a computer. Often such a comment is the first part of the progran1 
we write. If nothing else, it reminds us what we are trying to do. 

The next line 

#include "std lib_facilities.h" 

is an "#include directive." It instructs the computer to make available ("to in
clude") facilities from a ftlc called std_lib_facilities.h. We wrote that ftle to simplify 
use of the facilities available in all implementations of C++ ("the C++ standard li
brary") . We will explain its contents as we go along. It is perfectly ordinary sum· 
dard C++, but it contains details that we'd rather not bother you with for another 
dozen chapters. For this progran1, the importance of std_lib_facilities.h is that we 
make the standard C++ streanl 110 facilities available. Here, we just use the stan
dard output strean1, cout, and its output operator, <<. A file included using 
#include usually has the sutftx .h and is called a header or a headn-jile. A header 
contains definitions of terms, such as cout, that we use in our program. 

How does a computer know where to start executing a program? It looks for 
a function called main and starts executing the instmctions it finds there. Here is 
the function main of our "Hello, World!" progran1 : 
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int main() II C++ programs start by execut ing the fllnct ion main 

{ 
cout << "Hello, World !\n" ;  II output "Hel lo, World!" 

return 0; 
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Every C++ program must have a function called main to tell it where to start ex- .\ 
ecuting. A function is  basically a named sequence of instructions for the com- U 
puter to execute in the order in which they are written. A function has four parts : 

A retum type, here int (meaning "integer") , which specifics what kind of 
result, if any, the function will return to whoever asked for it to be exe
cuted. The word int is a reserved word in C++ (a keyword), so int cannot 
be used as the name of anything else (see §A.3 .1 ) .  

A name, here main. 

A parameter list enclosed in parentheses (see §8.2 and §8.6), here ( ) ;  in this 
case, the parameter list is empty. 

A function body enclosed in a set of "curly braces," { }, which lists the ac
tions (called .1/a/em.en/s) that the function is to perform. 

It follows that the minimal C++ program is simply 

int main() { } 

That's not of much use, though, because it doesn't do anything. The main() ("the 
main function") of our "Hello, World!" program has two statements in its body: 

cout << "Hello, World !\n" ;  II output "Hello, World ! "  
return 0; 

First it'll write Hello, World ! to the screen, and then it will return a value 0 (zero) 
to whoever called it. Since main() is called by "the system," we won't use that re
turn value. However, on some systems (notably Unix/Linux) it can be used to 
check whether the program succeeded. A zero (0} returned by main() indicates 
the program terminated successfully. 

A part of a C++ program that specifies an action and isn't an #include direc
tive (or some other preprocessor directive; see §4.4 and §A.17) is called a .statement. 

2.3 Compilation 

C++ is a compiled language. That means that to get a program to run, you must ... 1 

first translate it from the human-readable form to something a machine can U 
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"understand." That translation is done by a program called a compiler. What you 
read and write is called .source code or program text, and what the computer executes 
is called executable, o�ject code, or 11UUhine code. Typically C++ source code ftles are 
given the suffix .cpp (e.g., hello_world.cpp) or .h (as in std_lib_facilities.h), and 
object code ftles arc given the sufTtx .obj (on Wmdows) or .o (Unix) . The plain 
word cofle is therefore ambiguous and can cause confusion; use it with care only 
when it is obvious what's meant by it. Unless otherwise specified, we usc code to 
mean "source code" or even "the source code except the comments," because 
comments really are there just for us humans and are not seen by the compiler 
generating object code. 

The compiler reads your source code and tries to make sense of what you wrote. 
It looks to see if your program is grammatically correct, if every word has a de
fined meaning, and if there is anything obviously wrong that can be detected 
without trying to actually execute the program. You'll find that computers arc 
rather picky about syntax. Leaving out any detail of our program, such as an 
#include ftle, a semicolon, or a curly brace, will cause errors . Similarly, the com
piler has absolutely zero tolerance for spelling mistakes. Let us illustrate tlus with 
a series of examples that each have a single small error. Each error is an example 
of a kind of mistake we often make: 

II no #include here 
int main() 
{ 

cout << "Hello, World !\n";  
return 0; 

We didn't include something to tell the compiler what cout was, so the compiler 
complains. To correct that, let's add a header file : 

#include "std_facilities.h" 
int main() 
{ 

cout << "Hello, World!\n"; 
return 0; 
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Unfortunately, the compiler again complains : we misspelled std_lib_facilities.h. 
l11e compiler also objects to this :  

#include "std_lib_facilities.h" 
int main() 
{ 

cout << " Hello, World !\n; 
return 0; 

We didn't terminate the string with a " . The compiler also objects to this :  

#include "std_lib_facilities.h" 
integer main() 
{ 

cout << "Hello, World!\n " ;  
return 0; 

The abbreviation int is used in C++ rather than the word integer. The compiler 
doesn't like this either: 

#include "std_lib_facilities.h" 
int main() 
{ 

cout < "Hello, World !\n" ;  
return 0; 

We used < (the less-than operator) rather than << (the output operator) . The 
compiler also objects to this :  

#include "std_lib_facilities.h" 
int main() 
{ 

cout << 'Hello, World !\n'; 
return 0; 

We used single quotes rather than double quotes to delinlit the string. Fmally, the 
compiler gives an error for this : 
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#include "std_lib_facilities.h" 
int main() 
{ 

cout << "Hello, World! \n'1 
return 0; 
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We forgot to terminate the output statement with a semicolon. Note that many 
C++ statements are terminated by a semicolon ( ; ) .  The compiler needs those 
semicolons to know where one statement ends and the next begins. l11ere is no 
really short, fully correct, and nontechnical way of summarizing where senti
colons are needed. For now, just copy our pattern of use, which can be summa
rized as : "Put a semicolon after every expression that doesn't end with a right 
curly brace (}) ." 

Why do we spend two pages of good space and minutes of your precious 
time showing you examples of trivial errors in a trivial program? To make the 
point that you - like all programmers - will spend a lot of time looking for errors 
in program source text. Most of the time, we look at text with errors in it. After 
all, if we were convinced that some code was correct, we'd typically be looking at 
some other code or taking the time off. It came as a major surprise to the early 
computer pioneers that they were making mistakes and had to devote a major 
portion of their time to finding them. It is still a surprise to most newcomers to 
programming. 

When you program, you'll get quite annoyed with the compiler at times. 
Sometimes it appears to complain about unimportant details (such as a missing 
semicolon) or about things you consider "obviously right." However, the com· 
piler is usually right: when it gives an error message and refuses to produce ob· 
ject code from your source code, there is something not quite right with your 
program; that is, the meaning of what you wrote isn't precisely defined by the 
C++ standard. 

The compiler has no common sense (it isn't human) and is very picky about 
details. Since it has no common sense you wouldn't like it to try to guess what 
you meant by something that "looked OK" but didn't conform to the definition 
of C++. If it did and its guess was different from yours, you could end up spend· 
ing a lot of time trying to figure out why the program didn't do what you thought 
you had told it to do. When all is said and done, the compiler saves us from a lot 
of self-inflicted problems. It saves us from many more problems than it causes. 
So, please remember: the compiler is your friend; possibly, the compiler is the 
best friend you have when you program. 
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2.4 Linking 

A program usually consists of several separate parts, often developed by different • \ 
people. For example, the "Hello, World!" program consists of the part we wrote U 
plus parts of the C++ standard library. These separate parts (sometimes called 
lrmulttlion uni/.1) must be compiled and the resulting object code ftlcs must be 
linked together to form an executable program. The program that links such 
parts together is (unsurprisingly) called a linker: 

Ob� c»4C; 
' - hla)...;--..Obj -

EX«utablb'·p�:
lldo...,\,VOtld�eie 

' �-code.ftOinthe 
:C++ ·atandatci Jibtaiy: ' ----·� 

Please note that object code and executablcs are no/ portable among systems. For 
example, when you compile for a Wmdows machine, you get object code for 
Wmdows that will not run on a Linux machine. 

A library is simply some code - usually written by others - that we access 
using declarations found in an #included ftle. A declaration is a program statement 
specifying how a piece of code can be used; we'll examine declarations in detail 
later (e.g., §4.5.2) . 

Errors found by the compiler are called compile-lime errors, errors found by the 
linker are called link-limt• errors, and errors not found until the program is run arc 
called nm-time trmr.l or logic errors. Generally, compile-time errors are easier to un
derstand and ftx than link-time errors, and link-time errors are often easier to 
ftnd and ftx than run-time errors and logic errors. In Chapter 5 we discuss errors 
and the ways of handling them in greater detail. 
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2 . 5  Programming environments 
To program, we use a programming language. We also use a compiler to trans
late our source code into object code and a linker to link our object code into an 
executable program. In addition, we use some program to enter our source code 
text into the computer and to edit it. These are just the first and most crucial 
tools that constitute our programmer's tool set or "program development envi
ronment." 

If you work from a command-line window, as many professional program
mers do, you will have to issue the compile and link commands yourself. If in
stead you use an IDE ("interactive development environment'' or "integrated 
development environment") , as many professional programmers also do, a sim
ple click on the correct button will do the job. See Appendix D for a description 
of how to compile and link on your C++ implementation. 

IDEs usually include an editor with helpful features like color coding to help 
distinguish between comments, keywords, and other parts of your program 
source code, plus other facilities to help you debug your code, compile it, and run 
it. Debugging is the activity of finding errors in a program and removing them; 
you'll hear a lot about that along the way. 

In this book, we use VISual C++ from Microsoft as our example program 
development environment. If we just say "the compiler" or refer to parts of "the 
IDE,'' that's the system we are referring to. However, you can use any system 
that provides an up-to-date, standards-conforming implementation of C++. Most 
of what we say will, with very minor modifications, be true for all implementa
tions of C++. and the code will run everywhere. In our work, we use several dif
ferent implementations . 

.../ Drill 
So far we have talked about programming, code, and tools (such as compilers) . 
Now you have to get a program to run. This is a crucial point in this book and in 
learning to program. This is where you start to develop practical skills and good 
programming habits . The exercises for this chapter are focused on getting you ac
quainted with your software development environment. Once you get the 
"Hello, World!" program to run, you will have passed the first major milestone 
as a programmer. 

The purpose of a drill is to establish or reinforce your practical programming 
skills and give you experience with programming environment tools. Typically, a 
drill is a sequence of modifications to a single program, "growing" it from some
thing completely trivial to something that might be a useful part of a real pro
gram. A traditional set of exercises is designed to test your initiative, cleverness, 
or inventiveness. In contrast, a drill requires little invention from you. Typically, 
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sequencing is crucial, and each individual step should b e  easy (or even trivial) . 
Please don't try to be clever and skip steps; on average that will slow you down 
or even confuse you. 

You might think you understand everything you read and everything your 
Mentor or instructor told you, but repetition and practice are necessary to de· 
velop programming skills. In this regard, programming is like athletics, music, 
dance, or any skill-based craft. Imagine people trying to compete in any of those 
fields without regular practice. You know how well they would perform. Con
stant practice - for professionals that means lifelong constant practice - is the 
only way to develop and maintain a high-level practical skill. 

So, never skip the drills, no matter how tempted you are; they are essential to 
the learning process .Just start with the first step and proceed, testing each step as 
you go to make sure you are doing it right. 

Don't be alarmed if you don't understand every detail of the syntax you are 
using, and don't be afraid to ask for help from instructors or friends . Keep going, 
do all of the drills and many of the exercises, and all will become clear in due 
time. 

So, here is your first drill: 

1 .  Go to Appendix D and follow the steps required to set up a project. Set 
up an empty, console C++ project called hello_ world. 

2. Type in hello_world.cpp, exactly as specified below, save it in your prac-
tice directory, and include it in your hello_ world project. 

#include "std_lib_facilities.h" 
int main() II C++ programs start by executing the function ma in 

{ 
cout << "Hello, World!\n"; II output " Hel lo, World !"  

keep_window_open(); II wait for a character to  be entered 

return 0; 

The call to keep_window_open() is needed on some Wmdows rna· 
chines to prevent them from closing the window before you have a 
chance to read the output. This is a peculiarity/feature of Wmdows, not 
of C++. We defmed keep_window_open() in std_lib_facilities.h to sim· 
plify writing simple text programs. 

How do you find std_lib_facilities.h? If you are in a course, ask your 
instructor. If not, download it from our support site www.stroustrup.com/ 
Programming. But what if you don't have an instructor and no access 
to the web? In that case (only) , replace the #include directive with: 

#indude<iostrearn> 
#indude<string> 
#include<Yector> 



#include<algorithrn> 
#include<cmath> 
using namespace std; 
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inline void keep_window_open() { char ch; cin>>eh; } 
1bis uses the standard library directly, will keep you going until Chapter 5, 
and will be explained in detail later (§8.7). 

3. Compile and run the "Hello, World!" program. Qyite likely, something 
didn't work quite right. It very rarely does for a first attempt to usc a 
new programming language or a new programming environment. Fmd 
the problem and fix it! 1bis is a point where asking for help from a more 
experienced person is sensible, but be sure to understand what you are 
shown so that you can do it all by yourself before proceeding further. 

4. By now, you have probably encountered some errors and had to correct 
them. Now is the time to get a bit better acquainted with your compiler's 
error-detection and error-reporting facilities ! Try the six errors from §2.3 
to see how your programming environment reacts. Think of at least five 
more errors you might have made typing in your program (e.g., forget 
keep_window_open(), leave the Caps Lock key on while typing a word, 
or type a conuna instead of a semicolon) and try each to sec what hap· 
pens when you try to compile and run those versions. 

Review 
The basic idea of these review questions is to give you a chance to sec if you have 
noticed and understood the key points of the chapter. You may have to refer back 
to the text to answer a question; that's normal and expected. You may have to 
reread whole sections; that too is normal and expected. However, if you have to 
reread the whole chapter or have problems with every review question, you 
should consider whether your style of learning is effective. Are you reading too 
fast? Should you stop and do some of the Try this suggestions? Should you study 
with a friend so that you can discuss problems with the explanations in the text? 

1. What is the purpose of the "Hello, World!" program? 
2. Name the four parts of a function. 
3. Name a function that must appear in every C++ program. 
4. In the "Hello, World!" program, what is the purpose of the line return 0; ? 
5. What is the purpose of the compiler? 
6. What is the purpose of the #include directive? 
7. What does a .h sufTtx at the end of a file name signify in C++? 
8. What does the linker do for your program? 
9. What is the difference between a source ftle and an object ftle? 

10. What is an IDE and what does it do for you? 
11. If you understand everything in the textbook, why is it necessary to 

practice? 
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Most review questions have a clear answer in the chapter in which they appear. 
However, we do occasionally include questions to remind you of relevant infor
mation from other chapters and sometimes even relating to the world outside this 
book. We consider that fair; there is more to writing good software and thinking 
about the implications of doing so than fits into an individual chapter or book. 

Terms 
These terms present the basic vocabulary of programming and of C++. If you 
want to understand what people say about programming topics and to articulate 
your own ideas, you should know what each means. 

II executable main() 
<< function object code 
C++ header output 
comment IDE program 
compiler #include source code 
compile-time error library statement 
cout linker 

You might like to gradually develop a glossary written in your own words. You 
can do that by repeating exercise 4 below for each chapter. 

Exercises 
We list drills separately from exercises; always complete the chapter drill before 
attempting an exercise. Doing so will save you time. 

1 .  Change the program to output the two lines 

Hello, programming! 
Here we go! 

2. Expanding on what you have learned, write a program that lists the in
structions for a computer to find the upstairs bathroom, discussed in 
§2. 1 .  Can you think of any more steps that a person would assume, but 
that a computer would not? Add them to your list. This is a good start in 
.. thinking like a computer." Warning: For most people, "go to the bath· 
room" is a perfectly adequate instruction. For someone with no experi· 
ence with houses or bathrooms (imagine a stone-age person, somehow 
transported into your dining room) the list of necessary instructions 
could be vet)' long. Please don't use more than a page. For the benefit of 
the reader, you may add a short description of the layout of the house 
you are imagining. 

3. Write a description of how to get from the front door of your dorm room, 
apartment, house, whatever, to the door of your classroom (assuming you 
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are attending some school; if you are not, pick another target). Have a 
friend try to follow the instructions and annotate them with improve
ments as he or she goes along. To keep friends, it may be a good idea to 
"field test" those instructions before giving them to a friend. 

4. Fmd a good cookbook. Read the instructions for baking blueberry 
mufTms (if you are in a country where "blueberry mu!Tms" is a strange, 
exotic dish, use a more familiar dish instead). Please note that with a bit 
of help and instruction, most of the people in the world can bake deli
cious blueberry muffins. It is not considered advanced or difficult fine 
cooking. However, for the author, few exercises in this book are as diffi
cult as this one. It is amazing what you can do with a bit of practice. 

• Rewrite those instructions so that each individual action is in its own 
numbered paragraph. Be careful to list all ingredients and all kitchen 
utensils used at each step. Be careful about crucial details, such as 
the desired oven temperature, preheating the oven, the preparation 
of the baking sheet, the way to time the cooking, and the need to 
protect your hands when removing the muffins from the oven. 

Consider those instructions from the point of view of a cooking 
novice (if you are not one, get help from a friend who does not know 
how to cook) . Fill in the steps that the book's author (almost cer· 
tainly an experienced cook) left out for being obvious. 

Build a glossary of terms used. (What's a mu!Tm pan? What does 
preheat do? What do you mean by "oven"?) 

• Now bake some muffins and enjoy your results. 

5. Write a definition for each of the terms from "Terms." Erst try to see if you 
can do it without looking at the chapter (not likely), then look through the 
chapter to find definitions. You might find the difference between your first 
attempt and the book's version interesting. You might consult some suit
able online glossary, such as www.research.att.com/ - bs/glossary.html. By 
writing your own definition before looking it up, you reinforce the learning 
you achieved through your reading. If you have to reread a section to form 
a definition, that just helps you to understand. Fed free to use your own 
words for the definitions, and make the definitions as detailed as you think 
reasonable. Often, an example after the main definition will be helpful. You 
may like to store the definitions in a file so that you can add to them from 
the "Terms" sections of later chapters. 
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Postscript 
What's so important about the .. Hello, World!" program? Its purpose is to get us ., 
acquainted with the basic tools of programming. We tend to do an extremely � 
simple example, such as "Hello, World!," whenever we approach a new tool. 
That way, we separate our learning into two parts : first we learn the basics of our 
tools with a trivial program, and later we learn about more complicated pro· 
grams without being distracted by our tools. Learning the tools and the language 
simultaneously is far harder than doing first one and then the other. This ap· 
proach to simplifying learning a complex task by breaking it into a series of small 
(and more manageable) steps is not limited to programming and computers. It is 
common and useful in most areas of life, especially in those that involve some 
practical skill. 





Objects, Types, and Val ues 

"Fortune favors the prepared mind." 

-Louis Pasteur 

T
his chapter introduces the basics of storing and using data 

in a program. To do so, we first concentrate on reading in 

data from the keyboard. Mter establishing the fundamental no

tions of objects, types, values, and variables, we introduce several 

operators and give many examples of use of variables of types 

char, int, double, and string. 

59 



60 C H A P T E R  3 • OBJ E C T S ,  T Y P E S ,  A N D  VA l U E S 

3.1 Input 

3.2 Variables 

3.3 Input and type 

3.4 Operations and operators 

3.5 Assignment and initialization 
3.5.1 An example: delete repeated 

words 

3.1 I nput 

3.6 Composite assignment operators 
3.6.1 An example: count repeated words 

3.7 Names 

3.8 Types and objects 

3.9 Type safety 
3.9.1 Safe convenions 
3.9.2 Unsafe convenions 

The .. Hello, World!" program just writes to the screen. It produces output. It 
does not read anything; it does not get input from its user. That's rather a bore. 
Real programs tend to produce results based on some input we give them, rather 
than just doing the same thing each time we execute them. 

To read something, we need somewhere to read into; that is, we need some· 
where in the computer's memory to place what we read. We call such a "place" 
an object. An ofdect is a region of memory with a type that specifics what kind of 
information can be placed in it. A named object is called a variable. For example, 
character strings are put into string variables and integers are put into int vari
ables. You can think of an object as a "box" into which you can put a value of the 
object's type: 

int: 
age: I 42 

This would represent an object of type int named age containing the integer 
value 42. Using a string variable, we can read a string from input and write it out 
again like this : 

II read and write a first name 
#include "std_lib_facilities.h" 

int main() 
{ 

cout << "Please enter your first name (followed by 'enter') :\n" ;  
string first_name; II first_name is a variable of typ(' string 
cin >> first_name; II read characters into first_name 
cout << " liello, " << first_name << " !\n";  
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The #include and the main() are familiar from Chapter 2 .  Since the #include is 
needed for all our programs (up to Chapter 12) ,  we'll leave it out of our presen· 
tation to avoid distraction. Similarly, we'll sometimes present code that will work 
only if it is placed in main() or some other function by itself, like this: 

cout << "Please enter your first name (followed by 'enter') : \n"; 

We assume that you can figure out how to put such code into a complete pro· 
gram for testing. 

The first line of main() simply writes out a message encouraging the user to 
enter a first name. Such a message is typically called a prompt because it prompts 
the user to take an action. The next lines defme a variable of type string called 
first_name, read input from the keyboard into that variable, and write out a 
greeting. Let's look at those three lines in tum : 

string first_name; II iirst_name is ,1 variable of type string 

This sets aside an area of memory for holding a string of characters and gives it 
the nan1e first_name: 

string: 
first_name: �-.1 ___ -J 

A statement that introduces a new name into a program and sets aside memory 
for a variable is called a definition. 

The next line reads characters from input (the keyboard) into that variable: 

cin >> first_name; II read characters into name 

l11e nan1e cin refers to the standard input stream (pronounced "see·in," for 
"character input") defined in the standard library. The second operand of the >> 
operator ("get from") specifies where that input goes. So, if we type some first 
name, say Nicholas, followed by a newline, the string "Nicholas" becomes the 
value of first_name: 

string: 
first_name: I Nicholas I 
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The newline is necessary to get the machine's attention. Until a newline is en- • 1 
tered (the Enter key is hit) , the computer simply collects characters. That "delay" U 
gives you the chance to change your mind, erase some characters, and replace 
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them with others before hitting Enter. The newline will not be part of the string 
stored in memory. 

Having gotten the input string into first_name, we can use it: 

cout << " Hello, " << first_name << " !\n" ;  

"'bis prints Hello, followed by Nicholas (the value of first_name) followed by I 
and a newline ('\n') on the screen: 

Hello, Nicholas! 

If we had liked repetition and extra typing, we could have written three separate 
output statements instead: 

cout << "Hello, " ;  
cout << first_name; 
cout << " !\n" ;  

However, we are indifferent typists, and - more importantly - strongly dislike 
needless repetition (because repetition provides opportunity for errors) ,  so we 
combined those three output operations into a single statement. 

Note the way we use quotes around the characters in " Hello, " but not in 
first_name. We use quotes when we want a literal string. When we don't quote, 
we refer to the value of something with a name. Consider: 

cout << "first_name" << " is " << first_name; 

Here, "first_name" gives us the ten characters first_name and plain first_name 
gives us the value of the variable first_name, in this case, Nicholas. So, we get 

first_name is Nicholas 

3.2 Variables 

Basically, we can do nothing of interest with a computer without storing data in 
memory, the way we did it with the input string in the example above. The 
"places" in which we store data are called oijec/s. To access an object we need a 

name. A named object is called a vm-iahle and has a specific type (such as int or 
string) that determines what can be put into the object (e.g . •  123 can go into an 
int and " Hello, World!\n " can go into a string) and which operations can be ap· 
plied (e.g., we can multiply ints using the • operator and compare strings using 
the <= operator) . The data items we put into variables arc called tta/ut".l. A state· 
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mem that defmes a variable is (unsurprisingly) called a definition, and a definition 
can (and usually should) provide an initial value. Consider 

string name = "Annemarie";  
int number_of_steps = 39; 

You can visualize these variables like this: 

int: string: 
number_of_steps: I 39 name: I Annemarle I 

You cannot put values of the wrong type into a variable: 

string name2 = 39; II error: 39 isn't a string 
int number_of_steps = "Annemarie"; II error: "Annemarie" is not an int 

The compiler remembers the type of each variable and makes sure that you use 
it according to its type, as specified in its definition. 

C++ provides a rather large number of types (see §A.8) . However, you can 
write perfectly good programs using only five of those : 

int number_of_steps = 39; 
double flying_time = 3.5; 
char decimal_point = 1 • 1 ; 
string name = "Annemarie";  
bool tap_on = true; 

II int for integers 
II double for floating-point numbers 
II char for individual characters 
II string for character strings 
II bool for logical variables 

The reason for the name double is historical : double is short for "double
precision floating point." Floating point is the computer's approximation to the 
mathematical concept of a real number. 

Note that each of these types has its own characteristic style of literals: 

39 
3.5 
I I  

"Annemarie" 
true 

II int:  an integer 
II double: a floating-point number 
II char: an i ndividual character enc losed in single quotes 
II string: a sequence of characters del imited by double quotes 
II bool: either true or false 

That is, a sequence of digits (such as 1234, 2, or 976) denotes an integer, a single 
character in single quotes (such as 1 1 ' ,  '@1, or 1x1 ) denotes a character, a sequence 
of digits with a decimal point (such as 1 .234, 0.12, or .98) denotes a floating-point 
value, and a sequence of characters enclosed in double quotes (such as "1234", 
"Howdy! ", or "Annernarie") denotes a string. For a detailed description of literals 
see §A.2. 
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3 . 3  Input and type 

The input operation >> ("get from") is sensitive to type; that is, it reads according 
to the type of variable you read into. For example: 

II read name and age 
int main() 
{ 

cout << "Please enter your first name and age\n";  
string first_name; II string variable 
int age; II i nteger variable 
cin >> first_name; II read a string 
cin >> age; II read an integer 
cout << "Hello, " << first_name << " (age " << age << ")\n"; 

So, if you type in Carlos 22 the >> operator will read Carlos into first_name, 22 
into age, and produce this output: 

Hello, Carlos (age 22) 

Why won't it read (all of) Carlos 22 into first_name? Because, by convention, 
reading of strings is terminated by what is called whitespace, that is, space, newline, 
and tab characters. Otherwise, whitespace by default is ignored by >>. For exam
ple, you can add as many spaces as you like before a number to be read; >> will 
just skip past them and read the number. 

If you type in 22 Carlos, you'll see something that might be surprising until 
you think about it. The 22 will be read into first_name because, after all, 22 is a 
sequence of characters. On the other hand, Carlos isn't an integer, so it will not 
be read. The output will be 22 followed by some random number, such as -96739 
or 0. Why? You didn't give age an initial value and you didn't succeed in reading 
a value into it. Therefore, you get some "garbage value" that happened to be in 
that part of memory when you started executing. In §10.6, we look at ways to 
handle "input format errors." For now, let's just initialize age so that we get a pre
dictable value if the input fails : 

II read name and age (2nd version) 
int main() 
{ 

cout << "Please enter your first_ name and age\n";  
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string first_ name = 11 lll " ;  II string variable 
II ("???" means "don't know the name") 

int age = -1;  II in teger variable (- 1 means "don't know the age") 
cin >> first_name >> age; II read a string followed by an integer 
cout << "Hello, " << first_name << 11 (age 11 << age << ")\n"; 

Now the input 22 Carlos will output 

Hello 22 (age -1) 

Note that we can read several values in a single input statement, just as we can write 
several values in a single output statement. Note also that << is sensitive to type, just 
as >> is, so we can output the int variable age and the character literal '\n1 as well as 
the string variable first_ name and the string literals "Hello, " and " (age ". 
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A string read using >> is (by default) terminated by whitespace; that is, it • 1 
reads a single word. But sometimes, we want to read more than one word. There U 
are of course many ways of doing this. For example, we can read a name consist-
ing of two words like this: 

int main() 
{ 

cout << "Please enter your first and second names\n"; 
string first; 
string second; 
cin >> first >> second; II read two strings 
cout << "Hello, 11 << first << 1 1 << second << 1\n 1; 

We simply used >> twice, once for each name. When we want to write the names 
to output we must insert a space between them. 

T R Y  T H I S  

__.. Get the "name and age" example to run. Then, modify it to write out the age 
in months: read the input in years and multiply (using the • operator) by 12. 
Read the age into a double to allow for children who can be very proud of 
being 5.5 years old rather than just 5. 
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3.4 Operations and operators 
In addition to specifying what values can be stored in a variable, the type of a 
variable determines what operations we can apply to it and what they mean. For 
example: 

int count; 
cin >> count; 
string name; 
cin >> name; 

int c2 = count+2; 
string s2 = name + " Jr. " ;  

in t  c3 = count-2; 
string s3 = name - "Jr. "; 

II >> reads an integer into count 

II >> reads a string into name 

II +  adds integers 

II +  appends characters 

II - subtracts integers 
II error: - isn't defi ned for stri ngs 

By "error" we mean that the compiler will reject a program trying to subtract 
strings . The compiler knows exactly which operations can be applied to each vari
able and can therefore prevent many mistakes. However, the compiler doesn't 
know which operations make sense to you for which values, so it will happily ac
cept legal operations that yield results that may look absurd to you. For example: 

int age = -100; 

It may be obvious to you that you can't have a negative age (why not?) but no
body told the compiler, so it'll produce code for that definition. 

Here is a table of useful operators for some common and useful types: 

assignment 

addition 

concatenation 

subtraction 

multiplication 

division 

remainder (modulo) 
increment by 1 
decrement by 1 
increment by n 

boo I 

= 

char 

= 

int 

= 
+ 

% 
++ 

+= n 

double string 

= = 
+ 

+ 

++ 

+= n 
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boo I char int double string 

add to end += 
decrement by n -= n  -= n  
multiply and assign *= *= 
divide and assign I= I= 
remainder and assign %= 
read from s into x S >> X  S >> X  S >> X  S >> X  S >> X  
write x to s S << X  S << X  S << X  S << X  S << X  
equals - -- -- - --
not equal I= I= I= != I= 
greater than > > > > > 
greater than or equal >= >= >= >= >= 
less than < < < < < 
less than or equal <= <= <= <= <= 

A blank square indicates that an operation is not directly available for a type 
(though there may be indirect ways of using that operation; see §3.7). We'll ex
plain these operations, and more, as we go along. The key points here arc that 
there are a lot of useful operators and that their meaning tends to be the same for 
similar types. 

Let's try an example involving floating-point numbers : 

II simple program lo exercise operalors 
int main() 
{ 

cout << "Please enter a floating-point value: 11 ; 
double n; 
cin >> n; 
cout << 11n = " << n 

<< ''\nn+1 = 11 << n+1 
<< ''\nthree times n == " << 3*n 
<< 11\ntwice n = 11 << n+n 
<< 11\nn squared = " << n*n 
<< "\nhalf of n == 1 1  << 

nf1. 
<< 11\nsquare root of n == " << sqrt(n) 
<< endl; II another name for newline ("end of l ine") 

Obviously, the usual arithmetic operations have their usual notation and mean
ing as we know them from primary school. Naturally, not everything we might 
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want to do to a floating-point number, such as taking its square root, is available 
as an operator. Many operations are represented as nan1ed functions . In this case, 
we use sqrt() from the standard library to get the square root of n :  sqrt(n). The 
notation is familiar from math. We'll use functions along the way and discuss 
them in some detail in §4.5 and §8.5. 

T R Y T H I S 

( . 
_ • Get this little program to run. Then, modify it to read an int rather than a 

double. Note that sqrt() is not defined for an int so assign n to a double and 
take sqrtO of that. Also, "exercise" some other operations. Note that for ints I 
is integer division and % is remainder (modulo) , so that 512 is 2 (and not 2.5 
or 3) and 5%2 is 1. The definitions of integer •, /, and % guarantee that for 
two positive ints a and b we have alb • b + a%b == a. 

Strings have fewer operators, but as we'll see in Chapter 23, they have plenty of 
named operations. However, the operators they do have can be used convention
ally. For example: 

II read first and second name 
int main() 
{ 

cout << "Please enter your first and second names\n";  
string first; 
string second; 
cin >> first >> second; 
string name = first + 1 1 + second; 
cout << "Hello, " << name << 1\n 1;  

II read two strings 
II concatenate strings 

For strings + means concatenation; that is, when s1 and s2 are strings, s1+s2 is a 
string where the characters from s1 are followed by the characters from s2. For 
example, if s1 has the value "Hello" and s2 the value "World" then s1 +s2 will 
have the value "HelloWorld" .  Comparison of strings is particularly useful: 

II read and compare names 
int main() 
{ 

cout << "Please enter two names\n"; 
string first; 
string second; 
cin >> first >> second; II read two strings 
if (first == second) cout << "that's the same name twice\n"; 
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if (first < second) 
cout << first << 11 is alphabetically before 11 << second <<'\n';  

i f  (first > second) 
cout << first << 11 is alphabetically after 11 << second <<'\n'; 

Here, we used an if-statement, which will be explained in detail in §4.4. 1 . 1 ,  to se
lect actions based on conditions. 

3.5 Assignment and initial ization 
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In many ways, the most interesting operator is assignment, represented as =. It • 1 

gives a variable a new value. For example: U 

int a =  3; II a starts out wi th the value 3 

a: 3 

a =  4; II a gets the value 4 ("becomes 4") 

int b = a; 

b = a+S; 

a = a+7; 

a: I 4 

II b starts out with a copy of a's value (that is, 4) 

a: 4 
b:  4 

II b gets the value a+S (that is, 9) 

a: 4 
b: 9 

II a gets the value a+7 (that is, 1 1 )  

a: 11 
b:  9 

That last assignment deserves notice. First of all it clearly shows that = does not � 
mean equals - clearly, a doesn't equal a+7. It means assignment, that is, to place U 
a new value in a variable. What is done for a::a+7 is the following: 

1 .  l<irst, get the value of a; that's the integer 4. 

2. Next, add 7 to that 4, yielding the integer 1 1 . 

3. Finally, put that 1 1  into a. 
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We can also illustrate assignments using strings: 

string a =  "alpha" ; II a starts out with the value "alpha" 

a =  "beta" ; 

string b = a; 

b = a+"gamma" ; 

a =  a+"delta"; 

a: I alpha 

II a gets the value "beta" (becomes "beta") 

a: I beta 

II b starts out with a copy of a's value ( that is, "beta") 

a: beta 
b: beta 

II b gets the value a+"gamma" uhat is, "hetagamma"l 

a: beta 
b: betagamma 

II a gets the value a+"delta" uhat is, "betadelta" l  

a: betadelta 
b: betagamma 

Above, we use "starts out with" and "gets" to distinguish two similar, but logi
cally distinct, operations: 

Initialization (giving a variable its initial value) 

Assignment (giving a variable a new value) 

These operations are so similar that C++ allows us to use the same notation (the 
=) for both: 

int y = 8; 

X :  9; 

string t = "howdy! " ;  
s = "G'day"; 

II init ialize y with 8 
II assign 9 to x 

II init ial ize t with "howdy!"  
II assign "G'day" to  s 

However, logically assignment and initialization are different. You can tell the two 
apart by the type specification (like int or string) that always starts an initializa
tion; an assignment docs not have that. In principle, an initialization always finds 
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the variable empty. On the other hand, an assignment (in principle) must clear 
out the old value from the variable before putting in the new value. You can 
think of the variable as a kind of small box and the value as a concrete thing, 
such as a coin, that you put into it. Before initialization, the box is empty, but 
after initialization it always holds a coin so that to put a new coin in, you (i.e., the 
assignment operator) first have to remove the old one ("destroy the old value") -
and you cannot leave the box empty. Things are not quite this literal in the com
puter's memory, but it's not a bad way of thinking of what's going on. 

3.5.1 An example: delete repeated words 
Assignment is needed when we want to put a new value into an object. When 
you think of it, it is obvious that assignment is most useful when you do things 
many times. We need an assignment when we want to do something again with a 
different value. Let's have a look at a little program that detects adjacent repeated 
words in a sequence of words. Such code is part of most grammar checkers: 

int main() 
{ 

string previous = " " ;  II previous word; init ial ized l o  "not a word" 
string current; II currenl word 
while (cin>>eurrent) { II read a stream of words 

if (previous == current) II check if the word is the same as last 
cout << "repeated word : " << current << '\n '; 

previous = current; 

This program is not the most helpful since it doesn't tell where the repeated word 
occurred in the text, but it'll do for now. We will look at this program line by line 
starting with 

string current; II cu rrent word 

This is the string variable into which we immediately read the current (i.e., most 
recently read) word using 

while (cin>>eurrent) 

This construct, called a while-statement, is interesting in its own right, and we'll ex
amine it furtl1er in §4.4.2.1 .  The while says that the statement after (cin>>current) 
is to be repeated as long as the input operation cin>>current succeeds, and 
cin>>eurrent will succeed as long as there are characters to read on the standard 
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input. Remember that for a string, >> reads whitespace-separated words. You ter
minate this loop by giving the program an end-of-input character (usually referred 
to as end cf.file). On a Wmdows machine, that's Ctrl+Z (Control and Z pressed to
gether) followed by an Enter (return). On a Unix or Linux machine that's Ctrl+D 
(Control and D pressed together). 

So, what we do is to read a word into current and then compare it to the pre
vious word (stored in previous). If they are the same, we say so: 

if (previous == current) II check if the word is the same as last 
cout << "repeated word : " << current << '\n' ;  

Then we have to get ready to do this again for the next word. We do that by 
copying the current word into previous: 

previous = current; 

This handles all cases provided that we can get started. What should this code do 
for the first word where we have no previous word to compare? This problem is 
dealt with by the definition of previous: 

string previous = " " ;  II previous word; in i t ia l ized t o  "not a word" 

The " " contains only a single character (the space character, the one we get by 
hitting the space bar on our keyboard) . The input operator >> skips whitespace, 
so we couldn't possibly read that from input. Therefore, the first time through 
the while-statement, the test 

if (previous == current) 

fails (as we want it to) . 
One way of understanding program flow is to "play computer," that is, to fol

low the program line for line, doing what it specifies. Just draw boxes on a piece 
of paper and write their values into them. Change the values stored as specified 
by the program. 

T R Y T H I S  

Execute this program yourself using a piece of paper. Use the input "The cat cat 
jumped". Even experienced programmers use this teclmique to visualize the ac· 
tions of small sections of code that somehow don't seem completely obvious. 
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TRY T H I S  

- . Get the "repeated word detection program" to run. Test it with the sentence 
"She she laughed He He He because what he did did not look very very 
good good". How many repeated words were there? Why? What is the defi
nition of word used here? What is the definition of repeated word? (For exam
ple, is "She she" a repetition?) 

3.6 Composite assignment operators 
Incrementing a variable (that is. adding 1 to it) is so common in programs that 
C++ provides a special syntax for it. For example: 

++counter 

means 

counter = counter + 1 

There are many other common ways of changing the value of a variable based on 
its current value. For example, we might like to add 7 to it, to subtract 9, or to mul
tiply it by 2. Such operations are also supported directly by C++. For example: 

a += 7; 
b -= 9; 
c *= 2; 

II means a =  a+7 
II means b = b-9 
II means c = c*2 

In general, for any binary operator oper, a oper= b means a =  a oper b (§A.S) . 
For starters, that rule gives us operators +=, -=, *=, 1=, and %=. l1lls provides a 
pleasantly compact notation that directly reflects our ideas. For example, in many 
application domains I= and %= are referred to as "scaling." 

3.6.1 An example: count repeated words 
Consider the example detecting repeated adjacent words above. We could im
prove that by giving an idea of where the repeated word was in the sequence. A 
simple variation of that idea simply counts the words and outputs the count for 
the repeated word: 

int main() 
{ 
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int number_of_words = 0; 
string previous = " "; II not a word 
string current; 
while (cin>>eurrent) { 

++number_of_words; II increase word count 
if (previous == current) 

cout << "word number " << number_of_words 
<< " repeated: "<< current << '\n'; 

previous = current; 

We start our word counter at 0. Each time we see a word, we increment that 
counter: 

++number_of_words; 

That way, the first word becomes number 1, the next number 2, and so on. We 
could have accomplished the same by saying 

number_of_words += 1 ;  

or even 

number_of_words = number_of_words+1 ; 

but ++number_of_words is shorter and expresses the idea of incrementing directly. 
Note how similar this program is to the one from §3.5.1 . Obviously, we just 

took the program from §3.5 . 1  and modified it a bit to serve our new purpose. 
That's a very common technique: when we need to solve a problem, we look for 
a similar problem and use our solution for that with suitable modification. Don't 
start from scratch unless you really have to. Using a previous version of a pro
gram as a base for modification often saves a lot of time, and we benefit from 
much of the effort that went into the original program. 

3.7 Names 
We name our variables so that we can remember them and refer to them from 
other parts of a program. What can be a name in C++? In a C++ program, a 
name starts with a letter and contains only letters, digits, and underscores. For 
example: 
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X 
number_of_elements 
Fourier _transform 
z2 
Polygon 

The following are not names: 

2x 
time$to$market 
Start menu 

II a name must start with a letter 
II $  is not il letter, d igit, or underscore 
II space is not a letter, digit, or underscore 

When we say "not names" we mean that a C++ compiler will not accept them as 
names. 
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If you read system code or machine-generated code, you might see names fJ 
starting with underscores, such as _foo. Never write those yourself; such names 
arc reserved for implementation and system entities. By avoiding leading under
scores, you will never fmd your names clashing with some name that the imple
mentation generated. 

Names are case sensitive; that is, uppercase and lowercase letters are distinct, 
so x and X are different names. This little program has at least four errors: 

#include "std_lib_facilities.h" 

int Main() 
{ 

String s =  "Goodbye, cruel world ! " ;  
cOut << S << '\n'; 

It is usually not a good idea to defme names that differ only in tl1e case of a char
acter, such as one and One; that will not confuse a compiler, but it can easily 
confuse a progranuner. 

T R Y  T H I S  

• Compile the "Goodbye, cruel world !" program and examine the error mes
sages. Did the compiler find all the errors? What did it suggest as the prob
lems? Did the compiler get confused and diagnose more than four errors? 
Remove the errors one by one, starting with the lexically first, and see how 
the error messages change (and improve) . 
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The C++ language reserves many (about 70) names as "keywords." We list them 
in §A.3. 1 .  You can't use those to name your variables, types, functions, etc. For 
example: 

int if = 7; II error: " i f" is a keyword 

You can use names of facilities in the standard library, such as string, but you 
shouldn't. Reuse of such a common name will cause trouble if you should ever 
want to use the standard library: 

int string = 7; II this wi l l  lead to trouble 

When you choose names for your variables, functions, types, etc., choose mean
ingful names; that is, choose names that will help people understand your pro
gram. Even you will have problems understanding what your progran1 is 
supposed to do if you have littered it with variables with "easy to type" names 
like x1 ,  x2, s3, and p7. Abbreviations and acronyms can confuse people, so use 
them sparingly. These acronyms were obvious to us when we wrote them. but we 
expect you'll have trouble with at least one: 

mtbf 
TLA 
myw 
NBV 

We expect that in a few months, we'll also have trouble with at least one. 
Short names, such as x and i, are meaningful when used conventionally; that 

is, x should be a local variable or a parameter (see §4.5 and §8.4) and i should be 
a loop index (see §4.4.2.3). 

Don't use overly long names; they are hard to type, make lines so long that 
they don't fit on a screen, and are hard to read quickly. These are probably OK: 

partial_ sum 
element_ count 
stable_partition 

These are probably too long: 

the_number_of_elements 
remaining_free_slots_in_symbol_table 

Our "house style" is to use underscores to separate words in an identifier, such as 
element_count, rather than alternatives, such as elementCount and Element
Count. We never use names with all capital letters. such as ALL_CAPITAL_LETTERS, 
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because that's conventionally reserved for macros (§27.8 and §A. 17.2), which we 
avoid. We usc an initial capital letter for types we define, such as Square and 
Graph. The C++ language and standard library don't use capital letters. so it's int 
rather than lnt and string rather than String. Thus, our convention helps to mini
mize confusion between our types and the standard ones. 
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Avoid names that are easy to mistype, misread, or confuse. For example: 
f.J 

Name 
foo 
f1 

names 
fOO 
fl 

nameS 
fl 
fi 

The characters 0, o, 0, 1, I, I arc particularly prone to cause trouble. 

3.8 Types and objects 
The notion of type is central to C++ and most other programming languages. 
Let's take a closer and slightly more technical look at types, specifically at the 
types of the objects in which we store our data during computation. It'll save time 
in the long run, and it may save you some confusion. 

A 1)'/Je defines a set of possible values and a set of operations (for an object). 

An of?jec/ is some memory that holds a value of a given type. 

A value is a set of bits in memory interpreted according to a type. 

A variable is a named object. 

A declaraHon is a statement that gives a name to an object. 

A definition is a declaration that sets aside memory for an object. 

Informally, we think of an object as a box into which we can put values of a given 
type. An int box can hold integers, such as 7, 42, and -399. A string box can hold 
character string values, such as "lnteroperability", "tokens : !@#$%A&*", and 
"Old McDonald had a farm".  Graphically, we can think of it like this: 

int a = 7; a: 7 

int b = 9; b: 9 

char c = 'a'; c: 0 
double x = 1 .2; x: I 1.2 

string s1 = "Hello, World! " ; s1 : 13 Hello, World! 

string s2 = "1 .2"; s2: 3 1 .2 
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The representation of a string is a bit more complicated than that of an int be
cause a string keeps track of the number of characters it holds. Note that a 
double stores a number whereas a string stores characters. For example, x stores 
the number 1 .2, whereas s2 stores the three characters 11 1, 1 . ' , and '21 • The quotes 
for character and string literals are not stored. 

Every int is of the same size; that is, the compiler sets aside the same ftxed 
amount of memory for each int. On a typical desktop computer, that amount is 4 
bytes (32 bits) .  Similarly, bools, chars, and doubles are ftxed size. You'll typically 
fmd that a desktop computer uses a byte (8 bits) for a bool or a char and 8 bytes 
for a double. Note that different types of objects take up different amounts of 
space. In particular, a char takes up less space than an int, and string differs from 
double. int, and char in that different strings take up different amounts of space. 

The meaning of bits in memory is completely dependent on the type used to 
access it. Think of it this way: computer memory doesn't know about our types; 
it's just memory. The bits of memory get meaning only when we decide how that 
memory is to be interpreted. Tilis is similar to what we do every day when we usc 
numbers. What does 12.5 mean? We don't know. It could be $12.5 or 12.5cm or 
12.5gal lons. Only when we supply the unit does the notation 12.5 mean anything. 

For example, the very same bits of memory that represent the value 120 when 
looked upon as an int would be 1X1 when looked upon as a char. If looked at as a 
string, it wouldn't make sense at all and would become a run-time error if we tried 
to use it. We can illustrate this graphically like this, using 1 and 0 to indicate the 
value of bits in memory: 

I oooooooo oooooooo oooooooo 01111000 I 
This is the setting of the bits of an area of memory (a word) that could be read as 
an int (120) or as a char (1x', looking at the rightmost 8 bits only) . A bit is a unit 
of computer memory that can hold the value 0 or 1. For the meaning of binary 
numbers, see §A.2.1 . 1 .  

3.9 Type safety 

Every object is given a type when it is defined. A program - or a part of a pro
gram - is type-safe when objects are used only according to the rules for their 
type. Unfortunately, there are ways of doing operations that are not type-safe. For f.J example, using a variable before it has been initialized is not considered type-safe: 

int main() 
{ 

double x; II we "forgot" to in i t ia l ize: 
II the va lue of x is undefined 
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double y = x; 
double z = 2.0+x; 

II the value oi y is undefined 
II the meaning of + and the value oi z are undefined 

An implementation is even allowed to give a hardware error when the uninitialized 
x is used. Always initialize your variables ! There are a few - very few - exceptions 
to this rule, such as a variable we immediately use as the target of an input opera
tion, but always to initialize is a good habit that'll save you a lot of grief. 

Complete type safety is the ideal and therefore the general rule for the lan
guage. Unfortunately, a C++ compiler carmot guarantee complete type safety, 
but we can avoid type safety violations through a combination of good coding 
practice and run-time checks. The ideal is never to use language features that the 
compiler crumot prove to be safe: static type safety. Unfortunately, that's too re
strictive for most interesting uses of programming. The obvious fallback, that the 
compiler implicitly generates code that checks for type safety violations and 
catches all of them, is beyond C++. When we decide to do things that are (type) 
unsafe, we must do some checking ourselves. We'll point out such cases, as we 
get to them. 
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The ideal of type safety is incredibly important when writing code. That's why (_j 
we spend time on it this early in the book. Please note the pitfalls and avoid them. 

3.9.1 Safe conversions 
In §3.4, we saw that we couldn't directly add chars or compare a double to an 
int. However, C++ provides an indirect way to do both. When needed, a char is 
converted to an int and atl int is converted to a double. For example: 

char c = 1X1i 
int i1 = c; 
int i2 = 1X1; 

Here both i1 and i2 get the value 120, which is the integer value of the character 
1X1 in the most popular 8-bit character set, ASCII. This is a simple and safe way 
of getting the numeric representation of a character. We call this char-to-int con
version safe because no information is lost; that is, we can copy the resulting int 
back into a char and get the original value: 

char c2 = i1 ; 
COU( << C << I I << i1 << I I << c2 << 1\n1; 

This will print 

X 120 X 
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In this sense - that a value is always converted to an equal value or (for doubles) 
to the best approximation of an equal value - these conversions are safe: 

bool to char 
bool to int 
bool to double 
char to int 
char to double 
int to double 

The most useful conversion is int to double because it allows us to mix ints and 
doubles in expressions : 

double d1 = 2.3; 
double d2 = d1+2; 11 2  is converted to 2.0 beiore add ing 
if (d1 < 0) II 0 is converted to 0.0 before comparison 

error("d1 is negative"); 

For a really large int, we can (for some computers) suffer a loss of precision when 
converting to double. This is a rare problem. 

3.9.2 Unsafe conversions 

Safe conversions are usually a boon to the programmer and simplify writing 
code. Unfortunately, C++ also allows for (implicit) unsafe conversions. By un
safe, we mean that a value can be implicitly turned into a value of another type 
that docs not equal the original value. For example: 

int main() 
{ 

int a =  20000; 
char c = a; II try to squeeze a large int into a smal l  char 
int b = c; 
if (a ! =  b) II != means "not equa l" 

cout << "oops! : " << a << " !=" << b << '\n'; 
else 

cout << "Wow! We have large characters\n " ;  

Such conversions are also called "narrowing" conversions, because tl1ey put a 
value into an object that may be too small ("narrow") to hold it. Unfortunately, 
few compilers warn about the unsafe initialization of tl1e char with an int. The 
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problem is that an int is typically much larger than a char, so that it can (and in 
this case does) hold an int value that cannot be represented as a char. Try it to 
sec what value b gets on your machine (32 is a common result) ; better still, 
experiment: 

int main() 
{ 

double d =0; 
while (cin>>d) { II repeat the statements below 

II as long as we type in numbers 
int i =  d; II try to squeeze a double into an int 
char c = i; II try to squeeze an int into a char 
int i2 = c; II get the integer va lue of the character 
cout << "d==" << d II the original double 

<< " i="<< i II converted to int 
<< " i2=" << i2 II int va lue of char 
<< " char(" << c << ")\n"; II the chcl r  

The while-statement that we usc to allow many values to be tried will be ex
plained in §4.4.2.1 . 

T R Y  T H I S  

' _ __., Run this program with a variety of inputs. Try small values (e.g., 2 and 3) ; 

try large values Oarger than 127, larger than 1000) ;  try negative values; try 
56; try 89; try 128; try non-integer values (e.g., 56.9 and 56.2). In addition to 
showing how conversions from double to int and conversions from int to 
char are done on your machine, this program shows you what character (if 
any) your machine will print for a given integer value. 

You'll find that many input values produce "unreasonable" results. Basically, we 
are trying to put a gallon into a pint pot (about 4 liters into a SOOml glass) . All of 
the conversions 

double to int 
double to char 
double to bool 
int to char 
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int to bool 
char to bool 
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are accepted by the compiler even though they are unsafe. They arc unsafe in the 
sense that the value stored might differ from the value assigned. Why can this be 
a problem? Because often we don't suspect that an unsafe conversion is taking 
place. Consider: 

double x = 2.7; 
II lots oi code 
int y = x; II y becomes 2 

By the time we define y we may have forgotten that x was a double. or we may 
have temporarily forgotten that double-ta- int conversion truncates (always 
rounds down) rather than using the conventional 4/5 rounding. What happens is 
perfectly predictable, but there is nothing in the int y = x;  to remind us that infor
mation (the .7) is thrown away. 

Conversions from int to char don't have problems with truncation - neither 
int nor char can represent a fraction of an integer. However, a char can hold only 
very small integer values. On a PC, a char is 1 byte whereas an int is 4 bytes : 

char: 0 
in t: r-1 ......,1,..-......,,..-......,r---1 

So, we can't put a large number, such as 1000, into a char without loss of infor
mation: the value is "narrowed." For example: 

int a = 1000; 
char b = a; II b becomes - 2 4  (on some machines) 

Not all int values have char equivalents, and the exact range of char values de
pends on the particular implementation. On a PC the range of char values is 
[-128: 1 27]. but only [0,1 27] can be used portably because not every computer is 
a PC, and different computers have different ranges for their char values, such as 
[0:255] .  

Why do people accept the problem of narrowing conversions? The major 
reason is history: C++ inherited narrowing conversions from its ancestor lan
guage, C, so from day one of C++, there existed much code that depended on 
narrowing conversions. Also, many such conversions don't actually cause prob
lems because the values involved happen to be in range. and many programmers 
object to compilers .. telling them what to do." In particular, the problems with un-
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safe conversions are often manageable in small programs and for experienced 
progranuners. TI1ey can be a source of errors in larger programs, though, and a 
significant cause of problems for novice programmers. However, compilers can 
warn about narrowing conversions - and many do. 

So what should you do if you think that a conversion might lead to a bad 
value? You simply check the value before assigning as we did in the first example 
in this section. See §5.6.4 and §7.5 for a simplified way of doing such checking . 

.../ Drill 
After each step of this drill, run your program to make sure it is really doing what 
you expect it to. Keep a list of what mistakes you make so that you can try to 
avoid those in the future. 

1 .  111is drill is to write a program that produces a simple form letter based 
on user input. Begin by typing the code from §3.1 prompting a user to 
enter his or her first name and writing "Hello, first_ name" where 
first_name is the name entered by the user. Then modify your code as 
follows: change the prompt to "Enter the name of the person you want 
to write to" and change the output to "Dear first_name,". Don't forget 
the comma. 

2. Add an introductory line or two, like "How are you? I am fine. I miss 
you." Be sure to indent the first line. Add a few more lines of your choos
ing - it's your letter. 

3. Now prompt the user for the name of another friend, and store it in 
friend_name. Add a line to your letter: "Have you seen friend_name 
lately?" 

4. Declare a char variable called friend_sex and initialize its value to 0. 
Prompt the user to enter an m if the friend is male and an f if the friend is 
female. Assign the value entered to the variable friend_sex. Then use 
two if-statements to write the following: 

If the friend is male, write "If you see friend_name please ask him to call 
me." 

If the friend is female, write "If you see friend_name please ask her to 
call me." 

5. Prompt the user to enter the age of the recipient and assign it to an int 
variable age. Have your program write "I hear you just had a birthday 
and you are age years old." If age is 0 or less or 1 10 or more, call 
error("you're kidding! "). 
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6 .  Add this to your letter: 

If your friend is under 12, write "Next year you will be age+ 1." 

If your friend is 17, write "Next year you will be able to vote." 

If your friend is over 70, write "I hope you are enjoying retirement." 

Check your program to make sure it responds appropriately to each kind 
of value. 

7. Add "Yours sincerely:' followed by two blank lines for a signature, fol
lowed by your name. 

Review 
1 .  What is meant by the term prompt? 
2. Which operator do you use to read into a variable? 
3. If you want the user to input an integer value into your program for a 

variable named number, what are two lines of code you could write to 
ask the user to do it and to input the value into your program? 

4. What is \n called and what purpose does it serve? 
5. What terminates input into a string? 
6. What terminates input into an integer? 
7. How would you write 

cout << "Hello, ";  
cout << first_ name; 
cout << " !\n"; 

as a single line of code? 
8. What is an object? 
9. What is a literal? 

10. What kinds of literals are there? 
1 1 . What is a variable? 
12. What are typical sizes for a char, an int, and a double? 
13. What measures do we use for the size of small entities in memory, such 

as ints and strings? 
14. What is the difference between = and =? 
15. What is a definition? 
16. What is an initialization and how does it differ from an assignment? 
1 7. What is string concatenation and how do you make it work in C++? 
18. Which of the following are legal names in C++? If a name is not legal, 

why not? 

This_little_pig 
latest thing 
MiniMineMine 

This_1_is fine 
the_$12_method 
number 

2_For_1_special 
_this_is_ok 
correctl 
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19. Give five examples o f  legal names that you shouldn't use because they 
arc likely to cause confusion. 

20. What are some good rules for choosing names? 
2 1 .  What is type safety and why is it important? 
22. Why can conversion from double to int be a bad thing? 
23. Define a rule to help decide if a conversion from one type to another is 

safe or unsafe. 

Terms 
assignment 
cin 
concatenation 
conversiOn 
declaration 
decrement 

Exercises 

definition 
increment 
initialization 
name 
narrowing 
object 

operation 
operator 
type 
type safety 
value 
variable 

1 .  If you haven't done so already, do the Try this exercises from this chap
ter. 

2. Write a program in C++ that converts from miles to kilometers. Your 
program should have a reasonable prompt for the user to enter a number 
of miles. Hint: There are 1 .609 kilometers to the mile. 

3. Write a program that doesn't do anything, but declares a number of vari
ables with legal and illegal names (such as int double = 0; ) ,  so that you 
can see how the compiler reacts. 

4. Write a program that prompts the user to enter two integer values. Store 
these values in int variables named val1 and vall. Write your program to 
determine the smallest, largest, sum, difference, product, and ratio of 
these values and report them to the user. 

5. Modify the program above to ask the user to enter floating-point values 
and store them in double variables. Compare the outputs of the two pro
grams for some inputs of your choice. Are the results the same? Should 
they be? What's the difference? 

6. Write a program that prompts the user to enter three integer values, and 
then outputs the values in numerical sequence separated by commas. So, 
if the user enters the values 10 4 6, the output should be 4, 6, 10. If two 
values are the same, they should just be ordered together. So, the input 4 
5 4 should give 4, 4, 5. 

7. Do exercise 6, but with three string values. So, if the user enters the val
ues "Steinbeck", "Hemingway", "Fitzgerald", the output should be 
"Fitzgerald, Hemingway, Steinbeck". 
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8. Write a program to test an integer value to determine if it is odd or even. 
As always, make sure your output is clear and complete. In other words, 
don't just output "yes" or "no." Your output should stand alone, like 
"The value 4 is an even number." Hint: See the remainder (modulo) op
erator in §3.4. 

9. Write a program that converts spelled-out numbers such as "zero" and 
"two" into digits, such as 0 and 2. When the user inputs a number, the 
program should print out the corresponding digit. Do it for the values 0, 
1 ,  2, 3, and 4 and write out "not a number I know" if the user enters 
something that doesn't correspond, such as "stupid computer!" 

10. Write a program that takes an operation followed by two operands and 
outputs the result. For example: 

+ 100 3.14 
• 4 5 

Read the operation into a string called operation and use an if-statement 
to figure out which operation the user wants, for example, if (opera· 
tion=="+"). Read the operands into variables of type double. Implement 
this for operations called +, -, *, /, plus, minus, mul, and div with their 
obvious meanings. 

1 1 . Write a program that prompts the user to enter some number of pennies 
( 1-cent coins), nickels (S-cent coins) ,  dimes ( 10-cent coins) ,  quarters (25-
cent coins) ,  half dollars (50-cent coins), and one-dollar coins ( 100-cent 
coins) . Q!Iery the user separately for the number of each size coin, e.g., 
"How many pennies do you have?" Then your program should print 
out something like this: 

You have 23 pennies. 

You have 17 nickels. 

You have 14 dimes. 

You have 7 quarters. 

You have 3 half dollars. 

The value of all of your coins is 573 cents. 
You may have to usc your imagination to get the numbers to add up 
right-justified, but try; it can be done. Make some improvements: if only 
one of a coin is reported, make the output grammatically correct, e.g., 
" 14 dimes" and "1 dime" (not "1 dimes") . Also, report the sum in dollars 
and cents, i.e., $5.73 instead of 573 cents. 
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Postscript 
Please don't underestimate the importance of the notion of type safety. Types are 
at the center of most notions of correct programs, and some of the most effective 
techniques for constructing programs rely on the design and use of types - as 
you'll see in Chapters 6 and 9, Parts II, III, and IV. 
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Computation 

"If it doesn't have to produce correct results, 
I can make it arbitrarily fast." 

-Gerald M. Weinberg 

T
his chapter presents the basics of computation. In particular� 

we discuss how to compute a value from a set of operands 

(expression),  how to choose among alternative actions (selec!Um) , and 

how to repeat a computation for a series of values (ileration). We 

also show how a particular sub-computation can be named and 

specified separately (a.fimction) . Our primary concern is to express 

computations in ways that lead to correct and well-organized pro

grams. To help you perform more realistic computations, we in
troduce the vector type to hold sequences of values. 
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4.1 Computation 

4.2 Objectives and tools 

4.3 Expressions 
4.3.1 Constant expressions 
4.3.2 Operators 
4.3.3 Conversions 

4.4 Statements 
4.4.1 Selection 
4.4.2 Iteration 

4.1 Computation 
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4.5 Functions 
4.5.1 Why bother with functionsJ 
4.5.2 Function declarations 

4.6 Vector 
4.6.1 Crowing a vector 
4.6.2 A numeric example 
4.6.3 A text example 

4.7 Language features 

From one point of view, all that a program ever does is to compute; that is, it 
takes some inputs and produces some output. After all, we call the hardware on 
which we run the program a computer. lbis view is accurate and reasonable as 
long as we take a broad view of what constitutes input and output: 

Input 

The input can come from a keyboard, from a mouse, from a touch screen, from 
files, from other input devices, from other programs, from other parts of a pro· 
gram. "Other input devices" is a category that contains most really interesting 
input sources : music keyboards, video recorders, network connections, tempera
ture sensors, digital camera image sensors, etc. The variety is essentially infmite. 

To deal with input, a program usually contains some data, sometimes re
ferred to as its dala .structures or its stale. For example, a calendar program may 
contain lists of holidays in various countries and a list of your appointments. 
Some of that data is part of the program from the start; other data is built up as 
the program reads input and collects useful information from it. For example, the 
calendar program will probably build your list of appointments from the input 
you give it. For the calendar, the main inputs are the requests to see the months 
and days you ask for (probably using mouse clicks) and the appointments you 
give it to keep track of (probably by typing information on your keyboard). The 
output is the display of calendars and appointments, plus the buttons and 
prompts for input that the calendar program writes on your screen. 
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Input comes from a wide variety o f  sources. Similarly, output can go t o  a 
wide variety of destinations. Output can be to a screen, to files, to other output 
devices. to other programs, and to other parts of a program. Examples of output 
devices include network interfaces, music synthesizers, electric motors, light gen· 
erators. heaters, etc. 

From a programming point of view the most important and interesting cate· 
gorics are "to/from another program" and "to/from other parts of a program." 
Most of the rest of this book could be seen as discussing that last category: how 
do we express a program as a set of cooperating parts and how can they share 
and exchange data? These are key questions in programming. We can illustrate 
that graphically: 

Code 

. �l  

The abbreviation 110 stands for "input/output." In this case, the output from one 
part of code is the input for the next part. What such "parts of a program" share 
is data stored in main memory, on persistent storage devices (such as disks) ,  or 
transmitted over network cmmections . By "parts of a program" we mean entities 
such as a function producing a result from a set of input arguments (e.g., a square 
root from a floating-point number) , a function performing an action on a physical 
object (e.g., a function drawing a line on a screen) , or a function modifying some 
table within the program (e.g., a function adding a name to a table of customers) .  

When we say "input" and "output" we generally mean information coming 
into and out of a computer, but as you see, we can also usc the terms for infor
mation given to or produced by a part of a program. Inputs to a part of a pro· 
gram are often called argumen/J and outputs from a part of a program are often 
called mulls. 

By camputation we simply mean the act of producing some outputs based on 
some inputs, such as producing the result (output) 49 from the argument (input) 7 

using the computation (function) square (see §4.5). As a possibly helpful curios
ity, we note that until the 1 950s a computer was defined as a person who did 
computations, such as an accountant, a navigator, or a physicist. Today, we sim
ply delegate most computations to computers (machines) of various forms, of 
which the pocket calculator is among the simplest. 
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4.2 Objectives and tools 

f) Our job as progranuners is to express computations 

Correctly 

'f) 

Simply 

Efficiently 

Please note the order of those ideals: it doesn't matter how fast a program is if it 
gives the wrong results. Similarly, a correct and efficient program can be so com
plicated that it must be thrown away or completely rewritten to produce a new 
version (release) . Remember, useful programs will always be modified to accom
modate new needs, new hardware, etc. Therefore a program - and any part of a 
program - should be as simple as possible to perforn1 its task. For example, as· 
sume that you have written the perfect program for teaching basic arithmetic to 
children in your local school, and t11at its internal stmcture is a mess. Which Ian· 
guage did you use to communicate with the children? English? English and Span· 
ish? What if I'd like to use it in Finland? In Kuwait? How would you change the 
(natural) language used for communication with a child? If the internal structure 
of the program is a mess, the logically simple (but in practice almost always very 
difficult) operation of changing the natural language used to communicate with 
users becomes insurmountable. 

· 

Concerns about correctness, simplicity, and efficiency become ours t11e 
minute we start writing code for others and accept the responsibility to do that 
well; that is, we must accept that responsibility when we decide to become pro· 
fessionals. In practical terms, this means that we can't just throw code together 
until it appears to work; we must concern ourselves with the structure of code. 
Paradoxically, concerns for stmcture and •·quality of code" are often the fastest 
way of getting something to work. When programming is done well, such con· 
cerns minimize the need for the most frustrating part of programming: debug· 
ging; that is, good program structure during development can minimize the 
number of mistakes made and the time needed to search for such errors and to 
remove them. 

Our main tool for organizing a program - and for organizing our thoughts 
as we program - is to break up a big computation into many little ones. This 
technique comes in two variations: 

Ab.s/rach(m: Hide details that we don't need to use a facility ("implementa· 
tion details") behind a convenient and general interface. For example, 
rather t11an considering the details of how to sort a phone book (thick 
books have been written about how to sort), we just call the sort algo
rithm from the C++ standard library. All we need to know to sort is how 
to invoke (call) that algorithm, so we can write sort(b,e) where b and e 
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refer to the beginning and the end o f  the phone book, respectively. An
other example is the way we use computer memory. Direct use of mem
ory can be quite messy, so we access it through typed and named 
variables (§3.2), standard library vectors (§4.6, Chapters 17-19), maps 
(Chapter 21 ) .  etc. 

"Diuide and conqzu.T ": Here we take a large problem and divide it into sev
eral little ones. For example, if we need to build a dictionary, we can sep
arate that job into three: read the data, sort the data, and output tl1e data. 
Each of the resulting problems is significantly smaller than tl1e original. 

Why does this help? After all, a program built out of parts is likely to be slightly 
larger than a program where everything is optimally merged together. The rea-
son is that we are not very good at dealing with large problems. The way we ac
tually deal witl1 those - in programming and elsewhere - is to break them down 
into smaller problems, and we keep breaking those into even smaller parts until 
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we get something simple enough to understand and solve. In terms of program
ming. you'll find that a 1000-line program has far more than ten times as many fj 
errors as a 100-line program, so we try to compose the 1000-line program out of 
parts with fewer than 100 lines. For large programs, say 10,000,000 lines, apply-
ing abstraction and divide-and-conquer is not just an option, it's an essential re
quirement. We simply carmot write and maintain large monolithic programs. 
One way of looking at the rest of this book is as a long series of examples of 
problems tl1at need to be broken up into smaller parts together with the tools and 
techniques needed to do so. 

When we consider dividing up a program, we must always consider what 
tools we have available to express the parts and their communications. A good li
brary, supplying useful facilities for expressing ideas, can crucially affect the way 
we distribute functionality into different parts of a program. We carmot just sit 
back and "imagine" how best to partition a program; we must consider what li
braries we have available to express the parts and their communication. It is early 
days yet, but not too soon to point out that if you can use an existing library, 
such as the C++ standard library, you can save yourself a lot of work, not just on 
programming but also on testing and documentation. The iostreams save us 
from having to directly deal with the hardware's input/output ports. This is a first 
exan1ple of partitioning a program using abstraction. Every new chapter will pro
vide more examples. 

Note the emphasis on structure and organization: you don't get good code 
just by writing a lot of statements. Why do we mention this now? At this stage 
you (or at least many readers) have little idea about what code is, and it will be 
montl1s before you are ready to write code upon which other people could de
pend for their lives or livelihood. We mention it to help you get the emphasis of 
your learning right. It is very tempting to dash ahead, focusing on the parts of 



94 C H A PT E R  4 • C O M P U TAT I O N  

programming that - like what is described in the rest o f  this chapter - are con· 
crete and inunediately useful and to ignore the "softer," more conceptual parts of 
the art of software development. However, good programmers and system de· 
signers know (often having learned it the hard way) that concems about struc· 
ture lie at the heart of good software and that ignoring structure leads to 
expensive messes. Without structure, you arc (metaphorically speaking) building 
with mud bricks. It can be done, but you'll never get to the fifth floor (mud 
bricks lack the structural strength for that) . U you have the ambition to build 
something reasonably permanent, you pay attention to matters of code structure 
and organization along the way, rather than having to come back and leam them 
after failures. 

4.3 Expressions 

The most basic building block of programs is an expression. An expression com· 
putes a value from a number of operands. The simplest expression is simply a lit· 
eral value, such as 10, 'a', 3.14, or "Norah". 

Names of variables are also expressions. A variable represents the object of 
which it is the name. Consider: 

II compute area: 
int length = 20; II t1 l i teral in teger (used to ini t ia l ize a varic1blel 
int width = 40; 
int area = length•width; II a mul tipl ication 

Here the literals 20 and 40 are used to initialize the variables length and width. 
Then, length and width are multiplied; that is, we multiply the values found in 
length and width. Here, length is simply shorthand for "the value found in the 
object named length." Consider also 

length = 99; II assign 99 to length 

Here, as the left-hand operand of the assignment, length means "the object 
named length," so that the assignment expression is read "Put 99 into the object 
named by length." We distinguish between length used on the left-hand side of 
an assignment or an initialization ("the lvalue of length" or "the object named by 
length") and length used on the right-hand side of an assignment or initialization 
("the rvalue of length," "the value of the object named by length," or just "the 
value of length"). In this context, we find it useful to visualize a variable as a box 
labeled by its name: 

int: 

length: 99 
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That is, length is the name of an object of type int containing the value 99. Some
times (as an lvalue) length refers to the box (object) and sometimes (as an rvalue) 
length refers to the value in that box. 

We can make more complicated expressions by combining expressions using 
operators, such as + and *, in just the way that we are used to. When needed, we 
can use parentheses to group expressions: 

int perimeter = (length+width)*2; II add then mul tiply 

Without parentheses, we'd have had to say 

int perimeter = length*2+width*2; 

which is clumsy, and we might even have made this mistake: 

int perimeter = length+width*2; II add width*2 to length 

This last error is logical and cannot be found by the compiler. All the compiler 
sees is a variable called perimeter initialized by a valid expression. U the result of 
that expression is nonsense, that's your problem. You know the mathematical 
defmition of a perimeter, but the compiler doesn't. 

The usual mathematical rules of operator precedence apply, so length+ 
width*2 means length+(width*2). Similarly a*b+dd means (a*b)+(dd) and not 
a*(b+c)/d. See §A.S for a precedence table. 

TI1e first rule for the use of parentheses is simply "IT in doubt, parenthesize," 
but please do learn enough about expressions so that you are not in doubt about 
a*b+dd. Overuse of parentheses, as in (a*b)+(dd), decreases readability. 

Why should you care about readability? Because you and possibly others 
will read your code, and ugly code slows down reading and comprehension. 
Ugly code is not just hard to read, it is also much harder to get correct. Ugly 
code often hides logical errors. It is slower to read and makes it harder to con
vince yourself - and others - that ugly code is correct. Don't write absurdly 
complicated expressions such as 

a*b+dd*(e-f/g)lh+7 II too complicated 

and always try to choose meaningful names. 

4.3.1 Constant expressions 
Programs typically use a lot of constants. For example, a geometry program 
might use pi and an inch-to-centimeter conversion program will use a conversion 
factor such as 2.54. Obviously, we want to use meaningful names for those con
stants (as we did for pi; we didn't say 3.14159). Similarly, we don't want to 
change those constants accidentally. Consequently, C++ offers the notion of a 
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symbolic constant, that is, a named object t o  which you can't give a new value 
after it has been initialized. For example: 

const double pi = 3.14159; 
pi = 7; II error: assignment to const 
int v = 2*pilr; II OK: we just read pi; we don't try to change i t  

Such constants are useful for keeping code readable. You might have recognized 
3.14159 as an approximation to pi if you saw it in some code, but would you have 
recognized 299792458? Also, if someone asked you to change some code to use pi 
with the precision of 12 digits for your computation, you could search for 3.14 in 
your code, but if someone incautiously had used 22/7, you probably wouldn't 
find it. It would be much better just to change the definition of pi to use the more 
appropriate value: 

const double pi = 3.14159265359; 

Consequently, we prefer not to use literals (except very obvious ones, such as 0 
and 1 )  in most places in our code. Instead, we use constants with descriptive 
nan1es. Non-obvious literals in code (outside const definitions) are derisively re
ferred to as magic co1ulan/J. 

In some places, such as case labels (§4.4. 1 .3),  C++ requires a co11stant expres
sion, that is, an expression with an integer value composed exclusively of con
stants. For example: 

const int max = 17; II a l i tera l is a constant expression 
int val = 19; 

max+2 
val+2 

II a constant expression (a const in t  plus a l i teral\ 
II not a constant expression: i t  uses a variable 

And by the way, 299792458 is one of the fundamental constants of the universe: 
the speed of light in vacuum measured in meters per second. U you didn't in
stantly recognize that, why would you expect not to be confused and slowed 
down by other constants embedded in code? Avoid magic constants ! 

4.3.2 Operators 
We just used the simplest operators. However, you will soon need more as you 
want to express more complex operations. Most operators are conventional, so 
we'll just explain them later as needed and you can look up details if and when 
you fmd a need. Here is a list of the most common operators : 
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Name Comment 

f(a) function ca l l  pass a to f as an argument 
++Ivai pre-increment increment and use the incremented va lue 
--Ivai pre-decrement decrement and use the decremented value 
!a not resu l t  is bool 
-a unary minus 
a*b mul tiply 
alb divide 
a%b modulo (remainder) only for integer types 
a+b add 
a-b subtract 
out<<b write b to out where out is an ostream 
in>>b read from in into b where in is an istream 
a<b less than result is bool 
a<=b less than or equal result is bool 
a>b greater than result is bool 
a>=b greater than or equal result is bool 
a==b equal not to be confused with = 
al=b not equal result is bool 
a && b  logical and result is bool 
a ll b logical or result is bool 
Ivai = a  assignment not to be confused with = 
Ivai *= a compound assignment Ivai = Ivai* a; also for /, %, +, -

We used Ivai (short for "value that can appear on the left-hand side of an assign
ment") where the operator modifies an operand. You can find a complete list in 
§A.5. 

For examples of the use of the logical operators && (and), ll (or), and ! (not) , 
sec §5.5. 1 ,  §7.7, §7.8.2, and §10.4. 
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Note that a<b<c means (a<b)<c and that a<b evaluates to a Boolean value: � 
true or false. So. a<b<c will be equivalent to either true<c or false<c. In particu- U 
lar, a<b<c does not mean "Is b between a and c?" as many have naively (and not 
unreasonably) assumed. Thus, a<b<c is basically a useless expression. Don't 
write such expressions with two comparison operations, and be very suspicious if 
you find such an expression in someone else's code - it is most likely an error. 

An increment can be expressed in at least three ways: 

++a 
a+=1 
a=a+1 
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Which notation should we use? Why? We prefer the first version. ++a, because it 
more directly expresses the idea of incrementing. It says what we want to do (in
crement a) rather than how to do it (add 1 to a and then write the result to a). In 
general, a way of saying something in a program is better than another if it more 
directly expresses an idea. The result is more concise and easier for a reader to 
understand. U we wrote a=a+1 , a reader could easily wonder whether we really 
meant to increment by 1 .  Maybe we just mistyped a=b+ 1, a=a+2, or even a=a- 1 ;  

with ++a there are far fewer opportunities for such doubts. Please note that this is 
a logical argument about readability and correctness, not an argument about effi
ciency. Contrary to popular belief, modem compilers tend to generate exactly 
the same code from a=a+ 1 as for ++a when a is one of the built-in types. Simi
larly, we prefer a * = scale over a =  a* scale. 

4.3.3 Conversions 

We can "mix" different types in expressions. For example, 2.5/l is a double di
vided by an int. What does this mean? Do we do integer division or floating
point division? Integer division throws away the remainder; for example, 512 is 2. 

Floating-point division is different in that there is no remainder to throw away; 
for example, 5.012.0 is 2.5. It follows that the most obvious answer to the question 
"Is 2.512 integer division or floating-point division?" is "Floating-point, of course: 
otherwise we'd lose information." We would prefer the answer 1 .25 ratl1er than 1 .  

and 1 .25 is what we get. The rule (for the types we have presented s o  far) is that 
if an operator has an operand of type double, we use floating-point arithmetic 
yielding a double result; otherwise, we use integer arithmetic yielding an int re
sult. For example: 

512 is 2 (not 2.5) 

2.512 means 2.5/double(2), tl1at is, 1 .25 

'a'+1 means int( 'a')+1 

In other words, if necessary. the compiler converts ("promotes") int operands to 
doubles or char operands to int. Once the result has been calculated, the com· 
piler may have to convert it (again) to use it as an initializer or the right hand of 
an assignment. For example: 

double d = 2.5; 

int i =  2; 

double d2 = dli; II d2 = =  1 .2 5  

int i2 = dli; II i2 = =  1 
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d2 = dli; 
i2 = dli; 

II d2 = =  1 .25  
II i2 = =  1 

Beware that it is easy to forget about integer division in an expression that also 
contains floating-point operands. Consider the usual formula for converting de
grees Celsius to degrees Fahrenheit:.[ = 9/5 * c + 32. We might write 

double de; 
cin >> de; 
double df = 9/5*de+32; // beware! 

Unfortunately, but quite logically, this does not represent an accurate tempera
ture scale conversion: the value of 9/5 is 1 rather than the 1 .8 we might have 
hoped for. To get the code mathematically correct, either 9 or 5 (or both) will 
have to be converted into a double. For example: 

double de; 
cin >> de; 
double df = 9.0/5*de+32; II better 

4.4 Statements 
An expression computes a value from a set of operands using operators like the 
ones mentioned in §4.3. What do we do when we want to produce several val
ues? When we want to do something many times? When we want to choose 
among altematives? When we want to get input or produce output? In C++, as 
in many languages. you use language constructs called .stakmen/J to express those 
things. 

So far, we have seen two kinds of statements: expression statements and dec
larations. An expression statement is simply an expression followed by a semi
colon. For example: 

a =  b; 
++b; 

Those arc two expression statements. Note that the assignment = is an operator 
so that a=b is an expression and we need the terminating semicolon to make 
a=b; a statement. Why do we need those semicolons? The reason is largely tech
nical. Consider 

a =  b ++ b; II syntax error: missing semicolons 
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Without the semicolon, the compiler doesn't know whether we mean a=b++; b; 
or a=b; ++b; . This kind of problem is not restricted to computer languages; con
sider the exclamation "man eating tiger!" Who is eating whom? Punctuation ex· 
ists to eliminate such problems, for example, "man-eating tiger!" 

When statements follow each other, the computer executes them in the order 
in which they are written. For example :  

int a = 7; 
cout << a << '\n'; 

Here the declaration, with its initialization, is executed before the output expres· 
sion statement. 

In general, we want a statement to have some effect. Statements without ef· 
feet are typically useless. For example: 

1 +2; II do an addi tion, but don't use the sum 
a•b; II do a mul t ipl ication, but don't use the product 

Such statements without effects are typically logical errors, and compilers often 
warn against them. Thus, expression statements are typically assignments, 1/0 
statements, or function calls. 

We will mention one more type of statement : the "empty statement." Con· 
sider the code: 

if (x == 5); 
{ y = 3; } 

This looks like an error, and it almost certainly is. The ; in the first line is not 
supposed to be there. But, unfortunately, this is a legal construct in C++. It is 
called an empty staltment, a statement doing nothing. An empty statement before a 
semicolon is rarely useful. In this case, it has the unfortunate consequence of al· 
lowing what is almost certainly an error to be acceptable to the compiler, so it will 
not alert you to the error and you will have that much more difficulty finding it. 

What will happen if this code is run? The compiler will test x to see if it has 
the value 5. If this condition is true, the following statement (the empty state· 
ment) will be executed, with no effect. Then the program continues to the next 
line, assigning the value 3 to y (which is what you wanted to have happen if x 
equals 5). If, on the other hand, x does not have the value 5, the compiler will not 
execute the empty statement (still no effect) and will continue as before to assign 
the value 3 to y (which is not what you wanted to have happen unless x equals 5). 
In other words, the if-statement doesn't matter; y is going to get the value 3 re-
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gardless. Tilis is a common error for novice progranuners, and it can be difficult 
to spot, so watch out for it. 

TI1e next section is devoted to statements used to alter the order of evalua
tion to allow us to express more interesting computations than those we get by 
just executing statements in the order in which they were written. 

4.4.1 Selection 
In programs, as in life, we often have to select among alternatives. In C++, that is 
done using either an if-statement or a switch-statement. 

4.4.1 .1 if-statements 

The simplest fonn of selection is an if-statement, which selects between two alter
natives. For example: 

int main() 
{ 

int a = O; 
int b = O; 
cout << "Please enter two integers\n" ;  
cin >> a >> b;  

i f  (a<b) II condi tion 
II I st al ternative ( taken ii condi tion is true): 
cout << "max(" << a << "," << b <<") is " << b <<"\n" ;  

else 
II 2 nd al ternative ( taken if condition is false): 
cout << "max(" << a << "," << b <<") is " << a << "\n";  

An if-statement chooses between two alternatives. If its condition is true, the first 
statement is executed; otherwise, the second statement is. Tills notion is simple. 
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Most basic programming language features are. In fact, most basic facilities in a •\ 
programming language are just new notation for things you learned in primary � 
school - or even before that. For example, you were probably told in kinder· 
garten that to cross the street at a traffic light, you had to wait for the light to turn 
green: "If the traffic light is green, go" and "If the traffic light is red, wait." In 
C++ that becomes something like 

if (traffic_lighl==green) go(); 
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and 

if (traffic_light==red) wait(); 

So, the basic notion is simple, but it is also easy to use if-statements in a too 
simpleminded manner. Consider what's wrong with this program (apart from 
leaving out the #include as usual) : 

II convert from inches to cent imeters or cen t imeters to inches 
II a suffix ' i '  or 'c '  indicates the uni t  of the input 

int main() 
{ 

const double cm_per_inch = 2.54; II number of centimeters in an i nch 
int length = 1 ;  II length i n  inches or centimeters 
char unit = 0; 
cout<< " Please enter a length followed by a unit (c or i) :\n";  
cin >> length >> unit; 

if (unit == 'i') 
cout << length << " in == " << cm_per_inch*length << "cm\n" ;  

else 
cout << length << "em == " << length/cm_per_inch << " in\n";  

Actually, this program works roughly as advertised: enter 1 i  and you get 1in == 
2.54cm; enter 2.54c and you'll get 2.54cm == 1 in .Just try it; it's good practice. 

The snag is that we didn't test for bad input. The program assumes that the 
user enters proper input. The condition unit=='i' distinguishes between the case 
where the unit is ' i '  and all other cases. It never looks for a 'c'. 

What if the user entered 15f (for feet) "just to see what happens"? The condi· 
tion (unit == 'i') would fail and the program would execute the else part (the sec· 
ond alternative), converting from centimeters to inches. Presumably that was not 
what we wanted when we entered 'f'. 

We must always test our programs with "bad" input, because someone will 
eventually - intentionally or accidentally - enter bad input. A program should 
behave sensibly even if its users don't. 

Here is an improved version: 

II convert from i nches to centi meters or centi meters to inches 
II a suffix ' i '  or 'c '  ind icates the un i t  of the i nput 
II any other suffix is an error 
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int main() 
{ 

const double cm_per_inch = 2.54; II number of cent imeters in an inch 
int length = 1 ;  II length i n  inches or cent i meters 
char unit = 1 1 ;  II a space i s  not a uni t  
cout<< "Please enter a length followed by a unit (c or i) :\n";  
cin >> length >> unit; 

if (u nit == 1 i 1 )  
cout << length << "in == " << cm_per_inch*length << "cm\n"; 

else if (unit == 1C1) 

else 
cout << length << "em == " << lengthlcm_per_inch << " in\n " ;  

cout << "Sorry, I don't know a unit called 1 11 << unit << " '\n " ;  

We first test for unit==1i1 and then for unit==1C1 and if it isn't (either) we say, 
"Sorry." It may look as if we used an "else-if-statement," but there is no such 
thing in C++. Instead, we combined two if-statements. The general form of an if
statement is 

if ( expression ) statr:mt71t else statement 

That is. an if followed by an expres.sion in parentheses followed by a slalemen/ fol· 
lowed by an else followed by a statement. What we did was to use an if-statement 
as the else-part of an if-statement: 

if ( expres.sion ) statement else if ( expres.sion ) slaleme11J else statement 

For our program that gives this structure: 

if (unit == 1 i 1 )  
II I st  al ternative 

else if (unit == 1C1) 
II 2nd al ternative 

else 
II 3 rd al ternative 
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In this way, we can write arbitrarily complex tests and associate a statement with • , 

each alternative. However, please remember that one of the ideals for code is sim· U 
plicity, rather than complexity. You don't demonstrate your cleverness by writing 
the most complex program. Rather, you demonstrate competence by writing the 
simplest code that does the job. 
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T R Y  T H I S  

l. r �  
- JII"" Use the example above as a model for a program that converts yen, euros, 

and pounds into dollars. If you like realism, you can find conversion rates on 
the web. 

4.4.1 .2 switch-statements 

Actually, the comparison of unit to 'i' and to 'c' is an example of the most com
mon form of selection: a selection based on comparison of a value against several 
constants. Such selection is so common that C++ provides a special statement for 
it: the switch-statement. We can rewrite our example as 

int main() 
{ 

const double cm_per_i nch = 2.54; II nu mber of centi meters in an inch 
int length = 1 ;  II length in inches or centi meters 
char unit = 'a'; 
cout<< "Please enter a length followed by a unit (c or i) :\n"; 
cin >> length >> unit; 
switch (unit) { 
case ' i ' :  

cout << length << "in == " << cm_per_inch*length << "cm\n";  
break; 

case 'c' : 
cout << length << "em == " << lengthlcm_per_inch << "in\n";  
break; 

default: 
cout << "Sorry, I don't know a unit called "' << unit << "'\n";  
break; 

The switch-statement syntax is archaic but still clearer than nested if-statements, 
especially when we compare against many constants . The value presented in 
parentheses after the switch is compared to a set of constants . Each constant is 
presented as part of a case label. If the value equals the constant in a case label, 
the statement for that case is chosen. Each case is terminated by a break. If the 
value doesn't match any of the case labels, the statement identified by the default 
label is chosen. You don't have to provide a default, but it is a good idea to do so 
unless you are absolutely certain that you have listed every alternative. If you 
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don't already know. programming will teach you that it's hard to be absolutely 
certain (and right) about anything. 

4.4. 1 .3 Switch technicalities 
Here are some technical details about switch-statements : 

1 .  The value on which we switch must be of an integer, char, or enumera· 
tion (§9.5) type. In particular, you cannot switch on a string. 

2. The values in the case labels must be constant expressions (§4.3 . 1 ) .  In 
particular, you cannot use a variable in a case label. 

3. You cannot use the same value for two case labels. 

4. You can use several case labels for a single case. 

5. Don't forget to end each case with a break. Unfortunately, the compiler 
won't warn you if you forget. 

For example: 

int main() 
{ 

II you can switch only on integers, etc. 

cout << "Do you like fish?\n";  
string s; 
cin >> s; 
switch (s) { II error: the value must be of integer, char, or enum type 
case "no" : 

II . . .  
break; 

case "yes" : 
II . . .  
break; 

To select based on a string you have to use an if-statement or a map (Chapter 2 1 ) .  
A switch-statement generates optimized code for comparing against a set of 

constants. For larger sets of constants, this typically yields more-efficient code 
than a collection of if-statements. However, this means that the case label values 
must be constants and distinct. For example: 

int main() 
{ 

II case labels must be constants 

II define al ternatives: 
int y = 'y'; II this is going to cause trouble 
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const char n = 'n';  
const char m = '1'; 
cout << "Do you like fishl\n"; 
char a; 
cin >> a; 
switch (a) { 
case n :  

II . . .  
break; 
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case y: II error: variable in  case label 
II . . .  
break; 

case m: 
II . . .  
break; 

case 'n ' :  
II . . .  
break; 

default : 
II . . .  
break; 

II error: dupl icate case label (n 's value is ' n ' )  

Often you want the same action for a set of values in a switch. I t  would be  te
dious to repeat the action so you can label a single action by a set of case labels. 
For example: 

int main() II you can label a statement with several case labels 

{ 
cout << "Please enter a digit\n" ;  
char a; 
cin >> a; 

switch (a) { 
case '0' : case '2' : case '4' : case '6' : case '8' : 

cout << "is even\n" ;  
break; 

case ' 1 ' :  case '3' : case 'S' : case '7' :  case '9' : 
cout << "is odd\n"; 
break; 
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default : 
cout << "is not a digit\n" ; 
break; 
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The most common error with switch-statements is to forget to terminate a case • 1 
with a break. For example: U 

/ 

int main() II example of bad code (a break is missing) 
{ 

const double cm_per_inch = 2.54; II number of centimeters in an inch 
int length = 1 ;  II length i n  inches or centi meters 
char unit = 'a'; 
cout << "Please enter a length followed by a unit (c or i ) :\n" ;  
cin >> length >> unit; 

switch (unit) { 
case ' i ' :  

cout << length << "in == " << cm_per_inch •length << "cm\n" ;  
case 'c' : 

cout << length << "em == " << lengthlcm_per_inch << "in\n" ;  

Unfortunately, the compiler will accept this, and when you have finished case ' i '  
you 'II just "drop through" into case 'c', so that if you enter 2i the program will 
output 

2in = 5.08cm 
2cm == 0.787402in 

You have been warned ! 

T R Y  T H I S  

--·� Rewrite your currency converter program from the previous Try this to use 
a switch-statement. Add conversions from yuan and kroner. Which version 
of the program is easier to write, understand, and modify? Why? 
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4.4.2 Iteration 
We rarely do something only once. Therefore, programming languages provide 
convenient ways of doing something several times. This is called repehiion or -
especially when you do something to a series of elements of a data structure -
ileration. 

4.4.2.1 while-statements 

As an example of iteration, consider the first program ever to run on a stored
program computer (the EDSAC) . It was written and run by David Wheeler in 
the computer laboratory in Cambridge University, England, on May 6, 1 949. to 
calculate and print a simple list of squares like this : 

0 0 
1 1 
2 4 
3 9 
4 16 

98 9604 
99 9801 

Each line is a number followed by a "tab" character ('\t') , followed by the square 
of the number. A C++ version looks like this : 

II calculate and pri nt a table of squares 0-9<J 
int main() 
{ 

int i =  0; II start from 0 
while (i<100) { 

cout << i << '\t' << square(i) << '\n'; 
++i ; II i ncrement i t that is, i becomes i+ I )  

The notation square(i) simply means the square of i .  We'll later explain how it 
gets to mean that (§4.5) . 

No, this first modem program wasn't actually written in C++, but the logic 
was as is shown here: 

We start with 0. 

We see if we have reached 100, and if so we are finished. 
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Otherwise, we print the number and its square, separated by a tab ('\t' ) ,  
increase the number, and try again. 

Clearly, to do this we need 

A way to repeat some statement (to Wop) 

A variable to keep track of how many times we have been through the 
loop (a loop uaritible or a control uariohle), here the int called i 

An initializer for the loop variable, here 0 

A termination criterion, here, that we want to go through the loop 100 
times 

Something to do each time around the loop (the bod)' of the loop) 

111e language construct we used is called a while-statement. just following its dis
tinguishing keyword, while, it has a condition "on top" followed by its body: 

while (i<100) 
{ 

II the loop condi tion testing the loop variable i 

cout << i << '\t' << square(i) << '\n'; 
++i ; II increment the loop variable i 

The loop body is a block (delimited by curly braces) that writes out a row of the 
table and increments the loop variable, i. We start each pass through the loop by 
testing if i<100. If so, we are not yet finished and we can execute the loop body. If 
we have reached the end, that is, if i is 100, we leave the while-statement and exe
cute what comes next. In this program the end of the program is next, so we 
leave the program. 

The loop variable for a while-statement must be defined and initialized out
side (before) the while-statement. If we fail to defme it, the compiler will give us 
an error. If we define it, but fail to initialize it, most compilers will warn us, saying 
something like "local variable i not set," but would be willing to let us execute the 
program if we insisted. Don't insist! Compilers are almost certainly right when 
they warn about uninitialized variables. Uni.nitialized variables are a common 
source of errors. In this case, we wrote 

int i =  0; II start from 0 

so all is well. 
Basically, writing a loop is simple. Getting it right for real-world problems 

can be tricky, though. In particular, it can be hard to express the condition cor
rectly and to initialize all variables so that the loop starts correctly. 
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TRY T H I S  

The character 'b' is char('a'+1 ),  'c' is char('a'+2), etc. Use a loop to write out 
a table of characters with their corresponding integer values: 

a 97 
b 98 

z 122 

4.4.2.2 Blocks 

Note how we grouped the two statements that the while had to execute: 

while (i<100) { 
cout << i << '\t' << square(i) << '\n' ;  
++i ; II i ncrement i ( that i s ,  i becomes i+ 1 )  

A sequence of statements delimited by curly braces { and } is called a block or a 
compound .statement. A block is a kind of statement. The empty block { } is some
tinies useful for expressing that nothing is to be done. For example : 

if (a<=b) { 
} 

II do noth ing 

else { II swap a and b 
int t = a; 
a =  b; 
b = t; 

4.4.2.3 for-statements 

Iterating over a sequence of numbers is so common that C++, like most other 
programming languages, has a special syntax for it. A for-statement is like a 
while-statement except that the management of the control variable is concen
trated at the top where it is easy to see and understand. We could have written 
the "ftrst program'' like this : 

II calculate and pri nt a tab le of squares 0-99 
int main() 
{ 
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for (int i = 0;  i<100; ++i) 
cout << i << '\t' << square(i) << '\n' ;  

1bis means "Execute the body with i starting at 0 incrementing i after each exe
cution of the body until we reach 100." A for-statement is always equivalent to 
some while-statement. In this case 

for (int i = 0; i<100; ++i) 

means 

cout << i << '\t' << square(i) << '\n ' ;  

int  = 0; II the for-statement init ial izer 
while (i<100) { II the for-statement condition 

cout << i << '\t' << square(i) << '\n'; II the for-statement body 
++i; II the for-statement increment 
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Some novices prefer while-statements and some novices prefer for-statements. • , 
However, using a for-statement yields more easily understood and more main- U 
tainable code whenever a loop can be defined as a for-statement with a simple ini
tializer, condition, and increment operation. Use a while-statement only when 
that's not the case. 

Never modify the loop variable inside the body of a for-statement. That fJ 
would violate every reader's reasonable assumption about what a loop is doing. 
Consider: 

int main() 
{ 

for (int i =  0; i<100; ++i) { II for i in the [0: 1 00) range 
cout << i << '\t' << square(i) << '\n '; 
++i; II what's going on here? It smells I i ke an error! 

Anyone looking at this loop would reasonably assume that the body would be exe
cuted 100 times. However, it isn't. The ++i in the body ensures that i is incremented 
twice each time around the loop so that we get an output only for the 50 even values 
of i. U we saw such code, we would assume it to be an error, probably caused by a 
sloppy conversion from a while-loop. U you want to increment by 2, say so: 
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II calculate and print a table oi squares o f  even numbers i n  the [0:1 00) range 
int main() 
{ 

for (int i = 0; i<100; i+=2) 
cout << i << '\t' << square(i) << '\n'; 

Please note that the cleaner, more explicit version is shorter than the messy one. 
That's typical. 

T R Y  T H I S  

Rewrite the character value example from the previous 'Iry this to use a for
loop. Then modify your program to also get a table of the integer values for 
uppercase letters and digits. 

4.5 Functions 
In the program above, what was square(i)? It is a call of a function. In particular. 
it is a call of the function called square with the argument i. Ajimction is a named 
sequence of statements. A function can return a result (also called a return value). 
The standard library provides a lot of useful functions, such as the square root 
function sqrt() that we used in §3.4. However, we write many functions our
selves. Here is a plausible definition of square: 

int square(int x) II return the square of x 

{ 
return x*x; 

The first line of this definition tells us that this is a function (that's what the 
parentheses mean) ,  that it is called square, that it takes an int argument (here. 
called x) , and that it returns an int (the type of the result always comes first in a 
function declaration) ; that is, we can use it like this: 

int main() 
{ 

cout << square(2) << '\n';  II pri nt 4 
cout << square(1 0) << '\n';  // print 1 00 
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We don't have to use the result of  a function call (but if we didn't want the result, 
why would we call it?), but we do have to give a function exactly the arguments 
it requires. Consider: 

square(2); 
int v1 = square(); 
int v2 = square; 
int v3 = square(1 ,2); 
int v4 = square("two"); 

II probably a mistake: unused return va lue 
II error: argument missing 
II error: parentheses missing 
II error: too many arguments 
II error: wrong type oi argument - int expected 

Many compilers wam against unused results, and all give errors as indicated. 
You might think that a computer should be smart enough to figure out that by 
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the string "two" you really meant the integer 2. However, a C++ compiler delib
erately isn't that smart. It is the compiler's job to do exactly what you tell it to do ., 
after verifying that your code is well formed according to the defmition of C++. U 
If the compiler guessed about what you meant, it would occasionally guess 
wrong, and you - or the users of your program - would be quite annoyed. You'll 
find it hard enough to predict what your code will do without having the com-
piler "help you" by second-guessing you. 

Thejimction body is the block (§4.4.2.2) that actually does the work. 

return x*x; II return the square of x 

For square, the work is trivial: we produce the square of the argument and retum 
that as our result. Saying that in C++ is easier than saying it in English. That's 
typical for simple ideas. After all, a programming language is designed to state 
such simple ideas simply and precisely. 

The syntax of a function definition can be described like this : 

type idmtffier ( parameter-list ) Junction-body 

That is, a type (the return type), followed by an identifier (the name of the func
tion) , followed by a list of parameters in parentheses, followed by the body of the 
function (the statements to be executed). The list of arguments required by the 
function is called a parameter list and its elements are called parameters (or j017Tl(l[ ar
gumetzls) . The list of parameters can be empty, and if we don't want to return a re
sult we give void (meaning "nothing'') as the return type. For example: 

void write_sorry() 
{ 

II take no argument; return no va lue 

cout << " Sorry\n" ;  
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The language-technical aspects of  functions will be examined more closely in 
Chapter 8. 

4.5.1 Why bother with functions? 

We define a function when we want a separate computation with a name because 
doing so 

Makes the computation logically separate 

Makes the program text clearer (by naming the computation) 

Makes it possible to use the function in more than one place in our 
program 

Eases testing 

We'll see many examples of each of those reasons as we go along, and we'll occa
sionally mention a reason. Note that real-world programs use thousands of func
tions, some even hundred of thousands of functions. Obviously, we would never 
be able to write or understand such programs if their parts (e.g., computations) 
were not clearly separated and named. Also, you'll soon find that many functions 
are repeatedly useful and you'd soon tire of repeating their defmitions. For exam· 
ple, you might be happy writing x•x and 7*7 and (x+7)* (x+7), etc. rather than 
square(x) and square(7) and square(x+7), etc. However, that's only because 
square is a very simple computation. Consider square root (called sqrt in C++):  
you prefer to write sqrt(x) and sqrt(7) and sqrt(x+7), etc. rather than repeating 
the (somewhat complicated and many lines long) code for computing square 
root. Even better: you don't have to even look at the computation of square root 
because knowing that sqrt(x) gives the square root of x is sufficient. 

In §8.5 we will address many function technicalities, but for now, we'll just 
give another example. 

If we had wanted to make the loop in main() really simple, we could have 
written 

void print_square(int v) 
{ 

cout << v << '\t' << v*v << '\n ' ;  

int  main() 
{ 

for (int i =  0; i<100; ++i) print_square(i); 

Why didn't we use that version using print_square()? That version is not signifi
cantly simpler than the version using square(), and note that 
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print_square() is a rather specialized function that we could not expect to 
be able to use later, whereas square() is an obvious candidate for other 
uses 

square() hardly requires documentation, whereas print_square() obvi
ously needs explanation 

TI1e underlying reason for both is that print_square() performs two logically sep
arate actions : 

It prints. 

It calculates a square. 

Progran1s are usually easier to write and to understand if each function performs 
a single logical action. Basically, the square() version is the better design. 

Finally, why did we use square(i) rather than simply i*i in the first version of 
the problem? Well, one of the purposes of functions is to simplify code by sepa· 
rating out complicated calculations as named functions, and for the 1949 version 
of the progran1 there was no hardware that directly implemented "multiply." 
Consequently, in the 1949 version of the progfanl, i* i  was actually a fairly com
plicated calculation, similar to what you'd do by hand using a piece a paper. Also, 
the writer of that original version, David Wheeler, was the inventor of the func
tion (then called a subroutine) in modem computing, so it seemed appropriate to 
use it here. 

T R Y  T H I S  

.. Implement square() without using the multiplication operator; that is, do the 
x*x by repeated addition (start a variable result at 0 and add x to it x times). 
Then run some version of "the first progfanl" using that square(). 

4.5.2 Function declarations 
Did you notice that all the information needed to call a function was in the first 
line of its definition? For eXanlple: 

int square(int x) 

Given that, we know enough to say 

int x = square(44); 

We don't really need to look at the function body. In real programs, we most 
often don't want to look at a function body. Why would we want to look at the 
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body of the standard library sqrt() function? We know it calculates the square 
root of its argument. Why would we want to see the body of our square() func
tion? Of course we might just be curious. But almost all of the time, we are just 
interested in knowing how to call a function - seeing the defmition would just be 
distracting. Fortunately, C++ provides a way of supplying that information sepa
rate from the complete function definition. It is called ajimclion declaration: 

int square(int) ; 
double sqrt(double); 

II declaration of square 
II declaration of sqrt 

Note the terminating semicolons. A semicolon is used in a function declaration 
instead of the body used in the corresponding function definition: 

int square(int x) II defini t ion of square 

{ 
return x*x; 

So, if you just want to use a function, you simply write - or more conunonly 
#include - its declaration. The function definition can be elsewhere. We'll dis
cuss where that "elsewhere" might be in §8.3 and §8.7. This distinction between 
declarations and definitions becomes essential in larger programs where we use 
declarations to keep most of the code out of sight to allow us to concentrate on a 
single part of a program at a time (§4.2) . 

4.6 Vector 
To do just about anything of interest in a program, we need a collection of data to 
work on. For example, we might need a list of phone numbers, a list of members 
of a football team, a list of courses, a list of books read over the last year, a cata
log of songs for download, a set of payment options for a car, a list of the weather 
forecasts for the next week, a list of prices for a camera in different web stores. 
etc. TI1e possibilities are literally endless and therefore ubiquitous in programs. 
We'll get to see a variety of ways of storing collections of data (a variety of con
tainers of data; see Chapters 20 and 21 ) .  Here we will start with one of the sim
plest, and arguably the most useful, ways of storing data: a vector. 

A vector is simply a sequence of elements that you can access by an index. 
For example, here is a vector called v: 

v: 
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That is, the first element has index 0, the second index 1 ,  and so on. We refer to 
an clement by subscripting the name of the vector with the element's index, so 
here the value of v[O] is 5, the value of v[1] is 7, and so on. Indices for a vector al
ways start with 0 and increase by 1 .  This should look familiar: the standard li
brary vector is simply the C++ standard library's version of an old and 
well-known idea. I have drawn the vector so as to emphasize that it "knows its 
size"; that is, a vector doesn't just store its elements, it also stores its size. 

We could make such a vector like this: 

vector<int> v(6); II vector of 6 ints 
v[O] = 5; 
v[1 ] = 7; 
v[2] = 9; 
v[3] = 4; 
v[4] = 6; 
v[5] = 8; 

We see that to make a vector we need to specify the type of the elements and the 
initial number of elements. The element type comes after vector in angle brack
ets (< >), here <int>, and the initial number of elements comes after the nan1e in 
parentheses, here (6). Here is another example: 

vector<String> philosopher(4); II vector of 4 strings 
philosopher [0] = "Kant"; 
philosopher [1]  = "Plato"; 
philosopher [2] = "Hume"; 
philosopher [3] = "Kierkegaard" ;  

Naturally, a vector will only accept elements of its declared element type: 

philosopher[2] = 99; 
v[2] = "Hume"; 

II error: trying to assign an int to a string 
II error: trying to assign a string to an int 

When we define a vector of a given size, its elements are given a default value ac· 
cording to the element type. For example: 

vector<int> v(6); II vector of 6 ints in i tia l ized to 0 
vector<String> philosopher(4); II vector of 4 strings in it ial ized to "" 

If you don't like the default, you can specify another. For example: 

vector<double> vd(1000,-1 .2); II vector of 1 000 doubles init ial ized to - 1 .2 

Please note that you ca1mot simply refer to a nonexistent element of a vector: 
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vd[20000] = 4.7; II run-time error 

We will discuss run-time errors and subscripting in the next chapter. 

4.6.1 Growing a vector 

Often, we start a vector empty and grow it to its desired size as we read or com
pute the data we want in it. The key operation here is push_back(), which adds a 
new element to a vector. The new element becomes the last element of the 
vector. For example: 

vector<double> v; II start off empty; that is, v h.1s no elements 

v.push_back(2.7); 

v.push_back(S.6); 

v. push_back(7. 9); 

v: I o I 
II add an element with the va lue 2.7 at end (" the back") of v 
II v now has one element and vl01==2 .7 

II add an element with the va lue 5.6 at end of v 
II v now has two elements and vl l l==5.6 

v: I 2 I =H 2.1 1s.6 1 
II add an element with the va lue 7.9 at end of v 
ll v  now has three elements and vl2 1==7.9 

Note the syntax for a call of push_back(). It is ca1led a member function call; 
push_back() is a member function of vector and must be called using this dot 
notation: 

TIU'111ht'l"jUncti011-caif: 
oiject_name . memberfomtion�IUune ( argument-list ) 

The size of a vector can be obtained by a call to another of vector's member 
functions: size(). Initially v.size() was 0, and after the third call of push_back(), 
v.size() has become 3. Size makes it easy to loop through all elements of a vector. 
For example: 

for(int i=O; i<v.size(); ++i) 
cout << "v[" << i << "]==" <<V[i] << '\n ' ;  
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Given the defmition of v and the push_back()s above, this for-loop will print 

v[0]==2.7 
v[1 ]==5.6 
v[2]==7.9 

If you have programmed before, you will note that a vector is similar to an array 
in C and other languages. However, you need not specify the size (length) of a 
vector in advance, and you can add as many elements as you like. As we go 
along, you'll fmd that the C++ standard vector has other useful properties. 

4.6.2 A numeric example 
Let's look at a more realistic example. Often, we have a series of values that we 
want to read into our program so that we can do something with them. The 
"something" could be producing a graph of the values, calculating the mean and 
median, finding the largest element, sorting them, combining them with other 
data, searching for "interesting" values, comparing them to other data, etc. There 
is no limit to the range of computations we might perform on data, but first we 
need to get it into our computer's memory. Here is the basic technique for getting 
an unknown - possibly large - amount of data into a computer. As a concrete 
example, we chose to read in floating-point numbers representing temperatures: 

II read some temperatures into a vector 

int main() 

{ 
vector<double> temps; II temperatures 
double temp; 
while (cin>>temp) II read 

temps.push_back(temp) ; II put into vector 
II . . . do something . . .  

So, what goes on here? First we declare a vector to hold the data and a variable 
into which we can read each number as it comes from input: 

vector<double> temps; 
double temp; 

II temperatures 

This is where the type of input we expect is mentioned. We read and store 
doubles. 

Next comes the actual read loop: 
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while (cin>>temp) II read 
temps.push_back(temp); II put into vector 

The cin>>temp reads a double, and that double is pushed into the vector 
(placed at the back) . We have seen those individual operations before. What's 
new here is that we use the input operation, cin>>temp, as the condition for a 
while-loop. Basically, cin>>temp is true if a value was read correctly and false 
otherwise, so that while-loop will read all the doubles we give it and stop when 
we give it anything else. For example, if you typed 

1 .2 3.4 5.6 7.8 9.0 1 

then temps would get the five elements 1 .2, 3.4, 5.6, 7.8, 9.0 (in that order, for ex
ample, temps[0]==1.2) . We used the character ' I' to terminate the input - any
thing that isn't a double can be used. In §10.6 we discuss how to tenninate input 
and how to deal with errors in input. 

Once we get data into a vector we can easily manipulate it. As an example, 
let's calculate the mean and median temperatures: 

II compute mean and median temperatu res 
int main() 
{ 

vector<double> temps; II temperatu res 
double temp; 
while (cin>>temp) II read 

temps.push_back(temp); II put into vector 

II compute mean temperature: 
double sum = 0; 
for (int i = 0; i< temps.size(); ++i) sum += temps[i] ; 
cout << "Average temperature: " << sum/temps. size() << end I; 

II compute median temperature: 
sort(temps.begin(),temps.end()); II sort temps 

II "irom the beginning to the end" 
cout << "Median temperature: " << temps[temps.size()/2] << endl; 

We calculate the average (the mean) by simply adding all the elements into sum, 
and then dividing the sum by the number of elements (that is, temps.size()) : 

II compute average temperature: 
double sum = 0; 
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for ( int i = 0; i< temps.size(); ++i) sum += temps[i]; 
cout << "Average temperature: " << sum/temps.size() << endl; 

Note how the += operator comes in handy. 
To calculate a median (a value chosen so that half of the values are lower and 

the other half are higher) we need to sort the elements. For that, we use the stan
dard library sort algorithm, sort(): 

II compute median temperature: 
sort(temps.begin(),temps.end()); II sort "from the beginning to the end" 
cout << "Median temperature: " << temps[temps.size()/2] << endl; 

The standard library sort() takes two arguments : the beginning of the sequence 
of elements that it is to sort and the end of that sequence. We will explain the 
standard library algorithms much later (Chapter 20) , but fortunately, a vector 
"knows" where its beginning and end arc, so we don't need to worry about de
tails: temps.begin() and temps.end() will do just fine. Note that begin() and 
end() arc member functions of vector, just like size(), so we call them for their 
vector using dot. Once the temperatures are sorted, it's easy to fmd the median: 
we just pick the middle element, the one with index temps.size()/2. If you feel 
like being picky (and if you do, you are starting to think like a programmer) , you 
could observe that the value we found may not be a median according to the def
inition we offered above. Exercise 2 at the end of this chapter is designed to solve 
that little problem. 

4.6.3 A text example 
We didn't present the temperature example because we were particularly inter
ested in temperatures. Many people - such as meteorologists, agronomists, and 
oceanographers - arc very interested in temperature data and values based on it, 
such as means and medians. However, we are not. From a progranuner's point of 
view, what's interesting about this example is its generality: the vector and the 
simple operations on it can be used in a huge range of applications. It is fair to 
say that whatever you are interested in. if you need to analyze data, you'll use 
vector (or a sintilar data structure; see Chapter 21 ) .  As an example, let's build a 
sin1ple dictionary: 

II simple d ict ionary: l ist of sorted words 
int main() 

{ 
vector<String> words; 
string temp; 
while (cin>>temp) 

words.push_back(temp) ; 
II read whi tespace-separated words 

II put into vector 
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cout << "Number of words: " << words.size() << endl; 

sort(words.begin(),words.end()); II sort "from beginning to end" 

for (int i =  0; i< words.size() ; ++i) 
if (i==O II words[i-1 ] 1=words[i]) II is this a new word? 

cout << words[i] << "\n " ;  

If we feed some words to this program, i t  will write them out in order without re
peating a word. For example, given 

a man a plan panama 

it will write 

a 
man 
panama 
plan 

How do we stop reading string input? In other words, how do we terminate the 
input loop? 

while (cin>>temp) II read 
words.push_back(temp); II put into vector 

When we read numbers (in §4.6.2) , we just gave some input character that 
wasn't a number. We can't do that here because every (ordinary) character can 
be read into a string. Fortunately, there are characters that are "not ordinary." As 
mentioned in §3.5 .1 ,  Ctrl+Z terminates an input stream under Windows and 
Ctrl+D does that under Unix. 

Most of this program is remarkably similar to what we did for the tempera
tures. In fact, we wrote the "dictionary program'' by cutting and pasting from the 
"temperature program." The only thing that's new is the test 

if (i==O II words[i-1] !=words[i]) II is this a new word? 

If you deleted that test the output would be 

a 
a 
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man 
panama 
plan 

We didn't like the repetition, so we eliminated it using that test. What does the 
test do? It looks to sec if the previous word we printed is different from the one 
we arc about to print (words[i-1 ] !=words[i]) and if so, we print that word; other
wise, we do not. Obviously, we can't talk about a previous word when we arc 
about to print the first word (i==O), so we first test for that and combine those 
two tests using the II (or) operator: 

if (i=O II words[i-1] !=words[i]) II is this a new word? 

Note that we can compare strings. We use != (not equals) here; == (equals) , < 
(less than) , <= (less than or equal), > (greater than), and >= (greater than or 
equal) also work for strings. The <, >, etc. operators use the usual lexicographical 
ordering, so "Ape" comes before "Apple" and "Chimpanzee". 

T R Y  T H I S  

� Write a program that "bleeps" out words that you don't like; that is, you 
read in words using cin and print them again on cout. If a word is among a 
few you have defined, you write out BLEEP instead of that word. Start with 
one "disliked word" such as 

string disliked = "Broccoli" ;  

When that works, add a few more. 

4.7 Language features 
TI1c temperature and dictionary programs used most of the fundamental lan
guage features we presented in this chapter: iteration (the for-statement and the 
while-statement) , selection (the if-statement) , simple arithmetic (the ++ and += 
operators),  comparisons and logical operators (the ==, !=, and II operators) , vari
ables, and functions (e.g., main(), sort(), and size()) .  In addition, we used stan
dard library facilities, such as vector (a container of elements), cout (an output 
stream),  and sort() (an algorithm) . 

If you count, you 'II find that we actually achieved quite a lot with rather few fea-
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to write useful programs. This is a key notion: a computer is not a gadget with a 
ftxed function. Instead it is a machine that we can program to do any computation 
we can think of, and given that we can attach computers to gadgets that interact 
with the world outside the computer, we can in principle get it to do anything . 

.../ Drill 
Go through this drill step by step. Do not try to speed up by skipping steps. Test 
each step by entering at least three pairs of values - more values would be better. 

1. Write a program that consists of a while-loop that (each time around the 
loop) reads in two ints and then prints them. Exit the program when a 
terminating 'I ' is entered. 

2. Change the program to write out the smaller value is: followed by the 
smaller of the nwnbers and the larger value is: followed by the larger value. 

3. Augment the program so that it writes the line the numbers are equal 
(only) if they are equal. 

4. Change the program so that it uses doubles instead of ints. 
5. Change the program so that it writes out the numbers are almost equal 

after writing out which is the larger and the smaller if the two numbers 
differ by less than 1 .0/10000000. 

6. Now change the body of the loop so that it reads just one double each 
time around. Define two variables to keep track of which is the smallest 
and which is the largest value you have seen so far. Each time through 
the loop write out the value entered. If it's the smallest so far, write the 
smallest so far after the nwnber. If it is the largest so far, write the largest 
so far after the number. 

7. Add a unit to each double entered; that is, enter values such as 10cm, 
2.Sin, Sft, or 3.33m. Accept the four units: em, m, in, ft. Assume conver
sion factors 1m = 100cm, 1 in = 2.54cm, 1ft == 12in. Read the unit indi
cator into a string. 

8. Reject values without units or with "illegal" representations of units, such 
as y, yard, meter, km, and gallons. 

9. Keep track of the sum of values entered (as well as the smallest and the 
largest) and the number of values entered. When you see the final ' I '  
print the smallest, the largest, the number of values, and the sum of val
ues. Note that to keep the sum, you have to decide on a unit to use for 
that sum; use meters. 

10. Keep all the values entered (converted into meters) in a vector. At the 
end, write out those values. 
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1 1 .  Before writing out the values from the vector, sort them (that'll make 
them come out in increasing order) . 

Review 
1. What is a computation? 
2. What do we mean by inputs and outputs to a computation? Give examples. 
3. What arc the three requirements a progranuner should keep in mind 

when expressing computations? 
4. What does an expression do? 
5. What is the difference between a statement and an expression, as de

scribed in this chapter? 
6. What is an lvalue? List the operators that require an lvalue. Why do 

these operators, and not the others, require an lvalue? 
7. What is a constant expression? 
8. What is a literal? 
9. What is a symbolic constant and why do we use them? 

10. What is a magic constant? Give examples. 
1 1 .  What are some operators that we can use for integers and floating-point 

values? 
12. What operators can be used on integers but not on floating-point numbers? 
13. What are some operators that can be used for strings? 
14. When would a progranuner prefer a switch-statement to an if-statement? 
15. What are some common problems with switch-statements? 
16.  What is the function of each part of the header line in a for-loop, and in 

what sequence are they executed? 
17. When should the for-loop be used and when should the while-loop be 

used? 
18. How do you print the numeric value of a char? 
19. Describe what the line char foo(int x) means in a function definition. 
20. When should you define a separate function for part of a program? List 

reasons. 
2 1 .  What can you do to an int that you cannot do to a string? 
22. What can you do to a string that you cannot do to an int? 
23. What is the index of the third element of a vector? 
24. How do you write a for-loop that prints every element of a vector? 
25. What does vector<char>alphabet(26) ; do? 
26. Describe what push_back() does to a vector. 
27. What do vector's member functions begin(), end(), and size() do? 
28. What makes vector so popular/useful? 
29. How do you sort the elements of a vector? 
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Terms 
abstraction 
begin () 
computation 
conditional statement 
declaration 
definition 
divide and conquer 
else 
end() 
expression 

Exercises 

for-statement 
function 
if-statement 
increment 
input 
iteration 
loop 
lvalue 
member function 
output 
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push_ back() 
repetition 
rvalue 
selection 
size() 
sort() 
statement 
switch-statement 
vector 
while-statement 

1 .  U you haven't already, do the Try this exercises from this chapter. 
2. U we define the median of a sequence as "the number for which exactly 

half of the elements of the sequence come before it and exactly half come 
after it," fix the program in §4.6.2 so that it always prints out a median. 
Hint: A median need not be an element of the sequence. 

3. Read a sequence of double values into a vector. Think of each value as 
the distance between two cities along a given route. Compute and print 
the total distance (the sum of all distances) .  Fmd and print the smallest 
and greatest distance between two neighboring cities. Fmd and print the 
mean distance between two neighboring cities. 

4. Write a program to play a numbers guessing game. The user thinks of a 
number between 1 and 100 and your program asks questions to figure 
out what the number is (e.g., "Is the number you are thinking of less 
than 50?"). Your program should be able to identify the number after 
asking no more than seven questions. Hint: Use the < and <= operators 
and the if-else construct. 

5. Write a program that performs as a very simple calculator. Your calcula
tor should be able to handle the five basic math operations - add, sub
tract, multiply, divide, and modulus (remainder) - on two input values. 
Your program should prompt the user to enter three arguments: two 
double values and a character to represent an operation. If the entry ar
guments are 35.6, 24.1 ,  and '+', the program output should be "The sum 
of 35.6 and 24.1 is 59.7." In Chapter 6 we look at a much more sophisti
cated simple calculator. 

6. Make a vector holding the ten string values "zero", "one", . . .  "n ine" . 
Use that in a program that converts a digit to its corresponding spelled
out value; e.g., the input 7 gives the output seven. Have the same pro-
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gram, using the same input loop, convert spelled-out numbers into their 
digit form; e.g., the input seven gives the output 7. 

7. Modify the "mini calculator" from exercise 5 to accept (just) single-digit 
numbers written as either digits or spelled out. 

8. There is an old story that the emperor wanted to thank the inventor of 
the game of chess and asked the inventor to name his reward. The in
ventor asked for one grain of rice for the first square, 2 for the second, 4 
for the third, and so on, doubling for each of the 64 squares. That may 
sound modest, but there wasn't that much rice in the empire ! Write a 
program to calculate how many squares are required to give the inventor 
at least 1000 grains of rice, at least 1 ,000,000 grains, and at least 
1 ,000,000,000 grains. You'll need a loop, of course, and probably an int 
to keep track of which square you arc at, an int to keep the number of 
grains on the current square, and an int to keep track of the grains on all 
previous squares. We suggest that you write out the value of all your vari
ables for each iteration of the loop so that you can see what's going on 

9. Try to calculate the number of rice grains that the inventor asked for in 
exercise 8 above. You'll fmd that the number is so large that it won't fit in 
an int or a double. Observe what happens when the number gets too 
large to represent as an int and as a double. What is the largest number 
of squares for which you can calculate the exact number of grains (using 
an int) ? What is the largest number of squares for which you can calcu
late the approximate number of grains (using a double)? 

10. Write a program that plays the game "Rock, Paper, Scissors." If you are 
not familiar with the game do some research (e.g., on the web using 
Google) .  Research is a common task for programmers. Use a switch
statement to solve this exercise. Also, the machine should give random 
answers (i.e., select the next rock, paper, or scissors randomly) . Real ran
donmess is too hard to provide just now, so just build a vector with a se
quence of values to be used as "the next value." U you build the vector 
into the program, it will always play the same game, so maybe you 
should let the user enter some values. Try variations to make it less easy 
for the user to guess which move the machine will make next. 

1 1 .  Create a program to find all the prime numbers between 1 and 100. One 
way to do this is to write a function that will check if a number is prime 
(i.e., see if the number can be divided by a prime number smaller than it
self) using a vector of primes in order (so that if the vector is called 
primes, primes[0]==2, primes[1]==3, primes[2]==5, etc. ) .  Then write a 
loop that goes from 1 to 100, checks each number to see if it is a prime, 
and stores each prime found in a vector. Write another loop that lists the 
prin1es you found. You might check your result by comparing your 
vector of prime numbers with primes. Consider 2 the first prime. 
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12.  Modify the program described in the previous exercise to  take an input 
value max and then fmd all prime numbers from 1 to max. 

13.  Create a program to find all the prime numbers between 1 and 100. 
There is a classic method for doing this, called the "Sieve of Eratos
thenes." U you don't know that method, get on the web and look it up. 
Write your program using this method. 

14.  Modify the program described in the previous exercise to take an input 
value max and then fmd all prime numbers from 1 to max. 

15 .  Write a program that takes an input value n and then finds the first n 
primes. 

16 .  In the drill, you wrote a program that, given a series of numbers, found 
the max and min of that series. The number that appears the most times 
in a sequence is called the mode. Create a program that fmds the mode of 
a set of positive integers. 

1 7. Write a program that finds the min, max, and mode of a sequence of 
strings. 

18. Write a program to solve quadratic equations. A quadratic equation is of 
the form 

ax2+bx+c=O 

U you don't know the quadratic formula for solving such an expression, 
do some research. Remember, researching how to solve a problem is 
often necessary before a programmer can teach the computer how to 
solve it. Use doubles for the user inputs for a, b, and c. Since there arc 
two solutions to a quadratic equation, output both x1 and x2. 

19. Write a program where you first enter a set of name-and-value pairs, 
such as Joe 17 and Barbara 22. For each pair, add the name to a vector 
called names and the number to a vector called scores (in corresponding 
positions, so that if names[7]=="Joe" then scores[7]==18). Terminate 
input by the line No more ("more" will make the attempt to read another 
integer fail). Check that each name is unique and terminate with an error 
message if a name is entered twice. Write out all the (name,score) pairs, 
one per line. 

20. Modify the program from exercise 19 so that when you enter a name, 
the program will output the corresponding score or "name not found". 

2 1 .  Modify the program from exercise 19 so that when you enter an integer, 
the program will output all the names with that score or "score not 
found". 
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Postscript 
From a philosophical point of view, you can now do everything that can be done 
using a computer - the rest is details!  Among other things, this shows the value 
of "details" and the importance of practical skills, because clearly you have barely 
started as a programmer. But we arc serious. The tools presented in this chapter 
do allow you to express every computation: you have as many variables (includ
ing vectors and strings) as you want, you have aritlunetic, comparisons, and you 
have selection and iteration. Every computation can be expressed using those 
prinutives. You have text and numeric input and output, and every input or out
put can be expressed as text (even graphics) .  You can even organize your compu
tations as sets of named functions. What is left for you to do is "just" to learn to 
write good programs, that is, to write programs that are correct, maintainable, 
and reasonably efficient. Importantly, you must try to learn to do so with a rea
sonable amount of effort. 
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Errors 

"I realized that from now on a large part 
of my life would be spent fmding and 

correcting my own mistakes." 

-Maurice Wilkes, 1949 

I 
n this chapter, we discuss correctness of programs, errors, and 

error handling. H you are a genuine novice, you'll find the dis

cussion a bit abstract at times and painfully detailed at other 

times. Can error handling really be this important? It is, and 

you '11 learn that one way or another before you can write pro

grams that others are willing to use. What we are trying to do is 

to show you what "thinking like a programmer" is about. It com

bines fairly abstract strategy with painstaking analysis of details 

and alternatives. 
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5.1 Introduction 

5.2 Sources of errors 

5.3 Compile-time errors 
5.3.1 Syntax errors 
5.3.2 Type errors 
5.3.3 Non-errors 

5.4 Unk-time errors 

5.5 Run-time errors 
5.5.1 The caller deals with errors 
5.5.2 The callee deals with errors 
5.5.3 Error reporting 

5.6 Exceptions 
5.6.1 Bad arguments 
5.6.2 Range errors 
5.6.3 Bad input 
5.6.4 Narrowing errors 

5.1 Introduction 
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5.7 Logic errors 

5.8 Estimation 

5.9 Debugging 
5.9.1 Practical debug advice 

5.10 Pre· and post-conditions 
5.10.1 Post-conditions 

5.11 Testing 

We have referred to errors repeatedly in the previous chapters, and - having 
done the drills and some exercises - you have some idea why- Errors are simply 
unavoidable when you develop a program, yet the fmal program must be free of 
errors, or at least free of errors that we consider unacceptable for it. 

There are many ways of classifying errors. For example : 

Compile-time errors: Errors found by the compiler. We can further classify 
compile-time errors based on which language rules they violate, for 
example: 

Syntax errors 

Type errors 

Link-time errors: Errors found by the linker when it is trying to combine 
object ftles into an executable program. 

Run-time errors: Errors found by checks in a running program. We can 
further classify run-time errors as 

Errors detected by the computer (hardware and/or operating system) 

Errors detected by a library (e.g., the standard library) 

Errors detected by user code 

Lofjc errors: Errors found by the programmer looking for the causes of er
roneous results. 
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I t  is tempting to say that our job as programmers is to  eliminate all errors. That is 
of course the ideal, but often that's not feasible. In fact, for real-world programs it 
can be hard to know exactly what "all errors" means. If we kicked out the power 
cord from your computer while it executed your program, would that be an error 
that you were supposed to handle? In many cases, the answer is "Obviously not,'' 
but what if we were talking about a medical monitoring program or the control 
program for a telephone switch? In those cases, a user could reasonably expect 
that something in the system of which your program was a part will do some-
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thing sensible even if your computer lost power or a cosmic ray damaged the 
memory holding your program. The key question becomes: "Is my program 
supposed to detect that error?" Unless we specifically say otherwise, we will as- (.J 
sume that your program 

1 .  Should produce the desired results for all legal inputs 

2. Should give reasonable error messages for all illegal inputs 

3. Need not worry about misbehaving hardware 

4. Need not worry about misbehaving system software 

5. Is allowed to terminate after fmding an error 

Essentially all programs for which assumptions 3, 4, or 5 do not hold can be con
sidered advanced and beyond the scope of this book. However, assumptions 1 
and 2 arc included in the defmition of basic professionalism, and professionalism 
is one of our goals. Even if we don't meet that ideal 100% of the time, it must be 
tl1c ideal. 

When we write programs, errors are natural and unavoidable ; the question 
is : how do we deal with them? Our guess is that avoiding, finding, and correcting 
errors takes 90% or more of the effort when developing serious software. For 
safety-critical programs, the effort can be greater still. You can do much better for 
small programs: on the other hand, you can easily do worse if you're sloppy. 

Basically, we offer three approaches to producing acceptable software: 

Organize software to minimize errors. (_j 
Eliminate most of the errors we made through debugging and testing. 

Make sure the remaining errors are not serious. 

None of these approaches can completely eliminate errors by itself; we have to 
usc all tluee. 

Experience matters immensely when it comes to producing reliable pro· 
grams, that is, programs that can be relied on to do what they are supposed to do 
with an acceptable error rate. Please don't forget that the ideal is that our pro
granls always do the right thing. We are usually able only to approxinlate that 
ideal, but tl1at's no excuse for not trying very hard. 
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5.2 Sources of errors 
Here are some sources of errors: 

lbor specification: If we are not specific about what a program should do, 
we are unlikely to adequately examine the "dark comers" and make sure 
that all cases are handled (i.e., that every input gives a correct answer or 
an adequate error message). 

Incomplete programs: During development, there are obviously cases that 
we haven't yet taken care of. That's unavoidable. What we must aim for 
is to know when we have handled all cases. 

Unexpected argumen/J: Functions take arguments. U a function is given an 
argument we don't handle, we have a problem. An example is calling the 
standard library square root function with -1 .2 :  sqrt(-1 .2). Since sqrt() 
of a double returns a double, there is no possible correct return value. 
§5.5.3 discusses this kind of problem. 

Unexpected input: Programs typically read data (from a keyboard. from 
ftles. from GUis, from network connections. etc.) . A program makes 
many assumptions about such input, for example, that the user will 
input a number. What if the user inputs "aw, shut up!" rather than the 
expected integer? §S.6.3 and §10.6 discuss this kind of problem. 

Unexjxcted state: Most programs keep a lot of data ("state") around for usc 
by different parts of the system. Examples are address lists, phone direc
tories, and vectors of temperature readings. What if such data is incom
plete or wrong? The various parts of the program must still manage. 
§26.3 .5 discusses this kind of problem. 

Logical errors: That is, code that simply doesn't do what it was supposed 
to do ; we'll just have to find and fix such problems. §6.6 and §6.9 give 
exan1ples of finding such problems. 

This list has a practical use. We can use it as a checklist when we arc considering 
how far we have come with a program. No progran1 is complete until we have 
considered all of these potential sources of errors . In fact, it is prudent to keep 
them in mind from the very start of a project, because it is most unlikely that a 
program that is just thrown together without thought about errors can have its 
errors found and removed without a serious rewrite. 

5.3 Compile-time errors 
When you are writing programs, your compiler is your first line of defense 
against errors. Before generating code, the compiler analyzes code to detect syntax 
errors and type errors. Only if it fmds that the program completely conforms to 
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the language specification will it allow you to proceed. Many of the errors that the 
compiler finds are simply "silly errors" caused by mistyping or incomplete edits of 
the source code. Others result from flaws in our understanding of the way parts of 
our program interact. To a beginner, the compiler often seems petty, but as you 
leam to use the language facilities - and especially the type system - to directly 
express your ideas, you'll come to appreciate the compiler's ability to detect prob
lems that would otherwise have caused you hours of tedious searching for bugs. 

As an example, we will look at some calls of this simple function: 

int area(int length, int width); II calcu late area oi a rectangle 

5.3.1 Syntax errors 
What if we were to call area() like this: 

int s1 = area(7; 
int s1 = area(7) 
lnt s3 = area(7); 
int s4 = area('7) ; 

II error: ) missing 
II error: ; missing 
II error: lnt  is not a type 
II error: non-termi nated character ( '  missing) 

Each of those lines has a syntax error; that is, they are not well formed according 
to the C++ grammar, so the compiler will reject them. Unfortunately, syntax er-
rors are not always easy to report in a way that you, the programmer, find easy to 
understand. That's because the compiler may have to read a bit further than the 
error to be sure that there really is an error. The effect of this is that even though 
synLax errors tend to be completely trivial (you'll often find it hard to believe you 
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have made such a mistake once you find it), the reporting is often cryptic and oc
casionally refers to a line further on in the program. So, for syntax errors, if you • \ 
don't see anything wrong with the line the compiler points to, also look at previ- U 
ous lines in the program. 

Note that the compiler has no idea what you are trying to do, so it cannot re
port errors in terms of your intent, only in terms of what you did. For example, 
given tl1e error in the declaration of s3 above, a compiler is unlikely to say 

"You misspelled int; don't capitalize the i." 

Rather, it'll say something like 

"syntax error: missing ' ; '  before identifier 's3' " 

" 's3' missing storage-class or type identifiers" 

" 'lnt' missing storage-class or type identifiers" 

Such messages tend to be cryptic, until you get used to tl1em, and to use a vocab
ulary that can be hard to penetrate. Different compilers can give very different-
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looking error messages for the same code. Fortunately, you soon get used to  read
ing such stuff. After all, a quick look at those cryptic lines can be read as 

"There was a syntax error before s3, 
and it had something to do with the type of lnt or s3." 

Given that, it's not rocket science to find the problem. 

T R Y  T H I S  

· .. Try to compile those examples and see how the compiler responds. 

5.3.2 Type errors 
Once you have removed syntax errors, the compiler will start reporting type er
rors; that is, it will report mismatches between the types you declared (or forgot 
to declare) for your variables, functions, etc. and the types of values or expres
sions you assign to them, pass as function arguments, etc. For example : 

int xO = arena(7); 
int x1 = area(7); 
int x2 = area("seven",2) ; 

Let's consider these errors. 

II error: undec lared function 
II error: wrong number of arguments 
II error: 1 st argument has a wrong type 

1. For arena(7), we misspelled area as arena, so the compiler thinks we 
want to call a function called arena. (What else could it "think"? That's 
what we said.) Assuming there is no function called arena(). you'll get an 
error message complaining about an undeclared function. If there is a 
function called arena, and if thal function accepts 7 as an argument, you 
have a worse problem: the program will compile but do something you 
didn't expect it to (that's a logical error; see §5.7) . 

2. For area(7), the compiler detects the wrong number of arguments. In 
C++, every function call must provide the expected number of argu
ments, of the right types, and in the right order. When the type system is 
used appropriately, this can be a powerful tool for avoiding run-time er
rors (see §14. 1 ) .  

3. For area("seven",2), you might hope that the computer would look at 
"seven" and figure out that you meant the integer 7. It won'L. If a func
tion needs an integer, you can't give it a string. C++ does support some 
implicit type conversions (see §3.9) but not string to int. The compiler 
does not try to guess what you meant. What would you have expected 
for area("Hovel lane",2), area("7,2"), and area("sieben","zwei")? 
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These are just a few examples. There are many more errors that the compiler will 
find for you. 

T R Y  T H I S  

.. Try to compile those examples and see how the compiler responds. Try 
thinking of a few more errors yourself, and try those. 

5.3.3 Non-errors 
As you work with the compiler, you'll wish that it was smart enough to figure out 
whal you meant; that is, you'd like some of the errors it reports not to be errors. 
l11at's natural. More surprisingly, as you gain experience, you'll begin to wish 
that the compiler would reject more code, rather than less. Consider: 

int x4 = area(10,-7); II OK: but what is a rectangle with a width of minus 7? 
int xS = area(10.7,9.3); 
char x6 = area(100, 9999); 

II OK: but ca lls area( l 0, 9)  
II OK, but truncates the resul t  

For x4 we get no error message from the compiler. From the compiler's point of 
view, area(10,-7) is fine: area() asks for two integers and you gave them to it; no
body said that those arguments had to be positive. 

For xS, a good compiler will warn about the truncation of the doubles 10.7 
and 9.3 into the ints 10 and 9 (see §3.9.2) However, the (ancient) language rules 
state that you can implicitly convert a double to an int, so the compiler is not al
lowed to rejecl the call area(10.7,9.3). 

The iniLialization of x6 suffers from a variant of the same problem as the call 
area(10.7,9.3). The int returned by area(100,9999), probably 999900, will be as
signed Lo a char. The most likely result is for x6 to get the "truncated" value -36. 
Again, a good compiler will give you a warning even though the (ancient) lan
guage rules prevent it from rejecting the code. 

As you gain experience, you'll learn how to get the most out of the com
piler's ability to detect errors and to dodge its known weaknesses. However, 
don't get overconfident: "my program compiled" doesn't mean that it will run. 
Even if it does run, it typically gives wrong results at first until you fmd the flaws 
in your logic. 

5.4 Link-time errors 
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A program consists of several separately compiled parts, called translation units. .\ 
Every function in a program must be declared with exactly the same type in U 
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every translation unit in which it i s  used. We use header ftles Lo ensure that; see 
§8.3. Every function must also be defined exactly once in a program. If either of 
these rules is violated, the linker will give an error. We discuss how to avoid link
time errors in §8.3. For now, here is an example of a program tl1at might give a 
typical linker error: 

int area(int length, int width); II calculate area of a rectangle 

int main() 
{ 

int x = area(2,3); 

Unless we somehow have defined area() in another source file and linked the 
code generated from that source file to this code, the linker will complain that it 
didn't find a definition of area(). 

The definition of area() must have exact.ly the same types (both the return 
type and the argument type) as we used in our ftle, that is: 

int area(int x, int y) { /* . . .  */ } II "our" area( )  

Functions with the same name but different types will not match and will be 
ignored: 

double area(double x, double y) { /* . . .  */ } II not "our" area( ) 

int area(int x, int y, char unit) { /* . . .  */ } II not "our" area( 1 

Note that a misspelled function name doesn't usually give a linker error. How
ever, the compiler gives an error immediately when it sees a call to an undeclared 
function. That's good: compile-time errors are found earlier than link-time errors 
and are typically easier to fix. 

The linkage rules for functions, as stated above, also hold for all other enti· 
ties of a program, such as variables and types: there has to be exactly one defini
tion of an entity with a given name, but tl1ere can be many declarations, and all 
have to agree exactly on its type. 

5.5 Run-time errors 
If your program has no compile-time errors and no link-time errors, it'll run. 
This is where the fun really starts. When you write the program you are able Lo 
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detect errors, but it is not always easy to know what to do with an error once you 
catch it at run time. Consider: 

int area(int length, int width) 
{ 

II calculate urea of a rectangle 

return length*width; 

int framed_area(int x, int y) 
{ 

II calculate area within frame 

return area(x-2,y-2); 

int main() 
{ 

int x = -1 ;  
int y = 2; 
int z = 4; 
II . . .  
int area1 = area(x,y); 
int area2 = framed_area(1 ,z); 
int areal = framed_area(y,z); 
double ratio = double(area1 )/areal; II convert to double to get 

II floating-point division 

We used the variables x, y, z (rather than using the values directly as arguments) to 
make the problems less obvious to the human reader and harder for the compiler 
to detect. However, these calls lead to negative values, representing areas, being as
signed to area1 and area2. Should we accept such erroneous results, which violate 
most notions of math and physics? If not, who should detect the errors : the caller 
of area() or the function itself? And how should such errors be reported? 

Before answering those questions, look at the calculation of the ratio in the 
code above. It looks innocent enough. Did you notice something wrong with it? 
If not, look again: areal will be 0, so that double(area1 )/areal divides by zero. 
Tius leads to a hardware-detected error that terminates the program with some 
cryptic message relating to hardware. This is the kind of error tl1at you - or your 
users - will have to deal with if you don't detect and deal sensibly with run-time 
errors. Most people have low tolerance for such "hardware violations" because to 
anyone not intimately fanllliar with the program all the information provided is 
"Something went wrong somewhere!" That's insufficient for any constructive ac
tion, so we feel angry and would like to yell at whoever supplied the program. 
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So, let's tackle the problem of argument errors with area(). We have two ob
vious alternatives: 

a. Let the caller of area() deal with bad arguments. 

b. Let area() (the called function) deal with bad arguments. 

5.5.1  The cal ler deals with errors 
Let's try the first alternative ("Let the user beware !") first. l11at's the one we'd 
have to choose if area() was a function in a library where we couldn't modify it. 
For better or worse, this is the most common answer. 

Protecting the call of area(x,y) in main() is relatively easy: 

if (x<=O) error("non-positive x");  
if (y<=O) error( "non·positive y"); 
int area1 = area(x,y); 

Really, the only question is what Lo do if we find an error. Here, we have called a 
function error() which we will assume will do something sensible. In fact, in 
std_lib_facilities.h we supply an error() function that by default terminates the 
program with a system error message plus Lhe string we passed as an argumenl 
to error(). If you prefer to write out your own error message or Lake other ac
tions, you catch runtime_error (§5.6.2, §7.3, §7.8, §B.2. 1 ) .  111is suffices for most 
student programs and is an example of a style that can be used for more sophisti
cated error handling. 

If we didn't need separate error messages about each argument, we would 
simplify: 

if (x<=O I I y<=O) error(" non-positive area() argument"); II I I  means "or" 
int area1 = area(x,y); 

To complete protecting area() from bad arguments, we have to deal with the calls 
through framed_area(). We could write: 

if (Z<=2) 
error( "non-positive 2nd area() argument called by framed_area()"); 

int area2 = framed_area(1 ,z); 
if (y<=2 11 Z<=2) 

error("non-positive area() argument called by framed_area()") ;  
int areal = framed_area(y,z); 

111is is messy, but there is also something fundamentally wrong. We could write 
this only by knowing exactly how framed_area() used area(). We had to know 
that framed_area() subtracted 2 from each argument. We shouldn't have to know 
such details! What if someone modified framed_area() to use 1 insLead of 2? 
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Someone doing that would have to look at  every call of framed_area() and modify 
the error-checking code correspondingly. Such code is called "brittle" because it 
breaks easily. This is also an example of a "magic constant" (§4.3 . 1 ) .  We could 
make the code less brittle by giving the value subtracted by framed_area() a name: 

const int frame_ width = 2; 
int framed_area(int x, int y) II calculate area within frame 
{ 

return area(x-frame_width,y-frame_width); 

ThaL name could be used by code calling frame_area() :  

i f  (1-frame_width<--o I I  z-frame_width<=O) 
error("non·positive 2nd area() argument called by framed_area()") ;  

int area2 = framed_area(1 ,z); 
if (y-frame_width<=O II z-frame_width<=O) 

error("non-positive area() argument called by framed_area()");  
int areal = framed_area(y,z); 

Look at that code ! Are you sure it is correct? Do you find it pretty? Is it easy to 
read? Acn1ally, we find it ugly (and therefore error-prone) . We have more than tre
bled the size of the code and exposed an implementation detail of frame_area(). 
There has to be a better way! 

Look at the original code: 

int area2 = framed_area(1 ,z); 
int areal = framed_area(y,z); 

It may be wrong, but at least we can sec what it is supposed to do. We can keep 
this code if we put the check inside framed_area(). 

5.5.2 The callee deals with errors 
Checking for valid arguments within framed_area() is easy, and error() can still 
be used Lo report a problem: 

int framed_area(int x, int y) II culcu late area within frume 
{ 

const int frame_width = 2; 
if (x-frame_width<=O II y-frame_width<=O) 

error("non-positive area() argument called by framed_area()");  
return area(x-frame_width,y-frame_width); 
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This is rather nice, and we no longer have to write a test for each call of 
frame_area(). For a useful function that we call 500 times in a large program, that 
can be a huge advantage. Furthermore, if anything to do with the error handling 
changes, we only have to modify the code in one place. 

Note something interesting: we almost unconsciously slid from the "caller 
must check the arguments" approach to the "function must check its own argu
ments" approach (also called "the callee checks" because a called function is often 
called "a callee"). One benefit of the latter approach is that the argument-checking 
code is in one place. We don't have to search the whole program for calls. Further
more, that one place is exactly where the arguments are to be used, so we have all 
the information needed easily available to do the check. 

Let's apply this solution to area() :  

int  area(int length, int  width) 

{ 
II calculate area of a rectangle 

if (length<=O II width <=0) error("non-positive area() argument");  
return length*width; 

This will catch all errors in calls to area(), so we no longer need to check in 
framed_area().  We might want to, though, to get a better - more specific - error 
message. 

Checking arguments in the function seems so simple, so why don't people 
do that always? Inattention to error handling is one answer, sloppiness is another, 
but there are also respectable reasons : 

we can 't modifj the .fonclion definition: The function is in a library that for 
some reason can't be changed. Maybe it's used by others who don't 
share your notions of what constitutes good error handling. Maybe it's 
owned by someone else and you don't have the source code. Maybe it's 
in a library where new versions come regularly so t11at if you made a 
change, you'd have to change it again for each new release of the library. 

The called function doesn 't know what to do in cose rf error: This is typically the 
case for library functions. The library writer can detect the error, but 
only you know what is to be done when an error occurs. 

17ze called jimch'on doesn 't know where it was called .from: When you get an 
error message, it tells you that something is wrong, but not how the exe
cuting program got to that point. Sometimes, you want an error message 
to be more specific. 

Perfomzance: For a small function the cost of a check can be more than the 
cost of calculating the result. For example, that's the case with area(), 
where the check also more than doubles the size of the function (that is, 
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the number of  machine instructions that need to be executed, noL just 
the length of the source code) . For some programs, that can be critical, 
especially if the same information is checked repeatedly as functions call 
each other, passing information along more or less unchanged. 
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So what should you do? Check your arguments in a function unless you have a • 1 
good reason nol to. � 

After examining a few related Lopics, we'll return to the question of how to 
deal with bad arguments in §5.9. 

5.5.3 Error reporting 
Let's consider a slightly different question: once you have checked a set of argu
ments and found an error, what should you do? Sometimes you can return an 
"error value." For example: 

II ask user for a yes-or-no answer; 
II return ' b ' to indicate ,, bad answer ( i .e., not yes or no) 
char ask_user(string question) 
{ 

cout << question << "l (yes or no)\n" ;  
string answer = " " ;  
cin >> answer; 
if (answer =="y" II answer=="yes") return 'y'; 
if (answer =="n" II answer==" no") return 'n'; 
return 'b'; II 'b'  for "bad answer" 

II calcu late area of a rectangle; 
II return -1 to indicate a bad argument 
int area(int length, int width) 
{ 

if (length<=O II width <=0) return - 1 ;  

return length*width; 

That way, we can have the called function do the detailed checking, while letting 
each caller handle the error as desired. This approach seems like it could work, 
but it has a couple of problems that make it unusable in many cases : 

Now both the called function and all callers must test. The caller has 
only a simple tesl to do but must still wriLe that test and decide what to 
do if it fails. 
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A caller can forget to test. That can lead to unpredictable behavior fur
ther along in the program. 

Many functions do not have an "extra" return value that they can use to 
indicate an error. For example, a function that reads an integer from 
input (such as, cin 's operator >>) can obviously return any int value, so 
there is no int that it could return to indicate failure. 

The second case above - a caller forgetting to test - can easily lead to surprises. 
For example: 

int f(int x, int y, int z) 
{ 

int area1 = area(x,y); 
if (area1<=0) error("non·positive area"); 
int area2 = framed_area(1 ,z); 
int areal = framed_area(y,z); 
double ratio = double(area1 )/areal; 
II . . .  

Do you see the errors? Tills kind of error is hard to find because there is no ob· 
vious "wrong code" to look at: the error is the absence of a test. 

T R Y  T H I S  

Test this program with a variety of values. Print out the values of area1 , 
area2, areal, and ratio. Insert more tests until all errors are caught. How do 
you know that you caught all errors? Tills is not a trick question; in this par
ticular example you can give a valid argument for having caught all errors. 

There is another solution that deals with that problem: using exceptions. 

5 .6 Exceptions 
Like most modem programming languages, C++ provides a mechanism to help 
deal with errors : exceptions. l11e fundamental idea is to separate detection of an 
error (which should be done in a called function) from the handling of an error 
(which should be done in the calling function) while ensuring that a detected 
error crumot be ignored; that is, exceptions provide a mechanism that allows us 
to combine the best of the various approaches to error handling we have ex
plored so far. Nothing makes error handling easy, but exceptions make it easier. 
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The basic idea is that if a function fmds an error that it cannot handle, it does f) 
not return normally; instead, it throws an exception indicating what went wrong. 
Any direct or indirect caller can catch the exception, that is, specify what to do if 
the called code used throw. A function expresses interest in exceptions by using a 
try-block (as described in the following subsections) listing the kinds of excep· 
tions it wants to handle in the catch-parts of the try-block. If no caller catches an 
exception, the program terminates. 

We'll come back to exceptions much later (Chapter 19) to see how to use 
them in slightly more advanced ways. 

5.6.1 Bad arguments 
Here is a version of area() using exceptions: 

class Bad_area { } ; II a type speci fica l ly  for report ing errors from area( )  

II calcu late area of a rectangle; 
II throw a Bad_,uea exception in  case of a bad argument 
int area(int length, int width) 
{ 

if (length<=O II width <::0) throw Bad_area();  
return length•width; 

That is, if the arguments are OK, we return the area as always; if not, we get out 
of area() using the throw, hoping that some catch will provide an appropriate re
sponse. Bad_area is a new type we define with no other purpose than to provide 
something unique to throw from area() so that some catch can recognize it as the 
kind of exception thrown by area(). User-defined types (classes and enumeration) 
will be discussed in Chapter 9. The notation Bad_area() means "Make an object 
of type Bad_area," so throw Bad_area() means "Make an object of type Bad_area 
and throw it." 

We can now write 

int main() 
try { 

int x = -1 ;  
int y = 2; 
int z = 4; 
II . . .  
int area1 = area(x,y); 
int area2 = framed_area(1 ,z) ; 
int areal = framed_area(y,z) ; 
double ratio = area1/area3; 
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catch (Bad_area) { 
cout << "Oops! bad arguments to area()\n" ;  

Frrst note that this handles all calls t o  area(), both the one i n  main() and the two 
through framed_area(). Second, note how the handling of the error is cleanly sep
arated from the detection of the error: mai n() knows nothing about which func
tion did a throw Bad_area(), and area() knows nothing about which function (if 
any) cares to catch the Bad_area exceptions it throws. This separation is espe
cially important in large programs written using many libraries. In such pro
grams, nobody can ')ust deal with an error by putting some code where it's 
needed," because nobody would want to modify code in both the application and 
in all of the libraries. 

5 .6.2 Range errors 
Most real-world code deals with collections of data; that is, it uses all kinds of ta
bles, lists, etc. of data elements to do a job. In the context of C++, we often refer 
to "collections of data" as containers. The most common and useful standard li
brary container is the vector we introduced in §4.6. A vector holds a number of 
elements, and we can determine that number by calling the vector's size() mem
ber function. What happens if we try to use an element with an index (subscript) 
that isn't in the valid range [O:v.size()) ? The general notation [low:high) means 
indices from low to high-1 ,  that is, including low but not high: 

low: high: 

....._.....__--L-__.1 . . . ..... , --.--r--..,.., ��� � � 
Before answering that question, we should pose another question and answer it: 

"Why would you do that?" Mter all, you know that a subscript for v should 
be in the range [O,v.size()), so just be sure that's so! 

As it happens, that's easy to say but sometimes hard to do. Consider this plausi
ble program: 

vector<int> v; II a vector i nts 
int i;  
while (cin>>i) v.push_back(i); II get values 
for (int i =  0; i<=v.size(); ++i) II pri nt values 

cout << "v[" << i <<"] == " << v[i] << end I ;  

Do you see the error? Please try to spot it before reading on. It's not an uncom· 
mon error. We have made such errors ourselves - especially late at night when 
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we were tired. Errors arc always more common when you arc tired or  rushed. 
We use 0 and size() to try to make sure that i is always in range when we do v[i] . 
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Unfortunately. we made a mistake. Look at the for-loop : the termination • 1 

condition is k=v.size() rather than the correct i<V.size(). This has the unfortunate U 
consequence that if we read in five integers we'll try to write out six. We try to 
read v[5], which is one beyond the end of the vector. l11is kind of error is so 
common and "fan10us" that it has several names: it is an example of an if!-b;•-one 
nTor, a range etTar because the index (subscript) wasn't in the range required by 
the vector. and a bounds error because the index was not within the lin1its (bounds) 
of the vector. 

Here is a simpler version that produces the same effect: 

vector<inl> v(5); 
int x = v[5]; 

However, we doubt that you'd have considered that realistic and worth serious 
attention. 

So what actually happens when we make such a range error? The subscript 
operation of vector knows the size of the vector, so it can check (and the vector 
we are using does; see §4.6 and §19.4) . If that check fails, the subscript operation 
throws an exception of type out_of_range. So, if the off-by-one code above had 
been part of a program that caught exceptions, we would at least have gotten a 
decent error message: 

i nt main() 
try { 

vector<i nl> v; 
int x ;  

II a vector ints 

while (cin>>x) v.push_back(x); II set values 
for (int i =  0; i<:v.size(); ++i) II print values 

cout << "v[" << i <<"]  == " << v[i] << endl; 
} catch (out_of_range_error) { 

cerr << "Oops! Range error\n" ;  
return 1 ;  

} catch ( . . .  ) { II catch a l l  other exceptions 
cerr << "Exception:  something went wrong\n";  
return 2;  

Note that a range error is really a special case of the argument errors we discussed 
in §5.5.2. We didn't trust ourselves to consistently check the range of vector in
dices, so we told vector's subscript operation to do it for us. For the reasons we 
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outline, vector's subscript function (called vector: :operator[]) reports finding an 
error by throwing an exception. What else could it do? It has no idea what we 
would like to happen in case of a range error. The author of vector couldn't even 
know what programs his or her code would be part of. 

5.6.3 Bad input 
We'll postpone the detailed discussion of what to do with bad input until §10.6. 
However, once bad input is detected, it is dealt with using the san1e techniques 
and language features as argument errors and range errors. Here, we'll just show 
how you can tell if your input operations succeeded. Consider reading a floating
point number: 

double d = 0; 
cin >> d; 

We can test if the last input operation succeeded by testing cin :  

i f  (cin) { 
II a l l  is wel l, and we can try reading again 

else { 
II the last read didn't succeed, so we take some other action 

There are several possible reasons for that input operation's failure. The one that 
should concern you right now is that there wasn't a double for >> to read. 

During the early stages of development, we often want to indicate that we 
have found an error but aren't yet ready to do anything particularly clever about 
it; we just want to report the error and tem1inate the program. Later, maybe. 
we'll come back and do something more appropriate. For example: 

double some_fu nction() 
{ 

double d =  0; 
cin >> d ;  
i f  ( !cin) error(" couldn't read a double i n  'some_function()' ") ;  
II do something useful 

The string passed to error() can then be printed as a help to debugging or as a 
message to the user. How can we write error() so as to be useful in a lot of pro-
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grams? It can't return a value because we wouldn't know what t o  d o  with that 
value; instead error() is supposed to terminate the program after getting its mes
sage written. In addition, we might want to take some minor action before exit
ing, such as keeping a window alive long enough for us to read the message. 
That's an obvious job for an exception (see §7.3) . 
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The standard library defines a few exceptions, such as the out_of_range (J 
thrown by vector. It also supplies runtime_error which is pretty ideal for our 
needs because it holds a string that can be used by an error handler. So, we can 
write our simple error() like this: 

void error(string s) 
{ 

throw runtime_error(s) ; 

When we want to deal with runtime_error we simply catch it. For simple pro· 
grams, catching runtime_error in main() is ideal : 

int main() 
try { 

II our program 
return 0; II 0 indi(ates success 

catch (runtime_error& e) { 
cerr << "runtime error: " << e.what() << '\n';  
keep_window_open(); 
return 1 ;  II 1 indicates iai lure 

The call e.what() extracts the error message from the runtime_error. The & in 

catch(runtime_error& e) { 

is an indicator that we want to "pass the exception by reference." For now, please 
treat this as simply an irrelevant technicality. In §8.5.4-6, we explain what it 
means to pass something by reference. 

Note that we used cerr rather than cout for our error output: cerr is exactly 
like cout except that it is meant for error output. By default both cerr and cout 
write to the screen, but cerr isn't optimized so it is more resilient to errors, and on 
some operating systems it can be diverted to a different target, such as a file. 
Using cerr also has the simple effect of documenting that what we write relates to 
errors. Consequently, we use cerr for error messages. 
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As it happens, out_of_range is not a runtime_error, so catching runtime_error 
does not deal with the out_of_range errors that we might get from misuse of 
vectors and other standard library container types. However, both out_of_range 
and runtime_error are "exceptions," so we can catch exception to deal with both: 

int main() 
try { 

II our program 
return 0; II 0 indicates success 

catch (exception& e) { 
cerr << "error: " << e.what() << '\n'; 
keep_ window_open(); 
return 1; Il l  indicates fai lure 

catch ( . • .  ) { 
cerr << "Oops: unknown exceptionl\n " ;  
keep_window_open(); 
return 2; 11 2  i ndicates iai lure 

We added catch( . . •  ) to handle exceptions of any type whatsoever. 
Dealing with exceptions of both type out_of_range and type runtime_ error 

through a single type exception, said to be a common base (supertype) of both. is 
a most useful and general technique that we will explore in Chapters 13- 1 6. 

Note again that the return value from main() is passed to "the system" that 
invoked the program. Some systems (such as Unix) often use that value, whereas 
others (such as Wmdows) typically ignore it. A zero indicates successful comple
tion and a nonzero return value from main() indicates some sort of failure. 

When you use error(), you'll often wish to pass two pieces of information 
along to describe the problem. In that case, just concatenate the strings describing 
those two pieces of information. This is so common that we provide a second 
version of error() for that: 

void error(string s1, string s2) 
{ 

throw runtime_error(s1+s2); 

This simple error handling will do for a while, until our needs increase signifi
cantly and our sophistication as designers and programmers increases corre
spondingly. Note that we can use error() independently of how many function 
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calls we have done on the way to the error: error() will fmd its way to the nearest 
catch of runtime_ error, typically the one in main(). For examples of the use of ex· 
ceptions and error(), see §7.3 and §7.7. If you don't catch an exception, you'll get 
a default system error (an "uncaught exception" error). 

T R Y  T H I S  

_ � To see what an uncaught exception error looks like, run a small program that 
uses error() without catching any exceptions. 

5 .6.4 Narrowing errors 
In §3.9.2 we saw a nasty kind of error: when we assign a value that's "too large 
to fit" to a variable, it is implicitly truncated. For example: 

int x = 2.9; 
char c = 1066; 
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Here x will get the value 2 rather than 2.9, because x is an int and ints don't have fJ 
values that are fractions of an integer, just whole integers (obviously). Similarly, if 
we usc the common ASCII character set, c will get the value 42 (representing the 
character •) , rather tl1an 1066, because there is no char with the value 1066 in that 
character set. 

In §3.9.2 we saw how we could protect ourselves against such narrowing by 
testing. Given exceptions (and templates ; see §19.3) we can write a function that 
tests and throws a runtime_error exception if an assignment or initialization 
would lead to a changed value. For example: 

int x1 = narrow_cast<int>(2.9); 
int x2 = narrow_cast<int>(2.0); 
char c1 = narrow_cast<char>(1066) ;  
char c2 = narrow_cast<char>(85); 

II throws 
// OK 
II throws 
// OK 

The < • • •  > brackets are the same as are used for vector<int>. They are used 
when we need to specify a type, rather than a value, to express an idea. They are 
called template arguments. We can use narrow_cast when we need to convert a 
value and we are not sure "if it will fit"; it is defined in std_lib_facilities.h and im
plemented using error(). The word cast means "type conversion" and indicates 
the operation's role in dealing with something that's broken (like a cast on a bro
ken leg). Note that a cast doesn't change its operand; it produces a new value cor· 
responding to its operand of the required type. 
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5.7 Logic errors 
Once we have removed the initial compiler and linker errors, the program runs. 
Typically, what happens next is that no output is produced or that the output that 
the program produces is just wrong. lbis can occur for a number of reasons. 
Maybe your understanding of the underlying program logic is flawed; maybe 
you didn't write what you thought you wrote; or maybe you made some "silly 
error" in one of your control statements, or whatever. Logic errors are usually 
the most difficult to fmd and eliminate, because at this stage the computer does 
what you asked it to. Your job now is to figure out why that wasn't really what 
you meant. Basically, a computer is a very fast moron. It does exactly what you 
tell it to do, and that can be most humbling. 

Let us try to illustrate this with a simple example. Consider this code for 
finding the lowest, highest, and average temperature values in a set of data: 

int main() 
{ 

vector<double> temps; 

double temp = 0; 
double sum = 0; 
double high_temp = 0; 
double low_temp = 0; 

II temperatures 

while (cin>>temp) II read and put into temps 
temps.push_back(temp) ; 

for (int i =  0; i<temps.size(); ++i) 
{ 

if(temps[i] > high_temp) high_temp = temps[i]; 
if(temps[i] < low_temp) low_temp = temps[i]; 
sum += temps[i]; II compute sum 

cout << "High temperature: " << high_temp<< endl; 
cout << "Low temperature: " << low_temp << endl; 

II ii nd high 
II iind low 

cout << "Average temperature: " << sum/temps.size() << endl; 

We tested this program by entering the hourly temperature values from the 
weather center in Lubbock, Texas, for February 16, 2004 (l'exas still uses 
Fahrenheit) : 
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-16.5, -23.2, -24.0, -25.7, -26.1,  -18.6, 
7.5, 12.6, 23.8, 25.3, 28.0, 34.8, 

40.3, 42.6, 39.7, 35.4, 12.6, 6.5, 

The output was 

High temperature: 42.6 
Low temperature: -26.1 
Average temperature: 9.3 

-9.7, -2.4, 
36.7, 41 .5, 
-3.7, -14.3 

A naive progranuner would conclude that the program works just fine. An irre
sponsible progranuner would ship it to a customer. It would be prudent to test it 
again with another set of data. This time use the temperatures fromjuly 23, 2004: 

76.5, 
88.5, 

1 10.2, 

73.5, 
91 .7, 

103.6, 

71 .0, 
95.9, 
94.9, 

This time, the output was 

73.6, 
99.2, 
91 .7, 

High temperature : 1 1 2.4 
Low temperature: 0.0 
Average temperature: 89.2 

70.1,  
98.2, 
88.4, 

73.5, 
100.6, 

85.2, 

77.6, 
106.3, 

85.4, 

85.3, 
112.4, 

87.7 

Oops, something is not quite right. Hard frost (0.0°F is about -l8°C) in Lubbock 
in july would mean the end of the world! Did you spot the error? Since low_temp 
was initialized at 0.0, it would remain 0.0 unless one of the temperatures in the 
data was below zero. 

T R Y  T H I S  

. .. Get this program to run. Check that our input really does produce that out
put. Try to "break" the program (i.e., get it to give wrong results) by giving it 
other input sets. What is the least amount of input you can give it to get it to 
fail? 

Unfortw1ately, there are more errors in this progran1. What would happen if all 
of the temperatures were below zero? The initialization for high_temp has the 
equivalent problem to low _temp: high_temp will remain at 0.0 unless there is a 
higher temperature in the data. This progran1 wouldn't work for the South Pole 
in winter either. 
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These errors are fairly typical; they will not cause any errors when you com
pile the program or cause wrong results for "reasonable" inputs . However, we 
forgot to think about what we should consider "reasonable." Here is an improved 
program: 

int main() 
{ 

double temp = 0; 
double sum = 0; 
double high_temp = -1000; 
double low_temp = 1000; 
int no_of_temps = 0; 

II in i t ia l ize to impossibly low 
II ini t ial ize to "' impossibly high" 

while (cin>>temp) { II read temp 
++no_of_temps; II count temperatu res 
sum += temp; II compute sum 
if (temp > high_temp) high_temp = temp; 
if (temp < low_temp) low_temp = temp; 

II iind high 
II find low 

cout << "High temperature : " << high_temp<< endl; 
cout << "Low temperature : " << low_temp << endl; 
cout << "Average temperature :  " << sum/no_of_temps << endl; 

Does it work? How would you be certain? How would you precisely defme 
"work"? Where did we get the values 1000 and -1000? Remember that we 
warned about "magic constants" (§5.5. 1 ) .  Having 1000 and -1000 as literal values 
in the middle of the program is bad style, but are the values also wrong? Arc 
there places where the temperatures go below -1000°F (-573°C) ? Are there 
places where the temperatures go above 1000°F (538°C)? 

T R Y  T H I S  

Look it up. Check some information sources to pick good values for the 
min_temp (the "minimum temperature") and max_temp (the "maximum 
temperature") constants for our program. Those values will determine the 
limits of usefulness of our program. 
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5.8 Estimation 
Imagine you have w1itten a program that does a simple calculation, say, comput
ing the area of a hexagon. You run it and it gives the area -34.56. You just know 
that's wrong. Why? Because no shape has a negative area. So, you ftx that bug 
(whatever it was) and get 21 .65685. Is that right? That's harder to say because 
we don't usually keep the formula for the area of a hexagon in our heads. What 
we must do before making fools of ourselves by delivering a program that pro
duces ridiculous results is just to check that the answer is plausible. In this case, 
that's easy. A hexagon is much like a square. We scribble our regular hexagon on 
a piece of paper and eyeball it to be about the size of a 3-by-3 square. Such a 
square has the area 9. Bummer, our 21 .65685 can't be right! So we work over 
our progran1 again and get 9.65685. Now, that just might be right! 
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The general point here has nothing to do with hexagons. The point is that • 1 

unless we have some idea of what a correct answer will be like - even ever so ap- U 
proximately - we don't have a clue whether our result is reasonable. Always ask 
yourself this question: 

L Is tlus answer to this particular problem plausible? 

You should also ask the more general (and often far harder) question: 

2. How would I recognize a plausible result? 

Here, we are not asking, "What's the exact answer?" or "What's the correct an
swer?" That's what we are writing the progran1 to tell us. All we want is to know 
that the answer is not ridiculous. Only when we know tl1at we have a plausible 
answer does it make sense to proceed with further work. 

E1tUIUlh.o11 is a noble art that combines common sense and some very simple 
arithmetic applied to a few facts. Some people are good at doing estimates in their 
heads, but we prefer scribbles "on the back of an envelope" because we fmd we 
get confused less often that way. What we call estimation here is an informal set 
of techniques tl1at are sometimes (humorously) called gueSJh"71Ullio11 because they 
combine a bit of guessing with a bit of calculation. 

T RY T H I S  

_. Our hexagon was regular with 2cm sides. Did we get that answer right? Just 
do the "back of the envelope" calculation. Take a piece a paper and scribble 
on it. Don't feel that's below you. Many famous scientists have been greatly 
admired for their ability to come up with an approximate answer using a 
pencil and the back of an envelope (or a napkin). This is an ability - a simple 
habit, really - that can save us a lot of time and confusion. 
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Often, making an estimate involves coming up with estimates of data that are 
needed for a proper calculation, but that we don't yet have. Imagine you have to 
test a program that estimates driving times between cities. Is a driving time of 15  
hours and 33 minutes plausible for New York City to Denver? From London to 
Nice? Why or why not? What data do you have to "guess" to answer these ques
tions? Often, a quick web search can be most helpfuL For example, 2000 miles is 
not a bad guess on the road distance from New York City to Denver, and it 
would be hard (and illegal) to maintain an average speed of 130mlhr, so 1 5  hours 
is not plausible ( 15* 130 is just a bit less than 2000). You can check: we overesti
mated both the distance and the average speed, but for a check of plausibility we 
don't have to be exactly right; we just have to guess well enough. 

T R Y  T H I S  

Estimate those driving times. Also, estimate the corresponding flight times 
(using ordinary commercial air travel). Then, try to verify your estimates by 
using appropriate sources, such as maps and timetables. We'd use online 
sources. 

5.9 Debugging 
When you have written (drafted?) a program, it'll have errors. Small programs 
do occasionally compile and run correctly the first time you try. But if that hap
pens for anything but a completely trivial program, you should at first be very, 
very suspicious. If it really did run correctly the first time, go tell your friends 
and celebrate - because this won't happen every year. 

So, when you have written some code, you have to find and remove the er· 
rors. That process is usually called debugging and the errors bu[!,J. The term bug is 
often claimed to have originated from a hardware failure caused by insects in the 
electronics in the days when computers were racks of vacuum tubes and relays 
filling rooms. Several people have been credited with the discovery and the appli
cation of the word bug to errors in software. The most famous of those is Grace 
Murray Hopper, the inventor of the COBOL programming language (§22.2.2.2). 
Whoever invented the term more than 50 years ago, bug is evocative and ubiqui
tous. The activity of deliberately searching for errors and removing them is 
called debugging. 

Debugging works roughly like this : 

1. Get the program to compile. 

2. Get the program to link. 

3. Get the program to do what it is supposed to do. 
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Basically, we go through this sequence again and again: hundreds o f  times, thou
sands of times, again and again for years for really large programs. Each time 
something doesn't work we have to find what caused the problem and ftx it. I 
consider debugging the most tedious and time-wasting aspect of programming 
and will go to great lengths during design and programming to minimize the 
amount of time spent hunting for bugs. Others fmd that hunt thrilling and the 
essence of programming - it can be as addictive as any video game and keep a 
progranuner glued to the terminal for days and nights (I can vouch for that from 
personal experience also). 
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Here is how not to debug: 
f.J 

while (the program doesn't appear to work) { II pseudo code 
Randomly look through the program for something that "looks odd" 
Change it to look better 

Why do we bother to mention this? It's obviously a poor algorithm with little 
guarantee of success. Unfortunately, that description is only a slight caricature of 
what many people find themselves doing late at night when feeling particularly 
lost and clueless, having tried "everything else." 

TI1e key question in debugging is 

How would I k11ou1 jf the program actuaUy worked cotTectlj•? 

If you can't answer that question, you are in for a long and tedious debug ses
sion, and most likely your users are in for some frustration. We keep returning to 
this point because anything that helps answer that question minimizes debugging 
and helps produce cmTect and maintainable programs. Basically, we'd like to de
sign our programs so that bugs have nowhere to hide. That's typically too much 
to ask for, but we aim to structure programs to minimize the chance of error and 
maximize the chance of fmding the errors that do creep in. 

5.9.1 Practical debug advice 

Start thinking about debugging before you write the first line of code. Once you • , 
have a lot of code written it's too late to try to simplify debugging. U 

Decide how to report errors : "Use error() and catch exception in main()" will 
be your default answer in this book. 

Make the program easy to read so that you have a chance of spotting the bugs: f.J 
Co11llnent your code well. That doesn't simply mean "Add a lot of com
ments." You don't say in English what is better said in code. Rather, you 
say in the comments - as clearly and briefly as you can - what can't be 
said clearly in code: 
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l11c name of the program 

The purpose of the program 

Who wrote this code and when 

Version numbers 
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What complicated code fragments are supposed to do 

What the general design ideas are 

How the source code is organized 

What assumptions are made about inputs 

What parts of the code are still missing and what cases are still not 
handled 

Usc meaningful names. 

"That doesn't simply mean "Use long names." 

Usc a consistent layout of code. 

Your IDE tries to help, but it can't do everything and you arc the 
one responsible. 

l11e style used in this book is a reasonable starting point. 

Break code into small functions, each expressing a logical action. 

Try to avoid functions longer than a page or two; most functions 
will be much shorter. 

Avoid complicated code sequences. 

Try to avoid nested loops, nested if-statements, complicated condi
tions, etc. Unfortunately, you sometimes need those, but remember 
that complicated code is where bugs can most easily hide. 

Use library facilities rather than your own code when you can. 

A library is likely to be better thought out and better tested than 
what you could produce as an alternative while busily solving your 
main problem. 

l11is is pretty abstract just now, but we'll show you example after example as we 
go along. 

Get the program to compile. Obviously, your compiler is your best help here. 
Its error messages are usually helpful - even if we always wish for better ones 
and, unless you are a real expert, assume that the compiler is always right; if you 
arc a real expert, this book wasn't written for you. Occasionally, you will feel that 
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the rules the compiler enforces arc stupid and unnecessary (they rarely are) and 
that things could and ought to be simpler (indeed, but they are not) . However, as 
they say, "a poor craftsman curses his tools." A good craftsman knows the 
strengths and weaknesses of his tools and adjusts his work accordingly. Here are 
some common compile-time errors : 

Is every string literal terminated? 

cout << "Hello, << name << '\n'; 
Is every character literal terminated? 

cout << "Hello, " << name << '\n; 
Is every block terminated? 

int f(int a) 
{ 

II oops! 

II oops! 

if (a>O) { /* do something */ else { t• do something else •t } 
II oops! 

Is every set of parentheses matched? 

if (a<--G II oops! 
" =  f(y); 

The compiler generally reports this kind of error "late"; it doesn't know 
you meant to type a closing parenthesis after the 0. 

Is every name declared? 

Did you include needed headers (for now, #include "std_lib_facili· 
ties.h ")? 

Is every name declared before it's used? 

Did you spell all names correctly? 

int count; t• . . .  *I ++Count; II oops! 
char ch; /* . . .  •t Cin>>e; II double oops! 

Did you terminate each expression statement with a semicolon? 

" = sqrt(y)+2 
z = x+3; 

II oops! 

We present more examples in this chapter's drills. Also, keep in mind the classifi
cation of errors from §5.2. 

Mter the program compiles and links, next comes what is typically the hardest 
part: figuring out why the program doesn't do what it's supposed to. You look at 
the output and try to figure out how your code could have produced that. Actually, 
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first you often look at a blank screen (or window), wondering how your program 
could have failed to produce any output. A common first problem with a Windows 
console mode program is that the console window disappears before you have had 
a chance to see the output (if any) . One solution is to call keep_window_open() 
from our std_lib_facilities.h at the end of main(). Then the program will ask for 
input before exiting and you can look at the output produced before giving it the 
input that will let it close the window. 

When looking for a bug, carefully follow the code statement by statement 
from the last point that you are sure it was correct. Pretend you're the computer 
executing the program. Does the output match your expectations? Of course not, 
or you wouldn't be debugging. 

Often, when you don't see the problem, the reason is that you "see" 
what you expect to see rather than what you wrote. Consider: 

for (int i =  0; i<=max; ++j) { 
for (int i=O; O<max; ++i) ;  

II oops! Ow ice) 
II print the elements oi v 

cout << "v[" << i << 11)=11 << v[il << '\n'; 

1bis last example came from a real program written by experienced pro
grammers (we expect it was written very late some night). 

Often when you do not see the problem, the reason is that there is too 
much code being executed between the point where the program pro
duced the last good output and the next output (or lack of output) . Most 
programming environments provide a way to execute ("step through") 
the statements of a program one by one. Eventually, you'll learn to use 
such facilities, but for simple problems and sin1ple programs, you can 

just temporarily put in a few extra output statements (using cerr) to help 
you see what's going on. For example : 

int my_fct(int a, double d) 
{ 

int res = 0; 
cerr << 11my_fct(11 << a << 11 , 11 << d << 11)\n11 ; 
II . . .  misbehaving code here . . .  
cerr << 11 my _fct() returns 11 << res << '\n'; 
return res; 

Insert statements that check invariants (that is, conditions that should al
ways hold; see §9.4.3) in sections of code suspected of harboring bugs. 
For example: 

int my_complicated_function(int a, int b, int c) 
II the arguments are posit ive and a < b < c 
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if ( I (O<a && a<b && b<c)) II !  means "not" and && means "and" 
error(" bad arguments for mcf"); 

II . . .  

If that doesn't have any effect, insert invariants in sections of code not 
suspected of harboring bugs; if you can't fmd a bug, you arc almost cer
tainly looking in the wrong place. 

A statement that states (asserts) an invariant is called an assertion (or just an asst:rt). 
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Interestingly enough, there are many effective ways of programming. Different • 1 

people successfully use dramatically different techniques. Many differences in de- U 
bugging technique come from differences in the kinds of programs people work 
on; others seem to have to do with differences in the ways people think. To the best 
of our knowledge, there is no one best way to debug. One thing should always be 
remembered, though: messy code can easily harbor bugs. By keeping your code as 
simple, logical, and well fonnatted as possible, you decrease your debug time. 

5.1 0 Pre- and post-conditions 
Now, let us return to the question of how Lo deal with bad arguments to a func- ., 
Lion. The call of a function is basically the besl point to think about correct code U 
and to catch errors: this is where a logically separate computation starts (and 
ends on the return). Look at what we did in the piece of advice above: 

int my_complicated_function(int a, int b, int c) 
II the arguments are positive and a < b < c 

{ 
if ( ! (O<a && a<b && b<c)) II !  means "not" and && means "and" 

error( "bad arguments for mcf"); 
II . . .  

Frrsl, we slated (in a co11llnent) what the function required of its arguments, and 
then we checked that this requirement held (throwing an exception if it did not) . 

This is a good basic strategy. A requirement of a function upon its argument 
is often called a pre-cmuh.lion: it must be true for the function to perform its action 
correctly. TI1e question is just what to do if the pre-condition is violated (doesn't 
hold). We basically have two choices : 

1. Ignore it (hope/assume that all callers give correct arguments) .  

2. Check it (and report the error somehow) . 
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Looking at it this way, argument types are just a way of having the compiler 
check the simplest pre-conditions for us and report them at compile time. For 
example : 

int x = my_complicated_function(1 , 2, "horsefeathers"); 

Here, the compiler will catch that the requirement ("pre-condition") thaL the third 
argument be an integer was violated. Basically, what we are talking about here is 
what to do with the requirements/pre-conditions that the compiler can'L check. 

Our suggestion is to always document pre-conditions in comments (so that a 
caller can see what a function expects) . A function with no comments docu
mented will be assumed to handle every possible argument value. But should we 
believe that callers read those comments and follow the rules? Sometimes we 
have to, but the "check the arguments in the callee" rule could be stated "Let a 
function check its pre-conditions." We should do that whenever we don'L sec a 
reason not to. The reasons most often given for not checking pre-conditions are : 

Nobody would give bad arguments . 

It would slow down my code. 

It is too complicated to check. 

The first reason can be reasonable only when we happen to know "who'' 
calls a function - and in real-world code that can be very hard to know. 

The second reason is valid far less often than people think and should most 
often be ignored as an example of "premature optimization." You can always re
move checks if they really tum out to be a burden. You cannot easily gain the 
correctness they ensure or get back the nights' sleep you lost looking for bugs 
those tests could have caught. 

The third reason is the serious one. It is easy (once you are an experienced 
programmer) to find examples where checking a pre-condition would Lake signif
icantly more work than executing the function. An example is a lookup in a dic
tionary: a pre-condition is that the dictionary entries are sorted - and verifying 
thaL a dictionary is sorted can be far more expensive than a lookup. Sometimes. iL 
can also be difficult to express a pre-condition in code and to be sure that you ex
pressed it correctly. However, when you write a function, always consider if you 
can write a quick check of the pre-conditions, and do so unless you have a good 
reason not to. 

Writing pre-conditions (even as comments) also has a significant benefit for 
the quality of your programs : it forces you to think about whaL a function re
quires. U you can't state that simply and precisely in a couple of comment lines, 
you probably haven't thoughL hard enough about what you are doing. Experi
ence shows that writing those pre-condition comments and the pre-condition tests 
helps you avoid many design mistakes. We did mention that we haLed debug-
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ging; explicitly stating pre-conditions helps in avoiding design errors as well as 
catching usage errors early. Writing 

int my_complicated_function(int a, int b, int c) 
II the arguments are positive and a < b < c 
{ 

if ( ! (O<a && a<b && b<c)) II !  means "not" and && means "and" 
error(" bad arguments for mcf"); 

II . . .  

saves you time and grief compared with the apparently simpler 

int my_complicated_function(int a, int b, int c) 
{ 

II . . .  

5.1 0.1  Post-conditions 
Stating pre-conditions helps us improve our design and catch usage errors early. 
Can this idea of explicitly stating requirements be used elsewhere? Yes, one more 
place immediately springs to mind: the return value! AfLer all, we typically have 
to state what a function returns; that is, if we return a value from a function we 
are always making a promise about the return value (how else would a caller 
know what to expect?) . Let's look at our area function (from §5.6.1 )  again: 

II calculate area oi a rectangle; 
II throw a Bad_area exception in case of a bad argument 
int area(int length, int width) 
{ 

if (length<=O II width <--o) throw Bad_area(); 
return length•width; 

It checks its pre-condition, but it doesn't state it in the comment (that may be OK 
for such a short function) and it assumes that the computation is correct (that's 
probably OK for such a trivial computation) . However, we could be a bit more 
explicit: 

int area( int length, int width) 
II c.1 lculate area of a rectangle; 
II pre-condit ions: length and width are positive 

163 



164 C H A PT E R  5 • E R R O R S  

II post-condition: returns a positive value that i s  the area 
{ 

if (length<=O II width <=0) error(" area() pre-condition"); 
int a =  length•width; 
if (a<=O) error(" area() post-condition"); 
return a; 

We couldn't check the complete post-condition, but we checked the part that said 
that it should be positive. 

T R Y  T H I S  

� Fmd a pair of values so that the pre·condition of tlus version of area holds, 
but the post-condition doesn't. 

Pre- and post-conditions provide basic sanity checks in code. As such they arc 
closely connected to the notion of invariants (§9.4.3), correctness (§4.2, §5.2). 
and testing (Chapter 26). 

5.1 1 Testing 
How do we know when to stop debugging? Well, we keep debugging until we 
have found all the bugs - or at least we try to. How do we know that we have 
found the last bug? We don't. "The last bug" is a programmers' joke: there is no 
such creature; we never find "the last bug" in a large program. By the time we 
might have, we arc busy modifying the program for some new use. 

In addition to debugging we need a systematic way to search for errors. This 
is called testing and we'll get back to that in §7.3, the exercises in Chapter 10. and 
in Chapter 26. Basically, testing is executing a program with a large and system
atically selected set of inputs and comparing the results to what was expected. A 
run with a given set of inputs is called a test case. Realistic programs can require 
millions of test cases. Basically, systematic testing crumot be done by humans typ
ing in one test after another, so we'll have to wait a few chapters before we have 
the tools necessary to properly approach testing. However, in the meru1time, re
member that we have to approach testing with tile attitude tl1at finding errors is 
good. Consider: 

Attitude 1 :  I'm smarter than any program! I'll break that @#$% " code! 

Attitude 2: I polished this code for two weeks. It's perfect! 
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Who d o  you think will find more errors? O f  course, the very best is an experi
enced person with a bit of "'attitude 1" who coolly, calmly, patiently. and system
atically works through the possible failings of the program. Good testers arc 
worth their weight in gold. 

We try to be systematic in choosing our test cases and always try both cor
rect and incorrect inputs. §7.3 gives the first example of this . 

..../ Drill 
Below arc 25 code fragments. Each is meant to be inserted into this "scaffolding" : 

#include "std_lib_facilities.h" 

int main() 
try { 

<<your code here>> 
keep_window_open(); 
return 0; 

catch (exception& e) { 

} 

cerr << "error: " << e.what() << '\n'; 
keep_window _open(); 
return 1 ;  

catch ( . . .  ) { 
cerr << "Oops: unknown exception !\n " ;  
keep_window_open(); 
return 2; 

Each has zero or more errors. Your task is to find and remove all errors in each 
program. When you have removed those bugs, the resulting program will com
pile, run, and write "Success !" Even if you think you have spotted an error, you 
still need to enter the (original, unimproved) program fragment and test it; you 
may have guessed wrong about what the error is, or there may be more errors in 
a fragment than you spotted. Also, one purpose of this drill is to give you a feel 
for how your compiler reacts to different kinds of errors. Do not enter the scaf
folding 25 times - that's a job for cut and paste or some similar "mechanical" 
technique . Do not fix problems by simply deleting a statement; repair them by 
changing, adding, or deleting a few characters . 
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1 .  
2 .  
3 .  
4 .  
5.  
6.  
7. 
8. 
9. 

10. 
1 1 .  
12. 
13. 
14. 
15. 
1 6. 
1 7. 
18 .  
1 9. 
20. 
2 1 .  
22. 
23. 
24. 
25. 

Cout << "Success!\n" ;  
cout << "Success !\n; 
cout << "Success" << !\n" 
cout << success << endl; 
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string res = 7;  vector<inl> v(10); v[S] = res; cout << "Success!\n"; 
vector<inl> v(10); v(S) = 7; if (v(5)! =7) cout << "Success!\n";  
i f  (cond) cout << "Success!\n "; else cout << "Fail!\n" ;  
bool c = false; if (c) cout << "Success!\n";  else cout << "Fail!\n";  
string s = "ape";  boo c = "fool"<s; if  (c) cout << "Success!\n"; 
string s = "ape"; if (s=="fool") cout << "Success!\n";  
string s = "ape" ; if  (s=="fool") cout < "Success!\n";  
string s =  "ape"; if (s+"fool ") cout < "Success!\n " ;  
vector<char> v(S); for (int i=O; O<v.size(); ++i) ; cout << "Success!\n " ;  
vector<char> v(S); for (int i=O; i<=v.size(); ++i) ; cout << "Success!\n " ;  
string s =  "Success!\n";  for (int i=O; i<6; ++i) cout << s[i]; 
if (true) then cout << "Success!\n " ;  else cout << "Fail!\n" ;  
int x = 2000; char c = x; i f  (c==2000) cout << "Success!\n " ;  
string s = "Success!\n "; for (int i=O; i<10; ++i) cout << s[i] ; 
vector v(S); for (int i=O; i<=v.size(); ++i) ; cout << "Success !\n";  
int  i=O; int  j = 9; while (i<10) ++j; if  (j<i) cout << "Success!\n"; 
int x = 2; double d =  5/(x-2); if (d==2*x+0.5) cout << "Success!\n";  
string<char> s = "Success!\n";  for (int i=O; i<=10; ++i) cout << s[i]; 
int i=O; while (i<10) ++j; if (j<i) cout << "Success!\n"; 
int x = 4; double d = 5/(x-2); if (d=2*x+0.5) cout << "Success!\n";  
cin << "Success!\n";  

Review 
1 .  Name four major types of errors and briefly defme each one. 
2. What kinds of errors can we ignore in student programs? 
3. What guarantees should every completed project offer? 
4. List three approaches we can take to eliminate errors in programs and 

produce acceptable software. 
5. Why do we hate debugging? 
6. What is a syntax error? Give five examples. 
7. What is a type error? Give five examples. 
8. What is a linker error? Give three examples. 
9. What is a logic error? Give three exan1ples. 

10. List four potential sources of program errors discussed in the text. 
1 1 .  How do you know if a result is plausible? What techniques do you have 

to answer such questions? 
12. Compare and contrast having the caller of a function handle a run-tinle 

error vs. the called function's handling the run-time error. 
13. Why is using exceptions a better idea than returning an "error value"? 
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14 .  How do you test if an input operation succeeded? 
15. Describe the process of how exceptions are thrown and caught. 
16. Why, with a vector called v, is v[v.size()] a range error? What would be 

the result of calling this? 
17. Defme pre-condition and post-condition; give an example (that is not the 

area() function from this chapter), preferably a computation that requires 
a loop. 

18. When would you twl test a pre-condition? 
19. When would you twl test a post-condition? 
20. What are the steps in debugging a program? 
21 .  Why does commenting help when debugging? 
22. How does testing differ from debugging? 

Terms 
argument error 
assertion 
catch 
compile-time error 
container 
debugging 
error 

Exercises 

exception 
invariant 
link-time error 
logic error 
post -condition 
pre-condition 
range error 

requirement 
run-time error 
syntax error 
testing 
throw 
type error 

1 .  U you haven't already, do the Try this exercises from this chapter. 
2. The following program takes in a temperature value in Celsius and con

verts it to Kelvin. This code has many errors in it. Fmd the errors, list 
them, and correct the code. 

double ctok(double c) 

{ 
int k = c + 273.15; 
return int 

int main() 

{ 

II converts Celsius to Kelvin 

double c = 0; II declare input variable 

cin >> d; II retrieve temperature to input variable 
double k = ctok("c"); II convert temperature 

Cout << k << endl ; II print out temperature 
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3.  Absolute zero is  the lowest temperature that can be reached; it is  -273. l5°C, 
or OK. The above program, even when corrected, will produce erroneous 
results when given a temperature bdow this. Place a check in the main pro
gram that will produce an error if a temperature is given below -273.l5°C. 

4. Do exercise 3 again, but this time handle the error inside ctok(). 
5. Add to the program so that it can also convert from Kelvin to Celsius. 
6. Write a program that converts from Celsius to Fahrenheit and from 

Fahrenheit to Celsius (formula in §4.3 .3) .  Use estimation (§5.8) to see if 
your results are plausible. 

7. Qyadratic equations are of the form 

a · x2 + b · x + c = 0 

To solve these, one uses the quadratic formula: 

-b ± .J b2 - 4ac x = ------
2a 

There is a problem though: if b2-4ac is less than zero, then it will fail. 
Write a program that can calculate x for a quadratic equation. Create a 
function that prints out the roots of a quadratic equation, given a, b, c, 
and have it throw an exception if b2-4ac is less than zero. Have the main 
function of the program call the function, and catch the exception if there 
is an error. When the program detects an equation with no real roots, 
have it print out a message. How do you know that your results are plau
sible? Can you check that they are correct? 

8. Write a program that reads a series of numbers and stores them in a 
vector<inl>. After the user inputs all the numbers he or she wishes to, 
ask how many of the numbers the user wants to sum. For an answer N. 
print the sum of the first N elements of the vector. For example: 

"Please enter some numbers (press 'I' at prompt to stop) :"  

12 23 13 24 15 

"Please enter how many of the numbers you wish to sum, starting 
from the first:" 

3 

"The sum of the first 3 numbers : 12, 23, and 13 is 48." 
Handle all inputs. For example, make sure to give an error message if the 
user asks for a sum of more numbers than there are in the vector. 
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9. Modify the program from exercise 6 to write out an error if the result 
cannot be represented as an int. 

10. Modify the program from exercise 8 to use double instead of int. Also, 
make a vector of doubles containing the N-1 differences between adja
cent values and write out that vector of differences. 

1 1 .  Write a program that writes out the first so many values of the Fibonacci 
series, that is, the series that starts with 1 1 2 3 5 8 13 2 1  34. The next 
number of the series is the sum of the two previous ones. Fmd the largest 
Fibonacci number that fits in an int. 

12. Implement a little guessing game called (for some obscure reason) .. Bulls 
and Cows." The program has a vector of four integers in the range 0 to 9 
and it is the user's task to discover those numbers by repeated guesses. 
Say the number to be guessed is 1234 and the user guesses 1359; the re
sponse should be " 1  bull and 1 cow" because the user got one digit ( 1 )  
right and in the right position (a  bull) and one digit (3) right but in the 
wrong position (a cow) . The guessing continues until the user gets four 
bulls, that is, has the four digits correct and in the correct order. 

13. The program is a bit tedious because the answer is hard-coded into the 
program. Make a version where the user can play repeatedly (without 
stopping and restarting the program) and each game has a new set of 
four digits. You can get four random digits by calling the random num
ber generator randint(10) from std_lib_facilities.h four times. You will 
note that if you run that program repeatedly, it will pick the same se
quence of four digits each time you start the program. To avoid that, ask 
the user to enter a number (any number) and call srand(n) where n is the 
number the user entered before calling randint(10). Such an n is called a 
seed, and different seeds give different sequences of random numbers. 

14. Read (day-of-the-week,value) pairs from standard input. For example : 

Tuesday 23 Friday 56 Tuesday -3 Thursday 99 

Collect all the values for each day of the week in a vector<int>. Write out 
the values of the seven day-of-the-week vectors. Print out the sum of the 
values in each vector. Ignore illegal days of the week, such as Funday, but 
accept common synonyms such as Mon and monday. Write out the num
ber of rejected values. 

Postscript 
Do you think we overemphasize errors? As novice programmers we would have 
thought so. The obvious and natural reaction is .. It simply can't be that bad!" 
Well, it is that bad. Many of the world's best brains have been astounded and 
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confounded by the difficulty o f  writing correct programs. In our experience, 
good mathematicians are the people most likely to underestimate the problem of 
bugs, but we all quickly exceed our natural capacity for writing programs that 
are correct the first time. You have been warned! Fortunately, after 50 years or so, 
we have a lot of experience in organizing code to minimize problems, and tech
niques to fmd the bugs that we - despite our best efforts - inevitably leave in our 
programs as we first write them. The techniques and examples in this chapter are 
a good start. 



Writing a Program 

"Programming is understanding." 

-Kristen Nygaard 

Writing a program involves gradually refining your ideas 

of what you want to do and how you want to express it. 

In this chapter and the next, we will develop a program from a 

first vague idea through stages of analysis, design, implementa

tion, testing, redesign and re-implementation. Our aim is to give 

you some idea of the kind of thinking that goes on when you de

velop a piece of code. In the process, we discuss program organi· 

zation, user-defmed types, and input processing. 
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6.1 A problem 

6.2 Thinking about the problem 
6.2.1 Stages of development 
6.2.2 Strategy 

6.3 Back to the calculator! 
6.3.1 First attempt 
6.3.2 Tokens 
6.3.3 Implementing tokens 
6.3.4 Using tokens 
6.3.5 Back to the drawing board 

6.4 Grammars 
6.4.1 A detour: English grammar 
6.4.2 Writing a grammar 

6.1 A problem 
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6.5 Turning a grammar into code 
6.5.1 Implementing grammar rules 
6.5.2 Expressions 
6.5.3 Terms 
6.5.4 Primary expressions 

6.6 Trying the first version 

6.7 Trying the second version 

6.8 Token streams 
6.8.1 Implementing Token_stream 
6.8.2 Reading tokens 
6.8.3 Reading numbers 

6.9 Program structure 

Writing a program starts with a problem; that is, you have a problem that you'd 
like a program to help solve. Understanding that problem is key to a good pro· 
gram. After all, a program that solves the wrong problem is likely to be of little 
use to you, however elegant it may be. There are happy accidents when a pro· 
gram jusl happens to be useful for something for which it was never intended, 
but let's not rely on such rare luck. What we want is a program that simply and 
cleanly solves the problem we decided to solve. 

At this stage, what would be a good program to look at? A program that 

illustrates design and programming techniques 

Gives us a chance to explore the kinds of decisions that a programmer 
must make and the considerations that go into such decisions 

Doesn't require too many new programming language constructs 

Is complicated enough to require thought about its design 

Allows for many variations in its solution 

Solves an easily understood problem 

Solves a problem that's worth solving 

Has a solution that is small enough to completely present and com
pletely comprehend 

We chose "Get the computer to do ordinary arithmetic on expressions we type 
in"; that is, we want to write a simple calculator. Such programs are clearly usc· 
ful; every desktop computer comes with such a program, and you can even buy 
computers specially built to run nothing but such programs: pocket calculators. 
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For example, if you enter 

2+3.1*4 
the program should respond 

14.4 
Unfortunately, such a calculator program doesn't give us anything we don't al
ready have available on our computer, but that would be too much to ask from a 
first program. 

6.2 Thinking about the problem 
So how do we start? Basically, think a bit about the problem and how to solve it. 
First think about what the program should do and how you'd like to interact 
with it. Later, you can think about how the program could be written to do that. 
Try writing down a brief sketch of an idea for a solution, and see what's wrong 
with that first idea. Maybe discuss the problem and how to solve it with a friend. 
Trying to explain something to a friend is a marvelous way of figuring out what's 
wrong with ideas, even better than writing them down; paper (or a computer) 
doesn't talk back at you and challenge your assumptions. Ideally, design isn't a 
lonely activity. 

Unfortunately, there isn't a general strategy for problem solving that works 
for all people and all problems. There are whole books that claim to help you be 
better at problem solving and another huge branch of literature that deals with 
program design. We won't go there. Instead, we'll present a page's worth of sug
gestions for a general strategy for the kind of smaller problems an individual 
might face. After that, we'll quickly proceed to try out these suggestions on our 
tiny calculator problem. 

When reading our discussion of the calculator program, we recommend that 
you adopt a more than usually skeptical attitude. For realism, we evolve our pro· 
gram through a series of versions, presenting the reasoning that leads to each ver
sion along the way. Obviously, much of that reasoning must be incomplete or 
even faulty, or we would finish the chapter early. As we go along, we provide ex
amples of the kinds of concerns and reasoning that designers and programmers 
deal with all the time. We don't reach a version of the program that we are happy 
with until the end of the next chapter. 

Please keep in mind that for this chapter and the next, the way we get to the 
final version of the program - the journey through partial solutions, ideas, and mis
takes - is at least as important as that final version and more important than the lan
guage-technical details we encounter along the way (we will get back to those later). 
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6.2.1 Stages of development 
Here is a bit of terminology for program development. As you work on a prob
lem you repeatedly go through these stages: 

Analysis: Figure out what should be done and write a description of your 
(current) understanding of that. Such a description is called a .st'/ C?frr
quiremen/J or a specffication. We will not go into details about how such re
quirements are developed and written down. That's beyond the scope of 
this book, but it becomes increasingly important as the size of problems 
increases. 

Design: Create an overall structure for the system, deciding which parts 
the implementation should have and how those parts should conmmni
cate. As part of the design consider which tools - such as libraries - can 

help you structure the program. 

Implementation: Write the code, debug it, and test that it actually docs 
what it is supposed to do. 

6.2.2 Strategy 
Here are some suggestions that - when applied thoughtfully and with imagina
tion - help with many programming projects: 

W hat is the problem to be solved? The first thing to do is to try to be 
specific about what you are trying to accomplish. This typically involves 
constructing a description of the problem or - if someone else gave you 
such a statement - trying to figure out what it really means. At this point 
you should take the user's point of view (not the programmer/imple
menter's view); that is, you should ask questions about what the pro
gram should do, not about how it is going to do it. Ask: "What can this 
program do for me?" and "How would I like to interact with this pro
gram?" Remember, most of us have lots of experience as users of com
puters on which to draw. 

Is the problem statement clear? For real problems, it never is. Even 
for a student exercise, it can be hard to be sufficiently precise and 
specific. So we try to clarify it. It would be a pity if we solved the 
wrong problem. Another pitfall is to ask for too mucl1. When we try 
to figure out what we want, we easily get too greedy/ambitious. It is 
almost always better to ask for less to make a program easier to spec
ify, easier to understand, easier to use, and (hopefully) easier to im
plement. Once it works, we can always build a fancier "version 2.0" 
based on our experience. 
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Docs the problem seem manageable, given the time, skills, and tools 
available? There is little point in starting a project that you couldn't 
possibly complete. If there isn't sufficient time to implement (includ
ing testing) a program that does all tl1at is required, it is usually wise 
not to start. Instead, acquire more resources (especially more time) 
or (best of all) modify the requirements to simplify your task. 

Try breaking the program into manageable parts. Even the smallest pro
gram for solving a real problem is large enough to be subdivided. 

Do you know of any tools, hbraries, etc. that might help? The answer 
is almost always yes. Even at the earliest stage of learning to program, 
you have parts of the C++ standard library. Later, you'll know large 
parts of that standard library and how to fmd more. You 'II have 
graphics and GUI libraries, a matrix library, etc. Once you have 
gained a little experience, you will be able to find thousands of li
braries by simple web searches. Remember: There is little value in 
reinventing the wheel when you are building software for real use. 
W hen learning to program it is a different matter; then, reinventing 
the wheel to sec how that is done is often a good idea. Any time you 
save by using a good library can be spent on other parts of your 
problem, or on rest. How do you know that a library is appropriate 
for your task and of sufficient quality? That's a hard problem. Part of 
the solution is to ask colleagues, to ask in discussion groups, and to 
try small examples before committing to use a library. 

Look for parts of a solution that can be separately described (and po
tentially used in several places in a program or even in other pro
grams). To find such parts requires experience, so we provide many 
examples throughout this book. We have already used vector, string, 
and i ostreams (cin and cout). This chapter gives the first complete 
examples of design, implementation, and use of program parts pro· 
vided as user-defined types (Token and Token_stream). Chapters 8 
and 13-15 present many more examples together with their design 
rationales. For now, consider an analogy: If we were to design a car, 
we would start by identifying parts, such as wheels, engine. seats, 
door handles, etc., on which we could work separately before asscm· 
bling the complete car. There are tens of thousands of such parts of a 
modem car. A real-world program is no different in that respect, ex· 
ccpt of course that the parts are code. We would not try to build a car 
directly out of raw materials, such as iron, plastics, and wood. Nor 
would we try to build a major program directly out of Gust) the ex
pressions, statements, and types provided by the language. Designing 
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and implementing such parts is a major theme of  this book and of 
software development in general; sec user-defined types (Chapter 9), 
class hierarchies (Chapter 14), and generic types (Chapter 20). 

Build a small, limited version of the program that solves a key part of the 
problem. W hen we start, we rarely know the problem well. We often 
think we do (don't we know what a calculator program is?), but we 
don't. Only a combination of thinking about the problem (analysis) and 
experimentation (design and implementation) gives us the solid under
standing that we need to write a good program. So, we build a small, 
limited version 

To bring out problems in our understanding, ideas, and tools. 

To see if details of the problem statement need changing to make the 
problem manageable. It is rare to find that we had anticipated every
thing when we analyzed the problem and made the initial design. 
We should take advantage of the feedback that writing code and 
testing give us. 

Sometimes, such a limited initial version aimed at expcrin1entation is 
called a prototype. If (as is likely) our first version doesn't work or is so 
ugly and awkward that we don't want to work with it, we throw it away 
and make another limited version based on our experience. Repeat until 
we fmd a version that we are happy with. Do not proceed with a mess; 
messes just grow with time. 

Build a full-scale solution, ideally by using parts of the initial version. 
The ideal is to grow a program from working parts rather than writing 
all the code at once. The alternative is to hope that by some miracle an 
untested idea will work and do what we want. 

6.3 Back to the calculator! 
How do we want to interact with the calculator? That's easy: we know how to 
use cin and cout, but graphical user interfaces (GUis) are not explained until 
Chapter 16, so we'll stick to the keyboard and a console window. Given expres
sions as input from the keyboard, we evaluate them and write out the resulting 
value to the screen. For example: 

Expression: 2+2 
Result : 4 
Expression: 2+2* 3 
Result: 8 
Expression: 2+3-2515 
Result : 0 
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The expressions, e.g., 2+2 and 2+2*3, should be entered by the user; the rest is pro
duced by the program. We chose to output "Expression: "to prompt the user. We 
could have chosen "Please enter an expression followed by a newline" but that 
seemed verbose and pointless. On the other hand a pleasantly short prompt., such 
as >, seemed too cryptic. Sketching out such examples of use early on is important. 
They provide a very practical definition of what the program should minimally do. 
W hen discussing design and analysis, such examples of use are called use cases. 

W hen faced with the calculator problem for the first time, most people come 
up with a first idea like this for the main logic of the program: 

read_a_line 
calculate 
write_result 

II do the work 

This kind of "scribbles" clearly isn't code; it's called pseudo code. We tend to use it 
in the early stages of design when we are not yet certain exactly what our nota
tion means. For example, is "calculate" a function call? If so, what would be its 
arguments? It is simply too early to answer such questions. 

6.3.1 First attempt 
At this point, we are not really ready to write the calculator program. We simply 
haven't thought hard enough, but thinking is hard work and -like most pro
granuners-we are anxious to write some code. So let's take a chance, write a 
simple calculator, and see where it leads us. l11e first idea is something like 

#include "std_lib_facilities.h" 

int main() 
{ 

cout << "Please enter expression (we can handle + and -) : " ;  
int Ivai = 0; 
int rval; 
char op; 
int res; 
cin>>lvai>>Op>>rval; 

if (op=='+') 
res = Ivai+ rval; 

else if (op=='-') 
res = Ivai - rval; 

II read someth ing l i ke 1 + 3 

II addition 

II subtraction 

cout << "Result: " << res << '\n'; 
keep_window_open(); 
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return 0; 

That is, read a pair of values separated by an operator, such as 2+2, compute the 
result (in this case 4), and print the resulting value. We chose the variable names 
Ivai for left-hand value and rval for right-hand value. 

This (sort of) works! So what if this program isn't quite complete? It feels 
great to get something running! Maybe this programming and computer science 
stuff is easier than the rumors say. Well, maybe, but let's not get too carried away 
by an early success. Let's 

1. Clean up the code a bit 

2. Add multiplication and division (e.g., 2*3) 

3. Add the ability to handle more than one operand (e.g., 1+2+3) 

In particular, we know that we should always check that our input is reasonable 
(in our hurry, we "forgot") and that testing a value against many constants is best 
done by a switch-statement rather than an if-statement. 

The "chaining" of operations, such as 1+2+3+4, we will handle by adding the 
values as they are read; that is, we start with 1, see +2 and add 2 to 1 (getting an in· 
termediate result 3), see +3 and add that 3 to our intermediate result (3), and so on. 
After a few false starts and after correcting a few syntax and logic errors, we get: 

#include "std_lib_facilities.h" 

int main() 
{ 

cout << "Please enter expression (we can handle +, -, *, and /): " ;  
int Ivai = 0; 
int rval; 
char op; 
cin>>lval; II read leftmost operand 
if ( !cin) error(" no first operand"); 
while (cin>>O p) { II read operator and right-hand operand repeatedly 

cin>>rval; 
if ( !cin) error("no second operand"); 
switch(op) { 
case '+' :  

Ivai += rval; II add: Ivai = Ivai + rval 
break; 

case' - ' :  
Ivai -= rval; II subtract: Ivai = Ivai - rval 
break; 
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case ' * ': 

Ivai *= rval; II multiply: Iva i  = Ivai • rval 
break; 

case '/': 
Ivai /= rval; II d ivide: Ivai = Ivai I rval 
break; 

default: II not another operator: print result 
cout << "Result: " << Ivai << '\n'; 
keep_window_open(); 
return 0; 

error("bad expression");  

This isn't bad, but then we try 1+2*3 and see that the result is  9 and not the 7 our 
arithmetic teachers told us was the right answer. Similarly, 1-2*3 gives -3 rather 
than the -5 we expected. We are doing the operations in the wrong order: 1+2*3 
is calculated as (1+2)*3 rather than as the conventional1+(2*3). Similarly, 1-2*3 is 
calculated as (1-2)*3 rather than as the conventional1-(2*3). Bummer! We might 
consider the convention that "multiplication binds tighter than addition" as a silly 
old convention, but hundreds of years of convention will not disappear just to 
simplify our programming. 

6.3.2 Tokens 
So (somehow), we have to "look al1ead" on the line to see if there is a *  (or a/). If 
so, we have to (somehow) adjust the evaluation order from the simple and obvi
ous left-to-right order. Unfortunately, trying to barge ahead here, we immediately 
hit a couple of snags: 

1. We don't actually require an expression to be on one line. For example: 

+ 
2 

works perfectly with our code so far. 

2. How do we search for a • (or a/) among digits and plusses on several 
input lines? 

3. How do we remember where a * was? 

4. How do we handle evaluation that's not strictly left-to-right (e.g., 1+2*3)? 

Having decided to be super-optimists, we'll solve problems 1-3 first and not 
worry about 4 until later. 
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Also, we'll ask around for help. Surely someone will know a conventional 
way of reading "stuff," such as numbers and operators, from input and storing it 
in a way that lets us look at it in convenient ways. The conventional and very 
useful answer is "tokenize": first input characters are read and assembled into 
toke11 .. 1, so if you type in 

45+11.517 

the program should produce a list of tokens representing 

45 
+ 
1 1 .5 
I 
7 

A token is a sequence of characters that represents something we consider a unit, 
such as a number or an operator. That's the way a C++ compiler deals with its 
source. Actually, "tokenizing" in some form or another is the way most analysis 
of text starts. Following the example of C++ expression, we see the need for 
three kinds of tokens: 

Floating-point-literals: as defined by C++, e.g., 3.14, 0.274e2, and 42 

Operators: e.g., +, - ,  * , I, % 

Parentheses: (, ) 

The floating-point-literals look as if they may become a problem: reading 12 
seems much easier than reading 12.3e-3, but calculators do tend to do floating
point arithmetic. Similarly, we suspect that we'll have to accept parentheses to 
have our calculator deemed useful. 

How do we represent such tokens in our program? We could try to keep 
track of where each token started (and ended), but that gets messy (especially if 
we allow expressions to span line boundaries). Also, if we keep a number as a 
string of characters, we later have to figure out what its value is; that is, if we sec 
42 and store the characters 4 and 2 somewhere, we then later have to figure out 
that those characters represent the numerical value 42 (i.e., 4*10+2) . The obvious 
- and conventional - solution is to represent each token as a (kind,value) pair. 
The kind tells us if a token is a number, an operator, or a parenthesis. For a num
ber, and in this example only for a number, we use its numerical value as its value. 

So how do we express the idea of a (kirul,value) pair in code? We defme a type 
Token to represent tokens. W hy? Remember why we use types: they hold the 
data we need and give us useful operations on that data. For example, ints hold 
integers and give us addition, subtraction, multiplication, division, and remain-
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der, whereas strings hold sequences of characters and give us concatenation and 
subscripting. The C++ language and its standard library give us many types � 
such as char, int, double, string, vector, and ostream, but not a Token type. In U 
fact, there is a huge number of types - thousands or tens of thousands - that we 
would like to have, but the language and its standard library do not supply them. 
Among our favorite types that are not supported are Matrix (see Chapter 24), 
Date (see Chapter 9), and infinite precision integers (try searching the web for 
"Bignum"). If you think about it for a second, you 'II realize that a language can-

not supply tens of thousands of types: who would define them, who would im
plement them, how would you fmd them, and how thick would the manual have 
to be? Like most modem languages, C++ escapes that problem by letting us de-
fine our own types (user-defined types) when we need them. 

6.3.3 Implementing tokens 
W hat should a token look like in our program? In other words, what would we 
like our Token type to be? A Token must be able to represent operators, such as + 
and -, and numeric values, such as 42 and 3.14. TI1e obvious implementation is 
something that can represent what "kind" a token is and hold the numeric value 
for tokens that have one: 

Token: Token: 

kind: 

I 
., .... '- I 

kind: 

II 
n,ui11ber. 

value: · -· value: $ .• �. 
There are many ways that this idea could be represented in C++ code. Here is 
the simplest that we found useful: 

class Token { II a very simple user-defined type 
public: 

char kind; 
double value; 

} ; 

A Token is a type (like int or char) , so it can be used to define variables and hold 
values. It has two parts (called members): kind and value. The keyword class 
means "user-defined type"; it indicates that a type with zero or more members is 
being defined. TI1e first member, kind, is a character, char, so that it conveniently 
can hold'+' and'*' to represent + and*. We can use it to make types like this: 

Token t; 
t.kind = '+'; 
Token t2; 

II t is ,, Token 
II t represents a + 

II t2 is another Token 
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t2.kind = '8'; II we use the digit 8 as the "kind" for numbers 
t2.value = 3.14; 

We usc the member access notation, oijed_Tlll1Tl£ • member _Tuune, to access a mcm· 
ber. You can read t.kind as "t' s  kind" and t2.value as "t2's value." We can copy 
Tokens just as we can copy ints: 

Token tt = t; II copy in itial ization 
if (tt.kind != t.kind) error("impossible! "); 
t = t2; II assignment 
cout << t.value; II wi l l  pri nt 3.14 

Given Token, we can represent the expression (1 .5+4)*11 using seven tokens like 
this: 

Note that for simple tokens, such as +, we don't need the value, so we don't use 
its value member. We needed a character to mean "number" and picked ' 8' just 
because ' 8' obviously isn't an operator or a punctuation character. Using '8' to 
mean "number" is a bit cryptic, but it'll do for now. 

Token is an example of a C++ user-defined type. A user-defined type can 
have member functions (operations) as well as data members. There can be 
many reasons for defining member functions.  Here, we'll just provide two mcm· 
bcr functions to give us a more convenient way of initializing Tokens: 

class Token { 
public: 

}; 

char kind; II what kind of token 
double value; II for numbers: a value 
Token(char ch) II make a Token from a char 

: kind(ch), value(O) { } 
Token(char ch, double val) II make a Token from a char and a double 

: kind(ch), value(val) {} 

l11esc two member functions are of a special kind called amJtruclcm. They have 
the same name as their type and are used to initialize ("construct") Token objects. 
:For example: 

Token t1('+'); 
Token t2('8', 1 1 .5); 

II in itial ize t1 so that tl . kind = '+' 
II i n it ial ize t2 so that t2.kind = '8' and t2 .v,11ll<' = 11.5 
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In the first constructor, :kind(ch), value(O) means "Initialize kind to ch and set 
value to 0." In the second constructor, : kind(ch), value(val) means "Initialize kind 
to ch and set value to val." In both cases, nothing more needs to be done to con
struct the Token, so the body of the function is empty: { } . The special initializer 
syntax (a member initializer list) starting with a colon is used only in constructors. 

Note that a constructor does not return a value. No return type is required 
(or allowed) for a constructor. For more about constructors. see §9.4.2 and §9.7. 

6.3.4 Using tokens 
So, maybe now we can complete our calculator! However, maybe a small amount 
of planning ahead would be worthwhile. How would we use Tokens in the calcu
lator? We can read out input into a vector of Tokens: 

Token g et_token(); II read a token irom cin 

vector<Token> tok; II we'l l  put the tokens here 

int main() 
{ 

while (cin) { 

} 
II . . .  

Token t = g et_token(); 
tok.push_back(t); 

Now we can read an expression first and evaluate later. For example, for 11 *12, 
we get 

We can look at that to find the multiplication and its operands. Having done that, 
we can easily perform the multiplication because the numbers 11 and 12 are 
stored as numeric values and not as strings. 

Now let's look at more complex expressions. Given 1+2*3, tok will contain 
live Tokens: 
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Now we could fmd the multiply operation by a simple loop: 

for (int i = 0; i<tok.size(); ++i) { 
if (tok[i].kind=='*')  { II we found a multiply! 

double d = tok[i-1] .value*tok[i+1 ].value; 
II now what? 

Yes, but now what? W hat do we do with that product d? How do we decide in 
which order to evaluate the sub·expressions? WeU, +comes before * so we can't 
just evaluate from left to right. We could try right-to-left evaluation! That would 
work for 1+2*3 but not for 1•2+3. Worse still, consider 1+2*3+4. This example 
has to be evaluated "inside out": 1+(2*3) +4. And how will we handle parentheses, 
as we eventually wiU have to do? We seem to have hit a dead end. We need to 
back ofT, stop progranuning for a while, and think about how we read and un
derstand an input string and evaluate it as an arithmetic expression. 

So, this first enthusiastic attempt to solve the problem (writing a calculator) ran 
out of steam. l'bat's not uncommon for frrst tries, and it serves the important role 
of helping us understand the problem. In tl:lls case, it even gave us the useful notion 
of a token, which itself is an example of the notion of a (11ame,value) pair that we will 
encounter again and again. However, we must always make sure that such rela
tively thoughtless and unplanned "coding" doesn't steal too much time. We should 
do very little progranuning before we have done at least a bit of analysis (under
standing tl1e problem) and design (deciding on an overaU structure of a solution). 

T RY T HIS 

.. On the other hand, why shouldn't we be able to find a simple solution to this 
problem ? It doesn't seem to be aU that difficult. If nothing else, trying would 
give us a better appreciation of the problem and the eventual solution. Con
sider what you might do right away. For example, look at the input 12.5+2. 
We could tokenize that, decide that the expression was simple, and compute 

the answer. l'bat may be a bit messy, but straightforward, so maybe we 
could proceed in this direction and find something that's good enough! Con
sider what to do if we found both a + and a * in the line 2+3*4? l'bat too can 
be handled by "brute force." How would we deal with a complicated expres
sion, such as 1+2*3/4%5+(6-7*(8) )? And how would we deal with errors, 
such as 2+*3 and 2&3? Consider this for a while, maybe doodling a bit on a 
piece of paper trying to outline possible solutions and interesting or impor
tant input expressions. 
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6.3.5 Back to the drawing board 
Now, we will look at the problem again and try not to dash ahead with another 
half-baked solution. One thing that we did discover was that having the program 
(calculator) evaluate only a single expression was tedious. We would like to be 
able to compute several expressions in a single invocation of our program; that is, 
our pseudo code grows to 

while (not_finished) { 
read_ a_ line 
calculate 
write_result 

II do the work 

Clearly this is a complication, but when we think about how we use calculators, 
we realize that doing several calculations is very common. Could we let the user 
invoke our program several times to do several calculations? We could, but pro
gram startup is unfortunately (and unreasonably) slow on many modern operat
ing systems, so we'd better not rely on that. 

As we look at this pseudo code. our early attempts at solutions, and our ex
amples of use, several questions -some with tentative answers - arise: 

l. If we type in 45+517, how do we find the individual parts 45, +, 5, I, and 7 
in the input? (rokenizel) 

2. What terminates an input expression? A newline, of course! (Always be 
suspicious of "of course": "of course" is not a reason.) 

3. How do we represent 45+517 as data so that we can evaluate it? Before 
doing the addition we must somehow turn the characters 4 and 5 into 
the integer value 45 (i.e., 4*10+5). (So tokenizing is part of the solution.) 

4. How do we make sure that 45+517 is evaluated as 45+(5/7) and not as 
(45+5)/7? 

5. What's the value of 517? About .71, but that's not an integer. Based on 
experience with calculators, we know that people would expect a 
floating-point result. Should we also allow floating-point inputs? Sure! 

6. Can we have variables? For example, could we write 

v=7 
m=9 
v•m 

Good idea, but let's wait until later. Let's first get the basics working. 
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Possibly the most important decision here is the answer to question 6. In f.J 
§7.8, you'U see that if we had said yes we'd have almost doubled the size of the 
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initial project. That would have more than doubled the time needed to get the ini
tial version running. Our guess is that if you really are a novice, it would have at 
least quadrupled the effort needed and most likely pushed the project beyond 
your patience. It is most important to avoid "feature creep" early in a project. In
stead, always first build a simple version, implementing the essential features 
only. Once you have something running, you can get more ambitious. It is far 
easier to build a program in stages than all at once. Saying yes to question 6 
would have had yet another bad effect: it would have made it hard to resist the 
temptation to add further "neat features" along the line. How about adding the 
usual mathematical functions? How about adding loops? Once we start adding 
"neat features" it is hard to stop. 

From a programmer's point of view, questions l, 3, and 4 are the most both
ersome. They are also related, because once we have found a 45 or a +, what do 
we do with them? That is, how do we store them in our program? Obviously. to
kenizing is part of the solution, but only part. 

W hat would an experienced programmer do? W hen we are faced with a 
tricky technical question, there often is a standard answer. We know that people 
have been writing calculator programs for at least as long as there have been 
computers taking symbolic input from a keyboard. That is at least for 50 years. 
l11ere has to be a standard answer! In such a situation, the experienced program
mer consults colleagues and/or the literature. It would be silly to barge on, hop
ing to beat 50 years of experience in a morning. 

6.4 Grammars 
There is a standard answer to the question of how to make sense of expressions: 
first input characters are read and assembled into tokens (as we discovered). So if 
you type in 

45+11.517 

the program should produce a list of tokens representing 

45 
+ 
11.5 
I 
7 

A token is a sequence of characters that represents something we consider a unit, 
such as a number or an operator. 
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Mter tokens have been produced, the program must ensure that complete 
expressions are understood correctly. For example, we know that 45+1 1 .517 
means 45+(1 1 .517) and not (45+1 1 .5)/7, but how do we teach the program that 
useful rule (division "binds tighter" than addition)? The standard answer is that 
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we write a grammar defining the syntax of our input and then write a program .\ 
that implements the rules of that grammar. For example: U 

II a simple expression grammar: 

Expression : 
Term 
Expression "+" Term 
Expression "-" Term 

Term: 
Primary 
Term "* "  Primary 
Term "/" Primary 
Term "%" Primary 

Primary : 
Number 
"(" Expression ")" 

Number: 
floating-point-literal 

II addition 
II subtraction 

II multip l ication 
II division 
II remainder (modulo) 

II grouping 

l11is is a set of simple rules. The last rule is read "A Number is a floating-point
literal." The next-to-last rule says, "A Primary is a Number or '(' foUowed by an 
Expression foUowed by ')'." The rules for Expression and Term are similar; each 
is defined in terms of one of the rules that foUow. 

As seen in §6.3.2, our tokens - as borrowed from the C++ definition - are 

floating-point-literal (as defined by C++, e.g., 3.14, 0.274e2, or 42) 

+, -. * , I, % (the operators) 

(,) (the parentheses) 

From our first tentative pseudo code to tllls approach using tokens and a gram
mar is actuaUy a huge conceptual jump. It's the kind of jump we hope for but 
rarely manage without help. Tills is what experience, the literature, and Mentors 
arc for. 

At frrst glance, a grammar probably looks like complete nonsense. Technical 
notation often does. However, please keep in mind that it is a general and elegant 
(as you wiU evenn1aUy appreciate) notation for something you have been able to 
do since middle school (or earlier). You have no problem calculating 1-2*3 and 
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1+2-3 and 3*2+4/2. It  seems hardwired in your brain. However. could you ex
plain how you do it? Could you explain it well enough for someone who had 
never seen conventional arithmetic to grasp? Could you do so for every combi
nation of operators and operands? To articulate an explanation in sufficient detail 
and precisely enough for a computer to understand, we need a notation - and a 
grammar is a most powerful and conventional tool for that. 

How do you read a grammar? Basically, given some input. you start with the 
"top rule," Expression, and search through the rules to find a match for the to· 
kens as they arc read. Reading a stream of tokens according to a grammar is 
called parsing, and a program that does that is often called a paner or a �yn/ax mw

lyzer. Our parser reads the tokens from left to right, just like we type them and 
read them. Let's try something really simple: Is 2 an expression? 

1. An Expression must be a Term or end with a Term. That Term must be a 

Primary or end with a Primary. That Primary must start with a ( or be a 
Number. Obviously, 2 is not a (, but a floating-point-literal. which is a 
Number, which is a Primary. 

2. That Primary (the Number 2) isn't preceded by a /. *,or%, so it is a 

complete Term (rather than the end of a /, *, or % expression). 

3. That Term (the Primary 2) isn't preceded by a+ or-, so it is a complete 
Expression (rather than the end of a +  or- expression). 

So yes, according to our grammar, 2 is an expression. We can illustrate the pro
gression through the grammar like this: 
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This represents the path we followed through the defmitions. Retracing our path, 
we can say that 2 is an Expression because 2 is a floating-point-literal. which is a 
Number, which is a Primary, which is a Term, which is an Expression. 

Let's try something a bit more complicated: Is 2+3 an Expression? Naturally, 
much of the reasoning is the same as for 2: 

1.  An Expression must be a Term or end with a Term, which must be a 
Primary or end with a Primary, and a Primary must start with a ( or be a 
Number. Obviously 2 is not a (, but it is a floating-point-literal, which is 
a Number, which is a Primary. 

2. l11at Primary (the Number 2) isn't preceded by a /, *,or%, so it is a com
plete Term (rather than the end of a /, *, or % expression). 

3. That Term (the Primary 2) is followed by a +, so it is the end of the first 
part of an Expression and we must look for the Term after the +. In ex
actly the same way as we found that 2 was a Term, we find that 3 is a 
Term. Since 3 is not followed by a + or a - it is a complete Term (rather 
than the first part of a + or - Expression). Therefore, 2+3 matches the 
Expression + Term rule and is an Expression. 

Again, we can illustrate this reasoning graphically (again leaving out the floating
point-literal to Number rule to simplify): 

111is represents the path we followed through the definitions. Retracing our path, 
we can say that 2+3 is an Expression because 2 is a term which is an Expression, 3 
is a Term, and an Expression followed by + followed by a Term is an Expression. 
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TI1c real reason we are interested in granunars is that they can solve our 
problem of how to correctly parse expressions witl1 both + and *, so let's try 
45+11 .5*7. However, "playing computer" following the rules in detail as we did 
above is tedious , so let's skip some of the intermediate steps that we have already 
gone through for 2 and 2+3. Obviously, 45, 1 1 .5, and 7 are all floating-point
literals which are Numbers, which arc Primarys, so we can ignore all ndcs below 
Primary. So we get: 

1. 45 is an Expression followed by a +, so we look for a Term to finish the 
Expression+ Term rule. 

2. 1 1 .5 is a Term followed by •, so we look for a Primary to finish the Term* 
Primary rule. 

3. 7 is Primary. so 11 .5*7 is a Term according to the Term *Primary rule. 
Now we can see that 45+11 .5*7 is an Expression according to the 
Expression.,-erm rule. In particular, it is an Expression that first docs the 
multiplication 11 .5*7 and then the addition 45+ 1 1 .5*7, just as if we had 
wriuen 45+(1 1 .5*7). 

Again, we can illustrate this reasoning graphically (again leaving out the floating
point-literal to Number rule to simplify): 
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Again, this represents the path we followed through the dcfmitions. Note how the 
Term • Primary rule ensures that 11 .5 is multiplied by 7 ratl1er tlum added to 45. 
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You may find this logic hard t o  follow a t  frrst, but many humans d o  read 
grammars, and simple grammars are not hard to understand. However, we were 
not really trying to teach you to understand 2+2 or 45+11.5*7. Obviously, you 
knew that already. We were trying to find a way for the computer to "under
stand" 45+11.5*7 and all the other complicated expressions you might give it to 
evaluate. Actually, complicated grammars are not fit for humans to read, but 
computers are good at it. They follow such grammar rules quickly and correctly 
with the greatest of ease. Following precise rules is exactly what computers are 
good at. 

6.4.1 A detour: English grammar 
If you have never before worked with grammars, we expect that your head is 
now spinning. In fact, it may be spinning even if you have seen a grammar be· 
fore, but take a look at the following grammar for a very small subset of English: 

Sentence : 
Noun Verb 
Sentence Conjunction Sentence 

Conjunction : 
"and" 
"or" 
"but" 

Noun : 
"birds" 
"fish" 
"C++" 

Verb : 
" rules" 
"fly" 
"swim" 

II e.g., C++ rules 
II e.g., Birds fly but fish swim 

A sentence is built from parts of speech (e.g., nouns, verbs, and conjunctions). A 
sentence can be parsed according to these rules to determine which words arc 
nouns, verbs, etc. This simple grammar also includes semantically meaningless 
sentences such as "C++ fly and birds rules," but fixing that is a different matter 
belonging in a far more advanced book. 

Many have been taught/shown such rules in middle school or in foreign lan
guage class (e.g., English classes). These grammar rules are very fundamental. In 
fact, there are serious neurological arguments for such rules being hardwired into 
our brains! 
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Now look at  a parsing tree as we used above for expressions, but used here 
for simple English: 

This is not all that complicated. If you had trouble with §6.4 then please go back 
and re-read it from the beginning; it may make more sense the second time 
through! 

6.4.2 Writing a grammar 
How did we pick those expression grammar rules? "Experience" is the honest 
answer. The way we do it is simply the way people usually write expression 
grammars. However, writing a simple grammar is pretty straightforward: we 
need to know how to 

1. Distinguish a rule from a token 

2. Put one rule after another (Jequencingj 

3. Express alternative patterns (alternation) 
4. Express a repeating pattern (repetition) 
5. Recognize Llte grammar mle to start with 
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Different textbooks and different parser systems use different notational conven
tions and different terminology. For example, some call tokens tenninah and rules 
t1011-tmninals or productimlS. We simply put tokens in (double) quotes and start with 
the first rule. Alternatives are put on separate lines. For example: 

List: 
"{1 1 Sequence 11} 11 

Sequence: 
Element 
Element 11 , 11 Sequence 

Element: 
"A" 
"B" 

So a Sequence is either an Element or an Element foUowed by a Sequence using 
a comma for separation. An Element is either the letter A or the letter B. A List is 
a Sequence in "curly brackets." We can generate these Lists (how?): 

{ A} 
{ B} 
{ A,B} 
{A,A,A,A,B} 

However, these are not lists (why not?): 

{} 
A 
{ A,A,A,A,B 
{A,A,C,A,B} 
{ A B C }  
{A,A,A,A,B, } 

'This sequence rule is not one you learned in kindergarten or have hardwired 
into your brain, but it is still not rocket science. See §7.4 and §7.8.1 for examples 
of how we work with a grammar to express syntactic ideas. 

6.5 Turning a grammar into code 
TI1cre arc many ways of getting a computer to follow a grammar. We'll use the 
simplest one: we simply write one function for each grammar rule and use our 
type Token to represent tokens. A program that implements a grammar is often 
called a par.rtr. 
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6.5.1 Implementing grammar rules 
To implement our calculator, we need four functions: one to read tokens plus one 
for each rule in our grammar: 

get_token() 

expression() 

term() 

primary() 

II read characters and compose tokens 
II uses cin 
II deal with + and -
II cal ls term() and get_token() 
II deal with •, I, and% 
II ca l ls primary() and get_token() 
II deal with numbers and parentheses 
II ca l l s  expression() and get_token() 

Note: Each function deals with a specific part of an expression and leaves every· 
thing else to other functions; this radically simplifies each function. TI1is is much 
like a group of humans dealing with problems by letting each person handle 
problems in his or her own specialty, handing all other problems over to 
colleagues. 

W hat should these functions actually do? Each function should call other 
grammar functions according to the grammar rule it is implementing and 
get_token() where a token is required in a rule. For exan1ple, when primary() 
tries to follow the (Expression) rule, it must call 

get_ token() 
expression() 

II to dea l with ( and ) 
II to dea l with Expression 

W hat should such parsing functions return? How about the answer we really 
wanted? For example, for 2+3, expression() could return 5. After all, the informa
tion is all there. That's what we'U try! Doing so will save us from answering one 
of the hardest questions from our list: "How do I represent 45+517 as data so that 
I can evaluate it?" Instead of storing a representation of 45+517 in memory, we 
simply evaluate it as we read it from input. This little idea is really a major break· 
through! It will keep the program at a quarter of the size it would have been had 
we had expression() return something complicated for later evaluation. We just 
saved ourselves about 80% of the work. 

The "odd man out" is get_token(): because it deals with tokens, not cxpres· 
sions, it can't return the value of a sub-expression. For exan1plc , + and (arc not 
expressions. So, it must return a Token. We conclude that we want 

II functions to match the grammar rules: 
Token get_token() II read characters and compose tokens 
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double expression() II deal with + and-
double term() II dea l with*, /, and % 
double primary() II deal with numbers and parentheses 

6.5 .2 Expressions 
Let's first write expression(). The grammar looks like this: 

Expression : 
Term 
Expression' +' Term 
Expression ' -' Term 

Since this is our first attempt to tum a set of grammar rules into code, we'U pro
ceed through a couple of false starts. That's the way it usually goes with new 
techniques, and we leam useful things along the way. In particular, a novice pro
grammer can leam a lot from looking at the dramatically different behavior of 
similar pieces of code. Reading code is a useful skill to cultivate. 

6.5.2.1 Expressions: first try 

Looking at the Expression ' +' Term rule, we try frrst calling expression(), then 
looking for+ (and-) and then term(): 

double expression() 
{ 

double left = expression(); 
Token t = get_token(); 
switch (t.kind) { 
case' +' :  

return left + term(); 

case' -' : 
return left - term(); 

default :  
return left; 

II read and evaluate an Expression 
II get the next token 
II see which kind of token it is 

II read and evaluate a Term, 
II then do an add 

II read and eva luate a Term, 
II then do a subtraction 

II return the va lue of the Expression 

It looks good. It is almost a trivial transcription of the grammar. It is quite simple, 
reaUy: first read an Expression and then see if it is foUowed by a+ or a-, and if it 
is, read the Term. 
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Unfortunately, that doesn't really make sense. How do we know where the ex
pression ends so that we can look for a + or a-'? Remember, our program reads left 
to right and can't peek ahead to see if a + is coming. In fact, this expression() will 
never get beyond its first line: expression() starts by calling expression() which 
starts by calling expression() and so on "forever." Tills is called an ii!finite recursion 
and will in fact terminate after a short while when the computer runs out of mem
ory to hold the "never-ending" sequence of calls of expression(). The term rrcursion 
is used to describe what happens when a function calls itself. Not all recursions are 

infinite, and recursion is a very useful programming technique (see §8.5.8). 

6.5.2.2 Expressions: second try 

So what do we do? Every Term is an Expression, but not every Expression is a 
Term; that is, we could start looking for a Term and look for a full Expression 
only if we found a+ or a-. For example: 

double expression() 
{ 

double left = term(); 
Token t = get_token(); 
switch (t.kind) { 
case' +' :  

II read and evaluate a Term 
II get the next token 
II see which kind of token that is 

return left + expression(); II read and evaluate an Expression, 
b r c,, �· II then do an add 

case' -' : 
return left - expression(); II read and evaluate an Expression, 'I (•u },' II then do cl subtraction 

default: 
return left; II return the value oi the Term 

This actually - more or less - works. We have tried it in the fmished program 
and it parses every correct expression we throw at it (and no illegal ones). It even 
correctly evaluates most expressions. For example, 1+2 is read as a Term (with 
the value 1) followed by + followed by an Expression (which happens to be a 

Term with the value 2) and gives the answer 3. Similarly, 1+2+3 gives 6. We could 
go on for quite a long tinle about what works, but to make a long story short: 
How about 1-2-3? This expression() will read the 1 as a Term, then proceed to 
read 2-3 as an Expression (consisting of the Term 2 followed by the Expression 
3). It will then subtract the value of 2-3 from 1. In other words, it will evaluate 
1-(2-3). The value of 1-(2-3) is 2 (positive two). However, we were taught (in 
primary school or even earlier) tl1at 1-2-3 means (1-2)-3 and therefore has the 
value -4 (negative four). 
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So we got a very nice program that just didn't do the right thing. That's dan- f) 
gerous. It is especially dangerous because it gives the right answer in many cases. 
For example, 1+2+3 gives the right answer {6) because 1+(2+3) equals (1+2)+3. 
What fundamentally, from a programming point of view, did we do wrong? We 
should always ask ourselves this question when we have found an error. That 
way we might avoid making the same mistake again, and again, and again. 

Fundamentally, we just looked at the code and guessed. That's rarely good 
enough! We have to understand what our code is doing and we have to be able 
to explain why it docs the right thing. 

Analyzing our errors is often also the best way to find a correct solution. 
What we did here was to define expression() to frrst look for a Term and then, if 
that Term is foUowed by a +  or a - , look for an Expression. This really imple
ments a slightly different grammar: 

Expression : 
Term 
Term' +' Expression 
Term ' -' Expression 

II addition 
II subtraction 

The difference from our desired grammar is exactly that we wanted 1-2-3 to be 
the Expression 1-2 followed by - foUowed by the Term 3, but what we got here 
was tl1e Term 1 foUowed by - foUowed by the Expression 2-3; that is, we wanted 
1-2-3 to mean (1-2)-3 but we got 1-(2-3). 

Yes, debugging can be tedious, tricky, and tinle-consuming, but in this case 
we are really working through rules you learned in primary school and learned 
to avoid without too much trouble. The snag is that we have to teach the rules to 
a computer - and a computer is a far slower learner than you are. 

Note that we could have dcfmed 1-2-3 to mean 1-(2-3) rather than (1-2)-3 
and avoided this discussion altogether. Often, the trickiest programming prob
lems come when we must match conventional rules that were established by and 
for humans long before we started using computers. 

6.5.2.3 Expressions: third time lucky 

So, what now? Look again at the grammar (the correct grammar in §6.5.2) : any 
Expression starts with a Term and such a Term can be foUowed by a +  or a -. So, 
we have to look for a Term, see if it is foUowed by a +  or a -, and keep doing that 
until there are no more plusses or minuses. For example: 

double expression() 
{ 

double left = term(); 
Token t = get_token(); 

II read and eva l uate a Term 
II get the next token 
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while ( t.kind='+' I I  t.kind='- ') { II look for a +  or  a 
if (t.kind == ' +' )  

left += term(); II evaluate Term and add 
else 

left -= term(); 
t = get_token(); 

II eva luate Term and subtract 

return left; II final ly: no more + or - ;  return the answer 

This is a bit messier: we had to introduce a loop to keep looking for plusses and 
minuses. We also got a bit repetitive: we test for + and - twice and twice call 
get_ token(). Because it obscures the logic of the code, let's just get rid of the du
plication of the test for + and -:  

double expression() 
{ 

double left = term(); 
Token t = get_token(); 
while(true) { 

switch(t.kind) { 
case' +' :  

left += term(); 
t = get_token(); 
break; 

case' -' : 
left -= term(); 
t = get_ token(); 
break; 

default: 
return left; 

II read and eva luate a Term 
II get the next token 

II evaluate Term and add 

II eva luate Term and subtract 

II final ly: no more + or - ;  return the answer 

Note that - except for the loop - this is actually rather similar to our first try 
(§6.5.3 .1 ) .  What we have done is to remove the mention of expression() within 
expression() and replace it with a loop. In other words, we translated the 
Expression in the grammar rules for Expression into a loop looking for a Term 
followed by a + or a -.  

6.5 .3 Terms 
The grammar rule for Term is very similar to the Expression rule: 
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Term: 
Primary 
Term 1 * 1 Primary 
Term 1/1 Primary 
Term 1%1 Primary 

Consequently, the code should be very similar also. Here is a first try: 
double term() 
{ 

double left = primary(); 
Token t = get_token(); 
while(true) { 

switch (t.kind) { 
case 1 * ' :  

left *= primary(); 
t = get_token(); 
break; 

case 11' : 
left I= primary(); 
t = get_token(); 
break; 

case 10/o' : 
left %= primary(); 
t = get_token(); 
break; 

default: 
return left; 
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Unfortunately, this doesn't compile: the remainder operation (%) is not defmed f.J 
for floating-point numbers. The compiler kindly teUs us so. When we answered 
question 4 above - "Should we also aUow floating-point inputs?" - with a confi-
dent "Sure!" we actuaUy hadn't thought the issue through and feU victim to 
Jealw-e creep. That always happens! So what do we do about it? We could at run-
tinle check that both operands of % are integers and give an error if they are not. 
Or we could simply leave % out of our calculator. Let's take the simplest choice 
for now. We can always add % later; see §7.5. 

After we elinlinate the % case, the function works: terms are correctly parsed 
and evaluated. However, an experienced programmer wiU notice an undesirable 
detail that makes term() unacceptable. What would happen if you entered 210? You 
can't divide by zero. If you try, the computer hardware wiU detect it and terminate 
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your program with a somewhat unhelpful error message. An inexperienced pro
grammer will discover this the hard way. So, we'd better check and give a decent 
error message: 

double term() 
{ 

double left = primary(); 
Token t = get_token(); 
while(true) { 

switch (t.kind) { 
case ' * ' :  

left *= primary(); 
t = get_token(); 
break; 

case 'f : 
double d =  primary() ; 
if (d == 0) error("divide by zero"); 
left /= d; 
t = get_token(); 
break; 

default: 
return left; 

W hy did we put the statements handling I into a block? The compiler insists. If 
you want to define and initialize variables within a switch-statement, you must 
place them inside a block. 

6.5.4 Primary expressions 
The grammar rule for primary expressions is also simple: 

Primary: 
Number 
'(' Expression ' ) '  

The code that implements it is  a bit messy because there are more opportunities 
for syntax errors: 
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double primary() 
{ 

Token t = get_token(); 
switch (t.kind) { 
case ' (' :  II handle ' ( '  expression ' ) ' 

double d = expression(); 
t = get_token(); 
if (t.kind !=' )' ) error("' )' expected");  
return d; 

case ' 8' :  
return t. value; 

default: 

II we use '8' to represent a number 
II return the number's value 

error(" primary expected");  

Basically there is nothing new compared to expression() and term(). We use the 
same language primitives, the same way of dealing with Tokens, and the same 
progranuning techniques. 

6.6 Trying the first version 
To run these calculator functions, we need to implement get_token() and provide 
a main(). The main() is trivial: we just keep calling expression() and printing out 
its result: 

int main() 
try { 

while (cin) 
cout << expression() << '\n '; 

keep_window_open(); 

catch (exception& e) { 

} 

cerr << e.what() << endl; 
keep_window_open (); 
return 1; 

catch ( .. . ) { 
cerr << "exception \n";  
keep_window_open (); 
return 2; 
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The error handling is the usual "boilerplate" (§5.6.3). Let us postpone the de
scription of the implementation of get_ token() to §6.8 and test this frrst version of 
the calculator. 

T R Y T H I S  

lltis frrst version of the calculator program (including get_token()) is avail
able as file calculatorOO.cpp. Get it to run and try it out. 

Unsurprisingly, this frrst version of the calculator doesn't work quite as we ex
pected. So we shrug and ask, "W hy not?" or rather, "So, why does it work the 
way it does?" and "W hat does it do?" Type a 2 followed by a newline. No re
sponse. Try another newline to see if it's asleep. Still no response. Type a 3 fol
lowed by a newline. No response! Type a 4 followed by a newline. It answers 2! 
Now the screen looks like this: 

2 

3 
4 
2 

\ f l . 
We carry on by typing 5+6+7. The program responds with a 5, so that the screen 
looks like this: 

2 

3 
4 
2 
5+6+7 
5 

Unless you have programmed before, you are most likely very puzzled! In fact, 
even an experienced programmer might be puzzled. W hat's going on here? At 
this point, you try to get out of the progran1. How do you do this? We "forgot " to 
program an exit command, but an error will cause the program to exit, so you 
type an x and the program prints Bad token and exits. Fmally, something worked 
as planned! 

However, we forgot to distinguish between input and output on the screen. 
Before we try to solve the main puzzle, let's just ftx the output to better sec what 
we are doing. Adding an = to indicate output will do for now: 
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while (cin) cout << "= " << expression() << '\n' ; II version 1 

Now, entering the exact sequence of characters as before, we get 

2 

3 
4 
= 2  
5+6+7 
= 5  
X 

Bad token 

Strange! Try to figure out what the program did. We tried another few examples, 
but let's just look at this. This is a puzzle: 

W hy didn't the program respond after the first 2 and 3 and the newlines? 

W hy did the program respond with 2, rather than 4, after we entered 4? 

Why did the program answer 5, rather than 18, after 5+6�? . ,  
There arc many possible ways of proceeding from such mysterious results. We'll 
examine some of those in the next chapter, but here, let's just think. Could the 
program be doing bad ari�etic? That's most unlikely ; the value of 4 isn't 2, 
and the value of 5�7 -� 18' r�ther than 5. Consider what happens when we 
enter 1 2 3 4+5 6+7 8+9 10 11 12 followed by a newline. We get 

1 2 3 4+5 6+7 8+9 10 11 12  
= 1  
= 4  
= 6  
= 8  
= 10 

Huh? No 2 or 3. Why 4 and not 9 (that is, 4+5)? W hy 6 and not 13 (that is, 6+7)? 
Look carefully: the program is outputting every third token! Maybe the program 
"eats" some of our input without evaluating it? It does. Consider expression() : 

double expression() 
{ 

double left = term(); 
Token t = get_token(); 
while(true) { 

switch(t.kind) { 

II read and eva luale a Term 
II gel I he nexl Ioken 
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case '+' : 
left += term(); II eva luale Term and add 
t = get_token(); 
break; 

case '-' :  
left -= term(); II eva luale Term and subl racl 
t = get_token(); 
break; 

default: 
return left; II iinal ly: no more + or -; relurn I he answer 

When the Token returned by get_token() is not a '+' or a '- ' we just return. We 
don't use that token and we don't store it anywhere for any other function to use 
later. That's not smart. Throwing away input without even determining what it is 
can't be a good idea. A quick look shows that term() has exactly the same prob
lem. That explains why our calculator ate two tokens for each that it used. 

Let us modify expression() so that it doesn't "eat" tokens. Where would we 
put that next token (t) when the program doesn't need it? We could think of 
many elaborate schemes, but let's jump to the obvious answer ("obvious" once 
you see it) : that token is going to be used by some other function that is reading 
tokens from the input, so let's put the token back into the input stream so that it 
can be read again by some other function! Actually, you can put characters back 
into an istream, but that's not really what we want. We want to deal with tokens, 
not mess with characters. What we want is an input stream that deals with to
kens and that you can put an already read token back into. 

So, assume that we have a stream of tokens - a "Token_stream" - called Is. As
swne further that a Token_stream has a member function get() that returns the next 
token and a member function putback(t) that puts a token I back into the stream. 
We'll implement that Token_stream in §6.8 as soon as we have had a look at how it 
needs to be used. Given Token_stream, we can rewrite expression() so that it puts a 
token that it does not use back into the Token_stream: 

double expression() 
{ 

double left = term(); 
Token t = ts.get(); 

while(true) { 
switch(t.kind) { 

II read and eva luale a Term 
II gel I he nexl Token irom I he Token slream 
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case '+' : 
left += term(); II eva luale Term and add 
t = ts.get(); 
break; 

case '- ' :  
left -= term(); 
t = ts.get(); 
break; 

default : 

II eva luale Term and sublracl 

ts.putback(l); 
return left; 

II pul I back inlo I he Ioken slream 
II iinal ly: no more + or -; relurn lhe answer 

In addition, we must make the same change to term(): 

double term() 
{ 

double left = primary(); 
Token I =  ts.get(); II gel I he nexl Token from I he Token slream 

while(true) { 
switch (t.kind) { 
case ' * ' :  

left *= primary(); 
t = ts.get(); 
break; 

case '/' : 
double d =  primary(); 
if (d == 0) error("divide by zero"); 
left I= d; 
I = ts.get(); 
break; 

default : 
ts.putback(t); II pul I back inlo lhe Token slream 
return left; 
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For our last parser function, primary(), we need just to change get_token() to 
ts.get(); primary() uses every token it reads. 

6.7 Trying the second version 
So, we arc ready to test our second version. Type 2 followed by a newline. No re
sponse. Try another newline to see if it's asleep. Still no response. Type a 3 fol
lowed by a newline and it answers 2. Try 2+2 followed by a newline and it 
answers 3. Now your screen looks like this: 

2 

3 
=2 
2+2 
=3 

Hmm. Maybe our introduction of putback() and its use in expression() and 
term() didn't ftx the problem. Let's try another test: 

2 3  4 2+3 2*3 
= 2  
= 3  
= 4  
= 5  

Yes !  These are correct answers! But the last answer (6) is missing. We still have a 
token-look -ahead problem. However, this time the problem is not that our code 
"eats" characters, but that it doesn't get any output for an expression until we 
enter the following expression. The result of an expression isn't printed immedi
ately; the output is postponed until the program has seen the first token of the 
next expression. Unfortunately, the program doesn't see that token until we hit 
Return after the next expression. The program isn't really wrong; it is just a bit 
slow responding. 

How can we ftx this? One obvious solution is to require a "print command." 
So, let's accept a semicolon after an expression to tenninate it and trigger output. 
And while we are at it, let's add an "exit command" to allow for graceful exit. 
The character q (for "quit") would do nicely for an exit command. In main(), we 
have 

while (cin) coul << "=" << expression() << '\n '; II version I 
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We can change that to the messier but more useful 

double val = 0; 
while (cin) { 

Token t = ts.get(); 

if (t.kind == 'q ') break; II 'q ' for "quit " 

if (t.kind = '; ') II ' ; '  for "print now" 
cout << "=" << val << '\n'; 

else 
ts.putback(t); 

val = expression(); 

Now the calculator is actually usable. For example, we get 

2; 
= 2  
2+3; 
= 5  
3+4*5; 
= 23 
q 

At this point we have a good initial version of the calculator. It's not quite what 
we really wanted, but we have a program that we can use as the base for making 
a more acceptable version. Importantly, we can now correct problems and add 
features one by one while maintaining '-'working program as we go along. 

6.8 Token streams 
Before further improving our calculator, let us show the implementation of 
Token_strearn. After all, nothing - nothing at all - works until we get correct input. 
We implemented Token_ stream frrst of all but didn't want too much of a digression 
from the problems of calculation before we had shown a minimal solution. 

Input for our calculator is a sequence of tokens, just as we showed for 
(1 .5+4)*11  above (§6.5. 1 ) .  What we need is something that reads characters from 
the standard input, cin. and presents the program with the next token when it 
asks for it. In addition, we saw that we - that is, our calculator program - often 
read a token too many, so that we must be able to put it back for later use. This is 
typical and fundamental ; when you see 1 .5+4 reading strictly left to right, how 
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could you know that the nwnber 1 .5 had been completely read without reading 
the +? Until we see the + we might be on our way to reading 1 .55555. So, we 
need a "stream" that produces a token when we ask for one using get() and 
where we can put a token back into the stream using putback(). Everything we 
use in C++ has a type, so we have to start by defining the type Token_stream. 

You probably noticed the public: in the defmition of Token above. There, it 
had no apparent reason. For Token_stream, we need it and must explain its func
tion. A C++ user-defined type often consists of two parts: the public interface (la
beled "public : ") and the implementation details Oabeled "private :") .  The idea is to 
separate what a user of a type needs for convenient use from the details that we 
need in order to implement the type, but that we'd rather not have users mess with: 

class Token_stream { 
public : 

II ust:>r i nlerf ace 
private: 

II implemPnlal ion detai ls 
II (not d i rPcl ly access ible to users of Tokcn_sl ream) 

};  

Obviously, users and implementers are often just us "playing different roles," but 
making the distinction between the (public) interface meant for users and the 
(private) implementation details used only by the implementer is a powerful tool 
for structuring code. The public interface should contain (only) what a user 
needs, which is typically a set of functions, including constructors to initialize ob
jects. The private implementation contains what is necessary to implement those 
public functions, typically data and functions dealing with messy details that the 
users need not know about and shouldn't directly use. 

Let's elaborate the Token_stream type a bit. W hat does a user want from it? 
Obviously, we want get() and putback() functions - that's why we invented the 
notion of a token stream. The Token_stream is to make Tokens out of characters 
that it reads for input, so we need to be able to make a Token_stream and to de
fine it to read from cin. Thus, the simplest Token_stream looks like this: 

class Token_stream { 
public : 

Token_stream(); 
Token get(); 
void putback(Token t); 

private : 
II implementat ion detai ls 

} ; 

II make a Token_sl ream that rt•,,ds lrom c i n  
II gel a Token 
II put a Token back 
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That's all a user needs to use a Token_stream. Experienced programmers will 
wonder why cin is the only possible source of characters, but we decided to take 
our input from the keyboard. We'll revisit that decision in a Chapter 7 exercise. 

Why do we use the "verbose" name putback() rather than the logically suffi
cient put()? We wanted to emphasize the asymmetry between get() and putback() ;  
this is an input strean1, not something that you can also usc for general output. 
Also, istream has a putback() function: consistency in naming is a useful property 
of a system. It helps people remember and helps people avoid errors. 

We can now make a Token_stream and use it: 

Token_stream ts; 
Token I =  ts.get(); 
II . . .  
ts.putback(t); 

II a Token_st ream ca l led t s  
II get next Token from ts  

II put the Token t back into ts 

That's all we need to write the rest of the calculator. 

6.8.1 Implementing Token_stream 
Now, we need to implement those three Token_stream functions. How do we repre
sent a Token_ stream'� That is, what data do we need to store in a Token_stream for 
it to do its job? We need space for any token we put back into the Token_stream. To 
simplify, let's say we can put back at most one token at a time. That happens to be 
sufficient for our progranl (and for many, many similar programs) . That way, we 
just need space for one Token and an indicator of whether that space is full or 
empty: 

class Token_stream { 
public : 

Token_stream(); 
Token get(); 

II make a Token_stream t hat reads from c i n  
II get a Token (get() i s  deiined elsewhere) 

void putback(Token I); II put a Tdten back 
private : 

bool full; II is there a Token in t he buffer? 
Token buffer; II here is where we keep a Token put back using putbackO 

} ; 

Now we can dcfme ("write") the three member functions. The constructor and 
putback() arc easy, because they do so little, so we will define those first. 

The constructor just sets full to indicate that the buffer is empty: . 

' , , , -,-t ·,- ._ ! · · · '  1 . 1 ·, · -. .
. � 

Token_stream: : Token_stream() , , , , , . .  I -� \ ;_ ;\ 
: full(false), buffer(O) II no Token i n  buffer 
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When we define a member of a class outside the class definition itself, we have to 
mention which class we mean the member to be a member of. We use the notation 

class_name : : member _name 

for that. In this case, we define Token_stream's constructor. A constructor is a 
member with the same name as its class. 

Why would we defme a member outside its class? The main answer is clar
ity: the class defmition (primarily) states what the class can do. Member function 
definitions are implementations that specify how things are done. We prefer to 
put them "elsewhere" where they don't distract. Our ideal is to have every logical 
entity in a program fit on a screen. Class definitions typically do that if the mem
ber function definitions are placed elsewhere, but not if they are placed within the 
class definition ("in-class") . 

We initialize the class members in a member initializer list (§6.3.3) ; full(false) 
sets a Token_stream's member full to false and buffer(O) initializes the member 
buffer with a "dummy token" we invented just for that purpose. The definition 
of Token (§6Jd) says that every Token must be initialized, so we couldn't just ig
nore Token_stream: : buffer. 

The putback() member function puts its argument back into the Token_stream's 
buffer: 

void Token_stream: :  putback(Token t) 
{ 

buffer = t; 
full = true; 

II copy I lo buffer 
II buffer is now fu l l  

The keyword void (meaning "nothing") is used to indicate that putback() doesn't 
return a value. If we wanted to make sure that we didn't try to use putback() twice 
without reading what we put back in between (using get()) ,  we could add a test: 

void Token_stream : : putback(Token t) 
{ 

if (full) error("putback() into a full buffer"); 
buffer = t; II copy t to buffer 
full = true; II buffer is now fu l l  

The test of full checks the precondition "There is no Token in the buffer." 
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6.8.2 Reading tokens 
All the real work is done by get(). If there isn't already a Token in Token_stream: : 
buffer. get() must read characters from cin and compose them into Tokens: 

Token Token_stream:  : get() 
{ 
if (full) { II d<> we a l ready have a Token ready? 

II rl'move Token irom bufier 
full=false; 
return buffer; 

char ch; 
cin >> ch; II nott.' that > >  skips whitespace (space, newl ine, tab, etc.) 

switch (ch) { 
case 1 ; 1 :  II ior "print" 
case 1q1 :  II for "qui t" 
case 1(1 : case 1) 1 : case 1+1 : case 1- 1 :  case 1 * 1 :  case 1f:  case 1%1 : 

return Token(ch); II let each character represent itself 
case 1 • 1 : 
case 101 : case 11 1 : case 121 : case 131 : case 141 : 
case 15 1 :  case 161 : case 171 : case 181 : case 191 : 

cin.putback(ch); II put digit back into the i nput st ream 
double val; 
cin >> val; 
return Token(181,val); 

default: 
error("Bad token"); 

II read a iloating-point number 
II let '8' represent "a number" 

Let's examine get() in detail. Ftrst we check if we already have a Token in the 
buffer. If so, we can just return that: 

if (full) { II do we a l ready have a Token ready? 
II remove Token irom buifer 
full=false; 
return buffer; 

21 1 
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Only if full is false (that is, there is no token in the buffer) do we need to mess 
with characters. In that case, we read a character and deal with it appropriately. 
We look for parentheses, operators, and numbers. Any other character gets us 
the call of error() that terminates the program: 

default: 
error(" Bad token"); 

l11c error() function is described in §5.6.3 and we make it available in std_lib_fa
cilities.h. 

We had to decide how to represent the different kinds of Tokens; that is, we 
had to choose values for the member kind. For simplicity and case of debugging. 
we decided to let the kind of a Token be the parentheses and operators them
selves. This leads to extremely simple processing of parentheses and operators : 

case 1(1 : case 1 ) 1 : case 1+1 : case 1-1 : case 1* 1 : case 1f :  
return Token(ch); II lei each characler represt.•nl ilself 

To be honest, we had forgotten 1 ; 1 for "print" and 1q1 for "quit" in our first vcr· 
sion. We didn't add them until we needed them for our second solution. 

6.8.3 Reading numbers 
Now we just have to deal with numbers. l11at 's actually not that easy. How do 
we really find the value of 123? Well, that's 100+20+3, but how about 12.34, and 
should we accept scientific notation, such as 12.34e5? We could spend hours or 
days to get tllis right, but fortunately, we don't have to. Input streams know what 
C++ literals look like and how to tum them into values of type double. All we 
have to do is to figure out how to tell cin to do that for us inside get() : 

case ' . ' :  
case 101 : case 11 1 :  case 121 :  case 131 : case 141 : case 151 : case 161 : case 171 : 
case 181 :case 191 : 

cin.putback(ch); II pul d igil back inlo I he inpul sl ream 
double val ; 
cin >> val; 
return Token(181,val); 

II read a floal i ng-poinl number 
II lei ' H '  represenl "a number" 

We - somewhat arbitrarily - chose 181 to represent "a number" in a Token. 
How do we know that a number is coming? Well, if we guess from expcli

cnce or look in a C++ reference (e.g., Appendix A) , we fmd that a numeric literal 
must start with a digit or . (the decimal point). So, we test for that. Next, we want 
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to let cin read the number. but we have already read the first character ( a  digit or 
dot) , so just letting cin loose on the rest will give a wrong result. We could try to 
combine the value of the first character with the value of "the rest" as read by 
cin; for example, if someone typed 123, we would get 1 and cin would read 23 
and we'd have to add 100 to 23. Yuck! And that's a trivial case. Fortunately (and 
not by accident), cin works much like Token_stream in that you can put a char
acter back into it. So instead of doing any messy arithmetic, we just put the initial 
character back into cin and then let cin read the whole number. 

Please note how we again and again avoid doing complicated work and in-
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stead lind simpler solutions - often relying on library facilities. That's the essence • 1 

of programming: the continuing search for simplicity. Sometimes that's - some- U 
what facetiously - expressed as "Good programmers are lazy." In that sense (and 
only in that sense), we should be "lazy"; why write a lot of code if we can find a 
way of writing far less? 

6.9 Program structure 
Sometimes, the proverb says, it's hard to see the forest for the trees. Similarly, it is 
easy to lose sight of a program when looking at all its functions, classes, etc. So. 
let"s have a look at the program with its details omitted: 

#include "std_lib_facilities.h" 

class Token { !* . . .  *I }; 
class Token_stream { !* . . .  *I }; 

Token_stream: :Token_stream() : full(false), buffer(O) { !* . . .  */ } 
void Token_stream: :putback(Token t) { !* . . .  *I } 
Token Token_stream: : get() { !* . . .  */ } 

Token_stream ts; 
double expression(); 

II prov ides get( )  and put back() 
II declara�n so that primary() can ca l l  expression() 

double primary() { /* . . .  */ } 
double term() { /* . . .  */ } 
double expression() { /* . . .  */ } 

II deal with numbers and parentheses 
II deal with •, /, and o;., 
II deal with + and -

int main() { /* . . .  */ } II main loop and deal wi th errors 

The order of the declarations is important. You crumot use a name before it has � 
been declared, so ts must be declared before ts.get() uses it, and error() must be U 
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declared before the parser functions because they all use it. There is an interest· 
ing loop in the call graph: expression() calls term() which calls primary() which 
calls expression(). 

We can represent that graphically Oeaving out calls to error() - everyone calls 
error()) : 

-

This means that we can't just define those three functions: there is no order that al· 
lows us to define every function before it is used. We need at least one declaration 
that isn't also a definition. We chose to declare ("forward declare") expression(). 

But does this work? It does, for some definition of "work." It compiles, runs, 
correctly evaluates expressions, and gives decent error messages. But docs it 
work in a way that we like? The unsurprising answer is "Not really." We tried the 
first version in §6.6 and removed a serious bug. This second version (§6.7) is not 
much better. But that's fine (and expected). It is good enough for its main pur· 
pose, which is to be something that we can use to verify our basic ideas and get 
feedback from. As such, it is a success, but try it: it'll (still) drive you nuts! 

T R Y  T H I S  

� Get the calculator as presented above to run, see what it does, and try to fig
ure out why it works as it does. 
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..../ Drill 
Tllis drill involves a series of modifications of a buggy program to turn it from 
something useless into something reasonably useful. 

1. Take the calculator from the ftle calculator02buggy.cpp. Get it to com
pile. You need to fmd and fix a few bugs. Those bugs are not in the text 
in the book. 

2. Change the character used as the exit command from q to x. 
3. Change the character used as the print command from ; to =. 

4. Add a greeting line in main(): 

"Welcome to our simple calculator. 
Please enter expressions using floating-point numbers." 

5. Improve that greeting by mentioning which operators are available and 
how to print and exit. 

6. Fmd the three logic errors deviously inserted in calculator02buggy.cpp 
and remove them so that the calculator produces correct results. 

Review 
1. What do we mean by "Programming is understanding"? 
2. The chapter details the creation of a calculator program. Write a short 

analysis of what the calculator should be able to do. 
3. How do you break a problem up into smaller manageable parts? 
4. Why is creating a small, limited version of a program a good idea? 
5. Why is feature creep a bad idea? 
6. What are the three main phases of software development? 
7 .  What is a "use case"? 
8. What is the purpose of testing? 
9. According to the outline in the chapter, describe the difference between a 

Term, an Expression, a Number, and a Primary. 
10. In the chapter, an input was broken down into its component Terms, Ex-

pressions, Primarys, and Numbers. Do this for (17+4)/(5-1) .  
1 1. Why does the program not have a function called number()? 
12. What is a token? 
13. What is a grammar? A grammar rule? 
14. What is a class? What do we use classes for? 
15. What is a constructor? 
16. In the expression function, why is the default for the switch-statement to 

"put back" the token? 
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17. What is "look-ahead"? 
18. W hat does putback() do and why is it useful? 
19. W hy is the remainder (modulus) operation,%, difficult to implement in 

the term()? 
20. What do we use the two data members of the Token class for? 
21 .  W hy do we (sometimes) split a class's members into private and public 

members? 
22. What happens in the Token_stream class when there is a token in the 

buffer and the get() function is called? 
23 . W hy were the ' ; '  and 'q' characters added to the switch-statement in the 

get() function of the Token_stream class? 
24. W hen should we start testing our program? 
25. What is a "user-defined type"? W hy would we want one? 
26. What is the interface to a C++ "user-defined type"? 
27. Why do we want to rely on libraries of code? 

Terms 

analysis 
class 
class member 
data member 
design 
divide by zero 

Exercises 

grammar 
implementation 
interface 
member function 
parser 
private 

prototype 
pseudo code 
public 
syntax analyzer 
token 
use case 

1. If you haven't already, do the Try this exercises from this chapter. 
2. Add the ability to use {} as weU as () in the program, so that {(4+5)*6} I 

(3+4) will be a valid expression. 
3. Add a factorial operator: use a suffiX ! operator to represent "factorial." 

For example, the expression 7! means 7 * 6 * 5 * 4 * 3 * 2 * 1. Make ! bind 
tighter than • and /; that is, 7*81 means 7*(8 !)  rather than (7*8) 1 .  Begin 
by modifying the grammar to account for a higher-level operator. To 
agree with the standard mathematical defmition of factorial, let 0 !  evalu
ate to 1. 

4. Defme a class Name_value that holds a string and a value. Give it a con
structor (a bit like Token) . Rework exercise 19 in Chapter 4 to use a 
vector< Name_ value> instead of two vectors. 

5. Add the article the to the "English" grammar in §6.4. 1,  so that it can de
scribe sentences such as "The birds fly but the fish swim." 
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6 .  Write a program that checks if a sentence i s  correct according to the 
"English" granunar in §6.4. 1 .  Assume that every sentence is terminated 
by a fuU stop (.) surrounded by whitespace. For example, birds fly but 
the fish swim . is a sentence, but birds fly but the fish swim (terminating 
dot missing) and birds fly but the fish swim. (no space before dot) are 
not. For each sentence entered, the program should simply respond 
"OK" or "not OK." Hint: Don't bother with tokens; just read into a 
string using >>. 

7. Write a granunar for logical expressions. A logical expression is much 
like an arithmetic expression except that the operators are ! (not) , -
(complement) , & (and) , I (or) , and " (exclusive or) . ! and - are prefix 
unary operators. A "  binds tighter than a I Gust as * binds tighter than +) 
so that xly"z means xl(y"z) rather than (xly)"z. The & operator binds 
tighter than " so that x"y&z means x"(y&z). 

8. Redo the "Bulls and Cows" game from exercise 12 in Chapter 5 to use 
four letters rather than four digits. 

9. Write a program that reads digits and composes them into integers. For 
example, 123 is read as the characters 1 ,  2, and 3.  The program should 
output "123 is 1 hundred and 2 tens and 3 ones". The number should be 
output as an int value. Handle numbers with one, two, three, or four 
digits. Hint: To get the integer value 5 of the character '5' subtract '0', 
that is, '5'-'0'==5. 

10. A permutation is an ordered subset of a set. For example, say you wanted 
to pick a combination to a vault. There are 60 possible numbers, and you 
need three different numbers for the combination. There are ft:60,3) per
mutations for the combination, where Pis defmed by the formula 

a !  P(a, b) = ( ) , a - b ! 
where ! is used as a suffix factorial operator. For example, 4! is 4*3*2*1 .  
Combinations are similar to permutations, except that the order o f  the 
objects doesn't matter. For example, if you were making a "banana split" 
sundae and wished to use three different flavors of ice cream out of five 
that you had, you wouldn't care if you used a scoop of vanilla at the be
ginning or the end; you would still have used vanilla. The formula for 
combinations is: 

C(a,b) = 
P(a -) b) . b !  
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Design a program that asks users for two numbers, asks them whether 
they want to calculate permutations or combinations, and prints out the 
result. lltis will have several parts. Do an analysis of the above require
ments. Write exactly what the program will have to do. Then, go into 
the design phase. Write pseudo code for the program, and break it into 
sub-components. 1ltis program should have error checking. Make sure 
that all erroneous inputs will generate good error messages. 

Postscript 

Making sense of input is one of the fundamental programming activities. Every 
program somehow faces that problem. Making sense of something directly pro
duced by a human is among the hardest problems. For example, many aspects of 
voice recognition are still a research problem. Simple variations of this problem, 
such as our calculator, cope by using a grammar to define the input. 
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Completing a Program 

"It ain't over till the fat lady sings." 

-Opera proverb 

W riting a program involves gradually refining your ideas 

of what you want to do and how you want to express it. 

In Chapter 6, we produced the initial working version of a calcu

lator program. Here, we 'II refme it. Completing the program -

that is, making it fit for users and maintainers - involves improv

ing the user interface, doing some serious work on error han

dling, adding a few useful features, and restructuring the code for 

ease of understanding and modification. 
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7.1 Introduction 

7.2 Input and output 

7.3 Error handling 

7.4 Negative numbers 

7.5 Remainder: % 

7.6 Cleaning up the code 
7.6.1 Symbolic constants 
7.6.2 Use of functions 
7.6.3 Code layout 
7.6.4 Commenting 

7.1 Introduction 

C H A P T E R 7 • COM P L E T I N G  A P R O G R AM 

7.7 Recovering from errors 

7.8 Variables 
7.8.1 Variables and definitions 
7.8.2 Introducing names 
7.8.3 Predefined names 
7.8.4 Are we there yell 

W hen your program first starts running "reasonably," you're probably about 
halfway finished. For a large program or a program t.hat could do harm if it mis
behaved, you will be nowhere near halfway finished. Once the program "basi
cally works," the real fun begins! That's when we have enough working code to 
experiment with ideas. 

In this chapter, we will guide you through the considerations a professional 
programmer might have trying to improve the calculator from Chapter 6. Note 
that the questions asked about the program and the issues considered here are far 
more interesting than the calculator itself. W hat we do is to give an example of 
how real programs evolve under the pressure of requirements and constraints 
and of how a progranuner can gradually improve code. 

7.2 Input and output 
If you look back to the beginning of Chapter 6, you 'II find that we decided to 
prompt the user with 

Expression:  

and to  report back answers with 

Result: 

In the heat of getting the program to run, we forgot all about that. That's pretty 
typical. We can't think of everything all the time, so when we stop to reflect, we 
fmd that we have forgotten something. 

For some programming tasks, the initial requirements caru1ot be changed. 
That's usually too rigid a policy and leads to programs that are mmecessarily 
poor solutions to the problems that they are written to solve. So, let's consider 
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what we would do, assuming that we can change the specification of what exactly 
the program should do. Do we really want the program to write Expression: and 
Result :?  How would we know? Just "tlllnking" rarely helps. We have to try and 
sec what works best. 

2+3; 5*7; 2+9; 

currently gives 

= 5  
= 35 
= 11  

If we added Expression : and Resulh, we'd get 

Expression: 2+3; 5*7; 2+9; 
Result : 5 
Expression: Result : 35 
Expression: Result : 1 1  
Expression: 

\\e arc sure that some people will like one style and others will like the other. In 
such cases, we can consider giving people a choice, but for this simple calculator 

"' that would be overkiU, so we must decide. We think that writing Expression: and 
Result : is a bit too "heavy" and distracting. Using tl1ose, the actual expressions 
and results are only a minor part of what appears on the screen, and since ex
pressions and results are what matters, nothing should distract from them. On 
the other hand, unless we somehow separate what the user types from what the 
computer outputs, the result can be confusing. During initial debugging, we 
added = as a result indicator. We would also like a short "prompt" to indicate that 
the program wants input. The > character is often used as a prompt: 

> 2+3; 
= 5  
> 5*7; 
= 35 
> 

This looks much better, and we can get it by a minor change to the main loop of 
main(): 

double val = 0; 
while (cin) { 

cout << "> "; II print prompt 
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Token t = ts.get(); 
if (t.kind = 'q' ) break; 
if (t.kind = ' ; ') 
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cout << "= " << val << '\n'; II print resul t  
else 

ts.putback(t); 
val = expression(); 

Unfortunately, the result of putting several expressions on a line is still messy: 

> 2+3; 5*7; 2+9; 
= 5  
> = 35 
> =  1 1  
> 

The basic problem is that we didn't think of multiple expressions on a line when 
we started out (at least we pretended not to) . What we want is 

> 2+3; 5*7; 2+9; 
= 5  
= 35 
= 11  
> 

This looks right, but unfortunately there is no really obvious way of achieving it. 
We first looked at main(). Is there a way to write out > only if it is not immedi
ately foUowed by a =? We cannot know! We need to write > before the get(), but 
we do not know if get() actually reads new characters or simply gives us a Token 
from characters that it had already read from the keyboard. In other words, we 
would have to mess with Token_stream to make this final improvement. 

For now, we decide that what we have is good enough. If we find t.hat we 
have to modify Token_stream, we'U revisit this decision. However, it is unwise to 
make major structural changes to gain a minor advantage, and we haven't yet 
thoroughly tested the calculator. 

7.3 Error handling 

The first thing to do once you have a program that ''basically works" is to try to 
break it; that is, we try to feed it input in the hope of getting it to misbehave. 'W: 
say "hope" because the challenge here is to find as many errors as possible, so 
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that you can ftx them before anybody else fmds them. If you go into this exercise 
with the attitude that "my program works and I don't make errors !" you won't 
find many bugs and you'U feel bad when you do fmd one. You'd be playing head 
games with yourselfl The right attitude when testing is "I'U break it! I'm smarter 
than any program - even my own!" So, we feed the calculator a mix of correct 
and incorrect expressions. For example: 

1+2+3+4+5+6+7+8 
1-2-3-4 
!+2 
; ; ;  
(1+3; 
(1+); 
1 *213%4+5-6; 
(); 
1+; 
+1 
1++; 
1/0 
1/0; 
1++2; 
-2; 

���7890123456; 
•a• ; 
q 
1+q 
1+2; q 

T R Y  T H I S  

( • Feed a few such "problematic" expressions to the calculator and try to figure 
out in how many ways you can get it to misbehave. Can you get it to crash, 
that is, to get it past our error handling and give a machine error? We don't 
think you can. Can you get it to exit without a useful error message? You 
can. 

Technically, this is known as teJting. There are people who do this - break pro
granls - for a living. Testing is a very important part of software development 
and can actuaUy be fun. Chapter 26 examines testing in some detail. One big 
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question is: "Can we test the program systematically, so that we fmd all of the er
rors?" There is no general answer to tlus question; that is, there is no answer tl1at 
holds for all programs. However, you can do rather well for many programs 
when you approach testing seriously. You try to create test cases systematically, 
and just in case your strategy for selecting tests isn't complete, you do some "un· 
reasonable" tests, such as 

Mary had a little lamb 
srtvrqtiewcbet7rewaewre-wqcntrretewru754389652743nvcqnwq; 
!@#$%"&*()-: ; 

Once, when testing compilers, I got into the habit of feeding email reporting com
piler errors straight to the compiler - mail headers, user's explanation, and all . 
That wasn't "sensible" because "nobody would do that." However, a program 
ideally catches all errors, not just the sensible ones, and soon that compiler was 
very resilient against "strange input." 

The first really annoying tiling we noticed when testing the calculator was 
that the window closed immediately after inputs such as 

+1 ; 
() 
!+2 

A little thought (or some tracing of the program's execution) shows that the prob
lem is that the window is closed immediately after the error message has been 
written. lbis happens because our mechanism for keeping a window alive was to 
wait for you to enter a character. However, in all three cases above. the program 
detected an error before it had read all of the characters, so that there was a char
acter left on the input line. The program can't tell such "leftover" characters from 
a character entered in response to the Enter a character to close window prompt. 
That "leftover" character then closed the window. 

We could deal with that by modifying main() (see §5.6.3 ) :  

catch (runtime_error& e)  { 
cerr << e.what() << endl; 
II keep_wi ndow_open(): 
cout << "Please enter the character - to close the window\n"; 
char ch; 
while(cin >> ch) II keep read i ng unl i l  we fi nd a -

if (ch=='-') return 1 ;  
return 1 ;  
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Basically, we replaced keep_window_open() with our own code. Note that we 
still have our problem if a - happens to be the next character to be read after an 
error. but that's rather unlikely. 

When we encountered this problem we wrote a version of keep_win
dow_open() that takes a string as its argument and closes the window only when 
you enter that string after getting the prompt, so a simpler solution is : 

catch (runtime_error& e) { 
cerr << e.what() << endl; 
keep_window_open("--") ;  
return 1 ;  

Now examples such as 

+1 
! 1-
() 

will cause the calculator to give the proper error messages. then say 

Please ente4 -- to exit 

and not exit until you enter the string -. 
The calculator takes input from the keyboard. That makes testing tedious : 

each time we make an improvement, we have to type in a lot of test cases (yet 
again!) to make sure we haven't broken anything. It would be much better if we 
could store our test cases somewhere and run them with a single command. Some 
operating systems (notably Unix) make it trivial to get cin to read from a file with
out modifying the program, and similarly to divert the output from cout to a file. If 
that's not convenient. we must modify the program to use a file (see Chapter 10). 

Now consider: 

1+2; q 

and 

1+2 q 

We would like both to print the result (3) and then exit the program. Curiously 
enough, 

1+2 q 
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does that, but the apparently cleaner 

1+2; q 

elicits a Primary expected error. Where would we look for this error? In main() 
where ; and q are handled, of course. We added those "print" and "quit" com
mands rather quickly to get the calculator to work (§6.6). Now we arc paying for 
that haste. Consider again: 

double val = 0; 
while (cin) { 

cout << "> "; 
Token t = ts.get(); 
if (t.kind == 'q') break; 
if (t. kind == '; ') 

cout << "= " << val << '\n'; 
else 

ts.putback(t); 
val = expression(); 

If we find a semicolon, we straightaway proceed to call expression() without 
checking for q. The frrst thing that expression does is to look for a primary(), and 
now it fmds q. The letter q isn't a primary so we get our error message. So, we 
should test for q after testing for a semicolon. While we were at it, we felt the 
need to simplify the logic a bit, so the complete main() reads: 

int main() 
try 
{ 

while (cin) { 
cout << "> ";  
Token t = ts.get(); 
while (t.kind == ' ; ') t=ts.get(); II eal ' ; '  
if (t.kind = 'q') { 

keep_ window _open(); 
return 0; 

ts.putback(t); 
cout << "= " << expression() << endl; 

keep_window_open(); 
return 0; 
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catch (exception& e) { 
cerr << e. what() << endl; 
keep_window_open("-"); 
return 1 ;  

catch ( . . .  ) { 
cerr << "exception \n ";  
keep_window_open("--"); 
return 2; 

This makes for reasonably robust error handling. So we can start considering 
what else we can do to improve the calculator. 

7.4 Negative numbers 
If you tested the calculator, you found that it couldn't handle negative numbers 
elegantly. For example, this is an error: 

-1/2 

We have to write 

(0-1 )/2 
• 

That's not acceptable. 
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Finding such problems during late debugging and testing is common. Only f_j 
now do we have the opportunity to see what our design really does and get the 
feedback that allows us to refme our ideas. When planning a project, it is wise to 
try to preserve time and flexibility to benefit from the lessons we learn here. All 
too often, "release 1 .0" is shipped without needed refinements because a tight 
schedule or a rigid project management strategy prevents "late" changes to the 
specification: "late" addition of "features" is especially dreaded. In reality. when a 
program is good enough for simple use by its designers but not yet ready to ship, 
it isn't "late" in the development sequence; it's tl1e earliest tinle when we can ben-
efit from solid experience with the program. A realistic schedule takes that into 
account. 

In this case, we basically need to modify the grammar to allow unary minus. 
The simplest change seems to be in Primary. We have 

Primary: 
Number 
"(" Expression ")" 
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and we need something like 

Primary: 
Number 
"(" Expression ")" 
"-" Primary 
"+" Primary 

C H A PT E R  7 • COM P L E T I N G  A P R O G RAM 

We added unary plus because that's what C++ does . When we have unary 
minus, someone always tries nnary plus and it's easier just to implement that 
than to explain why it is useless. The code that implements Primary becomes 

double primary() 
{ 

Token t = ts.get(); 
switch (t.kind) { 
case '( ' :  II handle ' ( ' expression ' ) '  

double d =  expression(); 
t = ts.get(); 
if (t.kind != ')') error(" ' ) '  expected"); 
return d; 

case '8' : 
return t.value; 

case '- ' :  
return - primary(); 

case '+' : 
return primary(); 

default : 

// we usc ' 8 ' to represent a number 
II return the number's va lue 

error(" primary expected"); 

That's so simple that it actually worked the first time. 

7.5 Remainder: 0/o 

When we first analyzed the ideals for a calculator, we wanted the remainder 
(modulo) operator: %. However, it is not defined for floating-point numbers, so 
we backed off. Now we can consider it again. It should be simple : 
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1. We add % as a Token. 

2. We convert the doubles to ints so that we can use % on those ints. 

Here is the added code in term() : 

case 10/.o ' :  
double d =  term(); 
int i1 = int(left); 
int i2 = int(d); 
return i1%i2; 

l11e int(d) is an explicit notation for turning the double into an int by truncating 
(that is, by throwing away whatever was after the decimal point) . Unfortunatdy. 
it's redundant (see §3.9.2), but we prefer to indicate that we know a conversion is 
happening, that is, that we didn't just accidentally and implicitly convert a dou
ble to an int. This works in that we now get the correct results for integer 
operands. For example: 

> 2%3; 
= 0  
> 3%2; 
= 1  
> 5%3; 
= 2  

• 
How should we handle operands that arc not integers? What should be the result 
of 

> 6.7%3.3; 

l11ere is no really good answer, so we'll prohibit the use of % on a floating-point 
argument. We check if tl1e floating-point operands have fractional parts and give 
an error message if they do. Here is the resulting term() : 

double term() 
{ 

double left = primary(); 
Token t = ts.get(); 

while(true) { 
switch (t.kind) { 

II get the next token from Token_stream 
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case ' * ' :  ,. • '� • )o • • ' I 

left *= term(); 
t = ts.get(); 
break; 

case 'f : 
double d =  term(); 
if (d == 0) error("divide by zero"); 
left /= d; 
t = ts.get(); 
break; 

case '%' : � 
double d = term(); 
int i1 = int(left); 
if (i1 != left) error ("left-hand operand of % not int"); 
int i2 = int(d); 
if (i2 I= d) error ("right-hand operand of % not int"); 
if (i2 == 0) error("%: divide by zero"); 
left = i1%i2; 
t = ts.get(); 
break; 

default: 
ts. putback(t); 
return left; 

II put t back into the Token_st ream 

What we do here is to usc I= to check if the double to int conversion changed 
the value. If not, all is weU and we can use %. 

The problem of ensuring int operands for % is a variant of the narrowing 
problem (§3.9.2 and §5.6.4), so we could solve it using narrow_cast: 

case '%' : 
int i1 = narrow_cast<inl>(left); 
int i2 = narrow_cast<inl>(term()); 

.<.1 (i2 == 0) error("%: divide by zero"); 
left = i1%i2; 
t = ts.get(); 
break; 
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·n1at 's certainly shorter, and arguably clearer, but it docsn ' t  give quite as good 
error messages. 

7.6 Cleaning up the code 
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We have made several changes to the code. They arc, we think, all improve· .. 1 

ments. but the code is beginning to look a bit messy. Now is a good time to re· U 
view the code to see if we can make it clearer and shorter, add and improve 
comments, etc. In other words, we arc not finished with the program until we 
have it in a state suitable for someone else to take over maintenance. Except for 
the almost total absence of comments, the calculator code really isn't that bad, 
but let's do a bit of cleanup. 

7.6.1 Symbolic constants 
Looking back, we find the usc of '8' to indicate a Token containing a numeric 
value odd. It doesn't really matter what value is used to indicate a number Token 
as long as the value is distinct from all other values indicating different kind of 
Tokens. However, the code looks a bit odd and we had to keep reminding our· 
selves in comments : 

case '8' : 
return t.value; 

case '- ' :  
return - primary(); 

• 

// we use '8 '  to represent a number 
II return thP number's va lue 

To be honest, we also made a few mistakes, typing '0' rather than '8', because we f_j 
forgot which value we had chosen to use. In other words, using '8' directly in the 
code manipulating Tokens was sloppy, hard to remember, and error-prone; '8' is one 
of tl1osc .. magic const.:mts" we warned against in §4.3. 1 .  What we should have done 
was to introduce a symbolic name for the constant we used to represent number: 

const char number = '8'; II t . k ind==number means that t is a number Token 

'The const modifier simply tells the compiler that we are defming a number that 
is not supposed to change : number='O' would cause tl1e compiler to give an error 
message. Given tlmt defmition of number, we don't have to use '8' explicitly any
more. l11e code fragmelll from primary above now becomes : 

case number: 
return t.value; 

case '- ' :  
return - primary(); 

II return the number's va lue 
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This requires no comment. We should not say in comments what can be clearly 
and directly said in code. Repeated comments explaining something are often an 
indication that the code should be improved. 

Similarly, the code in Token_stream: :get() that recognizes numbers becomes 

case ' . ' :  
case '0' :  case '1 ' :  case '2' : case '3' :  case '4' : 
case '5' : case '6': case '7' : case '8' : case '9' : 

cin.putback(); II pul digil back inlo I he inpul sl ream 
double val; � 
cin >> val; II read a floaling-poinl number 
return Token(number,val); 

We could consider symbolic names for all tokens, but that seems overkill. After 
all. '(' and '+' are about as obvious a notation for ( and + as anyone could come 
up with. Looking through the tokens, only ' ; '  for "print" (or "terminate expres
sion'') and 'q' for "quit" seem arbitrary. Why not 'p' and 'e'? In a larger pro
gram, it is only a matter of time before such obscure and arbitrary notation 
becomes a cause of a problem, so we introduce 

const char quit = 'q'; 
const char print = ' ;  '; 

ll i . kind==qu i l  means lhal l is a quil Token 
II Lkind==prinl means I hal I i s  a prinl Token 

Now we can write main()'s loop like this: 
while (cin) { 

cout << "> ";  
Token I =  ts.get(); 
while (t.kind == print) t=ts.get() ; 
if (t.kind == quit) { 

keep_window_open(); 
return 0; 

ts.putback(t); 
cout << "= " << expression() << endl; 

Introducing symbolic names for "print" and "quit" makes the code easier to read. 
In addition. it doesn't encourage someone reading main() to make assumptions 
about how "print" and "quit" are represented on input. For example, it should 
come as no surprise if we decide to change the representation of "quit" to 'e' (for 
"exit"). That would now require no change in main() . 
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Now the strings "> " and "= " stand out. Why do we have these "magical" lit
erals in the code? How would a new progranuner reading main() guess their pur
pose? Maybe we should add a comment? Adding a comment might be a good 
idea, but introducing a symbolic name is more effective: 

const string prompt = "> " ; 
consl string result = "= "; II used to ind icate  that what fol lows is a result 

Should we want to change the prompt or the result indicator, we can just modify 
those consls. The loop now reads 

while (cin) { 
cout << prompt; 
Token 1 = Is. get(); 
while (I. kind ==print) t=ts.get(); 
if (t.kind == quit) { 

keep_window_open(); 
return 0; 

ts.putback(t); 
cout << result << expression() << endl; 

7.6.2 Use of furwtions 
The functions we use should reflect the structure of our program. and the names 
of the functions should identify the logically separate parts of our code. Basically, 
our program so far is rather good in this respect: expression(), term(), and 
primary() directly reflect our understanding of the expression grammar, and get() 
handles the input and token recognition. Looking at main(), though, we notice 
that it does two logically separate things : 

1. main() provides general "scaffolding": start the program. end the pro
gram, and handle "fatal" errors . 

2. main() handles the calculation loop. 
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Ideally, a function performs a single logical action (§4.5. 1 ) .  Having main() per- fJ 
form both of tl1ese actions obscures the structure of the program. The obvious 
solution is to separate out the calculation loop in a separate function calculate() : 

void calculate() 
{ 

II expression eva luat ion loop 
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while (cin) { 
cout << prompt; 
Token I = Is. get() ; 
while (I. kind == print) t=ts.get(); II fi rsl discard a l l  "prinls" 
if (t.kind == quit) return; II qui I 
ts.putback(l); 
cout << result << expression() << endl; 

int main() 
try { 

calculate(); 
keep_window_open(); 
return 0; 

catch (runtime_ error& e) { 
cerr << e.whal() << endl; 
keep_window_open("--"); 
return 1; 

catch ( • . .  ) { 
cerr << "exception \n"; 
keep_window_open("--"); 
return 2; 

II cope wilh Windows console mode 

This reflects the structure much more directly and is therefore easier to under
stand. 

7.6.3 Code layout 
Looking through the code for ugly code, we find 

switch (ch) { 
case 'q': case '; ' :  case '0/o' : case '(' : case ')' : case '+' : case '-' : case '*' : case '/' : 

return Token(ch); II l ei each characler represenl ilself 

This wasn't too bad before we added 'q', ' ; ' , and '%', but now it's beginning to 
become obscure. Code that is hard to read is where bugs can more easily hide. 
And yes, a potential bug lurks here! Using one line per case and adding a couple 
of comments help. So, Token_stream's get() becomes 
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Token Token_stream: :  get() 
II read characters from cin and compose a Token 

if (full) { // check ii we a l ready have a Token ready 
full= false; 
return buffer; 

char ch; 
cin >> ch; 

switch (ch) { 
case quit: 
case print: 
case '( ' :  
case ')' : 
case '+' :  
case '-' :  
case ' * ' :  
case 'f : 
case '0/o': 

II note that >> skips whitespace !space, newl ine, tab, etc.) 

return Token(ch); II let each character represent i tself 
case ' . ' :  II a float ing-point- l i tera l can start with a dot 
case '0' : case ' 1 ' :  case '2' : case '3' : case '4' : 
case '5' : case '6' : case '7' :  case '8' : case '9' : II numeric l i teral 

cin.putback(ch); II put digit back i nto the input st ream 
double val; 
cin >> val; II read a iloat ing-po int number 
return Token(number,val); 

default : 
error("Bad token"); 

We could of course have put each digit case on a separate line also, but that 
didn't seem to buy us any clarity. Also, doing so would prevent get() from being 
viewed in its entirety on a screen at once. Our ideal is for each function to fit on 
the screen; one obvious place for a bug to hide is in the code that we can't see be
cause it's off the screen horizontally or vertically. Code layout matters. 

Note also that we changed the plain 'q' to the symbolic name quit. This im
proves readability and also guarantees a compile-time error if we should make 
the mistake of choosing a value for quit that clashes with another token name. 
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When we clean up code, we might accidentally introduce errors. Always 
retest the program after cleanup. Better still, do a bit of testing after each set of 
minor improvements so that if something went wrong you can still remember ex
actly what you did. Remember: Test early and often. 

7 .6.4 Commenting 

We added a few comments as we went along. Good comments are an importalll 
part of writing code. We tend to forget about comments in the heat of program
ming. When you go back to the code to clean it up is an excellent time to look at 
each part of the program to see if the comments you originally wrote are 

1. Still valid (you might have changed the code since you wrote the comment) 

2. Adequate for a reader (they usuaUy arc not) 

3. Not so verbose that they distract from the code 

To emphasize that last concern: what is best said in code should be said in code. 
Avoid comments that repeat an action that's perfectly clear to someone who 
knows the programming language. For example: 

x = b+c; II add b and c and assign the resul l to x 

You'U find such comments in this book, but only when we are trying to explain 
the use of a language feature that might not yet be familiar to you. 

Comments are for things that code expresses poorly. An exan1ple is intent: 
code says what it does, not what it was intended to do (§5.9. 1 ) .  Look at the cal
culator code. There is something missing: the functions show how we process ex
pressions and tokens, but there is no indication (except the code) what we meant 
expressions and tokens to be. The grammar is a good candidate for something to 
put in comments or into some documentation of the calculator. 

,. 
Simple ca lcu lator 

Revision h istory: 

Revised by Bjarne Strouslrup May 2007 
Revised by Bjarne Stroust rup August 2006 
Revised by B jarne Stroustrup August 2004 
Origina l ly  written by Bjarne Stroustrup 

(bs@1cs.tamu.edu) Spring 2004. 

This program i mplements a basic expression calcu lator. 
I nput irom cin;  output to cout. 
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The grammar ior inpul is: 

Stalemenl: 

Print 

Qui I: 

Expression 
Prinl 
Qui I 

q 

Expression: 

Term: 

Term 
Expression + Term 
Expression - Term 

Primary 
Term * Primary 
Term I Primary 
Term 'Yo Primary 

Primary: 
Number 
( Expression ) 

- Primary 
+ Primary 
Number: 

floal i ng-poi nt- l i teral 

lnpul comes from cin lhrough the Token_slream cal led Is. 

Here we used the block comment, which starts with a 1• and continues until a •/. 
In a real program. the revision history would contain indications of what correc
tions and improvements were made. 

Note that the comments are not the code. In fact, this grammar simplifies a 
bit: compare the rule for Statement with what really happens (e.g., have a peck at 
the code in the following section). The comment fails to explain the loop in 
calculate() that allows us to do several calculations in a single run of the pro
granl. We'll return to that problem in §7.8. 1. 
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7.7 Recovering from errors 
Why do we exit when we fmd an error? That seemed simple and obvious at the 
time, but why? Couldn't we just write an error message and carry on? After all, 
we often make little typing errors and such an error doesn't mean that we have 
decided not to do a calculation. So let's try to recover from an error. That basi
cally means that we have to catch exceptions and continue after we have cleaned 
up any messes that were left behind. 

Until now, all errors have been represented as exceptions and handled by 
main(). If we want to recover from errors, calculate() must catch exceptions and 
try to clean up the mess before trying to evaluate the next expression: 

void calculate() 
{ 

while (cin) 
try { 

cout << prompt; 
Token I = Is. get(); 
while (t.kind = print) t=ls.get(); II first d iscard a l l  "prints" 
if (t.kind == quit) return; II quit 
ts.putback(l); 
cout << result << expression() << endl; 

catch (exception& e) { 
cerr << e. what() << endl; 
clean_up_mess(); 

II write error message 

We simply made the while-loop's block into a try-block that writes an error mes
sage and cleans up the mess. Once that's done, we carry on as always. 

What would "clean up the mess" entail? Basically, getting ready to compute 
again after an error has been handled means making sure that all our data is in a 
good and predictable state. In the calculator, the only data we keep outside an in
dividual function is the Token_stream. So what we need to do is to ensure that 
we don't have tokens related to the aborted calculation sitting around to confuse 
the next calculation. For example, 

1++2*3; 4+5; 

will cause an error, and 2*3; 4+5 will be left in the Token_stream's buffer after the 
second + has triggered an exception. We have two choices: 
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1 .  Purge all tokens from the Token_stream. 

2. Purge all tokens from the current calculation from the Token_stream. 

The frrst choice discards all (including 4+5; ) , whereas the second choice just dis· 
cards 2*3; , leaving 4+5 to be evaluated. Either could be a reasonable choice and 
either could surprise a user. As it happens, both are about equally simple to im· 
plement. We chose the second alternative because it simplifies testing. 

So we need to read input until we find a semicolon. This seems simple. We 
have get() to do our reading for us so we can write a clean_up_mess() like this: 

void clean_up_mess() 
{ 

II na ive 

while (true) { II skip unl i l  we find a prinl 
Token t = ts.get(); 
if (t.kind == print) return; 

Unfortunately, that doesn't work all that weU. Why not? Consider this input : 

1@z; 1+3; 

l11e @ gets us into the catch-clause for the while-loop. Then, we call clean_up_ 
mess() to find the next semicolon. Then, clean_up_mess() calls get() and reads 
the z. That gives another error (because z is not a token) and we fmd ourselves 
in main()'s catch( . • .  ) handler, and the program exits. Oops ! We don't get a 
chance to evaluate 1+3. Back to the drawing board! 

We could try more elaborate trys and catches, but basically we are heading 
into an even bigger mess. Errors are hard to handle, and errors during error han
dling are even worse than other errors. So, let's try to devise some way to flush 
d1aracters out of a Token_stream that couldn't possibly throw an exception. The 
only way of getting input into our calculator is get(), and that can - as we just 
discovered the hard way - throw an exception. So we need a new operation. The 
obvious place to put that is in Token_stream: 

class Token_stream { 
public: 

Token_stream() ; 
Token get() ; 
void putback(Token t); 
void ignore(char c); 

II make a Token_sl ream I hal reads irom c in 
II gel a Token 
II pul a Token back 
II discard characlers up lo and including a c 
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private: 

}; 

bool full; II is t here a Token in t he buffer? 
Token buffer; II here is where we keep a Token put back using putbackO 

This ignore() function needs to be a member of Token_strearn because it needs 
to look at Token_strearn's buffer. We chose to make "the thing to look for" an ar· 
gument to ignore() - after all, the Token_strearn doesn't have to know what the 
calculator considers a good character to use for error recovery. We decided that 
argument should be a character because we don't want to risk composing Tokens 
- we saw what happened when we tried that. So we get 

void Token_strearn: : ignore(char c) 
II c represents the k ind of Token 

II iirst look in bufier: 
if (full && c==buffer.kind) { 

full = false; 
return; 

full = false; 

II now search i nput: 
char ch = 0; 
while (cin>>eh) 

if (ch==c) return; 

This code first looks at the buffer. If there is a c there, we are finished after dis
carding that c; otherwise, we need to read characters from cin until we find a c. 

We can now write clean_up_mess() rather simply: 

void clean_up_mess() 
{ 

ts.ignore(print); 

Dealing with errors is always tricky. It requires much experimentation and test· 
ing because it is extremely hard to imagine what errors can occur. Trying to 
make a program foolproof is always a very technical activity; amateurs typically 
don't care. Qyality error handling is one mark of a professional. 
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7.8 Variables 
Having worked on style and error handling, we can return to looking for im
provements in the calculator functionality. We now have a program that works 
quite wcU; how can we improve it? The frrst wish list for the calculator included 
variables. Having variables gives us better ways of expressing longer calcula
tions. Similarly, for scientific calculations, we'd like built-in named values, such as 
pi and e, just as we have on scientific calculators. 

Adding variables and constants is a major extension to the calculator. It will 
touch most parts of the code. This is the kind of extension that we should not 
embark on without good reason and sufficient time. Here, we add variables and 
constants because it gives us a chance to look over the code again and try out 
some more programming techniques. 

7.8.1 Variables and definitions 
Obviously, the key to both variables and built-in constants is for the calculator 
program to keep (11a111e,value) pairs so that we can access the value given the 
name. We can de fmc a Variable like this: 

class Variable { 
public: 

}; 

string name; 
double value; 
Variable (string n, double v) : name(n), value(v) { } 

We wiU usc the name member to identify a Variable and the value member to 
store the value corresponding to that name. The constructor is supplied simply 
for notational convenience. 

How can we store Variables so that we can search for a Variable with a given 
name string to fmd its value or to give it a new value? Looking back over the 
programming tools we have encountered so far, we find only one good answer: a 
vector of Variables : 

vector<Variable> var_table; 

We can put as many Variables as we like into the vector var _table and search for 
a given name by looking at the vector elements one after another. We can write a 
get_ value() function that looks for a given name string and returns its correspon
ding value: 
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double get_value(string s) 
II return t he value of t he Variable named s 

for (int i =  0; i<var_table.size(); ++i) 
if (var_table[i].narne - s) return var_table[i] .value; 

error("get: undefined variable ",  s); 

The code really is quite simple: go through every Variable in var_table (starting 
with the first element and continuing until the last) and see if its name matches 
the argument string s. If that is the case, return its value. 

Similarly, we can define a set_ value() function to give a Variable a new value: 

void set_value(string s, double d) 
II set t he Variable named s to d 

for (int i =  0; i<var_table.size(); ++i) 
if (var_table[i].name == s) { 

var_table[i] .value = d;  
return; 

error(" set: undefined variable ",  s); 

We can now read and write "variables" represented as Variables in var_table. 
How do we get a new Variable into var_table? What does a user of our calculator 
have to write to define a new variable and later to get its value·� We could con
sider C++'s notation 

double var = 7.2; 

That would work, but all variables in this calculator hold double values, so say
ing "double" would be redundant. Could we make do with 

var = 7.2; 

Possibly, but then we would be unable to tell the difference between the declara· 
tion of a new variable and a spelling mistake: 

var1 = 7.2; II define a new variable ca l led vart 
var1 = 3.2; II define a new variable cal led var2 
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Oops! Clearly, we meant var2 = 3.2; but we didn't say so (except i n  the com
ment) . We could live with this, but we'U foUow the tradition in languages. such as 
C++, that distinguish declarations (with initializations) from assignments. We 
could use double, but for a calculator we'd like something short. so - drawing 
on another old tradition - we choose the keyword let: 

let var = 7.2; 

l11c grammar would be 

Calculation : 
Statement 
Print 
Quit 
Calculation Statement 

Statement: 
Declaration 
Expression 

Declaration: 
"let" Name "=" Expression 

Calculation is the new top production (rule) of the granunar. It expresses the loop 
(in calculate()) that aUows us to do several calculations in a run of the calculator 

'program. It relics on the Statement production to handle expressions and decla
rations. We can handle a statement like this : 

double statement() 
{ 

Token t = ts.get(); 
switch (t.kind) { 
case let: 

return declaration(); 
default: 

ts.putback(t); 
return expression(); 

We can now usc statement() instead of expression() in calculate() : 
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void calculate() 
{ 

while (cin) 
try { 

cout << prompt; 
Token I =  ts.get(); 
while (t.kind == print) l=ts.get(); II ii rst d iscard a l l  "prints" 
if (t.kind == quit) return; II qui t  
ts.putback(t); 
cout << result << statement() << endl; 

catch (exception& e) { 
cerr << e.what() << endl; 
clean_up_mess(); 

II write error message 

We now have to write declaration(). What should it do? It should make sure that 
what comes after a let is a Name foUowed by a = followed by an Expression. 
That's what our grammar says. What should it do with the name? We should 
add a Variable with that name string and the value of the expression to our 
vector<Variable> called var_table. Once that's done we can retrieve the value 
using get_ value() and change it using set_value() . However, before writing this. 
we have to decide what should happen if we defme a variable twice . For example: 

let v1 = 7; 
let v1 = 8; 

We chose to consider such a redefinition an error. Typically. it is simply a speUing 
mistake. Instead of what we wrote, we probably meant 

let v1 = 7; 
let v2 = 8; 

There arc logically two parts to defming a Variable with the name var with the 
value val : 

1. Check whether there already is a Variable caUed var in var_table. 

2. Add (var,val) to var_table. 

We have no use for uninitializcd variables. We defmed the functions is_declared() 
and define_name() to represcm those two logically separate operations : 
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bool is_declared(string var) 
II is var al read�' in var_table? 

for (int i =  0; i<var_table.size(); ++i) 
if (var _table[i].narne == var) return true; 

return false; 

double define_narne(string var, double val) 
II add (var,va l l  to var_table 

if (is_declared(var)) error(var," declared twice"); 
var _table.push_back(Variable(var,val)); 
return val; 

Adding a new Variable to a vector<Variable> is easy; that's what vector's 
push_back() member function does : 

var _table .push_back(Variable(var, val)); 

The Variable(var,val) makes the appropriate Variable and push_back() then adds 
that Variable to the end of var_table. Given that, and assuming that we can han
dle let and name tokens, declaration() is straightforward to write: 

double declaration() 
II assume we have seen " let" 
II handle: name = expression 
II declare a variable ca l led "name" wi th the in i t i a l  va lue "expression" 

Token t = ts.get(); 
if (t.kind I= name) error ("name expected in declaration"); 
string var_name = t.narne; 

Token 12 = ts.get(); 
if (12.kind != '=') error("= missing in declaration of ", var_name); 

double d =  expression(); 
define_name(var _name,d); 
return d; 
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Note that we returned the value stored in the new variable. l11at's useful when 
the initializing expression is nontrivial. For example: 

let v = d/(12-11); 

This declaration will defme v and also print its value. Additionally, printing the 
value of a declared variable simplifies the code in calculate() because every state
ment() returns a value. General rules tend to keep code simple, whereas special 
cases tend to lead to complications. 

This mechanism for keeping track of Variables is what is often called a JJinhol 
table and could be radically simplified by the use of a standard library map; sec 
§2 1 .6. 1 .  

7.8.2 I ntroducing names 
This is all very good, but unfortunately, it doesn't quite work. By now, that 
shouldn't come as a surprise. Our frrst cut never - weU, hardly ever - works. 
Here, we haven't even finished the program - it doesn't yet compile. We have no 
'=' token, but that's easily handled by adding a case to Token_stream : :get() 
(§7.6.3). But how do we represent let and name as tokens? Obviously, we need to 
modify get() to recognize these tokens. How? Here is one way: 

const char name = 'a'; 
const char let = 'L ';  

II name token 
II declaration token 

cons I string declkey = "let"; II declarat ion keyword 

Token Token_slream : :get() 
{ 

if (full) { full=false; return buffer; } 
char ch; 
cin >> ch; 
switch (ch) { 

II as before 
default: 

if (isalpha(ch)) { 
cin.putback(ch); 
string s; 
cin>>S; 
if (s == declkey) return Token(let); II declarat ion keyword 
return Token(name,s) ; 

error("Bad token");  
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Note first of all the call isalpha(ch). This call answers the question "Is c h  a letter?"; 
isalpha() is part of the standard library that we get from std_lib_facilities.h. For 
more character classification functions, see §1 1 .6. The logic for recognizing 
names is the same as that for recognizing numbers: find a frrst character of the 
right kind (here. a letter), then put it back using putback() and read in the whole 
name using >>. 

Unfortunately, this doesn't compile; we have no Token that can hold a string, 
so the compiler rejects Token(name,s). Fortunately, that's easily fixed by adding 
that possibility to the definition of Token: 

struct Token { 
char kind; 
double value; 
string name; 
Token(char ch) : kind(ch), value(O) { } 

�H , , , ·, .-, . f 
, ,\ . .1, '  I ( : 

Token(char ch, double val) :kind(ch), value(val) { } 
Token(char ch, string n) : kind(ch), name(n) { } 

};  

We chose ' L' as the representation of the let token and the string let as our key
word. Obviously, it would be trivial to change that keyword to double, var, #, or 
whatever by changing the string declkey that we compare s to. 

Now we try the program again. If you type this, you'U see that it all works: 

let x = 3.4; 
let y = 2; 
X +  y * 2; 

However, this doesn't work : 

let x =  3.4; 
let y = 2; 
x+y*2; 

W hat's the difference between those two examples? Have a look to see what 
happens. 

The problem is that we were sloppy with our definition of Name. We even 
"forgot" to define our Name production in the grammar (§7.8.� . W hat charac
ters can be part of a name? Letters? Certainly. Digits? Certainly, as long as they 
are not the starting character. Underscores? Eh? The + character? Well? Eh? 
Look at the code again. After the initial letter we read into a string using >>. That 
accepts every character until it sees whitespace. So, for example, x+y*2; is a single 
name - even the trailing semicolon is read as part of the name. That's mun
tended and unacceptable. 
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What must we do instead? Frrst we must specify precisely what we want a 
name to be and then we must modify get() to do that. Here is a workable specifi
cation of a name: a sequence of letters and digits starting with a letter. Given this 
definition, 

a 
ab 
a1 
Z12 
asdsddsfdfdasfdsa434RTHTD12345dfdsa8fsd888fadsf 

are names and 

1a 
as_s 
# 
as* 
a car 

are not. Except for leaving out the underscore, tlus is C++'s rule. We can imple
ment that in the default case of get() : 

default: 
if (isalpha(ch)) { 

string s; 
s += ch; 
while (cin.get(ch) && (isalpha(ch) II isdigit(ch))) s+=ch; 
cin.putback(ch); 
if (s == declkey) return Token(let); II declaration keyword 
return Token(name,s); 

error("Bad token"); 

Instead of reading directly into the string s, we read characters and put those into 
s as long as they are letters or digits. The s+=ch statement adds (appends) the 
character ch to the end of the string s. The curious statement 

while (cin.get(ch) && (isalpha(ch) II isdigit(ch)) s+=ch; 

reads a character into ch (using cin's member function get()) and checks if it is a 
letter or a digit. If so, it adds ch to s and reads again. The get() member function 
works just like >> except tl1at it doesn't by default skip whitespace. 
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7.8.3 Predefined names 
Now that we have names, we can easily predefine a few common ones. For ex· 
ample, if we imagine that our calculator will be used for scientific calculations, 
we'd want pi and e. Where in the code would we define those? In main() before 
the call of calculate() or in calculate() before the loop. We'll put them in main() 
because those definitions really aren't part of any calculation: 

int main() 
try { 

II predefine names: 
define_name("pi" ,3.1415926535); 
define_name("e" ,2.7182818284); 

calculate(); 

keep_window_open(); 
return 0; 

catch (exception& e) { 
cerr << e.what() << endl; 
keep_window_open("--"); 
return 1 ;  

catch ( .. . ) { 
cerr << "exception \n"; 
keep_window_open("--") ;  
return 2 ;  

7 .8.4 Are we there yet? 

II cope wi th  Windows console  mode 

Not really. We have made so many changes that we need to test everything 
again, clean up the code, and review the comments. Also, we could do more def
initions. For example, we "forgot" to provide an assignment operator (see exer· 
cise 2), and if we have an assignment we might want to distinguish between 
variables and constants (exercise 3). 

Initially, we backed ofT from having named variables in our calculator. Looking 
back over the code that implements them, we may have two possible reactions : 

1. Implementing variables wasn't all that bad; it took only about three 
dozen lines of code. 
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2. Implementing variables was a major extension. It touched just about 
every function and added a completely new concept to the calculator. It 
increased the size of the calculator by 45% and we haven't even imple
mented assignment! 

In the context of a frrst program of significant complexity, the second reaction is 
the correct one. More generally, it's the right reaction to any suggestion that adds 
something like 50% to a program in terms of both size and complexity. When 
that has to be done, it is more like writing a new program based on a previous 
one than anything else, and it should be treated that way. In particular, if you can 
build a program in stages as we did with the calculator, and test it at each stage, 
you are far better off doing so than trying to do the whole program all at once . 

....,/ Drill 
1 .  Starting from the file calculator08buggy.cpp, get the calculator to compile. 
2. Go through the entire program and add appropriate comments. 
3. As you commented, you found errors (deviously inserted especially for 

you to find). Fix them; they are not in the text of the book. 
4. Testing: prepare a set of inputs and use them to test the calculator. Is 

your list pretty complete? What should you look for? Include negative 
values, 0, very small, very large, and "silly" inputs. 

5. Do the testing and fix any bugs that you missed when you commented. 
6. Add a predefmed name k meaning 1000. 
7. Give the user a square root function sqrt(), for example, sqrt(2+6.7). Nat

urally, the value of sqrt(x) is the square root of x; for example, sqrt(9) is 
3. Use the standard library sqrt() function that is available through the 
header std_lib_facilities.h. Remember to update the comments, includ
ing the grammar. 

8. Catch attempts to take the square root of a negative number and print an 
appropriate error message. 

9. Allow the user to use pow(x,i) to mean "Multiply x with itself i times"; 
for example, pow(2.5,3) is 2.5*2.5*2.5. Require i to be an integer using 
the technique we used for %. 

10. Change the "declaration keyword" from let to #. 
1 1 .  Change the "quit keyword" from q to exit. That will involve defming a 

string for "quit" just as we did for "let" in §7.8.2. 

Review 

1 .  What is the purpose of working on the program after the first version 
works? Give a list of reasons. 
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2 .  Why does "1+2; q"  typed into the calculator not quit after it receives an 
error? 

3. Why did we choose to make a constant character called number? 
4. We split main() into two separate functions. What does the new function 

do and why did we split main()? 
5. Why do we split code into multiple functions? State principles. 
6. What is the purpose of commenting and how should it be done? 
7. What does narrow_cast do? 
8. What is the use of symbolic constants? 
9. Why do we care about code layout? 

10. How do we handle % (remainder) of floating-point numbers? 
1 1 .  What does is_declared () do and how does it work? 
12. The input representation for let is more than one character. How is it ac

cepted as a single token in the modified code? 
13. What are the rules for what names can and cannot be in the calculator 

program? 
14. Why is it a good idea to build a program incrementally? 
15. When do you start to test? 
16. When do you retest? 
17.  How do you decide what should be a separate function? 
1 8. What is the use of symbolic constants? 
19. Why do you add comments? 
20. What should be in comments and what should not? 
2 1 .  When do we consider a program finished? 

Terms 

code layout 
commenting 
error handling 
feature creep 

Exercises 

maintenance 
recovery 
revision history 

1 .  Allow underscores in the calculator's names. 

scaffolding 
symbolic constant 
testing 

2. Provide an assignment operator, =, so that you can change the value of a 
variable after you introduce it using let. 

3. Provide named constants that you really can't change the value of. Hint: 
You have to add a member to Variable that distinguishes between con
stants and variables and check for it in set_ value(). If you want to let the 
user define constants (rather than just having pi and e defined as con
stants) , you'U have to add a notation to let the user express that, for ex
ample, const pi = 3.14; . 
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4.  The get_value(), set_value(), is_declared(), and declare_name() func
tions all operate on the global variable var_table. Define a class called 
Symbol_table with a member var_table of type vector<Variable> and 
member functions get(), set(), is_declared(), and declare(). Rewrite the 
calculator to use a variable of type Symbol_ table. 

5. Modify Token_stream : :get() to return Token(print) when it sees a new
line. This implies looking for whitespace characters and treating newline 
('\n') specially. You might fmd the standard library function isspace(ch), 
which returns true if ch is a whitespace character, useful. 

6. Part of what every program should do is to provide some way of helping 
its user. Have the calculator print out some instructions for how to usc 
the calculator if the user presses the H key. 

7. Change the q and h commands to be quit and help, respectively. 
8. The grammar in §7.6.4 is incomplete (we did warn you against overre

liance on comments) ;  it does not define sequences of statements, such as 
4+4; 5-6; and it does not incorporate the grammar changes outlined in 
§7.8. Fix that grammar. Also add whatever you feel is needed to that 
comment as the frrst comment of the calculator program and its overall 
comment. 

9. Defme a class Table that contains a vector<Variable> and provides mem
ber functions get(), set(), and declare(). Replace the var_table in the cal
culator with a Table called symboUable. 

10. Suggest three improvements (not mentioned in this chapter) to the calcu
lator. Implement one of them. 

1 1 .  Modify the calculator to operate on ints (only) ; give errors for overflow 
and underflow. 

12. Implement an assignment operator, so that we can change the value of a 
variable after its initialization. Discuss why that can be useful and how it 
can be a source of problems. 

13. Revisit two programs you wrote for the exercises in Chapter 4 or 5. 
Clean up that code according to the rules outlined in this chapter. See if 
you fmd any bugs in the process. 

Postscript 

As it happens, we have now seen a simple example of how a compiler works. 
The calculator analyzes input broken down into tokens and understood accord-
ing to a grammar. That's exactly what a compiler does. After analyzing its ou�tput J \ 
a compiler then produces a representation (object code) that we can later execute. 
The calculator immediately executes the expressions it has analyzed; programs 
doing that are called interpreters rather than compilers. 



Tech n ica l i t ies :  
F u n ction s, etc . 

"No amount of genius can overcome 
obsession with detail." 

-Traditional 

I
n this chapter and the next, we change our focus from pro

gramming to our main tool for programming: the C++ pro

granuning language. We present language-technical details to give 

a slightly broader view of C++'s basic facilities and to provide a 

more systematic ,.;ew of those facilities. These chapters also act as 

a review of many of the progranuning notions presented so far 

and provide an opportunity to explore our tool without adding 

new progranuning techniques or concepts. 
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8.1 Technicalities 

8.2 Declarations and definitions 
8.2.1 Kinds of declarations 
8.2.2 Variable and constant declarations 
8.2.3 Default initialization 

8.5.4 Pass-by-const-reference 
8.5.5 Pass-by-reference 
8.5.6 Pass-by-value vs. pass-by-reference 
8.5.7 Argument checking and 

conversion 
8.5.8 Function call implementation 

8.3 Header files 

8.4 Scope 
8.6 Order of evaluation 

8.5 Fundion call and return 

8.6.1 Expression evaluation 
8.6.2 Global initialization 

8.5.1 Declaring arguments and return 
type 

8.7 Namespaces 

8.5.2 Returning a value 
8.5.3 Pass·by-value 

8.1 Technical ities 

8.7.1 using declarations and using 
directives 

Given a choice, we'd much rather talk about programming than about program
ming language features ; that is, we consider how to express ideas as code far 
more interesting than the technical details of the programming language that we 
use to express those ideas. To pick an analogy from natural languages: we'd 
much rather discuss the ideas in a good novel and the way those ideas arc ex
pressed than study the grammar and vocabulary of English. What mallcrs are 
ideas and how those ideas can be expressed in code, not the individual language 
features. 

However. we don't always have a choice. When you start programming, 
your programming language is a foreign language for which you need to look at 
"grammar and vocabulary." This is what we wiU do in this chapter and the next, 
but please don't forget: 

Our primary study is programming. 

Our output is programs/systems. 

A programming language is (only) a tool. 

Keeping this in mind appears to be amazingly difficult. Many programmers come 
to care passionately about apparently minor details of language syntax and se
mantics. In particular, too many get the mistaken belief tl1at the way things are 
done in their first programming language is "the one true way." Please don't fall 
into that trap. C++ is in many ways a very nice language, but it is not perfect: 
neither is any other programming language. 

Most design and programming concepts are universal. and many such con
cepts arc widely supported by popular programming languages. That means that 
tl1e fundamental ideas and techniques we learn in a good programming course 
carry over from language to language. They can be applied - with varying de-
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grees of  ease - in all languages. The language technicalities, however, are specific 
to a given language. Fortunately, programming languages do not develop in a 
vacuum. so much of what you learn here will have reasonably obvious counter
parts in other languages. In particular, C++ belongs to a group of languages that 
also includes C (Chapter 27) , Java, and C:l#=, so quite a few technicalities arc 
shared with those languages. 

Note that when we are discussing language-technical issues, we deliberately 
usc nondcscriptivc names, such as f, g, X, and y. We do that to emphasize the 
technical nature of such examples, to keep those examples very short, and to try 
to avoid confusing you by mixing language technicalities and genuine program 
logic. When you see nondescriptive names (such as should never be used in real 
code) . please focus on the language-technical aspects of the code. Technical ex
amples typically contain code that simply illustrates language rules. If you com
piled and ran them, you'd get many "variable not used" warnings, and few such 
technical program fragments would do anything sensible. 

Please note that what we write here is not a complete description of C++'s 
syntax and semantics - not even for the facilities we describe. The ISO C++ stan
dard is 756 pages of dense technical language and 17u: C++ Programming Latlf!}Jage 
by Stroustrup is 1 000+ pages of text aimed at experienced programmers. We do 
not try to compete with those in completeness and comprehensiveness; we com
pete with them in comprehensibility and value for time spent reading. 

8.2 Declarations and definitions 
A declaration is a statement that introduces a name into a scope (§8.4) 

specifying a type for what is named (e.g., a variable or a function) 

optionally, specifying an initializer (e.g., an initializer value or a function 
body) 

For example :  

int a= 7; 
const double cd = 8.7; 
double sqrt(double); 

vector<Token> v; 

II an inl variable 
II a double-precision floating-poinl conslanl 
II a funclion laking a double argument 
II and rel urning a double resul l  
II a veclor-oi-Tokens variable 

Before a name can be used in a C++ program, it must be declared. Consider: 

int main() 
{ 

cout << f(i) << '\n'; 
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The compiler will give at least three "undeclared identifier" errors for this : coul, 
f, and i are not declared anywhere in this program fragment. We can get coul de
clared by including the header std_lib_facilities.h,which contains its declaration: 

#include "std_lib_facilities.h" II we find I he declaral ion oi coul in  here 

int main() 
{ 

coul << f(i) << '\n'; 

Now, we get only two "undefmed" errors. As you write real-word programs, 
you'U find that most declarations are found in headers. That's where we define 
interfaces to useful facilities defmed "elsewhere." Basically, a declaration defines 
how something can be used; it defmes the interface of a function, variable, or 
class. Please note one obvious but invisible advantage of this use of declarations: 
we didn't have to look at the details of how coul and its << operators were de
fined; we just #included their declarations. We didn't even have to look at their 
declarations; from textbooks, manuals, code examples, or other sources, we just 
know how cout is supposed to be used. The compiler reads the declarations in 
the header that it needs to "understand" our code. 

However, we still have to declare f and i. We could do that like this: 

#include "std_lib_facilities.h" II we find I he declaralion of coul in here 

int f(int); 

int main() 
{ 

II dec laralion of f 

int i =  7; II dec laral ion of i 
coul << f(i) << '\n '; 

This will compile because every name has been declared, but it will not link 
(§2.4) because we have not defmed f(); that is, nowhere have we specified what 
f() actuaUy does. 

A declaration that (also) fully specifies the entity declared is called a dtjji11itimt. 
For example: 

int a =  7; 
vector<double> v; 
double sqrt(double d) { /* . . .  */ } 
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Every definition is (by definition ©) also a declaration, but only some declara
tions are also defmitions. Here are some examples of declarations that are not 
dcfmitions; each must be matched by a defmition elsewhere in the code: 

double sqrt(double); 
extern int a; 

II no funclion body here 
II "exlern plus no in i l ia l izer" means "nol defini l ion" 

When we contrast dcfmitions and declarations, we follow convention and use 
dedaralioru to mean "declarations that are not defmitions" even though that's 
slightly sloppy terminology. 

A dcfmition specifies exactly what a name refers to. In particular, a defmition 
of a va1iable sets aside memory for that variable. Consequently, you can't defme 
something twice. For example: 

double sqrt(double d) { /* . . .  */ } II deiini l ion 
double sqrt(double d) { /* . . .  */ } II error: double defin i l ion 

int a; II defin i l ion 
int a; II error: double deiin i l ion 

In contrast, a declaration that isn't also a defmition simply tells how you can use 
a name; it is just an interface and doesn't allocate memory or specify a function 
body. Consequently, you can declare something as often as you like as long as 
you do so consistently: 

int x = 7; 
extern int x; 
extern int x; 

double sqrt(double); 

II deiinil ion 
II declaral ion 
II anolher declaral ion 

double sqrt(double d) { /* . . .  */ } 
double sqrt(double); 

II declaral ion 
II deii nil ion 
II anolher declaral ion of sqrl 

double sqrt(double); II yel anol her declaralion oi sqrt 

int sqrt(double); II error: inconsislenl dcc laralions of sqrl 

Why is that last declaration an error? Because there cannot be two functions 
called sqrt taking an argument of type double and returning different types (int 
and double). 

The extern keyword used in the second declaration of x simply stales that 
this declaration of x isn't a defmition. It is rarely useful. We recommend tlmt you 
don't usc it, but you'll see it in other people's code, especially code that uses too 
many global variables (sec §8.4 and §8.6.2) . 
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Declarations: 

double sqrt(double d) 

double sqrt(double d) 

Definitions: 

double sqrt(double d) 
{ 

II calculate the 
II square root of d 

} 
extern lnt x; � 

.------. ------,L _
-

i
-
nt

_
x
_

=
_

7
_
; ____ ____, extern mt x; r-- . 

Why does C++ offer both declarations and definitions? The declaration/def
inition distinction reflects the fundamental distinction between what we need to 
use something (an interface) and what we need for that something to do what it is 
supposed to (an implementation) . For a variable, a declaration supplies the type 
but only the definition supplies the object (the memory) . For a function, a decla
ration again provides the type (argument types plus return type) but only the def
inition supplies the function body (the executable statements) .  Note that function 
bodies are stored in memory as part of the program, so it is fair to say that func
tion and variable defmitions consume memory, whereas declarations don't. 

The declaration/definition distinction allows us to separate a program into 
many parts that can be compiled separately. The declarations allow each part of a 
program to maintain a view of the rest of the program without bothering with 
the defmitions in other parts. As all declarations (including the one definition) 
must be consistent, the use of names in the whole program will be consistent. 
We'U discuss that further in §8.3. Here, we'U just remind you of the expression 
parser from Chapter 6: expression() calls term() which calls primary() which calls 
expression(). Since every name in a C++ program has to be declared before it is 
used, there is no way we could just define those three functions : 

double expression(); 

double primary() 
{ 

II . . .  
expression(); 
II . . .  

double term() 
{ 

II . . .  

II jusl a dcclaral ion, nol a defi n i l ion 
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primary(); 
II . . .  

double expression() 
{ 

II . . .  
term(); 
II . . .  

We can order those four functions any way we like; there will always be one call 
to a function dcfmcd below it. Somewhere, we need a "forward" declaration. 
Therefore, we declared expression() before the defmition of primary() and all is 
wcU. Such cyclic calling patterns are very common. 

Why docs a name have to be declared before it is used? Couldn't we just re
quire the language implementation to read the program Gust as we do) and fmd 
the definition to see how a function must be caUcd? We could, but that would 
lead to "interesting" technical problems, so we decided against that. The C++ 
definition requires declaration before use (except for class members ; see §9.4.4). 
After all, this is already the convention for ordinary (non-program) writing: when 
you read a textbook, you expect the author to define terminology before using it; 
otherwise, you have to guess or go to the index all the time. The "declaration be
fore usc" mlc simplifies reading for both humans and compilers. In a program, 
there is a second reason that "declare before usc" is important. In a program of 
thousands of lines (maybe hundred of thousands of lines) , most of the functions 
we want to call will be dcfmed "elsewhere." l11at "elsewhere" is often a place we 
don't really want to know about. Having to know the declarations only of what 
we usc saves us (and the compiler) from looking through huge amounts of pro
gram text. 

8.2.1  Kinds of declarations 
l11erc arc many kinds of entities that a programmer can define in C++. The 
most interesting arc 

Variables 

Constants 

Functions (sec §8.5) 

Namespaccs (sec §8. 7) 

Types (classes and enumerations ; see Chapter 9) 

Templates (see Chapter 19) 
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8.2.2 Variable and constant declarations 
The declaration of a variable or a constant specifies a name, a type, and option
ally an initializer. For example: 

int a; II no in i l ia l izer 
double d = 7; 
vector<inl> vi(10); 

II ini l ia l izer using lhe = synlax 
II in i tial izer using 1he 0 synlax 

You can find the complete grammar in 17u: C++ Programming Languag}' by Stroustrup 
or in the ISO C++ standard. 

Constants have the same declaration syntax as variables. They differ in hav
ing const as part of their type and requiring an initializer: 

const int x = 7; 
const int x2(9); 
const int y; 

II ini l ia l izer  using I he = synlax 
II i ni l ia l izer  using I he () synlax 
II error: no ini l ia l izcr 

The reason for requiring an initializer for a const is obvious: how could a const 
be a constant if it didn't have a value? It is almost always a good idea to initialize 
variables also; an uninitialized variable is a recipe for obscure bugs. For example: 

void f(int z) 
{ 

int x; II unini l ia l ized 
II . . . no assignmenl lo x here . . .  
x = 7; II give x a value 
II . . .  

This looks innocent enough, but what if the first . . .  included a use of x? Fm 
example: 

void f(int z) 
{ 

int x; II unini l ia l izecl 
II . . .  no assignmenl lo x here . . .  
if (Z>X) { 

II . . .  
} 
II . . .  
x = 7; II give x a value 
II . . .  
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Because x is uninitialized, executing z>x would be undcfmed behavior. The com
parison Z>x could give different results on different machines and different results 
in different runs of the program on the same machine. In principle, z>x might 
cause the program to terminate with a hardware error, but most often that doesn't 
happen. Instead we get unpredictable results. 

Naturally, we wouldn't do something like that deliberately, but if we don't 
consistently initialize variables it will eventually happen by mistake. Remember, 
most "silly mistakes" (such as using an uninitialized variable before it has been 
assigned to) happen when you are busy or tired. Compilers try to warn, but in 
complicated code - where such errors are most likely to occur - compilers are 
not smart enough to catch all such errors. There are people who arc not in tl1e 
habit of initializing their variables, often because they learned to program in lan
guages that didn't allow or encourage consistent initialization; so you'll sec exam
ples in other people's code. Please just don't add to the problem by forgetting to 
initialize the variables you define yourself. 

8.2.3 Default initial ization 
You might have noticed that we often don't provide an initializer for strings, 
vectors, etc. For example: 

vector<String> v; 
string s; 
while (cin>>S) v.push_back(s) ; 

lllis is not an exception to the rule that variables must be initialized before usc. 
What is going on here is that we have defmed string and vector to be initialized 
with a default value whenever we don't supply one explicitly. Thus, v is empty (it 
has no clements) and s is the empty string ("") before we reach the loop. The 
mechanism for guaranteeing default initialization is called a tkjau/1 amslruc/or; see 
§9.7.3. 

Unfortunately, the language doesn't allow us to make such guarantees for 
built-in types. A global variable is default initialized to 0, but you should mini
mize the use of global values. The most useful variables, local variables and class 
members, are uninitialized unless you provide an initializer (or a default con
structor). You have been warned! 

8.3 Header files 
How do we manage our declarations and defmitions? After all, they have to be 
consistent, and in real-world programs there can be tens of thousands of declara
tions ; programs with hundreds of tl10usands of declarations are not rare. Typi
cally, when we write a program, most of the defmitions we use are not written by 
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us. For example, the implementations of  cout and sqrt() were written by someone 
else many years ago. We just use them. 

The key to managing declarations of facilities defmed "elsewhere" in C++ is 
the header. Basically, a header is a collection of declarations, typically defmed in a 
ftle, so a header is also called a headerfile. Such headers are then #included in our 
source ftles. For example, we might decide to improve the organization of the 
source code for our calculator (Chapters 6 and 7) by separating out the token 
management. We could define a header file token.h containing declarations 
needed to use Token and Token_stream : 

token.h: 

II declarations: 
class Token { /* . . .  *I }; 
class Token_stream { /* . . . *I }; 

token .cpp: 

#include "token.h" 
lldefi nitions: 

/ 
void Token_stream: : putback(Token t) 
{ 

} 

buffer = t; 
full = true; 

cal<ulato� 
#include "token.h" 

II uses: 

Token_stream ts; 

Token t = ts.get(); 

ts. putback(t) ;  

ll1c declarations o f  Token and Token_stream arc in the header token. h. Their 
definitions are in token.cpp. The .h suffix is the most common for C++ headers, 
and the .cpp suffix is the most common for C++ source ftles. Actually, the C++ 
language doesn't care about ftle suffiXes. but some compilers and most program 
development environments insist, so please use this convention for your source 
code. 

In principle, #include "file.h" simply copies the declarations from file.h into 
your ftle at the point of the #include. For example, we could write a header f.h :  

II f.h 
int f(int); 

and include it in our ftle f.cpp: 
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II f.cpp 
#include "f.h" 
int g(int i) 
{ 

return f(i); 

When compiling f.cpp the compiler would do the #include and compile 

int f(int); 
int g(int i) 
{ 

return f(i); 

Since #includes logically happen before anything else a compiler docs, handling 
#includes is part of what is called preproce.uing (§A. l7) . 

To case consistency checking, we #include a header both in source files that 
usc its declarations and in source ftlcs that provide definitions for those declara
tions. That way, the compiler catches errors as soon as possible. For example, 
intaginc that the implementer of Token_stream:  : putback() made mistakes : 

Token Token_stream: :putback(Token t) 
{ 

buffer.push_back(t); 
return t; 

This looks innocent enough. Fortunately, the compiler catches the mistakes be
cause it sees the (#included) declaration of Token_stream: : putback(). Compar
ing that declaration with our definition, the compiler fmds that putback() should 
not return a Token and that buffer is a Token, rather than a vector<Token>, so 
we can't usc push_back(). Such mistakes occur when we work on our code to im
prove it, bm don't quite get a change consistent throughout a program. 

Similarly, consider these mistakes : 

Token t = ts.gett(); II error: no member gett 
II - . .  
ts.putback(); II error: argument missing 

The compiler would immediately give errors ; the header token.h gives it all the 
information it needs for checking. 
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Our std_lib_facilities.h header contains declarations for the standard library 
facilities we use, such as cout, vector, and sqrt(), together with a couple of simple 
utility functions, such as error(), that are not part of the standard library. In §1 2.8 
we show how to usc the standard library headers directly. 

A header will typically be included in many source ftles. That means that a 
header should only contain declarations that can be duplicated in several ftles (such 
as function declarations, class definitions, and definitions of numeric constants). 

8.4 Scope 

A scope is a region of program text. A name is declared in a scope and is valid (is 
"in scope") from the point of its declaration until the end of the scope in which it 
was declared. For example: 

void f() 
{ 

gO; II error: gO isn't (yeO in scope 

void gO 
{ 

f(); II OK: iO is in scope 

void hO 
{ 

int x = y; 
int y = x; 
gO; 

II error: y isn't (yet) in scope 
II OK: x is in scope 
II OK: gO is in scopP 

Names in a scope can be seen from within scopes nested within it. For example, 
the call of f() is within the scope of gO which is "nested" in the global scope. The 
global scope is the scope that's not nested in any other. The rule that a name 
must be declared before it can be used still holds, so f() cannot call gO. 

There are several kinds of scopes that we use to control where our names 
can be used : 

• The global scope: the area of text outside any other scope 

A namespace scope: a named scope nested in the global scope or in another 
namespace; see §8.7 

A class scope: the area of text within a class; see §9.2 
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A local scope: between I . . .  ) braces o f  a block o r  i n  a function argument 
list 

A s/alemenl scojJt•: e.g., in a for-statement 

l11c main purpose of a scope is to keep names local, so that they won't interfere 
with names declared elsewhere. !<or example: 

void f(int x) II f is globa l ;  x is loca l to i 
{ 

int z = x+7; II z is local 

int g(int x) II g is globa l; x is local to g 
{ 

int f = x+2; II i  is local 
return 2*f; 

Or graphically: 

Global scope: 

Here fO's x is different from gO's x. They don't "clash" because they arc not in 
the same scope: fO's x is local to f and gO's x is local to g. Two incompatible dec
larations in the same scope are often referred to as a clash. Similarly, the f defined 
and used within gO is (obviously) not the function fO. 

Here is a logically equivalent but more realistic example of the use of local 
scope: 

int max(int a, int b) 
{ 

return (a>=b) ? a : b; 

int abs(int a) 
{ 

return (a<O) l -a : a; 

II max is globa l ;  a and h are loca l 

II not max()'s a 
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You fmd max() and abs() in the standard library, so  you don't have to write them 
yourself. The l: construct is called an arithmetic ffor a coruiitional expression. The 
value of (a>=b)la: b  is a if a>=b and b otherwise. A conditional expression saves 
us from writing long-winded code like this : 

int max(int a, int b) 
{ 

int m; 
if (a>=b) 

m = a; 
else 

m = b; 
return m; 

II max is globa l;  a and b a rc local 

II m is local 

So, with the noticeable exception of the global scope, a scope keeps names local. 
For most purposes, locality is good, so keep names as local as possible. When I 
declare my variables, functions, etc. within functions, classes, namespace, etc., 
they won't interfere with yours. Remember: real programs have mat!)' thousands 
of named entities. To keep such programs manageable, most names have to be 
local. 

Here is a larger technical example illustrating how names go out of scope at 
the end of statements and blocks (including function bodies) : 

II no r, i, or v here 
class My_vector { 

vector<inl> v; 
public: 

int largest() 
{ 

II v is in c lass scope 

int r = 0; II r is local (smal lest nonnegative inO 
for (int i =  0; i<v.size(); ++i) 

r = max(r,abs(v[i])); II i  is in the for's statement scope 
II no i here 
return r; 

II no r here 
}; 
II no v here 

int x ;  II globa l variable - avoid those where you can 
int y; 
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int f() 
{ 

int x; II local variable 
x = 7; II the local x 

int x = y; 
++x; 

II local x i n itial ized by global y 
II the x from the prev ious l i ne 

++x; II the x from the fi rst l ine of fO 
return x; 

Whenever you can, avoid such complicated nesting and hiding. Remember: 
"Keep it simple !" 

�The larger the scope of a name is, the longer and more descriptive its name 
should be: x, y, and f are horrible as global names. The main reason that you 
don't want global variables in your program is that it is hard to know which func
tions modify them. In large programs, it is basically impossible to know which 
functions modify a global variable. Imagine that you arc trying to debug a pro
gram and you find that a global variable has an unexpected value. Who gave it 
that value? Why? What functions write to that value? How would you know? 
The function that wrote a bad value to that variable may be in a source ftle you 
have never seen! A good program will have only very few (say, one or two) , if 
any, global variables. For example, the calculator in Chapters 6 and 7 had two 
global variables: the token stream, ts, and the symbol table, names. 

Note that most C++ constructs that defme scopes nest: 

Functions within classes : member functions (see §9.4.2) 

class C {  
public: 

}; 

void f(); 
void g() II a member function can be defined within its c lass 
{ 

II . . .  
} 
II . . .  

void C : : f() II a member defi nition can be outside its class 
{ 

II . . .  

This is the most common and useful case. 
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Classes within classes: member classes (also called nested classes) 

class C {  
public: 

}; 

slruct M { 
II . . .  

}; 
II . . .  

This tends to be useful only in complicated classes; remember that the 
ideal is to keep classes small and simple. 

Classes within functions : local classes 

void f() 
{ 

class L { 
II . . .  

}; 
II . . .  

Avoid this; if you feel the need for a local class, your function is probably 
far too long. 

Functions within functions : local functions (also called nested functions) 

void f() 
{ 

void g() II i l legal 
{ 

II . . .  
} 
II . . .  

This is not legal in C++; don't do it. The compiler will reject it. 

Blocks within functions and other blocks: nested blocks 

void f(int x, int y) 
{ 

if (X>y) { 

else { 

II . . .  

II . . .  
{ 
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II . . .  
} 
II . . .  

Nested blocks are unavoidable, but be suspicious of complicated nesting: 
it can easily hide errors . 

C++ also provides a language feature, namespace, exclusively for expressing 
scoping; see §8. 7. 
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Note our consistent indentation to indicate nesting. Without consistent in- I 1 
dentation, nested constructs become unreadable. For example: U 

II dangerously ugly code 
struct X { 
void f(int x) { 
struct Y { 
int f() { return 1 ; } int m; }; 
int m; 
m=x; Y m2; 
return f(m2.f()); } 
int m; void g(int m) { 
if (m) f(m+2); else { 
g(m+2); }} 
X() { } void m3() { 
} 

void main() { 
X a; a.f(2); } 
}; 

Hard-to-read code usually hides bugs. When you use an IDE, it tries to automat
ically make your code properly indented (according to some definition of "prop
erly"),  and there exist "code beautifiers" that will reformat a source code ftle for 
you (often offering you a choice of formats). However, the ultimate responsibility 
for your code being readable rests with you. 

8.5 Function call and return 
Functions are the way we represent actions and computations. Whenever we .\ 
want to do something that is worthy of a name, we write a function. The C++ � 
language gives us operators (such as + and * ) with which we can produce new 
values from operands in expressions, and statements (such as for and if) with 
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which we can control the order of execution. To organize code made out of these 
primitives, we have functions. 

To do its job, a function usually needs arguments, and many functions return 
a result. This section focuses on how arguments are specified and passed. 

8.5.1 Declaring arguments and return type 
Functions are what we use in C++ to name and represent computations and ac· 
tions. A function declaration consists of a return type followed by the name of the 
function followed by a list of formal arguments in parentheses. For example: 

double fct(int a, double d); 
double fct(int a, double d) { return a•d; } 

II declaration of fct (no body) 
II definit ion of fct 

A definition contains the function body (the statements to be executed by a call), 
whereas a declaration that isn't a definition just has a semicolon. Formal argu· 
ments are often called parameters. If you don't want a function to take arguments. 
just leave out the formal arguments. For example: 

int current_power(); II current_power doesn't take an argument 

If you don't want to return a value from a function, give void as its return type. 
For example: 

void increase_power(int level); II increase_power doesn't return a valut• 

Here, void means "doesn't return a value" or "return nothing." 
You can name a parameter or not as it suits you in both declarations and def

initimlS. For example: 

II search for s i n vs; 
II vslhintl might be a good place to start the search 
II return the index o( a match; -1 ind icates "not found" 
int my_find(vector<string> vs, string s, int hint); II nam ing arguments 

int my_find(vector<String>, string, int); II not naming arguments 

In declarations, formal argument names are not logically necessary, just very use· 
ful for writing good comments. From a compiler's point of view, the second dec· 
laration of my_find() is just as good as the first: it has all the information 
necessary to call my_find(). 

Usually, we name all the arguments in the definition. For example:  
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int my_find(vector<String> vs, string s, int  hint) 
II sc,Jr[h lor s in vs starting at hint 
{ 

if (hint<O II vs.size()<=hint) hint = 0; 
for (int i = hint; i<vs.size(); ++i) II sear[h starting from hint 

if (vs[i]=s) return i; 
if (O<hint) { II ii we didn't f ind s search before hint 

for (int i = 0; i<hint; ++i) 
if (vs[i]==s) return i ;  

return -1;  

The hint complicates the code quite a bit, but the hint was provided under the as
sumption that users could use it to good effect by knowing roughly where in the 
vector a string will be found. However, imagine that we had used my_find() for a 
while and then discovered that callers rarely used hint well, so that it actually 
hurt performance. Now we don't need hint anymore, but there is lots of code 
"out there" that calls my_find() with a hint. We don't want to rewrite that code 
(or can't because it is someone else's code), so we don't want to change the decla
ration(s) of my_find(). Instead, we just don't use the last argument. Since we 
don't use it we can leave it unnamed: 

int my _find(vector<string> vs, string s, int) 
{ 

for (int i =  0; i<vs.size(); ++i) 
if (vs[i]==s) return i ;  

return -1 ; 

II 3rcl argument unused 

You can fmd the complete grammar for function defmitions in The C++ Program

ming Language by Stroustrup or in the ISO C++ standard. 

8.5 .2 Returning a value 
We return a va1ue from a function using a return statement: 

T f() II fO r(•turns a T 
{ 

V v; 
II . . .  
return v; 

T x  = f(); 
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Here, the value returned is exactly the value we would have gotten by initializing 
a variable of type T by a value of type V: 

V v; 
II . . .  
T t(v); II in i t ia l ize t with v 

That is, value return is a form of initialization. A function declared to return a 
value must return a value. In particular, it is an error to "fall through the end of 
the function": 

double my_abs(int x) II warning: buggy code 
{ 

if (x < 0) 
return -x; 

else if (x > 0) 
return x; 

II error: no value returned if x is 0 
Actually, the compiler probably won't notice that we "forgot" the case x==O. In 
principle it could, but few compilers are that smart. For complicated functions, it 
can be impossible for a compiler to know whether or not you return a value, so 
be careful. Here, "being careful" means to make really sure that you have a re
turn statement or an error() for every possible way out of the function. 

For historical reasons, main() is a special case. Falling through the bottom of 
main() is equivalent to returning the value 0, meaning "successful completion" of 
the program. 

In a function that does not return a value, we can use return without a value 
to cause a return from the function. For example :  

void print_until_s(const vector<string> v, const string quit) 
{ 

for(int i=O; i<v.size(); ++i) { 
if (v[i]=quit) return; 
cout << v[i] << '\n'; 

As you can see, it is acceptable to "drop through the bottom" of a void function. 
lltis is equivalent to a return ; .  
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8.5.3 Pass-by-value 
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l11e simplest way of passing an argument to a function is to give the function a • 1 

copy of the value you use as the argument. An argument of a function f() is a U 
local variable in f() that's initialized each time f() is called. For example: 

II pass-by-value (give the function a copy of the value passed) 
int f(int x) 
{ 

x = x+1 ; 
return x; 

II give the local x a new va lue 

int main() 
{ 

int XX = 0; 
cout << f(xx) << endl; 
cout << xx << endl; 

int yy = 7; 
cout << f(yy) << endl ; 
cout << yy << endl; 

II write: 1 
II write: 0; fO doesn't change xx 

II write: 8 
II write: 7; fO doesn't change yy 

Since a copy is passed, the x=x+1 in f() does not change the values xx and yy passed 
in the two calls. We can illustrate a pass-by-value argument passing like this: 

xx: 

1"  call: o, 
x: 

I Copy the value I . 

. ·o 
yy: x: 

Pass-by-value is pretty straightforward and its cost is the cost of copying the value. 

8.5.4 Pass-by-const-reference 
Pass-by-value is simple, straightforward, and efficient when we pass small values, 
such as an int, a double, or a Token (§6.3.2) . But what if a value is large, such as 
an inlage (often, several million bits), a large table of values (say, thousands of in
tegers) , or a long string (say, hundreds of characters)? Then, copying can be 
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costly. We should not be obsessed by cost, but doing unnecessary work can be 
embarrassing because it is an indication that we didn't directly express our idea 
of what we wanted. For example, we could write a function to print out a vector 
of floating-point numbers like this : 

void print(vector<double> v) 
{ 

cout << "{ " ; 

II pass-by-va l ue; appropriate? 

for (int i =  0; i<v.size(); ++i) { 
cout << v[i] ; 
if (il =v.size()-1) cout << ", " ;  

cout << " }\n"; 

We could use tllis print() for vectors of all sizes. For example: 

void f(int x) 
{ 

vector<double> vd1 (10); II sma l l  vector 
vector<double> vd2(1000000) ;  II large vector 
vector<double> vd3(x); II vector oi some unknown size 
II . . .  fi l l  vd l , vd2 , vd3 with values . . . 
print(vd1 ); 
print(vd2); 
print(vd3); 

This code works, but the first call of print() has to copy ten doubles (probably 80 
bytes), the second call has to copy a million doubles (probably 8 megabytes) ,  and 
we don't know how much the third call has to copy. The question we must ask 
ourselves here is: "Why are we copying anything at a11?" We just wanted to print 
the vectors, not to make copies of their elements. Obviously, there has to be a 
way for us to pass a variable to a function without copying it. As an analogy, if 
you were given the task to make a list of books in a library, the librarians 
wouldn't ship you a copy of the library building and all its contents; they would 
send you the address of the library, so that you could go and look at the books. 
So, we need a way of giving our print() function "the address" of tl1e vector to 
print() rather than the copy of the vector. Such an "address" is called a �ji-rt'11ce 
and is used like this: 
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void print(const vector<double>& v) 
{ 

cout << "{ " ;  
or (int i =  0 ;  i<v.size();  ++i) { 

cout << v[i]; 
i f  ( i !=v.size()-1 )  cout << ",  " ; 

cout << " }\n" ;  

II pass-by-canst-reference 

The & means "reference" and the const is there to stop print() modifying its ar
gument by accident. Apart from the change to the argument declaration, aU is the 
same as before; the only change is that instead of operating on a copy, print() 
now refers back to the argument through the reference. Note the phrase "refer 
back"; such arguments are called references because they "refer" to objects de
fined elsewhere. We can call this print() exactly as before: 

void f(int x) 
{ 

vector<double> vd1 (10); II sma l l  vector 
vector<double> vd2(1000000); II large vector 
vector<double> vd3(x); II vector of some unknown size 
II . . . fi l l  vd l ,  vd2, vd3 with values . . .  
print(vd1 ); 
print(vd2); 
print(vd3); 

We can illustrate that graphically: 

A const reference has the useful property that we can't accidentally modify the 
object passed. For example, if we made a silly error and tried to assign to an ele
ment from within print(), the compiler wou1d catch it: 
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void print(const vector<double>& v) 
{ 

II . . .  

II pass-by-const-reference 

v[i] = 7; II error: v is a canst t is  not mutable) 
II . . .  

Pass-by-const-reference is a useful and popwar mechanism. Consider again the 
my_find() function (§8.5. 1) that searches for a string in a vector of strings. Pass
by-va1ue could be unnecessarily costly: 

int my_find(vector<string> vs, string s); II pass-by-va lue: copy 

If the vector contained thousands of strings, you might notice the time spent 
even on a fast computer. So, we could improve my _find() by making it take its ar
guments by const reference: 

II pass-by-const-reierence: no copy. read-only access 
int my_find(const vector<String>& vs, const string& s); 

8.5.5 Pass-by-reference 
But what if we did want a function to modify its arguments? Sometimes, that's a 
perfectly reasonable thing to wish for. For example, we might want an init() func
tion that assigned va1ues to vector elements : 

void init(vector<double>& v) 

{ 

II pass-by- reference 

for (int i =  0; i<v.size(); ++i) v[i] = i ;  

void g(int x) 
{ 

vector<double> vd1 (1 0); 
vector<double> vd2(1 000000);  
vector<double> vd3(x); 

init(vd1 ); 
init(vd2); 
init(vd3); 

II sma l l  vector 
II la rge vector 
II vector of some unknown size 
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Here, we wanted init() to modify the argument vector, so we did not copy (did 
not use pass-by-value) nor declare the reference const (did not use pass-by-const
value) ,  but simply passed a "plain reference" to the vector. 

Let us consider references from a more technical point of view. A reference is 
a construct that allows a user to declare a new name for an object. For example, 
int& is a reference to an int, so we can write 

int i =  7; 

int& r = i ;  
r = 9;  
i = 10; 

II r is  ,, reference to i 
II i becomes 9 

coul << r << 1 1 << i << 1\n1 ; II write: 1 0 1 0 
l11at is, any use of r is really a use of i. 

References can be useful as shorthand. For example, we might have a 

vector< vector<double> > v; II vector of vector of double 

and we need to refer to some element v[f(x)][g(y)] several tinles. Clearly, v[f(x)][g(y)] 
is a complicated expression that we don't want to repeat more often than we have 
to. If we just need its value, we cou1d write 

double val = v[f(x)][g(y)] ; II val is the val ue of v l ftxll lg(yll 

and usc val repeatedly. But what if we need to both read from v[f(x)][g(y)] and 
write to v[f(x)][g(y)]? Then , a reference comes in handy: 

double& var = v[f(x)][g(y)]; ll var is a reierence to v lf(xl l lg(y ll 

Now we can read and write v[f(x)][g(y)] through var. For example: 

var = varl2+sqrt(var); 

l11is key property of references, that a reference can be a convenient shorthand 
for some object. is what makes them useful as arguments. For example: 

II pass-by- reference ( let the function refer back to the variable passed) 
inl f(inl& x) 
{ 

x = x+1 ; 
return x; 
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int main() 
{ 

int XX : 0; 
cout << f(xx) << endl; 
cout << xx << endl; 

int yy = 7; 
cout << f(yy) << endl; 
cout << yy << endl; 

II write: 1 
II write; 1 ;  f( ) changed the value of xx 

II write: 8 
II write: 8; f() changed the value of yy 

We can illustrate a pass-by-reference argument passing like this: 

x :  

2'"1 call ( x  refers to yy) 

Compare this to the similar example in §8.5.3. 
Pass-by-reference is clearly a very powerful mechanism: we can have a function 

operate directly on any object to which we pass a reference. For exan1ple, swapping 
two values is an inunenscly important operation in many algoritllmS, such as smt
ing. Using references, we can write a function that swaps doubles like this: 

void swap(double& d1 , double& d2) 
{ 

double temp = d1 ; 
d1 = d2; 
d2 = temp; 

int main() 
{ 

double x = 1 ;  
double y = 2; 

II copy d1 's value to temp 
II copy d2's value to d2 
II copy d1 's old value to d2 

cout << 11X == 11 << x << 11 y== 11 << y << '\n'; II write: x==  1 y==2 
swap(x,y); 
cout << 11X == 11 << x << 11 y== 11 << y << '\n ' ;  II write: x==2 y== 1 
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The standard library provides a swap() for every type that you can copy, so you 
don't have to write swap() yourself for each type. 

8.5.6 Pass-by-value vs. pass-by-reference 
When should you use pass-by-value. pass-by-reference, and pass-by-const-reference? 
Consider first a teclmical example: 

void f(int a, int& r, const int& cr) 
{ 

++a; II change the local a 
++r; II change the object referred to by r 
++cr; II error: cr is const 

If you want to change the value of the object passed, you must use a non-const 
reference: pass-by-value gives you a copy and pass-by-const-reference prevents 
you from changing the value of the object passed. So we can try 

void g(int a, int& r, const int& cr) 
{ 

++a; II change the local a 
++r; II change the object referred to by r 
int x = cr; II read the object referred to by cr 

int main() 
{ 

int x = 0; 
int y = 0; 
int z = 0; 

g(x,y,z); 
g(1 ,2,3); 
g(1 ,y,3); 

II X= =O; y== 1 ;  Z==O 
II error: reference argument r needs a variable to refer to 
II OK: since cr is const we can pass a l iteral 

So, if you want to change the value of an object passed by reference, you have to 
pass an object. Technically, the integer literal 2 is just a value (an rvalue), rather 
than an object holding a value. W hat you need for gO's argument r is an !value, 
that is, something that could appear on the left-hand side of an assigmnenl. 

Note that a const reference doesn't need an !value. It can perform conver
sions exactly as initialization or pass-by-value. Basically, what happens in that last 
call , g(1 ,y,3), is that the compiler sets aside an int for gO 's argument cr to refer to : 
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g(1 ,y,3); II means; int _compi ler_generated = 3; g( l ,y,_compi ler_generated) 

Such a compiler-generated object is called a temporary• oijecl or just a temporary. 
Our rule of thumb is: 

1.  Use pass-by-value to pass very small objects. 

2. Use pass·by·const-reference to pass large objects that you don't need to 
modify. 

3. Return a result rather than modifying an object through a reference 
argument. 

4. Use pass-by-reference only when you have to. 

These rules lead to the simplest, least error-prone, and most efficient code. By 
"very small" we mean one or two ints, one or two doubles. or something like 
that. If we see an argument passed by non-const-reference, we must assume that 
the called function will modify that argument. 

That third rule reflects that you have a choice when you want to use a func· 
tion to change the value of a variable. Consider: 

int incr1(int a) { return a+1 ; } 
void incr2(int& a) { ++a; } 

int x = 7; 
x = incr1 (x); 
incr2(x); 

II pretty obvious 
II pretty obscu re 

II return the new va lue as the resu lt 
II modify object passed as reference 

Why do we ever use non·const-reference arguments? Occasionally, they are es· 
sential 

For manipulating containers (e.g., vector) 

For functions that change several objects (we can have only one return 
value) 

For example: 

void larger(vector<inl>& v1 , vector<inl>& v2) 
II make each element in v l  the larger oi the corresponding 
II elements in vl and v2; 
II s imi lar ly, make each element of v2 the smal ler 

if (v1 .size( )l=v2.size() error(" larger(): different sizes") ; 
for (int i=O; i<v1 .size(); ++i) 

if (v1 [i]<V2[i]) 
swap(v1 [i],v2[i]); 
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void f() 
{ 

vector<inl> vx; 
vector<inl> vy; 
II read vx and vy from input 
larger(vx,vy); 
II . . .  

Using pass-by-reference arguments is the only reasonable choice for a function 
like larger(). 

It is usually best to avoid functions that modify several objects. In theory, 
there are always alternatives, such as returning a class object holding several val
ues. However, there are a lot of programs "out there" expressed in terms of func· 
tions that modify one or more arguments, so you are likely to encounter them. 
For example, in Fortran - the major progranuning language used for numerical 
calculation for about 50 years - all arguments are passed by reference. Many nu
meric progranuners copy Fortran designs and call functions written in Fortran. 
Such code often uses pass-by-reference or pass-by-const-rcference. 
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If we use a reference simply to avoid copying, we use a const reference. Con- • 1 

sequently, when we see a non-consl-reference argument, we assume that the U 
function changes the value of its argument; that is, when we see a pass-by-non
const-reference we assume that not only can that function modify the argument 
passed, but that it will, so that we have to look extra carefully at the call to make 
sure that it does what we expect it to. 

8.5.7 Argument checking and conversion 
Passing an argument is the initialization of the function's formal argument with 
tl1e actual argument specified in the call. Consider: 

void f(T x); 
f(y); 
T x=y; II in i tia l ize x with y (see §8.2 .2!  

The call f(y) is legal whenever the initialization T x=y; is, and when it is legal both 
x's get the same value. For example: 

void f(double); 

void g(int y) 
{ 

f(y); 
double x(y); 
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Note that to initialize x with y, we have to convert an inl to a double. The same 
happens in the call of f() . The double value received by f() is the same as the one 
stored in x. 

Conversions are often useful, but occasionally they give surprising results 
(see §3.9.2) . Consequently, we have to be careful with them. Passing a double as 
an argument to a function that requires an inl is rarely a good idea: 

void ff(inl); 

void gg(double x) 
{ 

ff(x) ;  II how would you know i f  this makes sense? 

If you really mean to truncate a double value to an int. say so explicitly: 

void ggg(double x) 
{ 

inl x1 = x; II truncate x 
inl x2 = inl(x); 

ff(x1 ) ;  
ff(x2) ; 

ff(x) ;  
ff(int(x)); 

II truncate x 

That way, the next programmer to look at this code can sec that you thought 
about the problem. 

8.5.8 Function call  implementation 
But how does a computer really do a function call? The expression(), term(). and 
primary() functions from Chapters 6 and 7 are perfect for illustrating this except 
for one detail : they don't take any arguments, so we can't use them to explain 
how arguments are passed. But wait ! They must take some input; if they didn't, 
they couldn't do anything useful. They do take an implicit argument: they use a 
Token_stream called Is to get their input; Is is a global variable. That's a bit 
sneaky. We can improve these functions by letting them take a Token_stream& 
argument. Here they are with a Token_stream& parameter added and everything 
that doesn't concern function call implementation removed. 
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First, expression() is completely straightforward; it has one argument (ts) 
and two local variables (left and I) : 

double expression(Token_stream& Is) 
{ 

double left = term(ls) ;  
Token I =  ts.get(); 
II . . .  

Second, term() is much like expression(), except that it has an additional local 
variable (d) that it uses to hold the result of a divisor for '/' : 

double term(Token_stream& ts) 
{ 

double left = primary(ts); 
Token I =  ts.get(); 
II . . .  

case '/' : 

} 
II . . .  

double d =  primary(ts); 
II . . .  

Third, primary() is much like term() except that it doesn't have a local variable 
left: 

double primary(Token_stream& Is) 
{ 

Token I = ts.get (); 
switch (t.kind) { 
case '(' : 

} 
II . . .  

double d = expression(ls); 
II . . .  

Now they don't use any "sneaky global variables" and are perfect for our illus
tration: they have an argument, they have local variables, and they call each 
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other. You may want to take the opportunity to refresh your memory o f  what the 
complete expression(), term(), and primary() looks like, but the salient features as 
far as function call is concerned are presented here. 

When a function is called, the language implementation sets aside a data 
structure containing a copy of all its parameters and local variables. For example, 
when expression() is frrst called, the compiler ensures that a structure like this is 
created: 

Call of expression(): ts. 
�--.. � .. :--""------1 
•. : • :  ·:' ; ' : : · ·  . I � · . 

!!Jerintiadi>n 
The "implementation stuff" varies from implementation to implementation, bm 
that's basically the information that the function needs to return to its caller and 
to return a value to its caller. Such a data structure is called ajimction aclivah'on 
mort!, and each function has its own detailed layout of its activation record. Note 
that from the implementation's point of view, a parameter is just another local 
variable. 

So far, so good, and now expression() calls term(), so the compiler ensures 
that an activation record for this call of term() is generated: 

Call of expression(): ts �,.------1 � ·  

Call of term() :  ws:·.· . .  
: : ; 

1"-le-::-.lt..,...• ·---'----'-""'-1 
·'·�· .: .. . 
d . . .  

Direction of 
stack growth 

Note that term() has an extra variable d that needs to be stored, so we set aside 
space for that in the call even though the code may never get around to using it. 
That's OK. For reasonable functions (such as every function we directly or indi
rectly use in this book), the run-time cost of laying down a function activation 
record doesn't depend on how big it is. The local variable d will be initialized 
only if we execute its case '/' .  

Now term() calls primary() and we get 
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Call o f  expression(): ts 

�left�-----1 
t 

=�� 
Call of term(): ij 

......-.�o---...... -.;;...-.'-1 
lilift, 
t 
d 

!��; 
Call of primary() :  .. . 

d : 

Direction of 
stack growth 

ll1is is starting to get a bit repetitive. but now primary() calls expression() :  

Direction of 
stack growth 
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So this call of expression() gets its own activation record, different from the first 
call of expression(). That's good or else we'd be in a terrible mess, since left and t 
will be different in the two calls. A function that directly or (as here) indirectly 
calls itself is called recursive. As you see, recursive functions follow naturally from 
the implementation technique we use for function call and return (and vice versa) . 

So, each time we call a function the stack rf activation records, usually just called 
the slack, grows with one record. Conversely, when the function returns, its 
record is no longer used. For example, when that last call of expression() retums 
to primary(). the stack will revert to this :  

Call of expression() : �".;;;.·�---. ...... ----! 
••• 
t 

Call of term(): ts 1--.....--.....---1 left 
t 
d 
!:fienu;rt«ati� 

Call of primary() : ts 1-------1 t 
d 

Direction of 
stack growth 

And when that call of primary() returns to term(), we get back to 

Call of expression(): 

Call of term() : 

.. 
left 
t 

!:1-Iementation 
.. 
left 
t 
d !:f:emeniatlf)n 

Direction of 
stack growth 
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And so on. The stack, also called the call stack, is a data structure that grows and 
shrinks at one end according to the rule: first in, frrst out. 

Please remember that the details of how a call stack is implemented and used 
vary from C++ implementation to C++ implementation, but the basics are as 
outlined here. Do you need to know how function calls are implemented to use 
them? Of course not; you have done weU enough before this implementation 
subsection, but many programmers like to know and many use phrases like 
"activation record'' and "call stack," so it's better to know what they mean. 

8.6 Order of evaluation 
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The evaluation of a program - also called the execution of a program - proceeds • 1 

tlu-ough the statements according to the language rules. When this "thread of ex- U 
ecution" reaches the definition of a variable, the variable is constructed; that is, 
memory is set aside for the object and the object is initialized. When the variable 
goes out of scope, the variable is destroyed; that is, the object it refers to is in 
principle removed and the compiler can use its memory for something else. For 
example : 

string program_name = "silly" ; 
vector<string> v; II v is globa l 

void f() 
{ 

string s; II s is loca l to f 
while (cin>>s && s !="quit") { 

} 
II . . .  

string stripped; II stripped is local to the loop 
string not_letters; 
for (int i=O; i<s.size(); ++i) II i  has statement scope 

if (isalpha(s[i])) 
stripped += s[i]; 

else 
not_letters += s[i]; 

v.push_back(stripped); 
II . . .  

Global variables, such as program_name and v, are initialized before the first state
ment of main() is executed. They "live" until the program terminates, and then 
they are destroyed. They are constructed in the order in which they are defined 
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(that is, program_name before v) and destroyed in the reverse order (that is, v be
fore program_name) . 

When someone calls f(), first s is constructed; that is, s is initialized to the 
empty string. It will live until we return from f(). 

Each time we enter the block that is the body of the while-loop, stripped and 
not_letters are constructed. Since stripped is defined before not_letters, stripped 
is constructed before not_letters. They live until the end of the loop. where they 
are destroyed in the reverse order of construction (that is, not_letters before 
stripped) before the condition is reevaluated. So, if ten strings are seen before we 
encounter the string quit, stripped and not_letters will each be constntcted and 
destroyed ten times. 

Each time we reach the for-loop, i is constructed. Each time we exit the for
loop, i is destroyed before we reach the v.push_back(stripped); statement. 

Please note that compilers (and linkers) are clever beasts and they arc al
lowed to - and do - optimize code as long as the results arc equivalent to what 
we have described here. In particular, compilers are clever at not allocating and 
deallocating memory more often than is really necessary. 

8.6.1 Expression evaluation 
The order of evaluation of sub-expressions is governed by rules designed to 
please an optimizer rather than to make life simple for the programmer. That's 
unfortunate, but you should avoid complicated expressions anyway, and there is 
a simple rule that can keep you out of trouble: if you change the value of a vari
able in an expression, don't read or write it twice in that same expression. For 
example: 

v[i] = ++i; 
V[++i) : i; 
int x = ++i + ++i; 
cout << ++i << 1 1 << i << '\n1; 
f(++i,++i); 

II don't: undefined order of eva l uation 
II don't: undefined order of eva l uat ion 
II don't: undefined order of eva l uation 
II don't: undefined order oi eva l uation 
II don't: undefined order oi evaluation 

Unfortunately. not all compilers warn if you write such bad code; it's bad be
cause you can't rely on the results being the same if you move your code to an
other computer, use a different compiler, or use a different optimizer setting. 
Compilers really differ for such code; just don't do it. 

Note in particular that = (assignment) is considered just another operator in 
an expression, so there is no guarantee that the left-hand side of an assigJmlent is 
evaluated before the right-hand side. That's why v[++i] = i is undefined. 

8.6.2 Global initialization 
Global variables (and names pace variables; see §8. 7) in a single translation unit 
arc initialized in the order in whicl1 they appear. For example: 
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II ri l e  f1 .cpp 
int x1 = 1;  
int y1 = x1+2; II y 1 becomes 3 

1ltis initialization logically takes place "before the code in main() is executed." 
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Using a global variable in anything but the most limited circumstances is usu- .--... 
ally not a good idea. We have mentioned the problem of the programmer having U 
no really effective way of knowing which parts of a large program read and/or 
write a global variable (§8.4). Another problem is that the order of initialization of 
global variables in different translation units is not defined. For example: 

II fi le f2 .tpp 
extern int y1 ; 
int y2 = y1+2; II y2 becomes 2 or 5 

Such code is to be avoided for several reasons : it uses global variables, it gives the 
global variables short names, and it uses complicated initialization of the global 
variables. If the globals in ftle f1 .cpp are initialized before the globals in f2.cpp, y2 
will be initialized to 5 (as a programmer might naively and reasonably expect). 
However, if the globals in file f2.cpp are initialized before the globals in f1.cpp, y2 
will be initialized to 2 (because the memory used for global variables is initialized 
to 0 before complicated initialization is attempted). Avoid such code, and be very 
suspicious when you see global variables with nontrivial initializers; consider any 
initializer that isn't a constant expression complicated. 

But what do you do if you really need a global variable (or constant) with a 
complicated initializer? A plausible example would be that we wanted a default 
value for a Date type we were providing for a library supporting business trans
actions: 

const Date default_date(1970, 1, 1) ;  II the defaul t  date is January 1 ,  1 970 

How would we know that default_date was never used before it was initialized? 
Basically, we can't know, so we shouldn't write that defmition. The technique 
that we use most often is to call a function that returns the value. For example: 

const Date default_date() 
{ 

return Date(1970, 1 , 1 ) ;  

II return the default Date 

11us constructs the Date every time we call default_date(). That is often fine, but I • 

if default_date() is called often and it is expensive to construct Date, we'd like to U 
construct the Date once only. That is done like this: 
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const Date& default_date() 
{ 

static const Date dd(1970, 1, 1 ) ;  
return dd; 

II in i t ia l ize dd fi rst t ime we get here 

A static local variable is initialized (constructed) only the first time its function is 
called. Note that we returned a reference to eliminate unnecessary copying and. 
in particular, we returned a const reference to prevent the called function from 
accidentally changing the value. The arguments about how to pass an argument 
(§8.5.6) also apply to returning values. 

8.7 Namespaces 
We use blocks to organize code within a function (§8.4) . We use classes to organ· 
ize functions, data, and types into a type (Chapter 9). A function and a class both 
do two things for us : 

They allow us to defme a number of "entities" without worrying that 
their names clash with other names in our program. 

They give us a name to refer to what we have defined. 

What we lack so far is something to organize classes, functions, data, and types 
into an identifiable and named part of a program without defining a type. The 
language mechanism for such grouping of declarations is a namespace. For exam
ple, we might like to provide a graphics library with classes called Color, Shape, 
Line, Function, and Text (see Chapter 13) :  

namespace Graph_lib { 
struct Color { I* . . .  *I }; 
struct Shape { I* . . .  *I } ; 
struct Line : Shape { I* . . .  *I } ;  
struct Function : Shape { I* . . .  *I } ;  
struct Text : Shape { !* . . .  */ }; 
II . . .  
int gui_main() { I* . . .  *I } 

Most likely somebody else in the world has used those names. but now that 
doesn't matter. You might define something called Text, but our Text doesn't in
terfere. Graph_lib: :Text is one of our classes and your Text is not. We have a 
problem only if you have a class or a namespace called Graph _lib with Text as its 
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member. Graph_lib i s  a slightly ugly name; we chose i t  because the "pretty and 
obvious" name Graphics had a greater chance of already being used somewhere. 

Let's say that your Text was part of a text manipulation library. The same 
logic that made us put our graphics facilities into namespace Graph_lib should 
make you put your text manipulation facilities into a namespace called some
thing like Textlib: 

namespace Textlib { 
class Text { /* . . .  */ }; 
class Glyph { /* . . .  */ }; 
class Line { /* . . .  *I }; 
II . . .  

Had we both used the global namespace, we could have been in real trouble. 
Someone trying to use both our libraries would have had really bad name clashes 
for Text and Line. Worse, if we both had users for our libraries we would not 
have been able to change our names, such as Line and Text, to avoid clashes. We 
avoided that problem by using namespaccs ; that is, our Text is Graph_lib: :Text 
and yours is Textlib:  :Text. A nan1e composed of a namespace name (or a class 
name) and a member name combined by : :  is called a full;• qualified name. 

8.7 .1  using declarations and using directives 
Writing fully qualified names can be tedious. For example, the facilities of the 
C++ standard library are defmed in namespace std and can be used like this : 

#include<string> 
#include<iostream> 

int main() 
{ 

std: : string name; 

II get t he st ring l ibrary 
II get t he iostream l ibrary 

std: : cout << "Please enter your first name\n";  
std: : cin >> name; 
std : : cout << "Hello, " << name << '\n' ; 

Having seen the standard library string and cout thousands of tinles, we don't 
really want to have to refer to them by their "proper" fully qualified names 
std : :  string and std: : cout all the time. A solution is to say that "by string, I mean 

d ' " "by t I td t "  · st : : strmg, cou , mean s : : cou . etc . .  
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using std: : string; 
using std: : cout; 
II . . .  
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II string means std::string 
II cout means std::cout 

That construct is called a using declaration; it is the programming equivalent to 
using plain "Greg" to refer to Greg Hansen, when there are no other Gregs in the 
room. 

Sometimes, we prefer an even stronger "shorthand" for the use of names 
from a namespace: "If you don't find a declaration for a name in this scope, look 
in std." The way to say that is to use a using directive: 

using namespace std; II make names from std direct ly accessible 

So we get this common style: 

#include<string> 
#include<iostream> 
using namespace std; 

int main() 
{ 

string name; 

II get the st ring l ibrary 
II get the iostream l ibrary 
II make names from std direct ly access ible 

cout << "Please enter your first name\n"; 
cin >> name; 
cout << "Hello, " << name << '\n '; 

l11e cin is std: : cin, the string is std: : string, etc. As long as you use std_lib_facil
ities.h, you don't need to worry about standard headers and the std namespace. 

It is usually a good idea to avoid using directives for any namespace except 
for a namespace, such as std, that's extremely weU known in an applic.:·uion area. 
The problem with overuse of using directives is that you lose track of which 
names come from where, so that you again start to get nan1e clashes. Explicit 
qualification with namespace names and using declarations doesn't suffer from 
that problem. So, putting a namespace directive in a header ftle (so that users 
can't avoid it) is a very bad habit. However, to simplify our initial code we did 
place a using directive for std in std_lib_facilities.h. l11at allowed us to write 

#include "std_lib_facilities.h" 

int main() 
{ 
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string name; 
cout << "Please enter your first name\n"; 
cin >> name; 
cout << "Hello, " << name << '\n'; 

We promise never to do that for any namespace except std . 

...,.,;' Drill 
1. Create three ftles : my.h, my.cpp, and use.cpp. The header ftle my.h 

contains 

extern int foo; 
void prinUoo(); 
void print(int); 

The source code ftle my.cpp #includes my.h and std_lib_facilities.h, de
fines print_foo() to print the value of foo using cout, and print(int i) to 
print the value of i using cout. 

The source code ftle use.cpp #includes my.h, defines main() to set 
the value of foo to 7 and print it using print_foo(), and to print the value 
of 99 using print(). Note that use.cpp does not #include std_lib_facili· 
ties.h as it doesn't directly use any of those facilities . 

Get these files compiled and run. On Wmdows, you need to have 
both use.cpp and my.cpp in a project and use { char cc; cin>>cc; } in 
use.cpp to be able to see your output. 

2. Write three functions swap_v(int,int), swap_r(int&,int&), and swap_cr(const 
int&, const int&). Each should have the body 

{ int temp; temp = a, a=b; b=temp; } 

where a and b are the names of the arguments. 
Try calling each swap like this 
int x =  7; 
int y =9; 
swap_l(x,y); II replace ? by v, r, or cr 
swap_l(7,9); 
const int ex = 7; 
const int cy = 9; 
swap_l(cx,cy); 
swap_l(7.7,9.9); 
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double dx = 7.7; 
double dy = 9.9; 
swap_l(dx,dy); 
swap_l(dx,dy); 

Which calls compiled, and why? After each swap that compiled, print 
the value of the arguments after the call to see if they were actually 
swapped. If you are surprised by a result, consult §8.6. 

3. Write a program using a single ftle containing three namespaces X, Y, and 
Z so that the following main() works correctly: 

int main() 
{ 

X: :var = 7; 
X: :print(); II print X's va r 
using namespace Y; 
var = 9; 
print(); II print Y's var 
{ using Z: :var; 

using Z: :print; 
var = 11 ;  
print(); II print Z's var 

print(); 
X: :print(); 

II print Y's var 
II print X's var 

Each namespace needs to define a variable called var and a function 
called print() that outputs the appropriate var using cout. 

Review 

1 .  What is the difference between a declaration and a definition? 
2. How do we syntactically distinguish between a function declaration and 

a function definition? 
3. How do we syntactically distinguish between a variable declaration and 

a variable definition? 
4. Why can't you use the functions in the calculator program from Chapter 6 

without declaring them first? 
5. Is int a; a definition or just a declaration? 
6. Why is it a good idea to initialize variables as they are declared? 
7. What can a function declaration consist of? 
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8. What good does indentation do? 
9. What are header files used for? 

10. What is the scope of a declaration? 
1 1 .  What kinds of scope are there? Give an example of each. 
12. What is the difference between a class scope and local scope? 
13. Why should a programmer minimize the number of global variables? 
14. What is the difference between pass-by-value and pass-by-reference? 
15. What is the difference between pass-by-reference and pass-by-canst

reference? 
16. What is a swap()? 
1 7. Would you ever define a function with a vector<double>-by-value pa

rameter? 
1 8. Give an example of undefmed order of evaluation. Why can undefined 

order of evaluation be a problem? 
19. What do x&&y and xlly, respectively, mean? 
20. Which of the following is standard-conforming C++: functions within 

functions, functions within classes, classes within classes, classes within 
functions? 

21 .  What goes into an activation record? 
22. What is a call stack and why do we need one? 
23. What is the purpose of a namespace? 
24. How does a namespace differ from a class? 
25. What is a using declaration? 
26. Why should you avoid using directives in a header? 
27. What is namespace std? 

Terms 

activation record 
argument 
argument passing 
call stack 
class scope 
const 
declaration 
defmition 
extern 
forward declaration 
function 

function definition 
global scope 
header file 
initializer 
local scope 
name space 
namespace scope 
nested block 
parameter 
pass-by-const-reference 
pass-by-reference 

pass-by-value 
recursion 
return 
return value 
scope 
statement scope 
technicalities 
undeclared identifier 
using declaration 
using directive 
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Exercises 

1 .  Modify the calculator program from Chapter 7 to make the input stream 
an explicit parameter (as shown in §8.5.8) .  Also give the Token_stream 
constructor and istream& parameter so that when we figure out how to 
make our own istreams (e.g., attached to ftles) ,  we can use the calculator 
for those. 

2. Write a function print() that prints a vector of ints to cout. Give it two ar
guments : a string for "labeling" the output and a vector. 

3. Create a vector of Fibonacci numbers and print them using the function 
from exercise 2. To create the vector, write a function, fibonacci(x,y,v,n), 
where integers x and y are ints, v is an empty vector<int>, and n is the 
number of elements to put into v; v[O] will be x and v[1] will be y. A 
Fibonacci number is one that is part of a sequence where each element is 
the sum of the two previous ones. For example, starting with 1 and 2, we 
get 1 ,  2, 3, 6, 9, 15, 24, . . . . Your fibonacci() function should make such 
a series starting with its x and y arguments. 

4. An int can hold integers only up to a maximum number. Find an ap
proximation of that maximum number by using fibonacci(). 

5. Write two functions that reverse the order of elements in a vector<int>. 
For example, 1, 3, 5, 7, 9 becomes 9, 7, 5, 3, 1 .  The first reverse function 
should produce a new vector with the reversed sequence, leaving its orig
inal vector unchanged. The other reverse function should reverse the el
ements of its vector without using any other vectors (hint: swap) . 

6. Write versions of the functions from exercise 5, but with a vector<String>. 
7. Read five names into a vector<string> name, then prompt the user for the 

ages of the people named and store the ages in a vector<double> age. Then 
print out the five (name[i],age[i]) pairs . Sort the names (sort(name.begin(), 
name.end())) and print out the (name[i],age[i]) pairs. The tricky part here 
is to get the age vector in the correct order to match the sorted name 
vector. Hint: Before sorting age, take a copy and use that to make a copy of 
age in the right order after sorting age. Then, do that exercise again but al
lowing an arbitrary number of names. 

8. Write a simple function randint() that produces a pseudo-random number 
in the range [O:MAXINT]. Hint: Knuth, The Art if'ComJn�ler Prognunmi11g, 
Volume 2. 

9. Write a function that - using randint() from the previous exercise - com
putes a pseudo-random integer in the range [a :b) : rand_in_range(int a, 
int b). Note: This function is very useful for writing simple games. 

10. Write a function that given two vector<double>s price and weight com
putes a value (an "index") that is the sum of all price[i)*weight[i]. Note 
that we must have weight.size()<=price.size(). 
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1 1 .  Write a function maxv() that returns the largest element of a vector 
argument. 

12. Write a function that finds the smallest and the largest element of a 
vector argument and also computes the mean and the median. Do not 
use global variables. Either return a struct containing the results or pass 
them back through reference arguments. Which of the two ways of re
turning several result values do you prefer and why? 

13 .  Improve print_until_s() from §8.5.2. Test it. What makes a good set of 
test cases? Give reasons. Then, write a print_until_ss() that prints until it 
sees a second occurrence of its quit argument. 

14. Write a function that takes a vector<String> argument and returns a 
vector<int> containing the number of characters in each string. Also fmd 
the longest and the shortest string and the lexicographically first and last 
string. How many separate functions would you use for these tasks? 
Why? 

15. Can we declare a non-reference function argument const (e.g., void 
f(const int) ; )?  What might that mean? Why might we want to do that? 
Why don't people do that often? Try it; write a couple of small programs 
to see what works. 

Postscript 

We could have put much of this chapter (and much of the next) into an appen
dix. However, you'U need most of the facilities described here in Part II of this 
book. You'll also encounter most of the problems that these facilities were in
vented to help solve very soon. Most simple programming projects that you 
might undertake will require you to solve such problems. So, to save time and 
minimize confusion, a somewhat systematic approach is called for, rather than a 
series of "random" visits to manuals and appendices. 
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Tech n i ca l i t ies :  
C l asses, etc . 

"Remember, things take time." 

- Piet Hein 

I n this chapter, we keep our focus on our main tool for pro

granuning: the C++ programming language. We present lan

guage technicalities, mostly related to user-defmed types, that is, 

to classes and enumerations. Much of the presentation of lan

guage features takes the form of the gradual improvement of a 

Date type. That way, we also get a chance to demonstrate some 

useful class design techniques. 
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9.1 User-defined types 

9.2 Classes and members 

9.3 Interface and implementation 

9.4 Evolving a class 
9.4.1 struct and functions 
9.4.2 Member functions and 

constructors 
9.4.3 Keep details private 
9.4.4 Defining member functions 
9.4.5 Referring to the current object 
9.4.6 Reporting errors 

9.1 User-defined types 

9.5 Enumerations 

9.6 Operator overloading 

9.7 Class interfaces 
9.7.1 Argument types 
9.7.2 Copying 
9.7.3 Default constructors 
9.7.4 const member functions 
9.7.5 Members and "helper functions" 

9.8 The Date class 

The C++ language provides you with some built-in types, such as char, int, and 
double (§A.8) . A type is called built-in if the compiler knows how to represent 
objects of the type and which operations can be done on it (such as + and *) with
out being told by declarations supplied by a programmer in source code. 

Types that are not built-in arc called user-dt:ji11ed types (UDTs) . l11cy can be 
standard library types - available to all C++ programmers as part of every ISO 
Standard C++ implementation - such as string, vector, and ostrearn (Chapter 
10) , or types that we build for ourselves, such as Token and Token_strearn (§6.5 
and §6.6) . As soon as we get the necessary technicalities under our belt, we'll 
build graphics types such as Shape, Line, and Text (Chapter 13). The standard li
brary types are as much a part of the language as the built-in types, but we still 
consider them user-defined because they are built from the san1e prinlltivcs and 
with the same techniques as the types we built ourselves; the standard library 
builders have no special privileges or facilities that you don't have. Like the built
in types, most user-defmed types provide operations. For example, vector has [ I 
and size() (§4.6. 1 ,  §B.4.8) , ostream has <<, Token_stream has get() (§6.8), and 
Shape has add(Point) and set_color() (§14.2) . 

Why do we build types? The compiler docs not know all the types we might 
like to usc in our programs. It couldn't, because there are far too many useful 
types - no language designer or compiler implementer could know them all. We 
invent new ones every day. Why? What are types good for? Types are good for 
directly representing ideas in code. When we write code, the ideal is to represent 
our ideas directly in our code so that we, our colleagues, and the compiler can 
understand what we wrote. When we want to do integer aritl1metic, int is a great 
help; when we want to manipulate text, string is a great help; when we want to 
manipulate calculator input, Token and Token_strearn are a great help. The help 
comes in two forms: 
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Representation: A type "knows" how to represent the data needed in an 
object. 

Operati(ms: A type "knows" what operations can be applied to objects. 

Many ideas follow this pattern: "something" has data to represent its current 
value - sometimes called the current stale - and a set of operations that can be 
applied. Think of a computer ftle, a web page, a toaster, a CD player, a coffee 
cup, a car engine, a cell phone, a telephone directory; aU can be characterized by 
some data and all have a more or less fixed set of standard operations that you 
can perform. In each case, the result of the operation depends on the data - the 
"current state'' - of an object. 

So, we want to represent such an "idea" or "concept" in code as a data struc· 
ture plus a set of functions. The question is: "Exactly how?" This chapter pres· 
ents the technicalities of the basic ways of doing that in C++. 
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C++ provides two kinds of user-defined types: classes and enumerations. � 
The class is by far tl1e most general and important, so we frrst focus on classes. A 
class directly represents a concept in a program. A class is a (user-defined) type 
tl1at specifies how objects of its type are represented, how those objects can be 
created, how they are used, and how they can be destroyed (see §17.5) . If you 
think of something as a separate entity, it is likely that you should define a class 
to represent that "thing" in your program. Examples are vector, matrix, input 
stream, string, FJ.."T (fast Fourier transform) , valve controller, robot arm, device 
driver, picture on screen, dialog box, graph, window, temperature reading, and 
clock. 

In C++ (as in most modern languages) , a class is the key building block for 
large programs - and very useful for small ones as well, as we saw for our calcu· 
lator (Chapters 6 and 7) . 

9.2 Classes and members 
A class is a user-defmed type. It is composed of built-in types, other user-defined fJ 
types, and functions. The parts used to define the class are called members. A class 
has zero or more members. For example: 

class X { 
public : 

}; 

int m; II data member 
int mf(int v) { int old = m; m=v; return old; } II iunction member 

Members can be of various types. Most are either data members, which define 
the representation of an object of the class, or function members, which provide 
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operations on such objects. We access members using the ollject.member notation. 
For example: 

X var; 
var.m = 7; 
int x = var.mf(9); 

II var is a va riable of lype X 
II assign 10 var's dala member m 
II cal l  var's member funcl ion mf() 

You can read var.m as var's m. Most people pronounce it "var dot m" or "var's m." 
The type of a member determines what operations we can do on it. We can read 
and write an int member, call a function member, etc. 

9.3 Interface and implementation 
Usually, we think of a class as having an interface plus an implementation. The 
interface is the part of the class's declaration that its users access directly. The im
plementation is that part of the class's declaration that its users access only indi
rectly through the interface. The public interface is identified by the label public: 
and the implementation by the label private : .  You can tlunk of a class declaration 
like tills: 

class X { II lhis c lass's name is X 
public: 

II publ ic members: 
II - lhe interface lo users (accessiblt> by a l l )  
II funclions 
II lypes 
II dala (oilen besl kepi privale) 

private: 
II privale members: 
II - 1he implemenlation delai ls (used by members of lhis dass on ly) 
II funclions 
II lypes 
II clala 

}; 

Class members arc private by default; that is, 

class X { 

}; 

means 

int mf(int); 
II . . .  
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class X { 
private: 

} ;  

so that 

X x; 

int mf(int); 
II . . .  

int y = x.mf(); 
II variable x oi lype X 
II error: mf is privale ( i .e., inaccessible) 

A user cannot directly refer to a private member. Instead. we have to go through 
a public function that can use it. For example : 

class X { 
int m; 
int mf(int); 

public: 
int f(int i) { m=i; return mf(i); } 

}; 

X x; 
int y = x.f(2); 

We use the distinction between private and public to represent the important dis
tinction between an interface (the user's view of the class) and implementation 
details (the implementer's view of the class). We explain that and give lots of ex
amples as we go along. Here we'U just mention that for sometlling that's just 
data, this distinction doesn't make sense. So, there is a useful simplified notation 
for a class that has no private implementation details. A struct is a class where 
members are public by default: 

struct X { 
int m; 
II . . .  

}; 

means 

class X { 
public: 

int m; 
II . . .  

}; 
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structs arc primarily used for data structures where the members can take any 
value; that is, we can't define any meaningful invariant (§9.4.3). 

9.4 Evolving a class 
Let's illustrate the language facilities supporting classes and the basic techniques 
for using them by showing how - and why - we might evolve a simple data 
structure into a class with private implementation details and supporting opera
tions. We usc the apparently trivial problem of how to represent a date (such as 
August 14, 1954) in a program. The need for dates in many programs is obvious 
(commercial transactions, weather data, calendar programs, work records, inven
tory management, etc.) .  The only question is how we might represent them. 

9.4.1 struct and functions 
How would we represent a date? When asked, most people answer, ''Well, how 
about the year, the month, and the day of the month?" That's not the only an
swer and not always the best answer, but it's good enough for our uses, so that's 
what we 'U do. Our first attempt is a simple struct: 

II simple Date (loo simple?) 
struct Date { 

II year int y; 
int m; 
int d; 

II monlh in  year 
II day of month 

}; 

Date today; II a Dale variable (a named objecl) 

A Date object, such as today, will simply be three ints: 

Date: 

y: rn m: 12 
d: 24 

There is no "magic" relying on hidden data structures anywhere related to a 
Date - and that will be the case for every version of Date in this chapter. 

So, we now have Dates; what can we do with them? We can do everything in 
the sense that we can access the members of today (and any other Date) and read 
and write tl1em as we like. The snag is that nothing is really convenient. Just 
about anytlllng that we want to do with a Date has to be written in terms of reads 
and writes of those members. For example :  
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II sel loday to  December 24, 2005 
today.y = 2005; 
today.m = 24; 
today.d = 12; 

Tills is tedious and error-prone. Did you spot the error? Everything that's te
dious is error-prone! For exan1ple, does this make sense? 

Date x; 
x.y = -3; 
x.m = 13; 
x.d = 32; 

Probably not, and nobody would write that - or would they? How about 

Date y; 
y.y = 2000; 
y.m = 2; 
y.d = 29; 

Was year 2000 a leap year? Are you sure? 
What we do then is to provide some helper functions to do the most com

mon operations for us. That way. we don't have to repeat the same code over 
and over again and we won't make, find, and ftx the same mistakes over and 
over again. For just about every type, initialization and assignment are among the 
most common operations. For Date, increasing the value of the Date is another 
common operation, so we write: 

II helper iunclions: 

void init_day(Date& dd, int y, int m, int d) 
{ 

II check I hal (y,m,d) is a val id dale 
II if il is, use il 10 ini l ia l ize dd 

void add_day(Date& dd, int n) 
{ 

II increase dd by n clays 

We can now try to use Date : 
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void f() 
{ 

Date today; 
init_day(today, 12, 24, 2005); 
add_ day( today, 1 ); 

II oops! (no day 2005 in year 1 2  l 

First we note the usefulness of such "operations" - here implemented as helper 
functions. Checking that a date is valid is sufficiently difficult and tedious that if 
we didn't write a checking function once and for all , we'd skip the check occa
sionally and get buggy programs. Whenever we defme a type, we want some op
erations for it. Exactly how many operations we want and of which kind will 
vary. Exactly how we provide them (as functions, member functions, or opera
tors) will also vary, but whenever we decide to provide a type, we ask ourselves, 
"Which operations would we like for this type?" 

9.4.2 Member functions and constructors 
We provided an initialization function for Dates, one that provided an important 
check on the validity of Dates. However, checking functions are of little use if we 
fail to use them. For example, assume that we have defined the output operator 
<< for a Date (§9.8) : 

void f() 
{ 

Date today; 
II . . .  
cout << today << '\n' ;  
II . . .  
init_day(today,2008,3,30); 
II . . .  
Date tomorrow; 
tomorrow.y = today.y; 
tomorrow.m = today.m; 
tomorrow.d = today.d+ 1 ;  
cout << tomorrow << '\n' ;  

II use loday 

II add 1 lo 1oday 
II use lomorrow 

Here, we "forgot" to immediately initialize today and "someone" used it before 
we got around to calling init_day(). "Someone else" decided that it was a waste of 
time to call add_day() - or maybe hadn't heard of it - and constructed tomorrow 
by hand. As it happens, this is bad code - very bad code. Sometimes, probably 
most of the time, it works, but small changes lead to serious errors. For example, 
writing out an uninitialized Date will produce garbage output, and incrementing 
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a day by simply adding 1 to its member d is a time bomb: when today is the last 
day of the month the increment yields an invalid date. The worst aspect of this 
"very bad code'' is that it doesn't look bad. 

11lis kind of thinking leads to a demand for an initialization function that 
can't be forgotten and for operations that are less likely to be overlooked. l11e 
basic tool for that is member .fonctions, that is, functions declared as members of the 
class within the class body. For example: 

II simple> Dale 
II guar.mlee ini l ia l izal ion wilh conslruclor 
II provide> some nolalional convenience 
struct Date { 

}; 

int y, m, d; 
Date(int y, int m, int d); 
void add_day(int n); 

II year, monlh, day 
II check ior va lid dale and in i l ia l ize 
II increase lhe Dale by n clays 

A member function with the san1e name as its class is special. It is called a 
conslntclor and will be used for initialization ("construction") of objects of the class. 
It is an error - caught by the compiler - to forget to initialize a class that has a 
constructor that requires an argument, and there is a special convenient syntax 
for doing such initialization: 

Date my_birthday; II error: my_birlhclay nol ini l ia l ized 
Date today(1 2,24,2007); II oops! run-lime error 
Date last(2000, 12, 31 ); II OK (col loquia l  slyle) 
Date christmas = Date(1976, 12,24); II a lso OK (verbose slylel 

l11e attempt to declare my_birthday fails because we didn't specify the required 
initial value. The attempt to declare today wiU pass the compiler, but the check
ing code in the constructor will catch the illegal date at run time ( 12/24/2007 -
there is no day 2007 of the 24th month of year 12). 

The definition of last provides the initial value - the arguments required by 
Date's constructor - in parentheses immediately after the name of the variable. 
That's the most common style of initialization of variables of a class that has a 
constructor requiring arguments. We can also use the more verbose style where 
we explicitly create an object (here, Date(1 976,1 2,24)) and then use that to initial
ize the variable using the = initializer syntax. Unless you actually like typing, 
you 'II soon tire of that. 

We can now try to use our newly defmed variables: 

last.add_day(1) ;  
add_day(2); II error: whal dale? 
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Note that the member function add_day() is  called for a particular Date using the 
dot member-access notation. We'll show how to define member functions in §9.4.4. 

9.4.3 Keep details private 
We still have a problem : What if someone forgets to use the member function 
add_day()? What if someone decides to change the month directly? Mter all, we 
"forgot" to provide a facility for that: 

Date birthday(1960, 12,31 ) ;  
++birthday.d; 

Date today(1970,2,3); 
today.m = 14; 

II Detember 3 1 ,  1 %0 
II ouch! inva l id dale 

II ouch! inva lid dale 

As long as we leave the representation of Date accessible to everybody, some· 
body will - by accident or design - mess it up; that is, someone will do some· 
thing that produces an invalid value. In tl1is case, we created a Date with a value 
that doesn't correspond to a day on the calendar. Such invalid objects are time 
bombs; it is just a matter of time before someone innocently uses the invalid 
value and gets a run-time error or - usually worse - produces a bad result. 

Such concerns lead us to conclude that the representation of Date should be 
inaccessible to users except through the public member functions that we supply. 
Here is a first cut: 

II simple Dale (conlrol access) 
class Date { 

int y, m, d; II year, monlh, day 
public: 

Date(int y, int m, int d); II check ior va l id dale and in i l ia l ize 
void add_day(int n); II i nc rease lhe Dale by n days 
int month() { return m; } 
int day() { return d; } 
int year() { return y; } 

};  

We can usc it  like this : 

Date birthday(1970, 12, 30) ; 
birthday.m = 14; 
cout << birthday. month() << endl; 

// OK 
II error: Dale::m is privaiC' 
II we provided a way 10 re.td m 
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The notion of a "valid Date" is  an important special case of the idea of a valid 
value. We try to design our types so that values are guaranteed to be valid; that 
is, we hide the representation, provide a constructor that creates only valid ob
jects, and design all member functions to expect valid values and leave only valid 
values behind when they return. The value of an object is often called its slate, so 
the idea of a valid value is often referred to as a valid slok of an object. 

The altemative is for us to check for validity every time we use an object, or 
just hope that nobody left an invalid value lying around. Experience shows that 
"hoping" can lead to "pretty good" programs. However, producing "pretty good" 
progran1s that occasionally produce erroneous results and occasionally crash is 
no way to win friends and respect as a professional. We prefer to write code that 
can be demonstrated to be correct. 

A rule for what constitutes a valid value is called an iizvariant. The invariant 
for Date (''A Date must represent a day in the past, present, or future") is unusu· 
ally hard to state precisely: remember leap years, the Georgian calendar, time 
zones. etc. However, for simple realistic uses of Dates we can do it. For example, 
if we are analyzing internet logs, we need not be bothered with the Georgian,Ju· 
!ian, or Mayan calendars. If we can't think of a good invariant, we are probably 
dealing with plain data. If so, use a struct. 

9.4.4 Defining member functions 
So far, we have looked at Date from the point of view of an interface designer 
and a user. But sooner or later, we have to implement those member functions. 
First, here is a subset of the Date class reorganized to suit the common style of 
providing the public interface first: 

II simple Dale (some people prefer implemenl.tlion dela i ls  lasl) 
class Date { 
public: 

Date(int y, int m, int d) ; II conslruclor: check ior valid dale and ini l ia l i ze 
void add_day(int n); II increase lhe Dale by n clays 
int month(); 
II . . .  

private: 
int y, m, d; II year, monlh, day 

}; 

People put the public interface frrst because the interface is what most people arc 

interested in. In principle, a user need not look at the implementation details. In 
reality, we are typically curious and have a quick look to see if the implementation 
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looks reasonable and if the implementer used some technique that we could learn 
from. However, unless we are the implementers, we do tend to spend much more 
time with the public interface. The compiler doesn't care about the order of class 
members ; it takes the declarations in any order you care to present them. 

When we defme a member outside its class, we need to say which class it is a 
member of. We do that using the clo.u_na:me: :member _name notation: 

Date : : Date(int yy, int mm, int dd) II conslruclor 
: y(yy), m(mm), d(dd) II nole: member in i l ia l izers 

void Date: :add_day(int n) 
{ 

II . . .  

int month() II oops: we forgo! Dale:: 
{ 

return m; II nol lhe member iunclion, can'l access m 

The : y(yy), m(mm), d(dd) notation is how we initialize members. We could have 
written 

Date: : Date(int yy, int mm, int dd) 
{ 

y = yy; 
m = mm; 
d =  dd; 

II conslruclor 

but then we would in principle frrst have default initialized the members and then 
assigned values to them. We would then also open the possibility of accidentally 
using a member before it was initialized. ll1e : y(yy), m(mm), d(dd) notation 
more directly expresses our intent. The distinction is exactly the same as the one 
between 

int x; 
II . . . 
X :  2; 

II fi rsl define I he varia hie x 

II laler assign lo x 
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and 

int x = 2; II define and immed ialely in i l i a l i ze wi lh 2 

For consistency, it is even possible to express that last initialization using the 
"argument" /parenthesis notation: 

int x(2); II i n i l i a l ize x wilh 2 
Date sunday(2004,8,29); II in i l i a l i ze sunday wi lh (2004,8,29) 

We can also define member functions right in the class definition: 

II simple Dale (some people prefer implemenla l ion dela i ls lasl) 
class Date { 
public: 

Date(int yy, int mm, int dd) 
:y(yy), m(mm), d(dd) 

II . . .  

void add_day(int n) 
{ 

II . . .  

int month() { return m; } 

II . . .  
private: 

}; 
int y, m, d; II year, monlh, clay 

The first thing we notice is that the class declaration became larger and "messier." 
In this exan1ple, the code for the constructor and add_day() could be a dozen or 
more lines each. This makes the class declaration several times larger and makes 
it harder to find the interface among the implementation details. Consequently, 
we don't defme large functions within a class declaration. 

However, look at the definition of month(). That's straightforward and 
shorter than the version that places Date: :  month() out of the class declaration. 
For such short, simple functions, we might consider writing the definition right in 
the class declaration. 
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Note that month() can refer t o  m even though m is defined after (below) 
month(). A member can refer to another member of its class independently of 
where in the class that other member is declared. The rule that a name must be 
declared before it is used is relaxed within the limited scope of a class. 

Writing the definition of a member function within the class definition has 
two effects: 

• The function will be inlined; that is, the compiler will try to generate code 
for a call to the inline function without using a function call to get to that 
code. lltis can be a significant performance advantage for functions, 
such as month(), that hardly do anything but are used a lot. 

All uses of the class will have to be recompiled whenever we make a 
change to the body of an inlined function. If the function body is out of 
the class declaration, recompilation of users is needed only when the 
class declaration is itself changed. Not recompiling when the body is 
changed can be a huge advantage in large programs. 

The obvious rule of thumb is: Don't put member function bodies in the class 
declaration unless you know that you need the performance boost from inlining 
tiny functions. Large functions, say five lines of code, don't benefit from inlining. 
We rarely inline a function that consists of more than one or two expressions. 

9.4.5 Referring to the current object 
Consider a simple use of the Date class so far: 

class Date { 
II . . .  
int month() { return m; } 
II . . .  

private: 

};  
int y, m, d;  II year, monlh, day 

void f(Date d1 , Date d2) 
{ 

cout << d1 .month() << 1 1 << d2.month() << 1\n1 ;  

How does Date : :month() know to print out d1 .m in the first call and d2.m in the 
second? Look again at Date: :month() ; its declaration specifies no function argu
ment! How does Date: : month() know for which object it was called? A class 
member function, such as Date: :month(), has an implicit argument which it uses 
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to identify the object for which it is called. So in the frrst call, m correctly refers to 
d1 .m and in the second call it refers to d2.m. See §17.10 for more uses of this im
plicit argument. 

9.4.6 Reporting errors 
What do we do when we fmd an invalid date? Where in the code do we look for 
invalid dates? From §5.6, we know that the answer to the first question is 
"11uow an exception," and the obvious place to look is where we first construct a 
Date. If we don't create invalid Dates and also write our member functions cor
rectly, we will never have a Date with an invalid value. So, we'll prevent users 
from ever creating a Date with an invalid state: 

II simple D.1 1e (prevC'nl inval id dales) 
class Date { 
public: 

class Invalid { } ; 
Date(int y, int m, int d); 
II . . .  

ll lo be used as exreplion 
II che(:k ior va l id  da le and ini l ia l i ze 

private : 
int y, m, d; 
bool check() ; 

II year, monlh, clay 
II rf'lurn l rue ii dale is val id 

} ; 

We put the testing of validity into a separate check() function because checking 
for validity is logically distinct from initialization and because we might want to 
have several constructors . As you can see, we can have private functions as well 
as private data : 

Date: :Date(int yy, int mm, int dd) 
: y(yy), m(mm), d(dd) 

if (! check()) throw Invalid(); 

II ini lia l i ze dala members 

II check for va l idily 

bool Date : :check() II relurn lrue if dale is va l id 
{ 

if (m<1 ll 12<m) return false; 
II . . .  

Given that definition of Date, we can write: 
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void f(int x, int y) 
try { 

Date dxy(2004,x,y); 
cout << dxy << '\n' ;  
dxy.add_day(2); 

catch(Date : :  Invalid) { 
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II see §9.8 for a cleclaralion oi << 

error("invalid date"); II error() defined in  §5 .6 .3 

We now know that << and add_date() will have a valid Date on which to operate . 
Before completing the evolution of our Date class in §9.7, we'll take a detour 

to describe a couple of general language facilities that we'll need to do that well : 
enumerations and operator overloading. 

9.5 Enumerations 
An enum (an mumeralion) is a very simple user·defmed type, specifying its set of 
values (its mumeralors) as symbolic constants . For example: 

enum Month { 
jan=1 , feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec 

} ; 

The "body" of an enumeration is simply a list of its enumerators. You can give a 
specific value for an enumerator, as we did for jan here, or leave it to the com· 
piler to pick a suitable value. If you leave it to the compiler to pick, it 'U give each 
enumerator the value of the previous enumerator plus one. Thus, our defmition 
of Month gave the months consecutive values starting with 1 .  We could equiva
lently have written 

enum Month { 

} ; 

jan=1 , feb=2, mar=l, apr=4, may=5, jun=6, 
jul=7, aug=8, sep=9, oct=10, nov=1 1 ,  dec=12 

However, that's tedious and opens the opportunity for errors. In fact, we made 
two typing errors before getting this latest version right; it is better to let the com· 
piler do simple, repetitive "mechanical" things. The compiler is better at such 
tasks than we are, and it doesn't get bored. 

If we don't initialize the frrst enumerator, the count starts with 0. For example : 
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enum Day { 
monday, tuesday, wednesday, thursday, friday, saturday, sunday 

}; 

Here monday==O and sunday==6. In practice, starting with 0 is often a good 
choice. 

We can use our Month like this : 

Month m = feb; 
m = 7; 
int n = m; 
Month mm = Month(7); 

II error: can't assign an int to a Month 
II OK: we can get the numeric va lue of a Month 
II convert int to Month (unchecked) 

Note that a Month is a separate type. It has an implicit conversion to int, but 
there is no implicit conversion from int to Month. Tills makes sense because 
every Month has an equivalent integer value, but most ints do not have a Month 
equivalent. For example, we really do want this initialization to fail : 

Month bad = 9999; II error: can't convert an in t  to a Month 
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If you insist on using the Month(9999) notation, on your head be it ! In many fJ 
cases, C++ will not try to stop a programmer from doing something potentially 
silly when the programmer explicitly insists; after all, the programmer might ac· 
tually know better. 

Unfortunately, we cannot define a constructor for an enumeration to check 
initializcr values, but it is trivial to write a simple checking function : 

Month int_to_month(int x) 
{ 

if (x<jan II dec<X) error("bad month"); 
return Month(x); 

Given that, we can write 

void f(int m) 
{ 

Month mm = int_to_month(m); 
II . . .  

What do we usc enumerations for? Basically, an enumeration is useful whenever 
we need a set of related named integer constants. That happens all the time when 
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we try to represent sets of  alternatives (up, down; yes, no, maybe; on, off; n ,  ne, 
e, se, s, sw, w, nw) or distinctive values (red, blue, green, yellow, maroon, crim
son, black). 

Note that an enumerator is no/ in the scope of its enumeration type; it is in 
the same scope as the name of its enumeration type. For example: 

enum Traffic_sign { red, yellow, green }; 
int var = red; II nole: not Traffic_sign : :red 

Tills can cause problems. Imagine the potential for confusion if you have short 
popular names, such as red, on, ne, and dec, as global nan1es. For example, docs 
ne mean "northeast" or "not equal"? Does dec mean "decimal" or "December"? 
Tills is the kind of problem we warned against in §3. 7, and we can easily get such 
problems if we defme an enum with short, convenient enumerator names in the 
global scope. In fact, we immediately get this problem when we try to usc our 
Month enumeration together with iostreams because there is a "manipulator" 
called dec for "decimal'' (see §1 1 .2 . 1 ) .  To avoid such problems, we often prefer to 
defme enumerations in more limited scopes, such as within a class. That also al· 
lows us to be explicit about what an enumerator value refers to, such as 
Month: :jan and Color: : red. We present the technique for doing that in §9.7. 1 .  If 
we absolutely need global names, we try to minimize the chance of name clashes 
by using longer names, by using unusual names (or unusual spellings). and by 
capitalization. However, our preferred solution is to make names as local as is 
reasonable. 

9.6 Operator overloading 
You can define almost all C++ operators for class or enumeration operands. 
That's often called operator overloaditzg. We use it when we want to provide con
ventional notation for a type we design. For example : 

enum Month { 
Jan=1,  Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 

} ; 

Month operator++(Month& m) II preiix incremenl opc>ralor 
{ 

m = (m=Dec) 1 Jan : Month(m+1 ); II "wrap around" 
return m; 
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The 1 : construct is an "arithmetic if': m becomes Jan if (m=Dec) and 
Month(m+ 1 )  otherwise. It is a reasonably elegant way of expressing the fact that 
months "wrap around" after December. The Month type can now be used like 
this : 

Month m = sep; 
++m; II m becomes Ocl 
++m; II m becomes Nov 
++m; II m becomes Dec 
++m; II m becomes Jan ("wrap a round") 

You might not think that incrementing a Month is common enough to wan·am a 
special operator. That may be so, but how about an output operator? We can de· 
fine one like this: 

vector<String> month_tbl; 

ostream& operator<<(ostream& os, Month m) 
{ 

return os << month_tbl[m] ; 

11us assumes that month_tbl has been initialized somewhere so that (for exam· 
pic) month_tbi[Mar] is "March" or some other suitable name for that month; sec 
§10. 1 1 .3. 
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You can dcfme just about any operator provided by C++ for your own f.J 
types, but only existing operators, such as +, -, •, I, %, [], (), ", ! ,  &, <, <=, >, and 
>=. You cannot define your own operators; you might like to have •• or $= as op· 
crators in your program, but C++ won't let you. You can define operators only 
with their conventional number of operands; for example, you can defme unary 
-, but not unary <= (less than or equal), and binary +, but not binary ! (not). Ba· 
sically, the language allows you to use the existing syntax for the types you de· 
fme, but not to extend that syntax. 

An overloaded operator must have at least one user-defined type as operand: 

int operator+(int,int); II error: you can'l overload bui l l - in + 

Vector operator+(const Vector&, const Vector &); II OK 
Vector operator+=(const Vector&, int); II OK 

It  is generally a good idea not to define operators for a type unless you are really • , 

certain that it makes a big positive change to your code. Also, defme operators U 
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only with their conventional meaning: + should be addition, binary * multiplica
tion, [] access, () call, etc. Tills is just advice, not a language rule, but it is good 
advice: conventional use of operators, such as + for addition, can significantly 
help us understand a program. After all, such use is the result of hundreds of 
years of experience with mathematical notation. Conversely, obscure operators 
and unconventional use of operators can be a significant distraction and a source 
of errors. We will not elaborate on this point. Instead, in the following chapters, 
we will simply use operator overloading in a few places where we consider it 
appropriate. 

Note that the most interesting operators to overload aren't +, -, *, and I as 
people often assume, but =, =, !=, <, [], and (). 

9.7 Class interfaces 
We have argued that the public interface and the implementation parts of a class 
should be separated. As long as we leave open the possibility of using structs for 
types that are "plain old data," few professionals would disagree. However, how 
do we design a good interface? What distinguishes a good public interface from a 
mess? Part of that answer can be given only by example, but there are a few gen
eral principles that we can list and which are given some support in C++: 

Keep interfaces complete. 

Keep interfaces minimal. 

Provide constructors. 

Support copying (or prohibit it) (see §14.2.4). 

Use types to provide good argument checking. 

Identify nonmodifying member functions (see §9.7.4) . 

Free all resources in the destructor (see §17.5). 

See also §5.5 (how to detect and report run-time errors) .  
The frrsl two principles can be summarized as "Keep the interface as small as 

possible, but no smaller." We want our interface to be small because a small inter
face is easy to learn and easy to remember, and the implementer doesn't waste a 
lot of time implementing unnecessary and rarely used facilities. A small interface 
also means that when something is wrong, there are only a few functions to 
check to find the problem. On average, the more public member functions, the 
harder it is to find bugs - and please don't get us started on the complexities of 
debugging classes with public data. But of course, we want a complete interface; 
otherwise, it would be useless. We couldn't use an interface that didn't allow us 
to do all we really needed. 

Let's look at the other - less abstract and more directly supported - ideals. 
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9.7.1 Argument types 
When we defined the constructor for Date in §9.4.3, we used three ints as the ar
guments. That caused some problems: 

Date d1 (4,5,2005); 
Date d2(2005,4,5); 

II oops: year 4, day 2 00.5 
II Apri l 5 or May 4? 

The first problem (an illegal day of the month) is easily dealt with by a test in the 
constructor. However, the second (a month vs. day-of-the-month confusion) can't 
be caught by code written by the user. l11e second problem is simply that the 
convemions for writing month and day-in-month differ; for example, 4/5 is 
April 5 in the United States and May 4 in England. Since we can't calculate our 
way out of this, we must do something else. The obvious solution is to use the 
type system : 

II simple Dale (USC' Monlh lype) 
class Date { 
public: 

enum Month { 
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec 

} ; 

Date(int y, Month m, int d) ; II check for va l id dale and inil ia l ize 
II . . .  

private: 

}; 

int y; II year 
Month m; 
int d; II day 

When we use a Month type, the compiler will catch us if we swap month and 
day, and using an enumeration as the Month type also gives us symbolic names 
to use. It is usually easier to read and write symbolic names than to play around 
with numbers, and therefore less error-prone: 

Date dx1(1998, 4, 3) ; 
Date dx2(1998, 4, Date : :mar); 
Date dx2(4, Date : :mar, 1998); 
Date dx2(Date: :mar, 4,  1998); 
Date dx3(1998, Date : :mar, 30); 

II error: 2nd argumenl nol a Monlh 
II error: 2 nd a rgumenl nol a Monlh 
II oops: run-lime error: day 1 998 

II error: 2nd argumcnl nol a Monlh 
// OK 
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This takes care of  most "accidents." Note the use of  the qualification of the enu
merator mar with the class name Date: Date: :mar. lllls is the way we say that 
it's Date's mar. We don't say Date.mar because Date isn't an object (it's a type) 
and mar isn't a data member (it's an enumerator - a symbolic constant). Use : :  
after a class name (or a namespace name; §8.7) and . (dot) after an object name. 

When we have a choice, we catch errors at compile time rather than at run 
time. We prefer for the compiler to fmd the error rather than for us to try to fig
ure out exactly where in the code a problem occurred. Also, errors caught at 
compile time don't require checking code to be written and executed. 

Thinking like that, could we catch the swap of the day of the month and the 
year also? We could, but the solution is not as simple or as elegant as for Month; 
after all, there was a year 4 and you might want to represent it. Even if we re
stricted ourselves to modern times there would probably be too many relevant 
years for us to list them all in an enumeration. 

Probably the best we could do (without knowing quite a lot about the in
tended use of Date) would be something like this: 

class Year { II year in lmin :maxJ range 
static const int min = 1800; 
static const int max = 2200; 

public: 
class Invalid { }; 
Year(int x) : y(x) { if (x<min II max<X) throw Invalid() ; } 
int year() { return y; } 

private: 
int y; 

}; 

class Date { 
public: 

enum Month { 
jan=1 , feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec 

}; 

Date(Year y, Month m, int d); 
II . . .  

private: 

}; 

Year y; 
Month m; 
int d; II day 

II check for va l id date and init ia l ize 
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Now we get 

Date dx1 (Year(1 998), 4, 3); 
Date dx2(Year(1 998), 4, Date: :mar); 
Date dx2(4, Date: :mar, Year(1 998)); 
Date dx2(Date: :mar, 4, Year(1 998)); 
Date dx3(Year(1998), Date: :mar, 30); 

II error: 2 nd a rgument not a Month 
II error: 2 nd a rgument not a Month 
II error: 1 st argument not a Year 
II error: 2 nd a rgument not a Month 
// OK 

11lis weird and unlikely error would still not be caught until run time: 

Date dx2(Year(4), Date: :mar, 1998); II run-time error: Year : : lnvalid 

Is the extra work and notation to get years checked worthwhile'� Naturally, that 
depends on the constraints on the kind of problem you are solving using Date. 
but in this case we doubt it and won't use class Year as we go along. 

When we program, we always have to ask ourselves what is good enough 
for a given application. We usually don't have the luxury of being able to search 
"forever" for the perfect solution after we have already found one that is good 
enough. Search further, and we might even come up with something that's so 
elaborate that it is worse than the simple early solution. 11lls is one meaning of 
the saying "The best is the enemy of the good" (Voltaire) .  

Note the use of  static const in  the definitions of  min and max. lbis is  the 
way we define symbolic constants of integer types within classes. For a class 
member, we use static to make sure that there is just one copy of the value in the 
program. rather than one per object of the class. 

9.7.2 Copying 
We always have to create objects; that is, we must always consider initialization 
and constructors. Arguably they are the most important members of a class : to 
write them, you have to decide what it takes to initialize an object and what it 
means for a value to be valid (what is the invariant?). just thinking about initial
ization will help you avoid errors. 

The next thing to consider is often: Can we copy our objects? And if so, how 
do we copy them? 

For Date or Month, the answer is that we obviously want to copy objects of 
that type and that the meaning of copy• is trivial: just copy all of the members. Ac
tually. this is the default case. So as long as you don't say anything else, the com
piler will do exactly that. For example, if you copy a Month as an initializer or 
right-hand side of an assignment, all its members are copied: 

Date holiday(1978, Date: :jul, 4); 
Date d2 = holiday; 
Date d3 = Date(1978, Date: :jul, 4); 

II in it ia l ization 
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holiday = Date(1978, Date: :dec, 24) ; 
d3 = holiday; 

II assignment 

11lls will all work as expected. The Date(1 978, Date: :dec, 24) notation makes the 
appropriate unnamed Date object, which you can then use appropriately. For 
example: 

cout << Date(1978, Date: : dec, 24) ; 

This is a use of a constructor that acts much as a literal for a class type. It often 
comes in as a handy alternative to first defming a variable or const and then 
using it once. 

What if we don't want the default meaning of copying? We can either define 
our own (see §18.2) or make the copy constructor and copy assignment private 
(see §14.2.4). 

9.7.3 Default constructors 
Uninitialized variables can be a serious source of errors. To counter that problem, 
we have the notion of a constructor to guarantee that every object of a class is ini
tialized. For example, we declared the constructor Date: :  Date(int,Month,int) to 
ensure that every Date is properly initialized. In the case of Date, that means that 
the programmer must supply three arguments of the right types. For example: 

Date d1 ; 
Date d2(1998); 
Date d3(1,2,3,4); 
Date d4(1 ,"jan",2); 
Date d5(1 ,Date: :jan,2); 
Date d6 = d5; 

II error: no i n it ia l izer 
II error: too few a rguments 
II error: too many a rguments 
II error: wrong a rgument type 
II OK: use the three-argument constructor 
II OK: use the copy constructor 

Note that even though we defined a constructor for Date, we can still copy Dates. 
Many classes have a good notion of a default value; that is, there is an obvi

ous answer to the question "What value should it have if I didn't give it an ini
tializer?" For example: 

string s1 ; 
vector<String> v1 ; 
vector<string> v2(10); 

II default  va lue: the empty string " "  
II deiault  value: the empty vector; n o  eleme11ts 
II vector of 1 0  defaul t  strings 

This looks reasonable. It even works the way the comments indicate. That is 
achieved by giving vector and string default constructors that implicitly provide the 
desired initialization. 
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For a type T, TO is the notation for the default value, as defmed by the default .,_ 
constructor, so we could write U 

string s1 = string(); 
vector<String> v1 = vector<String>O; 

II default value: the empty string " "  
II defaul t  value: 

vector<String> v2(10,string()); 
II the empty vector; no elements 
II vector of 1 0  deiault stri ngs 

However, we prefer the equivalent and colloquial 

string s1 ; 
vector<String> v1 ; 
vector<String> v2(10); 

II defaul t  va lue: the empty string " "  
II defaul t  value: the empty vector; n o  elements 
II vector oi 1 0  defaul t  strings 

For built-in types. such as int and double, the default constructor notation means 
0, so intO is a complicated way of saying 0, and double() a long-winded way of 
saying 0.0. 

Beware of a nasty syntax problem with the 0 notation for initializers : fJ 
string s1 ("1ke"); 
string s2(); 

II string init ial ized to " Ike" 
II function taking no argument returning a string 

Using a default constructor is not just a matter of looks. Imagine that we could 
have an uninitialized string or vector. 

string s; 
for (int i=O, i<S.size(), ++i) II oops: loop an undefined number oi t imes 

toupper(s[i]); II oops: modify the contents oi a random memory location 

vector<String> v; 
v.push_back("bad"); II oops: write to random address 

If the values of s and v were genuinely undefined, s and v would have no notion 
of how many elements they contained or (using the common implementation 
techniques; see §17.5) where those elements were supposed to be stored. The re
sults would be use of random addresses - and that can lead to the worst kind of 
errors. Basically, without a constructor, we cannot establish an invariant - we 
cannot ensure that the values in those variables are valid (§9.4.3). We must insist 
that such variables are initialized. We could insist on an initializer and then write: 

string s1 = ""; 
vector<String> v1(0); 
vector<String> v2(10,""); II vector of 10 empty strings 
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But we don't think that's particularly pretty. For string, 11 11 is rather obvious for 
"empty string." For vector, 0 isn't too obscure for "empty vector." However, for 
many types, it is not easy to find a reasonable notation for a default value. For 
many types, it is better to define a constructor that gives meaning to the creation 
of an object without an explicit initializer. Such a constructor takes no arguments 
and is called a defoult constructor. 

There isn't an obvious default value for dates. That's why we didn't defme a 
default constructor for Date so far, but let's provide one Gust to show we can): 

class Date { 
public: 

II . . .  
Date(); 
II . . .  

private: 

}; 

int y; 
Month m; 
int d; 

II default constructor 

We have to pick a default date. The frrst day of the 21st century might be a rea
sonable choice: 

Date: : Date() 
:y(2001 ), m(Date: : jan), d(1 ) 

If we didn't like to build the default value right into the constructor code, we 
could usc a constant (or a variable) . To avoid a global variable and its associated 
initialization problems, we use the technique from §8.6.2: 

Date& default_date() 
{ 

static Date dd(2001 ,Date: :jan, 1 ) ;  
return dd; 

We used static to get a variable (dd) that is created only once, rather than each 
time default_date() is called, and initialized the first time default_date() is called. 
Given default_date(), it is trivial to defme a default constructor for Date: 
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Date: : Date() 
: y(default_date() .year()), 
m(default_date().month()), 
d(default_date().day()) 

Note that the default constructor does not need to check its value; the construc
tor for default_date already did that. Given this default Date constructor, we can 

now have vectors of Dates : 

vector<Date> birthdays(10); 

Without the default constructor, we would have had to be explicit: 

vector<Date> birthdays(10,default_date()); 

9.7.4 const member functions 
Some variables are meant to be changed - that's why we call them "variables" 
but some arc not; that is, we have "variables" representing immutable values. 
l110se, we typically call constants or just consts. Consider: 

void some_function(Date& d, const Date& start_of_term) 
{ 

int a =  d.day() ; 
int b = start_of_term.day(); 
d.add_day(3); 
start_of_term.add_day(3); 

// OK 
II should be OK (why?) 
II fine 
II error 

Here we intend d to be mutable, but start_of_term to be immutable; it is not ac
ceptable for some_function() to change start_of_term. How would the compiler 
know that? It knows because we told it by declaring start_of_term const. So far, 
so good, but then why is it OK to read the day of start_of_term using day()? As 
the definition of Date stands so far, start_of_term.day() is an error because the 
compiler does not know that day() doesn't change its Date. We never told it, so 
the compiler assumes that day() may modify its Date and reports an error. 
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We can deal with this problem by classifying operations on a class as modify- • 1 

ing and nonmodifying. That's a pretty fundamental distinction that helps us un- U 
dcrstand a class, but it also has a very practical importance : operations that do 
not modify the object can be invoked for const objects. For example : 
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class Date { 
public: 

II . . .  
int day() const; 
Month month() const; 
int year() const; 

void add_day(int n); 
void add_month(int n); 
void add_year(int n); 

private: 
int y; II year 
Month m; 

II canst member: can't modify the object 
II canst member: can't modify the object 
II canst member: can't modify the object 

II non-canst member: can modify the object 
II non-canst member: can modify the object 
II non-canst member: can modify the object 

int d; II day of month 
} ; 

Date d(2000, Date: :jan, 20) ; 
const Date cd(2001 , Date: : feb, 21 ) ;  

cout << d. day() << " - " << cd.day() << endl; II OK 
d.add_day(1); II OK 
cd.add_day(1 ) ;  II error: cd  is  a canst 

We use const right after the argument list in a member function declaration to in
dicate that the member function can be called for a const object. Once we have 
declared a member function const, the compiler holds us to our promise not to 
modify the object. For example : 

int Date: :day() const 
{ 

++d; II error: attempt to change object from canst member function 
return d; 

Naturally, we don't usually try to "cheat" in this way. What the compiler pro
vides for the class implementer is primarily protection against accident, which is 
particularly useful for more complex code. 

9.7.5 Members and "helper functions" 
When we design our interfaces to be minimal (though complete) ,  we have to 
leave out lots of operations that are merely useful. A function that can be simply. 
elegantly, and efficiently implemented as a freestanding function (that is. as a 



9 .  7 CLASS I N T E RFACES 

nonmember function) should be implemented outside the class. �That way, a bug 
in that function cannot directly corrupt the data in a class object. Not accessing 
the representation is important because the usual debug technique is "round up 
the usual suspects" ;  that is, when something goes wrong with a class, we frrst 
look at the functions that directly access the representation: one of those almost 
certainly did it. If there are a dozen such functions we will be much happier than 
if there were 50. 

Fifty functions for a Dale class! You must wonder if we are kidding. We arc 
not: a few years ago I surveyed a number of commercially used Date libraries 
and found them full of functions like nexi_Sunday(), next_ workday(), etc. Fifty is 
not an unreasonable number for a class designed for the convenience of the users 
ratl1cr than for ease of comprehension, implementation, and maintenance. 

Note also that if the representation changes, only the functions that directly 
access the representation need to be rewritten. That's another strong practical 
reason for keeping interfaces minimal. In our Dale example, we might decide 
that an integer representing the number of days since january 1, 1900, is a much 
better representation for our uses than (ycar,month,day) . Only the member func
tions would have to be changed. 

Here are some examples of helper JUnctions: 

Date next_Sunday(const Date& d) 
{ 

II access d using d.day(). d .monthl). and d. year() 
II m,1ke new Date to return 

Date next_weekday(const Date& d) { !* . . . *I } 

bool leapyear(int y) { /* . . .  */ } 

bool operalor==(const Date& a, consl Date& b) 
{ 

return a. year()=b. year() 
&& a.monthO==b.month() 
&& a.dayO==b.day(); 

bool operator!=(const Date& a, consl Dale& b) 
{ 

return ! (a==b); 
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Helper functions are also called corwenience JUnctions, auxiliary .fimctions, and many 
other things. The distinction between these functions and other nonmember 
functions is logical; that is, "helper function" is a design concept, not a program
ming language concept. l11e helper functions often take arguments of the classes 
that they are helpers of. l11ere are exceptions, though: note leapyear() .  Often, we 
use namespaces to identify a group of helper functions; see §8. 7 :  

namespace Chrono { 
class Date { /* . . .  */ }; 
bool is_date(int y, Date: : Month m, int d); II true for val id date 
Date next_Sunday(const Date& d) { /* . . .  */ } 
Date next_weekday(const Date& d) { /* . . .  */ } 
bool leapyear(int y) { /* . . .  */ } II see exercise 1 0 
bool operator==(const Date& a, const Date& b) { /* . . .  */ } 
II . . .  

Note the == and I=  functions. They are typical helpers. For many classes, == and 
I= make obvious sense, but since they don't make sense for all classes, the com
piler can't write them for you the way it writes the copy constructor and copy 
assignment. 

Note also that we introduced a helper function is_date(). That function re
places Date: : check() because checking whether a date is valid is largely inde
pendent of the representation of a Date. For example, we don't need to know 
how Date objects are represented to know that ':January 30, 2008" is a valid date 
and "February 30, 2008" is not. There still may be aspects of a date that might 
depend on the representation (e.g., can we represent ':January 30, 1066"?), but (if 
necessary) Date's constructor can take care of that. 

9.8 The Date class 
So, let's just put it all together and see what that Date class might look like when 
we combine all of the ideas/concerns. Where a function's body is just a . . .  com
ment, the actual implementation is tricky (please don't try to write those just yet). 
First we place the declarations in a header Chrono.h :  

II iile Chrono.h 

namespace Chrono { 

class Date { 



9 . 8  THE  DATE C LASS  

public: 
enum Month { 

jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec 
} ;  

class Invalid { }; II to throw as exception 

Date(int y, Month m, int d); II check for valid date and init ia l ize 
Date(); II defaul t  constructor 
II the default copy operations are iine 

II nonmodifying operations: 
int day() const { return d; } 
Month month() const { return m; } 
int year() const { return y; } 

II modiiying operations: 
void add_day(int n); 
void add_month(int n); 
void add_year(int n); 

private: 

}; 

int y; 
Month m; 
int d; 

bool is_date(int y, Date: :Month m, int d); 

bool leapyear(int y) ; II true ii y is a leap year 

II t rue for val id date 

bool operator==(const Date& a, const Date& b); 
bool operator!=(const Date& a, const Date& b); 

ostream& operator<<(ostream& os, const Date& d); 

istream& operator>>(istream& is, Date& dd); 

} II Chrono 

The definitions go into Chrono.cpp: 
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II Chrono.cpp 

namespace Chrono { 

II member iunction defini t ions: 

Date : :  Date(int yy, Month mm, int dd) 
: y(yy), m(mm), d(dd) 

if ( ! is_date(yy,mm,dd)) throw Invalid(); 

Date& default_date() 
{ 

static Date dd(2001,Date: :jan, 1 ) ;  II start oi  2 1 st century 
return dd; 

Date: : Date() 
: y( defau It_ date() . year()), 
m(default_date().month()), 
d(default_date().day()) 

void Date : :  add_day(int n) 
{ 

II . . .  

void Date: :add_month(int n) 
{ 

II . . .  

void Date: :add_year(int n) 
{ 

if (m=feb && d=29 && ! leapyear(y+n)) { II beware of leap years! 
m = mar; II use March 1 instead of February 29 
d = 1 ;  

y+=n; 
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II he lper functions: 

bool is_date(int y, Date: : Month m, int d) 
{ 

II ,1ssume that y is va l id 

if (d<=O) return false; II d must be positive 

int days_in_month = 31 ; II most months have 3 1  days 

switch (m) { 
case Date: : feb: II the length of February varies 

days_in_month = (leapyear(y))l29:28; 
break; 

case Date: :apr: case Date: : jun: case Date: : sep: case Date : :  nov: 
days_in_month = 30; II the rest have 30 days 
break; 

if (days_in_month<d) return false; 

return true; 

bool leapyear(int y) 
{ 

II see exercise 1 0 

bool operator==(const Date& a, const Date& b) 
{ 

return a.yearO==b.year() 
&& a.monthO==b.month() 
&& a.dayO==b.day(); 

bool operatorl=(const Date& a, const Date& b) 
{ 

return l (a==b); 

ostream& operator<<(ostream& os, const Date& d) 
{ 
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return os << '(' << d. year() 
<< ',' << d.month() 
<< ',' << d.day() << ') '; 

istream& operator>>(istream& is, Date& dd) 
{ 

int y, m, d; 
char ch1 , ch2, ch3, ch4; 
is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4; 
if ( ! is) return is; 
if (ch1 !='(' II ch21=' ,' II ch3!=', '  I I ch4!=')') { 

is.clear(ios_base: :failbit); 
return is; 

return is; 

enum Day { 

II oops: format error 
II set the fa i l  bit 

sunday, monday, tuesday, wednesday, thursday, friday, saturday 
} ; 

Day day_of_week(const Date& d) 
{ 

II . . .  

Date next_Sunday(const Date& d) 
{ 

II . . .  

Date next_weekday(const Date& d) 
{ 

II . . .  

} II Chrono 

The functions implementing >> and << for Date will be explained in detail in 
§10.7 and 10.8. 
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y" Drill 

This drill simply involves getting the sequence of versions of Date to work. For 
each version define a Date called today initialized to June 25, 1978. Then, define 
a Date called tomorrow and give it a value by copying today into it and increas
ing its day by one using add_day(). Finally, output today and tomorrow using a 
<< defined as in §9.8 . 

Your check for a valid date may be very simple . However, don't accept a 
month that is not in the [1,12] range or day of the month that is not in the [1,3 1]  
range. Test each version with at least one invalid date (e.g., 2004, 13,  -5). 

1. The version from §9.4 . 1  
2. The version &om §9.4.2 
3. The version from §9.4.3 
4. The version from §9.7. 1  
5. The version from §9.7.4 

Review 

1. What arc the two parts of a class, as described in the chapter? 
2. What is the difference between the interface and the implementation in a 

class?  
3. What are the limitations and problems of  the original Date struct that is 

created in the chapter? 
4. Why is a constructor used for the Date type instead of an init_day() 

function? 
5. What is an invariant? Give examples. 
6. When should functions be put in the class definition, and when should 

they be defmed outside the class? Why? 
7. When should operator overloading be used in a program? Give a list of 

operators that you might want to overload (each with a reason) . 
8. Why should the public interface to a class be as small as possible? 
9. What does adding const to a member function do? 

10. Why are "helper functions" best placed outside the class defmition? 

Terms 

built-in types 
class 
const 
constructor 
destructor 
enum 

enumeration 
enumerator 
helper function 
implementation 
inlining 
interface 

invariant 
representation 
struct 
structure 
user-defined types 
valid state 
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Exercises 

1. List sets of plausible operations for the examples of real-world objects in 
§9.1  (such as toaster) . 

2. Design and implement a Name_pairs class holding (name,age) pairs where 
name is a string and age is a double. Represent that as a vector<String> 
(called name) and a vector<double> (called age) member. Provide an 
input operation read_names() that reads a series of names. Provide a 
read_ages() operation that prompts the user for an age for each name. 
Provide a print() operation that prints out the (name[i],age[i]) pairs (one 
per line) in the order determined by the name vector. Provide a sort() op
eration that sorts the name vector in a1phabetical order and reorganizes 
the age vector to match. Implement all "operations" as member functions. 
Test the class (of course : test early and often) . 

3. Replace Name_pair: :print() with a (globa1) operator<< and defme == 
and != for Name_pairs . 

4. Look at the headache-inducing last example of §8.4. Indent it properly 
and explain the meaning of each construct. Note that the example doesn't 
do anything meaningful; it is pure obfuscation. 

5. This exercise and the next few require you to design and implement a 
Book class, such as you can imagine as part of software for a library. 
Class Book should have members for the ISBN, title, author, and copy
right date. Also store data on whether or not the book is checked out. 
Create functions for returning those data va1ues. Create functions for 
checking a book in and out. Do simple validation of data entered into a 
Book; for example, accept ISBNs only of the form n-n-n-x where n is an 
integer and x is a digit or a letter. 

6. Add operators for the Book class. Have the == operator check whether 
the ISBN numbers are the same for two books. Have I= a1so compare 
the ISBN numbers. Have a << print out the title author, and ISBN on 
separate lines. 

7. Create an enumerated type for the Book class called Genre. Have the 
types be fiction, nonfiction, periodica1, biography, children. Give each 
book a Genre and make appropriate changes to the Book constructor 
and member functions. 

8. Create a Patron class for the library. The class will have a user's name, li
brary card number, and library fees (if owed) .  Have functions that access 
these methods, as well as a function to set the fee of the user. Have a 
helper method that returns a Boolean (bool) depending on whether or 
not the user owes a fee. 

9. Create a Library class. Include vectors of Books and Patrons. Include a 
struct called Transaction. Have it include a Book, a Patron, and a Date 
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from the chapter. Make a vector o f  Transactions. Create functions to add 
books to the library, add patrons to the library, anci check out books. 
Whenever a user checks out a book, have the library make sure that 
both the user and the book are in the library. If they aren't, report an 
error. Then check to make sure that the user owes no fees. If the user 
does, report an error. If not, create a Transaction, and place it in the vec
tor of Transactions. Also create a method that will return a vector that 
contains the names of all Patrons who owe fees. 

10. Implement leapyear() from §9.8. 
1 1 . Design and implement a set of useful helper function for the Date class 

with functions such as next_ workday() (assume that any day that is not a 
Saturday or a Sunday is a workday) and week_of_year() (assume that 
week 1 is the week with january 1 in it and that the first day of a week is 
a Sunday). 

12. Change the representation of a Date to be the number of days since 
January 1 ,  1970 (known as day 0), represented as a long, and re
implement the functions from §9.8. Be sure to reject dates outside the 
range we can represent that way (feel free to reject days before day 0, i.e., 
no negative days) . 

13.  Design and implement a rational number class, Rational. A rational 
number has two parts : a numerator and a denominator, for example, 5/6 
(five-sixths, also known as approximately .83333). Look up the defini
tion if you need to. Provide assignment, addition, subtraction, multiplica
tion, division, and equality operators. Also, provide a conversion to 
double. Why would people want to use a Rational class? 

14. Design and implement a Money class for calculations involving dollars 
and cents where arithmetic has to be accurate to the last cent using the 
4/5 rounding rule (.5 of a cent rounds up; anything less than .5 rounds 
down). Represent a monetary amount as a number of cents in a long, 
but input and output as doUars and cents, e.g., $1 23.45. Do not worry 
about amounts that don't fit into a long. 

15. Refme the Money class by adding a currency (given as a constructor ar
gument) .  Accept a floating-point initializer as long as it can be exactly 
represented as a long. Don't accept illegal operations. For example, 
Money* Money doesn't make sense, and USD1 .23+DKK5.00 makes sense 
only if you provide a conversion table defining the conversion factor be
tween U.S. doUars (USD) and Danish kroner (DKK) . 

16. Give an example of a calculation where a Rational gives a mathemati
cally better result than Money. 

17. Give an example of a calculation where a Rational gives a mathemati
cally better result than double. 
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Postscript 

There is a lot to user-defmed types, much more than we have presented here. 
User-defined types, especially classes, are the heart of C++ and the key to many 
of the most effective design techniques. Most of the rest of the book is about the 
design and use of classes. A class - or a set of classes - is the mechanism through 
which we represent our concepts in code. Here we primarily introduced the 
language-technical aspects of classes; elsewhere we focus on how to elegantly ex
press useful ideas as classes. 
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I n put and Output Streams 

"Science is what we have learned about 
how to keep from fooling ourselves ." 

- Richard P. Feynman 

I n this chapter and the next, we present the C++ standard 

library facilities for handling input and output from a variety 

of sources : 1/0 streams. We show how to read and write ftles. 

how to deal with errors, how to deal with formatted input, and 

how to provide and usc l/0 operators for user-defined types. 

This chapter focuses on the basic model : how to read and write 

individual values, and how to open, read, and write whole ftles . 

The final example illustrates the kinds of considerations that go 

into a larger piece of code. The next chapter addresses details. 
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10.1 Input and output 

10.2 The 1/0 stream model 

10.3 Files 

10.4 Opening a file 

10.5 Reading and writing a file 

10.6 1/0 error handling 

10.7 Reading a single value 
10.7.1 Breaking the problem into 

manageable parts 

10.8 User-defined output operators 

10.9 User-defined input operators 

10.10 A standard input loop 

10.11 Reading a structured file 
10.11.1 In-memory representation 
10.11.2 Reading structured values 
10.11.3 Changing representations 

10.7.2 Separating dialog from fundlon 

1 0.1 Input and output 
Without data, computing is pointless. We need to get data into our program to do 
interesting computations and we need to get the results out again. In §4. 1 ,  we men· 
tioned the bewildering variety of data sources and targets for output. If we don't 
watch out, we'll end up writing programs that can receive input only from a specific 
source and deliver output only to a specific output device. That may be acceptable 
(and sometimes even necessary) for specialized applications, such as a digital can1· 
era or a sensor for an engine fuel injector, but for more common tasks, we need a 
way to separate the way our progran1 reads and writes from the actual input and 
output devices used. If we had to directly address each kind of device, we'd have to 
change our progran1 each time a new screen or disk came on the market, or linut 
our users to the screens and disks we happen to like. That would be absurd. 

Most modern operating systems separate the detailed handling of 1/0 de· 
vices into device drivers and then access the device drivers through an 1/0 li
brary that makes I/0 from/to different sources appear as similar as possible. 
Generally, the device drivers are deep in the operating system where most users 
don't see them, and the 1/0 library provides an abstraction of l/0 so that the pro· 
grammer doesn't have to think about devices and device drivers : 

Data source: 

Device cfriver 

Data destination: 

Output library 
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When a model like this is used, all input and all output can b e  seen as streams of 
bytes (characters) handled by the input/output library. Our job as programmers 
of an application then becomes 

1 .  To set up 110 streams to the appropriate data sources and destinations 

2. To read and write from/to those streams 

The details of how our characters are actually transmitted to/from the devices are 

dealt with by the 110 library and the device drivers. In this chapter and the next, 
we'll sec how 110 consisting of streams of formatted data is done using the C++ 
standard library. 
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From the programmer's point of view there are many different kinds of input • 1 
and output. One classification is U 

Streams of (many) data items (usually to/from ftles, network connec-
tions, recording devices, or display devices) 

Interactions with a user at a keyboard 

Interactions with a user through a graphical interface (outputting objects, 
receiving mouse clicks, etc.) 

This classification isn't the only classification possible, and the distinction be
tween the three kinds of 110 isn't as clear as it might appear. For example, if a 
stream of output characters happens to be an HTTP document aimed at a 
browser, the result looks remarkably like user interaction and can contain graph· 
ical elements. Conversely, the results of interactions with a CUI (graphical user 
interface) may be presented to a program as a sequence of characters. However, 
this classification fits our tools: the first two kinds of I/0 are provided by the 
C++ standard library 110 streams and supported rather directly by most operat
ing systems. We have been using the iostream library since Chapter 1 and will 
focus on that for this and the next chapter. The graphical output and graphical 
user interactions are served by a variety of different libraries, and we will focus 
on that kind of 110 in Chapters 12 to 1 6. 

1 0.2 The 1/0 stream model 
The C++ standard library provides the type istream to deal with streams of 
input and the type ostream to deal with streams of output. We have used the 
standard istream called cin and the standard ostream called cout, so we know 
the basics of how to use this part of the standard library (usually called the 
iostream library) . 

An ostream 

Turns values of various types into character sequences 

Sends those characters "somewhere" (such as to a console, a file, the 
main memory, or another computer) 
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We can represent an ostream graphically like this: 

Values of various types Character sequences 

"Somewhere" 

The buffer is a data structure that the ostream uses internally to store the data you 
give it while communicating with the operating system. If you notice a "delay" be· 
tween your writing to an ostream and the characters appearing at their destination, 
it's usually because they are still in the buffer. Buffering is important for perfonn· 
ance, and performance is important if you deal with large amounts of data. 

An istream 

Turns character sequences into values of various types 

Gets those characters from somewhere (such as a console, a file, the 
main memory, or another computer) 

We can represent an istream graphically like this : 

Values of various types Character sequences 

"Somewhere" 

As with an ostream, an istream uses a buffer to communicate with the operating 
system. With an istream, the buffering can be quite visible to the user. When you 
usc an istream that is attached to a keyboard, what you type is left in the buffer 
until you hit Enter (return/newline) and you can use the erase (Backspace) key 
"to change your mind'' (until you hit Enter) . 
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One o f  the major uses o f  output is to produce data for humans to read. 
Think of email messages, scholarly articles, web pages, billing records, business 
reports, contact lists, tables of contents, equipment status readouts, etc. There
fore, ostreams provide many features for formatting text to suit various tastes. 
Similarly, much input is written by humans or is formatted to make it easy for 
humans to read it. Therefore, istreams provide features for reading the kind of 
output produced by ostreams. We'll discuss formatting in §1 1 .2 and how to read 
non-character input in §1 1 .3.2. Most of the complexity related to input has to do 
with how to handle errors. To be able to give more realistic examples, we'll start 
by discussing how the iostream model relates to flies of data. 

1 0.3 Files 

343 

We typically have much more data than can fit in the main memory of our com· • 1 
puter, so we store most of it on disks or other large-capacity storage devices. Such U 
devices also have the desirable property that data doesn't disappear when the 
power is turned off - the data is persistent. At the most basic level, a file is simply 
a sequence of bytes numbered from 0 upward: 

0: 1 :  2: 

I .j.. [����������������....__! ....L-...-L.--1 

A file has a format; that is, it has a set of rules that determine what the bytes 
mean. For example, if we have a text file, the frrst 4 bytes will be the frrst four 
characters. On the other hand, if we have a flie that uses a binary representation 
of integers, those very same frrst 4 bytes will be taken to be the (binary) represen· 
tation of the first integer (see §1 1 .3 .2). The format serves the same role for flies 
on disk as types serve for objects in main memory. We can make sense of the bits 
in a flie if (and only if) we know its format (see §1 1 .2-3).  

For a flie, an ostream converts objects in main memory into streams of bytes • 1 
and writes them to disk. An istream does the opposite; that is, it takes a stream of U 
bytes from disk and composes objects from them: 

Flies iostreams Objects 
(sequences of bytes) (of various types) 

Most of the time, we assume that these "bytes on disk" are in fact characters in 
our usual character set. That is not always so, but we can get an awfully long way 
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with that assumption, and other representations are not that hard to deal with. 
We also talk as if all files were on disks (that is, on rotating magnetic storage) . 
Again, that's not always so (think of flash memory) , but at this level of program
ming the actual storage makes no difference. That's one of the beauties of the ftle 
and stream abstractions. 

To read a file, we must 

1 .  Know its name 

2. Open it (for reading) 

3. Read in the characters 

4. Close it (though that is typically done implicitly) 

To write a ftle, we must 

1 .  Name it 

2. Open it (for writing) or create a new ftle of that name 

3. Write out our objects 

4. Close it (though that is typically done implicitly) 

We already know the basics of reading and writing because an ostream attached 
to a ftle behaves exactly as cout for what we have done so far, and an istream at· 
tached to a file behaves exactly as cin for what we have done so far. We 'II present 
operations that can only be done for ftles later (§1 1 .3 .3), but for now we'll just 
see how to open ftles and then concentrate on operations and techniques that 
apply to all ostreams and all istreams. 

1 0.4 Opening a file 
If you want to read from a file or write to a file you have to open a stream specif
ically for that ftle. An ifstream is an istream for reading from a ftle, an ofstream is 
an ostream for writing to a file, and an fstream is an iostream that can be used 
for both reading and writing. Before a file stream can be used it must be attached 
to a ftle. For example: 

cout << "Please enter input file name: "; 
string name; 
cin >> name; 
ifstream ist(name.c_str()); II ist is an input stream for the ii le named name 
if ( l ist) error(" can't open input file ",name); 

Defming an ifstream with a name string opens the file of that name for reading. 
The function c_str() is a member of string that produces a low-level C-style string 
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from a C++ string. Such C-stylc strings are required by many system interfaces. 
l11c test of !ist checks that the file was properly opened. After that, we can read 61\ 
from the me exactly as we would from any other istream. For example, assuming U 
that the input operator, >>, was defined for a type Point, we could write 

vector<Point> points; 
Point p; 
while (ist>>p) points.push_back(p); 

Output to mes is handled in a similar fashion by ofstreams. For example: 

cout << "Please enter name of output file: "; 
string oname; 
cin >> oname; 
ofstream ost(oname.c_str()); II ost is an output stream for a ii le named name 
if ( !ost) error(" can't open output file " ,oname); 

Defming an ofstream with a name string opens the me with that name for writ
ing. The test of !ost checks that the me was properly opened. After that, we can 
write to the file exactly as we would to any other ostream. For example: 

for (int i=O; i<points.size(); ++i) 
ost << '(' << points[i].x << ',' << points[i].y << ")\n";  

When a me stream goes out of  scope its associated me is closed. When a file is 
closed its associated buffer is "flushed"; that is, the characters from the buffer arc 
written to the file. 

It is usually best to open mes early in a program before any serious computa
tion has taken place. After all, it is a waste to do a lot of work just to fmd that we 
can't complete it because we don't have anywhere to write our results. 

Opening the me inlplicitly as part of the creation of an ostream or an istream 
and relying on the scope of tl1e stream to take care of closing the me is the ideaL 
For example: 

void fill_from_file(vector<Point>& points, string& name) 
{ 

ifstream ist(name.c_str()); II open file for reading 
if ( ! ist) error(" can't open input file " ,name); 
II . . .  use ist . . .  
II the ii le is implicit ly closed when we leave the function 
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You can also perform explicit open() and close() operations (§B.7. 1 ) .  However, 
relying on scope minimizes the chances of someone trying to use a ftle stream be· 
fore it has been attached to a stream or after it was closed. For example: 

ifstream ifs; 
II . . .  
ifs >> foo; II won't succeed: no ii le openPd for ifs 
II . . .  
ifs.open(name,ios_base: : in); II open ii le named name for reading 
II . . .  
ifs.close(); II c lose file 
II . . .  
ifs >> bar; II won't succeed: ifs' ii le was closed 
II . . .  

In real-world code the problems would typically be much harder to spot. Fortu· 
nately, you can't open a ftle stream a second time without frrst closing it. For 
example: 

fstream fs; 
fs.open("foo", ios_base: : in) ; 
II close() missing 
fs.open("foo",  ios_base: :out); 
if (fs) error("impossible"); 

II open ior input 

II won't succeed: iis is a l ready open 

Don't forget to test a stream after opening it. 
Why would you use open() or close() explicitly? Well, occasionaUy the life

time of a connection to a ftle isn't conveniently limited by a scope so you have to. 
But that's rare enough for us not to have to worry about it here. More to the 
point, you'll find such use in code written by people using styles from languages 
and libraries that don't have the scoped idiom used by iostreams (and the rest of 
the C++ standard library) .  

As we'll see in Chapter 1 1 , there is much more to ftles, but for now we know 
enough to use them as a data source and a destination for data. That'll allow us 
to write programs that would be unrealistic if we assumed that a user had to di
rectly type in all the input. From a programmer's point of view, a great advantage 
of a ftle is that you can repeatedly read it during debugging until your program 
works correctly. 

1 0.5 Reading and writing a file 
Consider how you might read a set of results of some measurements from a file 
and represent them in memory. lltis might be the temperature readings from a 
weather station: 
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0 60.7 
1 60.6 
2 60.3 
3 59.22 

This data file contains a sequence of (hour of day,tcmperature) pairs. The hours 
arc numbered 0 to 23 and the temperatures are in Fahrenheit. No further formatting 
is assumed; that is, the file does not contain any special header information (such as 
where the reading was taken), units for the values, punctuation (such as parenthe
ses around each pair of values), or termination indicator. This is the simplest case. 

We could represent a temperature reading by a Reading type: 
struct Reading { II a temperature reading 

}; 

int hour; II hour after midnight 10:2 3 1  
double temperature; II in Fahrenheit 
Reading(int h, double t) : hour(h), temperature(t) { }  

Given that, we could read like this :  
vector<Reading> temps; II store the readings here 
int hour; 
double temperature; 
while (ist >> hour >> temperature) { 

if (hour < 0 11 23 <hour) error(" hour out of range"); 
temps.push_back(Reading(hour,temperature) ); 

This is a typical input loop. The istream called ist could be an input file stream 
(ifstream) as shown in the previous section, (an alias for) the standard input 
strean1 (cin), or any other kind of istream. For code like this, it doesn't matter ex
actly from where the istream gets its data. All that our program cares about is 
that ist is an istream and that the data has the expected format. The next section 
addresses the imeresting question of how to detect errors in the input data and 
what we can do after detecting a format error. 

W1iting to a flle is usually simpler than reading from one. Again, once a 
strean1 is initialized we don't have to know exactly what kind of stream it is. In 
particular, we can use the output flle stream (ofstream) from the section above 
just like any other ostream. For example, we might want to output the readings 
with each pair of values in parentheses : 

for (int i=O; i<temps.size(); ++i) 
ost << '(' << temps[i) .hour << ',' << temps[i] .temperature << ")\n"; 
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The resulting program would then be reading the original temperature reading 
file and producing a new file with the data in (hour,temperature) format. 

Because the file streams automatically close their flies when they go out of 
scope, the complete program becomes 

#include "std_lib_facilities .h" 

struct Reading { II a temperature read ing 

} ; 

int hour; II hour after midn ight 10 :23 1  
double temperature; II in Fahren heit 
Reading(int h, double t) : hour(h), temperature(t) { } 

int main() 
{ 

cout << "Please enter input file name: ";  
string name; 
cin >> name; 
ifstream ist(name.c_str()); II ist reads irom the ii le named "name" 
if ( ! ist) error("can1t open input file ",name); 

cout << "Please enter name of output file: " ;  
cin >> name; 
ofstream ost(name.c_str()); II ost writes to a file named "name" 
if ( !ost) error("can1t open output file ",name); 

vector<Reading> temps; II store the readings here 
int hour; 
double temperature; 
while (ist >> hour >> temperature) { 

if (hour < 0 1 1 23 <hour) error("hour out of range"); 
temps.push_back(Reading(hour,temperature)); 

for (int i=O; i<temps.size(); ++i) 
ost << 1(1 << temps[i].hour << 1, 1 

<< temps[i] .temperature << " )\n"; 

1 0.6 1/0 error handling 
When dealing with input we must expect errors and deal with them. What kind 
of errors? And how? Errors occur because humans make mistakes (misunder-
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standing instructions, mistyping, letting the cat walk on the keyboard, etc.), be
cause files fail to meet specifications, because we (as programmers) have the 
wrong expectations, etc. The possibilities for input errors are limitless ! However, 
an istream reduces all to four possible cases, called the stream state: 

Stream states 

good() 

eof() 

fail() 

bad() 

The operations succeeded. 

We hit end of input ("end of file"). 

Something unexpected happened. 

Something unexpected and serious happened. 
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Unfortunately, the distinction between fail() and bad() is not precisely defined ., 
and subject to varying opinions among programmers defming 110 operations for U 
new types. However, the basic idea is simple: If an input operation encounters a 
simple format error, it lets the stream fail(), assuming that you (the user of our 
input operation) might be able to recover. If, on the other hand, something really 
nasty, such as a bad disk read, happens, the input operation lets the stream go 
bad(). assuming that there is nothing much you can do except to abandon the at
tempt to get data from that stream. This leaves us with this general logic: 

int i =  0; 
cin >> i; 
if ( !cin) { II we get herl' !only) if  an input operation fa i led 

if (cin.bad()) error("cin is bad"); II stream corrupted: let's get out of lwre! 
if (cin .eof()) { 

II no more input 
II this is often how we want a sequence of input oper<1tions to end 

if (cin.fail()) { II stream encountered something unexpected 
cin.clear(); // make ready for more input 
II somehow recover 

The !cin can be read as "cin is not good" or "Something went wrong with cin" 
or "The state of cin is not good()." It is the opposite of "The operation suc
ceeded." Note the cin.clear() where we handle fail(). When a stream has failed, 
we might be able to recover. To try to recover, we explicitly take the stream out of 
the fail() state, so that we can look at characters from it again; clear() does that -
after cin.clear() the state of cin is good(). 
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Here is an example of how we might use the stream state. Consider how to 
read a sequence of integers that may be terminated by the character * or an "end 
of ftle'' (Ctri+Z on Wmdows, Ctri+D on Unix) into a vector. For example: 

1 2 3 4 5 *  

This could be done using a function like this: 

void fill_vector(istream& ist, vector<int:>& v, char terminator) 
II read integers irom ist in to v unt i l  we reach eof() or terminator 

int i =  0; 
while (ist >> i) v.push_back(i); 
if (ist.eof()) return; // fine: we found the end of fi le 

if (ist.bad()) error("ist is bad"); II stream corrupted; let's get out oi here! 
if (ist.fail()) { II clean up the mess as best we can and report the problem 

ist.clear(); II c lear stream state, 
II so that we can look for terminator 

char c; 
ist>>c; II read a cha racter, hopciu l ly terminator 
if (c I= terminator) { II unexpected character 

ist.unget(); II put that character back 
ist.clear(ios_base: :  failbit); II set the state to iai iO  

Note that when we didn't fmd the terminator. we still returned. After all, we may 
have collected some data and the caller of fill_ vector() may be able to recover from 
a fail(). Since we cleared the state to be able to examine the character, we have to 
set the stream state back to fail(). We do that with ist.clear(ios_base: :  fail bit). Note 
this potentially confusing use of clear(): clear() with an argument actually sets the 
iostream state flags {bits) mentioned and (only) clears flags not mentioned. By set· 
ting the state to fail(), we indicate that we encountered a format error, rather than 
something more serious. We put the character back into ist using unget(): the 
caller of fill_ vector() might have a use for it. l11e unget() function is a shoner ver· 
sian of putback() that relies on the stream remembering which character it last 
produced, so that you don't have to mention it. 

If you called fill_ vector() and want to know what terminated the read, you 
can test for fai l() and eof(). You could also catch the runtime_error exception 
thrown by error(), but it is understood that getting more data from istream in the 
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bad() state is unlikely. Most callers won't bother. This implies that in almost all . \  
cases the only thing we want to do if we encounter bad() is to throw an excep· U 
tion. To make life easier. we can teU an istream to do that for us: 

II make ist throw if it goes bad 
ist.exceptions(ist.exceptionsOiios_base: : bad bit); 

The notation may seem odd, but the effect is simply that from that statement on
ward, ist will throw the standard library exception ios_base: : failure if it goes 
bad(). We need to execute that exceptions() call only once in a program. That'U 
allow us to simplify aU input loops by ignoring bad(): 

void fill_ vector(istream& ist, vector<int>& v, char terminator) 
II re,1d integers irom ist i nto v unti l  we reach eof() or term inator 

int i =  0; 
while (ist >> i) v.push_back(i); 
if (ist.eof()) return; II fine: we found the end of fi le 

II not good() and not bad() and not eoi(), ist must be fai l () 
ist.clear(); II clear stream state 
char c; 
ist>>c; II read a character, hopeiul ly  terminator 

if (c I= terminator) { II ouch: not the term inator, so we must iai l  
ist.unget(); II maybe my cal ler can use that character 
ist.clear(ios_base: : failbit); II set the state to fail() 

The ios_base that appears here and there is the part of an iostream that holds 
constants such as badbit, exceptions such as failure, and other useful stuff. You 
refer to them using the : :  operator, for example, ios_base: : badbit (see §10.6 and 
§B.7.2) . We don't plan to go into the iostream library in that much detail; it could 
take a whole course to explain all of iostreams. For example, iostreams can han
dle different character sets, implement different buffering strategies, and also con
tain facilities for formatting monetary amounts in various languages; we once 
had a bug report relating to the formatting of Ukrainian currency. You can read 
up on whatever bits you need to know about if you need to; see The C++ Pro
grmnmit�g Language by Stroustrup, and Langer, S!o.tulard C++ IOStreams and Locales. 

You can test an ostream for exactly the san1e states as an istream: good(), 
fail(), eof(), and bad(). However, for the kinds of programs we write here, errors 
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are much rarer for output than for input, so we don't do it as often. For programs 
where output devices have a more significant chance of being unavailable, filled, 
or broken, we would test after each output operation just as we test after each 
input operation. 

1 0.7 Reading a single value 
So, we know how to read a series of values ending with the end of ftle or a tenni· 
nator. We'U show more examples as we go along, but let's just have a look at the 
ever popular idea of repeatedly asking for a value until an acceptable one is en· 
tered. This example will aUow us to examine several common design choices. 
We'U discuss these alternatives through a series of alternative solutions to the 
simple problem of "how to get an acceptable value from the user." We start with 
an unpleasantly messy obvious "first try" and proceed through a series of im· 
proved versions. Our fundamental assumption is that we are dealing with inter· 
active input where a human is typing input and reading the messages from the 
program. Let's ask for an integer in the range 1 to 10 (inclusive): 

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n"; 
int n = 0; 
while (cin>>n) { II read 

if (1<=n && n<=10) break; II check range 
cout << "Sorry " 

<< n << " is not in the [1 : 10] range; please try again\n"; 

This is pretty ugly, but it "sort of works." If you don't like using the break (§A.6). 
you can combine the reading and the range checking: 

cout << "Please enter an integer in the range 1 to 10 (inclusive): \n"; 
int n = 0; 
while (cin>>n && ! (1<=n && n<=10)) II read and check range 

cout << "Sorry " 
<< n << " is not in the [1 : 10] range; please try again\n"; 

However, that's just a cosmetic change. Why does it on1y "sort of work"? It 
works if the user carefully enters integers. If the user is a poor typist and hits t 
rather than 6 (t is  just below 6 on most keyboards) ,  the program wiU leave the 
loop without changing the value of n, so that n will have an out-of·range value. 
We wouldn't caU that quality code. A joker (or a diligent tester) might also send 
an "end of file" from the keyboard (Ctri+Z on a Wmdows machine and Ctri+D 
on a Unix machine) . Again, we'd leave the loop with n out of range. In other 
words, to get a robust read we have to deal with three problems: 
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l .  The user typing an out-of·range value 

2. Getting no value (end of ftle) 

3. l11e user typing something of the wrong type (here, not an integer) 

What do we want to do in those three cases? That's often the question when 
writing a program: what do we really want? Here, for each of those three errors , 
we have three alternatives: 

1 .  Handle the problem in the code doing the read. 

2. l11row an exception to let someone else handle the problem (potentially 
terminating the program). 

3.  Ignore the problem. 
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As it happens, those are three very common altematives for dealing with an error • , 

condition. 11ms, this is a good example of the kind of thinking we have to do U 
about errors. 

It is tempting to say that the third alternative, ignoring the problem, is always 
unacceptable, but that would be patronizing. If I'm writing a trivial program for 
my own use, I can do whatever I like, including forgetting about error checking 
with potential nasty results. However, for a program that I might want to use for 
more than a few hours after I wrote it, I would probably be foolish to leave such 
errors, and if I want to share that program with anyone, I should not leave such 
holes in the error checking in the code. Please note that we deliberately use the 
first-person singular here; "we" would be misleading. We do not consider alter
native 3 acceptable even when just two people are involved. 

The choice between alternatives 1 and 2 is genuine; that is, in a given pro
gram there can be good reasons to choose either way. Frrst we note that in most 
programs there is no local and elegant way to deal with no input from a user sit
ting at the keyboard: after the input stream is closed, there isn't much point in 
asking the user to enter a number. We could reopen cin (using cin.clear()), but 
the user is unlikely to have closed that stream by accident (how would you hit 
Ctri+Z by accident?). If the program wants an integer and fmds "end of ftle," the 
part of the program trying to read the integer must usually give up and hope that 
some other part of the program can cope; that is, our code requesting input from 
the user must throw an exception. Tills implies that the choice is not between 
throwing exceptions and handling problems locally, but a choice of which prob
lems (if any) we should handle locally. 

1 0.7 .1 Breaking the problem into manageable parts 
Let's try handling both an out-of-range input and an input of the wrong type 
locally: 

cout << "Please enter an integer in the range 1 to 10 (inclusive) :\n"; 
int n = 0; 
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while (true) { 
cin >> n; 
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if (cin) { II we got an i nteger; now check i t  
if (1<=n && n<=10) break; 
cout << "Sorry " 

<< n << " is not in the [1 : 10] range; please try again\n"; 

else if (cin.fail()) { II we found something that wasn't an i nteger 
II set the state b<Kk to good( ); cin.clear(); 
II we want to look .11 the characters 

cout << "Sorry, that was not a number; please try again\n"; 
char ch; 
while (cin>>Ch && ! isdigil(ch)) ; II throw away non-digits 
if (!cin) error("no input"); II we didn't iind a digit: give up 
cin .unget(); II put the digit b<1ck, so that we can n.'<ld the number 

else { 
error("no input"); II eof or bad: give up 

II ii we get here n is in 1 1 : 1 0 1 

This is messy, and rather long-winded. In fact, it is so messy that we could not 
recommend that people write such code each time they needed an integer from a 
user. On the other hand, we do need to dea1 with the potentia] errors because 
people do make them, so what can we do? The reason that the code is messy is 
that code dea1ing with severa1 different concerns is all mixed together: 

Reading va1ues 

Prompting the user for input 

Writing error messages 

Skipping past "bad" input characters 

Testing the input against a range 

The way to make code clearer is often to separate logically distinct concerns into 
separate functions. For example, we can separate out the code for recovering after 
seeing a "bad" (i.e., unexpected) character: 

void skip_to_int() 
{ 

if (cin.fail()) { 
cin.clear(); 
char ch; 

II we found someth ing that wasn't an integer 
II we'd l i ke to look at the characters 
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while (cin>>ch){ II throw away non-digits 
if (isdigil(ch)) { 

cin.unget(); II put the d igit back, 
II so t hat we can read the number 

return; 

error("no input"); II eof or bad: give up 

Given the skip_to_int() "utility function," we can write 

cout << "Please enter an integer in the range 1 to 10 (inclusive) :\n"; 
int n = 0; 
while (true) { 

if (cin>>n) { II we got an integer; now check it 
if (1<=n && n<=10) break; 
cout << "Sorry " << n 

<< " is not in the [1 : 10] range; please try again\n "; 

else { 
cout << "Sorry, that was not a number; please try again\n";  
skip_to_int(); 

II ii we get here n is in 1 1 : 1 0 1 
This code is better, but it is still too long and too messy to use many times in a 
program. We'd never get it consistently right, except after (too) much testing. 

What operation would we really like to have? One plausible answer is "a 
function that reads an int, any int, and another that reads an int of a given range'': 

int get_int(); II read ,m int from cin 
int get_int(int low, int high); II read an int in l low:high l from cin 

If we had those, we would at least be able to use them simply and correctly. They 
are not that hard to write: 

int get_int() 
{ 

int n = 0; 
while (true) { 
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if (cin >> n) return n;  
cout << "Sorry, that was not a number; please try again\n"; 
skip_to_int(); 

Basically, get_int() stubbornly keeps reading until it finds some digits that it can 
interpret as an integer. If we want to get out of get_int(), we must supply an inte
ger or end of ftle (and end of ftle will cause get_int() to throw an exception) .  

Using that general get_int(), we can write the range-checking get_int(): 

int get_int(int low, int high) 
{ 

cout << "Please enter an integer in the range " 
<< low << " to " << high << 11 (inclusive) :\n"; 

while (true) { 
int n = get_int(); 
if (low<=n && n<=high) return n; 
cout << "Sorry " 

<< n << 11 is not in the [11 << low << 1 :  1 << high 
<< 11] range; please try again\n"; 

This get_int() is as stubborn as the other. It keeps getting ints from the non-range 
get_int() until the int it gets is in the expected range. 

We can now reliably read integers like this : 

int n = get_int(1 , 10); 
cout << "n: " << n << endl; 

int m = get_int(2,300); 
cout << "m: " << m << endl; 

Don't forget to catch exceptions somewhere, though, if you want decent error 
messages for the (probably rare) case when get_int() real1y couldn't read a num· 
ber for us. 

1 0.7.2 Separating dialog from function 
The get_int() functions stil1 mix up reading with writing messages to the user. l11at's 
probably good enough for a simple program, but in a large progran1 we might want 
to vary the messages written to the user. We might want to cal1 get_int() like this: 
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int strength = get_int(1 , 10, "enter strength", "Not in range, try again"); 
cout << "strength: " << strength << endl; 

int altitude = get_int(O,SOOOO, 
"Please enter altitude in feet", 
"Not in range, please try again "); 

cout << "altitude: " << altitude << "f above sea level\n";  

We could implement that like this : 

int get_int(int low, int high, const string& greeting, const string& sorry) 
{ 

cout << greeting << " : [" << low << 1 :  1 << high << "]\n"; 
while (true) { 

int n = geUnt(); 
if (low<=n && n<=high) return n ;  
cout << sorry << " :  [ "  << low << 1 : 1  << high << "]\n"; 

It is hard to compose arbitrary messages, so we "stylized" the messages. That's 
often acceptable, and composing really flexible messages, such as are needed to 
support many natural languages (e.g., Arabic, Bengali, Chinese, Danish, English, 
and French), is not a task for a novice. 

Note that our solution is still incomplete: the get_int() without a range still 
"blabbers." The deeper point here is that "utility functions" that we use in many 
parts of a program shouldn't have messages "hardwired" into them. Further, li
brary functions that arc meant for use in many programs shouldn't write to the 
user at all - after all, the library writer may not even know that the program in 
which the library runs is used on a machine with a human watching. That's one 
reason that our error() function doesn't just write an error message (§5.6.3) ;  in 
general, we wouldn't know where to write. 

1 0.8 User-defined output operators 
Defining the output operator, <<, for a given type is typically trivial. The main 
design problem is that different people might prefer the output to look different, 
so it is hard to agree on a single format. However, even if no single output format 
is good enough for all uses, it is often a good idea to define << for a user-defined 
type. That way, we can at least trivially write out objects of the type during de
bugging and early development. Later, we might provide a more sophisticated << 
that allows a user to provide formatting information. Also, if we want output that 
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looks different from what a << provides, we can simply bypass the << and write 
out the individual parts of the user-defined type the way we happen to like them 
in our application. 

Here is a simple output operator for Date from §9.8 that simply prints the 
year, month, and day conuna·separated in parentheses : 

oslream& operator<<(oslream& os, const Dale& d) 
{ 

return os << 1 (1 << d. year() 
<< 1,1 << d. month() 
<< I' I << d.day{) << 1 ) 1 ; 

This will print August 30, 2004, as (2004,8,30). This simple list-of-elements repre
sentation is what we tend to use for types with a few members unless we have a 
better idea or more specific needs. 

In §9.6, we mention that a user-defined operator is handled by calling its 
function. Here we can see an example of how that's done. Given the definition of 
<< for Date, the meaning of 

coul << d1 ; 

where d1 is a Dale is the call 
operalor<<(coul,d1 ); 

Note how operator<<() takes an oslream& as its frrst argument and returns it 
again as its return value. That's the way the output stream is passed along so that 
you can "chain" output operations. For example, we could output two dates like 
this: 

cout << d1  << d2; 

1ltis wiU be handled by frrst resolving the first << and after that the second <<: 

coul << d1 << d2; II means operator<<(cout ,d l ) << d2;  
II means operator<<(operator<<(cout,d l ) ,d2);  

That is, frrst output d1 to coul and then output d2 to the output stream that is the 
result of the first output operation. In fact, we can use any of those three variants 
to write out d1 and d2. We know which one is easier to read, though. 
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1 0. 9 User-defined input operators 
Defining t.he input operator, >>, for a given type and input format is basically an 
exercise in error handling. It can therefore be quite tricky. 

Here is a simple input operator for the Date from §9.8 that will read dates as 
written by the operator << defined above: 

istream& operalor>>(istream& is, Date& dd) 
{ 

inl y, m, d; 
char ch1 , ch2, ch3, ch4; 
is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4; 
if (! is) return is; 
if (ch1 !='(' II ch21=' ,' II ch3!=' , ' II ch41=') ' )  { II oops: format error 

is.clear(ios_base: : failbit); 
return is; 

dd = Date(y,Date: :Monlh(m),d); II updc1te del 
return is; 

This >> will read items like (2004,8,20) and try to make a Dale out of those three 
integers. As ever, input is harder to deal with than output. There is simply more 
that can - and often does - go wrong with input than with output. 

If this >> doesn't fmd something in the ( integer , i11leger , integer ) format, it will 
leave the stream in a not-good state (fail, eof, or bad) and leave the target Date 
unchanged. The clear() member function is used to set the state of the istream. 
Obviously, ios_base: :  fail bit puts the stream into the fail() state. Leaving the tar
get Date unchanged in case of a failure to read is the ideal; it tends to lead to 
cleaner code. The ideal is for an operator>>() not to consume (throw away) any 
characters that it didn't use, but that's too difficult in this case : we might have 
read lots of characters before we caught a format error. As an example, consider 
(2004, 8, 30}. Only when we see the final } do we know that we have a format 
error on our hands and we caru1ot in general rely on putting back many charac
ters. One character unget() is all that's universally guaranteed. If this 
operator>>() reads an invalid Dale, such as (2004,8,32), Date's constructor will 
throw an exception, which will get us out of this operator>>(). 

1 0.1 0 A standard input loop 
In §10.5, we saw how we could read and write ftles. However, that was before we 
looked more carefully at errors (§10.6) , so the input loop simply assumed that we 
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could read a file from its beginning until end of ftle. That can be a reasonable as
sumption, because we often apply separate checks to ensure that a file is valid. 
However, we often want to check our reads as we go along. Here is a general 
strategy, assuming that ist is an istream: 

My_type var; 
while (isl>>var) { II read unt i l  end oi ii le 

II maybe check that var is va l id 
II do something with var 

II we can rarely recover from bad; don't t ry un less you rea l ly have to : 
if (ist.bad()) error("bad input stream"); 
if (ist.fail()) { 

II was it an acceptable terminator? 

II carry on: we found end of ii le 

That is, we read a sequence of values into variables and when we can't read any 
more values, we check the stream state to see why. As in §10.6, we can in1prove 
this a bit by letting the istream throw an exception of type failure if it goes bad. 
That saves us the bother of checking for it all the time: 

II somewhere: make ist throw an exception if it goes bad: 
ist.exceptions(ist.exceptionsOiios_base: : badbit) ;  

We could also decide to designate a character as a terminator: 

My_type var; 
while (isl>>var) { II read unt i l  end of fi le 

II maybe check that var is val id 
II do something with var 

if (ist.fail()) { II use ' I ' as terminator and/or separator 
isl.clear(); 
char ch; 
if ( ! (isl>>ch && ch=='l')) error("bad termination of input"); 

II carry on: we found end of fi le or a terminator 

If we don't want to accept a terminator - that is, to accept only end of file as the 
end; we simply delete the test before the call of error(). However, terminators are 
very useful when you read files with nested constructs, such as a ftle of monthly 
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readings containing daily readings, containing hourly readings, etc., so we'U keep 
considering the possibility of a terminating character. 

Unfortunately, that code is still a bit messy. In particular, it is tedious to re· 
peat the temunator test if we read a lot of ftles. We could write a function to deal 
with that: 

II somewhere: make ist throw ii it goes bad: 
ist.exceptions(ist.except ionsOiios_base : :bad bit); 

void end_of_loop(istream& ist, char term, const string& message) 
{ 

if (ist.fail()) { II use term as terminator and/or separator 
ist.clear(); 
char ch; 
if (isl>>eh && ch==term) return; II a l l  is iine 
error( message); 

This reduces the input loop to 

My_type var; 
while (isl>>var) { II read un t i l  end of fi le 

II maybe check that var is va l id 

II do something with var 

end_of_loop(ist,' l ',"bad termination of file"); II test ii  we can cont inue 

II carry on: we found end of ii le or a terminator 

The end_of_loop() does nothing unless the stream is in the fail() state. We con
sider that simple enough and general enough for many purposes. 

1 0.1 1 Reading a structured file 
Let's try to use this "standard loop" for a concrete example. As usual, we'U use the 
example to illustrate widely applicable design and programming techniques . As
sume that you have a file of temperature readings that has been structured like this: 

A ftle holds years (of months of readings) . 

A year starts with { year foUowed by an integer giving the year, such 
as 1900, and ends with } . 
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A year holds months (of days of readings) .  

A month starts with { month foUowed by a three-letter month name, 
such as jan, and ends with }. 

A reading holds a time and a temperature. 

A reading starts with a ( foUowed by day of the month, hour of the 
day, and temperature and ends with a ). 

For example: 

{ year 1990 } 
{year 1991 { month jun }} 
{ year 1992 { month jan ( 1 0 61 .5) } {month feb (1 1 64) (2 2 65.2) } }  
{year 2000 

{ month feb (1 1 68 )  (2 3 66.66 ) ( 1 0 67.2)} 
{month dec (1 5 15 -9.2 ) (15 14 -8.8) (14 0 -2) } 

This format is somewhat peculiar. Ftle formats often are. There is a move toward 
more regular and hierarchically structured ftles (such as HTML and XM L ftles) 
in the industry, but the reality is still that we can rarely control the input format 
offered by the files we need to read. The files are the way they are, and we just 
have to read them. If a fmmat is too awful or files contain too many errors, we 
can write a format conversion program to produce a format that suits our main 
program better. On the other hand, we can typically choose the in-memory rep
resentation of data to suit our needs, and we can often pick output formats to suit 
needs and tastes. 

So, let's assume that we have been given the temperature reading format 
above and have to live with it. Fortunately, it has self-identifying components, 
such as years and months (a bit like IITM L or XML) .  On the other hand, the 
format of individual readings is somewhat unhelpful. For example, there is no in
formation that could help us if someone flipped a day-of-the-month value with an 
hour of day or if someone produced a file with temperatures in Celsius and the 
program expected them in Fahrenheit or vice versa. We just have to cope. 

1 0.1 1 . 1 In-memory representation 
How should we represent this data in memory? The obvious first choice is three 
classes, Year, Month, and Reading, to exactly match the input. Year and Month 
arc obviously useful when manipulating the data; we want to compare tempera· 
tures of different years, calculate monthly averages, compare different montl1s of 
a year, compare the same month of different years, match up temperature read
ings witl1 sunshine records and humidity readings. etc. Basically, Year and Month 



I 0 . 1 I R E A D I N G  A S T R U C T U R E D  F I L E  

match the way we think about temperatures and weather in general : Month 
holds a month's worth of information and Year holds a year's worth of informa· 
tion. But what about Reading? That's a low-level notion matching some piece of 
hardware (a sensor) . The data of a Reading (day of month, hour of day. tempera· 
turc) is "odd" and makes sense only within a Month. It is also unstructured: we 
have no promise that readings come in day-of-the-month or hour-of-the-day 
order. Basically, whenever we want to do anything of interest with the readings 
we have to sort them. 

For representing the temperature data in memory, we make these assumptions: 

If we have any readings for a month, then we tend to have lots of read
ings for that month. 

If we have any readings for a day, then we tend to have lots of readings 
for that day. 

When that's the case, it makes sense to represent a Year as a vector of 12 Months, 
a Month as a vector of about 30 Days, and a Day as 24 temperatures (one per 
hour). That's simple and easy to manipulate for a wide variety of uses. So, Day, 
Month, and Year are simple data structures, each with a constructor. Since we 
plan to create Months and Days as part of a Year before we know what tempera· 
turc readings we have, we need to have a notion of "not a reading" for an hour of 
a day for which we haven't (yet) read data. 

const int not_a_reading = -7777; II less than absolute zero 

Similarly, we noticed that we often had a month without data, so we introduced 
the notion "not a month" to represent that directly, rather than having to search 
through all the days to be sure that no data was lurking somewhere: 

const int not_ a_ month = -1 ; 

The three key classes then become 

struct Day { 
vector<double> hour; 
Day(); II init ial ize hours to "not a reading" 

}; 

Day: : Day() 
: hour(24) 

for (int i =  0; i<hour.size(); ++i) hour[i]=not_a_reading; 
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struct Month { II a month of temperature readings 

}; 

int month; II 10: 1 1 1  January is 0 
vector<Day> day; II 1 1  :3 1 1  one vector of readings per clay 
Month() II at most 3 1  days in a month (clay [OI wasted) 

:month(not_a_month), day(32) { } 

strucl Year { II a year oi temperature readings, organ ized by month  

} ; 

int year; II pos it ive == A.D. 
vector<Month> month; II [0: 1 1 1  January is 0 
Year() :month(12) { } II 1 2  months in a year 

Each class is basically a simple vector of "parts," and Month and Year have an 
identifying member month and year, respectively. 

There are several "magic constants" here (for example, 24, 32, and 12) .  We 
try to avoid such literal constants in code. These are pretty fundamental (the 
number of months in a year rarely changes) and will not be used in the rest of the 
code. However, we left them in the code primarily so that we could remind you 
of the problem with "magic constants"; symbolic constants are almost always 
preferable (§7.6 . 1 ) .  Using 32 for the number of days in a month definitely re· 
quires explanation; 32 is obviously "magic" here. 

1 0. 1 1 .2 Reading structured values 
The Reading class will be used only for reading input and is even simpler: 

struct Reading { 
int day; 
int hour; 
double temperature; 

} ; 

istream& operator>>(istream& is, Reading& r) 
II read a temperature reading irom is i nto r 
II format: ( 3 4 9.7 ) 
II check iormat, but don' t  bother with data val idi ty 
{ 

char ch1 : 
if (is>>ch1 && ch1 !='(') { // cou ld i t  be a Read ing? 

is.unget(); 
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is.clear(ios_base: : fail bit); 
return is; 

char ch2; 
int d; 
inl h; 
double I; 
is >> d >> h >> I >> ch2; 
if ( l is II ch2!=') ' )  error("bad reading"); II messed-up reading 
r.day = d; 
r.hour = h; 
r.temperalure = I; 
return is; 

Basically, we check if the format begins plausibly, and if it doesn't we set the ftle 
stale to fail() and return. This allows us to try to read the information in some 
other way. On the other hand, if we fmd the format wrong after having read 
some data so that there is no real chance of recovering, we bail out with error(). 

l11e Month input operation is much the same, except that it has to read an ar
bitrary number of Readings rather than a fixed set of values (as Reading's >> did) : 

istream& operalor>>(istream& is, Month& m) 
II read a month from is into m 
II format: ( month feb . . . I 
{ 

char ch = 0; 
if (is >> ch && ch !='{') { 

is.unget() ; 
is.clear(ios_base: : failbit); II we fa i led to read a Month 
return is; 

string month_marker; 
string mm; 
is >> month_marker >> mm; 
if ( ! is II monlh_markerl="month") error("bad start of month"); 
m.month = month_to_int(mm); 

Reading r; 
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int duplicates = 0; 
int invalids = 0; 
while (is >> r) { 

if (is_valid(r)) { 
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if (m.day[r.day] .hour[r.hour] I= not_a_reading) 
++duplicates; 

m.day[r.day] .hour[r.hour] = r.temperature; 

else 
++invalids; 

if (invalids) error("invalid readings in month",invalids); 
if (duplicates) error("duplicate readings in month", duplicates); 
end_of_loop(is,'}', "bad end of month"); 
return is; 

We'U get back to month_to_int() later; it converts the symbolic notation for a 
month, such as jun, to a number in the [0: 1 1) range. Note the use of end_of_loop() 
from §10.10 to check for the terminator. We keep count of invalid and duplicate 
Readings; someone might be interested. 

Month's >> does a quick check that a Reading is plausible before storing it: 

const int implausible_min = -200; 
const int implausible_max = 200; 

bool is_ valid(const Reading& r) 
II a rough test 
{ 

if (r.day<1 ll 31<r.day) return false; 
if (r.hour<O ll 23<r.hour) return false; 
if (r.temperature<implausible_minll implausible_max<r.temperature) 

return false; 
return true; 

FmaUy, we can read Years. Year's >> is similar to Month's >>: 

istream& operator>>(istream& is, Year& y) 
II read a year from is into y 
II format: ( year 1 972 . . .  } 
{ 
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char ch; 
is >> ch; 
if (ch !='{') { 

is.unget(); 
is.clear(ios: : failbit); 
return is; 

string year_marker; 
int yy; 
is >> year_marker >> yy; 
if ( ! is II year_marker!="year") error("bad start of year"); 
y.year = yy; 

while(true) { 
Month m; II get a clean m each t ime around 
if( !  (is >> m)) break; 
y.month[m.month] = m; 

end_of_loop(is, '} ',"bad end of year"); 
return is; 

We would have preferred "boringly similar" to just "similar," but there is a signif
icant difference. Have a look at the read loop. Did you expect something like the 
following? 

Month m; 
while (is >> m) 

y.month[m.month] = m; 

You probably should have, because that's the way we have written all the read 
loops so far. That's actually what we first wrote, and it's wrong. The problem is 
that operator>>(istream& is, Month& m) doesn't assign a brand-new va1ue to m; 
it simply adds data from Readings to m. Thus, the repeated iS>>m would have 
kept adding to our one and on1y m. Oops ! Each new month would have gotten all 
the readings from all previous months of that year. We need a brand-new, clean 
Month to read into each time we do is>>m. The easiest way to do that was to put 
the defmition of m inside the loop so that it would be initialized each time around. 
The a1ternatives would have been for operator>>(istream& is, Month& m) to as
sign an empty month to m before reading into it, or for the loop to do that: 

367 



368 C HAPTER  1 0  • I N P U T  A N D  OUTPUT  STREAMS 

Month m; 
while (is >> m) { 

y.month[m.month] = m; 
m = Month(); II "rei nitial ize" m 

Let's try to use it: 

II open an i nput  fi le: 
cout << "Please enter input file name\n";  
string name; 
cin >> name; 
ifstream ifs(name.c_str()); 
if ( ! ifs) error(" can't open input file" ,name); 

ifs.exceplions(ifs.exceptionsOiios_base: :badbit); II throw ior badl) 

II open an output fi le: 
cout << "Please enter output file name\n" ;  
cin >> name; 
ofstream ofs(name.c_str()); 
if (lofs) error("can't open output file" ,name); 

II read an arbitrary number oi years: 
vector<Year> ys; 
while(true) { 

Year y; II get a ireshly in it ial ized Year each t ime around 
if ( l (ifs>>y)) break; 
ys. push_back(y) ; 

cout << "read " << ys.size() << " years of readings\n";  

for (int i =  0; i<ys.size(); ++i) print_year(ofs,ys[i]); 

We leave print_year() as an exercise. 

1 0.1 1 .3 Changing representations 
To get Month's >> to work, we need to provide a way of reading symbolic repre
sentations of the month. For synunetry, we'll provide a matching write using a sym
bolic representation. The tedious way would be to write an if-statement convert: 

if (s=="jan") 
m = 1 ; 
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else i f  (s=="feb") 
m = 2; 
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This is not just tedious : it also builds the names of the months into the code. It '-.J 
would be beller to have those in a table somewhere so that the main program 
could stay unchanged even if we had to change the symbolic representation. We 
decided to represent the input representation as a vector<string> plus an initial
ization function and a lookup function: 

vector<string> month_input_tbl; II month_input_tb i iO I=="jan" 

void init_input_tbl(vector<String>& tbl) 
II in i t ia l ize vector of input representat ions 
{ 

tbl.push_back("jan"); 
tbl.push_back("feb"); 
tbl.push_back("mar"); 
tbl.push_back(" apr"); 
tbl.push_back("may"); 
tbl.push_back("jun"); 
tbl.push_back("jul"); 
tbl. push_ back(" aug"); 
tbl. push_back(" sep"); 
tbl.push_back("oct"); 
tbl.push_back("nov"); 
tbl.push_back("dec"); 

int month_to_int(string s) 
II is s the name of a month? If so return its index 10: 1 1 ]  otherwise - 1  

{ 
for (int i=O; i<12; ++i) if (month_input_tbl[i]=s) return i ;  
return -1;  

In  case you wonder: the C++ standard library does provide a simpler way to do 
this. See §2 1.6. 1 for a map<string,int>. 

When we want to produce output, we have the opposite problem. We have 
an int representing a month and would like a symbolic representation to be 
printed. Our solution is fundamentally similar, but instead of using a table to go 
from string to int, we use one to go from int to string: 

vector<String> month_print_tbl; II month_print_tbi iOI=="January" 
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void init_print_tbl(vector<string>& tbl) 
II in it ial ize vector of oulput representations 

{ 
tbl.push_back("January"); 
tbl. push_ back(" February"); 
tbl. push_back(" March"); 
tbl. push_back(" April ") ;  
tbl.push_back("May"); 
tbl.push_back("June"); 
tbl.push_back("July"); 
tbl.push_back("August"); 
tbl.push_back("September"); 
tbl.push_back("October"); 
tbl.push_back("November"); 
tbl.push_back("December"); 

string int_to_month(int i) 
II months I 0: 1 1 1  
{ 

if (i<O ll 12<=i) error("bad month index"); 
return month_print_tbl[i]; 

For this to work, we need to call the initialization functions somewhere, such as at 
the beginning of main() : 

II iirsl in i tia l ize reprcsental ion tables: 
in it_print_tbl (month_print_tbl); 
init_input_tbl(month_input_tbl); 

So, did you actually read all of that code and the explanations? Or did your eyes 
glaze over and skip to the end? Remember that the easiest way of learning to write 
good code is to read a lot of code. Believe it or not, the techniques we used for this 
example are simple, but not trivial to discover without help. Reading data is fun
damental. Writing loops correctly (initializing every variable used correctly) is fun
damental. Converting between representations is fundamental. That is, you will 
learn to do such things. The only questions are whether you'll learn to do them 
well and whether you learn the basic techniques before losing too much sleep. 
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� Drill 

1 .  Stan a program to work with points, discussed in §10.4. Begin by defin
ing the data type Point that has two coordinate members x and y. 

2. Using the code and discussion in §10.4, prompt the user to input seven 
(x,y) pairs. As the data is entered, store it in a vector of Points called 
original_points. 

3. Print the data in original_points to see what it looks like. 
4. Open an ofstrearn and output each point to a file named mydata.txl. On 

Windows, we suggest the .txt suffiX to make it easier to look at the data 
with an ordinary text editor (such as WordPad) . 

5. Close the ofstream and then open an ifstream for mydata.txl. Read the 
data from mydata.txt and store it in a new vector called processed_points. 

6. Print the data elements from both vectors. 
7. Compare the two vectors and print Something's wrong! if the number 

of elements or the values of elements differ. 

Review 

1. When dealing with input and output, how is the variety of devices dealt 
with in most modern computers? 

2. What, fundamentally, does an istrearn do? 
3. What, fundamentally, does an ostrearn do? 
4. What, fundamentally, is a file? 
5. What is a file format? 
6. Name four different types of devices that can require 1/0 for a program. 
7. What are the four steps for reading a ftle? 
8. What are the four steps for writing a ftle? 
9. Name and define the four stream states. 

10. Discuss how the following input problems can be resolved: 

a. The user typing an out-of-range value 
b. Getting no value (end of ftle) 
c. The user typing something of the wrong type 

1 1 .  In what way is input usually harder than output? 
12. In what way is output usually harder than input? 
13. Why do we (often) want to separate input and output from computation? 
14. What are the two most common uses of the istream member function 

clear()? 
15. What are the usual function declarations for << and >> for a user-defmed 

type X? 
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Terms 

bad() 
buffer 
clear() 
close() 
device driver 
eof() 
fail() 
ftle 

Exercises 
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good() 
ifstream 
input device 
input operator 
ioslream 
istream 
ofstream 
open() 

oslream 
output device 
output operator 
stream state 
structured ftle 
terminator 
unget() 

1. Write a program that produces the sum of all the numbers in a file of 
whitespace-separated integers . 

2. Write a program that creates a file of data in the form of the temperature 
Reading type defmed in §10.5. Fill the ftle with at least 50 temperature 
readings . Call this program store_temps.cpp and the file it creates 
raw_temps.txt. 

3. Write a program that reads the data from raw_temps.txt created in 
exercise 2 into a vector and then calculates the mean and median tem
peratures in your data set. Call this program temp_stats.cpp. 

4. Modify the store_temps.cpp program from exercise 2 to include a tem
perature suffix c for Celsius or f for Fahrenheit temperatures. Then mod
ify the temp_stats.cpp program to test each temperature, converting the 
Celsius readings to Fahrenheit before putting them into the vector. 

5. Write the function print_year() mentioned in §10. 1 1.2. 
6. Defme a Roman_int class for holding Roman numerals (as ints) with a 

<< and >>. Provide Roman_inl with an as_inl() member that returns the 
int value, so that if r is a Roman_inl, we can write cout << "Roman" << r 
<< " equals " << r.as_int() << '\n' ; .  

7. Make a version of the calculator from Chapter 7 that accepts Roman nu
merals rather than the usual Arabic ones, for example, XXI + CIV = CXXV. 

8. Write a program that accepts two ftle names and produces a new file that 
is the contents of the first ftle foUowed by the contents of the second; that 
is, the program concatenates the two files. 

9. Write a program that takes two files containing sorted whitespace-separated 
words and merges them, preserving order. 

10. Add a command from x to the calculator from Chapter 7 that makes it 
take input from a file x. Add a conunand to y to the calculator that makes 
it write its output (both standard output and error output) to ftle y. Write 
a collection of test cases based on ideas from §7.3 and use that to test the 
calculator. Discuss how you would use these commands for testing. 
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1 1 .  Write a program that produces the sum of all the whitespace-separated 
integers in a text file. For example, "bears: 1 7  elephants 9 end" should 
output 26. 

12. Write a program that given a me name and a word outputs each line that 
contains that word together with the line number. Hint: getline(). 

Postscript 
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Much of computing involves moving lots of data from one place to another, for (_) 
example, copying text from a me to a screen or moving music from a computer 
onto an MP3 player. Often, some transformation of the data is needed on the way. 
The iostream library is a way of handling many such tasks where the data can be 
seen as a sequence (a stream) of values. Input and output can be a surprisingly 
large part of common programming tasks. lOis is partly because we (or our pro
grams) need a lot of data and partly because the point where data enters a system 
is a place where lots of errors can happen. So, we must try to keep our 110 simple 
and try to minimize the chances that bad data "slips through" into our system. 
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Custom i z i ng 
I n put and Output 

"Keep it simple : 
as simple as possible, 

but no simpler." 

-Albert Einstein 

I n this chapter, we concentrate on how to adapt the general 

iostream framework presented in Chapter 10 to specific needs 

and tastes. This involves a lot of messy details dictated by human 

sensibilities to what they read and also practical constraints on 

the uses of ftles. The fmal example shows the design of an input 

stream for which you can specify the set of separators. 
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1 1 .1 Regularity and irregularity 

1 1 .2 Output formatting 
11.2.1 Integer output 
11 .2.2 Integer input 
11 .2.3 Floating-point output 
11 .2.4 Precision 
11 .2.5 Fields 

1 1 .3 File opening and positioning 
1 1 .3.1 File open modes 
11 .3.2 Binary files 
11 .3.3 Positioning in files 

11 .4 String streams 

11 .5 Line-oriented input 

1 1 .6 Character classification 

11 .7 Using nonstandard separators 

1 1 .8 And there is so much more 

1 1  .1 Regularity and irregularity 
The iostream library - the input/output part of the ISO C++ standard library -
provides a unified and extensible framework for input and output of text. By 
"text" we mean just about anything that can be represented as a sequence of 
characters. Thus, when we talk about input and output we can consider the inte
ger 1234 as text because we can write it using the four characters 1 ,  2, 3, and 4. 

So far, we have treated all input sources as equivalent. Sometimes, that's not 
enough. For example, flies differ from other input sources (such as communica
tions connections) in that we can address individual bytes. Similarly, we worked 
on the assumption that the type of an object completely determined the layout of 
its input and output. l11at's not quite right and wouldn't be sufficient. For exam
ple, we often want to specify the number of digits used to represent a floating
point number on output (its precision) . This chapter presents a number of ways 
in which we can tailor input and output to our needs. 

As programmers, we prefer regularity; treating all in-memory objects uni· 
fonnly. treating all input sources equivalently, and imposing a single standard on 
the way to represent objects entering and exiting the system give tl1e cleanest, 
simplest, most maintainable, and often the most efficient code. However, our pro
grams exist to serve humans, and humans have strong preferences. Thus, as pro
grammers we must strive for a balance between program complexity and 
accommodation of users' personal tastes. 

1 1  .2 Output formatting 
People care a lot about apparently minor details of the output they have to read. 
For example, to a physicist 1 .25 (rounded to two digits after the dot) can be very 
different from 1 .246704n, and to an accountant (1 .25) can be legally different 
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from ( 1 .2467) and totally different from 1 .25 (in financial documents, parentheses 
are sometimes used to indicate losses, that is, negative values) .  As programmers, 
we aim at making our output as clear and as close as possible to the expectations 
of the "consumers" of our program. Output streams (ostreams) provide a variety 
of ways for formatting the output of built-in types. For user-defmed types, it is up 
to the programmer to defme suitable << operations. 

There seems to be an infmite number of details, refmements, and options for 
output and quite a few for input. Examples are the character used for the decimal 
point (usually dot or comma), the way to output monetary values, a way to rep
resent true as the word true (or vrai or sandt) rather than the number 1 when 
output, ways to deal with non-ASCII character sets (such as Unicode), and a way 
to limit the number of characters read into a string. These facilities tend to be un
interesting until you need them, so we'll leave their description to manuals and 
specialized works such as Langer, Standard C++ IOStreams atul Locales; Chapter 21  
and Appendix D of The C++ Programming lAnguage by Stroustrup; and §22 and 
§27 of the ISO C++ standard. Here we'll present the most frequently useful fea
tures and a few general concepts. 

1 1 .2.1 Integer output 
Integer values can be output as octal (the base-8 number system), decimal (our 
usual base- 10 number system), and hexadecimal (the base-16  number system). If 
you don't know about these systems, read §A. l .2.1 before proceeding here. Most 
output uses decimal. Hexadecimal is popular for outputting hardware-related in
formation. The reason is that a hexadecimal digit exactly represents a 4-bit value. 
11ms, two hexadecimal digits can be used to present the value of an 8-bit byte, 
four hexadecimal digits give the value of 2 bytes (that's often a half word), and 
eight hexadecimal digits can present the value of 4 bytes (that's often the size of a 
word or a register). When C++'s ancestor C was first designed (in the 1970s), 
octal was popular for representing bit patterns, but now it's rarely used. 

We can specify the output (decimal) value 1234 to be decimal, hexadecimal 
(often called "hex"), and octal: 

cout << 1234 << "\t(decimal)\n" 
<< hex << 1234 << "\t(hexadecimal)\n" 
<< oct << 1234 << "\t(octal)\n"; 

l11e '\t' character is "tab" (short for "tabulation character"). This prints 

1234 (decimal) 
4d2 (hexadecimal) 
2322 (octal) 

377 



378 

I .  
, . 

CHAPT E R  1 1  • CUSTOM I Z I N G  I N P UT A N D  O U T PUT 

The notations << hex and << oct do not output values. Instead, << hex informs 
the stream that any further integer values should be displayed in hexadecimal 
and << oct informs the stream that any further integer values should be dis
played in octal. For example: 

cout << 1234 << '\1' << hex << 1234 << '\t' << oct << 1234 << '\n'; 
cout << 1234 << '\n '; II the octal base is st i l l  in effect 

This produces 

1234 4d2 2322 
2322 II integers wi l l  continue to show as octal until changed 

Note that the last output is octal ; that is, oct, hex, and dec (for decimal) persist 
("stick," "are sticky") - they apply to every integer value output until we tell the 
stream otherwise. Terms such as hex and oct that are used to change the behav
ior of a stream are called manipulators. 

T RY T H I S  

Output your birth year in decimal, hexadecimal, and octal form. Label each 
value. Line up your output in columns using the tab character. Now output 
your age. 

Seeing values of a base different from 10 can often be confusing. For example, Wl
less we tell you otherwise, you'll assume that 11 represents the (decimal) number 
1 1 , rather than 9 (1 1 in octal) or 17 (11 in hexadecimal). To alleviate such problems, 
we can ask the ostream to show the base of each integer printed. For example: 

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n'; 
cout << showbase << dec; II show bases 
cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n'; 

This prints 

1234 4d2 2322 
1234 Ox4d2 02322 

So, decimal numbers have no prefix, octal numbers have the prefix 0, and hexa
decimal values have the prefix Ox (or OX). This is exactly the notation for integer 
literals in C++ source code. For example: 
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cout << 1234 << '\t' << Ox4d2 << '\t' << 02322 << '\n'; 

In decimal fom1, this will print 

1234 1234 1234 

As you might have noticed, showbase persists, just like oct and hex. The manip
ulator noshowbase reverses the action of showbase, reverting to the default, 
which shows each number without its base. 

In summary, the integer output manipulators are : 

Integer output manipulations 

oct 

dec 

hex 

showbase 

noshowbase 

use base-8 (octal )  notation 

use base- l 0 (decimal)  notation 

use base-1 6  (hexadecimal)  notation 

prefix 0 for octal and Ox for hexadecimal 

don't use prefixes 

1 1 .2.2 Integer input 
By default, >> assumes that numbers use the decimal notation, but you can teU it 
to read hexadecimal or octal integers: 

int a; 
int b; 
int c; 
int d; 
cin >> a >> hex >> b >> oct >> c >> d; 
cout << a << '\t' << b << '\t' << c << '\t' << d << '\n'; 

If you type in 

1234 4d2 2322 2322 

tllis will print 

1234 1234 1234 1234 

Note that this implies that oct, dec, and hex "stick" for input, just as they do for 
output. 
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T RY T H I S  
( 

· ... Complete the code fragment above to make it into a program. Try the sug
gested input; then type in 

1234 1234 1234 1234 

Explain the results. Try other inputs to see what happens. 

You can get >> to accept and correctly interpret the 0 and Ox prefixes. To do that, 
you "unset" all the defaults. For example: 

cin.unsetf(ios: : dec); II don't assume decimal (so that Ox can mean hex) 
cin.unsetf(ios: :oct); II don't assume octa l (so that 1 2  can me.tn twelve) 
cin.unsetf(ios: : hex); II don't assume hexadecima l  (so that 12 can mean twelve) 

The stream member function unsetf() clears the flag (or flags) given as argument. 
Now, if you write 

cin >>a >> b >> c >> d; 

and enter 

1234 Ox4d2 02322 02322 

you get 

1234 1234 1234 1234 

1 1 .2.3 Floating-point output 
If you deal directly with hardware, you'll need hexadecimal (or possibly octal) 
notation. Similarly, if you deal with scientific computation, you must deal witl1 
the formatting of floating-point values. They are handled using iostream manipu
lators in a manner very similar to tl1at of decimal values. For example: 

cout << 1234.56789 << "\t\t(general)\n" II \ t\ t  to l ine up columns 
<< fixed << 1234.56789 << "\t(fixed)\n" 
<< scientific << 1234.56789 << "\t(scientific)\n"; 

This prints 
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1234.57 
1234.567890 
1 .234568e+003 

(general) 
(fixed) 
(scientific) 

l11e nl.:'lnipulators fixed and scientific are used to select floating-point formats. 
Curiously, the standard library doesn't have a general manipulator to give the 
default format. However. we can defme one, as we did in std_lib_facilities.h. 
This does require knowledge of the irmer workings of the iostream library: 

in line ios_base& general(ios_base& b) II to complement fixed and scientific 
II clear a l l  iloating-point iormat flags 

b.setf(ios_base: : fmtflags(O), ios_base: : floatfield); 
return b; 

Now, we can write 

cout << 1234.56789 << '\t' 
<< fixed << 1234.56789 << '\t' 
<< scientific << 1234.56789 << '\n' ;  

cout << 1234.56789 << '\n'; 
cout << general << 1234.56789 << '\t' 

<< fixed << 1234.56789 << '\t' 
<< scientific << 1234.56789 << '\n ' ;  

This prints 

II floating iormat "sticks" 
II warn ing: general isn't standard 

1234.57 1234.567890 1 .234568e+003 
1 .234568e+003 II scicntiiic manipulator "sticks" 
1234.57 1234.567890 1 .234568e+003 

In summary, the basic floating-point output-formatting manipulators are :  

Floating-point formats 

fixed 

scientific 

general 

use fixed-point notation 

use mantissa and exponent notation; the mantissa is always in the 1 1 : 1 0) 
range; that is, there is a single nonzero digit before the decimal point 

choose fixed or scientific to give the numerically most accurate 
representation, within the precision of general. The general format is 
the default, but to expl icitly set it you need a definition of general(). 
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1 1 .2.4 Precision 

By default, a floating-point value is printed using six total digits using the general 
format. The most appropriate format is chosen and the number is rounded to 
give the best approximation that can be printed using only six digits (the default 
precision for the general form) .  For example : 

1234.567 prints as 1234.57 

1 .2345678 prints as 1 .23457 

The rounding rule is the usual 4/5 rule: 0 to 4 round down and 5 to 9 round up. 
Note that floating-point formatting applies only to floating-point numbers, so 

1234567 prints as 1234567 (because it's an integer) 

1234567.0 prints as 1 .23457e+006 

In the latter case, the ostream determines that 1234567.0 cannot be printed using 
the fixed format using only six digits and switches to scientific format to preserve 
the most accurate representation. Basically the general format chooses between 
scientific and fixed formats to present the user with the most accurate represen
tation of a floating-point value within the precision of the general format, which 
defaults at six total digits. 

T R Y T H I S  

.... Write some code to print the number 1234567.89 three times, first using 
general, then fixed, then scientific. Which output form presents the user 
with the most accurate representation? Explain why. 

A programmer can set the precision using the manipulator setprecision(). 
For example: 

cout << 1234.56789 << '\t' 
<< fixed << 1234.56789 << '\t' 

<< scientific << 1234.56789 << '\n ' ;  
cout << general << setprecision(5) 

<< 1234.56789 << '\t' 
<< fixed << 1234.56789 << '\t' 
<< scientific << 1234.56789 << '\n ' ;  

cout << general << setprecision(8) 
<< 1234.56789 << '\t' 
<< fixed << 1234.56789 << '\t' 
<< scientific << 1234.56789 << '\n ' ;  
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This prints (note the rounding) 

1234.57 1234.567890 1 .234568e+003 
1234.6 1234.56789 1 .23457e+003 
1234.5679 1234.56789000 1 .23456789e+003 

The precision is defined as: 

Floating-point precision 

general precision is the total number of digits 

scientific prec ision is the number of digits after the decimal point 

fixed precision is the number of digits after the decimal point 

Use the default (general format with precision 6) unless there is a reason not to. 
The usual reason not to is "Because we need greater accuracy of the output." 

1 1 .2.5 Fields 
Using scientific and fixed formats, a programmer can control exactly how much 
space a value takes up on output. That's clearly useful for printing tables, etc. 
The equivalent mechanism for integer values is called.fie/ds. You can specify ex· 
actly how many character positions an integer value or string value will occupy 
using the "set field width" manipulator setw(). For example: 

cout << 123456 
<<' I '<< setw(4) << 123456 << 'I' 
<< setw(8) << 123456 << ' I' 
<< 123456 << 111\n I I; 

111is prints 

12345611234561 12345611234561 

II no iield used 
11 1 2 3456 doesn't fit in a 4-char field 
II set field width to 8 
II field sizes don't stick 

Note first the two spaces before the third occurrence of 123456. That's what we 
would expect for a six-digit number in an eight-character field. However, 123456 
did not get truncated to fit into to a four-character field. Why not? 112341 or 134561 
might be considered plausible outputs for the four-character field. However, that 
would have completely changed the value printed without any warning to the 
poor reader that something had gone wrong. The ostream doesn't do that; in-
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stead it breaks the output format. Bad formatting is almost always preferable to (_} 
"bad output data." In the most common uses of fields (such as printing out a 
table), the "overflow" is visually very noticeable, so that it can be corrected. 
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Fields can also be used for floating-point numbers and strings. For example: 

cout << 12345 <<' I'<< setw(4) << 12345 << 'I ' 
<< setw(8) << 12345 << ' I ' << 12345 << "1\n"; 

cout << 1234.5 <<' I '<< setw(4) << 1234.5 << ' I' 
<< setw(8) << 1234.5 << 'I ' << 1234.5 << "1\n"; 

cout << "asdfg" <<' I '<< setw(4) << "asdfg" << ' I ' 
<< setw(8) << "asdfg" << 'I ' << "asdfg" << "1\n"; 

Tins prints 

123451123451 123451123451 
1234.511234.51 1 234.511234.51 
asdfglasdfgl asdfglasdfgl 

Note that the field width "doesn't stick." In all three cases, the frrst and the last 
values are printed in the default "as many characters as it takes" format. In other 
words, unless you set the field width immediately before an output operation, the 
notion of "field" is not used. 

T RY T H I S  

Make a simple table including the last name, first name, telephone number, 
and email address for yourself and at least five of your friends. Experiment 
with different field widths until you are satisfied that the table is well presented. 

1 1 .3 File opening and positioning 
As seen from C++, a file is an abstraction of what the operating system provides. As 
described in §10.3, a ftle is simply a sequence of bytes numbered from 0 upward: 

0; 1 :  2; 

The question is how we access those bytes. Using iostreams, this is largely deter
mined when we open a ftle and associate a stream with it. The properties of a 
stream determine what operations we can perform after opening the ftle. and their 
meaning. The simplest example of this is that if we open an istream for a ftle, we 
can read from the ftle, whereas if we open a ftle with an ostream, we can write to it. 
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1 1 .3.1 File open modes 
You can open a ftle in one of several modes. By default, an ifstream opens its file 
for reading and an ofstream opens its file for writing. That takes care of most 
common needs. However, you can choose between several alternatives: 

Filestream open modes 

ios_base: :app append ( i .e. ,  add to the end of the file) 

ios_base: :ate "at end" (open and seek to end) 

ios_base: : binary binary mode - beware of system-specific behavior 

ios_base: : in for reading 

ios_base: :out for writing 

ios_base: :trunc truncate fi le to 0-length 

A ftle mode is optionally specified after the name of the ftle. For example: 

ofstream of1 (name1 ); II deiaults to ios_base::out 
ifstream if1 (name2); II defaults to ios_base: : in  

ofstream ofs(name, ios_base: :app); II oistreams are by default out 
fstream fs("myfile", ios_base: : inlios_base: :out); II both in and out 

The I in that last example is the "bitwise or" operator (§A.5.5) that can be used to 
combine modes as shown. The app option is popular for writing log files where 
you always add to the end. 

In each case, the exact effect of opening a ftle may depend on the operating 
system, and if an operating system cannot honor a request to open a file in a cer
tain way, the result will be a stream that is not in the good() state : 

if ( ! fs) II oops: we couldn't open that file that way 

l11e most common reason for a failure to open a flle for reading is that the ftle 
doesn't exist (at least not with the name we used) : 

ifstream ifs("redungs") ;  
i f  ( ! i fs) II error: can't open " readings" ior reading 

In this case. we guess that a spelling error might be the problem. 
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Note that typically, an operating system will create a new ftle if you try to 
open a nonexistent file for output, but (fortunately) not if you try to open a non
existent file for input: 

ofstream ofs("no·such-file"); 
ofstream ifs("no-file·of·this-name"); 

II create new file cal led no-such-ii le 
II error: ifs wi l l  be not be good( )  

1 1 .3.2 Binary files 

In memory, we can represent the number 123 as an integer value or as a string 
value. For example; 

int n = 123; 
string s =  "123"; 

In the first case, 123 is stored as a (binary) number in an amount of memory that 
is the same as for all other ints (4 bytes, that is, 32 bits, on a PC) . Had we chosen 
the value 12345 instead, the same 4 bytes would have been used. In the second 
case, 123 is stored as a string of three characters. Had we chosen the string value 
"12345" it would have used five characters (plus the fixed overhead for managing 
a string) . We could illustrate this like this (using the ordinary decimal and char
acter representation, rather than the binary representation actually used within 
the computer) : 

123 as characters: t l 2 1 3 1 t t I t  I t  I t  
12345 as characters: 1 1 2 1 3 1 4  s l t l t l t  

123 as binary: 123 
12345 as binary: 12345 

When we use a character representation, we must use some character to repre
sent the end of a number in memory, just as we do on paper: 123456 is one num
ber and 123 456 are two numbers. On "paper," we use the space character to 
represent the end of the number. In memory, we could do the same: 

123456 as characters: 1 1  1 2 1 3 1 4 1  s l , 1 I t  1 
123 456 as characters: 1 1  I 2 1 3 1  1 4 1 5 1 6 1 I 

The distinction between storing fixed-sized binary representation (e.g., an int) 
and variable-sized character string representation (e.g., a string) also occurs in 
ftles. By default, iostreams deal with character representations; that is, an istream 
reads a sequence of characters and turns it into an object of the desired type. An 
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ostream takes an object of a specified type and transforms it into a sequence of 
characters which it writes out. However, it is possible to request istream and 
ostream to simply copy bytes to and from flies. That's called bi11ary 110 and is re
quested by opening a file with the mode ios_base: : binary. Here is an example 
that reads and writes binary files of integers. The key lines that specifically deal 
with ''binary" arc explained below: 

int main() 
{ 

II open an istream for binary input from a iile: 
cout << "Please enter input file name\n" ;  
string name; 
cin >> name; 
ifstream ifs(name.c_str(),ios_base: :  binary); II note: stream mode 

II "binary" tel ls the stream not to try anything c lever with the bytes 
if ( ! ifs) error(" can't open input file " ,  name); 

II open an ostream for binary output to a fi le: 
cout << "Please enter output file name\n";  
cin >> name; 
ofstream ofs(name.c_str(),ios_base: :binary); II note: stream mode 

// "bi nary" tel ls the stream not to try anything clever with the bytes 
if (lofs) error(" can't open output file ",name); 

vector<inl> v; 

II read from bi nary fi le: 
int i ;  
while (ifs.read(as_bytes(i),sizeof(int))) II note: reading bytes 

v.push_back(i); 

II . . .  do something with v . . .  

II write to bi n.uy ii le: 
for(int i=O; i<v.size(); ++i) 

ofs.write(as_bytes(v[i]),sizeof(int)); II note: writing bytes 
return 0; 

We open the flies using ios_base: : binary as the stream mode: 

ifstream ifs(name.c_str(), ios_base: :binary); 

ofstream ofs(name.c_str(), ios_base: :  binary); 
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In both cases, we chose the trickier, but often more compact, binary representa
tion. When we move from character-oriented 110 to binary 110 we give up our 
usual >> and << operators. Those operators specifically turn values into charac
ter sequences using the default conventions (e.g., the string "asdf" turns into the 
characters a, s, d, f and the integer 123 turns into the characters 1 ,  2, 3) . If we 
wanted that, we wouldn't need to say binary - the default would suffice. We use 
binary only if we (or someone else) thought that we somehow could do better 
than the default. We use binary to tell the stream not to try anything clever with 
the bytes. 

What "cleverness" might we do to an int? The obvious is to store a 4-byte int 
in 4 bytes; that is, we can look at the representation of the int in memory (a se
quence of 4 bytes) and transfer those bytes to the flle. Later, we can read those 
bytes back the same way and reassemble the int: 

ifs. read(as_bytes(i),sizeof(int)) 
ofs.write(as_bytes(v[i]),sizeof(int)) 

II note: reading bytes 
II note: writing bytes 

The ostream write() and the istream read() both take an address (supplied here 
by as_ byte()) and a number of bytes (characters) which we obtained by using the 
operator sizeof. That address should refer to the frrst byte of memory holding 
the value we want to read or write. For example, if we had an int with the value 
1234, we would get the 4 bytes (using hexadecimal notation) 00, 00, 04, d2: 

as_bytes(i) 

i: l� __ oo ____ � __ oo ____ � ___ 04 ____ � __ d_2 __ � 

The as_bytes() function is needed to get the address of the frrst byte of an object's 
representation. It can - using language facilities yet to be explained (§17.8 and 
§19.3) - be defmed like this : 

template<class T> 
char* as_bytes(T& i) 
{ 

II t reat a T  as a sequence of bytes 

void* addr = &i; II get the address of the first byte 
II of memory used to store the object 

return static_cast<char*>(addr); II treat that memory as bytes 

The (unsafe) type conversion using static_cast is necessary to get to the "raw 
bytes" of a variable. The notion of addresses will be explored in some detail in 
Chapters 17 and 18. Here, we just show how to treat any object in memory as a 
sequence of bytes for the use of read() and write(). 
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This binary 1/0 is messy, somewhat complicated, and error-prone. However, 
as programmers we don't always have the freedom to choose flle formats, so oc
casionally we must use binary 1/0 simply because that's the format someone 
chose for the files we need to read or write. Alternatively, there may be a good 
logical reason for choosing a non-character representation. A typical example is 
an image or a sound flle, for which there is no reasonable character representa
tion: a photograph or a piece of music is basically just a bag of bits. 
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l11e character 1/0 provided by default by the iostream library is portable, fj 
human readable, and reasonably supported by the type system. Use it when you 

· 

have a choice and don't mess with binary 1/0 unless you really have to. 

1 1 .3.3 Position ing in files 

Whenever you can, just read and write flies from the beginning to the end. (_j 
That's the easiest and least error-prone way. Many times, when you feel that you 
have to make a change to a flle, the better solution is to produce a new file con
taining the change. 

However, if you must, you can use positioning to select a specific place in a file 
for reading or writing. Basically, every file that is open for reading has a "read/get 
position" and every flle that is open for writing has a "write/put position": 

Put position: Get position: 

A file: 

l11is can be used like this: 

fstream fs(name.c_str()); II open for input and output 
if ( ! fs) error("can't open ",name); 

fs.seekg(5); II move reading position (g ior "get") to 5 (the 6th character) 
char ch; 
fs>>eh; II read Jnd increment reading position 
cout << "character 6 is " << ch << '(' << int(ch) << ")\n";  

fs.seekp(1) ;  II move writing position (p ior "put") t o  1 
fs<<'y'; II writf' and incremenl writing position 

Please be careful: there is next to no run-time error checking when you use posi
tioning. In particular, it is undefmed what happens if you try to seek (using 
seekg() or seekp()) beyond the end of a file, and operating systems really do dif
fer in what happens then. 
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1 1 .4 String streams 
You can use a string as the source of an istream or the target for an ostream. An 
istream that reads from a string is called an istringstream and an ostream that 
stores characters written to it in a string is called an ostringstream. For example, 
an istringstream is useful for extracting numeric values from a string: 

double str_to_double(string s) 
II if possible, convert characters in s to floating-point va lut' 

istringstream is(s); II make a stream so that we can read from s 
double d; 
is >> d; 
if (I is) error("double format error: ",s); 
return d; 

double d1 = str_to_double("12.4"); II testing 
double d2 = str_to_double("1 .34e-3"); 
double d3 = str_to_double("twelve point three"); II wil l  ca l l  error( ) 

If we try to read beyond the end of a stringstream's string, the stringstream will 
go into eof() state. lltis means that we can use "the usual input loop" for a 
stringstream; a string stream really is a kind of istream. 

Conversely, an ostringstream can be useful for formatting output for a sys
tem that requires a simple string argument, such as a GUI system (see §16.5). 
For example : 

void my_code(string label, Temperature temp) 
{ 

II . . .  
ostringstream os; II stream ior composing a message 
os << setw(8) << label << ": " 

<< fixed << setprecision(5) << temp. temp << temp. unit; 
someobject. display( Poi nt(1 00,1 00), os. str(). c_str()) ; 
II . . .  

The str() member function of ostringstream returns the string composed by out
put operations to an ostringstream. The c_str() is a member function of string 
that returns a C-style string as required by many system interfaces. 

The stringstreams are generally used when we want to separate actual 1/0 
from processing. For example, a string argument for str_to_double() will usually 
originate in a flle (e.g., a web log) or from a keyboard. Similarly, the message we 
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composed in my_code() will eventually end u p  written to a n  area o f  a screen. For 
example, in §1 1.  7, we use a stringstream to fllter undesirable characters out of 
our input. Thus, stringstreams can be seen as a mechanism for tailoring 1/0 to 
special needs and tastes. 

A simple use of an ostream is to construct strings by concatenation. For 
example: 

int seq_no = get_next_number(); 
ostringstream name; 
name << "myfile" << seq_no; 
ofstream log file( name. str() .c_str()) ; 

II get the number oi a log fi le 

II e.g., rnyfi le 1 7 
II e.g. , open myfi le 1 7 

Usually, we initialize an istringstream with a string and then read the characters 
from that string using input operations. Conversely, we typically initialize an 
ostringstream to the empty string and then fill it using output operations. There 
is a more direct way of accessing characters in a stringstream that is sometimes 
useful : ss.str() returns a copy of ss's string, and ss.str(s) sets in ss's string to a 
copy of s. §1 1.7 shows an example where ss.str(s) is essential. 

1 1 .5 Line-oriented input 
A >> operator reads into objects of a given type according to that type's standard 
format. For exan1ple, when reading into an int, >> will read until it encounters 
something that's not a digit, and when reading into a string, >> will read until it 
encounters whitespace. �The standard library istream library also provides facili
ties for reading individual characters and whole lines. Consider: 

string name; 
cin >> name; 
cout << name << '\n' ;  

II i nput: Dennis Ritchie 
II output: Dennis 

What if we wanted to read everything on that line at once and decide how to for
mat it later? That could be done using the function getline(). For example: 

string name; 
getline(cin,name); 
cout << name << '\n ' ;  

II input: Dennis Ritchie 
II output: Dennis Ritchie 

Now we have the whole line. Why would we want that? A good answer would 
be "Because we want to do something that can't be done by >>." Often, the an
swer is a poor one : "Because the user typed a whole line." If that's the best you 
can think of, stick to >>, because once you have the line entered, you usually 
have to parse it somehow. For example: 
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string first_name; 
string second_name; 
stringstream ss(name); 
SS>>first_name; 
ss>>second_name; 

II i nput Dennis 
II input Ritch ie 

Reading directly into first_name and second_name would have been simpler. 
One common reason for wanting to read a whole line is that the definition of 

whitespace isn't always appropriate. Sometimes, we want to consider a newline 
as different from other whitespace characters. For example, a text communica
tion with a game might consider a line a sentence, rather than relying on conven
tional punctuation: 

go left until you see a picture on the wall to your right 
remove the picture and open the door behind it. take the bag from there 

In that case, we'd first read a whole line and then extract individual words from that. 

string command; 
get line( cin,command); II read the l i ne 

stringstream ss(command); 
vector<string> words; 
string s; 
while (ss>>s) words.push_back(s); II extract the individual words 

On the other hand, had we had a choice, we would most likely have preferred to 
rely on some proper punctuation rather than a line break. 

1 1  .6 Character classification 
Usually, we read integers, floating-point numbers, words, etc. as defmed by for
mat conventions. However, we can - and sometimes must - go down a level of 
abstraction and read individual characters. That's more work, but when we read 
individual characters, we have full control over what we are doing. Consider tok
enizing an expression (§7.8.2). For example, we want 1+4*x<=y/z*5 to be sepa
rated into the eleven tokens 

1 + 4 * x <= y / z * 5  

We could use >> to read the numbers, but trying to read the identifiers as strings 
would cause x<=y to be read as one string (since < and = are not whitespace char-
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acters) and z* to be read as one string (since • isn't a whitespace character either) . 
Instead. we could write 

char ch; 
while (cin.get(ch)) { 

if (isspace(ch)) { II if ch is whitespace 
II do nothing ( i .e., skip whitespace) 

if ( isdigit(ch)) { 
II read a number 

else if (isalpha(ch)) { 
II read an identifier 

else { 
II deal with operators 

The istream: :get() function reads a single character into its argument. It does not 
skip whitespace. Like >>, get() returns a reference to its istream so that we can 

test its state. 
When we read individual characters, we usually want to classify them: Is this 

character a digit? Is this character uppercase? And so forth. There is a set of stan
dard library functions for that: 

Character classification 

isspace(c) 

isalpha(c) 

isdigit(c) 

isxdigit(c) 

isupper(c) 

islower(c) 

isalnum(c) 

iscntrl(c) 

ispunct(c) 

isprint(c) 

isgraph(c) 

Is c whitespace (' ', '\t', '\n', etc.)? 

Is c a letter ('a' .. 'z', 'A' . . 'Z') (note: not '_')? 

Is c a decimal digit ('0' .. '9' )?  

Is c a hexadecimal digit (decimal digit or 'a' .. 'f' or 'A' . .  'F')? 

Is c an uppercase letter? 

Is c a lowercase letter? 

Is c a letter or a decimal digit? 

Is c a control character (ASCII 0 . .31 and 1 27)? 

Is c not a letter, digit, whitespace, or invisible control character? 

Is c printable (ASCII ' '  .. ' ... ')? 

Is c isalphaOiisdigitOlispunct() (note: not space)? 
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Note the way that classifications can be combined using the "or" operator ( 1 ) .  For 
example, isalnum(c) means isalpha(c)l isdigit(c) ; that is, "Is c either a letter or a 
d 

.
. ?" lgtt. 

In addition, the standard library provides two useful functions for getting rid 
of case differences: 

Character case 

toupper(c) c or c's uppercase equivalent 

tolower(c) c or c's lowercase equivalent 

These are useful when you want to ignore case differences. For example, in input 
from a user Right, right, and rigHT most likely mean the same thing (rigHT most 
likely being the result of an unfortunate hit on the Caps Lock key) . After apply· 
ing tolower() to each character in each of those strings, we get right for each. We 
can do that for an arbitrary string: 

void tolower(string& s) 
{ 

II put s i nto lower case 

for (int i=O; i<s. length(); ++i) s[i) = tolower(s[i]); 

We use pass-by-reference (§8.5.5) to actually change the string. Had we wanted 
to keep the old string we could have written a function to make a lowercase copy. 
Prefer tolower() to toupper() because that works better for text in some natural 
languages, such as German, where not every lowercase character has an upper· 
case equivalent. 

1 1 .7 Using nonstandard separators 
This section provides a semi-realistic example of the use of iostreams to solve a 
real problem. When we read strings, words are by default separated by white
space. Unfortunately, istream doesn't offer a facility for us to defme what charac
ters make up whitespace or in some other way directly change how >> reads a 
string. So, what do we do if we need another defmition of whitespace? Consider 
the example from §4.6.3 where we read in "words" and compared them. Those 
words were whites pace-separated, so if we read 

As planned, the guests arrived; then, 

We would get the "words" 
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As 
planned, 
the 
guests 
arrived; 
then, 

This is not what we'd find in a dictionary: "plarmed," and "arrived;" are not words. 
They arc words plus distracting and irrelevant punctuation characters. For most 
purposes we must treat punctuation just like whitespace. How might we get rid of 
such puncn1ation? We could read characters, remove the punctuation characters 
or tum them into whitespace - and then read the "cleaned-up" input again: 

string line; 
getline(cin,line); II read into l ine 
for (int i=O; i<line.size(); ++i) II replace each punctuation character 

by a space 
switch(line[i]) { 
case ' ; ' :  case ' . ' :  case ',' : case '?' : case ' ! ' :  

line[i) = ' ' ;  

stringstream ss(line); 
vector<String> vs; 
string word; 
while (ss>>word) 

vs.push_back(word); 

II make an istream ss reading from l i ne 

II read words wi thout punctuation characters 

Using that to read the ]inc we get the desired 

As 
planned 
the 
guests 
arrived 
then 

Unfortunately, the code above is messy and rather special-purpose. What would 
we do if we had another definition of punctuation? Let's provide a more general 
and useful way of removing unwanted characters from an input stream. What 
would that be? What would we like our user code to look like? How about 
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ps.whitespace("; : , .  ");  // treat semicolon, colon, comma, and dot as whitespace 

string word; 
while (ps>>word) vs.push_back(word); 

How would we define a stream that would work like ps? The basic idea is to read 
words from an ordinary input stream and then treat the user-specified "white
space" characters as whitespace; that is, we do not give "whitespace" characters 
to the user, we just use them to separate words. For example, 

as.not 

should be the two words 

as 
not 

We can define a class to do that for us. It must get characters from an istream and 
have a >> operator that works just like istream's except that we can tell it which 
characters it should consider to be whitespace. For simplicity, we will not provide 
a way of treating existing whitespace characters (space, newline, etc.) as non
whitespace; we'll just allow a user to specify additional "whitespace" characters. 
Nor will we provide a way to completely remove the designated characters from 
the stream; as before, we will just tum them into whitespace. Let's call that class 
Punct_stream: 

class Punct_stream { 

public: 

// l ike an istream, hut the user can add to 
// the set of whi tesp.Ke characters 

Punct_stream(istream& is) 
: source(is), sensitive(true) { } 

void whitespace(const string& s) II make s the whitespace set 
{ white = s; } 

void add_white(char c) { white += c; } II add to the whitespace set 
bool is_whitespace(char c); II is c in the wh i tespace set? 

void case_sensitive(bool b) { sensitive = b; } 
bool is_case_sensitive() { return sensitive; } 

Punct_stream& operator>>(string& s); 
operator bool(); 
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private: 

}; 

istream& source; 
istringstream buffer; 
string white; 
bool sensitive; 

II character source 
II we let bufier do our formatting 
II characters considered "whitespace" 
II is the stream case-sensit ive? 

The basic idea is - just as in the example above - to read a line at a time from 
the istream, convert "whitespace" characters into spaces, and then use the 
stringstream to do formatting. In addition to dealing with uscr-defmed white
space, we have given Punct_stream a related facility:  if we ask it to, using 
case_sensitive(), it can convert case-sensitive input into non-case-sensitive input. 
For example, if we ask, we can get a Punct_stream to read 

as 

Man bites dog! 

man 
bites 
dog 

Punct_stream 's constructor takes the istream to be used as a character source 
and gives it the local name source. The constructor also defaults the stream to 
the usual case-sensitive behavior. We can make a Punct_stream that reads from 
cin regarding semicolon, colon, and dot as whitespace, and that turns all charac
ters into lower case: 

Punct_stream ps(cin); 
ps.whitespace(" ;  : . " ); 
ps .case_sensitive(false); 

II ps reads from cin 
II semicolon, colon, and dot are also whitespace 
II not case-sensit ive 

Obviously, the most interesting operation is the input operator >>. It is also by 
far the most difficult to define. Our general strategy is to read a whole line from 
the istream into a string (called line) . We then convert all of "our" whitcspace 
characters to the space character (' '). That done, we put the line into the 
istringstream called buffer. Now we can usc the usual whitespace-separating >> 
to read from buffer. The code looks a bit more complicated than this because we 
simply try reading from the buffer and try to fill it only when we find it empty: 

Punct_stream& Punct_stream: :operator>>(string& s) 
{ 
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while (I  (buffer>>s)) { // try to  read irom buffer 
if (buffer. bad() II ! source.good()) return •this; 
buffer. clear(); 

string line; 
getline(source,line); II get a l i ne from source 

II do character replacement as needed: 
for (int i ::0; i<line.size(); ++i) 

if (is_whitespace(line[i])) 
line[i]= ' '; /I to space 

else if ( ! sensitive) 
line[i] = tolower(line[i]); // to lower case 

buffer.str(line); II put string into strPam 

return •this; 

Let's consider this bit by bit. Consider ftrst the somewhat unusual 

while ( ! (buffer>>s)) { 

If there are characters in the istringstream called buffer the read buffer>>s will 
work. and s will receive a "whitespace"-separated word; then there is nothing 
more to do. That will happen as long as there are characters in buffer for us to 
read. However, when buffer>>S fails - that is, if ! (buffer>>s) - we must replen
ish buffer from source. Note that the buffer>>s read is in a loop; after we have 
tried to replenished buffer, we need to try another read, so we get 

while ( ! (buffer>>s)) { // try to read from buifer 
if (buffer.bad() l l l source.good()) return •this; 
buffer. clear(); 

II replenish buffer 

If buffer is bad() or the source has a problem, we give up; otherwise, we clear 
buffer and try again. We need to clear buffer because we get into that "replenish 
loop" only if a read failed, typically because we hit eof() for buffer; that is, there 
were no more characters in buffer for us to read. Dealing with stream state is al
ways messy and it is often the source of subtle errors that require tedious debug
ging. Fortunately the rest of the replenish loop is pretty straightforward: 
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string line; 
getline(source,line); II get a l i ne from source 

II do chilracter replacement as needed: 
for (int i ::0; i<line.size(); ++i) 

if (is_whitespace(line[i])) 
line[i]= 1 1; /I to space 

else if ( ! sensitive) 
line[i] = tolower(line[i]); // to lower case 

buffer.str(line); II put string i nto stream 

We read a line into buffer. Then we look at each character of that line to see if we 
need to change it. The is_whitespace() function is a member of Punct_stream, 
which we'll define later. The tolower() function is a standard library function 
doing the obvious, such as turning A into a (see §1 1.6). 

Once we have a properly processed line, we need to get it into our istring· 
stream. That's what buffer.str(line) does; it can be read as "Set the stringstream 
buffer's string to line." 

Note that we "forgot" to test the state of source after reading from it using 
getline(). We don't need to because we will eventually reach the l source.good() 
test at the top of the loop. 

As ever, we return a reference to the stream itself, •this, as the result of >>; 
see §17. 10. 

Testing for whitespace is easy; we just compare a character to each character 
of the string that holds our whitespace set: 

bool Punct_stream: : is_whitespace(char c) 
{ 

for (int i =  0; i<white.size(); ++i) if (c==white[i]) return true; 
return false; 

Remember that we left the istringstream to deal with the usual whitespace char
acters (e.g., newline and space) in the usual way, so we don't need to do anything 
special about those. 

Tius leaves one mysterious function: 

Punct_stream: :operator bool() 
{ 

return ! (source.fail() II source.bad()) && source.good(); 
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The conventional use of  an istream is to test the result of >>. For example: 

while (ps>>s) { t• . . .  •t } 

That means that we need a way of looking at the result of ps>>S as a Boolean 
value. TI1e result of ps>>s is a Punct_stream, so we need a way of implicitly turn
ing a Punct_stream into a bool. Timt's what Punct_stream's operator bool() does. 
A member function called operator bool() defines a conversion to bool. In partic
ular, it returns true if the operation on the Punct_stream succeeded. 

Now we can write our program. 

int main() 
II given text input, produce a sorted l i st of a l l  words i n  that text 
II ignore punctuation and case differences 
II el iminate dupl icates from the output 

Punct_stream ps(cin); 
ps.whitespace("; : ,. ? ! ()\"{}<>l&$®#"/o11•1-">; II note \"  means " in string 
ps.case_sensitive(false); 

cout << "please enter words\n" ;  
vector<string> vs; 
string word; 
while (ps>>word) vs.push_back(word); II read words 

sort(vs.begin(),vs.end());  II sort in lexicographical order 
for (int i=O; i<vs.size(); ++i) II write dict ionary 

if (i==O II vs[i) !=vs[i-1]) cout << vs[i) << endl; 

This will produce a properly sorted list of words from input. The test 

if (i==O II vs[i) !=vs[i-1] )  

will suppress duplicates. Feed this program the input 

There are only two kinds of languages: languages that people complain 
about, and languages that people don't use. 

and it will output 

and 
are 
complain 
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don't 
languages 
of 
only 
people 
that 
there 
two 
use 

Why did we get don't and not dont? We left the single quote out of the white· 
space() call. 
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Caution: Punct_stream behaves like an istream in many important and useful f.J 
ways, but it isn't really an istream. For example, we can't ask for its state using rd
state(), eofO isn't defined, and we didn't bother providing a >> that reads integers. 
Importantly. we cannot pass a Punct_stream to a function expecting an istream. 
Could we define a Punct_istream that really is an istream? We could, but we don't 
yet have the programming experience, the design concepts, and the language facil-
ities required to pull off that stunt (if you - much later - want to return to this 
problem, you have to look up stream buffers in an expert-level guide or manual). 

Did you fmd Punct_stream easy to read? Did you find the explanations easy • 1 

to follow? Do you think you could have written it yoursell? If you were a genuine U 
novice a few days ago, the honest answer is likely to be "No, no, no!" or even 
"NO, no! Nooo!! - Are you crazy?" We understand - and the answer to the last 
question/outburst is "No, at least we think not." The purpose of the example is 

lb show a somewhat realistic problem and solution 

To show what can be achieved with relatively modest means 

To provide an easy-to-use solution to an apparently easy problem 

To illustrate the distinction between the interface and the implementation 

To become a programmer, you need to read code, and not just carefully polished • 1 

solutions to educational problems. This is an example. In another few days or U 
weeks. this will become easy for you to read, and you will be looking at ways to 
in1prove the solution. 

One way to think of this example is as equivalent to a teacher having dropped 
some genuine English slang into an English-for-beginners course to give a bit of 
color and enliven the proceedings. 

1 1 .8 And there is so much more 
l11e details of 110 seem infinite. They probably are, since they are limited only by •\ 
human inventiveness and capriciousness. For example, we have not considered U 
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the complexity implied by natural languages. What is written as 12.35 in English 
will be conventionally represented as 12,35 in most other European languages. 
Naturally, the C++ standard library provides facilities for dealing with that and 
many other natural-language-specific aspects of 1/0. How do you write Chinese 
characters? How do you compare strings written using Malayalam characters:> 
There are answers, but they are far beyond the scope of this book. If you need to 
know, look in more specialized or advanced books (such as Langer, SlaluUml C++ 
IOStreams a11d Locales, and Stroustrup, The C++ Programmi11g Lang11age) and in li
brary and system documentation. Look for locale; that's the term usually applied 
to facilities for dealing with natural language differences. 

Another source of complexity is buffering: the standard library iostreams 
rely on a concept called streambuf. For advanced work - whether for perform
ance or functionality - with iostreams these istreambufs are unavoidable. If you 
feel the need to define your own iostreams or to tune iostreams to new data 
sources/sinks, see Chapter 2 1  of 17u: C++ Programmi11g Lmzguage by Stroustrup or 
your system docwnentation. 

When using C++, you may also encounter the C standard printf()/scanf() 
family of l/0 functions. If you do, look them up in §27.6, §B. 10.2. or in the excel
lent C textbook by Kernighan and Ritchie ( 17u: C Programmi11g Language) or one of 
the innumerable sources on the web. Each language has its own 1/0 facilities ; 
they all vary, most are quirky, but most reflect (in various odd ways) the same 
fundamental concepts that we have presented in Chapters 10 and 1 1 .  

The standard library 1/0 facilities are swnmarized in Appendix B. 
The related topic of graphical user interfaces (G Uls) is described in Chap

ters 12-16. 

�Drill 
1. Start a program called Test_output.cpp. Declare an integer birth_year 

and assign it the year you were born. 
2. Output your birth_year in decimal, hexadecimal, and octal form. 
3.  Label each value with the name of the base used. 
4. Did you line up your output in columns using the tab character? If not, 

do it. 
5. Now output your age. 
6. Was there a problem? What happened? Ftx your output to decimal. 
7. Go back to 2 and cause your output to show the base for each output. 
8. Try reading as octal, hexadecimal, etc.: 

cin >> a >>Oct >> b >> hex >> c >> d; 
cout << a << '\t'<< b << '\t'<< c << '\1'<< d << '\n' ; 

Run this code with the input 
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1234 1234 1234 1234 

Explain the results. 
9. Write some code to print the number 1234567.89 three times, first using 

general, then fixed, then scientific forms. Which output form presents 
the user with the most accurate representation? Explain why. 

10. Make a simple table including last name, frrst name, telephone number, 
and email address for yourself and at least five of your friends. Experi
ment with different field widths until you are satisfied that the table is 
well presented. 

Review 

1 .  Why is 110 tricky for a programmer? 
2. What does the notation << hex do? 
3. What are hexadecimal numbers used for in computer science? Why? 
4. Name some of the options you may want to implement for formatting in-

teger output. 
5. What is a manipulator? 
6. What is the prefix for decimal? For octal? For hexadecimal? 
7. What is the default output format for floating-point values? 
8. What is a field? 
9. Explain what setprecision() and setw() do. 

10. What is the purpose of flle open modes? 
1 1 .  Which of the following manipulators does not "stick" : hex, scientific, 

setprecision, showbase, setw? 
12. What is the difference between character 110 and binary 1/0? 
13. Give an example of when it would probably be beneficial to use a binary 

flle instead of a text flle. 
14. Give two examples where a stringstream can be useful. 
15. What is a file position? 
16. What happens if you position a flle position beyond the end of flle? 
17. When would you prefer line-oriented input to type-specific input? 
18. What does isalnum(c) do? 

Terms 

binary 
character classification 
decimal 
flle positioning 
fixed 
general 

hexadecimal 
irregularity 
line-oriented input 
manipulator 
nonstandard separator 
noshowbase 

octal 
output formatting 
regularity 
scientific 
setprecision 
showbase 
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Exercises 

1 .  Write a program that reads a text ftle and converts its input to all lower 
case, producing a new file. 

2. Write a program that removes all vowels from a file ("disemvowels") .  For 
example, Once upon a time! becomes nc pn tm l .  Surprisingly often, the 
result is still readable; try it on your friends. 

3. Write a program called multi_input.cpp that prompts the user to enter 
several integers in any combination of octal, decimal, or hexadecimal, 
using the 0 and Ox base suffixes; interprets the numbers correctly; and 
converts them to decimal form. Then your program should output the 
values in properly spaced columns like this: 

Ox4 hexadecimal converts to 67 
0123 octal converts to 83 
65 decimal converts to 65 

decimal 
decimal 
decimal 

4. Write a program that reads strings and for each string outputs the char
acter classification of each character, as defmed by the character classifi
cation functions presented in §1 1 .6. Note that a character can have 
several classifications (e.g., x is both a letter and an alphanumeric) . 

5. Write a program that replaces punctuation with whitespace. For exam
ple, " - don't use the as-if rule." becomes " dont use the asif rule ". 

6. Modify the program from the previous exercise so that it replaces don't 
with do not, can't with cannot, etc. ; leaves hyphens within words intact 
(so that we get " do not use the as-if rule ") ; and converts all characters 
to lower case. 

7. Use the program from the previous exercise to make a dictionary (as an 
altemative to the approach in §1 1 .7) .  Run the result on a multi-page text 
ftle, look at the result, and see if you can improve the program to make a 
better dictionary. 

8. Split the binary 110 program from §1 1 .3.2 into two: one program that 
converts an ordinary text ftle into binary and one program that reads bi
nary and converts it to text. Test these programs by comparing a text ftle 
witl1 what you get by converting it to binary and back. 

9. Write a function vector<string> split(const string& s) that returns a 
vector of whitespace-separated substrings from the argument s. 

10. Write a function vector<string> split(const string& s, const string& w) 
that returns a vector of whitespace-separated substrings from the argu
ment s, where whitespace is defined as "ordinary whitespace" plus the 
characters in w. 

1 1 .  Reverse the order of characters in a text ftle. For example, asdfghjkl be
comes lkjhgfdsa. Hint: "ftle open modes." 
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12. Reverse the order of words (defmed as whitespace-separated strings) in a 
ftle. For example, Norwegian Blue parrot becomes parrot Blue Norwegian. 
You are allowed to assume that all the strings from the file will fit into 
memory at once. 

13. Write a program that reads a text ftle and writes out how many charac
ters of each character classification (§1 1 .6) are in the file. 

14. Write a program that reads a file of whitespace-separated numbers and 
outputs a ftle of numbers using scientific format and precision 8 in four 
fields of 20 characters per line. 

15. Write a program to read a file of whitespace-separated numbers and out
put them in order (lowest value first), one value per line. Write a value 
only once, and if it occurs more than once write the count of its occur
rences on its line. For example, "7 5 5 7 3 1 17  5" should give 

3 
5 3 
7 2 
117 

Postscript 
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Input and output are messy because our human tastes and conventions have not f) 
followed simple-to-state rules and straightforward mathematical laws. As program-
mers, we arc rarely in a position to dictate that our users depart from their prefer
ences, and when we are, we should typically be less arrogant than to think that we 
can provide a simple alternative to conventions built up over time. Consequently, 
we must expect, accept, and adapt to a certain messiness of input and output while 
still trying to keep our programs as simple as possible - but no simpler. 
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1 12  

A D i sp l ay Model  

"The world was black and white then. 
[It] didn't tum color 

until sometime in the 1 930s." 

-Calvin's dad 

This chapter presents a display modd (the output part of GUI ), 

giving examples of use and fundamental notions such as 

screen coordinates, lines, and color. Line, Lines, Polygons, Axis. and 

Text are examples of Shapes. A Shape is an object in memory that 

we can display and manipulate on a screen. The next two chapters 

will explore these classes further, with Chapter 13 focusing on their 

implementation and Chapter 14 on design issues. 
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12.1 Why graphicsl 

12.2 A display model 

12.3 A first example 

12.4 Using a GUI Iibrary 

12.5 Coordinates 

12.6 Shapes 

1 2 .1  Why graphics? 

CHAPTER  1 2  • A D I S PLAY MODEL  

12.7 Using Shape primitives 
12.7.1 Graphics headers and main 
12.7.2 An almost blank window 
12.7.3 Axis 
12.7.4 Graphing a function 
12.7.5 Polygons 
12.7.6 Rectangles 
12.7.7 Fill 
12.7.8 Text 
12.7.9 Images 
12.7.10 And much more 

12.8 GeHing this to run 
12.8.1 Source files 

Why do we spend four chapters on graphics and one on GUis (graphical user 
interfaces)? After all, this is a book about programming, not a graphics book. 
There is a huge number of interesting software topics that we don't discuss, and 
we can at best scratch the surface on the topic of graphics. So, "Why graphics?" 
Basically, graphics is a subject that allows us to explore several important areas of 
software design, programming, and programming language facilities : 

Graphics are us¢1/. There is much more to progranuning than graphics 
and much more to software than code manipulated through a GUI. 
However, in many areas good graphics are either essential or very im
portant. For example, we wouldn't dream of studying scientific comput
ing, data analysis, or just about any quantitative subject without the 
ability to graph data. Chapter 15 gives simple (but general) facilities for 
graphing data. 

Graphics are fon. There are few areas of computing where the effect of a 
piece of code is as immediately obvious and - when finally free of bugs 
- as pleasing. We'd be tempted to play with graphics even if it wasn't 
useful ! 

Graphics provide lolr C?fi11teresh:11g code to mul. Part of learning to program is 
to read lots of code to get a feel for what good code is like. Similarly, the 
way to become a good w1iter of English involves reading a lot of books, 
articles, and quality newspapers. Because of the direct correspondence 
between what we see on the screen and what we write in our programs, 
simple graphics code is more readable than most kinds of code of silnilar 
complexity. This chapter will prove that you can read graphics code after 
a few minutes of introduction; Chapter 13 will demonstrate how you can 
write it after another couple of hours. 
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Graphics are a}ertile source tf design acamples. lt is actually hard to design and 
implement a good graphics and GUI library. Graphics are a very rich 
source of concrete and practical examples of design decisions and design 
techniques. Some of the most useful techniques for designing classes, de
signing functions, separating software into layers (of abstraction) , and 
constructing libraries can be illustrated with a relatively small amount of 
graphics and G U I code. 

Graphics provide a good introduction to whnt ir commonb• called oiject-orienied jJro
gramming lUU/ tlze language fiatures that support it. Despite rumors to the con
trary, object-oriented programming wasn't invented to be able to do 
graphics (see Chapter 22}, but it was soon applied to that, and graphics 
provide some of the most accessible examples of object-oriented designs. 

So17U: tf the lwy graphics concepts are nontrivial. So they are worth teaching, 
rather than leaving it to your own initiative (and patience) to seek out in
formation. If we did not show how graphics and GUI were done, you 
might consider them "magic," thus violating one of the fundamental 
aims of this book. 

1 2.2 A display model 
The iostream library is oriented toward reading and writing streams of characters 
as they might appear in a list of numeric values or a book. The only direct sup
ports for the notion of graphical position are the newline and tab characters. You 
can embed notions of color and two-dimensional positions, etc., in a one
dimensional stream of characters. That's what layout (typesetting, "markup") 
languages such as Troff, Tex, Word, HTTP, and XML (and their associated 
graphical packages) do. For example: 

<hr> 
<h2> 
Organization 
<lh2> 
This list is organized in three parts : 
<UI> 

<lui> 

<li><b>ProposaiS<Ib>, numbered EPddd, . . .  <IIi> 
<li><b>lssues<lb>, numbered Elddd, . . .  <IIi> 
<li><b>Suggestions<lb>, numbered ESddd, . . .  <IIi> 

<p>We try to . . .  
<p> 

This is a piece of HTML specifying a header (<h2> . . .  <lh2>} a list (<ul> . . .  
<lui>) with list items (<il> . . .  <Iii>) and a paragraph (<p>) . We left out most of 
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the actual text because i t  is irrelevant here. The point is that you can express lay
out notions in plain text, but the connection between the characters written and 
what appears on the screen is indirect, governed by a program that interprets 
those "markup" commands. Such techniques are fundamentally simple and im
mensely useful Gust about everything you read has been produced using them}, 
but they also have their linutations. 

In this chapter and the next four, we present an alternative: a notion of graph
ics and of graphical user interfaces that is directly aimed at a computer screen. 
The fundamental concepts are inherently graphical (and two-dimensional, 
adapted to the rectangular area of a computer screen), such as coordinates, lines, 
rectangles, and circles. The aim from a programming point of view is a direct cor
respondence between tltc objects in memory and the images on the screen. 

The basic model is as follows: We compose objects with basic objects provided 
by a graphics system, such as lines. We "attach" these graphics objects to a window 
object, representing our physical screen. A program that we can think of as tl1e dis
play itself, as "a display engine," as "our graphics library," as "the GUI library," or 
even (humorously) as "the small gnome writing on the back of tl1c screen" then 
takes the objects we have added to our window and draws them on the screen: 

.8quare. attach() 

The adisplay engine'' draws lines on the screen, places strings of text on the 
screen, colors areas of tl1e screen, etc. For simplicity, we'll use the phrase "our 
GUI library" or even "the system" for the display engine even though our GUI 
library does much more than just drawing the objects. In the same way that our 
code lets the GUI library do most of the work for us, the GUI library delegates 
much of its work to the operating system. 

1 2.3  A first example 
Our job is to defme classes from wluch we can make objects that we want to sec 
on the screen. For example, we might want to draw a graph as a series of con
nected lines. Here is a small program presenting a very simple version of that: 
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#include "Simple_window.h" 
#include "Graph.h" 

int main() 
{ 

II get access to our window l ibrary 
II get access to our graphics l ibrary fac i l i t ies 

using namespace Graph_lib; II our graphics faci l i t ies are in Graph_l ib 

Point tl(100, 100); /I to become top left corner of window 

Simple_window win(ti,600,400, "Canvas") ;  II make a si mple window 

Polygon poly; 

poly.add(Point(300,200)); 
poly.add(Point(350, 100)); 
poly.add( Point( 400 ,200)); 

poly.set_color(Color: : red);  

win.attach (poly); 

win. wait_for _button(); 

II make a shape (a po lygonl  

II add a point 
II add another poin t  
II add a third point 

II adjust propert ies of poly 

II connect poly to the window 

II give mntrol ro the display engine 

When we run this program. the screen looks something like this :  

- _D, .  - ; . 

o .  ,' I 
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Let's go through the program line by line to see what was done. Frrst we include 
the headers for our graphics interface libraries: 

#include "Simple_window.h" II get access to our window l ibrary 
#include "Graph.h" II get access to our graphics l ibrary fac i l i t ies 

Then, in main(), we start by telling the compiler that our graphics facilities are to 
be found in Graph_lib: 

using namespace Graph_lib; II our graphics iac i l it ies are in Graph_l ib 

Then, we defme a point that we will use as the top left corner of our window: 

Point t1(100, 100); // to become top left corner of window 

Next. we create a window on the screen: 

Simple_window win(tl,600,400, "Canvas" ) ;  II make a simple window 

We use a class representing a window in our Graph_lib interface library called 
Simple_ window. The name of this particular Simple_window is win; that is. win 
is a variable of class Simple_window. The initializer list for win starts with t.he 
point to be used as the top left comer, tl, followed by 600 and 400. Those are the 
width and height, respectively, of the window, as displayed on the screen, meas
ured in pixels. We'll explain in more detail later, but the main point here is that 
we specify a rectangle by giving its width and height. The string Canvas is used 
to label the window. If you look, you can see the word Canvas in the top left cor
ner of the window's frame. 

On our screen, the window appeared in a position chosen by the GUI li
brary. In §13.7.2, we'll show how to choose a particular position, but for now, 
we'll jusl take what our library picks ; that's often just right anyway. 

Next, we put an object in the window: 

Polygon poly; 

poly. add( Point(300,200)); 
poly.add(Point(350, 100)); 
poly.add(Point(400,200)); 

II make a shape (a polygon) 

II add a poi nt 
II add another point 
II add a th ird poi nt 

We defme a polygon, poly, and then add points to it. In our graphics library, a 

Polygon starts empty and we can add as many points to it as we like. Since we 
added three points, we get a triangle. A point is simply a pair of values giving the 
x and )' (horizontal and vertical) coordinates within a window. 



I 2 . ]  A F I RST E XAMPL E 

Just to show off, we then color the lines of our polygon red: 

poly.set_color(Color: : red); II adjusl  properties of poly 

Finally, we attach poly to our window, win: 

win .attach(poly); II connect poly to the window 

If the program wasn't so fast, you would notice that so far nothing had happened to 
the screen: nothing at all. We created a window (an object of class Simple_ window, 
to be precise), created a polygon (called poly}, painted that polygon red (Color: : 
red}, and attached it to the window (called win}, but we have not yet asked for that 
window to be displayed on the screen. 1bat's done by the flnal line of the program: 

win.wait_for_button(); II give control to the d isplay engi ne 

To get a GUI system to display objects on the screen, you have to give control to 
"the system." Our wait_for_button() does that, and it also waits for you to 
"press" ("click") the "Next" button of our Simple_window before proceeding. 
This gives you a chance to look at the window before the program finishes and 
the window disappears. When you press the button, the program tem1inates, 
closing the window. 

In isolation, our window looks like this : 

• C• m a·. - - x  
• • • 

• fiO:l - · t\!;l 

You'll notice that we "cheated" a bit. Where did that button labeled "Next" come 
from? We built it into our Simple_window class. In Chapter 16, we'll move from 
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Simple_window t o  "plain" Window, which has no potentially spurious facilities 
built in, and show how we can write our own code to control interaction with a 
window. 

For the next three chapters, we'll simply use that "Next" button to move 
from one "display" to the next when we want to display information in stages 
("frame by frame"). 

You are so used to the operating system putting a frame around each window 
that you might not have noticed it specifically. However, the pictures in this and 
the following chapters were produced on a Microsoft Windows system, so you 
get the usual three buttons on the top righL "for free." This can be useful: if your 
program gets in a real mess (as it surely will sometimes during debugging}, you 
can kill it by hitting the x button. When you run your program on another sys
tem, a different frame will be added to fit that system's conventions. Our only 
contribution to the frame is the label (here, Canvas). 

1 2 .4 Using a G U I  library 
In this book, we will not use the operating sysLem's graphical and GUI (graphi
cal user interface) facilities directly. Doing so would limit our programs to run on 
a single operating system and would also force us Lo deal directly with a lot of 
messy details. As with text 1/0, we'll use a library to smooth over operating sys· 
tern differences, 1/0 device variations, etc. and to simplify our code. Unfortu· 
naLely, C++ does not provide a standard GUI library the way it provides the 
standard stream 1/0 library, so we use one of the many available C++ GUI li· 
braries. So as not to tie you directly into one of those GUI libraries, and to save 
you from hitting the full complexity of a G Ul library all at once, we use a set of 
simple interface classes that can be implemented in a couple of hundred lines of 
code for just about any GUI library. 

The GUI toolkit that we are using (indirectly for now) is called FLTK (Fast 
Light Tool Kit, pronounced "full tick") from www.fltk.org. Our code is portable 
wherever FLTK is used (Wmdows, Unix, Mac, Linux, etc.). Our interface classes 
can also be re-implemented using other toolkits, so code using Lhcm is potentially 
even more portable. 

The programming model presented by our inlerfacc classes is far simpler 
than what common toolkits offer. For example, our complclc graphics and GUI 
interface library is about 600 lines of C++ code, whereas the extremely terse 
FLTK documentation is 370 pages. You can download tl1aL from www.fltk.org, 
but we don't recommend you do that just yet. You can do without that level of 
detail for a willie. The general ideas presented in Chapters 12- 1 6  can be used 
witl1 any popular G UI toolkit. We will of course explain how our interface 
classes map to FLTK so that you will (eventually) see how you can usc that (and 
similar LOolkits) directly, if necessary. 
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We can illustrate the parts o f  our "graphics world" like this :  

A graphics/G Ul library 
(here FLTK) 

The operating system 
(e.g., Wmdows or Linux) 

Our screen 

Our inLerface classes provide a simple and user-extensible basic notion of two
dimensional shapes with limited support for the use of color. To drive thal, we 
presenl a simple notion of GUI based on "callback" functions triggered by the 
use of user-defined buttons, etc. on the screen (Chapter 1 6) .  

1 2.5 Coordinates 
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A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot f) 
that can be given some color. The most common way of modeling a screen in a 
program is as a rectangle of pixels. Each pixel is identified by an x (horizontal) co
ordinate and a y (vertical) coordinate. The x coordinates start with 0, indicating 
Lhe leftmost pixel, and increase (toward the right) to the rightmost pixel. The )' 
coordinales start with 0, indicating the topmost pixel, and increase (toward the 
bottom) to the lowest pixel : 

O,Or---1---- 200.0 --

50,50 

0,100 100.200 
l 
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Please note that y coordinates "grow downward." Mathematicians, i n  particular, 
find this odd, buL screens (and windows) come in many sizes, and the top lefL 
point is about all that they have in common. 

TI1e number of pixels available depends on the screen: 1024-by-768, 1280-by-
1024, 1450-by-1050, and 1 600-by-1200 are common screen sizes. 

In the context of interacting with a computer using a screen, a window is a 
rectangular region of the screen devoted to some specific purpose and controlled 
by a program. A window is addressed exactly as a screen. Basically, we see a win
dow as a small screen. For example, when we said 

Simple_ window win(tl,600,400, "Canvas"); 

we requested a rectangular area 600 pixels wide and 400 pixels high that we can 
address 0-599 (left to right) and 0-399 (top to bottom) . The area of a window that 
you can draw on is commonly referred to as a caJlll(lJ. The 600-by-400 area refers to 
''the inside" of the window. thal is, the area inside the system-provided frame; iL 
does not include the space the system uses for me title bar, quit button, etc. 

1 2 .6 Shapes 
Our basic toolbox for drawing on the screen consists of about a dozen classes: 

[Line�style) 

An arrow indicates that the class pointing can be used where the class pointed to 
is required. For example, a Polygon can be used where a Shape is required; thaL 
is, a Polygon is a kind of Shape. 

We will sLart out presenting and using 

Simple_window, Window 

Shape, Text, Polygon, Line, Lines, Rectangle, Function, elc. 

Color, Line_style, Point 

Axis 
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Later (Chapter 16) ,  we'll add G U I  (user interaction) classes : 

Button, ln_box, Menu, etc. 

We could easily add many more classes (for some definition of "easy"). such as 

Spline, Grid, Block_chart, Pie_chart, etc. 

However, defining or describing a compleLe G U I framework with all its facilities 
is beyond the scope of this book. 

1 2.7 Using Shape primitives 
In this section, we will walk you through some of the primitive facilities of our 
graphics library: Simple_window, Window, Shape, Text, Polygon, Line. Lines, 
Rectangle, Color, Line_style, Point, Axis. The aim is to give you a broad view of 
what you can do with those facilities, but not yet a detailed understanding of any 
of those classes. In the next chapters, we explore the design of each. 

We will now walk through a simple program, explaining the code line by line 
and showing the effect of each on the screen. When you nm the program you'll 
see how the image changes as we add shapes to the window and modify existing 
shapes. Basically. we are "animating" the progress through the code by looking at 
the program as it is executed. 

1 2.7.1 Graphics headers and main 
First, we include the header ftles defining our interface to the graphics and GUI 
facilities: 

or 

#include "Window.h" II a plain window 
#include "Graph.h" 

#include "Simple_window.h" II if  we want that "Next" button 
#include "Graph.h" 

As you probably guessed, Window.h contains the facilities related to windows 
and Graph.h the facilities related to drawing shapes (including text) into win
dows. These facilities are defined in the Graph_lib namespace. To simplify nota
tion we use a namespace directive to make the names from Graph_lib directly 
available in our program: 

using namespace Graph_lib; 
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As usual, main() contains the code we want to execute (directly or  indirectly) and 
deals with exceptions : 

int main () 
try 
{ 

II . . .  here is our code . . .  

catch(exception& e) { 
II some error reporting 
return 1 ;  

catch( . . .  ) { 
II some more error report ing 
return 2; 

1 2 .7 .2 An almost blank window 
We will not discuss error handling here (see Chapter 5, in particular, §5.6.3), but 
go straight to the graphics within main(): 

Point t1(100, 100); II top left corner of our window 

Simple_window win(tl,600,400, "Canvas");  
II screen coordinate t l  for top left corner 
II window size(600.400) 
II title: Canvas 

win.wait_for_button() ;  II display! 

This creates a Simple_window, that is, a window with a "Next" button, and dis
plays it on the screen. Obviously, we need to have #included the header 
Simple_window.h rather than Window.h to get Simple_window. Here we are 
specific about where on the screen the window should go : its top left comer goes 
at Point(100, 100). That's near, but not too near, the top lefL comer of the screen. 
Obviously, Point is a class with a constructor that takes a pair of integers and in· 
terprets them as an (.'(,)') coordinate pair. We could have written 

Simple_ window win(Point(100, 100),600,400, "Canvas") ;  
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However, we want to usc the point ( 100,100) several times so it is more conven
ient to give it a symbolic name. The 600 is the width and 400 is the height of the 
window, and Canvas is the label we want put on the frame of the window. 

To actually geL the window drawn on the screen, we have to give control to 
the GUI system. We do this by calling win.wait_for_buHon() and the result is: 

In the background of our window, we see a laptop screen (somewhat cleaned up 
for the occasion). For people who arc curious about irrelevant details, we can tell 
you that I took the photo standing near the Picasso library in Antibes looking 
across the bay to Nice. The black console window partially hidden behind is the 
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one running our program. Having a console window is somewhat ugly and un- (_j 
necessary, but it has the advantage of giving us an effective way of killing our 
window if a partially debugged program gets into an infinite loop and refuses to 
go away. If you look carefully, you'll notice that we have the Microsoft C++ com-
piler 1unning. but you could just as well have used some other compiler (such as 
Borland or GNU). 

For the rest of the presentation we will eliminate the distractions around our 
window and jusl show that window by itself: 
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TI1e actual size of  the window (in inches) depends on the resolution of your 
screen. Some screens have bigger pixels than other screens. 

1 2.7.3 Axis 
An almost blank window isn't very interesting, so we'd better add some informa
tion. What would we like to display? Just to remind you that graphics is not all 
fun and games, we will start with something serious and somewhat complicated: 
an axis. A graph without axes is usually a disgrace. You just don't know what the 
data represents without axes. Maybe you explained it all in some accompanying 
text, but it is far safer to add axes ; people often don't read the explanation and 
often a nice graphical representation gets separated from its original context. So, 
a graph needs axes : 

Axis xa(Axis: :x, Point(20,300), 280, 10, "x axis" ) ;  
II an Axis is a kind oi Shape 
II Axis::x means horizonta l 
II start ing at (20, 300) 
11 280 pixels long 
Il l  0 "notches" 
II label the axis "x ax is" 

II make an Axis 

win .attach(xa) ; 
win.set_labei("Canvas #2"); 
win. wait_ for _button(); 

II attach x,1 to the window, win 
II relabel the window 
II display! 
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The sequence of actions is : make the axis object, add it to the window, and fi
nally display it: 

We can see that an Axis: :x is a horizontal line. We see the required number of 
"notches'' ( lO) and the label "x axis." Usually, the label will explain what the axis 
and t.he notches represent. Naturally, we chose to place the x axis somewhere 
near t.he bottom of the window. In real life, we'd represent the height and width 
by symbolic constants so that we could refer to 'just above the bottom" as some
thing like y_max-bottom_margin rather than by a "magic constant," such as 300 
(§4.3. 1 ,  §15.6.2) . 

To help identify our output. we relabeled the screen to Canvas #2 using 
Window's member function set_label() . 

Now. let's add a y axis: 

Axis ya(Axis: :y, Point(20,300), 280, 10, "y axis"); 
ya.set_color(Color: : cyan); II choose a color 
ya.label.set_color(Color: :dark_red);  II choose a color ior the  text 
win.attach(ya) ; 
win.set_labei("Canvas #3");  
win.wait_for_button(); II d isplay! 

Just to show ofT some facilities, we colored our y axis cyan and our label dark red. 
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We don't actually think that i t  is a good idea to use different colors for x and )' 
axes. We just wanted to show you how you can set the color of a shape and of in· 
dividual elements of a shape. Using lots of color is not necessarily a good idea. In 
particular, novices tend to use color with more enthusiasm than taste. 

1 2 .7 .4 Graphing a function 
What next? We now have a window with axes, so it seems a good idea to graph 
a function. We make a shape representing a sine function and attach it: 

Function sine(sin,O, 100,Point(20, 1 50), 1000,50,50); II sine curve 
II plot s in ( )  in the range 10: 1 om with (0,0l at ! 20, 1 501 
II using 1 000 poi nts; sca le x va lues ' 50, sca le y values •so 

win .attach(sine) ; 
win.set_labei("Canvas #4"); 
win.wait_for_button(); 

Here. the Function named sine will draw a sine curve using the standard library 
function sin() to generate values. We explain details about how to graph func· 
tions in §15.3. For now, just note that to graph a function we have to say where it 
starts (a Point) and for what set of input values we want to see it (a range). and 
we need to give some information about how to squeeze that information into 
our window (scaling) : 
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Note how the curve simply stops when it hits the edge o f  the window. Points 
drawn outside our window rectangle are simply ignored by the GUI system and 
never seen. 

1 2 .7 .5 Polygons 
A graphed function is an example of data presentation. We'll see much more of 
that in Chapter 15. However, we can also draw different kinds of objects in a 
window: geometric shapes. We use geometric shapes for graphical illustrations, 
Lo indicate user interaction elements (such as buttons), and generally to make our 
presentations more interesting. A Polygon is characterized by a sequence of 
points, which the Polygon class connects by lines. The first line connects the frrst 
point to the second. the second line cmmects the second point to the third. and 
the last line connects the last point to the frrst: 

sine.set_color(Color: :blue) ; 

Polygon poly; 
poly.add(Point(300,200)); 
poly.add(Point(350, 100)); 
poly.add(Point(400,200)) ;  

poly.set_color(Color: : red); 

II we changed our mind abnul sine's color 

II a polygon; a Polygon i s  a k ind of Shape 
ll l hree points make a lriangle 
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poly.set_style(Line_style: :dash); 
win.attach(poly); 
win.set_labei( "Canvas #511) ;  
win.wait_for_button(); 
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This time we change the color of the sine curve (sine) just to show how. Then, 
we add a triangle, just as in our first example from §12.3, as an example of a 
polygon. Again, we set a color, and finally, we set a style. The lines of a Polygon 
have a "style." By default that is solid, but we can also make those lines dashed, 
dotted, etc. as needed (see §13.5). We get 

1 2 .7.6 Rectan gles 
A screen is a rectangle, a window is a rectangle, and a piece of paper is a rectan
gle. In fact, an awful lot of t.he shapes in our modem world are rectangles (or at 
least rectangles with rounded comers).  There is a reason for this : a rectangle is 
the simplest shape to deal with. For example, it's easy to describe (top left comer 
plus width plus height, or top left comer plus bottom right comer, or whatever). 
it's easy to tell whether a point is inside a rectangle or outside it, and it's easy to 
get hardware to draw a rectangle of pixels fast. 

So. most higher-level graphics libraries deal better with rectangles than with 
other closed shapes. Consequently, we provide Rectangle as a class separate from 
the Polygon class. A Rectangle is characterized by its top left comer plus a widtl1 
and height: 
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Rectangle r(Point(200,200), 100, 50); II top left corner, width, height 
win.attach(r); 
win.set_labei("Canvas #6"); 
win. wait_for _button(); 

From that, we get 

Please note that making a polyline with four points in the right places is not 
enough to make a Rectangle. It is easy to make a Closed_polyline that looks like 
a Rectangle on the screen (you can even make an Open_polyline that looks just 
like a Rectangle) ; for example: 

Closed_polyline poly _rect; 
poly_rect.add(Point(100,50)); 
poly _rect.add(Point(1 00,50)); 
poly_rect.add(Point(200,100)); 
poly _rect.add(Point(100,100)); 
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I n  fact, the image on the screen o f  such a poly_rect is a rectangle . However, the 
poly_rect object in memory is not a Rectangle and it does not "know" anything 
about rectangles. The simplest way to prove that is to add another point: 

poly _rect.add(Point(SO, 75)); 

No rectangle has five points: 

' ·� :- - i ( •,. 

It is important for our reasoning about our code that a Rectangle doesn't just 
happen to look like a rectangle on the screen; it maintains the fundamental guar· 
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antees of a rectangle (as we know them from geometry) . We write code that de· 
pends on a Rectangle really being a rectangle on the screen and staying that way. 

1 2.7 .7 Fill 
We have been drawing our shapes as outlines. We can also "fill" a rectangle with 
color: 

r.set_fill_color(Color: : yellow); II color the inside of the rectangle 
poly.set_style(Line_style(Line_style: :dash,4)) ;  
poly _rect.set_style(Line_style(Line_style: : dash,2)) ; 
win.set_labei("Canvas #7") ;  
win. wait_for _button(); 

We also decided tl1at we didn't like tl1e line style of our triangle (poly), so we set 
its line style to "fat (tl1ickness four times nonnal) dashed." Similarly, we changed 
the style of poly_rect (now no longer looking like a rectangle) : 

If you look carefully at poly _rect, you'll see that the outline is printed on top of 
the fill. 

It is possible to flll any closed shape (see §13.9) . Rectangles arc just special in 
how easy (and fast) they arc to flll. 

1 2.7.8 Text 
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Fmally, no system for drawing is complete without a simple way of writing text - fj 
drawing each character as a set of lines just doesn't cut it. We label tl1e window itself, 
and axes can have labels, but we can also place text anywhere using a Text object: 
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Text t(Point(150, 1 50), "Hello, graphical world I ") ; 
win.attach(t); 
win.set_labei("Canvas #8"); 
win.wait_for _button(); 

From the primitive graphics elements you see in this window, you can build dis
plays of just about any complexity and subtlety. For now, just note a peculiarity 
of the code in this chapter: there are no loops, no selection statements, and all 
data was "hardwired" in. The output was just composed of primitives in the 
simplest possible way. Once we start composing these primitives using data and 
algorithms, things will start to get interesting. 

We have seen how we can control the color of text: the label of an Axis 
(§12.7.3) is simply a Text object. In addition, we can choose a font and set the size 
of the characters: 

t. set_font(font: : times_bold); 
t.set_font_size(20) ; 
win.set_labei("Canvas #9"); 
win. wait_ for _button(); 

We enlarged the characters of the Text string Hello, graphical world ! to point size 
20 and chose the Times font in bold: 
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. l 

1 2.7.9 Images 

We can also load images from ftles : 

Image ii(Point(100,50), " image.jpg");  
win .attach(ii); 
win.set_labei("Canvas #10"); 
win .  wait_for _button(); 

' I 

// 40002 1 2-pixel jpg 

As it happens, the ftle called image.jpg is a photo of two planes breaking t.he 
sound barrier: 
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That photo is relatively large and we placed it right on top of our text and 
shapes. So, to clean up our window a bit, let us move it a bit out of the way: 

ii.move(100,200) ; 
win.set_labei("Canvas #1 1 "); 
win.wait_for _button(); 

Note how the parts of the photo that didn't fit in the window are sin1ply not rep
resented. What would have appeared outside the window is "clipped" away. 

1 2.7 .1 0 And much more 
And here, without further comment, is some more code : 

Circle c(Point(100,200),50); 
Ellipse e(Point(100,200), 75,25); 
e.set_color(Color: :dark_red); 
Mark m(Point(100,200), 'x'); 

ostringstream oss; 
oss << "screen size: " << x_max() << "•" << y_max() 

<< " ; window size: " << win.x_max() << " • "  << win.y_max(); 
Text sizes(Point(100,20),oss.str()); 

Image cai(Point(225,225), "snow_cpp.gif"); 
cal .set_mask(Point(40,40),200, 150); 

II 320*240-pixcl gil  
II display center part of im.1ge 
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win.attach(c); 
win.attach(m); 
win.attach(e) ; 

win.attach(sizes); 
win.attach(cal);  
win.set_labei("Canvas #12"); 
win.wait_for _button(); 

Can you guess what tllis code does? Is it obvious? 
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lltc connection between the code and what appears on the screen is direct. If • , 

you don "t yet see how that code caused that output, it soon will become clear. U 
Note the way we used a stringstream (§1 1 .4) to format the text object displaying 
SIZeS. 

1 2 .8 Getting this to run 
We have seen how to make a window and how to draw various shapes in it. In 
the following chapters, we'll see how those Shape classes are defmed and show 
more ways of using tltem. 

Getting tills progrant to run requires more than the progrants we have pre
sented so far. In addition to our code in main(), we need to get the interface library 
code compiled and linked to our code, and finally, nothing will run unless the FLTK 
library (or whatever GUI system we use) is installed and correctly linked to ours. 
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One way o f  looking at the program is that it has four distinct parts: 

Our program code (main(), etc.) 

Our interface library (Window, Shape, Polygon, etc.) 

o The FLTK library 

o The C++ standard library 

Indirectly, we also use the operating system. Leaving out the OS and the stan
dard library, we can illustrate the organization of our graphics code like this : 

Point.h: 

strud Point { . . .  }; 

Graph.h: 
II window interface: 
class Window { . . .  }; 

II graphing interface: 
strud Shape { . . .  }; 

Simple_ window. h: 

II window interface: 
class Simple_ window { . . . }; 

#include "Graph.h" 
#include "Simple_window.h" 
int main() { . . .  } 

II GUI interface: 
strud ln_box { . . . }; 

Appendix D explains how Lo get all of this to work togetl1er. 

1 2.8. 1 Source files 
Our graphics and G Ul interface library consists of just five header flies and three 
code flies : 
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Headers: 

Point.h 

Window.h 

Simple_window.h 

Graph.h 

GUI.h 

Code flies: 

Window.cpp 

Graph.cpp 

GUI.cpp 

Until Chapter 16, you can ignore the GUI files . 

.../Drill 
The drill is the graphical equivalent to the "Hello, World!" program. Its purpose 
is to get you acquainted with the simplest graphical output tools. 

1 .  Get an empty Simple_window with the size 600 by 400 and a label My 
window compiled, linked, and run. Note that you have to link the FLTK 
library as described in Appendix D; #include Graph.h, Window.h, and 
GUI.h in your code; and include Graph.cpp and Window.cpp in your 
project. 

2. Now add the examples from §12.7 one by one, testing between each 
added subsection example. 

3. Go through and make one minor change (e.g., in color, in location, or in 
number of points) to each of the subsection examples. 

Review 

1 .  Why do we use graphics? 
2. When do we try not to use graphics? 
3. Why is graphics interesting for a programmer? 
4. What is a window? 
5. In which namespace do we keep our graphics interface classes (our graphics 

library)? 
6. What header ftles do you need to do basic graphics using our graphics 

library? 

433 



434 

7. 
8. 
9. 

10. 
1 1 . 

12. 
13. 
14. 
15. 
1 6. 

1 7. 

1 8. 

Terms 
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What is the simplest window to use? 
What is the minimal window? 
What's a window label? 
How do you label a window? 
How do screen coordinates work? Window coordinates? Mathematical 
coordinates? 
What are examples of simple "shapes" that we can display? 
What command attaches a shape to a window? 
Which basic shape would you use to draw a hexagon? 
How do you write text somewhere in a window? 
How would you put a photo of your best friend in a window (using a 
program you wrote yourself) ? 
You made a Window object, but nothing appears on your screen. What 
are some possible reasons for that? 
You have made a shape, but it doesn't appear in the window. What are 
some possible reasons for that? 

color 
coordinates 
display 

graphics 
GUI 
GUI library 
HTTP 
image 

JPEG 
line style 
software layer 
window 
XML 

fill color 
FLTK 

Exercises 

We recommend that you use Simple_window for these exercises. 

1 .  Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the 
Polygon red and the lines of the Rectangle blue. 

2. Draw a 100-by-30 Rectangle and place the text "Howdy!" inside it. 
3. Draw your initials 150 pixels high. Use a thick line. Draw each initial in 

a different color. 
4. Draw a checkers board: 8-by-8 alternating white and red squares . 
5. Draw a red 1/4-inch frame around a rectangle that is three-quarters the 

height of your screen and two-thirds the width. 
6. What happens when you draw a Shape that doesn't fit inside its win

dow? What happens when you draw a Window that doesn't fit on your 
screen? Write two programs that illustrate these two phenomena. 

7. Draw a two-dimensional house seen from the front, the way a child 
would: with a door, two windows, and a roof with a chimney. Feel free to 
add details ; maybe have "smoke" come out of the chimney. 
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8. Draw the Olympic five rings. If you can't remember the colors, look 
them up. 

9. Display an image on the screen, e.g., a photo of a friend. Label the image 
both with a tiLle on the window and with a caption in the window. 

10. Draw the flle diagram from §12.8. 
1 1 .  Draw a series of regular polygons, one inside the other. The innermost 

should be an equilateral triangle, enclosed by a square, enclosed by a 
pentagon, etc. For the mathematically adept only: let all the points of 
each N-polygon touch sides of the (N+1 )-polygon. 

12 .  A superellipse is a two-dimensional shape defined by the equation 

1· ' m, n > O. 

Look up supereUipse on the web to get a better idea of what such shapes look 
like. Write a program that draws "starlike" patterns by connecting points on 
a superellipse. Take a, b, m, n, and N as arguments. Select N points on the 
superellipse defmed by a, b, m, and n. Make the points equally spaced for 
some definition of "equal." Connect each of those N points to one or more 
other points (if you like you can make the number of points connect to an
other argument or just use N-1, i.e., all the other points) .  

1 3 .  Find a way to add color to the superellipse shapes from the previous ex
ercise. Make some lines one color and other lines another color or other 
colors. 

Postscript 

435 

The ideal for program design is to have our concepts directly represented as enti- • \ 
ties in our program. So. we often represent ideas by classes, real-world entities by U 
objects of classes, and actions and computations by functions. Graphics is a do-
main where this idea has an obvious application. We have concepts, such as cir-
cles and polygons, and we represent them in our program as class Circle and 
class Polygon. Where graphics is unusual is that when writing a graphics pro
gram, we also have the opportunity to see objects of those classes on the screen; 
that is, the state of our program is directly represented for us to observe - in 
most applications we are not that lucky. This direct correspondence between 
ideas, code, and output is what makes graphics programming so attractive. 
Please do remember, though, that graphics are just illustrations of the general 
idea of using classes to directly represent concepts in code. That idea is far more 
general and useful : just about anything we can think of can be represented in 
code as a class, an object of a class, or a set of classes . 





t 
r 1 3  

Graphics C l asses 

"A language that doesn't 
change the way you think 

isn't worth learning." 

-Traditional 

C haptcr 12 gave an idea of what we could do in terms of graph

ics using a set of simple interface classes, and how we can do 

it. 1bis chapter presents many of the classes offered. The focus here 

is on the design, usc, and in1plcmentation of individual interface 

classes sum as Point, Color, Polygon, and Open_polyline and 

their uses. The following chapter will present ideas for designing 

sets of related classes and will also present more implementation 

techniques. 
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13.1 Overview of graphics classes 

13.2 Point and Une 

13.3 Unes 

13.4 Color 

13.5 Une_style 

13.6 Open_polyline 

13.7 Closed_polyline 

13.8 Polygon 

13.9 Rectangle 
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13.10 Managing unnamed objects 

13.11 Text 

13.12 Circle 

13.13 Ellipse 

13.14 Marked_polyline 

13.15 Marks 

13.16 Mark 

13.17 Images 

1 3 .1  Overview of graphics classes 
Graphics and G Ul libraries provide lots of facilities. By "lots" we mean hundreds 
of classes. often with dozens of functions applying to each. Reading a description, 
manual. or documentation is a bit like looking at an old-fashioned botany text
book listing details of thousands of plants organized according to obscure classi
fying traits. It is daunting! It can also be exciting - looking at the facilities of a 
modem graphics/G Ul library can make you feel like a child in a candy store, but 
it can be hard to figure out where to start and what is really good for you. 

One purpose of our interface library is to reduce the shock delivered by the 
complexity of a full-blown graphics/G Ul library. We present just two dozen 
classes with hardly any operations. Yet they allow you to produce useful graphi
cal output. A closely related goal is to introduce key graphics and G Ul concepts 
through those classes. Already, you can write programs displaying results as sim
ple graphics. Mter this chapter, your range of graphics programs will have in
creased to exceed most people's initial requirements. Mter Chapter 14. you'll 
understand most of the design techniques and ideas involved so that you can 
deepen your understanding and extend your range of graphical expression as 
needed. You can do so either by adding to the facilities described here or by 
adopting another C++ graphics/G Ul library. 

The key interface classes are : 

Graphics interface classes 

Color 

Une_style 

Point 

used for l ines, text, and fi l l i ng shapes 

used to draw l ines 

used to express locations on a screen and within a Window 
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Graphics interface classes (continued) 

Une a l ine segment as we see it on the screen, defined by its two end 
Points 

Open_polyline a sequence of connected line segments defined by a sequence 
of Points 

Closed_polyline l ike an Open_polyline, except that a l ine segment connects the 
last Point to the first 

Polygon a Closed_polyline where no two l ine segments intersect 

Text a string of characters 

Unes a set of l ine segments defined by pairs of Points 

Rectangle a common shape optimized for quick and convenient display 

Circle a circle defined by a center and a radius 

Ellipse an ellipse defined by a center and two axes 

Function a function of one variable graphed in a range 

Axis a labeled axis 

Mark a point marked by a character (such as x or o) 

Marks a sequence of points indicated by marks (such as x and o) 

Marked_polyline an Open_polyline with its points ind icated by marks 

Image the contents of an image file 

Chapter 15 examines Function and Axis. Chapter 16 presents the main GUI in
terface classes : 

GUI interface classes 

Window 

Simple_ window 

BuHon 

ln_box 

Out_box 

Menu 

an area of the screen in which we display our graphics objects 

a window with a "Next" button 

a rectangle, usually labeled, in a window that we can press to 
run one of our functions 

a box, usually labeled, in a window into which a user can type a 
string 

a box, usually labeled, in a window into which our program can 
write a string 

a vector of Buttons 
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The source code is organized into files like this :  

Graphics interface source files 

Point.h Point 

Graph.h a l l  other graphics interface classes 

Window.h Window 

Simple_window.h Simple_window 

GUI.h BuHon and the other GUI classes 

Graph.cpp definitions of functions from Graph.h 

Window.ccp definitions of functions from Window.h 

GUI.cpp definitions of functions from GUI.h 

In addition to the graphics classes, we present a class that happens to be useful 
for holding collections for Shapes or Widgets : 

A container of Shapes or Widgets 

Vedor_ref a vector with an interface that makes it convenient for holding 
unnamed elements 

When you read the following sections, please don't move too fast. There is little 
that isn't pretty obvious, but the purpose of this chapter isn't just to show you 
some pretty pictures - you see prettier pictures on your computer screen or tele
vision every day. The main points of this chapter are 

To show the correspondence between code and the pictures produced. 

To get you used to reading code and thinking about how it works. 

To get you to think about the design of code - in particular to think 
about how to represent concepts as classes in code. Why do those classes 
look the way they do? How else could they have looked? We made 
many, many design decisions, most of which could reasonably have been 
made differently, in some cases radically differently. 

So please don't rush. If you do, you'll miss something important and you might 
then find the exercises unnecessarily hard. 

1 3.2 Point and Lin e  
The most basic part of any graphic system is the point. To defme point is to defme 
how we organize our geometric space. Here, we use a conventional, computer-
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oriented layout of two-dimensional points defined by (x,y) integer coordinates . As 
described in §12.5, x coordinates go from 0 (representing the left-hand side of the 
screen) to max_x() (representing the right-hand side of the screen) ; y coordinates 
go from 0 (representing the top of the screen) to max_y() (representing the bottom 
of the screen). 

As defmed in Point.h, Point is simply a pair of ints (the coordinates) :  

struct Point { 
int x, y; 
Point(int xx, int yy) : x(xx), y(yy) { } 
Point() : x(O), y(O) { } 

}; 

bool operator==(Point a, Point b) { return a.x==b.x && a.y=b.y; } 
bool operatori=(Point a, Point b) { return l (a==b); } 

In Graph.h, we fmd Shape, which we describe in detail in Chapter 14, and Line: 

struct Line : Shape { 
Line(Point p1 , Point p2); 

}; 

II a Line is a Shape defined by two Points 
II construct a L ine from two Points 

A Line is a kind of Shape. That's what " : Shape" means. Shape is called a base 
class for Line or simply a base of Line. Basically, Shape provides the facilities 
needed to make the definition of Line simple. Once we have a feel for the partic
ular shapes, such as Line and Open_polyline, we'll explain what that implies 
(Chapter 14) . 

A Line is defined by two Points . Leaving out the "scaffolding" (#includes, 
etc. as described in §12.3), we can create lines and cause them to be drawn like 
this : 

II draw two l i nes 

Simple_ window win1 (Point(100, 100),600,400, "two lines"); 

Line horizontai(Point(100, 100),Point(200, 100)); II make a horizontal l ine 
Line verticai(Point(150,50),Point(150, 150)); II make a vertical l i ne 

win1 .attach(horizontal) ;  II attach the l i nes to the window 
win1.attach(vertical); 

win1.wait_for_button(); II display! 
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Executing that, we get 

As a user interface designed for simplicity, Line works quite well. You don't need 
to be Einstein to guess that 

Line verticai(Point(1 50,50),Point(150, 150)); 

creates a (vertical) line from ( 150,50) to ( 150,150). There are, of course, imple
mentation details, but you don't have to know those to make Lines. The imple
mentation of Line's constructor is correspondingly simple: 

Line: :  Line(Point p1 , Point p2) II construct a l ine irom two points 
{ 

add(p1 ); 
add(p2); 

II add pI to this shape 
II add p2 to this shape 

That is. it simply "adds" two points. Adds to what? And how docs a Line get 
drawn in a window? The answer lies in t.he Shape class. As we'll describe in 
Chapter 14. Shape can hold points defining lines, knows how Lo draw lines de
fined by pairs of Points, and provides a function add() that allows an object to 
add to its Shape. The key point (sid) here is that defining Line is trivial. Most of 
the implementation work is done by "the system" so that we can concentrate on 
writing simple classes that are easy to use. 
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From now on we'll leave out the defmition of the Simple_window and the 
calls of attach(). Those are just more "scaffolding" that we need for a complete 
program but that adds little to the discussion of specific Shapes. 

1 3 .3 Lines 
As it  turns out, we rarely draw just one line. We tend to think in terms of objects 
consisting of many lines, such as triangles, polygons. paths, mazes, grids. bar 
graphs, mathematical functions, graphs of data, etc. One of the simplest such 
"composite graphical object classes" is Lines: 

struct Lines : Shape { II related l i nes 
void draw _lines() const; 
void add(Point p1 , Point p2); // Mid a l ine deiined by two points 

}; 

A Lines object is simply a collection of lines, each defined by a pair of Points. For 
example, had we considered the two lines from the Line example in §13.2 as part 
of a single graphical object, we could have defined them like this : 

Lines x; 
x.add(Point(100, 100), Point(200, 100)); 
x.add(Point(150,50), Point(150, 150)); 

II iirst l ine: horizonta l 
II second l ine: vertical 

This gives output that is indistinguishable (to the last pixel) from the Line version: 
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The only way we can tell that this is a different window is that we labeled them 
differently. 

The difference between a set of Line objects and a set of lines in a Lines ob· 
jcct is completely one of our view of what's going on. By using Lines, we have ex· 
pressed our opinion that the two lines belong together and should be 
manipulated together. For example, we can change the color of all lines that arc 
part of a Lines object with a single command. On tl1e other hand, we can give 
lines that are individual Line objects different colors . As a more realistic exan1plc, 
consider how to define a grid. A grid consists of a number of evenly spaced hori· 
zontal and vertical lines. However, we think of a grid as one "thing," so we define 
those lines as part of a Lines object, which we call grid: 

int x_size = win3.x_max(); 
int y_size = win3.y_max(); 
int x__grid = 80; 

II get the size of our window 

int y__grid = 40; 

Lines grid; 
for (int x=x__grid; X<X_size; x+=x__grid) 

grid .add( Point(x,O), Point(x, y _size)); 
for (int y = y__grid; y<y_size; y+=y__grid) 

grid.add (Poi nt(O, y), Point(x_size, y)); 

II vert ical  l ine' 

II horizont.1l l i ne 

Note how we get the dimension of our window using x_max() and y_max(). This 
is also the first example where we are writing code that computes which objects 
we want to display. It would have been unbearably tedious to define this grid by 
defining one named variable for each grid line. From that code, we get 
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Let's return to the design of  Lines. How are the member functions of  class 
Lines implemented? Lines provides just two operations. The add() function sim
ply adds a line defined by a pair of points to the set of lines to be displayed: 

void Lines: :add(Point p1 , Point p2) 
{ 

Shape: :add(p1) ;  
Shape: :add(p2); 

Yes. the Shape: :  qualification is needed because otherwise the compiler would 
see add(p1) as an (illegal) attempt to call Lines' add() rather than Shape's add(). 

The draw_lines() function draws the lines defmed using add() : 

void Lines: :draw_lines() const 
{ 

if (color().visibility()) 
for (int i=1 ; i<number_of_points(); i+=2) 

fl_line(point(i-1 ).x,point(i-1 ). y,point(i) .x,point(i) . y); 

That is, Lines: :draw _lines() takes two points at a time (starting with points 0 and 
1 )  and draws the line between them using the underlying library's line-drawing 
function (fl_draw()) .  Visibility is a property of the Lines' Color object (§13.4}, so 
we have to check that the lines are meant to be visible before drawing them. 

As we explain in Chapter 14, draw_lines() is called by "the system." We don't 
need to check that the number of points is even - Lines' add() can add only pairs 
of points. The functions number_of_points() and point() arc defmed in class 
Shape (§14.2) and have their obvious meaning. These two functions provide 
read-only access to a Shape's points. The member function draw_lines() is de
fined to be const (see §9.7.4) because it doesn't modify the shape. 

We didn't supply Lines with a constructor because the model of starting out 
with no points and then add()ing points as needed is more flexible than any con
structor could be. We could have provided constructors for simple cases (such as 
1 ,  2, and 3 lines) or for an arbitrary number of lines, but there didn't seem to be 
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a real need. If in doubt, don't add functionality. You can always add to a design if f.J 
need is demonstrated, but you can rarely remove facilities from code that has 
found its way into use. 

1 3.4 Color 
Color is the type we use to represent color. We can use Color like this: 

grid. set_ color( Color: : red) ;  
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This colors the lines defmed in grid red so that we get 

Color defines the notion of a color and gives symbolic nan1es to a few of the 
more common colors: 

struct Color { 
enum Color _type { 

} ; 

red=FL_RED, 
blue=FL_BLUE, 
green=FL_GREEN, 
yellow=FL_ YELLOW, 
white=FL_ WHITE, 
black=FL_BLACK, 
magenta=FL_MAGENTA, 
cyan=FL_ CYAN, 
dark_red=FL_DARK_RED, 
dark_green=FL_DARK_ GREEN, 
dark_yellow=FL_DARK_ YELLOW, 
dark_blue=FL_DARK_BLUE, 
dark_magenta=FL_DARK_MAGENTA, 
dark_ cyan=FL_DARK_ CYAN 

enum Transparency { invisible = 0, visible=255 }; 

Color(Color_type cc) : c(fi_Color(cc)), v(visible) { }  
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Color( Color _type cc, Transparency vv) : c(FI_ Color(cc)), v(vv) { } 
Color(int cc) :c(FI_Color(cc)), v(visible) { }  
Color(Transparency vv) :c(fi_Color()), v(vv) { } II default  color 

int as_int() const { return c; } 

char visibility() const { return v; } 
void set_visibility(Transparency vv) { v=vv; } 

private: 
char v; II invisible and v isible ior now 
FI_Color c; 

} ; 

The purpose of Color is 

To hide the implementation's notion of color, FLTK's FI_Color type 

To give the color constants a scope 
• To provide a simple version of transparency (visible and invisible) 

Ycm can pick colors 

From the list of named colors, for example, Color: :dark_ blue. 

By picking from a small "palette" of colors that most screens display well 
by specifying a value in the range 0-255; for example, Color(99) is a 
dark green. For a code example, see §13.9. 

By picking a value in the RGB (red, green, blue) system, which we will 
not explain here. Look it up if you need it. In particular, a search for 
"RGB color" on the web gives many sources, such as www.hypersolu
tions.org/rgb.html and www.pitt.edu/- nisglcis/web/cgilrgb.html. See also 
exercises 13 and 14. 

Note the usc of constructors to allow Colors to be created either from the 
Color _type or from a plain int. The member c is initialized by each constructor. 
You could argue that c is too short and too obscure a name to use, but since it is 
used only within the small scope of Color and not intended for general use, that's 
probably OK. We made the member c private to protect it from direct use from 
our users. For our representation of the data member c we use the FLTK type 
FI_Color that we don't really want to expose to our users. However, looking at a 
color as an int representing its RGB (or other) value is very common, so we sup· 
plied as_int() for that. Note that as_int() is a const member because it doesn't ac· 
tually change the Color object that it is used for. 

The transparency is represented by the member v which can hold the values 
Transparency: : visible and Transparency: : invisible, with their obvious meaning. 
IL may surprise you that an "invisible color" can be useful, but it can be most use· 
ful to have part of a composite shape invisible. 
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1 3.5 Line_style 
When we draw several lines in a window, we can distinguish them by color, by 
style, or by both. A line style is the pattern used to outline tl1e line. We can use 
Line_style like this: 

grid.set_style(Line_style: :dot); 

This displays the lines in grid as a sequence of dots rather than a solid line: 

'That "thinned out" the grid a bit, making it more discreet. By adjusting the width 
(thickness) we can adjust the grid lines to suit our taste and needs. 

The Line_style type looks like this: 

struct Line_style { 
enum Line_style_type { 

solid=FL_SOLID, 
dash=FL_DASH, 

} ; 

dot=FL_DOT, 
dashdot=FL_DASHDOT, 
dashdotdot=FL_DASHDOTDOT, 

II -------
11 - - - -

11 . . . . . .  . 
II - . - . 

11 -• •  - • •  

Line_style(Line_style_type ss) : s(ss), w(O) { }  
Line_style(Line_style_type 1st, int ww) : s(lst), w(ww) { }  
Line_style(int ss) : s(ss), w(O) { }  
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int width() const { return w;  } 
int style() const { return s; } 

private: 
int s; 
int w; 

}; 

TI1c programming techniques for defining line_style are exactly the same as the 
ones we used for Color. Here. we hide the fact that FLTK uses plain ints to repre
scnL line styles. Why is something like that worth hiding? Because it is exactly such 
a detail tl1at might change as a library evolves. The next FLTK release might very 
well have a Fl_linestyle type, or we might retarget our interface classes to some 
other GUI library. In either case, we wouldn't like to have our code and our users' 
code littered with plain ints that we just happened to know represent line styles. 

Most of the tinle, we don't worry about style at all; we just rely on the de-
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fault (default width and solid lines). This default line width is defined by the con· 
structors in the cases where we don't specify one explicitly. Setting defaults is one (_j 
of the things that constructors are good for, and good defaults can significantly 
help users of a class. 

Note that Line_style has two "components" :  the style proper (e.g., usc dashed 
or solid lines) and width (the thickness of the line used) . The width is measured in 
integers. The default width is l. We can request a fat dashed line like this : 

grid .set_style(line_style(line_style : : dash,2)); 

TI1is produces 
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Note that color and style apply to  all lines of a shape. ThaL is one of the advan· 
tages of grouping many lines into a single graphics object, such as a Lines, 
Open_polyline, or Polygon. If we want to control the color or style for lines sep
arately, we must define them as separate Lines. For example: 

horizontal.set_color(Color: : red); 
vertical .set_color(Color: :green); 

This gives us 

1 3.6 Open_polyl ine  
An Open_polyline is a shape that is composed of a series of connected line seg
ments defined by a series of points. ltJly is the Greek word for "many," and jJOlyli11e 
is a fairly conventional name for a shape composed of many lines. For example: 

Open_polyline opl; 
opl.add(Point(100, 100)); 
opl.add(Point(150,200)); 
opl.add(Point(250,250)); 
opl .add(Point(300,200)); 

This draws the shape that you get by connecting the points: 
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Basically, an Open_polyline is a fancy word for what we encountered in kinder
garten playing "Connect the Dots." 

Class Open_polyline is defined like this: 

struct Open_ polyline : Shape { II open sequence of l i nes 
void add(Point p) { Shape: :add(p); } 

}; 

Yes, that's t.he complete definition. There is literally nothing to Open_polyline ex· 
cept its name and what it inherits from Shape. Open_polyline's add() function is 
there simply to allow the users of an Open_polyline to access the add() from Shape 
(that. is, Shape: :add()) . We don't even need to define a draw_lines() because Shape 
by default interprets the Points add()ed as a sequence of connected lines. 

1 3.7 Closed_polyline 
A Closed_polyline is just like an Open_polyline, except t.haL we also draw a line 
from the last point. to t.he first. For example, we could use the same points we 
used for the Open_polyline in §13.6 for a Closed_polyline: 

Closed_polyline cpl; 
cpl.add(Point(100, 100)); 
cpl.add(Point(150,200)); 
cpl.add(Point(250,250)); 
cpl.add(Point(300,200)); 
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The result is (of course) identical to  that of §13.6 except for that fmal closing line : 

The definition of Closed_polyline is 
struct Closed_polyline : Open_polyline { II closed sequence ol l i nes 

void draw_lines() const; 
} ; 

void Closed_polyline: :draw_lines() const 
{ 

Open_polyline: :draw_lines(); II first draw the "open polyl i ne part" 
// then draw closing l ine: 
if (color().visibility()) 

fl_line(point(number _of_points()-1 ) .x, 
point(number _ of_points()-1 ). y, 
point(O) .x, 
point(O). y) ; 

Closed_polyline needs its own draw_lines() to draw that closing line connecting 
the last point to the frrst. Fortunately, we only have to do the little detail where 
Closed_polyline differs from what Shape offers. That's important and is some
times called "programming by difference." We need to program only what's dif
ferent about our derived class (here, Closed_polyline) compared to what a base 
class (here. Open_polyline) offers. 

So how do we draw that closing line? We use the FLTK line-drawing function 
fl_line(). It takes four ints representing two points. So. here the w1derlying graphics 
library is again used. Note, however, that - as in every other case - the mem.ion of 
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FLTK is kept within the implementation of our class rather than being exposed to 
our usel's. No user code needs to mention fl_line() or to know about interfaces 
where points appear implicitly as integer pairs. If we wanted to, we could replace 
FLTK with another G Ul library with very little in1pact on our users· code. 

1 3.8 Polygon 
A Polygon is very similar to a Closed_polyline. The only difference is that for 
Polygons we don't allow lines to cross. For example, the Closed_polyline above 
is a polygon, but we can add another point: 

cpl.add(Point(1 00,250)); 

TI1e result is 

According to classical definitions, this Closed_polyline is not a polygon. How do 
we define Polygon so that we correctly capture the relationship to Closed_poly· 
line without violating the rules of geometry? The presentation above contains a 
strong hint. A Polygon is a Closed_polyline where lines do not cross. Alterna· 
tively. we could emphasize the way a shape is built out of points and say that a 
Polygon is a Closed_polyl ine where we cannot add a Point that defmes a line 
segment that intersects one of the existing lines of the Polygon. 

Given that idea, we defme Polygon like this : 

struct Polygon : Closed_polyline { II closed sequence of nonintersect ing l i nes 
void add(Point p); 
void draw_lines() const; 

}; 
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void Polygon : :add(Point p) 
{ 
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II check that the new l ine doesn't in tersect existing l i nes 
Shape: :add(p); 

Here we inherit Closed_polyline's definition of draw_lines(), thus saving a fair bit 
of work and avoiding duplication of code. Unfortunately, we have to check each 
add(). That yields an inefficient (order N-squared) algorithm - defining a Polygon 
with Npoints requires .N*(N-1)/2 call of intersect(). In effect, we have made the as· 
sumption that Polygon class will be used for polygons of a low number of points. 
For example, creating a Polygon with 24 Points involves 24*(24-1)/2 = =  276 calls 
of intersect(). That's probably acceptable, but if we wanted a polygon with 2000 
points it would cost us about 2,000,000 calls, and we might look for a better algo· 
rithm, which might require a modified interface. 

Anyway, we can create a polygon like this: 

Polygon poly; 
poly.add(Point(1 00,1 00)) ; 
poly.add(Point(150,200));  
poly.add(Point(250,250));  
poly.add(Point(300,200));  

Obviously, this cteates a Polygon that (to the last pixel) is identical to our original 
Closed_polyline: 
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Ensuring that a Polygon really represents a polygon turned out to be surprisingly 
messy. The check for intersection that we left out of Polygon :  : add() is arguably 
the most complicated in the whole graphics library. If you are interested in fiddly 
coordinate manipulation of geometry, have a look at the code. And even then we 
are not done. Consider trying to make a Polygon with only two Points. We'd bet· 
ter protect against that: 

void Polygon: :draw_lines() const 
{ 

if (number_of_points() < 3) error("less than 3 points in a Polygon"); 
Closed_polyline: : draw_lines(); 
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The trouble is that Polygon's invariant "the points represent a polygon" can't be f.J 
verified until all points have been defined; that is, we are not - as strongly rec
onunendcd - establishing Polygon's invariant in its constructor. Placing the "at 
least three points" check in Polygon: :draw_lines() is a fairly disreputable trick. 
See also exercise 18. 

1 3.9 Rectangle 
The most common shape on a screen is a rectangle. The reasons for that are 
partly cullural (most of our doors, windows, pictures, walls, bookcases, pages, 
etc. are also rectangular) and partly technical (keeping a coordinate within rectan
gular space is simpler than for any other shaped space). Anyway, rectangles arc 
so common that GUI systems support them directly rather than treating them 
simply as polygons that happen to have four comers and right angles. 

struct Rectangle : Shape { 
Rectangle(Point xy, int hh, int ww); 
Rectangle(Point x, Point y); 
void draw_lines() const; 

int height() const { return h; } 
int width() const { return w; } 

private: 

}; 

int h; II height 
int w; II width 
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We can specify a rectangle by two points (top left and bottom right) or by one 
point (top left) and a width and a height. The constructors can be defmed like this: 

Rectangle: :  Rectangle(Point xy, int ww, int hh) 
: w(ww), h(hh) 

if (h<=O II W<=O) 
error("Bad rectangle: non-positive side"); 

add(xy); 

Rectangle : :Rectangle(Point x, Point y) 
:w(y.x-x.x), h(y.y-x.y) 

if (h<=O II W<=O) 
error("Bad rectangle: non-positive width or height"); 

add(x); 

Each constructor initializes the members h and w appropriately (using the mem
ber initialization syntax; see §9.4.4) and stores away the top left comer point in 
the Rectangle's base Shape (using add()). In addition, it does a simple sanity 
check: we don't really want Rectangles with negative width or height. 

One of the reasons that some graphics/G Ul systems treat rectangles as special 
is that the algorithm for determining which pixels are inside a rectangle is far sim
pler - and therefore far faster - than for other shapes, such as Polygons and 
Circles. Consequently, the notion of "fill color" - that is, the color of the space in
side the rectangle - is more commonly used for rectangles than for other shapes. 
We can set the fill color in a constructor or by the operation set_fill_color() (pro
vided by Shape togetl1er with tl1e other services related to color) : 

Rectangle rect00(Point(150, 100),200, 100); 
Rectangle rect1 1 (Point(50,50) ,Point(250, 150)); 
Rectangle rect12(Point(50, 150),Point(250,250)); 
Rectangle rect21 (Point(250,50),200, 100); 
Rectangle rect22(Point(250, 150),200, 100); 

rectOO.set_fill_color(Color: :yellow); 
rect1 1 .set_fill_ color( Color: : blue); 
rect12.set_fill_color(Color: : red); 
rect21 .set_fill_ color( Color: :  green); 

This produces 

II just below rect l l 
II just to the right of rect l l 
II just below rect2 1 
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\.Yhcn you don't have a fill color, the rectangle is transparent; that's how you can 
sec a corner of the yellow rectOO. 

We can move shapes around in a window (§14.2.3). For example: 

rect1 1 .move(400,0); // to the right of rect2 1 
rect11 .set_fill_color(Color: :white); 
win12.set_label("rectangles 2"); 

This produces 
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Note how only part of  the white rect1 1 fits in the window. What doesn't fit is 
"clipped";  that is, it is not shown anywhere on the screen. 

Note also how shapes are placed one on top of another. lbis is done just like 
you would put sheets of paper on a table . The first one you put will be on the bot· 
tom. Our Window (§E.3) provides a simple way of reordering shapes. You can tell 
a window to put a shape on top (using Window: :put_on_top()). For example: 

win 12. put_ on_top( rectOO); 
win12.set_label("rectangles 3"); 

lbis produces 

Note that we can see the lines that make up the rectangles even though we have 
filled (all but one of) them. If we don't like those outlines, we can remove them: 

rectOO.set_ color( Color: :  invisible); 
rect11 .set_color(Color: : invisible); 
rect12.set_color(Color: : invisible); 
rect21 .set_ color( Color: : invisible); 
rect22.set_color(Color: : invisible); 

We get 
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Note that with both fill color and line color set to invisible, rect22 can no longer 
be seen. 

Because it has to deal with both line color and fill color, Rectangle's 
draw_lines() is a bit messy: 

void Rectangle: :draw_lines() const 
{ 

if (fill_ color( ) .  visibility()) { II fi I I  
fl_color(fill_color().as_int()); 
fl_rectf(point(O).x,point(O).y,w,h); 

if (color(). visibility()) { // l ines on top of fi l l  
fl_color(color( ).as_int()); 
fl_rect(point(O) .x, point(O). y, w, h); 

As you can sec, FLTK provides functions for drawing rectangle fill (fl_rectf()) and 
rectangle outlines (fl_rect()). By default, we draw both (with the lines/outline on top) . 

1 3.1 0 Managing unnamed objects 
So far, we have named all our graphical objects. When we want lots of objects, 
this becomes infeasible. As an example, let us draw a simple color chart of the 
256 colors in FLTK's palette ; that is, let's make 256 colored squares and draw 
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them in a 16-by-16 matrix that shows how colors with similar color values relate. 
First, here is the result: 

Naming those 256 squares would not only be tedious, it would be silly. The obvi
ous "name" of the top left square is its location in the matrix (0.0), and any other 
square is similarly identified ("nan1ed") by a coordinate pair (i,j) .  What we need 
for this example is the equivalent of a matrix of objects. We thought of using a 
vector<Rectangle>, but that turned out to be not quite flexible enough. For exanl
ple, it can be useful to have a collection of unnamed objects (clements) that arc not 
all of the same type. We discuss that flexibility issue in §14.3. Here, we'll just pres
ent our solution: a vector type that can hold named and unnamed objects: 

template<class T> class Vector_ref { 
public: 

} ; 

II . . . 
void push_back(T&); 
void push_back(P);  

II add a named object 
II add an unnamed object 

T& operator[](int i ) ;  II subscript ing: read and write access 
const T& operator[](int i) const; 

int size() const; 

The way you use it is very much like a standard library vector: 

Vector _ref<Rectangle> rect; 
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Rectangle x(Point(100,200),Point(200,300));  
rect.push_back(x); II add named 

rect.push_back(new Rectangle(Point(50,60),Point(80,90))); II add unnamed 

for (int i::O; i<rect.size(); ++i) rect[i].move(10, 10); II use rect 
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We explain the new operator in Chapter 17, and the implementation of Vector_ref • 1 

is presented in Appendix E. For now, it is sufficient to know that we can use it to U 
hold urmamed objects. Operator new is followed by the name of a type (here, Rec· 
tangle) optionally followed by an initializer list (here, (Point(50,60),Point(80,90))). 
Experienced programmers will be relieved to hear that we did not introduce a 
memory leak in this example. 

Given Rectangle and Vector_ref, we can play with colors. For example, we 
can write a simple color chart of the 256 colors shown above: 

Vector _ref<Rectangle> vr; 

for (int i =  0; i<16; ++i) 
for (int j = 0; j<16; ++j) { 

vr.push_back(new Rectangle(Point(i•2o,j•20) ,20,20)) ;  
vr[vr.size()-1 ].set_fill_color(i •16+j) ; 
win20.attach(vr[vr.size()-1]); 

We make a Vector_ref of256 Rectangles, organized graphically in the Window as 
an 8-by·B matrix. We give the Rectangles the colors 0, 1, 2, 3, 4, and so on. After 
each Rectangle is created, we attach it to the window, so that it will be displayed: 
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1 3.1 1 Text 
Obviously, we want to be able to add text to our displays. For example, we might 
want to label our "odd" Closed_polyline from §13.8: 

Text t(Point(200,200), "A closed polyline that isn't a polygon"); 
t.set_color(Color: : blue) ; 

We get 

Basically, a Text object defmes a line of text starting at a Point. The Point will be 
the bottom left corner of the text. The reason for restricting the string to be a sin
gle line is to ensure portability across systems. Don't try to put in a newline char
acter; it may or may not be represented as a newline in your window. String 
streams (§1 1 .4) are useful for composing strings for display in Text objects (exanl
ples in §12.Z7 and §12.7.8) . Text is defmed like this : 

struct Text : Shape { 
II the po i nt is the bottom left of t.he first letter 
Text(Point x, const string& s) 

: lab(s), fnt(fl_font()), fnt_sz(fl_size()) 
{ add(x); } 

void draw_lines() const; 
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void set_label(const string& s) { lab = s; } 
string label() const { return lab; } 

void set_font(font f) { fnt = f; } 
font font() const { return font(fnt); } 

void set_font_size(int s) { fnt_sz = s; } 
int font_size() const { return fnt_sz; } 

private: 
string lab; // label 
font fnt; 
int fnt_sz; 

} ; 

Text has its own draw_lines() because only the Text class knows how its string is 
stored: 

void Text: :draw_lines() const 
{ 

fl_draw(lab.c_str(),point(O).x,point(O).y); 

The color of the characters is detennined exact.ly like the lines in shapes composed 
of lines (such as Open_polyline and Circle), so you can choose a color using 
set_color() and see what color is currently used by color(). The character size and 
font are handled analogously. There is a small number of predefined fonts : 

class Font { II character font 
public: 

enum font_type { 
helvetica=FL_HELVETICA, 
helvetica_bold=FL_HELVETICA_BOLD, 
helvetica_italic=FL_HELVETICA_ITALIC, 
helvetica_bold_italic=FL_HELVETICA_BOLD_ITALIC, 
courier=FL_COURIER, 
courier _bold=FL_ COURIER_BOLD, 
courier _italic=FL_ COURIER_ ITALIC, 
courier_bold_italic=FL_ COURIER_BOLD _ITALIC, 
times=FL_ TIMES, 
times_bold=FL_ TIMES_BOLD, 
times_italic=FL_ TIMES_ITALIC, 
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times_bold_italic=FL_TIMES_BOLD_ITALIC, 
symboi=FL_SYMBOL, 

} ; 

screen=FL_SCREEN, 
screen_bold=FL_SCREEN_BOLD, 
zapf_dingbats=FL_ZAPF _DINGBATS 

Font(font_type ff) : f(ff) { } 
font(int ff) : f(ff) { } 

int as_int() const { return f; } 
private: 

int f; 
} ; 

The style of class definition used to define Font is the same as we used to defme 
Color (§13.4) and Line_style (§13.5). 

1 3.1 2 Circle 
Just to show that the world isn't completely rectangular, we provide class Circle 
and class Ellipse. A Circle is defmed by a center and a radius: 

struct Circle : Shape { 
Circle(Point p, int rr); II center and radius 

void draw_lines() const; 

Point center() const ; 
int radius() const { return r; } 
void set_radius(int rr) { r=rr; } 

private: 
int r; 

} ; 

We can use Circle like this : 

Circle c1(Point(100,200),50); 
Circle c2(Point(150,200), 100); 
Circle c3(Point(200,200), 150) ; 
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This produces three circles of  different sizes aligned with their centers in a hori
zontal line: 

TI1e main peculiarity of Circle's implementation is that the point stored is not the 
center, but the top left comer of the square bounding the circle. We could have 
stored either but chose the one FLTK uses for its optimized circle-drawing routine. 
111at way, Circle provides another example of how a class can be used to present a 
different (and supposedly nicer) view of a concept than its implementation: 

Circle: :  Circle(Point p, int rr) II center and radius 
: r(rr) 

add(Point(p.x-r,p.y-r)); II store top left corner 

Point Circle: :center() const 
{ 

return Point(point(O).x+r, point(O).y+r); 

void Circle: :draw_lines() const 
{ 

if (color(). visibility()) 
fl_arc(poi nt(O) .x,poi nt(O) . y, r+r,r+r,0,360); 
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Note the use o f  fl_arc() t o  draw the circle. The initial two arguments specify the 
top left comer, the next two arguments specify the width and the height of the 
smallest rectangle that encloses the circle, and the fmal two arguments specify the 
beginning and end angle to be drawn. A circle is drawn by going the full 360 de· 
grees, but we can also use fl_arc() to write parts of a circle (and parts of an el
lipse) ; see exercise 1 .  

1 3.1 3 Ellipse 
An ellipse is similar to Circle but is defined with both a major and a minor axis, 
instead of a radius; that is, to define an ellipse, we give the center's coordinates, 
the distance from the center to a point on the x axis, and the distance from the 
center to a point on the y axis: 

struct Ellipse : Shape { 
Ellipse(Point p, int w, int h); // center, max and min distance from centt•r 

void draw_lines() const; 

Point center() const; 
Point focus1 () const; 
Point focus2() const; 

void set_major(int ww) { w=ww; } 
int major() const { return w; } 

void set_minor(int hh) { h=hh; } 
int minor() const { return h; } 

private: 

} ; 

int w; 
int h; 

We can use Ellipse like this: 

Ellipse e 1 (Poi nt(200 ,200) ,50,50) ; 
Ellipse e2(Point(200,200), 100,50); 
Ellipse e3(Point(200,200), 100, 150); 

This gives us three ellipses with a common center but different-sized axes: 
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Note that an Ellipse with majorO==minor() looks exactly like a circle. 
Another popular view of an ellipse specifies two foci plus a sum of distances 

from a poim to the foci. Given an Ellipse, we can compute a focus. For example: 

Point Ellipse: : focus1() const 
{ 

return Point(center() .x+sqrt(double(w•w-h•h)),center() .y); 
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Why is a Circle not an Ellipse? Geometrically, every circle is an ellipse, but not f) 
every ellipse is a circle. In particular, a circle is an ellipse where the two foci are 
equal. Imagine that we defmed our Circle to be an Ellipse. We could do that at 
the cost of needing an extra value in its representation (a circle is defmed by a 
point and a radius ; an ellipse needs a center and a pair of axes). We don't like 
space overhead where we don't need it, but the primary reason for our Circle not 
being an Ellipse is that we couldn't defme it so without somehow disabling 
set_major() and set_minor(). After all, it would not be a circle (as a mathemati· 
cian would recognize it) if we could use set_ major() to get major() I =minor() - at 
least it would no longer be a circle after we had done that. We can't have an ob-
ject tlmt is of one type sometimes (i.e., when major() l=minor()) and another type 
some other time (i.e., when majorO==minor()). What we can have is an object 
(an Ellipse) that can look like a circle sometimes. A Circle, on the other hand, 
never morphs into an ellipse with two unequal axes. 
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When we design classes, we have to b e  careful not to b e  too clever and noL to 
be deceived by our "intuition" into defming classes that don't make sense as 
classes in our code. Conversely, we have to take care that our classes represenl 
some coherent concept and are nol just a collection of data and funclion mem· 
bers. Just throwing code together without thinking about what ideas/concepts we 
are representing is "hacking" and leads to code that we can't explain and thal oth· 
ers can't maintain. If you don't feel altruistic. remember that "others" mighL be 
you in a few months' time. Such code is also harder to debug. 

1 3.1 4 Marked_polyline 
We often want to  "label" points on a graph. One way of  displaying a graph is as 
an open polyline, so what we need is an open polyline with "marks" al Lhe 
points. A Marked_polyline does that. For example: 

Marked_polyline mp1("123411); 
mpl.add(Point(100, 100)); 
mpl.add(Point(150,200)); 
mpl.add(Point(250,250)); 
mpl.add(Point(300,200)); 

This produces 

The definition of Marked_polyline is 



1 3 . 1 5  MARKS  

struct Marked_polyline : Open_polyline { 
Marked_polyline(const string& m) :mark(m) { }  
void draw_lines() const; 

private: 
string mark; 

} ; 

By deriving from Open_polyline, we get the handling of Points "for free"; all we 
have to do is to deal with the marks. In particular, draw_lines() becomes 

void Marked_polyline: :draw_lines() const 
{ 

Open_polyline : :draw_lines(); 
for (int i::O; i<number_of_points(); ++i) 

draw _mark(point(i) ,mark[i%mark.size()]); 

Tite call Open_polyline: : draw_lines() takes care of the lines, so we just have to 
deal with the "marks ." We supply the marks as a string of characters and use 
them in order: the mark[i%mark.size()] selects the character to be used next by 
cycling through the characters supplied when the Marked_polyline was created. 
The % is the modulo (remainder) operator. This draw_lines() uses a little helper 
function draw_mark() to actually output a letter at a given point: 

void draw_mark(Point xy, char c) 
{ 

static const int dx = 4; 
static const int dy = 4; 

string m(1 ,c); 
fl_draw(m.c_str(),xy.x-dx,xy. y+dy); 

The dx and dy constants are used to center the letter over the point. The string m 
is constructed to contain the single character c. 

1 3.1 5 Marks 
Sometimes, we want to display marks without lines connecting them. We provide 
tlte class Marks for that. For example, we can mark the four points we have used 
for our various examples without connecting them with lines: 
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Marks pp("x"); 
pp.add(Point(100, 100)); 
pp.add(Point(150,200)); 
pp.add(Point(250,250)); 
pp.add(Point(300,200));  

This produces 
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One obvious use of  Marks is to display data that represents discrete events so that 
drawing connecting lines would be inappropriate. An example would be (height. 
weight) data for a group of people. 

A Marks is simply a Marked_polyline with the lines invisible: 

struct Marks : Marked_polyline { 

}; 

Marks(const string& m) :Marked_polyline(m) 
{ 

set_color(Color(Color: : invisible)); 

1 3 .1 6 Mark 
A Point is simply a location in a Window. It is not something we draw or some· 
thing we can see. If we want to mark a single Point so that we can sec it. we can 
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indicate i t  by a pair oflines as in §13.2 or  by using Marks. That's a bit verbose, so 
we have a simple version of Marks that is initialized by a point and a character. 
For example. we could mark the centers of our circles from §13.12 like this: 

Mark m1(Point(100,200),'x'); 
Mark m2(Point(150,200), 'y' ) ;  
Mark m3(Point(200,200),'z'); 
c1 .set_ color( Color: : blue); 
c2.set_color(Color: : red); 
c3.set_color(Color: :green); 

This produces 

A Mark is simply a Marks with its initial (and typical only) point given immediately: 

struct Mark : Marks { 

}; 

Mark(Point xy, char c) : Marks(string(1,c)) 
{ 

add(xy); 

The string(1 ,c) is a constructor for string, initializing the string to contain the sin
gle character c. 
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All Mark provides is a convenient notation for creating a Marks object wit.h a 
single point marked with a single character. Is Mark worth our effort to defmc it? 
Or is it just "spurious complication and confusion"? There is no clear, logical an
swer. We went back and forth on this question. but in the end decided that it was 
useful for users and the effort to define it was minimal. 

Why use a character as a "mark"? We could have used any small shape, but 
characters provide a useful and simple set of marks. It is often useful to be able to 
usc a variety of ''marks" to distinguish different sets of points. Characters such as 
x, o, +, and • are pleasant.ly symmetric around a center. 

1 3.1 7 Images 
The average personal computer holds thousands of inmges in flies and can access 
millions more over the web. Naturally, we want to display some of those images 
in even quite simple programs. For example, here is an image (rita_path.gif) of 
the projected path of the Hurricane Rita as it approached the Texas Gulf Coast: 

Cunrent 'Cenlter Location 24.4 N 81.8 W 
M•: Sut1t.ined Vlllnd liS mph 

Movement W at 13 mph 
Cunrent Center location 
Forecut Center Positions 

H Sustained wind • 73 mph 
D Sustained wind • 38 111ph � Potendal Day H l  Track Area 

c:4 Potendal Day� Track Area 
liJiiJ Huntcane Watch -

Storm Watch 
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We can select part of that image and add a photo of Rita as seen from space 
(rita.jpg) : 

Image rita(Point(O,O), " rita.jpg"); 
Image path(Point(O,O),"rita_path.gif"); 
path.set_mask(Point(50,250),600,400) ;  // select l i kely Iandi a i i  

win.attach(path); 
win.attach(rita); 

The set_mask() operation selects a sub-picture of an image to be displayed. Here. 
we selected a (600,400)-pixel image from rita_path.gif (loaded as path) with its 
top leftmost point at path's point (50.600). Selecting only part of an image for dis
play is so conunon that we chose to support it direct.ly. 

Shapes arc laid down in the order they are attached, like pieces of paper on a 
desk. so we got path "on the bottom" simply by attaching it before rita. 

Images can be encoded in a bewildering variety of formats. Here we deal 
with only two of the most common,JPEG and GIF: 

struct Suffix { 
enum Encoding { none, jpg, gif }; 

}; 
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In our graphics interface library, we represent an image in memory as an object 
of class Image: 

struct Image : Shape { 
Image( Point xy, string file_name, Suffix : :  Encoding e = Suffix: :  none); 
-Image() { delete p; } 
void draw _lines() const; 
void set_mask(Point xy, int ww, int hh) 

{ w=ww; h=hh; cx=xy.x; cy=xy.y; } 
private: 

}; 

int w,h; II define "masking box" within image relat ive lo 
II posit ion (cx,cy) 

int cx,cy; 
Fl_lmage• p; 
Text fn; 

The Image constructor tries to open a flle with the name given to it. Then it tries 
to create a picture using the encoding specified as an optional argument or (more 
often) as a flle suffix. If the image cannot be displayed (e.g., because the flle wasn't 
found}, the Image displays a Bad_image. The definition of Bad_image looks like 
this: 

struct Bad _image : Fl_lmage { 
Bad_image(int h, int w) : Fl_lmage(h,w,O) { } 
void draw(int x,int y, int, int, int, int) { draw_empty(x,y) ; } 

} ; 

The handling of images within a graphics library is quite complicated, but the 
main complexity of our graphics interface class Image is in the fllc handling in 
the constructor: 

II somewhat overelaborate constructor 
II because errors related to image fi les can be such a pa in to debug 
Image : :  Image( Point xy, string s, Suffix: :  Encoding e) 

:w(O), h(O), fn(xy, " ") 

add(xy); 

if ( ! can_open(s)) { II can we open s? 
fn.set_label("cannot open \'"'+s+'\" '); 
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p = new Bad_image(30,20); // the "error image" 
return; 

if (e == Suffix: : none) e = get_encoding(s); 

switch( e) { II check i i  it is a known encoding 
case Suffix: :jpg: 

p = new FUPEG_Image(s.c_str()); 
break; 

case Suffix: :gif: 
p = new FI_GIF _lmage(s.c_str()); 
break; 

default: II unsupported image encoding 
fn.set_label("unsupported file type \""+s+'\"'); 
p = new Bad_image(30,20); II the "error image" 

We usc the sufftx to pick the kind of object we create to hold the image (a 
FUPEG_Image or a FI_GIF _Image) . We create that implementation object using 
new and assign it to a pointer. This is an implementation detail (see Chapter 17 
for a discussion of operator new and pointers) related to the organization of 
FLTK and is of no fundamental importance here. 

Now, we just have to implement can_ open() to test if we can open a named 
flle for reading: 

bool can_open(const string& s) 
II check ii a fi le named s exists and can be opened for reading 

ifstream ff(s.c_str()); 
return ff; 

Opening a flle and then closing it again is a fairly clumsy, but effective, way of 
portably separating errors related to "can't open the flle" from errors related to 
the format of the data in the flle. 

You can look up the get_ encoding() function, if you like. It simply looks for a 
sufftx and looks up that suffix in a table of known suffixes. That lookup table is a 
standard library map (see Chapter 18). 
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.../ Drill 
1 .  Make an 800-by- 1000 Simple_ window. 
2. Put an 8-by-8 grid on the leftmost 800-by-800 part of that window (so 

that each square is 100 by 100). 
3. Make the eight squares on the diagonal starting from the top left corner 

red (use Rectangle). 
4. Fmd a 200-by-200-pixel image (]PEG or GIF) and place three copies of 

it on the grid (each image covering four squares).  If you can't find an 
image that is exactly 200 by 200, use set_mask() to pick a 200-by-200 sec
tion of a larger image. Don't obscure the red squares. 

5. Add a 100-by-100 image. Have it move around from square to square 
when you click the "Next" button. Just put wait_for_button() in a loop 
with some code that picks a new square for your image. 

Review 
1. Why don't we 'just" use a commercial or open-source graphics library 

directly? 
2. About how many classes from our graphics interface library do you need 

to do simple graphic output? 
3. What are the header files needed to use the graphics interface library? 
4. What classes define closed shapes? 
5. Why don't we just use Line for every shape? 
6. What do the arguments to Point indicate? 
7. What are tl1e components of Line_style? 
8. What are the components of Color? 
9. What is RBG? 

10. What are the differences between two Lines and a Lines containing two 
lines? 

1 1 .  What properties can you set for every Shape? 
12 .  How many sides does a Closed_polyline defined by five Points have? 
13. What do you see if you define a Shape but don't attach it to a Window? 
14. How does a Rectangle differ from a Polygon with four Points (comers)? 
15. How does a Polygon differ from a Closed_polyline? 
16. What's on top: fill or outline? 
1 7. Why didn't we bother defining a Triangle class (after all, we did define 

Rectangle)? 
18. How do you move a Shape to another place in a Window? 
19. How do you label a Shape with a line of text? 
20. What properties can you set for a text string in a Text? 
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2 1 .  What is a font and why do we care? 
22. What is Vector_ref for and how do we usc it? 
23. What is the difference between a Circle and an Ellipse? 
24. What happens if you try to display an Image given a file name that doesn't 

refer to a file containing an image? 
25. How do you display part of an image? 

Terms 
closed shape 
color 
ellipse 
fill 
font 
font size 
GIF 

Exercises 

image 
image encoding 
invisible 

JPEG 
line 
line style 
open shape 

point 
polygon 
polyline 
unnamed object 
Vector_ref 
visible 

For each "defme a class" exercise, display a couple of objects of the class to dem
onstrate that they work. 

1 .  Define a class Arc, which draws a part of an ellipse. Hint: fl_arc(). 
2. Draw a box with rounded comers. Defme a class Box, consisting of four 

lines and four arcs. 
3. Define a class Arrow, which draws a line with an arrowhead. 
4. Define functions n(), s(), e(), w(), center(), ne(), se(), sw(), and nw(). Each 

takes a Rectangle argument and returns a Point. These functions defme 
"connection points" on and in the rectangle. For example, nw(r) is the 
northwest (top left) comer of a Rectange called r. 

5. Define the functions from exercise 4 for a Circle and an Ellipse. Place the 
connection points on or outside the shape but not outside the bounding 
rectangle. 

6. Write a program that draws a class diagram like the one in §12.6. It will 
simplify matters if you start by defining a Box class that is a rectangle 
with a text label. 

7. Make an RGB color chart (e.g., see www. lnetcentral.com/rgb-color
chart.html) . 

8. Defme a class Hexagon (a hexagon is a regular six-sided polygon). Use 
the center and the distance from the center to a comer point as construc
tor arguments. 

9. T!.lc a part of a window with Hexagons (use at least eight hexagons). 
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10. Define a class Regular_polygon. Use the center, the number of  sides 
(>2), and the distance from the center to a comer as constructor argu
ments. 

1 1 . Draw a 300-by-200-pi.xel ellipse. Draw a 400-pi.xel-long x axis and a 300-
pi.xel-longy axis through the center of the ellipse. Mark the foci. Mark a 
point on the ellipse that is not on one of the axes. Draw the two lines 
from the foci to the point. 

12. Draw a circle. Move a mark around on the circle (let it move a bit each 
time you hit the "Next" button) . 

13. Draw the color matrix from §13.10, but without lines around each color. 
14. Define a right triangle class. Make an octagonal shape out of eight right 

triangles of different colors. 
15. "Ttle" a window with small right triangles. 
16. Do the previous exercise, but with hexagons. 
17. Do the previous exercise, but using hexagons of a few different colors. 
18. Define a class Poly that represents a polygon but checks that its points 

really do make a polygon in its constructor. Hint: You'll have to supply 
the points to the constructor. 

19. Define a class Star. One parameter should be the number of points . 
Draw a few stars with differing numbers of points, differing line colors, 
and differing fill colors . 

Postscript 

Chapter 12 showed how to be a user of classes. This chapter moves us one level 
up the "food chain" of programmers : here we become tool builders in addition to 
being tool users. 



I l_ .  
r 14 

G raph i cs C l ass Des i gn 

"Functional, durable, beautiful." 

-Vitruvius 

T
he purpose of the graphics chapters is dual : we want to 

provide useful tools for displaying infonnation. but we also 

usc the family of graphical interface classes to illustrate general 

design and implementation techniques. In particular, this chapter 

presents some ideas of interface design and the notion of inhcri· 

tancc. Along the way. we have to take a slight detour to examine 

the language features that most directly support o�ject-oricnted 

programming: class derivation. virtual functions, and access con· 

ttol. We don't believe that design can be discussed in isolation 

from usc and implementation. so our discussion of design is 

rather concrete. Maybe you'd better think of this chapter as 

"Graphics Class Design and Implementation.'' 
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14.1 Design principles 
14.1.1 Types 
14.1.2 Operations 
14.1 .3 Naming 
14.1.4 Mutability 

14.2 Shape 
14.2.1 An abstract class 
14.2.2 Access control 
14.2.3 Drawing shapes 
14.2.4 Copying and mutability 

1 4.1  Design principles 
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14.3 Base and derived classes 
14.3.1 Object layout 
14.3.2 Deriving classes and defining 

virtual functions 
14.3.3 Overriding 
14.3.4 Access 
14.3.5 Pure virtual functions 

14.4 Benefits of object-oriented 
programming 

What are the design principles for our graphics interface classes? First: What 
kind of question is that? What are "design principles" and why do we need to 
look at those instead of getting on with the serious business of producing neat 
pictures? 

14.1 .1 Types 
Graphics is an example of an application domain. So, what we are looking at 
here is an example of how to present a set of fundamental application concepts 
and facilities to programmers (like us) . If the concepts are presented confusingly, 
inconsistently, incompletely, or in other ways poorly represented in our code, the 
difficulty of producing graphical output is increased. We want our graphics 
classes to minimize the effort of a programmer trying to learn and to use them. 

Our ideal of program design is to represent the concepts of the application 
domain directly in code. That way, if you understand tl1e application domain. 
you understand the code and vice versa. For example: 

Window - a window as presented by the operating system 

Line - a line as you see it on the screen 

Point - a coordinate point 

Color - as you see it on the screen 

Shape - what's common for all shapes in our graphics/GUI view of the 
world 

The last example, Shape. is different from the rest in that it is a generalization, a 
purely abstract notion. We never see just a shape on the screen: we see a particu
lar shape, such as a line or a hexagon. You'll find that reflected in the defmition of 
our types : try to make a Shape variable and the compiler will stop you. 
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The set of our graphics interface classes is a library; the classes are meant to 
be used together and in combination. They are meant to be used as examples to 
follow when you define classes to represent other graphical shapes and as build
ing blocks for such classes. We are not just defining a set of unrelated classes, so 
we can't make design decisions for each class in isolation. Together, our classes 
present a view of how to do graphics. We must ensure that this view is reason
ably elegant and coherent. Given the size of our library and the enonnity of the 
domain of graphical applications, we cannot hope for completeness. Instead, we 
aim for simplicity and extensibility. 

In fact, no class library directly models all aspects of its application domain. 
That's not only impossible; it is also pointless. Consider writing a library for dis
playing geographical information. Do you want to show vegetation? National, 
state, and other political boundaries? Road systems? Railroads? Rivers? High
light social and economic data? Seasonal variations in temperature and humid
ity? Wmd pattenlS in the atmosphere above? Airline routes? Mark the locations 
of schools? The locations of fast-food "restaurants"? Local beauty spots? "All of 
that!" may be a good answer for a comprehensive geographical application, but it 
is not an answer for a single display. It may be an answer for a library supporting 
such geographical applications, but it is unlikely that such a library could also 
cover other graphical applications such as freehand drawing, editing photo· 
graphic in1ages, scientific visualization, and aircraft control displays. 
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So, as ever, we have to decide what's important to us. In this case, we have to f) 
decide which kind of graphics/GUI we want to do well. Trying to do everything 
is a recipe for failure. A good library directly and cleanly models its application 
domain from a particular perspective, emphasizes some aspects of the applica-
tion, and deemphasizes others. 

The classes we provide here are designed for simple graphics and simple 
graphical user interfaces. They are prinlarily aimed at users who need to present 
data and graphical output from numeridscientifidengineering applicatimlS. You 
can build your own classes "on top of' ours. If that is not enough, we expose suffi
cient FLTK details in our implementation for you to get an idea of how to use that 
(or a similar "full-blown" graphics/G Ul library) directly, should you so desire. 
However, if you decide to go that route, wait until you have absorbed Chapters 17 
and 18. Those chapters contain information about pointers and memory manage
ment that you need for successful direct use of most graphics/GUI libraries. 

One key decision is to provide a lot of "little" classes with few operations. () 
For example, we provide Open_polyline, Closed_polyline, Polygon, Rectangle, 
Marked_polyline, Marks, and Mark where we could have provided a single class 
(possibly called "polyline") with a lot of arguments and operations that allowed us 
to specify which kind of polyline an object was and possibly even mutate a polyline 
from one kind to another. The extreme of this kind of thinking would be to pro· 
vide every kind of shape as part of a single class Shape. We think that using many 
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small classes most closely and most usefully models our domain of graphics. A sin· 
gle class providing "everything" would leave the user messing with data and op· 
tions without a framework to help understanding, debugging, and performance. 

14.1 .2 Operations 
We provide a minimum of operations as part of each class. Our ideal is the mini
mal interface that allows us to do what we want. Where we want greater conven
ience, we can always provide it in the form of added nonmember functions or yet 
another class. 

We want the interfaces of our classes to show a common style. For example, 
all functions performing similar operations in different classes have the same 
name, take arguments of the same types, and where possible require those argu
ments in the same order. Consider the constructors : if a shape requires a location, 
it takes a Point as its frrst argument: 

Line ln(Point(100,200),Point(300,400)); 
Mark m(Point(100,200),'x'); II display a single point as an "x" 
Circle c(Point(200,200),250); 

All functions that deal with points use class Point to represent them. That would 
seem obvious, but many libraries exhibit a mixture of styles. For example. imag
ine a function for drawing a line. We could use one of two styles: 

void draw_line(Point p1 , Point p2); 
void draw_line(int x1 , int y1 , int x2, int y2); 

II from pl to p2 (our sty le) 
II from (xl  ,y l l  ro (x2 ,y2 l 

We could even allow both, but for consistency, improved type checking, and im
proved readability we use the frrst style exclusively. Using Point consistently also 
saves us from confusion between coordinate pairs and the other common pair of 
integers: width and height. For example, consider: 

draw_rectangle(Point(100,200), 300, 400); 
draw_rectangle (100,200,300,400); 

II our sty le 
II a l ternative 

The frrst call draws a rectangle with a point, width, and height. That's rea
sonably easy to guess, but how about the second call? Is that a rectangle defmed 
by points ( 100,200) and (300,400)? A rectangle defmed by a point (100,200), a 
width 300, and a height 400? Something completely different (tl10ugh plausible 
to someone)? Using the Point type consistently avoids such confusion. 

Incidentally, if a function requires a width and a height. they are always pre
sented in that order (just as we always give an x coordinate before a )' coordi
nate) . Getting such little details consistent makes a surprisingly large difference to 
the ease of use and the avoidance of run-time errors. 
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Logically identical operations have the same name. For example, every func· • 1 

tion that adds points , lines, etc. to any kind of shape is called add(), and any func· U 
tion that draws lines is called draw_lines(). Such unifonnity helps us remember 
(by offering fewer details to remember) and helps us when we design new classes 
('just do the usual") . Sometimes, it even allows us to write code that works for 
many different types, because the operations on those types have an identical pat· 
tem. Such code is called gmeric; see Chapters 1 9-21. 

14. 1 .3 Naming 
Logically different operations have different names. Again, that would seem ob- (_} 
vious, but consider: why do we "attacl1" a Shape to a Window, but "add" a Line 
to a Shape? In both cases, we "put something into something," so shouldn't that 
similarity be reflected by a common name? No. The similarity hides a funda
mental difference. Consider: 

Open_polyline opl; 
opl .add(Point(100, 100)); 
opl.add(Point(150,200)); 
opl.add(Point(250,250)); 

Here. we copy three points into opl. The shape opl does not care about "our" 
points after a call to add() ; it keeps its own copies. In fact, we rarely keep copies 
of the points - we leave that to the shape. On the other hand, consider: 

win.attach(opl); 

Here, we create a connection between the window win and our shape opl ; win 
does not make a copy of opl - it keeps a reference to opl. So, it is our responsi
bility to keep opl valid as long as win uses it. That is, we must not exit opl's 
scope while win is using opl. We can update opl and the next time win comes to 
draw opl our changes will appear on the screen. We can illustrate the difference 
between attach() and add() graphically: 

Window: 

1·� ?t �:'!I� � i ·_ !��:;.·.., .. .  -
� .;-:���� 7�'}\�1 . ; 
��,.lr�:jJ� 1.t J6JL:J 
J+-�1 ;i'id{ �� �� ·! �;t:.l.��.!i.�;: 
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Basically. add() uses pass-by-value (copies) and attach() uses pass-by-reference 
(shares a single object). We could have chosen to copy graphical objecls into 
Windows. However, that would have given a different programming model, 
which we would have indicated by using add() rather than attach(). As iL is, we 
just "attach" a graphics object to a Window. That has important implications. For 
example, we can't create an object, attach it, allow the object to be destroyed, and 
expect the resulting program to work: 

void f(Simple_window& w) 
{ 

Rectangle r(Point(1 00,200) ,50,30); 
w.attach(r); 
II oops, the l i ietime oi r ends here 

int main() 
{ 

Simple_ window win(Point(1 00,1 00),600,400, "My window"); 
II . . .  
f(win); II ask ing ior trouble 
II . . .  
win.wait_for _button(); 

By the time we have exited from f() and reached wait_for_button(), there is no r 
for the win to refer to and display. In Chapter 17, we'll show how to creale objects 
within a function and have them survive after the return from the function. Until 
then, we musl avoid attaching objects thal don'L survive until the call of 
wait_for_buHon(). We have Vedor_ref (§13.10, §E.4) to help with thaL. 

Note that had we declared f() to take its Window as a const reference argu
mem (as recommended in §8.5.6) , the compiler would have prevented our mis
take : we can't attach(r) Lo a const Window because attach() needs to make a 
change to the Window Lo record the Window's interest in r. 

1 4.1 .4 Mutability 
When we design a class, "Who can modify the data (representation)?" and 
"How?" are key questions that we must answer. We try to ensure that modifica
tion to the state of an object is done only by its own class. The public/private dis
tinction is key to this, but we'll show examples where a more flexible/subLle 
mechanism (protected) is employed. This implies that we can't just give a class a 
data member, say a string called label; we must also consider if it should be pos
sible to modify it after construction, and if so, how. We must also decide if code 
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oLher than our class's member functions need to read the value of label, and if so, 
how. For example: 

struct Circle { 
II . . .  

private: 
int r; II radius 

}; 

Circle c(Point(100,200),50); 
c.r = -9; II OK? No - compi le-time error: C irc le: :r is private 
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As you might have noticed in Chapter 13, we decided to prevem direct ac- f_j 
cess Lo mosL data members. Not exposing the data directly gives us the opporlu-
niLy to check against "silly" values, such as a Circle with a negative radius. For 
simplicity of implementation, we take only limited advantage of this opportunity, 
so do be careful with your values. The decision not to consistently and com
pletely check reflects a desire to keep the code short for presentation and the 
knowledge that if a user (you, us) supplies "silly" values the result is simply a 
messed-up image on the screen and not corruption of precious data. 

We treat the screen (seen as a set of Windows) purely as an output device. 
We can display new objects and remove old ones, but we never ask "the system" 
for information that we don't (or couldn't) know ourselves from the data struc
tures we have built up representing our images. 

1 4.2 Shape 
Class Shape represents the general notion of something that can appear in a 
Window on a screen: 

It is the notion that ties our graphical objects to our Window abstraction, 
which in tum provides the connection to the operating system and the 
physical screen. 

It is the class tl1at deals with color and the style used to draw lines. To do 
thal it holds a Line_style and a Color (for lines and for fill) .  
I t  can hold a sequence of Points and has a basic notion of how to draw 
them. 

Experienced designers will recognize that a class doing three things probably has 
problems with generality. However, here, we need something far simpler than the 
most general solution. 
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We'll frrst present the complete class and then discuss its details: 

class Shape { II dea ls with color and style and holds sequence of l i nes 
public: 

void draw() const; II deal with color and draw l ines 
virtual void move(int dx, int dy); II move the shape +=dx and +=dy 

void set_color(Color col); 
Color color() const; 

void set_style(Line_style sty); 
Line_style style() const; 

void set_fill_color(Color col); 
Color fill_color() const; 

Point point(int i) const; 
int number_of_points() const; 

virtual -Shape() { }  

II read-only access to points 

protected : 
Shape(); 
virtual void draw_lines() const; 
void add(Point p); 
void set_point(int i, Point p) ; 

II draw the appropriate l ines 
II add p to points 
II poi nts [ i ]  =p; 

private: 

};  

vector<Poinl> points; 
Color lcolor; 
Line_style Is; 
Color fcolor; 

II not used by a l l  shapes 
II color for l i nes and characters 

II fi l l  color 

Shape(const Shape&); II prevent copying 
Shape& operator=(const Shape&); 

This is a relatively complex class designed to support a wide variety of graphics 
classes and to represent the general concept of a shape on the screen. However, it 
still has only four data members and 15 functions. Furthermore, those functions 
are all close to trivial so that we can concentrate on design issues. For the rest of 
this section we will go through the members one by one and explain their role in 
the design. 
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1 4.2.1 An abstract class 
Consider first Shape's constructor: 

protected : 
Shape(); 

The conslructor is protected. That means that it can only be used directly from 
classes derived from Shape (using the : Shape notation) . In other words, Shape 
can only be used as a base for classes, such as Line and Open_polyline. The pur
pose of that "protected : "  is to ensure that we don't make Shape objects directly. 
l<or example : 

Shape ss; II error: cannot construct Shape 
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Shape is designed to be a base class only. In this case, nothing particularly nasty f) 
would happen if we allowed people to create Shape objects directly, but by limit-
ing usc, we keep open the possibility of modifications to Shape that would render 
iL unsuitable for direct use. Also, by prohibiting the direct creation of Shape ob-
jects, we directly model the idea that we cannol have/see a general shape, only par
ticular shapes, such as Circle and Closed_polyline. Think about it! What does a 
shape look like? The only reasonable response is the counter question "What 
shape?" TI1e notion of a shape that we represent by Shape is an abstract concept. 
ThaL's an important and frequently useful design notion, so we don't want to 
compromise it in our program. Allowing users to directly create Shape objects 
would do violence to our ideal of classes as direct representations of concepts. 
The constructor is defined like tl1is: 

Shape: : Shape() 
: lcolor(fl_color()), 
ls(O), 
fcolor(Color: : invisible) 

II defaul t  color for l ines and characters 
II defaul t  style 
ll no fi l l  

It is a default consu·uctor, s o  it sets the members to their default. Here again, the 
underlying library used for implementation, FLTK, "shines through." However, 
FLTK's notions of color and style are not mentioned directly by tl1e uses. They 
arc only part of the implementation of our Shape, Color, and Line_style classes. 
The vector<Points> defaults to an empty vector. 

A class is abstract if it can be used only as a base class. The other - more com- � 
mon - way of achieving that is called a pure virtual.fimction; see §14.3.5. A class 
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that can b e  used to create objects - that is, the opposite of an abstract class - is 
called a concrete class. Note that abstract and concrete are simply teclmical words for 
an everyday distinction. We might go to the store to buy a camera. However, we 
can't just ask for a camera and take it home. What brand of camera? Which par
ticular model camera? The word camera is a generalization; it refers to an abstract 
notion. An Olympus E-3 refers to a specific kind of camera, which we (in ex
change for a large amount of cash) might acquire a particular instance of: a par
ticular camera with a unique serial number. So, "camera" is much like an abstract 
(base) class; "Olympus E-3" is much like a concrete (derived) class, and the ac
tual camera in my hand (if I bought it) would be much like an object. 

The declaration 

virtual -Shape() { } 

defines a virtual destructor. We won'L use that for now, so we leave the explana
tion Lo §17.5.2, where we show a use. 

1 4.2.2 Access control 
Class Shape declares all data members private: 

private: 
vedor<Poinl> points; 
Color lcolor; 
Line_style Is; 
Color fcolor; 

Since the data members of Shape are declared private, we need to provide access 
functions. There are several possible styles for doing this. We chose one thal we 
consider simple, convenient, and readable. If we have a member representing a 
property X, we provide a pair of functions XO and set_X() for reading and writing, 
respectively. For example: 

void Shape: : set_color(Color col) 
{ 

lcolor = col; 

Color Shape: :color() const 
{ 

return lcolor; 
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The main inconvenience of  this style is that you can't give the member variable 
the same name as its readout function. As ever, we chose the most convenient 
names for the functions because they are part of the public inLerface. It matters 
far less whaL we call our private variables. Note the way we use const to indicate 
that the readout functions do not modify their Shape (§9.7.4). 

Shape keeps a vecLor of Points, called points, thaL a Shape maintains in sup
port of its derived classes. We provide the function add() for adding Points to 
points: 

void Shape : :add(Point p) 
{ 

points.push_back(p); 

II protected 

Naturally, points sLart out empty. We decided to provide Shape with a complete 
functional interface rather than giving users - even member functions of classes 
derived from Shape - direct access to data members. To some, providing a func
tional interface is a no-brainer, because Lhey feel that making any member of a 
class public is bad design. To others, our design seems overly restrictive because 
we don'L allow direct write access Lo the members to all members of derived 
classes. 

A shape derived from Shape, such as Circle and Polygon, knows whal its 
points mean. The base class Shape does not "understand" the points ; it only 
stores them. Therefore, the derived classes need control over how points are 
added. For example: 

Circle and Rectangle do not allow a user to add points; that just wouldn't 
make sense. What would be a rectangle with an extra point? (§12.7.6) 

Lines allows only pairs of points to be added (and noL an individual 
poinL; § 13.3) . 

Open_polyline and Marks allow any number of points to be added. 

Polygon allows a point to be added only by an add() thaL checks for 
intersections (§13.8). 
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We made add() protected (that is, accessible from a derived class only) to ensure .\ 
that derived classes take control over how points are added. Had add() been U 
public (everybody can add points) or private (only Shape can add points}, this 
close match of functionality to our idea of shapes would not have been possible. 

Similarly, we made set_point() protected. In general, only a derived class can 
know whaL a point means and whether it can be changed without violating an in
variant. For example, if we have a Regular_hexagon class defined as a set of six 
points, changing just a single point would make the resulting figure "not a regular 
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hexagon." On the other hand, if we changed one of the points o f  a rectangle, the 
result would still be a rectangle. In fact, we didn't find a need for set_points() in 
our example classes and code, so set_point() is there, just to ensure that the rule 
that we can read and set every attribute of a Shape holds. For example, if we 
wanted a Mutable_rectangle, we could derive it from Rectangle and provide op
erations to change the points. 

We made the vector of Points, points, private to protect it against undesired 
modification. To make it useful, we also need to provide access to it: 

void Shape: : set_point(int i, Point p) 
{ 

points[i] = p;  

Point Shape: : point(int i) const 
{ 

return points[i]; 

int Shape: :number_of_points() const 
{ 

return points.size(); 

II not used; not necessary so iar 

In derived class member functions, these functions are used like this: 

void Lines: :draw_lines() const 
II draw l ines connecting pai rs of points 

for (int i=1 ; i<number_of_points(); i+=2) 
fl_line(point(i -1)  .x,point(i -1).  y,point(i) .x,point(i) . y) ; 

You might worry about all those trivial access functions. Are they not inefficient? Do 
they slow down the program? Do they increase the size of the program? No, they 
will all be compiled away ("inlined") by the compiler. Calling number_of_points() 
will take up exactly as many bytes of memory and execute exactly as many instruc· 
tions as calling points.size() directly. 

These access control considerations and decisions are important. We could 
have provided this dose-to-minimal version of Shape: 

strud Shape { II close-to-m inimal  defin i t ion - too simple - not u-;pcJ 
Shape(); 
void draw() const; II deal with color and ca l l  draw_l ines 
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} ;  

virtual void draw_lines() const; II draw the appropriate l ines 
virtual void move(int dx, int dy); II move the shape +=dx and +=dy 

vector<Poinl> points; 
Color lcolor; 
Line_style Is; 
Color fcolor; 

II not used by a l l  shapes 

491 

What value did we add by those extra 12 member functions and two lines of access •\ 
specifications (private: and protected:}? The basic answer is that protecting the rep- � 
rcsentation ensures that it doesn't change in ways w1anticipated by a class designer 
so that we can write better classes with less effort. llis is the argument about "in
variants" (§9.4.3) . Here, we'll point out such advantages as we define classes derived 
from Shape. One simple example is that earlier versions of Shape used 

FI_Color lcolor; 
int line_style; 

This tumed out to be too limiting (an int line style doesn't elegantly support line 
width, and FI_Color doesn't accommodate invisible) and led to some messy code. 
Had these two variables been public and used in a user's code, we could have im
proved our interface library only at the cost of breaking that code (because it 
mentioned the names line_color and line_style) . 

In addition, the access functions often provide notational convenience. For I\ 
exan1ple, s.add(p) is easier to read and write than s.points.push_back(p). U 
1 4.2.3 Drawing shapes 
We have now described almost all but the real heart of class Shape: 

void draw() const; II deal with color and ca l l  draw_l ines 
virtual void draw _lines() const; II draw the l i nes appropriately 

Shape's most basic job is to draw shapes . We could not remove all other func
tionality from Shape and leave it witl1 no data of its own without doing major 
conceptual hann (sec § 1 4.4) ; drawing is Shape's essential business. It does so 
using FLTK and the operating system's basic machinery, but from a user's point 
of view, iL provides just two functions: 

draw() applies style and color and then calls draw_lines(). 

draw_lines() puts pixels on the screen. 

The draw() function doesn't use any novel techniques. It simply calls FLTK func
tions to set the color and style to what is specified in the Shape, calls draw_lines() 
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to do the actual drawing on the screen, and then tries to restore the color and 
shape to what they were before the call : 

void Shape: :draw() const 
{ 

FI_Color oldc = fl_color() ;  
// there i s  no good portable way of  retrieving rhe currenr sryle 
fl_color(lcolor.as_int()) ; II set color 
fl_line_style(ls.style(),ls.width()); II set sryle 
draw _lines(); 
fl_color(oldc) ; 
fl_line_style(O); 

II reset color (to previous) 
II reset l ine style to defaul t  

Unfortunately, FLTK doesn't provide a way of obtaining the current style, so the 
style is just set to a default. That's the kind of compromise we sometimes have Lo 
accept as the cost of simplicity and portability. We didn't think iL worthwhile Lo 
try to implement that facility in our interface library. 

Note that Shape: :draw() doesn't handle fill color or the visibility of lines. 
Those are handled by the individual draw_line() functions that have a better idea 
of how to interpret them. In principle, all color and style handling could be dele
gated to the individual draw_line() functions, but that would be quiLc repetitive. 

Now consider how we might handle draw_lines(). If you think about it for a 
bit, you'll realize that it would be hard for a Shape function to draw all that needs 
to be drawn for every kind of shape. To do so would require that every lasL pixel 
of each shape should somehow be stored in the Shape object. If we kept the 
vector<Poinl> model, we'd have to store an awful lot of points. Worse, "the 
screen" (that is, the graphics hardware) already docs that - and does it better. 

To avoid that extra work and extra storage, Shape takes another approach: it 
gives each Shape (that is, each class derived from Shape) a chance to defmc what 
it means to draw it. A Text, Rectangle, or Circle class may each have a clever way 
of drawing itself. In fact, most such classes do. Mter all, such classes "know" ex
actly what they are supposed to represent. For example, a Circle is defmcd by a 
point and a radius, rather than, say, a lot of line segments. Generating the re
quired bits for a Circle from the point and radius if and when needed isn't really 
all that hard or expensive. So Circle defines its own draw_lines() which we want 
to call instead of Shape's draw_lines(). That's what tl1c virtual in the declaration 
of Shape: :draw _lines() means: 

struct Shape { 
II . . .  
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virtual void draw_lines() const; // let each derived class deiine its 
II own draw _l ines() ii ir so chooses 

II . . .  
}; 

struct Circle : Shape { 
II . . .  

}; 

void draw_lines() const; II "override" Shape::draw_l ines() 
II . . .  

So, Shape's draw _lines() must somehow invoke one of Circle's functions if the 
Shape is a Circle and one of Rectangle's functions if the Shape is a Rectangle. 
That's what the word virtual in the draw _lines() declaration ensures: if a class de· 
rived from Shape has defmed its own draw_lines() (with the same type as Shape's 
draw_lines()} ,  that draw_lines() will be called rather than Shape's draw_lines(). 
Chapter 13 shows how that's done for Text, Circle, Closed_polyline, etc. Defining 
a function in a derived class so that it can be used through the interfaces provided 
by a base is called otlt'rriding. 

Note that despite its central role in Shape, draw_lines() is protected; it is not 
meant to be called by "the general user" - that's what draw() is for - but simply 
as an "implementation detail" used by draw() and the classes derived from 
Shape. 

This completes our display model from §12.2. The system that drives the 
screen knows about Window. Window knows about Shape and can call Shape's 
draw() . Fmally, draw() invokes the draw_lines() for the particular kind of shape. 
A call of gui_main() in our user code starts the display engine. 

draw _lines() 

draw _lines() 

Shape 
c�� · 

·--�·0 , 

·-.. 
' . 

. Display . engine 

gui_main() 
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What gui_main()? So far, we haven't aclually seen gui_main() in our code. Instead 
we use wait_for_button(), which invokes the display engine in a more simple
minded manner. 

Shape's moveO function simply moves every point stored relative Lo the cur
rent position: 

void Shape: :move(int dx, int dy) 
{ 

II move the shape +=dx and +=dy 

for (int i =  0; i<points.size(); ++i) { 
points[i].x+=dx; 
points[i]. y+=dy; 

Like draw_lines(), move() is virtual because a derived class may have data thal 
needs to be moved and that Shape does not know abouL. For example, see Axis 
(§12 .7.3 and §15.4). 

The move() function is not logically necessary for Shape; we just provided iL 
for convenience and to provide another example of a virtual function. Every kind 
of Shape that has points that it didn't store in its Shape musL defme its own 
move(). 

1 4.2.4 Copying and mutability 
The Shape class declared the copy constructor and the copy assignment operator 
private: 

private: 
Shape(const Shape&); II prevent copying 
Shape& operator=(const Shape&); 

The effecl is that only members of Shape can copy objects of Shape using the de
fault copy operations. That is a common idiom for preventing accidemal copy· 
ing. For example: 

void my _fct(const Open_polyline& op, cons I Circle& c) 
{ 

Open_polyline op2 = op; II error: Shape's copy constructor is  privt�te 
vector<Shape> v; 
v.push_back(c); II t•rror: Shape's copy construt:tor is privat<• 
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II . . .  
op = op2; II error: Shape's assignment is private 

But copying is useful in so many places ! Just look at that push_back() ;  without 
copying, it is hard even to use vectors (push_ back() puts a ropy of its argument into 
its vector). Why would anyone make trouble for programmers by preventing copy-
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ing? You prohibit the default copy operations for a type if they are likely to cause (.} 
trouble. As a prime example of "trouble," look at my_fct(). We cannot copy a Circle 
into a Shape-sized element "slot" in v; a Circle has a radius but Shape does not so 
sizeof(Shape)<Sizeof(Circle). If that v.push_back(c) were allowed, the Circle would 
be "sliced" and any future use of the resulting Shape element would most likely 
lead to a crash; the Circle operations would assume a radius member (r) that hadn't 
been copied: 

Circle: rM-�c-ints'""'.'"'"- .,--. ..... �.-. •  -., 

:�..::�t(ij�· ��::; .;- 11-: n:; 
' . ., .. 3 .  /.t:rr..• �ft.:;.· .. , 

-� ,. , _  ' • !, -· � -

The copy construction o f  op2 and the assignment to op suffer from exactly the 
same problem. Consider: 

Marked_polyline mp("x"); 
Circle c(p, 10); 
my_fct(mp,c); // the Open_polyl ine argument refers to a Marked_poly l ine 

Now the copy operations of the Open_polyline would "slice" mp's string mem· 
her mark away. 

Basically, class hierarchies plus pass-by-reference and default copying do not f) 
mix. When you design a class that is meant to be a base class in a hierarchy, dis· 
able its copy constructor and copy assignment as was done for Shape. 

Slicing (yes, that's really a technical term) is not the only reason to prevent 
copying. There are quite a few concepts that are best represented without copy 
operations. Remember that the graphics system has to remember where a Shape 
is stored to display it to the screen. That's why we "attach'' Shapes to a Window, 
rather than copy. TI1e Window would know nothing about a copy, so a copy 
would in a very real sense not be as good as its original. 
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If we want to copy objects of types where the default copy operations have 
been disabled, we can write an explicit function to do the job. Such a copy func· 
tion is often called clone(). Obviously, you can write a clone() only if the func· 
tions for reading members are sufficient for expressing what is needed to 
construct a copy, but that is the case for all Shapes. 

1 4.3  Base and derived classes 
Let's take a more technical view of base and derived classes; that is, let us for this 
section (only) change the focus of discussion from programming, application de· 
sign, and graphics to programming language features. When designing our f) graphics interface library, we relied on three key language mechanisms: 

Den.uation: a way to build one class from another so that the new class 
can be used in place of the original. For example, Circle is derived from 
Shape, or in other words, "a Circle is a kind of Shape" or "Shape is a 
base of Circle." The derived class (here, Circle) gets all of the members 
of its base (here, Shape) in addition to its own. Tills is often called inheri
tance because the derived class "inherits'' all of the members of its base. 
In some contexts, a derived class is called a subclass and a base class is 
called a superclass. 

Vutual.fimctions: the ability to define a function in a base class and have a 
function of the same name and type in a derived class called when a user 
calls the base class function. For example, when Window calls draw_lines() 
for a Circle, it is the Circle's draw_lines() that is executed, rather than 
Shape's own draw_lines(). llis is often called ron-time polymorphirm, dynamic 
dispatdl, or ron-time dispatch because the function called is detennined at run 
time based on the type of the object used. 

Private and protected members: We kept the implementation details of our 
classes private to protect them from direct use that could complicate 
maintenance. That's often called encapsuloiimz. 

The use of inheritance, run-time polymorphism, and encapsulation is the most com
mon definition of of?J(xt-oriented programming. Thus, C++ directly supports object· 
oriented programming in addition to other programming styles. For example, in 
Chapters 20-2 1,  we'll see how C++ supports generic programming. C++ bor
rowed - with explicit acknowledgments - its key mechanisms from Simula67, the 
first language to directly support object-oriented programming (see Chapter 22). 

That was a lot of technical terminology! But what does it all mean? And how 
does it actually work on our computers? Let's first draw a simple diagram of our 
graphics interface classes showing their inheritance relationships : 
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The arrows poim from a derived class to its base. Such diagrams help visualize 
class relationships and often decorate the blackboards of programmers. Com· 
pared to commercial frameworks this is a tiny "class hierarchy" with only 16 
classes, and only in the case of Open_polyline's many descendants is the hierar· 
chy more than one deep. Clearly the common base (Shape) is the most impor
LanL class here, even though it represents an abstract concept so that we never 
directly make a shape. 

1 4.3.1 Object layout 
How arc objects laid ouL in memory? As we saw in §9.4. 1 ,  members of a class de· 
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fine the layouL of objects : data members are stored one after another in memory. 
When inhcriLancc is used, the data members of a derived class are simply added f) 
after those of a base. J.<or example: 

Shape: G•cle r· :· 

.

.

. 

· . 
·Color

.

" . ··

I 
- � · iS:' . .... .  : . .  · 

. . ' ..,.,  . ; , 

r: . . . . : .: ' ·  
. � ... .� - . 

A Circle has the data members of a Shape (after all, it is a kind of Shape) and can 

be used as a Shape. In addition, Circle has "its own" data member r placed after 
tl1e inherited data members. 
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To handle a virtual function call, we need (and have) one more piece of dala 
in a Shape object: something to tell which function is really invoked when we call 
Shape's draw_lines(). The way that is usually done is to add Lhe address of a 
table of functions. Tilis table is usually referred to as the vtbl (for "virtual table" 
or "virtual function table'') and its address is often called the vptr (for "virtual 
pointer").  We discuss pointers in Chapters 17-18;  here, they acL like references. 
A given implementation may use different names for vtbl and vptr. Adding Lhe 
vptr and the vtbls to the picture we get 

Open_polyline: poi"" One_ color 15hapt!•--"-( . . . ) 

Circle: 

Is 
vpt 
points One_ color 
Is vpt 
r 

Shape:IIIOWO 
<�··) 

Orde_:d.__Unes() 
( .. .  ) 

Since draw _lines() is the first virtual function, it gets the first slot in the vtbl. fol· 
lowed by that of move(), the second virtual function. A class can have as many vir· 
tual functions as you want it to have; its vtbl will be as large as needed (one slot per 
virtual function) . Now when we call x.draw_lines(), the compiler generates a call to 
the function found in the draw_lines() slot in the vtbl for x. Basically, the code just 
follows the arrows on the diagram. So if x is a Circle, Circle: :draw_lines() will be 
called. If x is of a type, say Open_polyline, that uses the vtbl exactly as Shape de· 
fmed it, Shape: :draw _lines() will be called. Similarly, Circle didn't defme its own 
move() so x.move() will call Shape: :move() if x is a Circle. Basically, code gener· 
ated for a virtual function call simply finds the vptr, uses that to get to the right 
vtbl, and calls the appropriate function there. The cost is about two memory ac· 
cesses plus the cost of an ordinary function call. Tills is simple and fast. 

Shape is an abstract class so you can't actually have an object that's just a 
Shape, but an Open_polyline will have exactly the same layout as a "plain shape" 
since it doesn't add a data member or defme a virtual function. There is just one 
vtbl for each class with a virtual function, not one for each object, so the vtbls tend 
not to add significantly to a program's object code size. 

Note tl1at we didn't draw any non·virtual functions in Lhis picture. We didn't 
need to because there is nothing special about the way such functions are called 
and they don't increase the size of objects of their type. 

Defining a function of the same name and type as a virtual function from a 
base class (such as Circle: :draw_lines()) so that the function from the derived 
class is put into the vtbl instead of the version from the base is called ovtmduzg. 
For example, Circle: :draw_lines() overrides Shape: :draw_lines(). 
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Why arc we telling you about vtbls and memory layout? Do you need to • \ 
know about that to use object-oriented programming? No. However, many peo- U 
plc strongly prefer to know how things are implemented (we are among those} , 
and when people don't understand something, myths spring up. We have met 
people who were terrified of virtual functions "because they were expensive." 
Why? How expensive? Compared to what? Where would the cost matter? We 
explain the implementation model for virtual functions so that you won't have 
such fears. If you need a virtual function call (to select among alternatives at run 
time) you can't code the functionality to be any faster or to use less memory 
using other language features . You can see that for yourself. 

1 4.3.2 Deriving classes and defining virtual functions 
We specify that a class is to be a derived class by mentioning a base after the class 
name. For example: 

struct Circle : Shape { t• . . .  •t }; 

By default, the members of a struct are public (§9.3), and that will include public � 
members of a base. We could equivalently have said U 

class Circle : public Shape { public:  t• . . .  •t }; 

These two declarations of Circle are completely equivalent, but you can have 
many long and fruilless discussions with people about which is better. We are of 
the opinion that time can be spent more productively on other topics. 

Beware of forgetting public when you need it. For example: 

class Circle : Shape { public: t• . . .  •t }; II probably a m i stake 

This would make Shape a private base of Circle, making Shape's public func
tions inaccessible for a Circle. That's unlikely to be what you meant. A good 
compiler will warn about this likely error. There arc uses for private base classes, 
but those are beyond the scope of this book. 

A virtual function must be declared virtual in its class declaration, but if you 
place the function definition outside the class, the keyword virtual is neither re
quired nor allowed out tl1ere. For example : 

struct Shape { 
II . . .  

} ;  

virtual void draw_lines() const; 
virtual void move(); 
II . . .  
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virtual void Shape: :draw_linesO const { t• . . .  •t } 
void Shape: :moveO { !• . . .  •! } 

II error 
// OK 

14.3.3 Overriding 
When you want to override a virtual function, you must use exactly the same 
name and type as in the base class. For example: 

struct Circle : Shape { 

}; 

void draw_lines(int) const; 
void drawlinesO const; 
void draw_linesO; 
II . . .  

II probably a mistake t int a rgument?) 
II probably a mistake (m isspel led name?) 
II probably a mistake (canst missing?) 

Here, the compiler will see Lhree functions that are independent of Shape: : 
draw_linesO (because they have a different name or a different type) and won't 
override it. A good compiler will warn about these likely mistakes. There is noth
ing you can or must say in an overriding function to ensure that it actually over
rides a base class function. 

The draw_linesO example is real and can therefore be hard to follow in all 
details, so here is a purely technical example that illustrates overriding: 

struct 8 { 

}; 

virtual void fO const { cout << "8: : f  " ; } 
void gO const { cout << "8: : g "; } II not vi rtua I 

struct 0 :  8 { 

}; 

void fO const { cout << "0: : f "; } 
void gO { cout << "D: :g " ; } 

struct DO : 0 { 

II overrides B::f 

void fO { cout << "DO: : f "; } II doesn'l override D::f (not constl 
void gO const { cout << "DO: :g "; } 

}; 

Here, we have a small class hierarchy wiLh (just) one virLual function fO. We can 
try using it. In particular, we can try to call fO and the non-virtual gO. which is a 
function that doesn't know what type of object it had to deal with excepl thal it is 
a 8 (or something derived from B) : 
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void call(const 8& b) 
II a D is a kind of B. so ca l l ( )  can accept a D 
II a DD is a kind of D and a D is a kind of B, so ca l l ( )  can accept a DO 

b.f() ; 
b.g() ; 

int main() 
{ 

You'll get 

8 b; 
D d; 
DO dd; 

call( b) ; 
call( d) ; 
call(dd); 

b.f() ; 
b.g(); 

d.f() ; 
d.g() ; 

dd.f(); 
dd.g() ; 

8: :f 8: :g 0: :f 8: :g 0: : f  8: :g 8 : : f  8 : :g D : : f  0: :g DO: : f  DO: :g 

When you understand why, you '11 know the mechanics of inheritance and virtual 
functions . 

14.3.4 Access 
C++ provides a simple model of access to members of a class. A member of a 
class can be 
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• Prillale: If a member is private, its name can be used only by members of � 
the class in which it is declared. U 
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Protected: If a member is protected, its name can be used only by mem
bers of the class in which it is declared and members of classes derived 
from that. 

Public: If a member is public, its name can be used by all functions . 

Or graphically: 

Derived class's members 

rfubli�-���--- - - - - - - - - - - - - - - -
·------- ------- ---------------------- --------- - - - - - - 1  :Protected members : 

Private members 

A base can also be private, protected, or public: 

If a base of class D is private, its public and protected member names 
can be used only by members of D. 

If a base of class D is protected, its public and protected member names 
can be used only by members of D and members of classes derived from D. 

If a base is public, its name can be used by all functions. 

These definitions ignore the concept of "friend" and a few minor details, which 
arc beyond the scope of this book. If you want to become a language lawyer you 
need to study Stroustrup, 17u: Design a1Ul Evoluti(m CJ[C++ and Tlze C++ Program
ming umguage, and the 2003 ISO C++ standard. We don't recommend becoming 
a language lawyer (someone knowing every little detail of the language defini
tion) ; being a programmer (a software developer, an engineer, a user, whatever 
you prefer to call someone who actually uses the language) is much more fun 
and typically much more useful to society. 

1 4.3.5 Pure virtual functions 
An abstract class is a class that can be used only as a base class. We usc abstract 
classes to represent concepts that are abstract; that is, we use abstract classes for 
concepts that are generalizations of common characteristics of related entities. 
Thick books of philosophy have been written trying to precisely dcfmc abstract C011-
ajJ/ (or abstraction or geru:raliudion or . . .  ). However you define it philosophically, the 
notion of an abstract concept is immensely useful. Examples arc "animal" (as op-
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posed to any particular kind o f  animal) , "device driver" (as oppose to the driver 
for any particular kind of device) , and "publication" (as opposed to any particular 
kind of book or magazine) . In programs, abstract classes usually define interfaces 
to groups of related classes (closs hierarchies). 
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In §14.2 .1 ,  we saw how to make a class abstract by declaring its constructor 
protected. There is another - and much more common - way of making a class � 
abstract: state that one or more of its virtual functions needs to be overridden in � 
a derived class. For example: 

class 8 { II abstract base class 
public: 

} ; 

virtual void fO ::0; II pure virtual function 
virtual void gO ::0; 

8 b; II error: B is  abstract 

The curious =0 notation says that the virtual functions 8: : fO and 8: :gO are 
"pure"; that is, they must be overridden in some derived class. Since 8 has pure 
virtual functions, we cannot create an object of class B. Overriding the pure vir
tual functions solves this "problem": 

class 01 : public 8 { 
public: 

} ; 

void fO; 
void gO; 

01 d1;  // OK 

Note that unless all pure virtual functions are overridden, the resulting class is 
still abstract: 

class 02 : public 8 { 
public: 

} ; 

void fO; 
II no g() 

02 d2; II error: 02 is  (st i l l )  abstract 
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class 03 : public 02 { 
public: 

void gO; 
} ; 

03 d3; II ok 

Classes with pure virtual functions tend to be pure interfaces ; that is, they tend to 
have no data members (the data members will be in the derived classes) and con· 
sequently have no constructors (if there are no data members to initialize, a con· 
structor is unlikely to be needed). 

1 4.4 Benefits of object-oriented programming 
When we say that Circle is derived from Shape, or that Circle is a kind of Shape, 
we do so to obtain (either or both) 

Interface inheritance: A function expecting a Shape (usually as a reference 
argument) can accept a Circle (and can use a Circle through the interface 
provided by Shape). 

Implementation i11herilana: When we defme Circle and its member func· 
tions, we can take advantage of tl1e facilities (such as data and member 
functions) offered by Shape. 

A design that does not provide interface inheritance (that is, a design for which 
an object of a derived class carmot be used as an object of its public base class) is 
a poor and error-prone design. For example, we might define a class called 
Never_do_this with Shape as its public base. Then we could override Shape: :  
draw() with a function that didn't draw the shape, but instead moved its center 
lOO pixels to the left. That "design" is fatally flawed because even though 
Never_do_this provides the interface of a Shape, its implementation does not 
maintain the semantics (meaning, behavior) required of a Shape. Never do that! 

Interface inheritance gets its name because its benefits come from code using 
the interface provided by a base class ("an interface"; here, Shape) and not hav· 
ing to know about the derived classes ("implementations"; here, classes derived 
from Shape). 

Implementation inheritance gets its name because the benefits come from the 
simplification in the implementation of derived classes (e.g., Circle) provided by 
the facilities offered by the base class (here, Shape). 

Note that our graphics design aitically depends on interface inheritance: the 
"graphics engine" calls Shape: :draw() which in tum calls Shape's virtual function 
draw_lines() to do the real work of putting images on the screen. Neitl1er the 
"graphics engine" nor indeed class Shape knows which kinds of shapes exist. In 
particular, our "graphics engine" (FLTK plus the operating system's graphics facil-
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ities) was written and compiled years before our graphics classes! We just define 
particular shapes and attach() them to Windows as Shapes (Window: :attach() 
takes a Shape& argument; see §E.3). Furthermore, since class Shape doesn't know 
about your graphics classes, you don't need to recompile Shape each time you de
fmc a new graphics interface class. 

In other words, we can add new Shapes to a program without modifying ., 
existing code. Tius is a holy grail of  software design/development/maintenance: U 
extension of a system without modifying it. There are limits to which changes we 
can make without modifying existing classes (e.g., Shape offers a rather limited 
range of services), and the technique doesn't apply well to all programming prob-
lems (sec, for example, Chapters 17-19 where we defme vector; inheritance has 
little to offer for that) . However, interface inheritance is one of the most powerful 
techniques for designing and implementing systems that are robust in the face of 
change. 

Similarly. implementation inheritance has much to offer, but it is no panacea. 
By placing useful services in Shape, we save ourselves the bother of repeating 
work over and over again in the derived classes. That can be most significant in 
real-world code. However, it comes at the cost that any change to the interface of • 1 

Shape or any change to the layout of the data members of Shape necessitates a � 
recompilation of all derived classes and their users. For a widely used library, 
such recompilation can be simply infeasible. Naturally, there are ways of gaining 
most of the benefits while avoiding most of the problems; see §14.3.5 . 

../Drill 
Unfortunately, we can't construct a drill for the understanding of general design 
principles, so here we focus on the language features that support object-oriented 
programming. 

1 .  Define a class 81 with a virtual function vf() and a non-virtual function 
f(). Define both of these functions within class 81 . Implement each func
tion to output its name (e.g. "81 : :vfO") . Make the functions public. 
Make a 81 object and call each function. 

2. Derive a class 01 from 81 and override vf(). Make a 01 object and call 
vfO and f() for it. 

3. Define a reference to 81 (a 81&} and initialize that to the 01 object you 
just defined. Call vfO and f() for that reference. 

4. Now define a function called f() for 01 and repeat 1-3. Explain the results. 
5. Add a pure virtual function called pvfO to 81 and try to repeat 1-4. Ex

plain the result. 
6. Defme a class 02 derived from 01 and override pvf() in 02. Make an ob· 

ject of class 02 and invoke f(), vf(), and pvf() for it. 
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7. Defme a class 8 2  with a pure vinual function pvf(). Defme a class 021 
with a string data member and a member function that overrides pvf() ; 
021 : : pvf() should output the value of the string. Defme a class 022 that 
is just like 021 except that its data member is an int. Define a function f() 
that takes a 82& argument and calls pvf() for its argument. Call f() with a 
021 and a 022. 

Review 

1. What is an application domain? 
2. What are ideals for naming? 
3. What can we name? 
4. What services does a Shape offer? 
5. How does an abstract class differ from a class that is not abstract? 
6. How can you make a class abstract? 
7. What is controlled by access control? 
8. What good can it do to make a data member private? 
9. What is a virtual function and how does it differ from a non-virtual 

function? 
10. What is a base class? 
1 1 .  What makes a class derived? 
12. What do we mean by object layout? 
13. What can you do to make a class easier to test? 
14. What is an inheritance diagram? 
15. What is the difference between a protected member and a private one? 
16. What members of a class can be accessed from a class derived from it? 
17. How does a pure virtual function differ from other vinual functions? 
18. Why would you make a member function virtual? 
19. Why would you make a vinual member function pure? 
20. What does overriding mean? 
21 .  How does interface inheritance differ from implementation inheritance? 
22. What is object-oriented progranuning? 

Terms 

abstract class 
access control 
base class 
derived class 
dispatch 
encapsulation 
inheritance 

mutability 
object layout 
object-oriented 
polymorphism 
private 
protected 
public 

pure vinual function 
subclass 
superclass 
vinual function 
vinual function call 
vinual function table 
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Exercises 

1. Defme two classes Smiley and frowny, which are both derived from class 
Circle and have two eyes and a mouth. Next, derive classes from Smiley 
and frowny, which add an appropriate hat to each. 

2. Try to copy a Shape. What happens? 
3. Defme an abstract class and try to define an object of that type. What 

happens? 
4. Defmc a class lmmobile_Circle, which is just like Circle but can't be 

moved. 
5. Defme a Striped_rectangle where instead of fill, the rectangle is "ftlled" 

by drawing one-pixel-wide horizontal lines across the inside of the rectan
gle (say, draw every second line like that) . You may have to play with the 
width of lines and the line spacing to get a pattern you like. 

6. Define a Striped_circle using the technique from Striped_rectangle. 
7. Define a Striped_closed_polyline using the technique from Striped_rec

tangle (this requires some algorithmic inventiveness) . 
8. Defme a class Octagon to be a regular octagon. Write a test that exer

cises all of its functions (as defmed by you or inherited from Shape) . 
9. Define a Group to be a container of Shapes with suitable operations ap

plied to the various members of the Group. Hint: Vector_ref. Use a 
Group to defme a checkers (draughts) board where pieces can be moved 
under program control. 

10. Defme a class Pseudo_window that looks as much like a Window as you 
can make it without heroic efforts. It should have rounded comers, a 
label, and control icons. Maybe you could add some fake "contents ," 
such as an image. It need not actually do anything. It is acceptable (and 
indeed recommended) to have it appear within a Simple_ window. 

1 1 .  Defme a Binary_tree class derived from Shape. Give the number of lev
els as a parameter ( levels==O means no nodes, levels==1 means one 
node, levels==2 means one top node with two sub-nodes, levels==3 
means one top node with two sub-nodes each with two sub-nodes, etc.) . 
Let a node be represented by a small circle. Connect the nodes by lines 
(as is conventional) . P.S. In computer science, trees grow downward from 
a top node (amusingly, but logically, often called the root) . 

12. Modify Binary_tree to draw its nodes using a virtual function. Then, de
rive a new class from Binary_tree that overrides that virtual function to 
usc a different representation for a node (e.g., a triangle). 

13. Modify Binary_tree to take a parameter (or parameters) to indicate what 
kind of line to use to connect the nodes (e.g., an arrow pointing down or 
a red arrow pointing up) . Note how this exercise and the last use two al
ternative ways of making a class hierarchy more flexible and useful. 
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14 .  Add an operation to Binary_tree that adds text to a node. You may have 
to modify the design of Binary_tree to implement this elegantly. Choose 
a way to identify a node; for example, you might give a string "lrrlr" for 
navigating left, right, right, left, and right down a binary tree (the root 
node would match both an initial I and an initial r). 

15. Most class hierarchies have nothing to do with graphics . Define a class 
l terator with a pure virtual function next() that returns a double•. Now 
derive Vector_iterator and List_iterator from l terator so that next() for a 
Vector_iterator yields a pointer to the next element of a vector<double> 
and List_iterator does the same for a list<double>. You initialize a Vec
tor _iterator with a vector<double> and the first call of next() yields a 
pointer to its first element, if any. If there is no next element, return 0. 
Test this by using a function void print(lterator&) to print the elements of 
a vector<double> and a list<double>. 

16. Define a class Controller with four virtual functions on(), off(), set_level(int), 
and show(). Derive at least two classes from Controller. One should be a 
simple test class where show() prints out whether the class is set to on or off 
and what is the current level. The second derived class should somehow 
control the line color of a Shape; the exact meaning of "level" is up to you. 
Try to find a third "thing" to control with such a Controller class. 

1 7. The exceptions defined in the C++ standard library, such as exception, 
runtime_ exception, and out_of_range (§5.6.3), are organized into a class 
hierarchy (with a useful virtual function what() returning a string suppos
edly explaining what went wrong) . Search your information sources for 
the C++ standard exception class hierarchy and draw a class hierarchy 
diagram of it. 

Postscript 

The ideal for software is not to build a single program that does everything. The 
ideal is to build a lot of classes that closely reflect our concepts and that work to
gether to allow us to build our applications elegantly, with minimal effort (rela
tive to the complexity of our task} , with adequate performance, and with 
confidence that the results produced are correct. Such programs are comprehen
sible and maintainable in a way that code that was simply thrown together to get 
a particular job done as quickly as possible is not. Classes, encapsulation (as sup
ported by private and protected) , inheritance (as supported by class derivation}, 
and run-time polymorphism (as supported by virtual functions) are among our 
most powerful tools for structuring systems. 
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G raph i ng Fu nctions 
and Data 

"The best is the enemy of the good." 

-Voltaire 

I 
f you are in any empirical field, you need to graph data. If you 

arc in any field that uses math to model phenomena, you need 

to graph functions. This chapter discusses basic mechanisms for 

such graphics. As usual. we show the use of the mechanisms and 

also discuss their design. The key examples are graphing a func

tion of one argument and displaying values read from a file. 
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15.1 Introduction 

15.2 Graphing simple functions 

15.3 Function 
15.3.1 Default arguments 
15.3.2 More examples 

15.4 Axis 

1 5. 1  Introduction 

15.5 Approximation 

15.6 Graphing data 
15.6.1 Reading a file 
15.6.2 General layout 
15.6.3 Scaling data 
15.6.4 Building the graph 

Compared to the professional software systems you '11 usc if such visualization be
comes your main occupation, the facilities presented here are primitive. Our pri
mary aim is not elegance of output, but understanding of how such graphical 
output can be produced and of the programming techniques used. You 'U fmd the 
design techniques, programming techniques, and basic mathematical tools pre
sented here of longer-term value than the graphics facilities presented. Therefore, 
please don't skim too quickly over the code fragments - they contain more of in
terest than just the shapes they compute and draw. 

1 5 .2 Graphing simple functions 
Let's start. Let's look at examples of what we can draw and what code it takes to 
draw them. In particular, look at the graphics interface classes used. Here, frrst, 
are a parabola, a horizontal line, and a sloping line : 
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Actually, since this chapter is about graphing functions, that horizontal line isn't 
just a horizontal line; it is what we get from graphing the function 

double one(double) { return 1 ; }  

This is about the simplest function we could think of: it is a function of one argu
ment that for every argument returns 1 .  Since we don't need that argument to 
compute the result, we need not name it. For every x passed as an argument to 
one() we get the y value 1 ;  that is, the line is defined by (x, y)==(x, 1 )  for all x. 

Like all beginning mathematical arguments, this is somewhat trivial and 
pedantic, so let's look at a slightly more complicated function: 

double slope(double x) { return x/2.; } 

This is the function that generated the sloping line. For every x, we get the y value 
x/2. In other words, (x,y)==(x,x/2.). The point where the two lines cross is (2, 1 ). 

Now we can try something more interesting, tl1e square function that seems 
to reappear regularly in this book: 

double square(double x) { return x•x; } 

If you remember your high school geometry (and even if you don't) , this defines 
a parabola with its lowest point at (0,0) and symmetric on the y axis. In other 
words, (x,y)=(x,x•x). So, the lowest point where the parabola touches the slop
ing line is (0,0). 

Here is the code that drew those three functions: 

const int xmax = 600; 
const int ymax = 400; 

II wi ndow size 

const int x_orig = xmax/2; II posit ion of (0,0) is center of window 
const int y_orig = ymax/2; 
const Point orig(x_orig,y_orig); 

const int r_min = -10; II range 1- 1 0: 1 1 )  
const int r_max = 1 1 ;  

const int n_points = 400; II number of points used in range 

const int x_scale = 30; II sca ling factors 
const int y_scale = 30; 

Simple_ window win(Point(100, 100),xmax,ymax, "Function graphing"); 
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Function s(one,r_min,r_max,orig,n_points,x_scale,y_scale); 
Function s2(slope,r _min,r _max,orig,n_points,x_scale,y _scale); 
Function s3(square,r _min,r _max,orig,n_points,x_scale,y _scale); 

win.attach(s); 
win .attach(s2); 
win.attach(s3); 
win .wait_for _button(); 

Frrst, we define a bunch of constants so that we won't have to litter our code with 
"magic numbers." Then, we make a window, defme the functions, attach them to 
the window. and finally give control to the graphics system to do the actual drawing. 

All of this is repetition and "boilerplate" except for the definitions of the three 
Functions, s, s2, and s3 : 

Function s(one,r_min,r _max,orig,n_points,x_scale,y _scale); 
Function s2(slope,r _min,r _max,orig,n_points,x_scale,y _scale); 
Function s3(square,r _min,r _max,orig,n_points,x_scale, y _scale); 

Each Function specifies how its first argument (a function of one double argu· 
ment returning a double) is to be drawn in a window. The second and third ar· 
guments give the range of x (the argument to the function to be graphed). The 
fourth argument (here, orig) tells the Function where the origin (0,0) is to be lo
cated within the window. 

If you think that the many arguments are confusing, we agree. Our ideal is to 
have as few arguments as possible, because having many arguments confuses 
and provides opportunities for bugs. However, here we need them. We'll explain 
the last three arguments later (§15.3). Frrst, however, let's label our graphs: 
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We always try to make our graphs self-explanatory. People don't always read the (_) 
surrounding text and good diagrams get moved around, so that the surrounding 
text is ''lost." Anything we put in as part of the picture itself is most likely to be 
noticed and - if reasonable - most likely to help the reader understand what we 
are displaying. Here, we simply put a label on each graph. The code for "label-
ing" was three Text objects (see §13. 1 1 ) :  

Text ts(Point(100,y _orig-40), "one"); 
Text ts2(Point(100,y_orig+y _orig/2-20), "x/2"); 
Text tsl(Point(x_orig-100,20), "x•x"); 
win.set_labei("Function graphing: label functions"); 
win. wait_ for_ button(); 

From now on in this chapter, we'll omit the repetitive code for attaching shapes to 
the window, labeling the window, and waiting for the user to hit "Next." 

However, that picture is still not acceptable. We noticed that x/2 touched x•x • \ 
at (0,0) and that one crosses x/2 at (2, 1 )  but that's far too subtle; we need axes to U 
give the reader an unsubtle clue about what's going on: 

TI1e code for the axes was two Axis objects (§15.4) : 

const int xlength = xmax-40; II make the axis a bit sma l ler than the window 
const int ylength = ymax-40; 

Axis x(Axis: : x,Point(20,y_orig), xlength, xlengthlx_scale, "one notch == 1 "); 
Axis y(Axis: :y,Point(x_orig, ylength+20), 

ylength, ylengthly_scale, "one notch == 1 "); 
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Using xlengthlx_scale as the number of notches ensures that a notch represents 
the values 1, 2, 3, etc. Having the axes cross at (0,0) is conventional. If you prefer 
them along the left and bottom edges as is conventional for the display of data 
(see §15.6), you can of course do that instead. Another way of distinguishing the 
axes from the data is to use color: 

x.set_color(Color: : red); 
y.set_color(Color: : red); 

And we get 

1l1is is acceptable, though for aesthetic reasons, we'd probably want a bit of 
empty space at the top to match what we have at the bottom and sides. It might 
also be a better idea to push the label for the x axis further to the left. We left 
these blemishes, so that we could mention them - there are always more aes· 
thetic details that we can work on. One part of a progran1mer's art is to know 
when to stop and use the time saved on something better (such as learning new 
techniques or sleep). Remember: "'The best is the enemy of the good." 

1 5 .3 Function 
1l1e Function graphics interface class is defined like this: 

struct Function : Shape { 
// the function parameters are not stored 
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Function(Fct f, double r1 , double r2, Point orig, 
int count = 100, double xscale = 25, double yscale = 25); 

} ; 

Function is a Shape with a constructor that generates a lot of line segments and 
stores them in its Shape part. Those line segments approximate the values of 
function f. 1l1e values of f are calculated count times for values equally spaced in 
the [r1 : r2) range: 

Function : : Function(Fct f, double r1 , double r2, Point xy, 
int count, double xscale, double yscale) 

II graph i(x) for x in l r l  :r2) using count l i ne segments with (0,0) displayed at xy 
II x coordinates are scaled by xscale and y coordi nates scaled by yscale 
{ 

if (r2-r1<=0) error("bad graphing range"); 
if (count <=0) error("non-positive graphing count"); 
double dist = (r2-r1)/count; 
double r = r1 ; 
for (int i = 0; i<count; ++i) { 

add(Point(xy.x+int(r•xscale) ,xy. y-int(f(r) •yscale))) ; 
r += dist; 

The xscale and yscale values are used to scale the x coordinates and the y coordi
nates, respectively. We typically need to scale our values to make them fit appro
priately into a drawing area of a window. 

Note that a Function object doesn't store the values given to its constructor, 
so we can't later ask a function where its origin is, redraw it with different scaling, 
etc. All it does is to store points (in its Shape) and draw itself on the screen. If we 
wanted the flexibility to change a Function after construction, we would have to 
store the values we wanted to change (see exercise 2) . 

1 5.3.1 Default arguments 
Note the way the Function constructor arguments xscale and yscale were given 
i.nitializers in the declaration. Such initializers are called dtfimlt argume11ls and their 
values are used if a caller doesn't supply values. For example: 

Function s(one, r_min, r_max,orig, n_points, x_scale, y_scale); 
Function s2(slope, r_min, r_max, orig, n_points, x_scale); II no yscale 
Function s3(square, r_min, r_max, orig, n_points); II no xscale, no ysca le 
Function s4(sqrt, orig, r_min, r_max); II no count, no xscale, no yscale 

515 



516 CHAPTER 1 5  • GRAPH I N G  FU NCT IONS A N D  DATA 

This is equivalent to 

Function s(one, r_min, r_max, orig, n_points, x_scale, y_scale); 
Function s2(slope, r_min, r_max,orig, n_points, x_scale, 25); 
Function s3(square, r_min, r_max, orig, n_points, 25, 25); 
Function s4(sqrt, orig, r_min, r_max, 100, 25, 25); 

Default arguments are used as an alternative to providing several overloaded 
functions. Instead of defming one constructor with three default arguments, we 
could have defmed four constructors : 

struct Function : Shape { II a l ternat ive, not using defaul t  arguments 

} ; 

Function(Fct f, double r1 , double r2, Point orig, 
int count, double xscale, double yscale); 

II defaul t  scale of y: 
Function(Fct f, double r1 , double r2, Point orig, 

int count, double xscale); 
II defau l t  scale of x ,md y: 
Function(Fct f, double r1 , double r2, Point orig, int count); 
II defau l t  count and defaul t  scale of x or y: 
Function(Fct f, double r1 , double r2, Point orig); 

It would have been more work to defme four constructors, and with the four
constructor version, the nature of the default is hidden in the constructor defini
tions rather than being obvious from the declaration. Default arguments are 
frequently used for constructors but can be useful for all kinds of functions. You 
can only define default arguments for trailing arguments. For example: 

struct Function : Shape { 

}; 

Function(Fct f, double r1 , double r2, Point orig, 
int count = 100, double xscale, double yscale); II error 

If an argument has a default argument, all subsequent arguments must also have 
one: 

struct Function : Shape { 
Function(Fct f, double r1 , double r2, Point orig , 

int count = 100, double xscale=25, double yscale=25); 
}; 

Sometimes, picking good default arguments is easy. Examples of that are the de
fault for string (the empty string) and the default for vector (the empty vector) . 
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In other cases, such as Function, choosing a default is  less easy; we found the 
ones we used after a bit of experimentation and a failed attempt. Remember. you 
don't have to provide default arguments, and if you find it hard to provide one, 
just leave it to your user to specify that argument. 

1 5.3.2 More examples 
We added a couple more functions, a simple cosine (cos) from the standard li
brary, and -just to show how we can compose functions - a sloping cosine that 
follows the x/2. slope: 

double sloping_cos(double x) { return cos(x)+slope(x); } 

Here is the result: 

The code is 

Function s4(cos,r_min,r_max,orig,400,20,20) ; 
s4.set_color(Color: : blue) ; 
Function sS(sloping_cos, r_min,r _max,orig,400,20,20) ; 
x. label.move(-160,0); 
x. notches.set_color(Color: : dark_red); 

In addition to adding those two functions, we also moved the x axis's label and 
(just to show how) slightly changed the color of its notches. 

Finally. we graph a log, an exponential, a sine, and a cosine: 
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Function f1 (log,0.000001 ,r _max,orig,200,30,30); 
Function f2(sin,r _min,r _max,orig,200,30,30); 
f2.set_color(Color: : blue) ; 
Function f3(cos,r _min,r _max,orig,200,30,30) ; 
Function f4(exp,r _min,r _max,orig,200,30,30); 

// log() logarithm, base e 
II sin( )  

II cos() 
II exp() £'Xponentia l eAx 

Since log(O) is undefmed (mathematically, minus infinity) . we started the range 
for log at a small positive number. The result is 

Rather than labeling those functions we used color. 
Standard mathematical functions, such as cos(). sin(), and sqrt(), arc declared 

in the standard library header <cmath>. See §24.8 and §B.9.2 for lists of the stan· 
dard mathematical functions. 

1 5.4 Axis 
We use Axis wherever we present data (e.g., §15.6.4) because a graph without in· 
formation that allows us to understand its scale is most often suspect. An Axis 
consists of a line, a number of "notches" on that line, and a text label. The Axis 
constructor computes the axis line and (optionally) the lines used as notches on 
that line: 

struct Axis : Shape { 
enum Orientation { x, y, z }; 
Axis(Orientation d, Point xy, int length, 

int number_of_notches::O, string label = ""); 
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} ; 

void draw_lines() const; 
void move(int dx, int dy); 
void set_color(Color c); 

Text label; 
Lines notches; 

The label and notches objects are left public so that a user can manipulate them. 
For example, you can give the notches a different color from the line and move() 
the label to a more convenient location. Axis is an example of an object com· 
posed of several semi-independent objects. 

The Axis constructor places the lines and adds the "notches" if num
ber_of_notches is greater than zero; 

Axis: :Axis( Orientation d, Point xy, int length, int n, string lab) 
: labei(Point(O,O),Iab) 

if (length<O) error("bad axis length") ;  
switch (d){ 
case Axis: : x :  

Shape: :add(xy); II axis l i ne 
Shape: :add(Point(xy.x+length,xy.y)); 

if (1<n) { II add notches 
int dist = lengthln; 
int x = xy.x+dist; 
for (int i =  0; i<n; ++i) { 

} 

notches.add (Point(x, xy. y), Point(x,xy. y-5)); 
x += dist; 

label.move(lengthl3,xy.y+20); II put the label under the l ine 
break; 

case Axis: :y :  
{ Shape: :add(xy); II a y ax is  goes up 

Shape: : add(Point(xy.x,xy.y-length)); 

if (1<n) { II add notches 
int dist = lengthln; 
int y = xy.y-dist; 
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for (int i =  0; i<n; ++i) { 
notches.add (Point(xy.x, y), Point(xy.x+S, y)) ;  
y -= dist; 

} 

label.move(xy.x-10,xy. y-length-10); 
break; 

case Axis : :z :  
error("z axis not implemented"); 

II put the label at top 

Compared to much real-world code, this constructor is very simple, but please have 
a good look at it because it isn't quite trivial and it illustrates a few useful techniques. 
Note how we store the line in the Shape part of the Axis (using Shape: :add()) but 
the notches are stored in a separate object (notches). That way, we can manipulate 
the line and the notches independently; for example, we can give each its own color. 
Similarly, a label is placed in a fixed position relative to its axes, but since it is a sepa
rate object, we can always move it to a better spot. We use the enumeration Orien
tation to provide a convenient and non-error-prone notation for users. 

Since an Axis has three parts, we must supply functions for when we want to 
manipulate an Axis as a whole. For example: 

void Axis: :draw_lines() const 
{ 

Shape: :draw_lines(); 
notches.draw(); // the notches may l1<we a di iierent color from the l ine 
label.draw(); // the label may have a di fferent color irom the l i ne 

We use draw() rather than draw_lines() for notches and label to be able to use 
the color stored in them. The line is stored in the Axis: : Shape itself and uses the 
color stored there. 

We can set the color of the line, the notches, and the label individually. but sty· 
listically it's usually better not to, so we provide a function to set all three to the same: 

void Axis : : set_ color( Color c) 
{ 

Shape: :set_color(c); 
notches.set_color(c); 
label.set_color(c); 
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Similarly, Axis : :move() moves all the parts of the Axis together: 

void Axis: :move(int dx, int dy) 
{ 

Shape: :move(dx,dy) ; 
notches.move(dx,dy); 
label.move(dx,dy); 

1 5 .5 Approximation 
Here we give another small example of graphing a function: we "animate" the 
calculation of an exponential function. The purpose is to help you get a feel for 
mathematical functions (if you haven't already), to show the way graphics can be 
used to illustrate computations, to give you some code to read, and fmally to 
warn about a common problem with computations. 

One way of computing an exponential function is to compute the series 

e" = =  1 + X +  r/2 ! + x3/3! + xi/4! + . . .  

The more terms of this sequence we calculate, the more precise our value of e" 
becomes; that is, the more terms we calculate, the more digits of the result will be 
mathematically correct. What we will do is to compute this sequence and graph 
the result after each term. The exclamation point here is used with the common 
mathematical meaning: factorial; that is, we graph these functions in order: 

expO(x) = 0 II no terms 
exp1 (x) = 1 II one term 
exp2(x) = 1+X // two terms; pow(x, 1 )/iac( l )==x 
exp3(x) = 1+X+pow(x,2)/fac(2) 
exp4(x) = 1+X+pow(x,2)/fac(2)+pow(x,3)/fac(3) 
expS(x) = 1+x+pow(x,2)/fac(2)+pow(x,3)/fac(3)+pow(x,4)/fac(4) 

Each function is a slightly better approximation of e' than the one before it. Here, 
pow(x,n) is the standard library function that returns X'. There is no factorial 
function in the standard library, so we must define our own: 

int fac(int n) 
{ 

II iactor ia l (n ) ; n !  

int r = 1 ; 
while (n>1) { 

r•=n; 
--n; 
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return r; 

For an alternative implementation of fac(), see exercise 1 .  Given fac(), we can 
compute the nth term of the series like this: 

double term(double x, int n) { return pow(x,n)/fac(n); } II nth term oi series 

Given term(), calculating the exponential to the precision of n terms is now easy: 

double expe(double x, int n) 
{ 

double sum = 0; 

II sum of n terms ior x 

for (int i=O; i<n; ++i) sum+=term(x, i); 
return sum; 

How can we graph this? From a progranuning point of view, the difficulty is that 
our graphing class, Function, takes a function of one argument and expe() takes 
two arguments. Given C++, as we have seen it so far, there is no really elegant 
solution to this problem, so for now, we'll use a simple and inelegant solution 
(but sec exercise 3) . We can take the precision, n, out of the argument list and 
make it a variable: 

int expN_number_of_terms = 10; 

double expN(double x) 
{ 

return expe(x,expN_number_of_terms); 

Now expN(x) calculates an exponential to the precision detennined by the value 
of expN_number_of_terms. Let's use that to produce some graphics. Frrst, we'll 
provide some axes and the "real" exponential , the standard library expO, so that 
we can sec how close our approximation using expNO is: 

Function real_exp(exp,r_min,r_max,orig,200,x_scale,y_scale); 
real_exp.set_color(Color: :blue); 

Then, we can loop through a series of approximations increasing the number of 
terms of our approxin1ation, n, each time around: 



1 5 . 5  APPROXIMAT ION 

for (int n = 0 ;  n<SO; ++n) { 
ostringstream ss; 
ss << "exp approximation; n=" << n ; 
win.set_label(ss.str() .c_str()) ; 
expN_number_of_terms = n; 
II get next approx imation: 
Function e(expN,r_min,r_max,orig,200,x_scale,y_scale) ; 
win.attach(e) ; 
win.wait_for_button(); 
win.detach(e); 

Note the fmal detach(e) in that loop. The scope of the Function object e is the 
block of the for-statement. Each time we enter that block we get a new Function 
called e and each time we exit the block that e goes away, to be replaced by the 
next. TI1e window must not remember the old e because it will have been de
stroyed. Thus, detach(e) ensures that the window does not try to draw a de
stroyed object. 

This first gives a window with just the axes and the "real" exponential ren
dered in blue : 

We see that exp(O) is 1 so that our blue "real exponential" crosses they axis in (0, 1 ) .  
If  you look carefully, you'll see that we actually drew the zero term approxi

mation (expO(x)==O) as a black line right on top of the x axis. Hitting "Next,'' we 
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get the approximation using just one term. Note that we display the number of 
terms used in the approximation in the window label : 

: •. 

;: • .  

' i '  

That's the function exp1(x)==1, the approximation using just one tem1 of the se
quence. It matches the exponential perfectly at (0, 1 ) ,  but we can do better: 

With two terms (1+X), we get the diagonal crossing the )' axis at (0, 1 ) .  With three 
terms (1+X+pow(x,2)/fac(2)), we can see the beginning of a convergence : 
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With ten terms we are doing rather well, especially for values larger than -3: 

If we don't think too much about it, we might believe that we could get better 
and better approximations simply by using more and more terms. However, 
there are limits. and after 13 terms something strange starts to happen. First, the 
approximations start to get slightly worse, and at 18 temlS vertical lines appear: 
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Remember, floating-point arithmetic is not pure math. Floating-point numbers 
are simply as good an approximation to real numbers as we can get with a fixed 
number of bits. What happened was that our calculation started to produce val
ues that couldn't be represented as doubles so that our results started to diverge 
from the mathematically correct answers. For more information, see Chapter 24. 

This last picture is also a good illustration of the principle that "it looks 0 K ' '  

isn't the same as "tested." Before giving a program to someone else to usc. first 
test it beyond what at frrst seems reasonable. Unless you know better. running a 
program slightly longer or with slightly different data could lead to a real mess -
as in this case. 

1 5 .6 Graphing data 
Displaying data is a highly skilled and highly valued craft. When done well. it 
combines technical and artistic aspects and can add significantly to our under
standing of complex phenomena. However, that also makes graphing a huge area 
that for the most part is unrelated to programming techniques. Here, we ·n just 
show a simple example of displaying data read from a file. The data shown rep
resents the age groups ofjapanese people over almost a century. The data to the 
right of the 2008 line is a projection: 
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We'll use this example to discuss the programming problems involved in presenL· 
ing such data: 

Reading a flle 

Scaling data Lo fit the window 

Displaying the data 

Labeling the graph 

We will not go into artistic details. Basically, this is "graphs for geeks," not "graph· 
ical art." Clearly, you can do better artistically when you need to. 

Given a set of data, we must consider how best to display it. To simplify, we 
will only deal with data that is easy to display using two dimensions, but thaL's a 
huge part of the data most people deal with. Note that bar graphs, pie charts, and 
similar popular displays really are just two-dimensional data displayed in a fancy 
way. Three-dimensional data can often be handled by producing a series of two
dimensional images, by superimposing several two-dimensional graphs onto a 
single window (as done in the 'japanese age" example), or by labeling individual 
poims with information. If we want to go beyond that, we'll have to write new 
graphics classes or adopt another graphics library. 

So, our data is basically pairs of values, such as (year,number of children). If 
we have more data, such as (year,number of children, number of adults,number 
of elderly), we simply have to decide which pair of values - or pairs of values -
we want to draw. In our example, we simply graphed (year,number of children), 
(year,number of adults), and (year,number of elderly). 
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way a function of the other. For example, for a (year,steel production) pair it 
would be quite reasonable to consider the steel production a function of the year 
and display the data as a continuous line. Open_polyline (§13.6) is the obvious 
choice for graphing such data. If y should not be seen as a function of x, for ex
ample (gross domestic product per person,population of country), Marks 
(§13.15) can be used to plot unconnected points. 

Now, back to our Japanese age distribution example. 

1 5  .6. 1 Reading a file 
The file of age distributions consists of lines like this: 

( 1960 : 30 64 6 ) 
(1970 : 24 69 7 )  
(1980 : 23 68 9 ) 

The first number after the colon is the percentage of children (age 0-14) in the 
population, the second is the percentage of adults (age 15-64), and the third is the 
percentage of the elderly (age 65+) . Our job is to read those. Note that the formal
ring of the data is slightly irregular. As usual, we have to deal with such details. 

To simplify that task, we first defme a type Distribution to hold a data item 
and an input operator to read such data items: 

struct Distribution { 
int year, young, middle, old; 

}; 

istream& operator>>(istream& is, Distribution& d) 
II assume format: ( year : young midd le old ) 

char ch1 = 0; 
char ch2 = 0; 
char ch3 = 0; 
Distribution dd; 

if (is >> ch1 >> dd.year 
>> ch2 >> dd.young >> dd.middle >> dd.old 
>> ch3) { 
if (ch1 != '(' II ch21=' : '  II ch3!=')') { 

is.clear(ios_base: : failbit); 
return is; 
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else 
return is; 

d = dd; 
return is; 

This is a straightforward application of the ideas from Chapter 10. If this code isn't 
clear to you, please review that chapter. We didn't need to defme a Distribution 
Lype and a >> operalor. However, it simplifies the code compared to a brute-force 
approach of"just read the numbers and graph them:' Our use of Distribution splits 
the code up into logical parts to help comprehension and debugging. Don't be shy 
about introducing types 'just to make the code clearer:' We define classes to make 
the code correspond more directly to the way we think about the concepts in our 
code. Doing so even for "small" concepts that are used only very locally in our 
code, such as a line of data representing the age distribution for a year, can be most 
helpful. 

Given Distribution, the read loop becomes 

string file_name = "japanese-age-data. txt";  
ifstream ifs(file_name.c_str()); 
if (l ifs) error("can't open ",file_name); 

II . . .  

Distribution d; 
while (ifs>>d) { 

} 

if (d.year<base_year II end_year<d.year) 
error("year out of range"); 

if (d.young+d.middle+d.old I= 100) 
error("percentages don't add up"); 

II . . .  

That is, we try to open the ftle japanese-age-data. txt and exit the program if we 
don't find that flle. It is often a good idea 110/ to "hardwire" a flle name into the 
source code the way we did here, but we consider this program an example of a 
small "one-off'' effort, so we don't burden the code with facilities that are more 
appropriate for long-lived applications. On the other hand, we did put japanese
age-data.txt into a named string variable so the program is easy to modify if we 
want to use it - or some of its code - for something else. 

The read loop checks that the year read is in the expected range and that the 
percentages add up to 1 00. That's a basic sanity check for the data. Since >> 
checks the format of each individual data item, we didn't bother with further 
checks in the main loop. 
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1 5 .6.2 General layout 
So what do we want to appear on the screen? You can see our answer at the be
ginning of §15.6. The data seems to ask for three Open_polylines - one for each 
age group. These graphs need to be labeled, and we decided to write a "caption" 
for each line at the left-hand side of the window. In this case, that seemed clearer 
than the common alternative: to place the label somewhere along the line itself. 
In addition, we use color to distinguish the graphs and associate their labels. 

We want to label the x axis with the years. The vertical line through the year 
2008 indicates where the graph goes from hard data to projected data. 

We decided to just use the window's label as the title for our graph. 
Getting graphing code both correct and good-looking can be surprisingly 

tricky. The main reason is that we have to do a lot of fiddly calculations of sizes 
and offsets. To simplify that, we start by defining a set of symbolic constants that 
defines the way we use our screen space: 

const int xmax = 600; 
const int ymax = 400; 

II window size 

const int xoffset = 100; II distance from left-hand side of window to y axis 
const int yoffset = 60; II distance from bottom of window to x axis 

const int xspace = 40; II space beyond axis 
const int yspace = 40; 

const int xlength = xmax-xoffset-xspace; 
const int ylength = ymax-yoffset-yspace; 

// length of axes 

Basically this defines a rectangular space (the window) with anotl1er rectangle 
(defmed by the axes) within it: 

xmax 

yspace 

ymax ylength 

xoffset xspace 

xlength 

yoffset 
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We find that without such a "schematic view" of where things are in our window � l 
and Lhe symbolic constants that defme it, we get lost and become frustrated when � 
our output doesn't reflect our wishes. 

1 5 .6.3 Scaling data 
Nexl we need to defme how to fit our data into that space. We do that by scaling 
the data so that it fits into the space defmed by the axes. To do that we need the 
scaling factors that are the ratio between the data range and the axis range: 

const int base_year = 1960; 
const int end_year = 2040; 

const double xscale = double(xlength)/(end_year-base_year); 
const double yscale = double(ylength)/100; 

We want our scaling factors (xscale and yscale) to be floating-point numbers - or 
our calculations could be subject to serious rounding errors. To avoid integer di
vision, we convert our lengths to double before dividing (§4.3.3). 

We can now place a data point on the x axis by subtracting its base value 
(1 960}. scaling with xscale, and adding the xoffset. A y value is dealt with simi
larly. We find that we can never remember to do that quiLe right when we try to 
do that repeatedly. It may be a trivial calculation, but iL is fiddly and verbose. To 
simplify the code and minimize that chance of error (and minimize frustrating de
bugging) . we defme a little class to do the calculation for us: 

class Scale { II data value to coordinate conversion 
int cbase; II coordinate base 
int vbase; II base of va lues 
double scale; 

public: 

}; 

Scale(int b, int vb, double s) : cbase(b), vbase(vb), scale(s) { }  
int operator()(int v) const { return cbase + (v-vbase)•scale; } 

We want a class because the calculation depends on three constant values that we 
wouldn't like to unnecessarily repeat. Given that, we can define 

Scale xs(xoffset,base_year,xscale); 
Scale ys(ymax-yoffset,O,-yscale); 

Note how we make the scaling factor for ys negative to reflect the fact that y co
ordinates grow downward whereas we usually prefer higher values to be repre
sented by higher points on a graph. Now we can use xs to convert a year to an x 
coordinate. Similarly, we can use xy to convert a percentage to a y coordinate. 
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1 5 .6.4 Building the graph 
Fmally, we have all the prerequisites for writing the graphing code in a reason
ably elegant way. We start creating a window and placing the axes: 

Window win(Point(100, 100),xmax,ymax, "Aging Japan"); 

Axis x(Axis: : x, Point(xoffset,ymax-yoffset), xlength, 
(end_year-base_year)/10, 
"year 1960 1970 1980 1990 
"2000 2010 2020 2030 2040"); 

x.label.move(-100,0); 

Axis y(Axis: :y, Point(xoffset,ymax-yoffset), ylength, 10, "% of population"); 

Line current_year(Point(xs(2008),ys(O)),Point(xs(2008),ys(100))); 
current_year.set_style(Line_style: : dash); 

1l1e axes cross at Point(xoffset,ymax-yoffset) representing (1960,0). Note how 
the notches are placed to reflect the data. On the y axis, we have ten notches each 
representing 10% of the population. On the x axis. each notch represents ten 
years, and the exact number of notches is calculated from base_year and 
end_year so that if we change that range, the axis would automatically be recal
culated. This is one benefit of avoiding "magic constants" in the code. The label 
on the x axis violates that rule: it is simply the result of fiddling with the label 
string until the numbers were in the right position under the notches. To do bet
ter, we would have to look to a set of individual labels for individual "notches." 

Please note the curious formatting of the label string. We used two adjacent 
string literals : 

"year 1960 
"2000 2010 

1970 
2020 

1980 
2030 

1990 
2040" 

Adjacent string literals are concatenated by the compiler, so that's equivalent to 

"year 1960 1970 1980 1990 2000 2010 2020 2030 2040" 

That can be a useful ''trick" for laying out long string literals to make our code 
more readable. 

The current_line is a vertical line that separates hard data from projected 
data. Note how xs and ys are used to place and scale the line just right. 

Given the axes, we can proceed to the data. We defme three Open_polylines 
and fill them in the read loop: 
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Open_polyline children; 
Open_polyline adults; 
Open_polyline aged; 

Distribution d; 
while (ifs>>d) { 

if (d.year<base_year II end_year<d.year) error("year out of range"); 
if (d.young+d.middle+d.old != 100) 

error("percentages don't add up"); 
int x = xs(d.year) ; 
children.add(Point(x,ys(d.young))); 
adults.add(Point(x,ys(d.middle))); 
aged.add(Point(x,ys(d.old))); 

TI1e use of xs and xy makes scaling and placement of the data trivial. "Little 
classes," such as Scale, can be inunensely important for simplifying notation and 
avoiding unnecessary repetition - thereby increasing readability and increasing 
the likeliliood of correctness. 

To make the graphs more readable, we label each and apply color: 

Text children_labei(Point(20,children.point(O).y), "age ()-14"); 
children.set_ color( Color: : red); 
children_label.set_color(Color: : red); 

Text adults_labei(Point(20,adults.point(O).y), "age 15·64"); 
adults.set_color(Color: : blue); 
adults_label.set_ color( Color: :blue); 

Text aged_labei(Point(20,aged.point(O).y),"age 65+"); 
aged.set_color(Color: :dark_green); 
aged_label.set_color(Color: : dark_green); 

Finally, we need to attach the various Shapes to the Window and start the GUI 
system (§14.2.3) : 

win.attach( children); 
win.attach(adults); 
win.attach(aged); 

win.attach(children_label); 
win.attach(adults_label); 
win.attach(aged_label); 
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win.attach(x); 
win.attach(y); 
win.attach(current_year); 

gui_main(); 

All the code could be placed inside main(), but we prefer to keep the helper classes 
Scale and Distribution outside together with Distribution's input operator. 

In case you have forgoLten what we were producing, here is the output again: 

� Drill 
Function graphing drill : 

l .  Make an empty 600 ·by·600 Window labeled "Function graphs." 
2. Note that you'll need to make a project with the properties specified in 

the "installation of FLTK" note from the course website. 
3. You'll need to move Graph.cpp and Window.cpp into your project. 
4. Add an x axis and a y axis each of length 400, labeled "1 = = 20 pixels" 

and with a notch every 20 pixels. The axes should cross at (300,300). 
5. Make both axes red. 

In the following, use a separate Shape for each function to be graphed: 
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1 .  Graph the function double one( double x )  { return 1 ;  } in the range 
[-10, 1 1 ] with (0,0) at (300,300) using 400 points and no scaling (in the 
window). 

2. Change it to use x scale 20 andy scale 20. 
3. From now on use that range, scale, etc. for all graphs. 
4. Add double slope( double x) { return x/2; } to the window. 
5. Label the slope with a Text "x/2" at a point just above its bottom left end 

point. 
6. Add double square(double x) { return x•x; } to the window. 
7. Add a cosine to the window (don't write a new function) . 
8. Make the cosine blue. 
9. Write a function sloping_cos() that adds a cosine to slope() (as defmed 

above) and add it to the window. 

Class definition drill: 
1 .  Define a struct Person containing a string name and an int age. 
2. Defme a variable of type Person, initialize it with "Goofy" and 63, and 

write it to the screen (cout). 
3. Defme an input (>>) and an output (<<) operator for Person ; read in a 

Person from the keyboard (cin) and write it out to the screen (cout). 
4. Give Person a constructor initializing name and age. 
5. Make the representation of Person private, and provide const member 

functions name() and age() to read the name and age. 
6. Modify >> and << to work with the redefined Person. 
7. Modify the constructor to check that age is [0: 150) and that name doesn't 

contain any of the characters ; : " ' [ ] • & ,.. % $ # @  I. Use error() in case 
of error. Test. 

8. Read a sequence of Persons from input (cin) into a vector<Person>; 
write them out again to the screen (cout). Test with correct and erro
neous input. 

9. Change the representation of Person to have first_name and second_name 
instead of name. Make it an error not to supply both a first and a second 
name. Be sure to fix >> and << also. Test. 

Review 

1. W hat is a function of one argument? 
2. W hen would you use a (continuous) line to represent data? W hen do 

you use (discrete) points? 
3. W hat function (mathematical formula) defines a slope? 
4. W hat is a parabola? 
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5. How do you make an x axis? Ay axis? 
6. What is a default argument and when would you use one? 
7. How do you add functions together? 
8. How do you color and label a graphed function? 
9. What do we mean when we say that a series approximates a function? 

10. Why would you sketch out the layout of a graph before writing the code 
to draw it? 

1 1 .  How would you scale your graph so that the input will fit? 
12. How would you scale the input without trial and error? 
13. Why would you format your input rather than just having the flle con

tain "the numbers"? 
14. How do you plan the general layout of a graph? How do you reflect that 

layout in your code? 

Terms 

approximation 
default argument 

function 
scaling 

screen layout 

Exercises 

1 .  Here is another way of defining a factorial function: 

int fac(int n) { return n>1 l n•fac(n-1) : 1; } II factorial n! 

It will do fac(4) by first deciding that since 4>1 it must be 4•fac(3), and 
that's obviously 4•J•fac(2), which again is 4•3•2•fac(1), which is 4•3•2•1 . 
Try to see that it works. A function that calls itself is said to be reamive. 
The alternative implementation in §15.5 is called iterative because it iterates 
through the values (using while) . Verify that the recursive fac() works and 
gives the same results as the iterative fac() by calculating the factorial of 0, 
1 ,  2, 3, 4, up until and including 20. Which implementation of fac() do you 
prefer, and why? 

2 .  Defme a class fct that is just like Function except that it stores its con
structor arguments . Provide Fct with "reset" operations, so that you can 
use it repeatedly for different ranges, different functions, etc. 

3. Modify fct from the previous exercise to take an extra argument to con
trol precision or whatever. Make the type of that argument a template pa
rameter for extra flexibility. 

4. Graph a sine (sin()), a cosine (cos()), the sum of those sin(x)+cos(x), and 
the sum of the squares of those sin(x)•sin(x)+cos(x)•cos(x) on a single 
graph. Do provide axes and labels. 
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5. "Animate" (as in §15.5) the series 1-113+1/5-117+1/9-1/1 1- . . . . It is 
known as Leibniz's series and converges to pi/4. 

6. Design and implement a bar graph class. Its basic data is a vector<double> 
holding .N values, and each value should be represented by a "bar" that is 
as a rectangle where the height represents the value. 

7. Elaborate the bar graph class to allow labeling of the graph itself and its 
individual bars. Allow the use of color. 

8. Here is a collection of heights in centimeters together with the number of 
people in a group of that height (rounded to the nearest Scm) : (170,7), 
(175,9), (180,23), ( 185, 17), (190,6), ( 195,1 ) .  How would you graph that 
data? If you can't think of anything better, do a bar graph. Remember to 
provide axes and labels. Place the data in a file and read it from that flle. 

9. Find another data set of heights (an inch is about 2.54cm) and graph 
them with your program from the previous exercise. For example, search 
the web for "height distribution" or "height of people in the United 
States" and ignore a lot of rubbish or ask your friends for their heights. 
Ideally, you don't have to change anything for the new data set. Calcu
lating the scaling from the data is a key idea. Reading in labels from 
input also helps minimize changes when you want to reuse code. 

10. What kind of data is unsuitable for a line graph or a bar graph? Fmd an 
example and fmd a way of displaying it (e.g., as a collection of labeled 
points}. 

1 1 .  Fmd the average maximum temperatures for each month of the year for 
two or more locations (e.g., Cambridge, England, and Cambridge, 
Massachusetts ; there are lots of towns called "Cambridge") and graph 
them together. As ever, be careful with axes, labels, use of color, etc. 

Postscript 

Graphical representation of data is important. We simply understand a well
crafted graph better than the set of numbers that was used to make it. Most peo
ple, when they need to draw a graph, use someone else's code - a library. How 
are such libraries constructed and what do you do if you don't have one handy? 
What are the fundamental ideas underlying "an ordinary graphing tool"? Now 
you know: it isn't magic or brain surgery. We covered only two-dimensional 
graphs; three-dimensional graphing is also very useful in science, engineering, 
marketing, etc. and can be even more fun. Explore it someday! 

537 





t .  
r 1 6  

Graphical U ser Interfaces 

"Computing is not about 
computers any more. 

It is about living." 

-Nicholas Negroponte 

A graphical user interface (G Ul) allows a user to interact 

with a program by pressing buttons, selecting from menus, 

entering data in various ways, and displaying textual and graphi

cal entities on a screen. That's what we are used to when we in

teract with our computers and with websites. In this chapter, we 

show the basics of how code can be written to defme and control 

a GUI application. In particular, we show how to write code that 

interacts with entities on the screen using callbacks. Our G Ul 
facilities are built "on top or' system facilities .  The low-level 

features and interfaces are presented in Appendix E, which uses 

features and techniques presented in Chapters 17 and 18.  Here 

we focus on usage. 
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16.1 User Interface alternatives 

16.2 The "Next" button 

16.3 A simple window 
16.3.1 A callback function 
16.3.2 A wait loop 

16.4 BuHon and other Widgets 
16.4.1 Widgets 
16.4.2 Buttons 
16.4.3 ln_box and Out_box 
16.4.4 Menus 
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16.5 An example 

16.6 Control inversion 

16.7 Adding a menu 

16.8 Debugging GUI code 

1 6. 1  User interface alternatives 
Every program has a user interface. A program running on a small gadget may 
be limited to input from a couple of push buttons and to a blinking light for out
put. Other computers are connected to the outside world only by a wire. Here, 
we will consider the common case in which our program communicates with a 
user who is watching a screen and using a keyboard and a pointing device (such 
as a mouse) . In this case, we as programmers have three main choices : 

Use console input and output: This is a strong contender for technical/profes
sional work where the input is simple and textual, consisting of com· 
mands and short data items (such as ftle names and simple data values) . 
If the output is textual, we can display it on the screen or store it in ftles. 
The C++ standard library iostreams (Chapters 10- 1 1) provide suitable 
and convenient mechanisms for this. If graphical output is needed, we 
can use a graphics display library (as shown in Chapters 12-15} without 
making dramatic changes to our programming style. 

Use a graphical user interface (CUI} library: This is what we do when we 
want our user interaction to be based on the metaphor of manipulating 
objects on the screen (pointing, clicking, dragging and dropping, hover
ing, etc.) . Often (but not always) ,  that style goes together with a high de
gree of graphically displayed information. Anyone who has used a 
modem computer knows examples where that is convenient. Anyone 
who wants to match the "feel" of Windows/Mac applications must use a 
GUI style of interaction. 

Use a web browser interface: For that, we need to use a markup Oayout) lan
guage, such as IITML or XML, and usually a scripting language. Show
ing how to do this is beyond the scope of this book, but it is often the 
ideal for applications that require remote access . In that case, the com-
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munication between the program and the screen is again textual (using 
streams of characters) . A browser is a GUI application that translates 
some of that text into graphical elements and translates the mouse clicks, 
etc. into textual data that can be sent back to the program. 
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To many, the use ofGUI is the essence of modem programming, and sometimes • \ 
the interaction with objects on the screen is considered the central concern of pro- U 
gramming. We disagree: GUI is a form of l/0, and separation of the main logic 
of an application from 1/0 is among our major ideals for software. Wherever 
possible, we prefer to have a clean interface between our main program logic and 
the parts of the program we use to get input and produce output. Such a separa-
tion allows us to change the way a program is presented to a user, to port our 
programs to use different 1/0 systems, and - most importantly - to think about 
the logic of the program and its interaction with users separately. 

That said, GUI is important and interesting from several perspectives. This 
chapter explores both the ways we can integrate graphical elements into our appli
cations and how we can keep interface concerns from dominating our thinking. 

1 6.2 The "Next" button 
How did we provide tl1at "Next" button that we used to drive the graphics exam
ples in Chapters 12-15? There, we do graphics in a window using a button. Ob
viously, that is a simple form of GUI programming. In fact, it is so simple that 
some would argue that it isn't "true GUI." However, let's see how it was done be
cause it will lead directly into the kind of progranuning that everyone recognizes 
as G Ul programming. 

Our code in Chapters 12-15 is conventionally structured like this : 

II create objects and/or manipulate objects, display them in Window win: 
win. wait_for _button(); 

II neate objt>cts and/or man ipulate objects, display them in Window win: 
win.wait_for _button(); 

II create objects and/or manipu late objects. display them in  Window win: 
win.wait_for_button(); 

Each time we reach wait_for_button(), we can look at our objects on the screen 
until we hit the button to get the output from the next part of the program. From 
the point of view of program logic, this is no different from a program that writes 
lines of output to a screen (a console window} , stopping now and then to receive 
input from the keyboard. For example: 
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II define variables and/or compute va lues, produce output 
cin >> var; II wait for input 

II define variables and/or compute values, produce output 
cin >> var; II wait for input 

II define variables and/or compute va lues, produce output 
cin >> var; II wait for input 

From an implementation point of view, these two kinds of programs are quite dif
ferent. When your program executes cin>>var, it stops and waits for "the sys
tem" to bring back characters you typed. However, the system (the graphical 
user interface system) that looks after your screen and tracks the mouse as you 
use it works on a rather different model: the GUI keeps track of where the 
mouse is and what the user is doing with the mouse (clicking, etc.). When your 
program wants an action, it must 

Tell the GUI what to look for (e.g., "Someone clicked the 'Next' button") 

Tell what is to be done when someone does that 

Wait until the G Ul detects an action that the program is interested in 

What is new and different here is that the GUI does not just return to our pro
gram; it is designed to respond in different ways to different user actions, such as 
clicking on one of many buttons, resizing windows, redrawing the window after 
it has been obscured by another, and popping up pop-up menus. 

For starters, we just want to say, "Please wake me up when someone clicks my 
button"; that is, "Please continue executing my program when someone clicks the 
mouse button and the cursor is in the rectangular area where the image of my but
ton is displayed." This is just about the simplest action we could imagine. How· 
ever, such an operation isn't provided by "the system" so we wrote one ourselves. 
Seeing how that is done is the frrst step in understanding G Ul programming. 

1 6.3 A simple window 
Basically, "the system" (which is a combination of a GUI library and the operat
ing system) continuously tracks where the mouse is and whether its buttons arc 
pressed or not. A program can express interest in an area of the screen and ask 
"the system" to call a function when "something interesting" happens. In this par· 
ticular case, we ask the system to call one of our functions (a "callback function") 
when the mouse button is clicked "on our button." To do that we must 

Define a button 

Get it displayed 
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Defme a function for the G U I to call 
Tell the GUI about that button and that function 

Wait for the GUI to call our function 

Let's do that. A button is part of a Window, so (in Simple_ window. h) we define 
our class Simple_window to contain a member next_buHon : 

struct Simple_ window : Graph_lib: :Window { 
Simple_window(Point xy, int w, int h, const string& title ) ;  

void wait_ for _button(); 
private: 

II simple event loop 

}; 

Button next_button; 
bool button_pushed; 

// the "Next" button 
II implementation deta i l  

static void cb_next(Address, Address) ; II ca l lback for next button 
void next(); II action to be done when next_button is pressed 

Obviously, Simple_window is derived from Graph_lib's Window. All our win
dows must be derived directly or indirectly from Graph_lib: :Window because it is 
the class that (through FLTK) connects our notion of a window with the system's 
window implementation. For details of Window's implementation, see §E.3. 

Our button is initialized in Simple_window's constructor: 

Simple_ window: : Simple_window(Point xy, int w, int h, const string& title) 
: Window(xy,w,h,title), 
next_button(Point(x_max()-70,0), 70, 20, "Next", cb_next), 
button_pushed(false) 

attach(next_button); 

Unsurprisingly, Simple_ window passes its location (xy} , size (w,h}, and title (title) on 
to Graph_lib's Window to deal with. Next, the constructor initializes next_button 
with a location (Point(x_max()-70,0) ; that's roughly the top right comer), a size 
(70,20}, a label ("Next"), and a "callback" function (cb_next). The first four parame
ters exactly parallel what we do for a Window: we place a rectangular shape on the 
screen and label it. 

Finally, we attach() our next_button to our Simple_window; that is, we tell 
the window that it must display the button in its position and make sure that the 
GUI system knows about it. 
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The buHon_pushed member is a pretty obscure implementation detail; we 
use it to keep track of whether the button has been pushed since last we executed 
next(). In fact, just about everything here is implementation details, and therefore 
declared private. Ignoring the implementation details, we see: 

struct Simple_window : Graph_lib : : Window { 
Simple_window(Point xy, int w, int h, const string& title ) ;  

} ; 

wait_for_button(); II simple event loop 

II . . .  

That is, a user can make a window and wait for its button to be pushed. 

1 6.3.1 A callback function 
The function cb_next() is the new and interesting bit here. Tills is the function 
that we want the G Ul system to call when it detects a click on our button. Since 
we give the function to the GUI for the GUI to "call back to us," it's commonly 
called a callhack function. We indicate cb_next() 's intended use with the preftx cb_ 
for "callback." That's just to help us - no language or library requires that nam
ing convention. Obviously, we chose the name cb_next because it is to be the 
callback for our "Next" button. The defmition of cb_next is an ugly piece of 
"boilerplate." 

Before showing that code, let's consider what is going on here: 

I Our program I 
1 

Our graphics/G Ul interface library 

1 J FLj J 
r·· · 

The operating system graphics/CUI facilities 

I Device driver layer I 

, • / Example of a layer 

Our program runs on top of several "layers" of code. It uses our graphics library 
that we implement using the FLTK library, which is implemented using operat
ing system facilities. In a system, there may be even more layers and sub-layers. 
Somehow, a click detected by the mouse's device driver has to cause our function 
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cb_next() to be called. We pass the address of cb_next() and the address of our 
Simple_ window down through the layers of software; some code "down there" 
then calls cb_next() when the "Next" button is pressed. 

The GUI system (and the operating system) can be used by programs writ
ten in a variety of languages, so it cannot impose some nice C++ style on all 
users. In particular, it does not know about our Simple_window class or our 
Button class. In fact, it doesn't know about classes or member functions at all. 
The type required for a callback function is chosen so that it is usable from the 
lowest level of programming, including C and assembler. A callback function re
turns no value and takes two addresses as its arguments. We can declare a C++ 
member function that obeys those rules like this: 

static void cb_next(Address, Address); II ca l lback for next_button 
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The keyword static is there to make sure that cb_next() can be called as an ordi- f) 
nary function, that is, not as a C++ member function invoked for a specific ob-

. 

ject. Having the system call a proper C++ member function would have been 
much nicer. However, the callback interface has to be usable from many lan
guages, so this is what we get: a static member function. The Address arguments 
specify that cb_next() takes arguments that are addresses of "something in mem
ory." C++ references are unknown to most languages, so we can't use those. The 
compiler isn't told what the types of those "somethings" are. We arc close to the 
hardware here and don't get the usual help from the language. "The system" will 
invoke a callback function with the frrst argument being the address of the GUI 
entity ("Widget") for which the callback was triggered. We won't use that frrst ar
gument, so we don't bother to name it. The second argument is the address of the 
window containing that Widget; for cb_next() , that will be our Simple_window. 
We can use that information like this: 

void Simple_window: :cb_next(Address, Address pw) 
II ca l l  Simple_window::next ( )  for the window located at pw 
{ 

reference_to<Simple_windoW>(pw).next(); 

The reference_to<Simple_windoW>(pw) tells the compiler that the address in 
pw is to be considered the address of a Simple_window: that is, we can use 
reference_tO<Simple_windoW>(pw) as a reference to a Simple_window. In 
Chapters 17 and 18, we will return to the issue of addressing memory. In §E. l ,  
we present the (by then, trivial) definition o f  reference_to. For now, we are just 
glad that we finally obtained a reference to our Simple_window so that we can 
access our data and functions exactly as we like and are used to. Fmally, we get 
out of this system-dependent code as quickly as possible by calling our member 
function next(). 
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We could have written all the code we wanted to  execute in cb_next(), but 
we - like most good G Ul programmers - prefer to keep messy low-level stuff 
separate from our nice user code, so we handle a callback with two functions: 

cb_next() simply maps the system conventions for a callback into a call 
to an ordinary member function (next()}. 

next() does what we want done (without having to know about the messy 
conventions of callbacks). 

The fundamental reason for using two functions here is the general principle that 
"a function should perform a single logical action" : cb_next() gets us out of the 
low-level system-dependent part of the system and next() performs our desired 
action. Whenever we want a callback (from "the system") to one of our win
dows, we defme such a pair of functions; for example, see §16.5-7. Before going 
further, let's repeat what is going on here: 

We defme our Simple_window. 

Simple_window's constructor registers its next_button with the GUI 
system. 

When we click the image of next_buHon on the screen, the GUI calls 
cb_next(). 

cb_next() converts the low-level system information into a call of our 
member function next() for our window. 

next() performs whatever action we want done in response to the button 
click. 

That's a rather elaborate way of getting a function called. But remember that we 
are dealing with the basic mechanism for communicating an action of a mouse 
(or other hardware device) to a program. In particular: 

There are typically many programs rurming. 

The program is written long after the operating system. 

The program is written long after the GUI library. 

The program can be written in a language that is different from that 
used in the operating system. 

The technique deals with all kinds of interactions (not just our little but
ton push) . 

A window can have many buttons ; a program can have many windows. 

However, once we understand how next() is called, we basically understand how 
to deal with every action in a program with a GUI interface. 
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1 6.3.2 A wait loop 
So, in this - our simplest case - what do we want done by Simple_window's 
next() each time the button is "pressed"? Basically, we want an operation that 
stops the execution of our program at some point, giving us a chance to see what 
has been done so far. And, we want next() to restart our program after that wait : 

II nc,llt' some objects ancVor man ipulate some objects, display them in a window 
win.wait_for_button(); II next() causes the program to proceed irom here 
II create some objects and/or man ipu late some objects 

Actually, that's easily done. Let's first defme wait_for_button() : 

void Simple_ window: :wait_ for _button() 
II modiiied event loop: 
II handle a l l  events (as per deiaultl , quit when button_pushecl becomes true 
// this a l lows graphics without control i nversion 

while (! button_pushed) Fl : :  wait(); 
button_pushed = false; 
Fl : : redraw(); 
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Like most GUI systems, FLTK provides a function that stops a program until f) 
something happens. The FLTK version is called wait(). Actually, wait() takes care 
of lots of things because our program gets woken up whenever anyLhing that af-
fects it happens. For example, when running under Microsoft Wmdows, it is the 
job of a program to redraw its window when it is being moved or becomes unob
scured after having been hidden by another window. It is also the job of the 
Window to handle resizing. The Fl : :wait() handles all of these tasks in the default 
manner. Each time wait() has dealt with something, it returns to give our code a 
chance to do something. 

So, when someone clicks our "Next" button, wait() calls cb_next() and re
Lurns (to our "wait loop") . To proceed in wait_for_button(), next() just has to set 
the Boolean variable button_pushed to true. That's easy: 

void Simple_window: :next() 
{ 

button_pushed = true; 

Of course we also need to define button_pushed somewhere: 

bool button_pushed = false; 
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After waiting, wait_for_button() needs to reset button_pushed and redraw() the 
window to make sure that any changes we made can be seen on the screen. So 
that's what it did. 

1 6.4 Button and other Widgets 
We define a button like this: 

struct Button : Widget { 
Button(Point xy, int w, int h, const string& label, Callback cb); 
void attach(Window&); 

} ;  

So, a Button is a Widget with a location (xy), a size (w,h}, a text label (label} , and 
a callback (cb). Basically, anything that appears on a screen with an action (e.g., a 
callback) associated is a Widget. 

1 6.4.1 Widgets 
Yes, widget really is a technical term. A more descriptive, but less evocative, name for 
a widget is a conhvl. We use widgets to defme forms of interaction with a program 
through a GUI (graphical user interface). Our Widget interface class looks like this: 

class Widget { 
II Widget is a handle to an Fl_widget - i t  is *not* an Fl_widget 
II we try to keep our i nterface classes at arm's length irom FLTK 

public: 
Widget(Point xy, int w, int h, const string& s, Callback cb); 

virtual void move(int dx,int dy); 
virtual void hide(); 
virtual void show(); 
virtual void attach(Window&) = 0; 

Point loc; 
int width; 
int height; 
string label; 
Callback do_it; 

protected : 

} ;  

Window• own; 
Fl_ Widget• pw; 

II every Widget belongs to a Window 
II connection to the FLTK Widget 
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A Widget has two interesting functions that we can use for Button (and also for 
any other class derived from Widget, e.g., a Menu; see §16.7) : 

hide() makes the Widget invisible. 

show() makes the Widget visible again. 

A Widget starts out visible. 
Just like a Shape, we can move() a Widget in its Window, and we must 

attach() it to a Window before it can be used. Note that we declared attach() to 
be a pure virtual function (§14.3.5) : every class derived from Widget must defme 
what it means for it to be attached to a Window. In fact, it is in attach() that the 
system-level widgets are created. The attach() function is called from Window as 
part of its implementation of Window's own attach(). Basically, connecting a win
dow and a widget is a delicate little dance where each has to do its own part. The 
result is that a window knows about its widgets and that each widget knows 
about its window: 

Note that a Window doesn't know what kind of Widgets it deals with. As de
scribed in §14.4-5, we are using basic object-oriented programming to ensure 
that a Window can deal with every kind of Widget. Similarly, a Widget doesn't 
know what kind of Window it deals with. 

We have been slightly sloppy, leaving data members accessible. The own and 
pw members are strictly for the implementation of derived classes so we have de
clared them protected. 

The defmitions of Widget and of the widgets we use here (Button, Menu, 
etc.) are found in GUI.h. 

1 6.4.2 Buttons 
A Button is the simplest Widget we deal with. All it  does is to invoke a callback 
when we click on it: 
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class Button : public Widget { 
public: 

}; 

Button(Point xy, int ww, int hh, const string& s, Callback cb) 
: Widget(xy,ww,hh,s,cb) { } 

void attach(Window& win); 

That's all. The attach() function contains all the (relatively) messy FLTK code. 
We have banished the explanation to Appendix E (not to be read until after 
Chapters 17 and 18) .  For now, please just note that defining a simple Widget isn't 
particularly difficult. 

We do not deal with the somewhat complicated and messy issue of how but
tons (and other Widgets) look on the screen. The problem is that there is a near 
infinity of choices and that some styles are mandated by certain systems. Also, 
from a programming technique point of view, nothing really new is needed for 
expressing the looks of buttons. If you get desperate, we note that placing a 
Shape on top of a button doesn't affect the button's ability to function - and you 
know how to make a shape look like anything at all. 

1 6.4.3 l n_box and Out_box 
We provide two Widgets for getting text in and out of our program: 

struct ln_box : Widget { 

} ; 

ln_box(Point xy, int w, int h, const string& s) 
:Widget(xy,w,h,s,O) { }  

int get_int(); 
string get_string(); 

void attach(Window& win); 

struct Out_box : Widget { 

} ;  

Out_box(Point xy, int w, int h ,  const string& s) 
: Widget(xy,w,h,s,O) { } 

void put(int); 
void put(const string&); 

void attach(Window& win) ; 

An ln_box can accept text typed into it, and we can read that text as a string 
using get_string() or as an integer using get_int(). If you want to know if text has 
been entered, you can read using get_string() and see if you get the empty string: 
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string s =  some_inbox.get_string(); 
if (s =="") { 

II dea l with missing input 

An Out_box is used to present some message to a user. In analogy to l n_box, we 
can put() either integers or strings. §16.5 gives examples of the use ofln_box and 
Out_ box. 
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We could have provided get_noating_point(), get_complex(), etc., buL we • , 
did not bother because you can take the string, stick iL into a stringstream, and U 
do any input formatting you like that way (§1 1.4) . 

1 6.4.4 Menus 
We offer a very simple notion of a menu: 

strud Menu : Widget { 

} ;  

enum Kind { horizontal, vertical } ;  
Menu(Point xy, int w, int h ,  Kind kk, const string& label) ; 
Vector _ref<Button> selection; 
Kind k; 
int offset; 
int attach(Button& b) ; 
int attach(Button• p) ; 

void show() 
{ 

II attach button to Menu 
II attach new button to Menu 

II show a l l  buttons 

for (unsigned int i =  0; i<selection.size() ; ++i) 
seledion[i].show() ; 

void hide() ; // h ide a l l  buttons 
void move(int dx, int dy) ; // move a l l  buttons 

void attach(Window& win) ; // attach a l l  buttons to Window win 

A Menu is basically a vector of buttons. As usual, the Point xy is the top left cor
ner. The width and height are used to resize buttons as they are added to the 
menu. For examples, see §16.5 and §16.7. Each menu button ("a menu item") is 
an independent Widget presented to the Menu as an argument to attach() . In 
turn, Menu provides an attach() operation to attach all of its Buttons to a 
Window. The Menu keeps track of its Buttons using a Vector_ref (§13.10, §E.4) . 
If you want a "pop-up" menu, you have to make it yourself; see §16.7. 
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1 6.5 An example 
To get a better feel for the basic GUI facilities, consider the window for a simple 
application involving input, output, and a bit of graphics: 

This program allows a user to display a sequence of lines (an open polyline ; 
§13.6) specified as a sequence of coordinate pairs. The idea is that the user re
peatedly enters (x,y) coordinates in the "next x" and "next y" boxes : after each 
pair the user hits the "next point" button. 

Initially, the "current (x,y)" box is empty and the program waits for the user 
to enter the first coordinate pair. That done, the starting point appears in t.he 
"current (x,y)" box, and each new coordinate pair entered results in a line being 
drawn: A line from the current point (which has its coordinates displayed in the 
"current (x.y)" box) to the newly entered (X,J') is drawn, and that (x,y) becomes 
t.he new current point. 

This draws an open polyline. When the user tires of t.his activity, there is Lhe 
"quit" button for exiting. That's pretty straightforward, and the program exer· 
cises several useful GUI facilities : text input and output, line drawing, and multi· 
ple buttons. The window above shows the result after entering two coordinate 
pairs ; after seven we can get this : 
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Let's defme a class for representing such windows. I t  is pretty straightforward: 

struct Lines_ window : Window { 
Lines_window(Point xy, int w, int h, const string& title ); 
Open_polyline lines; 

private: 

} ;  

Button next_button; II add (next_x,next_y l to l ines 
Button quit_button; 
ln_box next_x; 
ln_box next_y; 
Out_box xy _out; 

static void cb_next(Address, Address); II ca l l back for next_button 
void next(); 
static void cb_quit(Address, Address); II ca l lback for qu it_button 
void quitO; 

1l1e line is represented as an Open_polyline. The buttons and boxes are de
clared (as Buttons, ln_boxes, and Out_boxes) and for each button a member 
function implementing the desired action is defmed together with its "boilerplate" 
callback function. 

Lines_window's constructor initializes everything: 
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Lines_ window: :Lines_window(Point xy, int w, int h ,  const string& title) 
: Window(xy,w,h,title), 
next_button(Point(x_max()-150,0), 70, 20, "Next point", cb_next), 
quit_button(Point(x_max()-70,0), 70, 20, "Quit", cb_quit), 
next_x(Point(x_max()-310,0), 50, 20, "next x: "), 
next_y(Point(x_max()-210,0), 50, 20, "next y: "), 
xy_out(Point(100,0), 100, 20, "current (x,y): ") 

attach(next_button); 
attach(quit_button) ; 
attach(next_x); 
attach(next_y); 
attach(xy _out); 
attach( lines); 

That is, each widget is constructed and then attached to the window. 
Dealing with the "Q!tit" button is trivial : 

void Lines_ window: : cb_quit(Address, Address pw) 
{ 

reference_tO<Lines_ windoW>(pw).quit(); 

void Lines_window: : quit() 
{ 

hide(); II curious FLTK idiom for delete window 

II "the usual" 

This is just "the usual": a callback function (here, cb_quit()) that forwards Lo Lhe 
function (here, quitO) that does the real work. Here the real work is to deleLe the 
Window. That's done using the curious FLTK idiom of simply hiding it. 

All the real work is done in the "Next point" button. Its callback function is 
just the usual : 

void Lines_ window: :cb_next(Address, Address pw) II "the usual" 
{ 

reference_to<Lines_windoW>(pw).next(); 

The next() function defines what the "Next point" button actually does: it reads a 
pair of coordinates, updates the Open_polyline, updaLes the position readouL, 
and redraws the window: 
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void Lines_window: : next() 
{ 

int x = next_x.get_int( ); 
int y = next_y.get_int(); 

lines.add(Point(x, y)); 

II update current position readout: 
stringstream ss; 
SS << 1(1 << X << 111 << y << 1) 1;  
xy _out.put(ss.str()); 

redraw(); 

That's all pretty obvious. We get integer coordinates from the ln_boxes using 
get_int(). We use a stringstream to format the string to be put into the Out_box; 
the str() member function lets us get to the string within the stringstream. The 
fmal redraw() here is needed to present the results to the user; until a Window's 
redraw() is called, the old image remains on the screen. 

So what's odd and different about this program? Let's see its main() :  

#include "GUI.h" 

int main() 
try { 

Lines_window win(Point(100, 100),600,400, " lines"); 
return gui_main(); 

catch(exception& e) { 
cerr << "exception: " << e.what() << '\n';  
return 1;  

catch ( . . . ) { 
cerr << "Some exception\n "; 
return 2; 

There is basically nothing there! The body of main() is just the definition of our 
window, win, and a call to a function gui_main(). There is not another function, 
if, switch, or loop - nothing of the kind of code we saw in Chapters 6 and 7 -
just a defmition of a variable and a call to the function gui_main(), which is itself 

555 



556 CHAPT E R  1 6  • G RAPH ICAl U S E R  I NTE RFACES  

just a call of FLTK's run(). Looking further, we can fmd that run() is simply the 
infmite loop: 

while( wait()); 

Except for a few implementation details postponed to Appendix E, we have seen 
all of the code that makes our lines program run. We have seen all of the funda
mental logic. So what happens? 

1 6.6 Control inversion 
What happened was that we moved the control of the order of execution from the 
program to the widgets : whichever widget the user activates, runs. For example, 
click on a button and its callback runs. When thaL callback returns, the program 
settles back, waiting for the user to do something else. Basically, wait() tells "the 
system" to look out for the widgets and invoke the appropriate callbacks. In the
ory, wait() could tell you, the progranuner, which widget requested attention and 
leave it to you to call the appropriate function. However, in FLTK and most other 
G Ul systems, wait() simply invokes the appropriate callback, saving you the 
bother of writing code to select iL. 

A "conventional program" is organized like this : 

Application 
Input 
function 

A "GUI program" is organized like this: 

Application 

User 
responds 

User 
invokes 
action 
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One implication of this "control inversion" is that the order of execution is com- .\ 
pletcly determined by the actions of the user. This complicates both program or- U 
ganization and debugging. It is hard to imagine what a user will do and hard to 
imagine every possible effect of a random sequence of callbacks. This makes sys· 
tematic testing a nightmare (see Chapter 26). The techniques for dealing with 
thaL are beyond the scope of this book, buL we encourage you to be exLra careful 
with code driven by users through callbacks. In addition to the obvious control 
flow problems, there are also problems of visibility and difficulties with keeping 
track of which widget is connected to what data. To minimize hassle, it is essen-
Lial to keep the G Ul portion of a program simple and to build a G Ul progran1 
incrementally, Lesting at each stage. When working on a G Ul program, it is al-
most essential to draw little diagrams of the objects and their interactions. 

How docs the code triggered by the various callbacks communicate? The 
simplest way is for the functions to operate on data stored in the window, as was 
done in the example in §1 6.5. There, the Lines_window's next() function, in
voked by pressing the "NexL point" button, reads data from the ln_boxes (next_x 
and next_y) and updates the lines member variable and the Out_box (xy_out). 
Obviously, a function invoked by a callback can do anything: it could open ftles, 
connecl to the web, etc. However, for now, we'll just consider the simple case in 
which we hold our data in a window. 

1 6.7 Adding a menu 
LcL's explore the control and communication issues raised by "control inversion" 
by providing a menu for our "lines" program. FtrsL, we'll simply provide a menu 
thaL allows the user Lo change the color of all lines in the lines member variable. 
We add the menu color_menu and its callbacks : 

struct Lines_window : Window { 
Lines_window(Point xy, int w, int h, const string& title); 

Open_polyline lines; 
Menu color_menu; 

static void cb_red(Address, Address); II ca l l back for red button 
static void cb_blue(Address, Address); II ca l lback for blue button 
static void cb_black(Address, Address); II ca l lback for black button 

// the actions: 
void red_pressed() { change( Color: : red); } 
void blue_pressed() { change(Color: : blue); } 
void black_pressed() { change( Color: :black); } 
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void change(Color c) { lines.set_color(c); } 

II . . . as beiore . . .  
} ;  

Writing all of those almost identical callback functions and "action" functions is 
tedious. However, it is conceptually simple, and offering something that's signifi
cantly simpler to type in is beyond the scope of this book. When a menu button 
is pressed, it changes the lines to the requested color. 

Having defmed the color _menu member, we need to initialize it: 

Lines_ window: : Lines_window(Point xy, int w, int h, const string& title) 
:Window(xy,w,h,title), 
II . . . as before . . .  
color _menu(Point(x_max()-70,40) ,70,20,Menu: :vertical," color") 

II . . . as beiore . . .  
color _menu.attach(new Button(Point(O,O),O,O, "red " ,cb_red)); 
color _menu.  attach(new Button(Point(O,O),O,O, "blue" ,cb_blue)); 
color _menu. attach(new Button(Point(O,O),O,O, "black" ,cb_black)) ; 
attach( color _menu); 

The buttons are dynamically attached to the menu (using attach()) and can be re· 
moved and/or replaced as needed. Menu:  :attach() adjusts size and location of 
the button and attaches them to the window. That's all, and we get: 
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Having played with this for a while, we decided that what we really wanted was a 
"pop-up menu":  that is. we didn't want to spend precious screen space on a menu 
except when we arc using it. So, we added a "color menu" button. When we 
press that, up pops the color menu, and when we have made a selection, the 
menu is again hidden and the button appears. 

Here first is the window after we have added a few lines : 

We sec the new "color menu" button and some (black) lines. Press "color menu'' 
and the menu appears : 

n f f -;·t r- ' ·n ��;,� _ m 
; 'iw;,, · ;A �\!fi ,-: rJ\ � 

! l.llloJl';i. ;,_C!�t�'d. J:� !li .', 
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Note that the "color menu" button is now hidden. We don't need i t  until we are 
finished with the menu. Press "blue" and we get: 

The lines are now blue and the "color menu" button has reappeared. 
To achieve this we added the "color menu" button and modified the 

"pressed" functions to adjust the visibility of the menu and the button. Here is 
the complete Lines_window after all our modifications: 

struct Lines_window : Window { 
Lines_window(Point xy, int w, int h, const string& title ); 

private: 
II data: 
Open_polyline lines; 

// widgets: 
Button next_button; II add (next_x,next_y) to l i nes 
Button quit_button; II end program 
ln_box next_x; 
ln_box next_y; 
Out_ box xy _out; 
Menu color_menu;  
Button menu_button; 

void change(Color c) { lines.set_color(c); } 

void hide_menu() { color_menu. hide(); menu_button.show(); } 
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}; 

II actions invoked by ca l lbacks: 
void red_pressed() { change(Color: : red); hide_menu(); } 
void blue_pressed() { change(Color: : blue); hide_menu(); } 
void black_pressed() { change(Color: :black); hide_menu(); } 
void menu_pressed() { menu_button.hide(); color_menu.show(); } 
void next() ;  
void quit(); 

II cal l back functions: 
static void cb_red(Address, Address); 
static void cb_blue(Address, Address) ; 
static void cb_black(Address, Address); 
static void cb_menu(Address, Address); 
static void cb_next(Address, Address); 
static void cb_quit(Address, Address); 

NoLe how all bul the constructor is privale. Basically, that window class is the 
program. All that happens, happens through its callbacks, so no code from out
side the window is needed. We sorted the declarations a bit hoping Lo make the 
class more readable. The constructor provides arguments to all of its sub-objects 
and attaches them to the window: 

Lines_ window: : Lines_window(Point xy, int w, int h, const string& title) 
: Window(xy, w, h, title), 
color _menu(Point(x_max()-70,30), 70,20,Menu: :vertical, "color"), 
menu_button(Point(x_max()-80,30), 80, 20, "color menu", cb_menu), 
next_button(Point(x_max()- 150,0), 70, 20, "Next point", cb_next), 
quit_button(Point(x_max()-70,0), 70, 20, "Quit", cb_quit), 
next_x(Point(x_max()-310,0), 50, 20, "next x: " ), 
next_y(Point(x_max()-210,0), 50, 20, "next y: "), 
xy_out(Point(100,0), 100, 20, "current (x,y) : " )  

attach(next_button); 
attach(quit_button); 
attach( next_x); 
attach(next_y); 
attach(xy _out); 
xy_out.put("no point"); 
color _menu.attach(new Button(Point(O,O),O,O, ''red" ,cb_red)); 
color_menu. attach(new Button(Point(O,O),O,O, "blue" ,cb_blue)); 
color _menu. attach(new Button(Point(O,O),O,O, "black" ,cb_black)); 
attach(color_menu); 
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color _menu.hide(); 
aHach(menu_button); 
attach( lines); 

Note that the initializers are in the same order as the data member definitions. 
1l1at's the proper order in which to write the initializers. In fact, member initial
izers are always executed in the order their data members were declared. Some 
compilers (helpfully) give a warning if a base or member constructor is specilled 
out of order. 

1 6.8 Debugging G U I code 
Once a GUI program starts working it is often quite easy to debug: what you see 
is what you get. However, there is often a most frustrating period before the flrsl 
shapes and widgets start appearing in a window or even before a window ap
pears on the screen. Try this main(): 

int main() 
{ 

Lines_window (Point(100, 100),600,400, "lines") ;  
return gui_main(); 

Do you see the error? Whether you see it or not, you should try iL; the program 
will compile and run, but instead of the Lines_window giving you a chance to 
draw lines, you get at mosL a flicker on the screen. How do you find errors in 
such a program? 

By carefully using well-tried program parts (classes, function, libraries) 

By sinlplifying all new code, by slowly "growing" a program from its 
simplest version, by carefully looking over the code line for line 

By checking all linker settings 

By comparing to already working programs 

By explaining the code to a friend 

TI1e one thing that you will fmd it hard to do is to trace the execution of Lhe 
code. If you have learned to use a debugger, you have a chance, but just inserLing 
""output statements" will not work in this case - the problem is that no output ap· 
pears. Even debuggers will have problems because there are several things going 
on at once ("multi-threading") - your code is not the only code trying to interact 
wiLh Lhe screen. Simplification of the code and a systematic approach to under
standing the code are key. 
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So what was the problem? Here is the correct version (from §16.5) :  

int main() 
{ 

Lines_window win(Point(100, 100),600,400, "lines"); 
return gui_main(); 

We "forgot" the name of the Lines_ window, win. Since we didn't acLually need 
that name that seemed reasonable, but the compiler then decided that since we 
didn't use that window, it could immediately destroy it. Oops! That window ex
isted for something on the order of a millisecond. No wonder we missed it. 

Another common problem is to put one window exactly on top of another. .\ 
This obviously (or rather not al all obviously) looks as if there is only one win- � 
dow. Where did the other window go? We can spend significant time looking for 
nonexistent bugs in the code. The same problem can occur if we put one shape 
on top of another. 

Finally - to make matters still worse - exceptions don't always work as we f) 
would like them to when we use a GUI library. Since our code is managed by a 
GUI library, an exception we throw may never reach our handler - the library 
or the operating system may "cat" it (that is, they may rely on error-handling 
mechanisms that differ from C++ exceptions and may indeed be completely 
oblivious of C++) . 

Common problems found during debugging include Shapes and Widgets f) 
not showing because they were not attached and objects misbehaving because 
they have gone out of scope. Consider how a programmer might factor out the 
creation and attachment of buttons in a menu: 

II helper iunction for loading buttons into a menu 
void load_disaster_menu(Menu& m) 
{ 

Point orig(O,O); 
Button b1 (orig,O,O, "flood" ,cb_flood); 
Button b2(orig,O,O, "fire" ,cb_fire); 
II . . .  
m.attach(b1); 
m.attach(b2); 
II . . .  

int main() 
{ 

II . . .  
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Menu disasters(Point(1 00,1 00) ,60,20,Menu:  :horizontal, "disasters" ); 
load_disaster_menu(disasters); 
win.attach(disasters); 
II . . .  

This will not work. All those buttons are local to the load_disaster_menu func· 
tion and attaching them to a menu will not change that. An explanation can be 
found in §1 8.5.4 (Don 't return a pointer to a local variable}, and an illustration of the 
memory layout for local variables is presented in §8.5.8. The essence of the story 
is that after load_disaster _menu() has returned, those local objects have been de
stroyed and the disasters menu refers to nonexistent (destroyed) objects. The re· 
suit is likely to be surprising and not pretty. The solution is to use unnamed 
objects created by new instead of named local objects: 

II helper function ior loading buttons into a menu 
void load_disaster_menu(Menu& m) 
{ 

Point orig(O,O); 
m.attach(new Button(orig,O,O, "flood" ,cb_flood)); 
m.attach(new Button(orig,O,O, "fire" ,cb_fire)); 
II . . .  

The correct solution is even simpler than the (all too common) bug . 

...;' Drill 

1 .  Make a completely new project with linker settings for FLTK (as de· 
scribed in Appendix D). 

2. Using the facilities of Graph_lib, type in the line-drawing program from 
§1 6.5 and get it to run. 

3. Modify the program to use a pop-up menu as described in §1 6.7 and get 
it to run. 

4. Modify the program to have a second menu for choosing line styles and 
get it to run. 

Review 

L Why would you want a graphical user interface? 
2. When would you want a non-graphical user interface? 
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3 .  What is a software layer? 
4. Why would you want to layer software? 
5. What is the fundamental problem when communicating with an operat-

ing system from C++? 
6. What is a callback? 
7. What is a widget? 
8. What is another name for widget? 
9. What does the acronym FLTK mean? 

10. How do you pronounce FLTK? 
1 1 . What other G Ul toolkits have you heard of? 
12. Which systems use the term widget and which prefer control? 
13. What are examples of widgets? 
14. When would you use an inbox? 
15. What is the type of the value stored in an inbox? 
1 6. When would you use a button? 
1 7. When would you use a menu? 
18. What is control inversion? 
19. What is the basic strategy for debugging a GUI program? 
20. Why is debugging a GUI program harder than debugging an "ordinary 

program using streams for 1/0"? 

Terms 
button 
callback 
console 1/0 
control 
control inversion 

Exercises 

dialog box 
GUI 
menu 
software layer 
user interface 

visible/hidden 
waiting for input 
wait loop 
widget 

1 .  Make a My_window that's a bit like Simple_window except that it has 
two buttons, next and quit. 

2. Make a window (based on My_window) with a 4-by-4 checkerboard of 
square buttons. When pressed, a button performs a simple action, such 
as printing its coordinates in an output box, or turns a slightly different 
color (until another button is pressed) . 

3. Place an Image on top of a BuHon; move both when the button is pushed. 
Use this random number generator to pick a new location for the "image 
button": 

int rint(int low, int high) { return low+rand()"'o(high-low); } 

It returns a random int in the range [low,high). 
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4. Make a menu with items that make a circle, a square, an equilateral tri
angle, and a hexagon, respectively. Make an input box (or two} for giv
ing a coordinate pair, and place the shape made by pressing a menu item 
at that coordinate. Sorry, no drag and drop. 

5. Write a program that draws a shape of your choice and moves it to a 
new point each time you click "Next." The new point should be deter
mined by a coordinate pair read from an input stream. 

6. Make an "analog clock," that is, a clock with hands that move. You get 
the time of day from the operating system through a library call. A major 
part of this exercise is to fmd the functions that give you the time of day 
and a way of waiting for a short period of time (e.g., a second for a clock 
tick) and to learn to use them based on the documentation you found. 
Hint: clock(), sleep(). 

7. Using the techniques developed in the previous exercises, make an 
image of an airplane "fly around" in a window. Have a "start" and a 
"stop" button. 

8. Provide a currency converter. Read the conversion rates from a ftle on 
startup. Enter an amount in an input window and provide a way of se· 
lccting currencies to convert to and from (e.g., a pair of menus). 

9. Modify the calculator from Chapter 7 to get its input from an input box 
and return its results in an output box. 

10. Provide a program where you can choose among a set of functions (e.g., 
sin() and log()}, provide parameters for those functions, and then graph 
them. 

Postscript 

G Ul is a huge topic. Much of it has to do with style and compatibility with exist
ing systems. Furthermore, much has to do with a bewildering variety of widgets 
(such as a GUI library offering many dozens of alternative button styles) that 
would make a traditional botanist feel quite at home. However, little of that has 
to do with fundamental programming techniques, so we won't proceed in that di
rection. Other topics, such as scaling, rotation, morphing, three-dimensional ob

jects, shadowing, etc., require sophistication in graphical and/or mathematical 
topics which we don't assume here. 

One thing you should be aware of is that most G Ul systems provide a "G Ul 
builder" that allows you to design your window layouts graphically and attacl1 
callbacks and actions to buttons, menus, etc. specified graphically. For many ap
plications, such a G Ul builder is well worth using to reduce the tedium of writ
ing "scaffolding code" such as our callbacks. However, always try to understand 
how the resulting programs work. Sometimes, the generated code is equivalent to 
what you have seen in this chapter. Sometimes more elaborate and/or expensive 
mechanisms arc used. 
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Vector and Free Store 

"Use vector as the default !"  

-Alex Stepanov 

T his chapter and the next four describe the containers and 

algorithms part of the C++ standard library, traditionally 

called the STL. We describe the key facilities from the STL and 

some of their uses. In addition, we present the key design and 

programming techniques used to implement the STL and some 

low-level language features used for that. Among those are point

ers, arrays, and free store. The focus of this chapter and the next 

two is the design and implementation of the most common and 

most useful STL container: vector. 
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17.1 Introduction 

17.2 vector buies 

17.3 Memory, addresses, and pointers 
17.3.1 The sizeof operator 

17.4 Free store and pointers 
17.4.1 Free-store allocation 
17.4.2 Access through pointers 
17.4.3 Ranges 
17.4.4 Initialization 
17.4.5 The null pointer 
17.4.6 Free-store deallocation 

17.5 Destructors 
17.5.1 Generated destructors 
17.5.2 Destructors and free store 

1 7.1  Introduction 

17.6 Access to elements 

17.7 Pointers to class objects 

17.8 Messing with types: void• and 
casts 

17.9 Pointers and references 
17.9.1 Pointer and reference 

parameters 
17.9.2 Pointers, references, and 

inheritance 
17.9.3 An example: lists 
17.9.4 Ust operations 
17.9.5 Ust use 

17.10 The this pointer 
17.10.1 More link use 

The most useful container in the C++ standard library is vector. A vector pro
vides a sequence of elements of a given type. You can refer to an element by its 
index (subscript) , extend the vector by using push_back(), ask a vector for the 
number of its elements using size(), and have access to the vector checked 
against attempts to access out-of-range elements. The standard library vector is a 
convenient, flexible, efficient (in time and space) , statically type-safe container of 
elements. The standard string has similar properties, as have other useful stan
dard container types, such as list and map, which we will describe in Chapter 20. 
However, a computer's memory doesn't directly support such useful types. All 
that the hardware directly supports is sequences of bytes. For example, for a 
vector<double>, the operation v.push_back(2.3) adds 2.3 to a sequence of doubles 
and increases the element count of v (v.size()) by 1. At the lowest level, the com· 
puter knows nothing about anything as sophisticated as push_back(); all it knows 
is how to read and write a few bytes at a time. 

In this and the following two chapters, we show how to build vector from the 
basic language facilities available to every programmer. Doing so allows us to il
lustrate useful concepts and programming techniques, and to see how they are 
expressed using C++ language features. The language facilities and program
ming techniques we encounter in the vector implementation arc generally useful 
and very widely used. 

Once we have seen how vector is designed, implemented, and used, we can 
proceed to look at other standard library containers, such as map, and examine 
the elegant and efficient facilities for their use provided by the C++ standard li
brary (Chapters 20 and 21) .  These facilities, called algorithms, save us from pro· 
gramming common tasks involving data ourselves. Instead, we can usc what is 
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available as part of every C++ implementation to ease the writing and testing of 
our libraries. We have already seen and used one of the standard library's most 
useful algoritluns: sort(). 
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We approach the standard library vector through a series of increasingly so- fj 
phisticatcd vector implementations. Frrst, we build a very simple vector. TI1en, 
we see what's undesirable about that vector and ftx it. When we have done that a 
few times, we reach a vector implementation that is roughly equivalent to the 
standard library vector - shipped with your C++ compiler, the one that you 
have been using in the previous chapters. 111is process of gradual refinement 
closely mirrors the way we typically approach a new programming task. Along 
the way, we encounter and explore many classical problems related to the usc of 
memory and data structures. The basic plan is this: 

Chapter 1 7  (thir cl1apter}: How can we deal with varying an1ounts of mem
ory? In particular, how can different vectors have different numbers of 
elements and how can a single vector have different numbers of ele
ments at different times? This leads us to exanline free store 01eap stor
age) , pointers, casts (explicit type conversion) , and references. 

Chapter 18: How can we copy vectors? How can we provide a subscript 
operation for them? We also introduce arrays and explore their relation 
to pointers. 

CIUifJter 19: How can we have vectors with different element types? And 
how can we deal with out-of-range errors? To answer those questions, 
we explore the C++ template and exception facilities. 

In addition to the new language facilities and techniques that we introduce to 
handle the implementation of a flexible, efficient, and type-safe vector, we will 
also (rc)usc many of the language facilities and programming techniques we have 
already seen. Occasionally, we'll take the opportunity to give those a slightly 
more formal and technical definition. 

So, tl1is is the point at which we finally get to deal directly with memory. 
Why do we have to? Our vector and string are extremely useful and convenient; 
we can just usc those. After all, containers, such as vector and string, are de
signed to insulate us from some of the unpleasant aspects of real memory. How
ever, unless we are content to believe in magic, we must eXanline the lowest level 
of memory management. Why shouldn't you "just believe in magic"? Or - to 
put a more positive spin on it - why shouldn't you "just trust that the implc
menters of vector knew what they were doing"? After all, we don't suggest that 
you examine the device physics that allows our computer's memory to function. 

Well, we are progranuners (computer scientists, software developers, or what- f) 
ever) rather than physicists. Had we been studying device physics, we would have 
had to look into the details of computer memory design. However, since we are 
studying programming, we must look into the detailed design of programs. In the-
ory, we could consider the low-level memory access and management facilities 
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"implementation details" just as we do the device physics. However, if we did that, 
you would not just have to "believe in magic"; you would be unable to implement 
a new container (should you need one, and that's not uncommon). Also, you 
would be unable to read huge amounts of C and C++ code that directly uses 
memory. As we will see over the next few chapters, pointers (a low-level and direct 
way of referring to an object) are also useful for a variety of reasons not related to 
memory management It is not easy to use C++ well without sometimes using 
pointers. 

More philosophically, I am among the large group of computer professionals 
who are of the opinion that if you lack a basic and practical understanding of 
how a program maps onto a computer's memory and operations, you will have 
problems getting a solid grasp of higher-level topics, such as data structures, algo
rithms, and operating systems. 

1 7 .2 vector basics 
We start our incremental design of vector by considering a very simple use: 

vector<double> age(4); 
age[0]=0.33; 
age[1 1=22.0; 
age[2]=27 .2; 
age[3]=54.2; 

II a vector with 4 elements of type double 

Obviously, this creates a vector with four elements of type double and gives 
those four elements the values 0.33, 22.0, 27 .2, and 54.2. The four elements are 
numbered 0, 1 ,  2, 3. The numbering of elements in C++ standard library con
tainers always starts from 0 (zero) . Numbering from 0 is very common, and it is a 
universal convention among C++ progranuners. The number of elements of a 
vector is called its size. So, the size of age is 4. The elements of a vector arc num
bered (indexed) from 0 to sizc-1 .  For example, tl1e elements of age are numbered 
0 to age.size()-1 .  We can represent age graphically like tl1is : 

age: 

How do we make this "graphical design" real in a computer's memory? How do we 
get the values stored and accessed like that? Obviously, we have to define a class and 
we want to call this class vector. Furthermore, it needs a data member to hold its 
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size and one to hold its clements. But how do we represent a set of elements where 
the number of elements can vary? We could use a standard library vector, but that 
would - in this context - be cheating: we are building a vector here. 

So, how do we represent that arrow in the drawing above? Consider doing 
without it. We could defme a ftxcd-sized data structure: 

class vector { 

}; 

int size, ageO, age1, age2, agel; 
II . . .  

Ignoring some notational details, we'll have something like this: 

age: 
size: age[O]: age[1 ] :  age[2] : age[3] : 

Lr·· _.,,:. FiMtV.-*':1· �.:2 �l _.:t: I 
That's simple and nice, but the first time we try to add an element with push_back() 
we arc sunk: we have no way of adding an element; the number of elements is ftxed 
to four in the program text. We need something more than a data structure holding 
a ftxcd number of elements. Operations that change the number of elements of a 
vector, such as push_back(), can't be implemented if we defined vector to have a 
fixed number of elements. Basically, we need a data member that points to the set of 
clements so that we can make iL point to a different set of elements when we need 
more space. We need something like the memory address of the first element. In 
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C++. a data type that can hold an address is called a pointer and is syntactically dis- f) 
tingu.ishcd by the sufftx •. so that double• means "pointer to double." Given thal, 
we can define our first version of a vector class: 

II J very simpl iiied vector oi doubles ( l ike vector<double>l 
class vector { 

int sz; 
double• elem; 

public: 
vector(int s); 

// the s ize 
II pointer to the first element (of type double) 

II constructor: al locate s doubles, 
// let elem point  to them 
II store s in sz 

int size() const { return sz; } // the current size 
}; 

Before proceeding with Lhc vector design, let us study the notion of "pointer" in 
some detail. 1l1c notion of "pointer" - together with its closely related notion of 
"array" - is key to C++'s notion of "memory." 
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1 7.3 Memory, addresses, and pointers 
A computer's memory is a sequence of bytes. We can number the bytes from 0 to 
the last one. We call such "a number that indicates a location in memory" an 
address. You can think of an address as a kind of integer value. The frrst byte of 
memory has the address 0, the next the address 1 ,  and so on. We can visualize a 
megabyte of memory like this: 

0 I 2 22"- 1 
1 1 r _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-� _-_-_-_-_-_-_---� _-_-_-_-� � o 

Everything we put in memory has an address. For example: 

int var = 17; 

This will set aside an "int-sized" piece of memory for var somewhere and put the 
value 17 into that memory. We can also store and manipulate addresses. An ob
ject that holds an address value is called a pointer. For example, the type needed to 
hold the address of an int is called a "pointer to int" or an "int pointer" and the 
notation is int•: 

int• ptr = &var; II ptr holds the address of var 

The "address of' operator, unary &, is used to get the address of an object. So, if 
var happens to start at address 4096 (also known as 2 12}, ptr will hold the value 
4096: 

Basically, we view our computer's memory as a sequence of bytes numbered 
from 0 to the memory size minus 1 .  On some machines that's a sin1plification, 
but as an initial programming model of the memory, it will suffice. 

Each type has a corresponding pointer type. For example : 

char ch = 'c'; 
char• pc = &ch; 

int ii = 17; 
int• pi = &ii; 

II pointer to char 

II pointer to inl 

If we want to see the value of the object pointed to, we can do that using the 
"contents of' operator, unary •. For example: 
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cout << "pc==" << p c  << "; contents of pc==" << •pc << "\n" ;  
cout << "pi==" << pi << ";  contents of pi==" << •pi << "\n " ;  

The output for •pc will be the character c and the output for •pi will be the inte
ger 17. The output for pc and pi will vary depending on where the compiler allo
cated our variables ch and ii in memory. The notation used for the pointer value 
(address) may also vary depending on which conventions your system uses ; hexa
decimal notation (§A.2 . 1 . 1) is popular for pointer values. 

TI1e contents cf operator (often called the derefmma operator) can also be used 
on the left-hand side of an assignment: 

•pc = 'x'; 
•pi = 27; 
•pi = •pc; 

II OK: you can assign 'x' to the char pointed to by pc 
II OK: an in t •  poi nts to an i nt so •pi is an int 
II OK: you can assign a char tpc l to an int (p i  I 
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Note thal even though a pointer value can be printed as an integer, a pointer is f) 
nol an integer. "What does an int point to?" is not a well-formed question; ints 
do not point, pointers do. A pointer type provides the operations suitable for ad
dresses, whereas int provides the (arithmetic and logical) operations suitable for 
integers. So pointers and integers do not implicitly mix: 

int i =  pi; 
pi = 7; 

II error: can't assign an int* to an int 
II error: can't .1ssign an int to an int•  

Similarly, a pointer to char (a char•) is  not a pointer to int (an int•). For example : 

pc = pi; 
pi = pc; 

II error: can't assign an int• to a char• 
II error: can't assign a char• to an int* 

Why is iL an error to assign pc to pi? Consider one answer: a char is usually 
much smaller Lhan an int, so consider this : 

char ch1 = 'a' ; 
char ch2 = 'b'; 
char ch3 = 'c' ; 
char ch4 = 'd ' ;  
int• pi = &ch3; 

•pi = 12345; 
•pi = 67890; 

II poin t  to ch, a char-sized piece of nwmory 
II error: we cannot assign a char• to an int• 
II but let's pretend we cou ld 
II write to an i nt-s ized piece of memory 
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Exactly how the compiler allocates variables in memory is implementation de
fmed, but we might very well get something like this: 

ch3: pi: 

Now, had the compiler allowed the code, we would have been writing 12345 to 
the memory starting at &ch3. That would definitely have changed the value of 
some nearby memory, such as ch2 or ch4. If we were really unlucky (which is 
likely) , we would have overwritten part of pi itself1 In that case, the next assign
ment •pi=67890 would place 67890 in some completely different part of memory. 
Be glad that such assignment is disallowed, but this is one of the very few protec
tions offered by the compiler at this low level of progranuning. 

In the unlikely case that you really need to convert an int to a pointer or Lo 
convert one pointer type to another, you have to use reinterpret_cast; see §17.8. 

We are really close to the hardware here. This is not a particularly comforL
able place to be for a progranuner. We have only a few primitive operations avail
able and hardly any support from the language or the standard library. However, 
we had to geL here to know how higher-level facilities, such as vector, are imple
mented. We need to understand how to write code aL this level because noL all 
code can be "high-level" (see Chapter 25). Also, we might better appreciate Lhe 
convenience and relative safety of the higher levels of software once we have ex
perienced their absence. Our aim is always to work at the highesL level of ab
straction that is possible given a problem and the constraints on its solution. In 
this chapter and in Chapters 1 8- 1 9, we show how to geL back to a more comfort
able level of abstraction by implementing a vector. 

1 7.3 .1 The sizeof operator 
So how much memory does an int really take up? A pointer? The operator 
sizeof answers such questions: 

cout << "the size of char is " << sizeof(char) << ' ' << sizeof ('a') << '\n'; 
cout << "the size of int is " << sizeof(int) << ' ' << sizeof (2+2) << '\n'; 
int• p = 0; 
cout << "the size of int• is " << sizeof(int•) << ' ' << sizeof (p) << '\n';  

As you can see, we can apply sizeof either to a type name or to an expression; for 
a type, sizeof gives the size of an object of that type and for an expression it gives 
the size of Lhe Lype of the result. The result of sizeof is a positive imeger and the 
unit is sizeof(char), which is defined Lo be 1 .  Typically, a char is sLored in a byte, 
so sizeof reports the number of byLes. 
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T R Y  T H I S  

Execute the example above and see what you get. Then extend the example 
to determine the size of bool, double, and some other type. 

The size of a type is rwt guaranteed to be the same on every implementation of 
C++. These days, sizeof(int) is typically 4 on a laplop or desktop machine. With an 
8·bit byte, that means that an int is 32 bits. However, embedded-systems processors 
with 16-bit ints and high-performance architectures with 64-bit ints are common. 

How much memory is used by a vector? We can try 

vector<int> v(1000); 
cout << "the size of vector<int>(1000) is " << sizeof (v) << '\n ';  

The output will be something like 

the size of vector<int>(1000) is 20 

'll1e explanation will become obvious over l.his chapter and the next (see also 
§19.2.1}, bUL clearly, sizeof is not counting the elements. 

1 7.4 Free store and pointers 
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Consider the implementation of vector from the end of §17.2. From where does the 
vector get the space for the elements? How do we get the pointer elem to point to 
them? When you start a C++ program, the compiler sets aside memory for your � 
code (sometimes called code storage or text storage) and for the global variables you de- � 
fine (called staJir storage). It also sets aside some memory to be used when you call 
functions, and they need space for their arguments and local variables (that's called 
stock storage or autamaJic storage) . The rest of the computer's memory is potentially 
available for other uses; it is "free." We can illustrate that graphically: 

memory layout: �ltlr.t ;�11 , ,  . - . .. � -

��-�·�{�� 
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The C++ language makes this "free store" (also called the heap) available through 
an operator called new. For example: 

double* p = new double[4); II a l locate 4 doubles on the free store 

This asks the C++ run-time system to allocate 4 doubles on the free store and re
turn a pointer to the first double to us. We use that pointer to initialize our 
pointer variable p. We can represent this graphically: 

The free store: 

The new operator returns a pointer to the object it creates . If it created several 
objects (an array) , it returns a pointer to the first of those objects. If that object is 
of type X, the pointer returned by new is of type x•.  For example : 

char• q = new double[4); II error: double* assigned to chilr• 

That new returns a pointer to a double and a double isn't a char, so we should 
not (and cannot) assign it to the pointer to char variable q. 

1 7  .4.1 Free-store allocation 
We request memory to be allocated on the .free store by the new operator: 

The new operator returns a pointer to the allocated memory. 

A pointer value is the address of the frrst byte of the memory. 

A pointer points to an object of a specified type. 

A pointer does 1UJ/ know how many elements it points to. 

The new operator can allocate individual elements or sequences (arrays) of ele
ments. For example : 

int• pi = new int; 
int• qi = new int[4); 

II a l locate one int 
II a l locate 4 ints (an array oi 4 intsl 
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double• pd = new double; II al locate one double 
double• qd = new double[n]; II al locate n doubles !an array oi n doubles) 

Note that the number of objects allocated can be a variable. That's important because 
that allows us to select how many objects we allocate at run time. If n is 2, we get 

pi: 

qi: I I ·  . . . 

pd: I · I - - I 
qd: I ·I I ; ' '  '! ; . t .... � � j � : : · I  ' ·  

Pointers Lo objects of different types are different types. For example : 

pi = pd; 
pd = pi; 

II error: can't assign a double• to an int• 
II error: can't assign an int• to a double* 

Why not? After all, we can assign an int to a double and a double to an int. The 
reason is the [ ] operator. It relies on the size of the element type to figure ouL 
where to find an element. For example, qi[2] is two int sizes further on in mem
ory than qi[O), and qd£2] is two double sizes further on in memory than qd[O). If 
the size of an int is different from the size of double, as it is on many computers, 
we could get some rather strange results if we allowed qi to point to the memory 
allocated for qd. 

That's the "practical explanation." The theoretical explanation is simply 
''Allowing assignment of pointers to different types would allow type errors." 

1 7  .4.2 Access through pointers 
In addition Lo using the dereference operator • on a pointer, we can use the sub
script operator [ ]. For example: 

double• p = new double[4); 
double x = •p; 
double y = p[2]; 

II al locate 4 doubles on the free store 
II read the (first ) object pointed to by p 
II read the 3 rd object pointed to by p 

Unsurprisingly, the subscript operator counts from 0 just like vector's subscript 
operator, so p[2] refers to the third element; p[O) is the first element so p[O) means 
exactly the same as •p. The [ ] and • operators can also be used for writing: 
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•p = 7.7; 
p[2) = 9.9; 
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II write to the (first) object pointed to by p 
II write to the 3rd object pointed to by p 

A pointer points to an object in memory. The "contents of" operator (a1so called 
the deriference operator) allows us to read and write the object pointed to by a 
pointer p: 

double x = •p; 
•p = 8.8; 

II rei!d the object pointed to by p 
II write to the object pointed to by p 

When applied to a pointer, the [ ] operator treats memory as a sequence of ob· 
jects (of the type specified by the pointer declaration) with the first one pointed to 
by a pointer p:  

double x = p[3); 
p[3) = 4.4; 
double y = p[O); 

II read the 4th object pointed to by p 
II write to the 4th object pointed to by p 
II piOI  is the silme as •p 

That's all. There is no checking, no implementation cleverness, just simple access 
to our computer's memory: 

p[O] : p[1 ) :  p[2): p[3]: 

8.9 9.9 4.4 

This is exactly tl1e simple and optimally efficient mechanism for accessing mem· 
ory that we need to implement a vector. 

1 7.4.3 Ranges 
The major problem with pointers is that a pointer doesn't "know" how many cle· 
ments it points to. Consider: 

double• pd = new double[3]; 
pd[2] = 2.2; 
pd[4] = 4.4; 
pd[-3] = - 3.3; 

Does pd have a third clement pd[2] ? Does it have a fifth clement pd[4]? If we 
look at the definition of pd, we find that the answers are yes and no, respectivcly. 
However, the compiler doesn't know that; it does not keep track of pointer val· 
ues. Our code will simply access memory as if we had allocated enough memory. 
IL will even access pd[-3] as if the location three doubles before what pd points 
to was part of our allocation: 
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We have no idea what the memory locations marked pd[-3] and pd[4] are used 
for. However, we do know that they weren't meant to be used as part of our array 
of three doubles pointed to by pd. Most likely, they are parts of other objects and 
we just scribbled all over those. That's not a good idea. In fact, it is typically a dis· 
astrously poor idea: "disastrous" as in "My program crashes mysteriously" or 
"My program gives wrong output." Try saying that aloud; it doesn't sound nice at 
all. We'll go a long way to avoid that. Out-of-range access is particularly nasty be· 
cause apparently unrelated parts of a program arc affected. An out-of-range read 
gives us a "random" value that may depend on some completely unrelated com· 
putation. An out-of-range write can put some object into an "impossible" state or 
simply give it a totally unexpected and wrong value. Such writes typically aren't 
noticed until long after they occurred, so they are particularly hard to fmd. Worse 
still: run a program witl1 an out-of-range error twice with slightly different input 
and it may give different results. Bugs of this kind ("transient bugs") are some of 
tl1c most difficult bugs to find. 
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We have to ensure that such out·of·range access doesn't happen. One of the () 
reasons we usc vector rather than directly using memory allocated by new is that 
a vector knows its size so that it (or we) can easily prevenl out-of-range access. 

One thing that C:'Ul make it hard to prevent out-of-range access is that we can as· 
sign one double• to another double• independently of how many objects each 
points to. A poinLcr really doesn't know how many objects it points to. For exan1plc : 

double• p = new double; 
double• q = new double[1000]; 

II .1 l locate a double 
II a l locate 1 000 doubles 

q[700] = 7.7; 
q =  p; 
double d = q[700] ; 

II fine 
II let q point to the same .1s p 
II out-oi-range access! 

Here, in just three lines of code, q[700] refers to two different memory locations, 
and tl1c last use is an out-of-range access and a likely disaster. 

p 
1-------J 
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By now, we hope that you are asking, "But why can't pointers remember the 
size?" Obviously, we could design a ''pointer" that did exactly that - a vector is 
almost that, and if you look through the C++ literature and libraries, you '11 find 
many "smart pointers" that compensate for weaknesses of the low-level built-in 
pointers. However, somewhere we need to reach the hardware level and under
stand how objects are addressed - and a machine address does not "know" what 
it addresses. Also, understanding pointers is essential for understanding lots of 
real-world code. 

1 7  .4.4 Initialization 
As ever, we would like to ensure that an object has been given a value before we 
use it; that is, we want to be sure that our pointers are initialized and also that the 
objects they point to have been initialized. Consider: 

double• pO; 
double• p1 = new double; 
double• p2 = new double(5.5); 
double• p3 = new double[5); 

II unin i t ia l ized: l i kely troub le 
II get (a l locate) an unini t ia l ized double 
II get a double in i t ia l ized to 5.5 
II get (a l locate) 5 unini t ia l ized doubles 

Obviously, declaring pO without initializing it is asking for trouble. Consider: 

•po = 1.0; 

This will assign 7.0 to some location in memory. We have no idea which part of 
memory that will be. It could be harmless, but never, never ever, rely on that. 
Sooner or later, we get the same result as for an out-of-range access : "My pro
gram crashed mysteriously" or "My program gives wrong output." A scary per
centage of serious problems with old-style C++ programs ("C-style programs") 
is caused by access through uninitialized pointers and out-of-range access. We 
must do all we can to avoid such access, partly because we aim at professional
ism, partly because we don't care to waste our time searching for that kind of 
error. There are few activities as frustrating and tedious as tracking down this 
kind of bug. It is much more pleasant and productive to prevent bugs than to 
hunt for them. 

Memory allocated by new is not initialized for built-in types. If you don't like 
that for a single object, you can specify value, as we did for p2: •p2 is 5.5. Note 
the use of ( ) for initialization. This contrasts to the use of [ ] to indicate "array." 

There is no facility for specifying an initializer for an array of objects of built
in types allocated by new. For arrays, we have to do some work ourselves if we 
don't like the default initializer. For example: 

double• p4 = new double[5); 
for (int i = 0; i<5; ++i) p4[i] = i; 
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Now p4 points to objects of type double containing the values 0.0, 1 .0, 2.0, 3.0, 
and 4.0. 

As usual, we should worry about uninitialized objects and make sure we give 
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them a value before we read them. Beware that compilers often have a "debug fj 
mode" where they by default initialize every variable to a predictable value (usu· 
ally 0) . That implies that when turning off the debug features to ship a program, 
when running an optimizer, or simply when compiling on a different machine, a 
program with uninitialized variables may suddenly run differently. Don't get 
caught with an uninitialized variable. 

When we define our own types, we have better control of initialization. If a 
type X has a default constructor, we geL: 

X• px1 = new X; 
x• px2 = new X[17]; 

II one deiau lt-in i t ia l ized X 
// 1 7 defau lt-init ia l i zed Xs 

If a type Y has a constructor, but not a default constructor, we have to explicitly 
ini tializc : 

y• py1 = new Y; 
y• py2 = new Y[17); 
y• py3 = new Y(13); 

II error: no dt'iaul t  constructor 
II error: no default constructor 
// OK: ini t ia l ized to Y( 1 3 ) 

1 7  .4.5 The null pointer 
If you have no other pointer to use for initializing a pointer, use 0 (zero) : 

double- pO = 0; // the nu l l  pointer 

When assigned to a pointer, the value zero is called the null pointer, and often we 
Lesl whether a pointer is valid (i.e., whether it points to something) by checking 
whether it is 0. For example: 

if (p0 != 0) II consider pO va l id 

This is not a perfect test, because pO may contain a "random" value that happens 
to be nonzero or the address of an object that has been deleted (sec §17.4.6) . 
However, that's often the best we can do. We don't actually have to mention 0 
explicitly because an if-statement really checks whether its condition is nonzero : 

if (pO) II consider pO va l id; equivalent to p0!=0 

We prefer this shorter form, considering it a more direct expression of the idea () 
''pO is valid," but opinions vary. 
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We need to use the null pointer when we have a pointer that sometimes 
points to an object and sometimes not. That's rarer than many people think; con
sider: if you don't have an object for a pointer to point to, why did you defme 
that pointer? Couldn't you wait until you have an object? 

1 7  .4.6 Free-store deallocation 
The new operator allocates ("gets") memory from the free store. Since a com
puter's memory is limited, it is usually a good idea to return memory to the free 
store once we are finished using it. TI1at way, the free store can reuse that mem
ory for a new allocation. For large progran15 and for long-running programs such 
freeing of memory for reuse is essential. For example: 

double• calc(int res_size, int max) 
{ 

II leaks memory 

double• p = new double[max]; 
double• res = new double[res_size]; 
II use p to calcu late results to be put in res 
return res; 

double• r = calc(100, 1000) ;  

As written, each call of calc() "leaks" the doubles allocated for p. For example, 
the call calc(100, 1000) will render the space needed for 100 doubles unusable for 
the rest of the prograDl. 

The operator for returning memory to the free store is called delete. We 
apply delete to a pointer returned by new to make the memory available to the 
free store for future allocation. The example now becomes 

double• calc(int res_size, int max) 
II the cJ I Ier is responsible ior the memory a l located for res 

double• p = new double[max]; 
double• res = new double[res_size] ; 
II use p to ca lcu late results to be put in res 
delete[ ] p; II we don't need that memory anymore: free it 
return res; 

double• r =  calc(100,1000); 
II use r 
delete[ ] r; II we don't need that memory anymore: free i t  
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Incidentally, this example demonstrates one of the major reasons for using free 
store: we can create objects in a function and pass them back to a caller. 

There arc two forms of delete: 

delete p frees the memory for an individual object allocated by new. 

delete[ ] p frees the memory for an array of objects allocated by new. 

It is the programmer's tedious job to use the right version. 
Deleting an object twice is a bad mistake. For example: 

int• p = new int(5); 
delete p; II iine: p points to iln object neilted by new 
II . . .  no use of p here . . .  
delete p; II error: p points to memory owned by the free-store milnager 

There are two problems with the second delete p: 

You don't own the object pointed to anymore so the free-store manager 
may have changed its internal data structure in such a way that it can't 
correctly execute delete p again. 

The free-store manager may have "recycled" the memory pointed to by p 
so that p now points to another object; deleting that other object (owned 
by some other part of the program) will cause errors in your program. 

Both problems occur in a real program; they are not just theoretical possibilities. 
Deleting the null pointer doesn't do anything (because the null pointer doesn't 

point to an object) , so deleting the null pointer is hannless. For example: 

int• p = 0; 
delete p; 
delete p; 

II fine: no action needed 
II also iine (st i l l  no act ion needed) 

Why do we have to bother with freeing memory? Can't the compiler figure out 
when we don't need a piece of memory anymore and just recycle it without 
human intervention? It can. That's called automalic garbage collection or just garbage 
collection. Unfortunately, automatic garbage collection is not cost-free and not ideal 
for all kinds of applications. If you really need automatic garbage collection, you 
can plug a garbage collector into your C++ program. Good garbage collectors 
are available (see www.rcsearch.att.com/- bs/C++.htm1). However, in this book 
we assume that you have to deal with your own "garbage," and we show how to 
do so conveniently and efficiently. 
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When is it important not to leak memory? A program that needs to run "for- f) 
ever" can't afford any memory leaks. An operating system is an example of a pro-
gram that "runs forever," and so are most embedded systems (see Chapter 25). A 
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library should not leak memory because someone might use i t  as part of a system 
that shouldn't leak memory. In general, it is simply a good idea not to leak. Many 
progranuners consider leaks as proof of sloppiness. However, that's slightly over
stating the point. When you run a program under an operating system (Unix, 
Wmdows, whatever) , all memory is automatically returned to the system at the 
end of the program. It follows that if you know that your program will not use 
more memory than is available, you might reasonably decide to "leak" until the 
operating system does the deallocation for you. However, if you decide to do that, 
be sure that your memory consumption estimate is correct, or people will have 
good reason to consider you sloppy. 

1 7.5 Destructors 
Now we know how to store the elements for a vector. We simply allocate suffi
cient space for the elements on the free store and access them through a pointer: 

II a very simpl iiied vector of doubles 
class vector { 

int sz; // the s izf' 
double• elem; 

public: 
II a pointer to the e lements 

} ; 

vector(int s) 
: sz(s), 
elem(new double[s]) 
{ 

II constructor 
II i n it ia l ize sz 
II i n it ia l ize elem 

for (int i=O; i<s; ++i) elem[i]=O; II i n i t ia l ize e lements 

int size() const { return sz; } // the current s ize 
II . . .  

So, sz is the number of elements . We initialize it in the constructor and a user of 
vector can get the number of elements by calling size(). Space for the elements is 
allocated using new in the constructor, and the pointer returned from the free 
store is stored in the member pointer elem. 

Note that we initialize the elements to their default value (0.0). The standard 
library vector does that, so we thought it best to do the same from the start. 

Unfortunately, our first primitive vector leaks memory. In the constructor, it 
allocates memory for the elements using new. To follow the rule stated in §17.4, 
we must make sure that this memory is freed using delete. Consider: 
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void f(int n) 
{ 

vector v(n); 
II 0 • •  

II a l locate n doubles 

When we leave f(), the clements created on the free store by v are not freed. We 
could defme a clean_up() operation for vector and call that: 

void f2(int n) 
{ 

vector v(n); 
II . . . use v 0 0 0 

v.clean_up(); 

II define a vector (which a l locates another n ints) 

II clean_upO deletes elem 

ThaL would work. However, one of the most common problems with free store is 
thal people forget to delete. The equivalent problem would arise for clean_up() ;  
people would forget to call it. We can do better than that. The basic idea is to 
have the compiler know about a function that does the opposite of a constructor, 
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just as it knows about the constructor. Inevitably, such a function is called a 
deJtroctor. In the same way thal a constructor is implicitly called when an object of � 
a class is created, a destrucLOr is implicitly called when an object goes out of .:.I 
scope. A construcLOr makes sure thal an object is properly created and initialized. 
Conversely, a destructor makes sure that an object is properly cleaned up before 
iL is destroyed. For example : 

II a very simplified vector of doubles 
class vector { 

// the size int sz; 
double• elem; 

public: 
II a pointer to the elements 

} ; 

vector(int s) II constructor 
:sz(s), elem(new double[s]) II a l locate memory 

for (int i=O; i<s; ++i) elem[i]=O; II in i t ia l ize elements 

-vector() 
{ delete[] elem; } 

II 0 o 0 

II destructor 
II free memory 
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Given that, we can write 

void f3(int n) 
{ 

int• p = new int[n] ; II al locate n ints 
vector v(n); II defi ne a vector (which a l locates another 11 ints) 
II . . .  use p and v . . .  
delete[ ] p; II dea l locate the ints 

II vellor automatica l l y  cleans up alter v 

Suddenly, that delete[ ] looks rather tedious and error-prone! Given vector, there 
is no reason to allocate memory using new just to deallocate it using delete[ ] at 
the end of a function. That's what vector does and does better. In particular, a 
vector catmol forget to call its destructor to deallocate the memory used for the 
elements. 

We arc not going to go into great detail about the uses of destructors here, but 
they arc great for handling resources that we need to first acquire (from somewhere) 
and later give back: files, threads, locks, etc. Remember how iostreams cleatl up 
after themselves? They flush buffers, close files, free buffer space, etc. That's done 
by their destructors. Every class that "owns" a resource needs a destructor. 

1 7  .5.1  Generated destructors 
If a member of a class has a destructor, then that destructor will be called when 
the object containing the member is destroyed. For example: 

struct Customer { 

} ; 

string name; 
vector<String> addresses; 
II . . .  

void some_fct() 
{ 

Customer fred ; 
II i ni t ia l ize ired 
II use Ired 

When we exit some_fct(), so that fred goes out of scope, fred is destroyed; that 
is, the destructors for name and addresses are called. This is obviously necessary 
for destructors to be useful and is sometimes expressed as "The compiler gener
ated a destructor for Customer, which calls the members' destructors." That is 
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indeed often how the obvious and necessary guarantee that destructors are called 
is implemenLed. 

The destructors for members - and for bases - are implicitly called from a 
derived class destructor (whether user·defmed or generated) . Basically, all the 
rules add up to: "Destructors are called when the object is destroyed" (by going 
ouL of scope, by delete, etc.) . 

1 7  .5.2 Destructors and free store 
Destructors are conceptually simple but are the foundation for many of the most 
effective C++ programming techniques. The basic idea is simple: 

Whatever resources a class object needs to function, it acquires in a con
structor. 

During the object's lifetime it may release resources and acquire new ones. 

At the end of the object's lifetime, the destructor releases all resources 
still owned by the object. 

The matched constructor/destructor pair handling free-store memory for vector 
is the archetypical example. We'll get back to that idea with more examples in 
§19.5. Here, we will exanline an important application that comes from the use of 
free-store and class hierarchies in combination. Consider: 

Shape• fct() 
{ 

Text tt(Point(200,200), "Annemarie"); 
II . . .  
Shape• p = new Text(Point(100, 100), "Nicholas"); 
return p; 

void f() 
{ 

Shape• q = fct(); 
II . . .  
delete q; 

This looks fairly plausible - and it is. It all works, but let's see how, because that 
exposes an elegant, important, simple technique. Inside fct(), the Text object tt is 
properly destroyed at the exit from fct(). Text has a string member, which obviously 
needs to have its destructor called - string handles its memory acquisition and re
lease exactly like vector. For tt, that's easy; the compiler just calls Text's generated 
destructor as described in §17.5. 1 .  But what about the Text object that was returned 
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from fct()? The calling function f() has no idea that q points to a Text; all it knows is 
that it points to a Shape. Then how does delete p get to call Text's destructor? 

In §14.2.1. we breezed past the fact that Shape has a destructor. In fact, Shape 
has a virtual destructor. That's the key. When we say delete p. delete looks at p's 
type to sec if it needs to call a destructor, and if so it calls it. So, delete p calls 
Shape's destructor -Shape(). But -Shape() is virtual, so - using the virtual call 
mechanism (§14.3. 1) - that call invokes the destructor of Shape's derived class, in 
this case -Text(). Had Shape : :-Shape() not been virtual, Text : :-Text() would not 
have been called and Text's string member wouldn't have been properly destroyed. 

As a rule of thumb: if you have a class with a virtual function, it needs a 
virtual destructor. The reason is: 

l .  If a class has a virtual function it is likely to be used as a base class, and 

2. If it is a base class its derived class is likely to be allocated using new, and 

3. If a derived class object is allocated using new and manipulated through 
a pointer to its base, then 

4. It is likely to be deleted through a pointer to its base 

Note that destructors are invoked implicitly or indirectly through delete. They 
are not called directly. That saves a lot of tricky work. 

T R Y  T H I S  

� Write a little program using base classes and members where you define the 
constructors and destructors to output a line of information when they are 
called. Then, create a few objects and see how their constructors and de· 
structors are called. 

1 7.6 Access to elements 
For vector to be usable, we need a way to read and write elements . For starters, 
we can provide simple get() and set() member functions: 

II a very simpl i fied vector of doubles 
class vector { 

int sz; // the size 
double• elem; II a pointer to the elements 

public: 
vector(int s) :sz(s), elem(new double[s]) { }  
-vector() { delete[) elem; } 

II constructor 
II destructor 
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}; 

int size() const { return sz; } 

double get(int n) { return elem[n]; } 
void set(int n, double v) { elem[n]=v; } 

// the cu rrent size 

II access: read 
II access: write 

Both get() and set() access the elements using the [ ] operator on the elem pointer: 
elem[n]. 

Now we can make a vector of doubles and use it: 

vector v(S); 
for (int i=O; i<v.size(); ++i) { 

v.set(i, 1 . 1 •i); 
cout << "v[" << i << "]=" << v.get(i) << '\n'; 

This will output 

v[O]==O 
v[1)==1 .1  
v[2]==2.2 
v[3)==3.3 
v[4)==4.4 

This is still an overly simple vector, and the code using get() and set() is rather 
ugly compared to the usual subsaipt notation. However, we aim to start small and 
sin1ple and then grow our progran15 step by step, testing along the way. As ever, 
this strategy of growth and repeated testing minimizes errors and debugging. 

1 7.7 Pointers to class objects 
The notion of "pointer" is general, so we can point to just about anything we can 
place in memory. For example, we can use pointers to vectors exactly as we use 
pointers to chars: 

vector• f(int s) 
{ 

vector• p = new vector(s); 
II fi l l  •p 
return p; 

II al locate a vector on iree store 
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void ff() 
{ 

vector• q = f(4) ; 
II use •q 
delete q; 
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II free vector on  free store 

Note that when we delete a vector, its destructor is called. For example : 

vector• p = new vector(s) ; 
delete p; 

II a l locate a vector on free store 
II deal locate 

Creating the vector on the free store, the new operator 

Frrst allocates memory for a vector 

Then invokes the vector's constructor to initialize that vector; the con
structor allocates memory for the vector's elements and initializes those 
elements 

Deleting the vector, the delete operator 

Frrst invokes the vector's destructor; the destructor invokes the destruc
tors for the elements (if they have destructors) and then deallocates the 
memory used for the vector's elements 

Then deallocates the memory used for the vector 

Note how nicely that works recursively (see §8.5.8). Using the real (standard li· 
brary) vector we can also do: 

vector< vector<double> >• p = new vector<Vector<double> > (10); 
delete p; 

Here delete p invokes the destructor for vector< vector<double> >; this destructor 
in tum invokes the destructor for its vector<double> elements, and all is neatly 
cleaned up, leaving no object undestroyed and leaking no memory. 

Because delete invokes destructors (for types, such as vector, that have one), 
delete is often said to destroy objects, not just deallocate them. 

As usual, please remember that a "naked" new outside a constructor is an 
opportunity to forget to delete it. Unless you have a good (that is, really simple, 
such as Vector_ref from §13.10 and §E.4) strategy for deleting objects, try to 
keep news in constructors and deletes in destructors. 

So far, so good, but how do we access the members of a vector, given only a 
pointer? Note that all classes support the operator . (dot) for accessing members, 
given the name of an object: 
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vector v(4); 
int x = v.size(); 
double d = v.get(3); 

Similarly. all classes support the operator -> (arrow) for accessing members, 
given a pointer to an object: 

vector• p = new vector(4); 
int x = p->Size() ;  
double d = p->get(3); 

Like . (dot}, -> (arrow) can be used for both data members and function mem
bers. Since built-in types, such as int and double, have no members, -> doesn't 
apply to built-in types. Dot and arrow are often called member access operators. 

1 7.8 Messing with types: void* and casts 
Using pointers and free·store·allocated arrays, we are very close to the hardware. 
Basically, our operations on pointers (initialization, assignment, • , and [ 1) map di
rectly to machine instructions. At this level, the language offers only a bit of nota
tional convenience and the compile-time consistency offered by the type system. 
Occasionally, we have to give up even that last bit of protection. 

Naturally, we don't want to make do without the protection of the type sys· 
tern, but sometimes there is no logical alternative (e.g., we need to interact with 
another language that doesn't know about C++'s types) . There are also an un
fortunate number of cases where we need to interface with old code that wasn't 
designed witl1 static type safety in mind. For that, we need two things: 

A type of pointer that points to memory without knowing what kinds of 
objects reside in that memory 

An operation to tell the compiler what kind of type to assume (without 
proof) for memory pointed to by one of those pointers 
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The type void• means "pointer to some memory that the compiler doesn't know f) 
the type of." We use void• when we want to transmit an address between pieces 
of code that really don't know each other's types. Examples are the "address" ar· 
guments of a callback function (§16.3.1)  and the lowest level of memory alloca· 
tors (such as the implementation of the new operator) . 

TI1ere are no objects of type void, but as we have seen, we use void to mean 
"no value returned": 

void v; 
void f(); 

II error: there are no objects of type void 
II iO returns noth ing - fO does not return an object of type void 
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A pointer to any object type can b e  assigned t o  a void• .  For example: 

void• pv1 = new int; II OK: int• converts to void* 
void• pv2 = new double[10]; II OK: double* conwrts to void• 

Since the compiler doesn't know what a void• points to, we must tell it: 

void f(void• pv) 
{ 

void• pv2 = pv; 
double• pd = pv; 

II copying is OK (copying is what void•s are ion 
II error: cannot convert void* to doul>lt·• 

•pv = 7; II error: cannot dereicrence a void* 
II (we don't know what type of object it poin ts to) 

pv[2] = 9; II (•rror: cannot subscript a void* 
int• pi = static_cast<int•>(pv); II OK: exp l ic i t  conversion 
II . . .  

A static_ cast can be used to explicitly convert between related pointer types, such 
as void• and double• (§A.5.7). The name "static_cast'' is a deliberately ugly 
name for an ugly (and dangerous) operation - use it only when absolutely neces
sary. You shouldn't find it necessary very often - if  at all. An operation such as 
static_ cast is called an explicit type conversion (because that's what it does) or collo· 
quially a cost (because it is used to support something that's broken). 

C++ offers two casts that are potentially even nastier than static_cast : 

reinterpret_ cast can cast between unrelated types, such as int and double• . 

const_cast can "cast away const:' 

For example : 

Register• in = reinterpret_cast<Register•>(Oxff); 

void f(const Buffer• p) 
{ 

Buffer• b = const_cast<Buffer•>(p); 
II . . .  

The frrst example is the classical necessary and proper use of a reinterpret_ cast. 
We tell the compiler that a certain part of memory (the memory starting with lo
cation Oxff} is to be considered a Register (presumably with special semantics) . 
Such code is necessary when you write things like device drivers. 
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In the second example. const_cast strips the const from the const Buffer• called f.J 
p. Presumably. we know what we are doing. 

At least static_cast can't mess with the pointer/integer distinction or with 
"const-ness," so prefer static_cast if you feel the need for a cast. When you think 
you need a cast, reconsider: Is there a way to write the code without the cast? Is • \ 
there a way to redesign that part of the program so that the cast is not needed? U 
Unless you are interfacing to other people's code or to hardware, there usually is 
a way. If not, expect subtle and nasty bugs. Don't expect code using reinter
pret_cast to be portable. 

1 7.9 Pointers and references 
You can think of a reference as an automatically dereferenced immutable pointer or 
as an alternative name for an object. Pointers and references differ in these ways: 

Assignment to a pointer changes tl1e pointer's value (not the pointed-to ..... 
value). U 
To get a pointer you generally need to use new or &. 

To access an object pointed to by a pointer you use • or [ ] .  

Assignment to  a reference changes what the reference refers to  (not the 
reference itself) .  

You cannot make a reference refer to  a different object after initialization. 

Assignment of references does deep copy (assigns to the referred-to ob
ject) ; assignment of pointers docs not (assigns to the pointer object itself} . 

Beware of null pointers. 

For example : 

int x = 10; 
int• p = &x; 
•p = 7; 
int x2 = •p; 
int• p2 = &x2; 
p2 = p; 
p = &x2; 

II you need & to get a pointer 
II use • to assign to x through p 
II read x through p 
II get a pointer to another int 
II p2 and p both point to x 
II make p point to another object 
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The equivalent example for references is 

int y = 10; 
int& r =  y; 
r =  7; 
int y2 = r; 
int& r2 = y2; 
r2 = r; 
r =  &y2; 

II the & is in the type, not in the in i t i,l l izer 
II assign to y through r (no • needed) 
II read y through r (no • needed) 
II get a relerence to another int 
II the va lue of y is assigned to y2 
II error: you can't change the value of a reierence 
II (no assignment oi an int* to an int&) 

Note the last example; it is not just this construct that will fail - there is no way to 
get a reference to refer to a different object after initialization. If you need to point 
to something different, use a pointer. For ideas of how to use pointers, see §17.9.3. 

A reference and a pointer are both implemented by using a memory address. 
They just use that address differently to provide you - the programmer - slightly 
different facilities. 

1 7  .9.1 Pointer and reference parameters 
When you want to change the value of a variable to a value computed by a func
tion, you have three choices. For example : 

int incr_v(int x) { return X+1 ; } 
void incr_p(int• p) { ++•p; } 

void incr_r(int& r) { ++r; } 

II compute a new va lue and return i t  
II pass a pointer 
II (dereference i t  and increment the result !  
II pass a reference 

How do you choose? We think returning the value often leads to the most obvi
ous (and therefore least error-prone) code; that is: 

int x = 2; 
x = incr_v(x); II copy x to incr_vO; then copy the result out and assign it 

We prefer that style for small objects, such as an int. However, passing a value 
back and forth is not always feasible. For example, we might be writing a func· 
tion that modifies a huge data structure, such as a vector of 10,000 ints; we can't 
copy those 40,000 bytes (at least twice) with acceptable efficiency. 

How do we choose between using a reference argument and using a pointer 
argument? Unfortunately, either way has both attractions and problems, so again 
the answer is less than clear-cut. You have to make a decision based on the indi
vidual function and its likely uses. 
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Using a pointer argument alerts the programmer that something might be 
changed. For example : 

int x = 7; 

incr_p(&x) // t he & is needed 
incr_r(x); 

The need to use & in incr_p(&x) alerts the user that x might be changed. In con
trast, incr_r(x) "looks innocent." This leads to a slight preference for the pointer 
vers10n. 
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On the other hand, if you use a pointer as a function argument, the function f) 
has to beware that someone might call it with a null pointer, that is, with a 
pointer with the value zero. For example: 

incr_p(O); II crash: incr_pO wi l l  try to dereference 0 
int• p = 0; 
incr_p(p); II crash: incr_pO wi l l  try to dereierence 0 

This is obviously nasty. The person who writes incr_p() can protect against this: 
void incr_p(int• p) 
{ 

if (p==O) error("null pointer argument to incr_p()"); 
++•p; II dereference the pointer and increment the object po inted to 

But now incr_p() suddenly doesn't look as simple and attractive as before. Chap· 
ter 5 discusses how to cope with bad arguments . In contrast, users of a reference 
(such as incr_r()) are entitled to assume that a reference refers to an object. 

If "passing nothing" (passing no object) is acceptable from the point of view 
of the semantics of the function, we must use a pointer argument. Note: That's 
not the case for an increment operation - hence the need for throwing an excep
tion for p==O. 

So, the real answer is: "The choice depends on the nature of the function": 

For tiny objects prefer pass-by-value. 

For functions where "no object" (represented by 0) is a valid argument 
use a pointer parameter (and remember to test for 0) . 

Otherwise, use a reference parameter. 

See also §8.5.6. 
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1 7  .9.2 Pointers, references, and inheritance 
In §14.3, we saw how a derived class, such as Circle, could be used where an ob
ject of its public base class Shape was required. We can express that idea in terms 
of pointers or references : a Circle* can be implicitly converted to a Shape• be
cause Shape is a public base of Circle. For example: 

void rotate(Shape• s, int n); II rotate •s n degrees 

Shape• p = new Circle(Point(100, 100),40); 
Circle c(Point(200,200),50); 
rotate(&c,45); 

And similarly for references : 

void rotate(Shape& s, int n); 

Shape& r =  c; 
rotate(c,75); 

II rotate s n degrees 

This is crucial for most object-oriented programming techniques (§14.3-4) . 

1 7.9.3 An example: l ists 
Lists are among the most common and useful data structures. Usually, a list is 
made out of "links" where each link holds some information and pointers to 
other links . This is one of the classical uses of pointers. For example, we could 
represent a short list of Norse gods like this: 

A list like this is called a doubly-li11ked list because given a link, we can find both 
the predecessor and the successor. A list where we can find only the successor is 
called a singly-lmked list. We use doubly-linked lists when we want to make it easy 
to remove an element. We can define these links like this: 

struct Link { 
string value; 
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} ;  

Link• prev; 
Link• succ; 
Link(const string& v, Link• p = 0, Link• s = 0) 

: value(v), prev(p), succ(s) { } 

That is, given a Link, we can get to its successor using the succ pointer and to its 
predecessor using the prev pointer. We use the null pointer to indicate that a Link 
doesn't have a successor or a predecessor. We can build our list of Norse gods 
like this: 

Link• norse__gods = new Link("Thor",O,O); 
norse__gods = new Link(''Odin",norse__gods,O); 
norse__gods->Succ->prev = norse __gods; 
norse __gods = new Link( ''freia" ,norse__gods,O); 
norse__gods->succ->prev = norse__gods; 

We built that list by creating the Links and tying them together as in the picture : 
first Thor, then Odin as the predecessor of Thor, and finally Freia as the prede
cessor of Odin. You can follow the pointer to see that we got it right, so that each 
succ and prev points to the right god. However, the code is obscure because we 
didn't explicitly define and name an insert operation: 

Link• insert(Link• p, Link• n) 
{ 

II i nsert n before p ( incomplete) 

n->succ = p; II p comes aiter n 
p->prev->Succ = n; II n comes after what used to be p's predecessor 
n->prev = p->prev; II p's predecessor becomes n's predecessor 
p->prev = n; II n becomes p's predecessor 
return n; 

Tius works provided that p really points to a Link and that the Link pointed to by 
p really has a predecessor. Please convince yourself that this really is so. When 
thinking about pointers and linked structures, such as a list made out of Links, we 
invariably draw little box-and-arrow diagrams on paper to verify that our code 
works for small examples. Please don't be too proud to rely on tills effective low
tech design technique. 

That version of insert() is incomplete because it doesn't handle the cases 
where n, p, or p->prev is 0. We add the appropriate tests for the null pointer and 
get the messier, but correct, version: 
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Link• insert(Link• p ,  Link• n) II insert n before p; return n 
{ 

if (n==O) return p; 
if (p==O) return n; 
n->succ = p; II p comes aiter n 
if (p->prev) p->prev->Succ = n; 
n->prev = p->prev; II p's predecessor becomes n's predecessor 
p->prev = n; II n becomes p's predecessor 
return n; 

Given that, we could write 

Link• norse__gods = new Link("Thor"); 
norse__gods = insert(norse__gods,new Link("Odin")); 
norse__gods = insert(norse__gods,new Link("freia")); 

Now all the error-prone fiddling with the prev and succ pointers has disappeared 
from sight. Pointer fiddling is tedious and error-prone and slwu/d be hidden in 
well-written and well-tested functions. In particular, many errors in conventional 
code come from people forgetting to test pointers against 0 - just as we (deliber
ately) did in the first version of insert() . 

Note that we used default arguments (§15.3.1 ,  §A.9.2) to save users from 
mentioning predecessors and successors in every constructor use. 

1 7.9.4 List operations 
The standard library provides a list class, which we will describe in §20.4. It 
hides all link manipulation, but here we will elaborate on our notion of list based 
on the Link class to get a feel for what goes on "under the covers" of list classes 
and see more examples of pointer use. 

What operations does our Link class need to allow its users to avoid "pointer 
fiddling''? That's to some extent a matter of taste, but here is a useful set: 

The constructor 

insert: insert before an element 

add: insert after an element 

erase: remove an element 

find : fmd a Link with a given value 

advance: get the nth successor 

We could write these operations like this : 
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Link• add(Link• p, Link• n) II insert n aiter p; return n 
{ 

II much l i ke insert (see exerc ise 1 1  J 

Link• erase(Link• p) 
{ 

II remove •p from l ist; return p's successor 

if (p-=0) return 0; 
if (p->succ) p->Succ->prev = p->prev; 
if (p->prev) p->prev->Succ = p->succ; 
return p->Succ; 

Link• find(Link• p, const string& s) II find s in l ist; 

while(p) { 
if (p->value = s) return p; 
p =  p->succ; 

return 0; 

II return 0 for "not found" 

Link• advance(Link• p, int n) II move n positions in l ist 
II return 0 for "not iound" 

II positive n moves forward, negative backward 

if (p==O) return 0; 
if (O<n) { 

while (n--) { 

if (n<O) { 

if (p->succ == 0) return 0; 
p = p->Succ; 

while (n++) { 

return p; 

if (p->prev == 0) return 0; 
p =  p->prev; 
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Note the use o f  the postftx n++. This form o f  increment ("post-increment") yields 
the value before the increment as its value. 

1 7  .9.5 List use 
As a little exercise, let's build two lists: 

Link• norse__gods = new Link("Thor");  
norse__gods = insert(norse__gods,new Link(" Odin")); 
norse__gods = insert(norse__gods,new Link("Zeus")); 
norse_gods = insert(norse__gods,new Link("freia")) ; 

Link• greek__gods = new Link(" Hera"); 
greek__gods = insert(greek__gods,new Link(" Athena")); 
greek__gods = insert(greek__gods,new Link(" Mars")); 
greek__gods = insert(greek__gods,new Link("Poseidon")) ; 

"Unfortunately," we made a couple of mistakes: Zeus is a Greek god, rather tl1an a 
Norse god, and the Greek god of war is Ares, not Mars (Mars is his Latin/Roman 
name) . We can ftx that: 

Link• p = find(greek__gods, "Mars"); 
if (p) p->value = "Ares";  

Note how we were cautious about find() returning a 0. We think that we know 
that it can't happen in this case (after all, we just inserted Mars into greek__gods}, 
but in a real example someone might change that code. 

Similarly, we can move Zeus into his correct Pantheon: 

Link• p = find(norse__gods, "Zeus") ;  
i f  (p) { 

erase(p); 
insert(greek__gods,p); 

Did you notice the bug? It's quite subtle (unless you are used to working directly 
with links) .  What if the Link we erase() is the one pointed to by norse__gods? 
Again, that doesn't actually happen here, but to write good, maintainable code, 
we have to take that possibility into account: 

Link• p = find(norse__gods, "Zeus"); 
if (p) { 

if (p==norse_gods) norse__gods = p->succ; 
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erase(p); 
greek__gods = insert(greek_gods,p); 

While we were at it, we also corrected the second bug: when we insert Zeus btjore 
the first Greek god, we need to make greek__gods point to Zeus's Link. Pointers 
are extremely useful and flexible, but subtle. 

Finally, let's prim out those lists: 

void print_aii(Link• p) 
{ 

cout << "{ " ;  
while (p) { 

cout << p->value; 
if (p=p->succ) cout << ", " ;  

cout << " }"; 

print_all(norse__gods); 
cout<<"\n";  

print_all(greek__gods); 
cout<<"\n"; 

This should give 

{ freia, Odin, Thor } 
{ Zeus, Poseidon, Ares, Athena, Hera } 

1 7.1  0 The this pointer 
Note that each of our list functions takes a Link• as its frrst argument and ac· 
cesses data in that object. That's the kind of function that we often make member 
functions. Could we simplify Link (or link use) by making the operations mem· 
hers? Could we maybe make the pointers private so that only the member func· 
tions have access to them? We could: 

class Link { 
public: 

string value; 
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Link(const string& v, Link• p = 0,  Link• s = 0) 
: value(v), prev(p), succ(s) { } 

Link• insert(Link• n) ; II insert n beiore th is object 
Link• add(Link• n) ; II insert n after this object 
Link• erase() ; II remove this object irom l ist 
Link• find(const string& s); II iind s in l ist 
const Link• find(const string& s) const; II iind s in l ist 

Link• advance(int n) const; II move n posit ions in l ist 

Link• next() const { return succ; } 
Link• previous() const { return prev; } 

private: 

} ; 

Link• prev; 
Link• succ; 

This looks promising. We defined the operations that don't change the state of a 
Link into const member functions. We added (nonmodifying) next() and previous() 
functions so that users could iterate over lists (of Links) - those are needed now that 
direct access to succ and prev is prohibited. We left the value as a public member be
cause (so far) we have no reason not to; it is 'just data." 

Now let's try to implement Link: : insert() by copying our previous global 
insert() and modifying it suitably: 

Link• Link: : insert(Link• n) 
{ 

II i nsert n before p; return n 

Link• p = this; II poi nter to this object 
if (n==O) return p; II noth ing to insert 
if (p==O) return n; II noth ing to insC:'rt into 
n->succ = p; II p comes after n 
if (p->prev) p->prev->succ = n; 
n->prev = p->prev; II p's predecessor becomes n's predecessor 
p->prev = n; II n becomes p's predecessor 
return n; 

But how do we get a pointer to the object for which Link :  : insert() was called·� 
Without help from the language we can't. However, in every member function, 
the identifier this is a pointer that points to the object for which the member func
tion was called. Alternatively, we could simply use this instead of p: 
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Link• Link: :  insert(Link• n) 
{ 

II insert n before this object; return n 

if (n==O) return this; 
if (this==O) return n; 
n->succ = this; II this object comes after n 
if (this->prev) this->prev->succ = n; 
n->prev = this->prev; II this object's predecessor 

II becomes n's predecessor 
this->prev = n; II n becomes this object's predecessor 
return n; 

This is  a bit verbose, but we don't need to mention this to access a member, so 
we can abbreviate : 

Link• Link: : insert(Link• n) 
{ 

II insert n beforc.> th is object; return n 

if (n==O) return this; 
if (this==O) return n; 
n->succ = this; II this object comes after n 
if (prev) prev->succ = n; 
n->prev = prev; II this object's predecessor becomes n's predecessor 
prev = n; II n becomes this object's predecessor 
return n; 

In other words, we have been using the this pointer - the pointer to the current 
object - implicitly every time we accessed a member. It is only when we need to 
refer to the whole object that we need to mention it explicitly. 

Note that this has a specific meaning: it points to the object for which a mem
ber function is called. It does not point to any old object. The compiler ensures 
that we do not change the value of this in a member function. For example: 

struct S { 
II . . .  
void mutate(§• p) 
{ 

} ; 

this = p; II error: "this" is immutable 
II . . .  
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1 7. 1 0.1 More link use 
Having dealt with the implementation issues, we can see how the use now looks : 

Link• norse__gods = new Link("Thor") ;  
norse__gods = norse__gods->insert(new Link("Odin")); 
norse__gods = norse__gods->insert(new Link("Zeus")); 
norse__gods = norse__gods->insert(new Link("freia" )); 

Link• greek__gods = new Link("Hera"); 
greek__gods = greek__gods->insert(new Link(" Athena")); 
greek__gods = greek__gods->insert(new Link(" Mars")); 
greek__gods = greek__gods->insert(new Link("Poseidon")); 

That's very much like before. As before, we correct our "mistakes." Correct the 
name of the god of war: 

Link• p = greek__gods->find("Mars"); 
if (p) p->value = "Ares" ;  

Move Zeus into his correct Pantheon: 

Link• p2 = norse__gods->find("Zeus" ) ;  
if  (p2) { 

if (p2==norse__gods) norse__gods = p2->next(); 
p2->erase(); 
greek__gods = greek__gods->insert(p2); 

Finally, let's print out those lists : 

void print_aii(Link• p) 
{ 

cout << "{ " ; 
while (p) { 

cout << p->value; 
if (p=p->next()) cout << " , " ; 

cout << " }"; 
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print_all(norse_gods); 
cout<<"\n"; 

print_all(greek_gods); 
cout<<"\n";  

This should again give 

{ Freia, Odin, Thor } 
{ Zeus, Poseidon, Ares, Athena, Hera } 

So. which version do you like better: the one where insert(), etc. are member 
functions or the one where they are freestanding functions? In this case the dif
ferences don't matter much, but see §9.7.5. 
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One thing to observe here is that we still don't have a list class, only a link • ,  
class. That forces us to keep worrying about which pointer is the pointer to the U 
first element. We can do better than that - by defining a class List - but designs 
along the lines presented here are very conunon. The standard library list is pre
sented in §20.4 . 

.../ Drill 
This drill has two parts. The first exercises/builds your understanding of free
store-allocated arrays and contrasts arrays with vectors: 

1. Allocate an array of ten ints on the free store using new. 
2. Print the values of the ten ints to cout. 
3. Deallocate the array (using delete[ ]). 
4. Write a function print_array10(ostream& os, int• a) that prints out the 

values of a (assumed to have ten elements) to os. 
5. Allocate an array of ten ints on the free store; initialize it with the values 

100, 101,  102, etc. ; and print out its values. 
6. Allocate an array of 1 1  ints on the free store; initialize it with the values 

100, 101,  102, etc. ; and print out its values. 
7. Write a function print_array(ostream& os, int• a, int n) that prints out 

the values of a (assumed to have n elements) to os. 
8. Allocate an array of 20 ints on the free store; initialize it with the values 

100, 101,  102, etc. ; and print out its values. 
9. Did you remember to delete the arrays? (If not, do it.) 

10. Do 5, 6, and 8 using a vector instead of an array and a print_vectorQ in
stead of print_array(). 
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The second part focuses on pointers and their relation to arrays. Using print_array() 
from the last drill: 

1 .  Allocate an int, initialize it to 7, and assign its address to a variable p1 . 
2. Print out the value of p1 and of the int it points to. 
3. Allocate an array of seven ints; initialize it to 1, 2, 4, 8, etc.;  and assign its 

address to a variable p2. 
4. Print out the value of p2 and of the array it points to. 
5. Declare an int• called p3 and initialize it with p2. 
6. Assign p1 to p2. 
7. Assign p3 to p2. 
8. Print out the values of p1 and p2 and of what they point to. 
9. Deallocate all the memory you allocated from the free store. 

10. Allocate an array of ten ints; initialize it to 1 ,  2, 4, 8, etc. ; and assign its 
address to a variable p1. 

1 1 .  Allocate an array of ten ints, and assign its address to a variable p2. 
12. Copy the values from the array pointed to by p1 into the array pointed to 

by p2. 
13. Repeat 10-12 using a vector rather than an array. 

Review 

1. Why do we need data structures with varying numbers of elements? 
2. What four kinds of storage do we have for a typical program? 
3. What is free store? What other name is conunonly used for it? What op· 

erators support it? 
4. What is a dereference operator and why do we need one? 
5. What is an address? How are memory addresses manipulated in C++? 
6. What information about a pointed·to object does a pointer have? What 

useful information does it lack? 
7. What can a pointer point to? 
8. What is a leak? 
9. What is a resource? 

10. How can we initialize a pointer? 
1 1 .  What is a null pointer? When do we need to use one? 
12. When do we need a pointer (instead of a reference or a named object)? 
13. What is a destructor? When do we want one? 
14. When do we want a virtual destructor? 
15. How are destructors for members called? 
16. What is a cast? When do we need to use one? 
17. How do we access a member of a class through a pointer? 
18. What is a doubly-linked list? 
19. What is this and when do we need to use it? 
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Terms 

address 
address of: & 
allocation 
cast 
container 
contents of: • 
deallocation 
delete 
delete[) 
dereference 

Exercises 

destructor 
free store 
link 
list 
member access : -> 
member destructor 
memory 
memory leak 
new 
null pointer 

pointer 
range 
resource leak 
subscripting 
subscript: [ 1 
this 
type conversion 
virtual destructor 
void* 

1. What is the output format of pointer values on your implementation? 
Hint: Don't read the documentation. 

2. How many bytes are there in an int? In a double? In a bool? Do not use 
sizeof except to verify your answer. 

3. Write a function, void to_lower(char• s), that replaces all uppercase char
acters in the C-style string s with their lowercase equivalents. For exam
ple, "Hello, World!" becomes "hello, world !" Do not use any standard 
library functions. A C-style string is a zero-terminated array of charac
ters, so if you find a char with the value 0 you are at the end. 

4. Write a function, char• strdup(const char*), that copies a C-style string 
into memory it allocates on the free store. Do not use any standard li
brary functions. 

5. Write a function, char• findx(const char• s, const char• x), that fmds the 
frrst occurrence of the C-style string x in s. 

6. Tills chapter does not say what happens when you run out of memory 
using new. That's called memory exhaustion. Fmd out what happens. You 
have two obvious alternatives: look for documentation, or write a pro
gram with an infinite loop that allocates but never deallocates. Try both. 
Approximately how much memory did you manage to allocate before 
failing? 

7. Write a program that reads characters from cin into an array that you al
locate on the free store. Read individual characters until an exclamation 
mark ( I )  is entered. Do not use a std : : string. Do not worry about mem
ory exhaustion. 

8. Do exercise 7 again, but this time read into a std: : string rather than to 
memory you put on the free store (string knows how to use the free store 
for you). 
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9 .  Which way does the stack grow: up (toward higher addresses) or down (to· 
ward lower addresses)? Which way does the free store initially grow (that 
is, before you use delete) ? Write a program to detennine the answers. 

10. Look at your solution of exercise 7. Is there any way that input could get 
the array to overflow; that is, is there any way you could enter more 
characters than you allocated space for (a serious error) ? Does anything 
reasonable happen if you try to enter more characters than you allo
cated? Look up realloc() and use it to extend your allocation if needed. 

1 1 .  Complete the "list of gods" example from §17. 10. 1 and run it. 
12. Why did we define two versions of find()? 
13. Modify the Link class from §17. 10. 1 to hold a value of a struct God. 

struct God should have members of type string: name, mythology, vehi
cle, and weapon. For example, God("Zeus", "Greek", "", "lightning") 
and God("Odin", "Norse", "Eight-legged flying horse called Sleipner", 
" "). Write a print_all() function that lists gods with their attributes one 
per line. Add a member function add_ordered() that places its new ele· 
ment in its correct lexicographical position. Using the Links with the val
ues of type God, make a list of gods from three mythologies; then move 
the elements (gods) from that list to three lexicographically ordered lists 
- one for each mythology. 

14. Could the "list of gods" example from §17. 10.1 have been written using a 
singly-linked list; that is, could we have left the prev member out of Link? 
Why might we want to do that? For what kind of examples would it 
make sense to use a singly-linked list? Re-implement that example using 
only a singly-linked list. 

Postscript 

Why bother with messy low-level stuff like pointers and free store when we can 
simply use vector? Well, one answer is that someone has to design and implement 
vector and similar abstractions, and we'd like to know how that's done. There are 
programming languages that don't provide facilities equivalent to pointers and 
thus dodge the problems with low-level programming. Basically, progranuners of 
such languages delegate the tasks that involve direct access to hardware to C++ 
programmers (and programmers of other languages suitable for low-level pro
gramming). Our favorite reason, however, is simply that you can't really claim to 
understand computers and programming until you have seen how software meets 
hardware. People who don't know about pointers, memory addresses, etc. often 
have the strangest ideas of how their programming language facilities work; such 
wrong ideas can lead to code that's "interestingly poor." 
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Vectors and Arrays 

"Caveat emptor!"  

-Good advice 

This chapter describes how vectors are copied and accessed 

through subscripting. To do that, we discuss copying in 

general and consider vector's relation to the lower-level notion of 

arrays. We present arrays' relation to pointers and consider the 

problems arising from their use. We also present the five essential 

operations that must be considered for every type : construction, 

default construction, copy construction, copy assignment, and 

destruction. 
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1 8. 1  Introduction 
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18.5 Arrays 
18.5.1 Pointers to array elements 
18.5.2 Pointers and arrays 
18.5.3 Array initialization 
18.5.4 Pointer problems 

18.6 Examples: palindrome 
18.6.1 Palindromes using string 
18.6.2 Palindromes using arrays 
18.6.3 Palindromes using pointers 

To get into the air, a plane has to accelerate along the runway until it moves fast 
enough to "jump" into the air. While the plane is lumbering along the runway, it 
is little more than a particularly heavy and awkward truck. Once in the air, it 
soars to become an altogether different, elegant, and efficient vehicle. It is in its 
true element. 

In this chapter, we are in the middle of a "run" to gather enough program· 
ming language features and techniques to get away from the constraints and diffi· 
culties of plain computer memory. We want to get to the point where we can 

program using types that provide exactly the properties we want based on logical 
needs. To "get there" we have to overcome a number of fundamental constraints 
related to access to the bare machine, such as the following: 

An object in memory is of fixed size. 

An object in memory is in one specific place. 

The computer provides only a few fundamental operations on such ob· 
jects (such as copying a word, adding the values from two words, etc.) . 

Basically, those are the constraints on the built-in types and operations of C++ 
(as inherited from C; see §22.2.5 and Chapter 27) .  In Chapter 17, we saw the be· 
ginnings of a vector type that controls all access to its elements and provides us 
with operations that seem "natural" from tl1e point of view of a user, rather than 
from the point of view of hardware. 

This chapter focuses on the notion of copying. This is an important but 
rather technical point: What do we mean by copying a nontrivial object? To what 
extent are tl1e copies independent after a copy operation? What copy operations 
are there? How do we specify them? And how do they relate to other fundamen
tal operations, such as initialization and cleanup? 
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Inevitably, we get to discuss how memory is manipulated when we don't 
have higher-level types such as vector and string. We examine arrays and point· 
ers, their relationship, their use, and the traps and pitfalls of their use. This is es· 
sential information to anyone who gets to work with low· level uses of C++ or C 
code. 

Please note that the details of vector are peculiar to vectors and the C++ 
ways of building new higher-level types from lower-level ones. However, every 
"higher-level" type (string, vector, list, map, etc.) in every language is somehow 
built from the same machine primitives and reflects a variety of resolutions to the 
fundamental problems described here. 

1 8.2 Copying 
Consider our vector as it was at the end of Chapter 17: 

class vector { 
// the size int sz; 

double• elem; 
public: 

II a pointer to the elemenls 

}; 

vector(int s) 
: sz(s), elem(new double[s)) { }  

-vector() 
{ delete[ ) elem; } 

II . . .  

Let's try to copy one of these vectors : 

void f(int n) 
{ 

II constructor 
II al locates memory 
II destructor 
II deal locates memory 

vector v(3); 
v.set(2,2.2); 
vector v2 = v; 
II . . .  

II define a veclor oi 3 elements 
// set v(2 1 to 2 .2  
II what happens here? 

Ideally, v2 becomes a copy of v (that is, = makes copies) ; that is, v2.sizeO==v.size() 
and the v2[i)==v[i) for all i's in the range (O:v.size()). Furthermore, all memory is 
retumed to the free store upon exit from f(). That's what the standard library 
vector does (of course) , but it's not what happens for our still-far-too-simple 
vector. Our task is to improve our vector to get it to handle such examples cor· 
rectly, but first let's figure out what our current version actually does. Exactly 
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what does it do wrong? How? And why? Once we know that, we can probably ftx 
the problems. More importantly, we have a chance to recognize and avoid similar 
problems when we see them in other contexts. 

The default meaning of copying for a class is "Copy all the data members." 
That often makes perfect sense. For example, we copy a Point by copying its co
ordinates. But for a pointer member, just copying the members causes problems. 
In particular, for the vectors in our example, it means that after the copy, we have 
v.sz==v2.sz and v.elem=v2.elem so that our vectors look like this: 

That is, v2 doesn't have a copy of v's elements; it shares v's elements. We could 
write 

v.set(1 ,99); II set v l l l to 99 
v2.set(0,88); // set v2 (0l to 88 
cout << v.get(O) << 1 1 << v2.get(1) ;  

l11e result would be the output 88 99. That wasn't what we wanted. Had there 
been no "hidden" connection between v and v2, we would have gotten the output 
0 0, because we never wrote to v[O) or to v2[1). You could argue that the behavior 
we got is "interesting," "neat!" or "sometimes useful," but that is not what we in
tended or what the standard library vector provides. Also, what happens when 
we return from f() is an unn1itigated disaster. Then, the destructors for v and v2 
are implicitly called; v's destructor frees the storage used for the elements using 

delete(] elem; 

and so does v2's desuuctor. Since elem points to the same memory location in 
both v and v2, that memory will be freed twice with likely disastrous results 
(§17.4.6) . 

1 8.2.1 Copy constructors 
So, what do we do? We'll do the obvious: provide a copy operation that copies 
the elements and make sure that this copy operation gets called when we initialize 
one vector with another. 

Initialization of objects of a class is done by a constructor. So, we need a con
structor that copies. Such a constructor is obviously called a copy constroclor. It is 
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defmcd to take as its argument a reference to the object from which to copy. So. 
for class vector we need 

vector(const vector&); 

This constructor will be called when we try to initialize one vector with another. 
We pass by reference because we (obviously) don't want to copy the argument of 
the constructor that defines copying. We pass by const reference because we 
don't want to modify our argument (§8.5.6). So we refme vector like this: 

class vector { 
int sz; 
double• elem; 
void copy(const vector& arg); II copy elements irom arg into *elem 

public: 

}; 

vector(const vector&) ; II copy constructor: define copy 
II . . .  

The copy() simply copies the elements from an argument vector: 

void vector: : copy(const vector& arg) 
II copy elements (O:arg.sz-1 1  

for (int i =  0; i<arg.sz; ++i) elem[i) = arg.elem[i); 

The copy() member function assumes that there arc sz elements available both in 
its argument arg and in the vector it is copying into. To help make sure that's 
true. we make copy() private. Only functions that are part of the implementation 
of vector can call copy(). These functions need to make sure that the sizes match. 

The copy constructor sets the number of elements (sz) and allocates memory 
for the clements (initializing elem) before copying element values from the argu
ment vector: 

vector: :  vector(const vector& arg) 
II a l locate elements, then in i t ia l ize them by copying 

: sz(arg.sz), elem(new double[arg.sz)) 

copy(arg); 
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Given this copy constructor, consider again our example: 

vector v2 = v; 

Tius definition will initialize v2 by a call of vector's copy constructor with v as its 
argument. Again given a vector with three elements, we now get 

v: I 3 II ' 1.- .l . :�, � · - ·  

v2: I 3 I I ·  ·. :1 �· 
Given that, the destructor can do the right thing. Each set of elements is correctly 
freed. Obviously, the two vectors are now independent so that we can change the 
value of clements in v without affecting v2 and vice versa. For example: 

v.set(1 ,99); 
v2.set(0,88); 

II set v 1 1  I to 99 
II set v2 10 1  to 88 

cout << v.get(O) << 1 1 << v2.get(1 ); 

This will output 0 0. 
Instead of saying 

vector v2 = v; 

we could equally well have said 

vector v2(v); 

When v (the initializer) and v2 (the variable being initialized) are of the same type 
and that type has copying conventionally defined, those two notations mean ex
actly the same and you can usc whichever notation you like better. 

1 8.2.2 Copy assignments 
We handle copy construction (i1utialization), but we can also copy vectors by as
signment. As with copy initialization, tl1e default meaning of copy assignment is 
mcmberwise copy, so with vector as defmed so far, assignment will cause a dou
ble deletion (exactly as shown for copy constructors in §1 8.2. 1 )  plus a memory 
leak. For example: 

void f2(int n)  
{ 

vector v(3); II define a wctor 
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v.set(2,2.2); 
vector v2(4); 
v2 = v; 
II . . .  

II assignment: what happens here? 

We would like v2 to be a copy of v (and that's what the standard library vector 
does), but since we have said nothing about the meaning of assignment of our 
vector, the default assignment is used; that is, the assignment is a memberwise 
copy so that v2's sz and elem become identical to v's sz and elem, respectively. 
We can illustrate that like this: 

v:  

v2: 

When we leave f2(), we have the same disaster as we had when leaving f() in 
§18.2 before we added the copy constructor: the elements pointed to by both v 
and v2 are freed twice (using delete[]). In addition, we have leaked the memory 
initially allocated for v2's four elements. We "forgot" to free those. The remedy 
for this copy assignment is fundamentally the same as for the copy initialization 
(§18.2.1 ) .  We define an assignment that copies properly: 

class vector { 
int sz; 
double• elem; 
void copy(const vector& arg); II copy elements from arg into *elem 

public: 

} ; 

vector& operator=(const vector&) ; II copy assignment 
II . . .  

vector& vector: :operator=(const vector& a) 
II make this vector a copy of a 

double• p = new double[a.sz); II al locate new space 
copy(a); II copy elements 
delete[) elem; II deal locate old space 
elem = p; II now we can reset elem 
sz = a.sz; 
return •this; II return a sel f-reference (see § 1 7. 1  0) 
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Assignment is a bit more complicated than construction because we must deal 
with the old elements. Our basic strategy is to make a copy of the elements from 
the source vector: 

double• p = new double[a.sz); 
copy(a); 

II a l locate new space 

Then we free the old elements from the target vector : 

delete[) elem; II deal locate old space 

Finally, we let elem point to the new elements: 

elem = p; 
sz = a.sz; 

II now we can reset elem 

We can represent the result graphically like this: 

v: 1 3 ' 1  
v2: 1 ·3 1  

"--+-----tl • . I ,  2;2 . Given back to ..... ---'---;::::=�-==�- the free store by 
delete[) 

We now have a vector that doesn't leak memory and doesn't free (delete[)) any 
memory twice. 

When implementing the assignment, you could consider simplifying the 
code by freeing the memory for the old elements before creating the copy, but it 
is usually a very good idea not to throw away infom1ation before you know that 
you can replace it. Also, if you did that, strange things would happen if you as
signed a vector to itself: 

vector v(10); 
v=v; II se lf-assignment 

Please check that our implementation handles that case correctly (if not with op
tinlal efficiency) . 

1 8.2.3 Copy terminology 
Copying is an issue in most prograD15 and in most programming languages. The 
basic issue is whether you copy a pointer (or reference) or copy the information 
pointed to (referred to) : 
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Shallow copy copies only a pointer so that the two pointers now refer to 
the same object. That's what pointers and references do. 

DeejJ copy copies what a pointer points to so that the two pointers now 
refer to distinct objects. That's what vectors, strings, etc. do. We define 
copy constructors and copy assignments when we want deep copy for 
objects of our classes. 

Here is an example of shallow copy: 

int• p = new int(77); 
int• q = p; II copy the pointer p 
•p = 88; II change the va l ue of the int pointed to by p and q 

We can illustrate that like this: 

p: 

In contrast, we can do a deep copy: 

int• p = new int(77); 
int• q = new int(*p); II al locate a new int, then copy the va lue pointed to by p 
•p = 88; II change the val ue of  the int pointed to by p 

We can illustrate that like this :  

Using this temli.nology, we can say that the problem with our original vector was 
that it did a shallow copy, rather than copying the elements pointed to by its elem 
pointer. Our improved vector, like the standard library vector, does a deep copy 
by allocating new space for the elements and copying their values. Types that pro-
vide shallow copy (like pointers and references) are said to have poinler smumticJ or 
reference semantics (they copy addresses). Types that provide deep copy (like string 
and vector) are said to have value semantics (they copy the values pointed to) . From 
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a user perspective, types with value semantics behave as if no pointers were in
volved - just values that can be copied. One way of thinking of types with value () 
semantics is that they "work just like integers" as far as copying is concerned. 
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1 8.3 Essential operations 
We have now reached the point where we can discuss how to decide which con· 
structors a class should have, whether it should have a destructor, and whether 
you need to provide a copy assignment. l11ere are five essential operations to 
consider: 

Constructors from one or more arguments 

Default constructor 

Copy constructor (copy object of same type) 

Copy assignment (copy object of same type) 

Destructor 

Usually we need one or more constructors that take arguments needed to initial
ize an object. For example: 

string s("Triumph"); 
vector<double> v(10); 

II in i t ia l ize s to the charactC:'r string "Triumph" 
II make v a vector of 1 0 doubles 

As you can see, the meaning/use of an initializer is completely up to the construc
tor. The standard string's constructor uses a character string as an initial value, 
whereas the standard vector's constructor uses an integer as the initial number of 
elements. Usually we use a constructor to establish an invariant (§9.4.3). If we 
can't defme a good invariant for a class that its constructors can establish, we 
probably have a poorly designed class or a plain data structure. 

Constructors that take arguments are as varied as the classes they serve. The 
remaining operations have more regular patterns. 

How do we know if a class needs a default constructor? We need a default 
constructor if we want to be able to make objects of the class without specifying 
an initializer. The most common example is when we want to put objects of a 
class into a standard library vector. The following works only because we have 
default values for int, string, and vector<int>: 

vector<double> vi(10); II vector of 1 0  doubles, each i nitia l ized to 0.0 
vector<String> vs(10); II vector of 1 0  strings, each i n i t ial ized to "" 
vector<Vector< int> > vvi(10); II vector of 1 0  vectors, each initialized to vector() 

So, having a default constructor is often usefuL The question then becomes: 
"When does it make sense to have a default constructor?" An answer is: "When 
we can establish the invariant for the class with a meaningful and obvious default 
value." For value types, such as int and double, the obvious value is 0 (for double, 
that becomes 0.0). For string, the empty string, " ", is the obvious choice. For 
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vector, the empty vector serves well. For every type T, TO is the default value, if a 
default exists. For example, double() is 0.0, string() is '"' , and vector<int>() is the 
empty vector of ints. 
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A class needs a destructor if it acquires resources. A resource is something (_) 
you "get from somewhere" and that you must give back once you have finished 
using it. The obvious example is memory that you get from the free store (using 
new) and have to give back to the free store (using delete or delete[]). Our 
vector acquires memory to hold its elements, so it has to give that memory back ; 
therefore, it needs a destructor. Other resources that you might encounter as 
your programs increase in ambition and sophistication are ftles (if you open one, 
you also have to close it). locks, thread handles, and sockets (for conununication 
with processes and remote computers). 

Another sign that a class needs a destructor is simply that it has members f.j 
that arc pointers or references. If a class has a pointer or a reference member, it 
often needs a destructor and copy operations. 

A class that needs a destructor almost always also needs a copy constructor • 1 
and a copy assignment. The reason is simply that if an object has acquired a re- U 
source (and has a pointer member pointing to it), the default meaning of copy 
(shallow, memberwise copy) is almost certainly wrong. Again, vector is the clas-
sic example. 

In addition, a base class for which a derived class may have a destructor () 
needs a virtual destructor (§17.5.2). 

1 8.3.1 Explicit constructors 
A constructor that takes a single argument defines a conversion from its argu· 
ment type to its class. This can be most useful. For example: 

class complex { 
public: 

complex(double); II deiines double-to-complex conversion 
complex(double,double); 
II . . .  

}; 

complex z1 = 3.14; II OK: convert 3 . 1 4  to (3 . 1 4,0) 
complex z2 = complex(1 .2, 3.4); 

However, implicit conversions should be used sparingly and with caution. be- (J 
cause they can cause unexpected and undesirable effects. For example, our 
vector, as defined so far, has a constructor that takes an int. This implies that it 
defmes a conversion from int to vector. For exan1ple: 
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class vector { 

}; 

II . . .  
vector(int); 
II . . .  

vector v = 10; 
v =  20; 
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II odd: makes a vector of 1 0 doubles 
II eh? Assigns a new vector oi 20 doubll•s to v 

void f(const vector&); 
f(10); II eh? Cal ls f with a new vector of 1 0  doubles 

It seems we are getting more than we have bargained for. Fortunately, it is simple 
to suppress this use of a constructor as an implicit conversion. A constructor de
fined explicit provides only the usual construction semantics and not the implicit 
conversions. For example: 

class vector { 
II . . . 
explicit vector(int); 
II . . .  

}; 

vector v = 10; 
v =  20; 
vector v0(10); 

II error: no int-to-vector<double> conversion 
II error: no int-to-vector<double> conversion 
// OK 

void f(const vector<double>&); 
f(10); II error: no int-to-vcctor<double> conversion 
f(vector<double>(10)); II OK 

To avoid surprising conversions, we - and the standard - define vector's single
argument constructors to be explicit. It's a pity that constructors are not explicit 
by default; if in doubt. make any constructor that can be invoked with a single ar
gument explicit. 

1 8.3.2 Debugging constructors and destructors 
Constructors and destructors are invoked at well-defined and predictable points 
of a program's execution. However, we don't always write explicit calls, such as 
vector(2); rather we do something, such as declaring a vector, passing a vector as 
a by-value argument, or creating a vector on the free store using new. This can 
cause confusion for people who think in terms of syntax. There is not just a sin
gle syntax that triggers a constructor. It is simpler to think of constructors and de
structors this way: 
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Whenever an object of type X is created, one of X's constructors is invoked. 

Whenever an object of type X is destroyed, X's destructor is invoked. 

A destructor is called whenever an object of its class is destroyed; that happens 
when names go out of scope, the program terminates, or delete is used on a 
pointer to an object. A constructor (some appropriate constructor) is invoked 
whenever an object of its class is created; that happens when a variable is initial· 
ized, an object is created using new (except for built·in types),  and whenever an 

object is copied. 
But when docs that happen? A good way to get a feel for that is to add print 

statements to constructors, assignment operations, and destructors and then just 
try. For example: 

struct X { 
int val ;  

II simple test c l<tss 

}; 

void out(const string& s) 
{ cerr << this << "->" << s << ": " << val << "\n "; } 

X(){ out("X()"); vai=O; } II dciaul t  constructor 
X(int v) { out( "X(int)"); val=v; } 
X(const X& x){ out("X(X&) "); val=x.val; } II copy constructor 
X& operator=(const X& a) II copy assignment 

{ out("X: :operator=()"); val=a.val; return •this; } 
-XO { out("-X()");  } II destructor 

Anything we do with this X will leave a trace that we can study. For example: 

X glob(2); II a globa l  variable 

X copy(X a) { return a; } 

X copy2(X a) { X aa = a; return aa; } 

X& ref_to(X& a) { return a; } 

x• make(int i) { X a(i); return new X(a); } 

struct XX { X  a; X b; }; 

int main() 
{ 

X loc(4); 
X loc2 = loc; 
loc = X(5); 

II local variable 
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loc2 = copy(loc); 
loc2 = copy2(1oc); 
X loc3(6); 
X& r = ref_to(loc); 
delete make(7); 
delete make(B); 
vector<X> v(4); 
XX loc4; 
X* p = new X(9); 
delete p; 
X* pp = new X[5) ; 
delete pp; 

Try executing that. 

T R Y  T H I S  
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II an X on the iree store 

II an array of Xs on the iree store 

We really mean it: do run this example and make sure you understand the 
result. If you do, you'll understand most of what there is to know about con
struction and destruction of objects. 

Depending on the quality of your compiler, you may note some "missing copies" 
relating to our calls of copy() and copy2(). We (humans) can see that those func
tions do nothing: they just copy a value unmodified from input to output. If a 
compiler is smart enough to notice that, it is allowed to eliminate the calls to the 
copy constructor. In other words, a compiler is allowed to assume that a copy 
constructor copies and does nothing but copy. Some compilers are smart enough 
to eliminate many spurious copies. 

Now consider: why should we bother with this "silly class X"? It's a bit like 
the finger exercises that musicians have to do. After doing them, other things -
things that matter - become easier. Also, if you have problems with constructors 
and destructors, you can insert such print statements in constructors for your real 
classes to see that they work as intended. For larger programs, this exact kind of 
tracing becomes tedious, but similar teclmiques apply. For example, you can de
termine whether you have a memory leak by seeing if the number of construc
tions minus the number of destructions equals zero. Forgetting to defme copy 
constructors and copy assignments for classes that allocate memory or hold point
ers to objects is a common - and easily avoidable - source of problems. 

If your problems get too big to handle by such simple means, you will have 
learned enough to be able to start using the professional tools for fmding such 
problems; they are often referred to as "leak detectors." The ideal, of course, is 
not to leak memory by using techniques that avoid such leaks. 
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1 8.4 Access to vector elements 
So far (§17.6), we have used set() and get() member functions to access clements. 
Such uses are verbose and ugly. We want our usual subscript notation: v[i). The 
way to get that is to dcfme a member function called operator[). Here is our first 
(naive) try: 

class vector { 
int sz; 
double* elem; 

public: 
II . . .  

// the size 
II a pointer to the elements 

double operator[J(int n) { return elem[n); } II return element 
}; 

That looks good and especially it looks simple, but unfortunately it is too simple. 
Letting the subscript operator (operator[]()) return a value enables reading but 
not writing of elements: 

vector v(10); 
int x = v[2); 
v[3) = x; 

// fine 
II error: v i J I  i s  not an lval ue 

Here, v[i) is interpreted as a call v.operator[)(i), and that call returns the value of 
v's element number i. For this overly naive vector, v[3) is a floating-point value, 
not a floating-point variable. 

T RY T H I S  

( �  fiT Make a version of this vector that is complete enough to compile and see 
what error message your compiler produces for v[3J=x; . 

Our next try is to let operator[) return a pointer to the appropriate element: 

class vector { 
int sz; 
double* elem; 

public: 
II . . .  

// the size 
II a pointer to the elements 

double* operator[J(int n) { return &elem[n); } II return pointer 
}; 

Given that defmition, we can write 
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vector v(10); 
for (int i=O; i<v.size(); ++i) { 

•v[i) = i; 
cout << •v[i]; 
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II works, but sti l l  too ugly 

Here, v[i) is interpreted as a call v.operator[](i), and that call returns a pointer to 
v's element number i. The problem is that we have to write • to dereference that 
pointer to get to the element. That's almost as bad as having to write set() and 
get(). Returning a reference from the subscript operator solves this problem: 

class vector { 
II . . . 
double& operator[ )(int n) { return elem[n); } II return reference 

}; 

Now we can write 

vector v(10); 
for (int i=O; i<v.size(); ++i) { 

v[i) = i; 
cout << v[i); 

II works! 
II v i i  I returns a reference e lement i 

We have achieved the conventional notation: v[i) is interpreted as a call v.opera
tor[J(i), and that returns a reference to v's element number i. 

1 8.4.1 Overloading on const 
The operator[)() defmed so far has a problem: it  cannot be invoked for a const 
vector. For example: 

void f(const vector& cv) 
{ 

double d = cv[1); II error, but shou ld  be fine 
cv[1 ) = 2.0; II error (as i t  should be) 

The reason is our vector: :operator[)() could potentially change a vector. It doesn't, 
but the compiler doesn't know that because we "forgot" to tell it. The solution is to 
provide a version that is a const member function (see §9.7.4). That's easily done : 

class vector { 
II . . .  
double& operator[J(int n); II for non-cons! vectors 
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} ;  
double operator[J(int n) const; II for const vt•ctors 

We obviously couldn't return a double& from the const version, so we re· 
turned a double value. We could equally well have returned a const double &, 
but since a double is a small object there would be no point in returning a refer· 
ence (§8.5.6) so we decided to pass it back by value. We can now write : 

void ff(const vector& cv, vector& v) 
{ 

double d = cv[1 ); 
cv[1 ) = 2.0; 
double d = v[1 ); 
v[1) = 2.0; 

II ii ne <uses the cons! I I ) 
II error <uses the cons! I I ) 
II iine <uses the non-cons! I l l 
// fine (uses the non-canst I l l  

Since vectors are often passed by const reference, this const version o f  opera
tor[)() is an essential addition. 

1 8.5 Arrays 
For a while, we have used aml)' to refer to a sequence of objects allocated on the 
free store. We can also allocate arrays elsewhere as named variables. In fact, they 
are common 

As global variables (but global variables are most often a bad idea) 

As local variables (but arrays have serious limitations there) 

As function arguments (but an array doesn't know its own size) 

As class members (but member arrays can be hard to initialize).  
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Now. you might have detected that we have a not-so-subtle bias in favor of vectors () 
over arrays. Use vector where you have a choice - and you have a choice in most 
contexts. However, arrays existed long before vectors and are roughly equivalent 
to what is offered in other languages (notably C), so you must know arrays. and 
know them well, to be able to cope with older code and with code written by peo-
ple who don't appreciate the advantages of vector. 

So, what is an array? How do we defme an array? How do we use an array? 
An amiJ is a homogeneous sequence of objects allocated in contiguous memory; � 
that is, all clements of an array have the same type and there are no gaps between U 
the objects of the sequence. The elements of an array are numbered from 0 up
ward. In a declaration, an array is indicated by "square brackets" : 

const int max = 100; 
int gai[max); II a global array wf 1 00 ints) ; " l ives iorever" 
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void f(int n) 
{ 

char lac[201; 
int lai£601; 
double lad[n1; 
II . . .  
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II local array; "l ives" unt i l  the end o i  scop(' 

II error: array size not a constant 

Note the limitation: the number of elements of a named array must be known at 
compile time. If you want the number of elements to be a variable, you must put 
it on the free store and access it through a pointer. That's what vector does with 
its array of elements. 

Just like the arrays on free store, we access named arrays using the subscript 
and dereference operators ([ 1 and • ) . For example: 

void f2() 
{ 

char lac[201; 

lac[7] = 'a'; 
*lac = 'b' ; 

lac[-21 = 'b';  
lac[2001 = 'c';  

II local array; "l ives" unt i l  the end oi scope 

II equiva lent to lac ]OJ= 'b '  

II huh? 
II huh? 

This function compiles, but we know that "compiles" doesn't mean "works cor
rectly." The use of [ 1 is obvious, but there is no range checking, so f2() compiles, 
and the result of writing to lac[-21 and lac[2001 is (as for all out-of-range access) 
usually disastrous. Don't do it. Arrays do not range check. Again, we are dealing 
directly with physical memory here; don't expect "system support." 

But couldn't the compiler see that lac has just 20 elements so that lac[2001 is 
an error? A compiler could, but as far as we know no production compiler does. 
The problem is that keeping track of array bounds at compile time is impossible 
in general, and catching errors in the simplest cases (like the one above) only is 
not very helpful. 

1 8.5.1 Pointers to array elements 
A pointer can point to an element of an array. Consider: 

double ad[101; 
double• p = &ad[51; // point to ad] S J  
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We now have a pointer p to the double known as ad[5) : 

We can subscript and dereference that pointer: 

•p =7; 
p[2) = 6; 
p[-3) = 9; 

We get 

That is, we can subscript the pointer with both positive and negative numbers. 
As long as the resulting element is in range, all is well. However, access outside 
the range of the array pointed into is illegal (as with free-store-allocated arrays; 
sec §17.4.3) .  Typically, access outside an array is not detected by the compiler and 
(sooner or later) is disastrous. 

Once a pointer points into an array, addition and subscripting can be used to 
make it point to another clement of the array. For example: 

p += 2; II move p 2 elements to the right 

We get 

And 

p -= 5; II move p 5 elements to the left 
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We get 

p: 

ad : 

Using +, -, +=, and -= to move pointers around is called pointer arithmetic. Obvi
ously. if we do that, we have to take great care to ensure that the result is not a 
pointer to memory outside the array: 

p += 1000; 
double d = •p; 

•p = 12.34; 

II insane: p points into an array with just 1 0  elements 
II i l legal: probably a bad value 
II (deiinitely an unpredictable value) 
II i l legal: probably scrambles some unknown data 

Unfortunately, not all bad bugs involving pointer arithmetic arc that easy to spot. 
The best policy is usually simply to avoid pointer arithmetic. 

The most common use of pointer arithmetic is incrementing a pointer (using 
++) to point to the next element and decrementing a pointer (using --) to point 
to the previous element. For example, we could print the value of ad's clements 
like this: 

for (double• p = &ad[O); p<&ad[10); ++p) cout << •p << '\n'; 
Or backward: 

for (double• p = &ad[9); p>=&ad[O); --p) cout << •p << '\n'; 
This use of pointer arithmetic is not uncommon. However, we fmd the last ("back
ward") example quite easy to get wrong. Why &ad[9) and not &ad[10)? Why >= 
and not >? These examples could equally well (and equally efficiently) be done 
using subscripting. Such examples could be done equally well using subscripting 
into a vector, which is more easily range checked. 

Note that most real-world uses of pointer arithmetic involve a pointer passed 
as a function argument. In that case, the compiler doesn't have a clue how many 
elements are in the array pointed into: you are on your own. That is a situation 
we prefer to stay away from whenever we can. 

Why does C++ have (allow) pointer arithmetic at all? It can be sucl1 a bother 
and doesn't provide anything new once we have subscripting. For example: 
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double• p1 = &ad[O); 
double• p2 = p1+7; 
double• p3 = &p1 [7); 
if (p2 != p3) cout << "impossible!\n"; 
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Mainly, the reason is historical. These rules were crafted for C decades ago and � 
can't be removed without breaking a lot of code. Partly, there can be some con
venience gained using pointer arithmetic in some important low-level applica-
tions, such as memory managers. 

1 8.5.2 Pointers and arrays 
l11e nan1e of an array refers to all the elements of the array. Consider: 

char ch[100); 

l11e size of ch, sizeof(ch), is 100. However, the nan1e of an array turns into ("decays 
to'') a pointer with the slightest excuse. For example: 

char• p = ch; 

Here p is initialized to &ch[O) and sizeof(p) is something like 4 (not 100) . 
111is can be useful. For example, consider a function strlen() that counts the 

number of characters in a zero-terminated array of characters : 

int strlen(const char• p) II simi lar to the standard l ibrary strlen( ) 
{ 

int count = 0; 
while ( *p) { ++count; ++p; } 
return count; 

We can now call this with strlen(ch) as well as strlen(&ch[O)) .  You might point 
out that this is a very minor notational advantage, and we'd have to agree. 

One reason for having array names convert to pointers is to avoid acciden
tally passing large amounts of data by value. Consider: 

int strlen(const char a[)) II simi lar to the standard l ibrary strlen( ) 
{ 

int count = 0; 
while (a[count)) { ++count; } 
return count; 
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char lots [100000); 

void f() 
{ 

int nchar = strlen(lots); 
II . . .  
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Naively (and quite reasonably), you might expect this call to copy the 100,000 
characters specified as the argument to strlen(), but that's not what happens. In
stead, the argument declaration char p[J is considered equivalent to char• p and 
the call strlen(lots) is considered equivalent to strlen(&lots[O)). This saves you 
from an expensive copy operation, but it should surprise you. Why should it sur
prise you? Because in every other case, when you pass an object and don't ex
plicitly declare an argument to be passed by reference (§8.5.3- 6), that object is 
copied. 

Note that the pointer you get from treating the name of an array as a pointer 
to its ftrst clement is a value and not a variable, so you cannot assign to it: 

char ac[10); 
ac = new char [20); II error: no assignment to array name 
&ac[O) = new char [20); II error: no assignment to pointer va lue 

Fmally! A problem that the compiler will catch! 
As a consequence of this implicit array-name-to-pointer conversion, you can't 

even copy arrays using assignment: 

int x[100); 
int y[100); 
II . . .  
x = y; II error 
int z[100) = y; II error 

This is consistent, but often a bother. If you need to copy an array, you must 
write some more elaborate code to do so. For example: 

for (int i::O; i<100; ++i) x[i)=y[i); 
memcpy(x,y, 100*sizeof( int)); 
copy(y,y+100, x); 

II copy 1 00 i nts 
II copy 1 oo•sizeof( int )  bytes 
II copy 1 00 ints 

Note that the C language doesn't support anything like vector, so in C, you must 
use arrays extensively. This implies that a lot of C++ code uses arrays (§27. 1 .2).  
In particular, C-style strings (zero-terminated arrays of characters ; see §27.5) are 
very conunon. 
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I f  we want assignment, we have to use something like vector. The vector 
equivalent to the copying code above is 

vector<int> x(100); 
vector<int> y(100); 
II . . .  
x = y; II copy 1 00 ints 

1 8.5.3 Array initialization 
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Arrays have one significant advantage over vectors and other user-defmed con- •\ 
tainers : the C++ language provides notational support for the initialization of ar- U 
rays. For example: 

char ac[J = "Beorn"; II array oi 6 chars 

Count those characters . There are five, but ac becomes an array of six characters 
because the compiler adds a terminating zero character at the end of a string literal: 

ac: l•a•l•e• l•o•l •r• l•n•l 0 I 
A zero-terminated string is the norm in C and many systems. We call such a zero
terminated array of characters a C-sl)•le string. All string literals are C-style strings. 
For example: 

char• pc = "Howdy"; II pc points to an array of 6 chars 

Graphically: 

pc: 

Note that the char with the numeric value 0 is not the character '0' or any other 
letter or digit. The purpose of that terminating zero is to allow functions to fmd 
the end of the string. Remember: An array does not know its size. Relying on the 
terminating zero convention, we can write 

int strlen(const char• p) II s imi lar to the standard l ibrary strlen()  
{ 

int n = 0; 
while (p[n)) ++n; 
return n; 
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Actually, we don't have to defme strlen() because it is a standard library function 
defined in the <string.h> header (§27.5, §B.l0.3). Note that strlen() counts the 
characters, but not the terminating 0; that is, you need n+ 1 chars to store 11 char· 
acters in a C-style string. 

Only character arrays can be initialized by literal strings, but all arrays can be 
initialized by a list of values of their element type. For example: 

int ai[J = { 1 ,  2, 3, 4, 5, 6 }; II array of 6 ints 
int ai2[100) = { 0, 1 ,2,3,4,5,6,7,8,9 }; II the last 90 elements are in i tial ized to 0 
double ad[100) = { }; II all elements init ialized to 0.0 
char chars[ ) =  { 'a' , ' b', 'c' }; II no terminating 0! 

Note that the number of elements of ai is six (not seven) and the number of cle· 
ments for chars is three (not four) - the "add a 0 at the end" rule is for literal 
character strings only. If an array isn't given a size, that size is deduced from the 
initializer list. That's a rather useful feature. If there are fewer initializer values 
than array elements (as in the definitions of ai2 and ad), the remaining elements 
are initialized by the element type's default value. 

1 8.5.4 Pointer problems 
Like arrays, pointers are often overused and misused. Often, the problems people 
get themselves into involve both pointers and arrays, so we'll sununarize the 
problems here. In particular, all serious problems with pointers involve trying to 
access something that isn't an object of the expected type, and many of those 
problems involve access outside the bounds of an array. Here we will consider 

Access through the null pointer 

Access through an uninitialized pointer 

Access off the end of an array 

Access to a deallocated object 

Access to an object that has gone out of scope 

In all cases, the practical problem for the programmer is that the actual access 
looks perfectly innocent; it is "just" that the pointer hasn't been given a value 
that makes the use valid. Worse (in the case of a write through the pointer) , the 
problem may manifest itself only a long time later when some apparently unre· 
lated object has been corrupted. Let's consider examples: 

fj Don 't acce.u through the null poi11ter: 

int• p = 0; 
•p = 7; II ouch! 
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Obviously, in real-world programs, this typically occurs when there is some code 
in between the initialization and the use. In particular, passing p to a function or 
receiving it as the result from a function are common examples. We prefer not to 
pass null pointers around, but if you have to, test for the null pointer before use: 

and 

int• p = fct_that_can_return_a_O(); 
if (p == 0) { 

else { 

II do something 

II use p 
•p = 7; 

void fct_that_can_receive_a_O(int• p) 
{ 

if (p == 0) { 

else { 

II do something 

II use p 
•p = 7; 

Using references (§17.9. 1 )  and using exceptions to signal errors (§5.6 and §19.5) 
arc the main tools for avoiding null pointers. 
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Do initialize your pou1/ers: f.J 
int• p; 
•p = 9; II ouch! 

In particular, don't forget to initialize pointers that are class members. 
Don 't access nonexistent array elements: 

int a[10); 
int• p = &a[10); 
•p = 11 ;  II ouch! 
a[10) = 12; II ouch! 
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Be  careful with the first and last elements of  a loop, and try not to pass arrays 
around as pointers to their first elements. Instead use vectors. If you really must 
use an array in more than one function (passing it as an argument), then be extra 
careful and pass its size along. 

fJ Don 't acce.sJ tllrough a deleted pointer: 

int• p = new int(7); 
II . . .  
delete p; 
II . . .  
•p = 13; II ouch !  

The delete p or the code after i t  may have scribbled all over •p or used it for 
something else. Of all of these problems, we consider this one the hardest to sys
tematically avoid. The most effective defense against this problem is not to have 
"naked" news that require "naked" deletes : use new and delete in constructors 
and destructors or use a container, such as Vector_ref (§E.4), to handle deletes. 

f) Don 't return a pointer to a local variable: 

int• f() 
{ 

II . . .  

int x = 7; 
II . . . 
return &x; 

int• p = f(); 
II . . .  
•p = 15; II ouch! 

The return from f() or the code after it may have scribbled all over •p or used it 
for something else. The reason for that is that the local variables of a function are 
allocated (on the stack) upon entry to the function and deallocated again at the 
exit from the function. In particular, destructors are called for local variables of 
classes with destructors (§17.5. 1 ) .  Compilers could catch most problems related 
to returning pointers to local variables, but few do. 

Consider a logically equivalent example :  

vector& ff() 
{ 

vector x(7); 
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II . . .  

II . . .  
return x; 
ll l lw vector x is destroyed here 

vector& p = ff(); 
II . . .  
p[4) = 15; II ouch! 

Q.1ite a few compilers catch this variant of the retum problem. 
It is common for programmers to underestimate these problems. However, 

many experienced programmers have been defeated by the innumerable varia-
tions and combinations of these simple array and pointer problems. The solution 
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is not to litter your code with pointers, arrays, news, and deletes. If you do, 
"being careful'' simply isn't enough in realistically sized programs. Instead, rely • 1 
on vectors, RAil ("Resource Acquisition Is Initialization"; see §19.5) ,  and other U 
systematic approaches to the management of memory and other resources. 

1 8.6 Examples: palindrome 
Enough technical examples! Let's try a little puzzle. A palindrome is a word that is 
spelled the same from both ends. For example, anna, petep, and malayalam are 
palindromes, whereas ida and homesi£k are not. There are two basic ways of deter· 
mining whether a word is a palindrome: 

Make a copy of the letters in reverse order and compare that copy to the 
original. 

See if the first letter is the same as the last, then see if the second letter is 
the same as the second to last, and keep going until you reach the middle. 

Here, we'll take the second approach. There are many ways of expressing this 
idea in code depending on how we represent the word and how we keep track of 
how far we have come with the comparison of characters. We'll write a little pro
gram that tests whether words are palindromes in a few different ways just to see 
how different language features affect the way the code looks and works. 

1 8.6.1 Palindromes using string 
First, we try a version using the standard library string with int indices to keep 
track of how far we have come with our comparison: 

bool is_palindrome(const string& s) 
{ 

int first = 0; II index of iirst letter 
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int last = s.length()-1 ; II i ndex oi last letter 
while (first < last) { II we haven 't reached the middle 

if (s[fi rst) !=s[last)) return false; 
++first; II move forward 
--last; II move backward 

return true; 

We return true if we reach the middle without fmding a difference. We suggest 
that you look at this code to convince yourself that it is correct when there are no 
letters in the string, just one letter in the string, an even number of letters in the 
string, and an odd number of letters in the string. Of course, we should not just 
rely on logic to see that our code is correct. We should also test. We can exercise 
is_palindrome() like this: 

int main() 
{ 

string s; 
while (cin>>s) { 

cout << s << " is" ; 
if (! is_palindrome(s)) cout << " not"; 
cout << " a palindrome\n"; 

Basically, the reason we arc using a string is that "strings are good for dealing 
with words." It is simple to read a whitespace-separated word into a string, and a 

string knows its size. Had we wanted to test is_palindrome() with strings contain· 
ing whitespace, we could have read using getline() (§1 1 .5) .  That would have 
shown alz ha and as 4ffil sa to be palindromes. 

1 8.6.2 Palindromes using arrays 
What if we didn't have strings (or vectors), so that we had to use an array to 
store the characters? Let's see: 

bool is_palindrome(const char s[J, int n) 
II s points to the first character of an array oi n characters 

int first = 0; 
int last = n-1 ; 

II index of first letter 
II index of last letter 
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while (first < last) { II we haven't reached the middle 
if (s[first) l=s[last)) return false; 
++first; II move forward 
--last; II move backward 

return true; 

To exercise is_palindrome(), we first have to get characters read into the array. 
One way to do that safely (i.e., without risk of overflowing the array) is like this : 

istream& read_word(istream& is, char• buffer, int max) 
II read at most max- 1 characters from is into buffer 

is.width(max); 
is >> buffer; 

return is; 

II read at most max - 1 characters i n  the next >> 
II read whitespace-terminated word, 
II add zero after the last character read into p 

Setting the istream's width appropriately prevents buffer overflow for the next >> 
operation. Unfortunately, it also means that we don't know if the read terminated 
by whitespace or by the buffer being full (so that we need to read more charac
ters) . Also, who remembers the details of the behavior of width() for input? The 
standard library string and vector are really better as input buffers because they 
expand to fit the amount of input. The terminating 0 character is needed because 
most popular operations on arrays of characters (Cstyle strings) assume 0 termi
nation. Using read_ word() we can write 

int main() 
{ 

const int max = 128; 
char s[max); 
while (read_word(cin,s,max)) { 

cout << s << " is"; 
if (l is_palindrome(s,strlen(s))) cout << 

1 1  
not";  

cout << 
1 1  

a palindrome\n 
11 ; 

The strlen(s) call returns the number of characters in the array after the call of read_ 
word(), and cout<<S outputs the characters in the array up to the terminating 0. 
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We consider this "array solution" significantly messier than the "string solu
tion," and it gets much worse if we try to seriously deal with the possibility of 
long strings. See exercise 10. 

1 8.6.3 Palindromes using pointers 
Instead of using indices to identify characters, we could use pointers : 

bool is_palindrome(const char• first, const char• last) 
II first points to the first letter, last to the last letter 

while (first < last) { II we haven't reached the middle 
if (*firstl=*last) return false; 
++first; II rnove forward 
--last; II rnove backward 

return true; 

Note that we can actually increment and decrement pointers. Increment makes a 
pointer point to the next element of an array and decrement makes a pointer 
point to the previous element. If the array doesn't have such a next clement or 
previous element, you have a serious uncaught out-of-range error. That's another 
problem with pointers. 

We call this is_palindrome() like this: 

int main() 
{ 

const int max = 128; 
char s[max); 
while (read_word(cin,s,max)) { 

cout << s << " is" ; 
if ( l is_palindrome(&s[O),&s[strlen(s)-1 ))) cout << 11 not"; 
cout << " a palindrome\n"; 

Just for fun, we rewrite is_palindrome() like tlus : 

bool is_palindrome(const char* first, const char• last) 
II first points to the first letter, last to the last letter 
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i f  (first<last) { 
if ( *first !=*last) return false; 
return is _palindrome( ++first,--last) ; 

return true; 

This code becomes obvious when we rephrase the defmition of palindrome: a word 
is a palindrome if the ftrst and the last characters are the same and if the substring 
you get by removing the ftrst and the last characters is a palindrome . 

.../Drill 
In this chapter, we have two drills: one to exercise arrays and one to exercise vectors 
in roughly the same manner. Do both and compare the effort involved in each. 

Array drill: 
1. Defme a global int array ga of ten ints initialized to 1, 2, 4, 8, 16, etc. 
2. Defme a function f() taking an int array argument and an int argument 

indicating the number of elements in the array. 
3. In f() : 

a. Define a local int array Ia of ten ints. 
b. Copy the values from ga into Ia. 
c. Print out the elements of Ia. 
d. Defme a pointer p to int and initialize it with an array allocated on the 

free store with the same number of elements as the argument array. 
e. Copy the values from the argument array into the free-store array. 
f. Print out the elements of the free-store array. 
g. Deallocate the free-store array. 

4. In main() : 
a. Call f() with ga as its argument. 
b. Defme an array aa with ten elements, and initialize it with the ftrst ten 

factorial values (1 ,  2*1 ,  3*2*1 ,  4*3*2*1 ,  etc. ) .  
c. Call f() with aa as its argument. 

Standard library vector drill: 
1. Defme a global vector<int> gv; initialize it with ten ints, 1, 2, 4, 8, 16, etc. 
2. Defme a function f() taking a vector<int> argument. 
3. In f() : 

a. Define a local vector<int> lv with the same number of elements as the 
argument vector. 
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b. Copy the values from gv into lv. 
c. Print out the elements of lv. 
d. Defme a local vector<int> lv2; initialize it to be a copy of the argu

ment array. 
e. Print out the elements of lv2. 

4. In main(): 
a. Call f() with gv as its argument. 
b. Define a vector<int> vv, and initialize it with the ftrst ten factorial val

ues (1, 2*1 ,  3*2*1 ,  4*3*2*1 ,  etc.) . 
c. Call f() with vv as its argument. 

Review 

1 .  What does "Caveat emptor!" mean? 
2. What is the default meaning of copying for class objects? 
3. When is the default meaning of copying of class objects appropriate? 

When is it inappropriate? 
4. What is a copy constructor? 
5. What is a copy assignment? 
6. What is the difference between copy assignment and copy initialization? 
7. What is shallow copy? What is deep copy? 
8. How does the copy of a vector compare to its source? 
9. What are the five "essential operations" for a class? 

10. What is an explicit constructor? Where would you prefer one over the 
(default) alternative? 

1 1 .  What operations may be invoked implicitly for a class object? 
12. What is an array? 
13. How do you copy an array? 
14. How do you initialize an array? 
15. When should you prefer a pointer argument over a reference argument? 

Why? 
16. What is a C-style string? 
17. What is a palindrome? 

Terms 

array 
array initialization 
copy assignment 
copy constructor 

deep copy 
default constructor 
essential operations 

explicit constructor 
palindrome 
shallow copy 
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Exercises 

1. Write a function, char• strdup(const char•), that copies a C-style string 
into memory it allocates on the free store. Do not use any standard library 
functions. Do not use subscripting; use the dereference operator • instead. 

2. Write a function, char• findx(const char• s, const char• x), that fmds the 
first occurrence of the C-style string x in s. Do not use any standard library 
functions. Do not use subscripting; use the dereference operator • instead. 

3. Write a function, int strcmp(const char• s1 , const char• s2), that com
pares C-style strings. Let it return a negative number if s1 is lexicograph
ically before s2, zero if s1 equals s2, and a positive number if s1 is 
lexicographically after s2. Do not use any standard library functions. Do 
not use subscripting; usc the dereference operator • instead. 

4. Consider what happens if you give strdup(), findx(), and strcmp() an ar
gument that is not a C-style string. Try it ! First figure out how to get a 
char• that doesn't point to a zero-terminated array of characters and then 
usc it (never do this in real - non-experimental - code; it can create 
havoc) . Try with free-store-allocated and stack-allocated "fake C-style 
strings." If the results still look reasonable, tum off debug mode. Re
design and re-implemem those three functions so that they take another 
argument giving the maximum number of elements allowed in argument 
strings. Then, test that with correct C-style strings and "bad" strings. 

5. Write a function, string cat_dot(const string& s1, const string& s2), that con
catenates two strings with a dot in between. For example, cat_dot("Niels", 
"Bohr") will return a string containing Niels. Bohr. 

6. Modify cat_ dot() from the previous exercise to take a string to be used as 
the separator (rather than dot) as its third argument. 

7. Write versions of the cat_dot()s from the previous exercises to take Cstyle 
strings as arguments and return a free-store-allocated C-style string as the 
result. Do not use standard library functions or types in the implementa
tion. Test these functions with several strings. Be sure to free (using delete) 
all the memory you allocated from free store (using new). Compare the ef
fort involved in this exercise with the effort involved for exercises 5 and 6. 

8. Rewrite all the functions in §18.6 to use the approach of making a back
ward copy of the string and then comparing; for example, take "home", 
generate "emoh", and compare those two strings to see that they are dif
ferent, so home isn't a palindrome. 

9. Consider the memory layout in §17.3. Write a program that tells the order 
in which static storage, the stack, and the free store are laid out in mem
ory. In which direction does the stack grow: upward toward higher ad
dresses or downward toward lower addresses? In an array on free store, 
are elements with higher indices allocated at higher or lower addresses? 
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10. Look at the "array solution" to the palindrome problem in §18.6.2. Fix it 
to deal with long strings by (a) reporting if an input string was too long 
and (b) allowing an arbitrarily long string. Comment on the complexity 
of the two versions. 

1 1 . Look up (e.g., on the web) skip list and implement that kind of list. 11lls is 
not an easy exercise. 

12. Implement a version of the game "Hunt the Wumpus." "Hunt the Wum
pus" (or just "Wump") is a simple (non-graphical) computer game origi
nally invented by Gregory Yob. The basic premise is that a rather smelly 
monster lives in a dark cave consisting of connected rooms. Your job is to 
slay the wumpus using bow and arrow. ln addition to the wumpus, the 
cave has two hazards: bottomless pits and giant bats. If you enter a room 
with a bottomless pit, it's the end of the game for you. If you enter a 
room with a bat, the bat picks you up and drops you into another room. 
If you enter the room with the wumpus or he enters yours, he eats you. 
When you enter a room you will be told if a hazard is nearby: 

"I smell the wumpus": It's in an adjoining room. 

"I feel a breeze": One of the adjoining rooms is a bottomless pit. 

"I hear a bat": A giant bat is in an adjoining room. 

For your convenience, rooms are numbered. Every room is con
nected by tunnels to three other rooms. When entering a room, you are 
told something like "You are in room 12; there are tunnels to rooms 1 ,  
13,  and 4; move or shoot?" Possible answers are m13 ("Move to room 
13") and s13-4-3 ("Shoot an arrow through rooms 13, 4, and 3") .  The 
range of an arrow is three rooms. At the start of the game, you have five 
arrows. The snag about shooting is that it wakes up the wumpus and he 
moves to a room adjoining the one he was in - that could be your room. 

Probably the trickiest part of the exercise is to make the cave by select
ing which rooms are connected with which other rooms. You'll probably 
want to use a random number generator (e.g., randint() from std_lib_facil· 
ities.h) to make different runs of the program use different caves and to 
move around the bats and the wumpus. Hint : Be sure to have a way to 
produce a debug output of the state of the cave. 

Postscript 

The standard library vector is built from lower-level memory management facili
ties, such as pointers and arrays, and its primary role is to help us avoid the com
plexities of those facilities. Whenever we design a class, we must consider 
initialization, copying, and destruction. 
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Vector, Tem p lates, and 
Except ions  

"Success is never final." 

-Winston Churchill 

This chapter completes the design and implementation of 

the most common and most useful STL container: vector. 

Here, we show how to implement containers where the number 

of elements can vary, how to specify containers where the cle

ment type is a parameter, and how to deal with range errors. As 
usual, the techniques used are generally applicable, rather than 

simply restricted to the implementation of vector. or even to the 

implementation of containers. Basically, we show how to deal 

safely with varying amounts of data of a variety of types. In ad

dition, we add a few doses of realism as design lessons. The tech

niques rely on templates and exceptions, so we show how to 

defme templates and give the basic techniques for resource man

agement that are the keys to good use of exceptions. 

645 



646 CHAPTER  1 9  • VECTO R, T E M PLATES ,  A N D  EXCEPT IONS  

19.1 The problems 19.4 Range checking and exceptions 

19.2 Changing size 
19.2.1 Representation 
19.2.2 reserve and capacity 
19.2.3 resize 
19.2.4 push_back 
19.2.5 Assignment 
19.2.6 Our vector so far 

19.3 Templates 
19.3.1 Types as template parameters 
19.3.2 Generic programming 
19.3.3 Containers and inheritance 
19.3.4 Integers as template parameters 
19.3.5 Template argument deduction 
19.3.6 Generalizing vector 

1 9. 1  The problems 

19.4.1 An aside: design considerations 
119.4.2 A confession: macros 

19.5 Resources and exceptions 
19.5.1 Potential resource management 

problems 
19.5.2 Resource acquisition is 

initialization 
19.5.3 Guarantees 
19.5.4 auto_ptr 
19.5.5 RAil for vector 

At the end of Chapter 18, our vector reached the point where we can 

Create vectors of double-precision floating-point elements (objects of 
class vector) with whatever number of elements we want 

Copy our vectors using assignment and initialization 

Rely on vectors to correctly release their memory when they go out of 
scope 

Access vector elements using the conventional subscript notation (on 
both the right-hand side and the left-hand side of an assignment) 

That's all good and useful, but to reach the level of sophistication we expect 
(based on experience with the standard library vector) , we need to address three 
more concerns: 

How do we change the size of a vector (change the number of elements)? 

How do we catch and report out-of-range vector element access? 

How do we specify the element type of a vector as an argument? 

For example, how do we define vector, so that this is legal: 

vector<double> vd; 
double d; 
while(cin>>d) vd.push_back(d); 

vector<char> vc(100); 

II elements of type double 

II grow vd to hol d  a l i the e lements 

II e lements of type char 
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int n; 
cin>>n; 
vc.resize(n); 

647 

II make vc have n elements 

Obviously, it is nice and useful to have vectors that allow this, but why is it im- •\ 
portant from a programming point of view? What makes it interesting to some- U 
one collecting useful programming techniques for future use? We are using two 
kinds of flexibility. We have a single entity, the vector, for which we can vary two 
things: 

The number of elements 

The type of elements 

Those kinds of variability are useful in rather fundamental ways. We always col
lect data. Looking around my desk, I see piles of bank statements, credit card 
bills, and phone bills. Each of those is basically a list of lines of information of 
various types: strings of letters and numeric values. In front of me lies a phone; it 
keeps lists of phone numbers and names. In the bookcases across the room, there 
is shelf after shelf of books. Our programs tend to be similar: we have containers 
of elements of various types. We have many different kinds of containers (vector 
is just the most widely useful), and they contain information such as phone num
bers, names, transaction amounts, and documents. Essentially all the examples 
from my desk and my room originated in some computer program or another. 
The obvious exception is the phone: it is a computer, and when I look at the 
numbers on it I'm looking at the output of a program just like the ones we're 
writing. In fact, those numbers may very well be stored in a vector<Number>. 

Obviously, not all containers have the same number of elements. Could we 
live with a vector that had its size fixed by its initial definition; that is, could we 
write our code without push_back(), resize(), and equivalent operations? Sure 
we could, but that would put an unnecessary burden on the programmer: the 
basic trick for living with fixed-size containers is to move the elements to a bigger 
container when the number of elements grows too large for the initial size. For 
example, we could read into a vector without ever changing the size of a vector 
like this: 

II read e lements into a vector without using push_back: 
vector<double>* p = new vector<double>(10); 
int n = 0; II number oi elements 
double d; 
while(cin >> d) { 

if (n=p->size()) { 
vector<double>* q = new vector<double>(p->size()*2); 
copy(p->begin(), p->end(), q->begin()); 
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delete p ;  
p = q; 

( *p)[n) = d; 
++n; 

That's not pretty. Are you convinced that we got it right? How can you be sure? 
Note how we suddenly started to use pointers and explicit memory management. 
What we did was to imitate the style of programming we have to use when we 
are "close to the machine," using only the basic memory management techniques 
dealing with fixed-size objects (arrays; see §1 8.5). One of the reasons to use con
tainers, such as vector, is to do better than that; that is, we want vector to handle 
such size changes internally to save us - its users - the bother and the chance to 
make mistakes. In other words, we prefer containers that can grow to hold the 
exact number of elements we happen to need. For example: 

vector<double> d; 
double d; 
while(cin>>d) vd.push_back(d); 

Are such changes of size common? If they arc not, facilities for changing size are 
simply minor conveniences. However, such size changes are very common. The 
most obvious example is reading an unknown number of values from input. 
Other examples are collecting a set of results from a search (we don't in advance 
know how many results there will be) and removing elements from a collection 
one by one. Thus, the question is not whether we should handle size changes for 
containers , but how. 

Why do we bother with changing sizes at all? Why not '1ust allocate enough 
space and be done with it !"? That appears to be the simplest and most efficient 
strategy. However, it is that only if we can reliably allocate enough space without 
allocating grossly too much space - and we can't. People who try that tend to 
have to rewrite code (if they carefully and systematically checked for overflows) 
and deal with disasters (if they were careless with their checking) . 

Obviously, not all vectors have the same type of elements. We need vectors of 
doubles, temperature readings, records (of various kinds) , strings, operations, 
GUI buttons, shapes, dates, pointers to windows, etc. The possibilities are endless. 

There are many kinds of containers. This is an important point, and because 
it has important implications it should be not be accepted without thought. Why 
can't all containers be vectors? If we could make do with a single kind of con
tainer (e.g., vector) , we could dispense with all the concerns about how to pro
gram it and just make it part of the language. If we could make do with a single 
kind of container, we needn't bother learning about different kinds of containers; 
we'd just use vector all the time. 
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Well. data structures are the key to most significant applications. There are 
many thick and useful books about how to organize data, and much of that in
formation could be described as answers to the question "How do I best store my 
data?" So, the answer is that we need many different kinds of containers, but it is 
too large a subject to adequately address here. However, we have already used 
vectors and strings (a string is a container of characters) extensively. In the next 
chapters, we will sec lists, maps (a map is a tree of pairs of values) , and matrices. 
Because we need many different containers, the language features and program
ming techniques needed to build and use containers are widely useful. If fact, the 
techniques we use to store and access data are among the most fundamental and 
most useful for all nontrivial forms of computing. 
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At the most basic memory level, all objects are of a fixed size and no types � 
exist. What we do here is to introduce language facilities and programming tech- U 
niques that allow us to provide containers of objects of various types for which 
we can vary the number of elements. Tills gives us a fundamentally useful de-
gree of flexibility and convenience. 

1 9.2 Changing size 
What facilities for changing size does the standard library vector offer? It pro
vides three simple operations. Given 

vector<double> v(n); II v.sizeO==n 

we can change its size in three ways: 

v. resize(10); 

v.push_back(7); 

v =  v2; 

II v now has 1 0 elernenls 

II add an elernenl wilh I he va lue 7 lo lhe end of v 
II v.size() increases by 1 

II assign anolher veclor; v is now a copy of v2 
II v.size( ) now equals v2 .size0 

The standard library vector offers more operations that can change a vector's 
size, such as erase() and insert() (§B.4.7), but here we will just see how we can 
implement those three operations for our vector. 

1 9  .2.1 Representation 
In §1 9.1 ,  we show the simplest strategy for changing size : just allocate space for 
the new number of elements and copy the old elements into the new space. How
ever, if you resize often, that's inefficient. In practice, if we change the size once, 
we usually do so many times. In particular, we rarely see just one push_ back(). 
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So, we can optimize our programs by anticipating such changes in size. In fact, all 
vector implementations keep track of both the number of elements and an 
amount of "free space" reserved for "future expansion." For example : 

class vector { 
int sz; 
double• elem; 
int space; 

II number of elements 
II address of first element 
II number of e lements p lus "free space"/"slots" 
II for new elements ("the current a l locat ion") 

public: 
II . . .  

} ;  

We can represent this graphically like this :  

-- - - · • · . • • Free space 
sz: �: '. sz: (uninitialized) 

elem: 
- - - - - - - - - - T -'- - -1- - - - - - - - - - - - - - - - - - - - - T - - - - 1 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. - -

space: Elements ,' 
• •  (initialized) . - - ·  ...

.. ... .. ... - .. _ _  - - ... - .. ... - - .. -- .. .. .  - .. .. - . .. · - - .. . - .. .. . .. ... .. .. .. . .. . .. .. - -
.. .. .. ... 

Since we count elements starting with 0, we represent sz (the number of ele
ments) as referring to one beyond the last element and space as referring to one 
beyond the last allocated slot. The pointers shown are really elem+sz and 
elem+space. 

When a vector is first constructed, space is 0: 

sz: §-' 0: 
... sz: 

elem : I�... _..�-__._1·_-_-_-_-_-_-_q� � � � J 
space: 

We don't start allocating extra slots until we begin changing the number of ele
ments. Typically, space==sz, so there is no memory overhead unless we use 
push_back(). 

The default constructor (creating a vector with no elements) sets all three 
members to 0: 

vector: :vector() : sz(O), elem(O), space(O) { }  
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That gives 

- · - - - · - - - - - - - . ... 

sz: §' ' 
_ _  ,! _ _  _ 

elem: · - - · - - - - - - -- - .. . .  - . . .  - - . .  - ...-! : 
· · -r··  space: 

' . ' . 

ll1at one-beyond-the-end element is completely imaginary. The default constructor 
does no free-store allocation and occupies minimal storage (but see exercise 16) .  

Please note that our vector illustrates techniques that can b e  used to imple
ment a standard vector (and other data structures),  but a fair amount of freedom 
is given to standard library implementations so that std : :vector on your system 
may use different techniques. 

1 9.2.2 reserve and capacity 
lne most fundamental operation when we change sizes (that is, when we change 
the number of elements) is vector: : reserve(). That's the operation we use to add 
space for new elements : 

void vector: : reserve(int newalloc) 
{ 

if (newalloc<=space) return ; 
double• p = new double[newalloc]; 
for (int i=O; i<sz; ++i) p[i] = elem[i); 
delete[) elem; 
elem = p; 
space = newalloc; 

II never decrease a l local ion 
II a ! locale new space 
II copy old elemenls 
II deal locale old space 

Note Lhat we don't initialize the elements of the reserved space. After all, we are 
just reserving space; using thaL space for elements is the job of push_back() and 
resize(). 

Obviously the amount of free space available in a vector can be of interest to 
a user, so we (like the standard) provide a member function for obtaining that 
information: 

int vector: :capacity() const { return space; } 

That is, for a vector called v, v.capacity()-v.size() is the number of elements we 
could push_ back() to v without causing reallocation. 
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1 9.2.3 resize 
Given reserve(), implementing resize() for our vector is fairly simple. We have to 
handle several cases : 

The new size is larger than the old allocation. 

The new size is larger than the old size, but smaller than or equal to the 
old allocation. 

The new size is equal to the old size. 

The new size is smaller than the old size. 

Let's see what we get: 

void vector: : resize(int newsize) 
II make the vector have newsize elements 
II in i t ia l ize each new element with the defaul t  va lue 0.0 

reserve(newsize); 
for (int i=sz; i<newsize; ++i) elem[i] = 0; II in i t ialize new elem('nts 
sz = newsize; 

We let reserve() do the hard work of dealing with memory. The loop initializes 
new elements (if there are any). 

We didn't explicitly deal with any cases here, but you can verify that all are 
handled correctly nevertheless. 

T R Y  T H I S  

What cases do we need to consider (and test) if we want to convince our
selves that this resize() is correct? How about newsize == 0? How about 
newsize == -n? 

1 9.2.4 push_back 
When we first think of it, push_back() may appear complicated to implement, 
but given reserve() it is quite simple: 

void vector: :push_back(double d) 
II increase vector size by one; in i t i a l ize the new element with d 

if (space==O) reserve(&); II start with space ior 8 elements 
else if (sz==space) reserve(2*space); II get more space 
elem[sz) = d ;  II add  d a t  end 
++sz; II increase the size (sz is the number of elements) 
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In other words, if we have no spare space, we double the size of the allocation. In 
practice that turns out to be a very good choice for the vast majority of uses of 
vector, and that's the strategy used by most implementations of the standard li· 
brary vector. 

19.2.5 Assignment 
We could have defmed vector assignment in several different ways. For example, 
we could have decided that assignment was legal only if the two vectors involved 
had the same number of elements. However, in §1 8.2.2 we decided that vector 
assignment should have the most general and arguably the most obvious mean· 
ing: after assignment v1=v2, the vector v1 is a copy of v2. Consider: 

V1 : 

�!-_: _ _ _ _ _ _ _ _  ' 

L..;...;i.......__._ _ _ _ _ _ _ _ _  ��!  
V2: 

Obviously, we need to copy the elements, but what about the spare space? Do we 
"copy" the "free space" at the end? We don't: the new vector will get a copy of 
the elements, but since we have no idea how that new vector is going to be used, 
we don't bother with extra space at the end: 

Handed back to 
free store ------- � �!-.: 

_ _ _ _ _ _ _ _  , 

..,.....,.-___, -----[!1!1·.- - - - - - - - ! V1 : 

V2 :  

r-T""..,...,.,....,.......,
sz: � - - - .. ... ·,-- -; --�--- �: 

'""-'"...l....:o--L---1'--'-.L- - - - - - - -·- ··- . ------· 

The simplest implementation of that is: 

Allocate memory for a copy. 

Copy the elements . 

Delete the old allocation. 

Set the sz, elem, and space to the new values. 
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Like this: 

vector& vector: :operator=(const vector& a) 
II l i ke copy constructor, but we must deal with old elements 

double• p = new double[a.sz); II al locate new space 
for (int i = 0; i<a.sz; ++i) p[i) = a.elem[i); II copy elements 
delete[) elem; II dea l locate old space 
space = sz = a.sz; II set new size 
elem = p; II set new elements 
return •this; II ret urn self-reference 

By convention, an assignment operator returns a reference to the object assigned 
to. The notation for that is •this, which is explained in §17.10. 

Tills implementation is correct, but when we look at it a bit we realize that 
we do a lot of redundant allocation and deallocation. What if the vector we as· 
sign to has more elements than the one we assign? What if the vector we assign 
to has the same number of elements as the vector we assign? In many applica· 
tions, that last case is very common. In either case, we can just copy the elements 
into space already available in the target vector: 

vector& vector: :operator=(const vector& a) 
{ 

if (this==&a) return •this; II sel f-assignment, no work needed 

if (a.sz<=space) { II enough space, no need for new al location 
for (int i =  0; i<a.sz; ++i) elem[i) = a.elem[i); II copy e lements 
sz = a.sz; 
return •this; 

double• p = new double[a.sz]; II a l locate new space 
for (int i =  0; i<a.sz; ++i) p[i) = a.elem[i]; II copy e lements 
delete[) elem; II deal locate old space 
space = sz = a.sz; II set new size 
elem = p; II set new elements 
return •this; II return a sel f-reference 

Here, we first test for self-reference (e.g., v=v) ; in that case, we just do nothing. 
That test is logically redundant but sometimes a significant optimization. It does, 
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however, show a conunon use of the this pointer checking if the argument a is the 
same object as the object for which a member function (here, operator=()) was 
called. Please convince yourself that this code actually works if we remove the 
this=&a line. The a.sz<=space is also just an optimization. Please convince 
yourself that this code actually works if we remove the a.sz<=space case. 

1 9.2.6 Our vector so far 
Now we have an almost real vector of doubles: 

II an a lmost rea l vector of doubles: 
class vector { 
,. 

., 

i nvariant: 
for O<=n<sz e lem [n [  i s  e lement n 
sz<=space; 
if sz<space there is space ior (space-sz ) doubles after e lem [sz- 1 [ 

int sz; 
double• elem; 
int space; 

II the size 
II pointer to the elements (or Q )  
II number of  e lements plus number of  free slots 

public: 

}; 

vector() : sz(O), elem(O), space(O) { } 
vector(int s) :sz(s), elem(new double[s)), space(s) 
{ 

for (int i=O; i<sz; ++i) elem[i)=O; II elements are in i t ia l ized 

vector(const vector&); II copy constructor 
vector& operator=(const vector&); II copy assignment 

-vector() { delete[) elem; } II destructor 

double& operator[ ](int n) { return elem[n); } II access 
const double& operator[J(int n) const { return elem[n); } 

int size() const { return sz; } 
int capacity() const { return space; } 

void resize(int newsize); 
void push_back(double d); 
void reserve(int newalloc); 

II growth 
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Note how it has the essential operations (§18.3) : constructor, default constructor, 
copy operations, destructor. It has an operation for accessing data (subscripting: 
[]) and for providing information about that data (size() and capacity()), and for 
controlling growth (resize(), push_back(), and reserve()) .  

1 9.3 Templates 
But we don't just want vectors of doubles; we want to freely specify the element 
type for our vectors. For example: 

vector<dou ble> 
vector<int> 
vector<Month> 
vector<Window*> 
vector< vector<Record> > 
vector<char> 

II vector of pointers to Windows 
II vector of vectors of Records 

To do that, we must see how to defme templates. We have used templates from 
day one, but until now we haven't had a need to define one. The standard library 
provides what we have needed so far, but we mustn't believe in magic, so we 
need to examine how the designers and implementers of the standard library pro
vided facilities such as the vector type and the sort() function (§2 1 .1 ,  §B.5.4) . 
This is not just of theoretical interest, because - as usual - the tools and tech
niques used for the standard library are among the most useful for our own code. 
For example, in Chapters 21 and 22, we show how templates can be used for im
plementing the standard library containers and algorithms. In Chapter 24, we 
show how to design matrices for scientific computation. 

Basically, a lt:mplok is a mechanism that allows a progranuner to use types as 
parameters for a class or a function. The compiler then generates a specific class 
or function when we later provide specific types as arguments. 

1 9.3.1 Types as template parameters 
We want to make the element type a parameter to vector. So we take our vector 
and replace double with T where T is  a parameter that can be given "values" such 
as double, int, string, vector<Record>, and Window•. The C++ notation for in
troducing a type parameter T is template<class T> preftx, meaning "for all types 
T." For example: 

II an a lmost real vector of Ts: 
template<class T> class vector { 

int sz; II the size 
II read "for a l l  types T" (just l i ke in math) 
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P elem; 
int space; 

public: 

II a poi nter to the elements 
II size+free_space 

vector() : sz(O), elem(O), space(O) { }  
vector(int s); 

vector(const vector&); 
vector& operator=(const vector&); 

-vector() { delete[) elem; } 

II copy constructor 
II copy assignment 

II destructor 

T& operator[)(int n) { return elem[n); } II access: return reference 
const T& operator[J(int n) const { return elem[n); } 

} ; 

int size() const { return sz; } 
int capacity() const { return space; } 

void resize(int newsize); 
void push_back(const T& d); 
void reserve(int newalloc); 

II the current size 

II growth 

That's just our vector of doubles from §1 9.2.6 with double replaced by the tem
plate parameter T. We can use this class template vector like this :  

vector<double> vd; II T is double 
vector<int> vi; II T is i nt 
vector<double*> vpd; II T is double 
vector< vector<int> > vvi; II T is vector<i nt>, in which T is i n t  
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One way of thinking about what a compiler does when we use a template is that •\ 
it generates the class with the actual type (the template argument) in place of the U 
template parameter. For example, when the compiler sees vector<char> in the 
code, it (somewhere) generates something like this : 

class vector_char { 
int sz; II the s ize 
char• elem; II a poi nter to the e lements 
int space; II size+free_space 

public: 
vector_char(); 
vector_char(int s); 
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vector_char(const vector_char&); II copy constructor 
vector_char& operator=(const vector_char &); II copy assignment 

-vector_char (); II destructor 

char& operator[) (int n); II access: return reference 
const char& operator[) (int n) const; 

int size() const; 
int capacity() const; 

void resize(int newsize); 
void push_back(const char& d); 
void reserve(int newalloc); 

II the current size 

II growth 

For vector<double>, the compiler generates roughly the vector (of double) from 
§19.2.6 (using a suitable internal name meaning vector<double>). 

Sometimes, we call a class template a type generator. The process of generating 
types (classes) from a class template given template arguments is called speciali:.t.a
tion or template instantiation. For example, vector<char> and vector<Poly_line*> are 
said to be specializations of vector. In simple cases, such as our vector, instantia
tion is a pretty simple process. In the most general and advanced cases, template 
instantiation is horrendously complicated. Fortunately for the user of templates, 
that complexity is in the domain of the compiler writer, not the template user. 
Template instantiation (generation of template specializations) takes place at com
pile time or link time, not at run time. 

Naturally, we can use member functions of such a class template. For example: 

void fct(vector<string>& v) 
{ 

int n = v.size(); 
v.push_back("Norah"); 
/1 . . .  

When such a member function of a class template is used, the compiler generates the 
appropriate function. For example, when the compiler sees v.push_back("Norah"), it 
generates a function 

void vector<string>: :push_back(const string& d) { /* . . .  */ } 
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from the template definition 

template<class T> void vector<T>: :push_back(const T& d) { /* . . .  •t }; 

That way, there is a function for v.push_back("Norah") to call. In other words, 
when you need a function for a given argument type, the compiler will write it 
for you based on its template. 

Instead of writing template<class T>, you can write template<typename T>. 
The two constructs mean exactly the same thing, but some prefer typename "be· 
cause it is clearer" and "because nobody gets confused by typename thinking 
that you can't use a built-in type, such as int, as a template argument." We are of 
the opinion that class already means type, so it makes no difference. Also, class is 
shorter. 

1 9.3.2 Generic programming 
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Templates are the basis for generic programming in C++. In fact, the simplest � 
defmition of "generic programming" in C++ is "using templates." That definition U 
is a bit too simpleminded, though. We should not define fundamental program· 
ming concepts in terms of programming language features. Programming Ian· 
guage features exist to support programming techniques - not the other way 
around. As with most popular notions, there are many definitions of "generic 
programming." We think that the most useful simple definition is 

Generic programming: Writing code that works with a variety of types pre
sented as arguments, as long as those argument types meet specific syntactic 
and semantic requirements. 

For example, the clements of a vector must be of a type that we can copy (by copy 
construction and copy assignment), and in Chapters 20 and 21  we will see tern· 
plates that require arithmetic operations on their arguments. When what we para· 
metcrizc is a class, we get a clas.s templale, what is often called a parameterized type or a 
parameterized cla.u. When what we parameterize is a function, we get a.finution /em
plale, what is often called a parameterized JUnction and sometimes also called an algo-
nthm. Thus, generic programming is sometimes referred to as "algorithm-oriented f) 
programming"; the focus of tl1e design is more the algorithms than the data types 
they usc. 

Since the notion of parameterized types is so central to programming, let's 
explore the somewhat bewildering terminology a bit further. That way we have a 
chance not to get too confused when we meet such notions in other contexts. 

This form of generic programming relying on explicit template parameters is f) 
often called parametric pofymorpltism. In contrast, the polymorphism you get from 
using class hierarchies and virtual functions is called ad /we polymorphism and that style 
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of programming is called ol?frct-oriented programming (§14.3-4). The reason that both 
styles of programming are called polymorphism is that each style relies on the pro
granuner to present many versions of a concept by a single interface. RJ!ymorplzism is 
Greek for "many shapes," referring to the many different types you can manipulate 
through a conunon interface. In the Shape examples from Chapters 16-19 we liter· 
ally accessed many shapes (such as Text, Circle, and Polygon) through the interface 
defined by Shape. When we use vectors, we use many vectors (such as vector<inl>, 
vector<double>, and vector<Shape*>) through the interface defined by the vector 
template. 

There are several differences between object-oriented progranuning (using 
class hierarchies and virtual functions) and generic programming (using tern· 
plates) .  The most obvious is that the choice of function invoked when you use 
generic programming is determined by the compiler at compile time, whereas for 
object-oriented programming, it is not determined until run time. For example: 

v.push_back(x); 
s.draw(); 

II put x i nto the vector v 
II draw the shape s 

For v.push_back(x) the compiler will determine the element type for v and use 
the appropriate push_back(), but for s.draw() the compiler will indirectly call 
some draw() function (using s's vtbl ; see §14.3 .1 ) .  This gives object·oriented pro· 
gramming a degree of freedom that generic progranuning lacks, but leaves run
of-the-mill generic programming more regular, easier to understand, and better 
performing (hence the "ad hoc" and "parametric" labels) .  

To sum up: 

Generic programming: supported by templates, relying on compile-tin1e 
resolution 

Oijec/-()riented programming: supported by class hierarchies and virtual 
functions, relying on run· time resolution 

Combinations of the two are possible and useful. For example: 

void draw_all(vector<Shape•>& v) 
{ 

for (int i=O; i<v.size(); ++i) v[i]->draw();  

Here we call a virtual function (draw()) on a base class (Shape) using a virtual 
function - that's certainly object-oriented programming. However, we also kept 
Shape•s in a vector, which is a parameterized type, so we also used (simple) 
generic programming. 
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So - assuming you have had your fill of philosophy for now - what do peo-
ple actually use templates for? For unsurpassed flexibility and performance, 
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Use templates where performance is essential (e.g., numerics and hard I \  
real time; see Chapters 24 and 25) .  U 
Use templates where flexibility in combining information from several 
types is essential (e.g., the C++ standard library ; see Chapters 20-21 ) .  

Templates have many useful properties. such as great flexibility and near-optimal 
performance, but unfortunately they are not perfect. As usual, the benefits have 
corresponding weaknesses. For templates, the main problem is that the flexibility • \ 
and performance come at the cost of poor separation between the "inside" of a U 
template (its definition) and its interface (its declaration) . This manifests itself in 
poor error diagnostics - often spectacularly poor error messages. Sometimes, 
these error messages come much later in the compilation process than we would 
prefer. 

When compiling a use of a template, the compiler "looks into" the template 
and also into the template argument types. It does so to get the information to 
generate optimal code. To have all that information available, current compilers 
tend to require that a template must be fully defmed wherever it is used. That in· 
eludes all of its member functions and all template functions called from those. 
Consequently, template writers tend to place template defmitions in header ftles. 
This is not actually required by the standard, but until improved implementa· 
tions are widely available, we recommend that you do so for your own tem
plates : place the defmition of any template that is to be used in more tl1an one 
translation unit in a header file. 

Initially, write only very simple templates yourself and proceed carefully to () 
gain experience. One useful development technique is to do as we did for vector: 
First develop and test a class using specific types. Once that works, replace the 
specific types with template paran1eters. Use template-based libraries, such as the 
C++ standard library, for generality, type safety, and performance. Chapters 20 
and 21 arc devoted to the containers and algorithms of the standard library and 
will give you examples of the use of templates. 

1 9.3.3 Containers and inheritance 
There is one kind of combination of object-oriented programming and generic 
programming that people always try, but it doesn't work : attempting to use a 
container of objects of a derived class as a container of objects of a base class. For 
exan1plc: 

vector<Shape> vs; 
vector<Circle> vc; 
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vs = vc; II error: vector<Shape> required 
void f(vector<Shape>&); 
f(vc); II error: vector<Shape> requi red 

But why not? After all, you say, I can convert a Circle to a Shape! Actually, no, 
you can't. You can convert a Circle• to a Shape• and a Circle& to a Shape&, but 
we deliberately disabled assignment of Shapes, so that you wouldn't have to 
wonder what would happen if you put a Circle with a radius into a Shape vari
able that doesn't have a radius (§14.2.4) . What would have happened - had we 
allowed it - would have been what is called "slicing" and is the class object equiv· 
alent to integer truncation (§3.9.2). 

So we try again using pointers : 

vector<Shape*> vps; 
vector<Circle*> vpc; 
vps = vpc; II error: vector<Shape"> required 
void f(vector<Shape*>&); 
f(vpc); II error: vector<Shape"> required 

Again, the type system resists; why? Consider what f() might do: 

void f(vector<Shape•>& v) 
{ 

v.push_back(new Rectangle(Point(O,O),Point(100, 100))); 

Obviously, we can put a Rectangle• into a vector<Shape*>. However, if that 
vector<Shape*> was elsewhere considered to be a vector<Circle*>, someone 
would get a nasty surprise. In particular, had the compiler accepted the example 
above, what would a Rectangle• be doing in vpc? Inheritance is a powerful and 
subtle mechanism and templates do not implicitly extend its reach. Titerc are 
ways of using templates to express inheritance, but they are beyond tlte scope of 
this book. Just remember that "D is a 8" docs not imply "C<D> is a C<B>" for an 
arbitrary template C - and we should value that as a protection against acciden
tal type violations. See also §25.4.4. 

1 9.3.4 Integers as template parameters 
Obviously, it is useful to parameterize classes with types. How about parameter
izing classes with "other things," such as integer values and string values? Basi
cally, any kind of argument can be useful, but we'll consider only type and 
integer parameters. Other kinds of parameters are less frequently useful, and 
C++'s support for other kinds of parameters is such that their use requires quite 
detailed knowledge of language features. 
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Consider an example of the most common use of an integer value as a tem
plate argument, a container where the number of elements is known at compile 
time: 

template<class T, int N> struct array { 

} ; 

T elem[N); II hold e lements in member array 

II rely on the defau lt constructors. destructor, and assignment 

T& operator[) (int n); II access: return reference 
const T& operator[) (int n) const; 

T* data() { return elem; } II conversion to T* 
const T* data() const { return elem; } 

int size() const { return N; } 

We can use array (see also §20.7) like this :  

array<int,256> gb; II 256  i ntegers 
array<double,6> ad = { 0.0, 1 .1, 2.2, 3.3, 4.4, 5.5 }; II note the ini t ia l izer! 
const int max = 1024; 

void some_fct(int n) 
{ 

array<char,max> loc; 
array<char,n> oops; II error: the va lue of n not known to compi ler 
II . . .  
array<char,max> loc2 = loc; 
II . . .  
loc = loc2; 
II . . .  

II make backup copy 

II restore 

Clearly, array is very simple - much simpler and less powerful than vector - so 
why would anyone want to use an array rather than a vector? One answer is "ef
ficiency." We know the size of an array at compile time, so the compiler can allo
cate static memory (for global objects, such as gb) and stack memory (for local 
objects, such as loc) rather than using the free store. When we do range check
ing, the checks can be against constants (the size parameter N) . For most pro
grams the efficiency improvement is insignificant, but if you are writing a crucial 
system component, such as a network driver, even a small difference can matter. 
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More importantly, some programs simply can't be  allowed to  use free store. Such 
programs are typically embedded systems programs and/or safety-critical pro
grams (see Chapter 25). ln such programs, array gives us many of the advantages 
of vector without violating a critical restriction (no free-store use). 

Let's ask the opposite question: not "Why can't we just use vector?" but 
"Why not just use built-in arrays?" As we saw in §1 8.5, arrays can be rather ill 
behaved: they don't know their own size, they convert to pointers at the slightest 
provocation, they don't copy properly; array doesn't have those problems. For 
example: 

double• p = ad; 
double• q = ad.data(); 

II error: no i mplicit  conversion to pointer 
II OK: explicit conversion 

template<class C> void printout(const C& c) 
{ 

for (int i =  0; i<c.size(); ++i) cout << c[i) <<'\n '; 

Tilis printout() can be called by an array as well as a vector: 

printout(ad); 
vector<int> vi; 
II . . .  
printout(vi); 

II ca l l  with array 

II cal l w i th vector 

This is a simple example of generic programming applied to data access. It works 
because the interface used for array and vector (size() and subscripting) is the 
same. Chapters 20 and 2 1  will explore this style of programming in some detail. 

1 9.3.5 Template argument deduction 
For a class template, you specify the template arguments when you create an ob· 
ject of some specific class. For example: 

array<char, 1024> buf; 
array<double, 10> b2; 

II ior bui, T is char and N is 1 024 
II ior b2, T is double <lnd N i s  1 0  

For a function template, the compiler usually deduces the template arguments 
from the function arguments. For example: 

template<class T, int N> void fill(array<T,N>& b, const T& val) 
{ 

for (int i =  0; i<N; ++i) b[i) = val; 
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void f() 
{ 

fill(buf, 'x'); 

fill(b2,0.0); 

II for fi l l ( ), T is char and N is 1 024  
II because that's what buf has 
II ior fi l l ( ) ,  T is double and N is 1 0  
II because that's what b2 has 

Technically, fill(buf, 'x') is shorthand for fill<char, 1024>(buf, 'x'), and fill(b2,0) is 
shorthand for fill<double, 10>(b2,0), but fortunately we don't often have to be 
that specific. The compiler figures it out for us. 

19.3.6 Generalizing vector 
When we generalized vector from a class "vector of double" to a template "vector 
of T," we didn't review the definitions of push_back(), resize(), and reserve(). We 
must do that now because as they are defined in §19.2.2 and §19.2.3 they make 
assumptions that are true for doubles, but not true for all types that we'd like to 
use as vector element types : 

How do we handle a vector<X> where X doesn't have a default value? 

How do we ensure that elements are destroyed when we are finished 
with them? 
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Must we solve those problems? We could say, "Don't try to make vectors of f) 
types without default values" and "Don't use vectors for types with destructors 
in ways that cause problems." For a facility that is aimed at "general use," such re· 
strictions are annoying to users and give the impression that the designer hasn't 
thought the problem through or doesn't really care about users. Often, such sus· 
picions are correct, but the designers of the standard library didn't leave these 
warts in place. To mirror the standard library vector, we must solve these two 
problems. 

We can handle types without a default by giving the user the option to spec· 
ify the value to be used when we need a "default value": 

template<class T> void vector<T>: : resize(int newsize, T def = T()); 

That is, use TO as the default value unless the user says otherwise. For example : 

vector<double> v1 ;  
v1 .resize(100); 
v1 .resize(200, 0.0); 
v1 .resize(300, 1 .0); 

II add 1 00 copies of double(), that is, 0.0 
II add 1 00 copies of 0.0 - mentioning 0.0 is redundant 
II add 1 00 copies of 1 .0 
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struct No_default { 

}; 

No_default(int); II the only constructor for No_defaul t  
II . . .  

vector<No_default> v2(10); 
vector<No_default> v3; 
v3.resize(100, No_default(2)); 
v3.resize(200); 

II error: tries to make 1 0 No_deiault ( )s 

II add 1 00 copies of No_deiault (2J  
II error: tries to make 1 00 No_deiau ltOs 

The destructor problem is harder to address. Basically, we need to deal with 
something really awkward: a data structure consisting of some initialized data 
and some uninitialized data. So far, we have gone a long way to avoid uninitial
ized data and the programming errors that usually accompany it. Now - as im
plementers of vector - we have to face that problem so that we - as users of 
vector - don't have to in our applications. 

Frrst, we need to find a way of getting and manipulating uninitialized storage. 
Fortunately, the standard library provides a class allocator, which provides unini
tialized memory. A slightly simplified version looks like this: 

template<class T> class allocator { 
public: 

}; 

II . . .  
T* allocate(int n); II a l locate space for n objects of type T 
void deallocate(T* p, int n); II dea l locate n objects of type T sta rting at p 

void construct(T• p, const T& v); 
void destroy(T• p); 

II construct a T  with the v.1 l ue v in  p 
II destroy the T in p 

Should you need the full story, have a look in Tlze C++ Programming Language, 
<memory> (§B.l . l ) ,  or the standard. However, what is presented here shows the 
four fundamental operators that allow us to 

Allocate memory of a size suitable to hold an object of type T without 
initializing 

Construct an object of type T in uninitialized space 

Destroy an object of type T, thus returning its space to the uninitialized 
state 

Deallocate uninitialized space of a size suitable for an object of type T 
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Unsurprisingly, an allocator is exactly what we need for implementing vec
tor<T>: : reserve(). We start by giving vector an allocator parameter: 

template<class T, class A = allocator<T> > class vector { 

}; 

A alloc; II use a l locate to handle memory for elements 
II . . .  

Except for providing an allocator - and using the standard one by default instead 
of using new - all is as before. As users of vector, we can ignore allocators until 
we find ourselves needing a vector that manages memory for its elements in 
some unusual way. As implementers of vector and as students trying to under
stand fundamental problems and learn fundamental techniques, we must see 
how a vector can deal with uninitialized memory and present properly con
structed objects to its users. The only code affected is vector member functions 
that directly deal with memory, such as vector<T>: :  reserve() : 

template<class T, class A> 
void vector<T,A>: : reserve(int newalloc) 
{ 

if (newalloc<=space) return; II never decrease a l location 
T* p = alloc.allocate(newalloc); II a l locate new space 
for (int i::O; i<sz; ++i) alloc.construct(&p[i),elem[i)); II copy 
for (int i::O; i<sz; ++i) alloc.destroy(&elem[i)); II destroy 
alloc.deallocate(elem,space); II dea l locate old space 
elem = p; 
space = newalloc; 

We move an element to the new space by constructing a copy in uninitialized 
space and then destroying the original. We can't use assignment because for 
types such as string, assignment assumes that the target area has been initialized. 

Given reserve(), vector<T,A>: : push_back() is simple to write: 

template<class T, class A> 
void vector<T,A>: : push_back(const T& val) 
{ 

if (space==O) reserve(&); 
else if (sz==space) reserve(2*space); 
alloc. construct(&elem[sz), val); 
++sz; 

II start wi th space for 8 elements 
II get more space 
II add val at end 
II increase the size 
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Similarly, vector<T,A>: : resize() is not too difficult: 

template<class T, class A> 
void vector<T,A>: : resize(int newsize, T val = T()) 
{ 

reserve( newsize); 
for (int i=sz; i<newsize; ++i) alloc.construct(&elem[i),val); II construt·t 
for (int i = newsize; i<sz; ++i) alloc.destroy(&elem[i)); II destroy 
sz = newsize; 

Note that because some types do not have a default constructor, we again pro
vide the option to supply a value to be used as an initial value for new elements. 

The other new thing here is the destruction of "surplus elements" in the case 
where we are resizing to a smaller vector. Think of the destructor as turning a 
typed object into "raw memory." 

"Messing with allocators" is pretty advanced stuff, and tricky. Leave it alone 
until you are ready to become an expert. 

1 9.4 Range checking and exceptions 
We look at our vector so far and find (with horror?) that access isn't range checked. 
The implementation of operator[] is simply 

template<class T, class A> T& vector<T,A>: :operator[J(int n) 
{ 

return elem[n); 

So, consider: 

vector<int> v(100); 
v[-200) = v[200); II oops! 
int i; 
cin>>i; 
v[i) = 999; II maul an arbitrary memory location 

This code compiles and runs, accessing memory not owned by our vector. Tills 
could mean big trouble ! In a real program, such code is unacceptable. Let's try to 
improve our vector to deal with this problem. The simplest approach would be 
to add a checked access operation, called at(): 
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struct out_of_range { /* . . . •t }; II class used to report range access errors 

template<class T, class A = allocator<T> > class vector { 
II . . .  

}; 

T& at(int n);  II checked access 
const T& at(int n) const; II checked access 

T& operator[J(int n); II unchecked access 
const T& operator[J(int n) const; II unchecked access 
II . . .  

template<class T, class A > T& vector<T,A>: :at(int n) 
{ 

if (n<O II sz<=n) throw out_of_range(); 
return elem[n); 

template<class T, class A >  T& vector<T,A>: :operator[J(int n) II as before 
{ 

return elem[n); 

Given that, we could write 

void print_some(vector<int>& v) 
{ 

int i = -1 ;  
cin >> i ;  
while( i != -1) try { 

cout << "v[" << i << ")==" << v.at(i) << "\n " ;  

catch(out_of_range) { 
cout << "bad index: " << i << "\n " ;  

Here, we use at() to  get range-checked access and we catch out_of_range in case 
of an illegal access. 

The general idea is to use subscripting with [ 1 when we know that we have a 
valid index and at() when we might have an out-of-range index. 
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1 9.4.1 A n  aside: design considerations 
So far, so good, but why didn't we just add the range check to operator[)()? Well, 
the standard library vector provides checked at() and unchecked operator[)() as 
shown here. Let's try to explain how that makes some sense. There arc basically 
four arguments : 

1. Compalibilily: People have been using unchecked subscripting since long 
before C++ had exceptions. 

2. Efficiency: You can build a checked-access operator on top an optimally 
fast unchecked-access operator, but you cannot build an optimally fast 
access operator on top of a checked-access operator. 

3. Constraints: In some envirorunents, exceptions are unacceptable. 

4. Ophona/ checking: The standard doesn't actually say that you can't range 
check vector, so if you want checking, use an implementation that checks. 

1 9.4.1 . 1  Compatibility 

People really, really don't like to have their old code break. For example, if you 
have a million lines of code, it could be a very costly affair to rework it all to usc 
exceptions correctly. We can argue that the code would be better for the extra 
work, but then we are not the ones who have to pay (in time or money). Further· 
more, maintainers of existing code usually argue that unchecked code may be un
safe in principle, but their particular code has been tested and used for years and 
all the bugs have already been found. We can be skeptical about that argument, 
but again nobody who hasn't had to make such decisions about real code should 
be too judgmental. Naturally, there was no code using the standard library vector 
before it was introduced into the C++ standard, but there were many millions of 
lines of code that used very similar vectors that (being pre-standard) didn't use ex
ceptions. Much of that code was later modified to use tl1e standard. 

1 9.4.1 .2 Efficiency 

Yes, range checking can be a burden in extreme cases, such as buffers for net
work interfaces and matrices in high-performance scientific computations. How
ever, the cost of range checking is rarely a concern in the kind of "ordinary 
computing" that most of us spend most of our time on. Thus, we recommend 
and use a range·checked implementation of vector whenever we can. 

1 9.4.1 .3 Constraints 

Again, the argument holds for some programmers and some applications. In fact, 
it holds for a whole lot of programmers and shouldn't be lightly ignored. How
ever, if you are starting a new program in an envirorunent that doesn't involve 
hard real time (see §25.2. 1 ) ,  prefer exception-based error handling and range
checked vectors. 
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1 9.4.1 .4 Optional checking 

The ISO C++ standard simply states that out-of-range vector access is not guar
anteed to have any specific semantics, and that such access should be avoided. It 
is perfectly standards-conforming to throw an exception when a program tries an 
out-of-range access. So, if you like vector to throw and don't need to be con
cerned by the ftrst three reasons for a particular application, use a range-checked 
implementation of vector. That's what we are doing for this book. 
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The long and the short of this is that real-world design can be messier than fJ 
we would prefer, but there are ways of coping. 

1 9.4.2 A confession: macros 
Like our vector, most implementations of the standard library vector don't guar· 
antee to range check the subscript operator ([ 1) but provide at() that checks. So 
where did those std : : out_of_range exceptions in our programs come from? Basi
cally, we chose "option 4" from §19.4. 1 :  a vector implementation is not obliged 
to range check [ ), but it is not prohibited from doing so either, so we arranged for 
checking to be done. What you might have been using is our debug version, 
called Vector, which does check [ ]. That's what we use when we develop code. It 
cuts down on errors and debug time at little cost to performance: 

struct Range_ error : out_of_range { II enhanced vector range error reporting 
int index; 
Range_error(int i) :out_of_range("Range error"), index(i) { }  

} ; 

template<class T> struct Vector : public std : :vector<T> { 
typedef typename std: :vector<T>: : size_ type size_type; 

}; 

Vector() { }  
Vector(size_type n) : std : :  vector<T>(n) {} 
Vector(size_type n, const T& v) : std: :vector<T>(n,v) {} 

T& operator[J(unsigned int i) II rather than return at( i ); 
{ 

if (i<OIIthis->Size()<=i) throw Range_error( i); 
return std : :vector<T>: : operator[J(i); 

const T& operator[J(unsigned int i) const 
{ 

if (i<OIIthis->Size()<=i) throw Range_error(i); 
return std : :vector<T>: : operator[ J(i); 
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We use Range_error to make the offending index available for debugging. 
The typedef introduces a convenient synonym; see §20.5. 

1bis Vector is very simple, arguably too simple, but it has been useful in debug
ging nontrivial programs. The alternative is to use a systematically checked imple· 
mentation of the complete standard library vector - in fact, that 77U9' indeed be what 
you have been using; we have no way of knowing exactly what degree of checking 
your compiler and library provide (beyond what the standard guarantees). 

In std_lib_facilities.h, we use the nasty trick (a macro substitution) of redefin· 
ing vector to mean Vector: 

II disgusting macro hack to get a range-checked vector: 
#define vector Vector 

That means that whenever you wrote vector, the compiler saw Vector. 1bis trick 
is nasty because what you see looking at the code is not what the compiler sees. In 
real-world code, macros are a significant source of obscure errors (§27.8, §A. 17) . 

We did the same to provide range-checked access for string. 
Unfortunately, there is no standard, portable, and clean way of getting range 

checking from an implementation of vector's [ ). It is, however, possible to do a 
much cleaner and more complete job of a range· checked vector (and string) than 
we did. However, that usually involves replacement of a vendor's standard li
brary implementation, adjusting installation options, or messing with standard li
brary source code. None of those options is appropriate for a beginner's first 
week of programming - and we used string in Chapter 2. 

1 9.5 Resources and exceptions 
So, vector can throw exceptions, and we recommend that when a function carutot 
perform its required action, it throws an exception to tell that to its callers (Chap
ter 5). Now is the time to consider what to do when we write code that must deal 
with exceptions thrown by vector operations and other functions that we call. Tite 
naive answer - "Use a try-block to catch the exception, write an error message, 
and then terminate the program" - is too crude for most nontrivial systems. 

One of the fundamental principles of programming is that if we acquire a re
source, we must - somehow, directly or indirectly - return it to whatever part of 
the system manages that resource. Examples of resources are 

Memory 

Locks 

Fme handles 

Thread handles 

Sockets 

Wmdows 



1 9 . 5  R E SOU RCES  A N D  E X C E P T I O N S  673 

Basically, we define a resource as something that is acquired and must be given � 
back (released) or reclaimed by some "resource manager." The simplest example U 
is free-store memory that we acquire using new and return to the free store using 
delete. For example: 

void suspicious(int s, int x) 
{ 

int• p = new int[s); II acquire memory 
II . . .  
delete[) p; II release memory 

As we saw in §17.4.6, we have to remember to release the memory, and that's not 
always easy to do. When we add exceptions to the picture, resource leaks can be
come common; all it takes is ignorance or some lack of care. In particular, we 
view code, such as suspicious(), that explicitly uses new and assigns the resulting 
pointer to a local variable with great suspicion. 

1 9.5 .1 Potential resource management problems 
One reason for suspicion of apparently innocuous pointer assignments such as f) 

int• p = new int[s); II acquire memory 

is that it can be hard to verify that the new has a corresponding delete. At least 
suspicious() has a delete[) p; statement that might release the memory, but let's 
imagine a few things that might cause that release not to happen. What could we 
put in the . . .  part to cause a memory leak? The problematic examples we find 
should give you cause for thought and make you suspicious of such code. They 
should also make you appreciate the simple and powerful alternative to such code. 

Maybe p no longer points to the object when we get to the delete: 

void suspicious(int s, int x) 
{ 

int• p = new int[s); II acquire memory 
II . . .  
if (x) p = q; II make p poi nt to another object 
II . . .  
delete[) p; II release memory 

We put that if (x) there to be sure that you couldn't know whether we had 
changed the value of p. Maybe we never get to the delete: 
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void suspicious(int s ,  int x) 
{ 

int• p = new int[s); II acquire memory 
II . . .  
if (x) return; 
II . . .  
delete[) p; II release memory 

Maybe we never get to the delete because we threw an exception: 

void suspicious(int s, int x) 
{ 

int• p = new int[s); II acquire memory 
vector<int> v; 
II . . .  
if (x) p[x) = v.at(x); 
II . . .  
delete[) p; II release memory 

It is this last possibility that concerns us most here. When people first encounter 
this problem, they tend to consider it a problem with exceptions rather than a re
source management problem. Having misclassified the root cause, they come up 
with a solution that involves catching the exception: 

void suspicious(int s, int x) II messy code 
{ 

int• p = new int[s); II acquire memory 
vector<int> v; 
II . . . 
try { 

if (x) p[x) = v.at(x); 
II . . .  

} catch ( . . . ) { 
delete[) p; 
throw; 

} 
II . . .  
delete[) p; 

II catch every exception 
II release memory 
II re-throw the ext:eption 

II release memory 
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1bis solves the problem at the cost o f  some added code and a duplication of the 
resource release code (here, delete[) p;) .  In other words, this solution is ugly; 
worse, it doesn't generalize well. Consider acquiring more resources : 

void suspicious(vector<inl>& v, int s) 
{ 

int• p = new int[s); 
vector<int>v1 ; 
II . . .  
int• q = new int[s); 
vector<double> v2; 
II . . .  
delete[) p; 
delete[) q; 

Note that if new fails to find free-store memory to allocate, it will throw the stan
dard library exception bad_alloc. The try . . .  catch technique works for this ex
ample also, but you'll need several try-blocks, and the code is repetitive and ugly. 
We don't like repetitive and ugly code because "repetitive" translates into code 
that is a maintenance hazard, and "ugly" translates into code that is hard to get 
right, hard to read, and a maintenance hazard. 

T RY T H I S  

Add try-blocks to this last example to ensure that all resources are properly 
released in all cases where an exception might be thrown. 

19.5.2 Resource acquisition is initialization 
Fortunately, we don't need to plaster our code with complicated try . . .  catch 
statements to deal with potential resource leaks. Consider: 

void f(vector<int>& v, int s) 
{ 

vector<int> p(s); 
vector<int> q(s); 
II . . .  
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This is better. More importantly, it is obuWus!J better. The resource Otere, free-store � 
memory) is acquired by a constructor and released by the matching destructor. 
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We actually solved this particular "exception problem" when we solved the mem
ory leak problems for vectors. The solution is general; it applies to all kinds of re
sources : acquire a resource in the constructor for some object that manages it, and 
release it again in the matching destructor. Examples of resources that arc usually 
best dealt with in this way include database locks. sockets, and 1/0 buffers 
(iostreams does it for you) . This technique is usually referred to by the awkward 
phrase "Resource Acquisition Is Initialization," abbreviated to RAIL 

Consider the example above. Whichever way we leave f(), the destructors for 
p and q are invoked appropriately: since p and q aren't pointers, we can't assign to 
them, a return statement will not prevent the invocation of destructors, and neither 
will throwing an exception. This general rule holds : when the thread of execution 
leaves a scope, the destructors for every fully constructed object and sub-object arc 

invoked. An object is considered constructed when its constructor completes. Ex
ploring the detailed implications of those two statements might cause a headache, 
but they simply mean that constructors and destructors are invoked as needed. 

In particular, use vector rather than explicit new and delete when you need 
a nonconstant amount of storage within a scope. 

19.5.3 Guarantees 
What can we do where we can't keep the vector within a single scope (and its 
sub-scopes)? For example : 

vector<int>• make_vec() II make a fi l leci vector 
{ 

vector<int>• p = new vector<int>; II we a l locate on free store 
II . . .  fi l l  the vector with data; this may throw an exception . . .  

return p; 

This is an example of a common kind of code : we call a function to construct a 
complicated data structure and return that data structure as the result. l11e snag 
is that if an exception is thrown while "ftlling" the vector, make_vec() leaks that 
vector. An unrelated problem is that if the function succeeds, someone will have 
to delete the object returned by make_vec() (see §17.4.6) . 

We can add a try-block to deal with the possibility of a throw: 

vector<int>• make_vec() II make a f i l led vector 
{ 

vector<int>• p = new vector<int>; II we allocate on free store 
try { 

II fi l l  the vector with data; this may throw an exception 
return p; 



1 9 . 5  RE SOU RCES  A N D  E XCEPT IONS  

catch ( . . .  ) { 
delete p; 
throw; 

II do our local cleanup 
II re-throw to allow our caller 10 dcctl with the fact 
II that some_function() couldn'l do whal was 
II requ i red of it  
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This make_vec() function illustrates a very common style of error handling: it f) 
tries to do its job and if it can't, it cleans up any local resources (here the vector 
on the free store) and indicates failure by throwing an exception. Here, the excep· 
tion thrown is one that some other function (vector: :at()) threw; make_vec() sim-
ply re-throws it using throw; .  This is a simple and effective way of dealing with 
errors and can be used systematically. 

17u: basic guarantee: The purpose of the try . . .  catch code is to ensure that � 
make_vec() either succeeds or throws an exception without having 
leaked any resources. That's often called the basic guarantee. All code that 
is part of a progrant that we expect to recover from an exception throw 
should provide the basic guarantee. All standard library code provides 
the basic guarantee. 

The strong guarantee: If, in addition to providing the basic guarantee, a 
function also ensures that all observable values (all values not local to 
the function) are the same after failure as they were when we called the 
function, that function is said to provide the strong guarantee. The strong 
guarantee is the ideal when we write a function: either the function suc
ceeded at doing everything it was asked to do or else nothing happened 
except that an exception was thrown to indicate failure. 

The rw-tlzrow guarantee: Unless we could do simple operations without any 
risk of failing and throwing an exception, we would not be able to write 
code to meet the basic guarantee and the strong guarantee. Fortunately, 
essentially all built-in facilities in C++ provide the no-throw guarantee: 
they sintply can't throw. To avoid throwing, simply avoid throw itself, 
new, and dynamic_cast of reference types (§A.5.7). 

The basic guarantee and the strong guarantee are most useful for thinking about 
correctness of progrants. RAil is essential for implementing code written accord
ing to those ideals simply and with high performance. For more detailed informa
tion see Appendix E of 17u: C++ Programming Language. 

Naturally, we should always avoid undefmed (and usually disastrous) opera- fJ 
tions, such as dereferencing 0, dividing by 0, and accessing an array beyond its 
range. Catching exceptions does not save you from violations of the fundamental 
language rules. 
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1 9.5.4 auto_ptr 
So, make_vec() is a useful kind of function that obeys the basic rules for good re· 
source management in the presence of exceptions. It provides the basic guarantee 
- as all good functions should when we want to recover from exception throws. 
Unless something nasty is done with nonlocal data in the "ftll the vector with 
data" part, it even provides the strong guarantee. However, that try . . .  catch code 
is still ugly. The solution is obvious : somehow we must use RAil; that is, we 
need to provide an object to hold that vector<int> so that it can delete the vector 
if an exception occurs. In <memory>, the standard library provides the auto_ptr 
for that: 

vector<int>• make_vec() II make a fil led vector 
{ 

auto_ptr< vector<int> > p(new vector<int>); II al locate on free store 
II fi l l  the vector with data; this may throw an exception 
return p. release(); II return the pointer held by p 

An auto_ptr is simply an object that holds a pointer for you within a function. 
We immediately initialize it with the object we got from new. You can use -> and 
• on an auto_ptr exactly like a pointer (e.g., p-> at(2) or (*p).at(2)), so we think 
of auto_ptr as a kind of pointer. However, don't copy an auto_ptr without first 
reading the auto_ptr documentation; the semantics of auto_ptr are different from 
those of every other type you have seen. The release() operation tells the 
auto_ptr to give us our ordinary pointer back, so that we can return that pointer 
and so that the auto_ptr doesn't destroy the object pointed to when we return. If 
you feel tempted to use auto_ptr in more interesting ways (e.g., to copy one), re· 
sist that temptation. Holding a pointer to guarantee deletion at the end of a scope 
is what auto_ptr is for, and other uses require you to master some rather special
ized skills. This auto_ptr is a very specialized facility to handle examples like this 
last version of make_vec() simply and efficiently. In particular, auto_ptr allows us 
to repeat our recommendation to look upon explicit try-blocks with suspicion; 
most can be replaced by some variant of the "Resource Acquisition Is lnitializa· 
tion" technique. 

1 9.5.5 RA i l  for vector 
Even using a smart pointer, such as auto_ptr, may seem to be a bit ad hoc. How 
can we be sure that we have spotted all pointers that require protection? How can 
we be sure that we have released all pointers to objects that should not be de· 
strayed at the end of a scope? Consider reserve() from §19.3.5 : 
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template<class T, class A> 
void vector<T,A>: : reserve(int newalloc) 
{ 

if (newalloc<=space) return; 
T• p = alloc.allocate(newalloc); 

II never decrease a llocation 
II allocate new space 

for (int i=O; i<sz; ++i) alloc.construct(&p[i],elem[i]); II copy 

for (int i=O; i<sz; ++i) alloc.destroy(&elem[i]); II destroy 

alloc.deallocate(elem,space); 
elem = p; 
space = newalloc; 

II deallocate old space 
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Note that the copy operation for an old element, alloc.construct(&p[i],elem[i]), � 
might throw an exception. So, p is an example of the problem we warned about � 
in §19.5 . 1 .  Ouch! We could apply the auto_ptr solution. A better solution is to 
step back and realize that "memory for a vector" is a resource; that is, we can de-
fine a class vector _base to represent the fundamental concept we have been using 
all the time, the picture with the three elements defining a vector's memory use: 

In code, that is (after adding the allocator for completeness) 

template<class T, class A> 
struct vector _base { 

}; 

A alloc; II allocator 
T* elem; 
int sz; 
int space; 

II start of al location 
II nu mber of elements 
II amount of allocated space 

vector_base(const A& a, int n) 
: alloc(a), elem(a.allocate(n)), sz(n), space(n) { } 

-vector_base() { alloc.deallocate(elem,space); } 
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Note that vector_base deals with memory rather than (typed) objects. Our 
vector implementation can use that to hold objects of the desired element type. 
Basically, vector is simply a convenient interface to vector_base: 

template<class T, class A = allocator<T> > 
class vector : private vector_base<T,A> { 
public: 

II . . .  
}; 

We can then rewrite reserve() to something simpler and more correct: 

template<class T, class A> 
void vector<T,A>: : reserve(int newalloc) 
{ 

if (newalloc<=space) return; II never decrease al location 
vector_base<T,A> b(alloc,newalloc); II allocate new space 
for (int i=O; i<sz; ++i) alloc.construct(&b.elem[i],elem[i]); II copy 
for (int i=O; i<sz; ++i) alloc.destroy(&elem[i]); II destroy old 
swap< vector_base<T,A> >(•this,b); II swap representations 

When we exit reserve(), the old allocation is automatically freed by vector_base's 
destructor - even if that exit is caused by the copy operation throwing an excep
tion. The swap() function is a standard library algoritlun (from <algorithm>) that 
exchanges the value of two objects. We used swap< vector_base<T,A> >(•this,b) 
rather than the simpler swap(•this,b) because •this and b are of different types 
(vector and vector_base, respectively) , so we had to be explicit about which swap 
specialization we wanted. 

T R Y T H I S  

Modify reserve to use auto_ptr. Remember to release before returning. 
Compare that solution to the vector_base one. Consider which is easier to 
write and which is easier to get correct. 



CHAPT ER  1 9  REV I EW 

v" Drill 

1 .  Defme template<class T> struct S { T vaJ; }; . 
2. Add a constructor, so that you can initialize with a T. 
3. Define variables of types S<int>, S<char>, S<double>, S<string>, and S< 

vector<int> >; initialize them with values of your choice. 
4. Read those values and print them. 
5. Add a function template get() that returns a reference to val. 
6. Put the definition of get() outside the class. 
7. Make vaJ private. 
8. Do 4 again using get(). 
9. Add a set() function template so that you can change val. 

10. Replace get() and set() with an operator[ ].  
1 1 . Provide const and non-const versions of operator[]. 
12. Defme a function template<class T> read_vai(T& v) that reads from cin 

into v. 
13. Use read_val() to read into each of the variables from 3 except the 

S< vector<int> > variable. 
14. Bonus : Defme template<class T> ostream& operator<<(ostream&, vee· 

tor<T>&) so that read_ val() will also handle the S< vector<int> > variable. 

Remember to test after each step. 

Review 

1. Why would we want to change the size of a vector? 
2. Why would we want to have different element types for different vectors? 
3. Why don't we just always define a vector with a large enough size for all 

eventualities? 
4. How much spare space do we allocate for a new vector? 
5. When must we copy vector elements to a new location? 
6. Which vector operations can change the size of a vector after construction? 
7. What is the value of a vector after a copy? 
8. Which two operations define copy for vector? 
9. What is the default meaning of copy for class objects? 

10. What is a template? 
1 1 . What are the two most useful types of template arguments? 
12. What is generic programming? 
13. How does generic programming differ from object-oriented programming? 
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14. How does array differ from vector? 
15. How does array differ from the built-in array? 
16. How does resize() differ from reserve()? 
1 7. What is a resource? Defme and give examples. 
18. What is a resource leak? 
19. What is RAil? What problem does it address? 
20. What is auto_ptr good for? 

Terms 

#define 
at() 
auto_ptr 
basic guarantee 
exception 
guarantees 
instantiation 

Exercises 

macro 
push_back() 
RAil 
resize() 
resource 
re-throw 
self-assignment 

specialization 
strong guarantee 
template 
template parameter 
this 
throw; 

For each exercise, create and test (with output) a couple of objects of the defmed 
classes to demonstrate that your design and implementation actually do what you 
think they do. Where exceptions are involved, this can require careful thought 
about where errors can occur. 

1 .  Write a template function that adds a vector of elements of an object of 
any type to which elements can be added. 

2. Write a template function that takes a vector<T> vt and a vector<U> vu 
as arguments and returns the sum of all vt[i]•vu[i]s. 

3. Write a template class Pair that can hold a pair of values of any type. Use 
this to implement a simple symbol table like the one we used in the cal
culator (§7.8). 

4. Modify class Link from §17.9.3 to be a template with the type of value as 
the template argument. Then redo exercise 13 from Chapter 17 with 
Link <God>. 

5. Define a class lnt having a single member of class int. Define construc
tors, assignment, and operators +, - , • ,  I for it. Test it, and improve its de
sign as needed (e.g., defme operators << and >> for convenient 110) . 

6. Repeat the previous exercise, but with a class Number<T> where T can 
be any numeric type. Try adding % to Number and see what happens 
when you try to use % for Number<double> and Number<int>. 

7. Try your solution to exercise 2 with some Numbers. 
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8 .  Implement an allocator (§19.3.6) using the basic allocation functions 
malloc() and free() (§B. 10.4). Get vector as defmed by the end of §1 9.4 
to work for a few simple test cases. 

9. Re·implement vector: :operator=() (§19.2.5) using an allocator (§19.3.6) 
for memory management. 

10. Implement a simple auto_ptr supporting only a constructor, destructor, 
->, •, and release(). In particular, don't try to implement an assignment 
or a copy constructor. 

1 1 . Design and implement a counted_ptr<T> that is a type that holds a 
pointer to an object of type T and a pointer to a "use count" (an int) 
shared by all counted pointers to the same object of type T. The use 
count should hold the number of counted pointers pointing to a given T. 
Let the counted_ptr's constructor allocate a T object and a use count on 
the free store. Give the counted_ptr an initial value for the T. When the 
last counted_ptr for a T is destroyed, counted_ptr's destructor should 
delete the T. Give the counted_ptr operations that allow us to use it as a 
pointer. 11lls is an example of a "smart pointer" used to ensure that an 
object doesn't get destroyed until after its last user has stopped using it. 
Write a set of test cases for counted_ptr using it as an argument in calls, 
container elements, etc. 

12. Defme a File_handle class with a constructor that takes a string argu
ment (the file name) , opens the ftle in the constructor, and closes it in the 
destructor. 

13 .  Write a Tracer class where its constructor prints a string and its destruc
tor prints a string. Give the strings as constructor arguments. Use it to 
see where RAil management objects will do their job (i.e., experiment 
with Tracers as local objects, member objects, global objects, objects allo
cated by new, etc.). Then add a copy constructor and a copy assignment 
so that you can use Tracer objects to see when copying is done. 

14. Provide a GUI interface and a bit of graphical output to the "Hunt the 
Wumpus" game from the exercises in Chapter 18. Take the input in an 
input box and display a map of the part of the cave currently known to 
the player in a window. 

15. Modify the program from the previous exercise to allow the user to mark 
rooms based on knowledge and guesses, such as "maybe bats" and "bot
tomless pit." 

16. Sometimes, it is desirable that an empty vector be as small as possible. 
For example, someone might use vector< vector< vector<int> > > a lot, 
but have most element vectors empty. Define a vector so that sizeof(vec· 
tor<int>)==sizeof(int•), that is, so that the vector itself consists only of a 
pointer to a representation consisting of the elements, the number of ele
ments, and the space pointer. 
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Postscript 

Templates and exceptions are immensely powerful language features. They sup
port programming techniques of great flexibility - mostly by allowing people to 
separate concerns, that is, to deal with one problem at a time. For example, using 
templates, we can define a container, such as vector, separately from the defini
tion of an element type. Similarly, using exceptions, we can write the code that 
detects and signals an error separately from the code that handles that error. The 
third major theme of this chapter, changing the size of a vector, can be seen in a 
similar light: push_back(), resize(), and reserve() allow us to separate the defini· 
tion of a vector from the specification of its size. 



t .  ,.. 20 
Conta i ners and lterators 

"Write programs that do one thing 
and do it well. Write programs 

to work together." 

-Doug Mcilroy 

T his chapter and the next present the STL, the containers 

and algorithms part of the C++ standard library. The STL 
is an extensible framework for dealing with data in a C++ pro

gram. Mter a first simple example, we present the general ideals 

and the fundamental concepts. We discuss iteration, linked-list 

manipulation, and STL containers. The key notions of sequence 

and iterator are used to tie containers (data) together with algo

rithms (processing) . This chapter lays the groundwork for the 

general, efficient, and useful algorithms presented in the next 

chapter. As an example, it also presents a framework for text ed

iting as a sample application. 
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20.1 Storing and processing data 
20.1.1 Working with data 
20.1.2 Generalizing code 

20.2 sn ideals 

20.3 Sequences and iterators 
20.3.1 Back to the example 

20.4 Linked lists 
20.4.1 List operations 
20.4.2 Iteration 

20.5 Generalizing vector yet again 

20.6 An example: a simple text editor 
20.6.1 Unes 
20.6.2 Iteration 

20.7 vector, list, and string 
20.7.1 insert and erase 

20.8 Adapting our vector to the STL 

20.9 Adapting built-in arrays to the STL 

20.10 Container overview 
20.10.1 lterator categories 

20.1 Storing and processing data 
Before looking into dealing with larger collections of data items, let's consider a 
simple example that points to ways of handling a large class of data-processing 
problems. Jack andjill are each measuring vehicle speeds, which they record as 
floating-point values. Jack was brought up as a C programmer and stores his val
ues in an array, whereas jill stores hers in a vector. Now we'd like to usc their 
data in our program. How might we do this? 

We could have jack's and jill's programs write out the values to a file and 
then read them back into our program. That way, we are completely insulated 
from their choices of data structures and interfaces. Often, such isolation is a 
good idea, and if that's what we decide to do we can use the techniques from 
Chapters 10-1 1 for inplll and a vector<double> for our calculations. 

But, what if using files isn't a good option for the task we want to do? Let's 
say that the data-gathering code is designed to be invoked as a function call to de
liver a new set of data every second. Once a second, we call jack's and jill's func
tions to deliver data for us to process : 

double• get_from_jack(int• count); II Jack puts doubles into an array and 
II returns the number oi elements in •count 

vector<double>* get_from_jill(); // J i l l  fi l l s  the vector 

void fct() 
{ 

int jack_ count = 0; 
double• jack_data = get_from_jack(&jack_count); 
vector<double>* jill_data = get_from_jill(); 
II . . .  process . . . 

delete[) jack_data; 
delete jill_data; 
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The assumption is that the data is stored on the free store and that we should 
delete it when we are finished using it. Another assumption is that we can't 
rewrite jack's and jill's code, or wouldn't want to. 

20.1 .1  Working with data 
Clearly, this is a somewhat simplified example, but it is not dissimilar to a vast 
number of real-world problems. If we can handle this example elegandy, we can 
handle a huge number of common programming problems. The fundamental 
problem here is that we don't control the way in which our "data suppliers" store 
the data they give us. It's our job to either work with the data in the form in 
which we get it or to read it and store it the way we like better. 

What do we want to do with that data? Sort it? Fmd the highest value? Find 
the average value? Fmd every value over 65? Compare jill's data with jack's? 
See how many readings there were? The possibilities are endless, and when 
writing a real program we will simply do the computation required. Here, we 
just want to do something to learn how to handle data and do computations in
volving lots of data. Let's first do something really simple : find the element with 
the highest value in each data set. We can do that by inserting this code in place 
of the " . . .  process . . .  " comment in fct() : 

II . . .  
double h = -1 ;  
double• jack_high; 
double" jill_high; 

II jack_high wi l l  point to the element with the highest value 
II j i l l_high wi l l  point to the element with the highest val ue 

for (int i=O; kjack_count; ++i) 
if (h< jack_data[i)) 

jack_high = &jack_data [i); II save address of la rgest element 

h = -1 ;  
for (int i=O; i< jill_data ->Size(); ++i) 

if (h<("jill_data)[i)) 
jill_high = &("jill_data)[i); II save address of largest element 

cout << "Jil l's max: " << "jill_high 
<< "; Jack's max : " << •jack_high; 

II . . .  

Note the ugly notation we use to access Jill's data: ( "jill_data)[i]. The function 
from_jill() returns a pointer to a vector, a vector<double>". To get to the data, we 
first have to dereference the pointer to get to the vector, "jil l_data, then we can 
subscript that. However, •jil l_data[i) isn't what we want; that means "(jill_data[i]) 
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because [ 1 binds tighter than • ,  so we need the parentheses around •jill_data and 
get (*jill_data)[i). 

T RY T H I S  

� H you were able to changeJill's code, how would you redesign its interface to 
get rid of the ugliness? 

20.1 .2 Generalizing code 
What we would like is a uniform way of accessing and manipulating data so that 
we don't have to write our code differently each time we get data presented to us 
in a slightly different way. Let's look atJack's andJill's code as examples of how 
we can make our code more abstract and uniform. 

Obviously, what we do for Jack's data strongly resembles what we do for Jill's. 
However, there are some annoying differences : jack_count vs. jil l_data->size() 
and jack_data[i] vs. (*jill_data) [i]. We could eliminate the latter difference by intro
ducing a reference: 

vector<double>& v = *jil l_data; 
for (int i=O; i<v.size(); ++i) 

if (h<V[i)) jill_high = &v[i); 

This is tantalizingly close to the code for Jack's data. What would it take to write 
a function that could do the calculation for Jill's data as well as for Jack's? We can 
think of several ways (see exercise 3), but for reasons of generality which will be
come clear over the next two chapters, we chose a solution based on pointers : 

double• high(double• first, double• last) 
II return a pointer to the element in [ fi rst, last) that has the highest va lue 
{ 

double h = -1 ;  
double• high; 
for(double• p = first; pl=last; ++p) 

if (h<*p) high = p; 
return high; 

Given that, we can write 

double• jack_high = high(jack_data,jack_data+jack_count); 
vector<double>& v = •jill_ data; 
double• jill_high = high(&v[O),&v[O)+v.size()); 
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'Ibis looks better. We don't introduce so many variables and we write the loop 
and the loop body only once (in high()) . If we want to know the highest values, 
we can look at •jack_high and •jill_high. For example : 

cout << "Jill's max: " << •jill_high 
<< " ;  Jack's max: " << •jack_high; 

Note that high() relies on a vector storing its elements in an array, so that we can 
express our "fmd highest element" algorithm in tenns of pointers into an array. 

T RY T H I S  

.• We left two potentially serious errors in this little program. One can cause a 
crash, and the other will give wrong answers if high() is used in many other 
programs where it might have been useful. The general techniques that we 
describe below will make them obvious and show how to systematically 
avoid them. For now, just find them and suggest remedies. 

This high() function is limited in that it is a solution to a single specific problem: 

It works for arrays only. We rely on the elements of a vector being stored 
in an array, but there are many more ways of storing data, such as lists 
and maps (sec §20.4 and §21 .6.1 ) .  

It can be used for vectors and arrays of doubles, but not for arrays or 
vectors with other clement types, such as vector<double*> and char[10). 

It fmds the element with the highest value, but there are many more sim
ple calculations that we want to do on such data. 

Let's explore how we can support this kind of calculation on sets of data in far 
greater generality. 

Please note that by deciding to express our "fmd highest element" algorithm 
in tenns of pointers, we "accidentally" generalized it to do more than we re
quired: we can - as desired - fmd the highest element of an array or a vector, 
but we can also fmd the highest element in part of an array or in part of a vector. 
For example: 

II . . .  
vector<double>& v = *jill_data; 
double• middle = &v[O)+v.size()/2; 
double• high1 = high(&v[O), middle); 
double• high2 = high(middle, &v[O)+v.size()); 
II . . .  

II max of first half 
II max of second half 
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Here high1 will point to the element with the largest value in the first half of the 
vector and high2 will point to the element with the largest value in the second 
half. Graphically, it will look something like this : 

high1 high2 

We used pointer arguments for high(). That's a bit low-level and can be error
prone. We suspect that for many programmers, the obvious function for fmding 
the element with the largest value in a vector would look like this: 

double• find_highest(vector<double>& v) 
{ 

double h = -1 ;  
double* high = 0; 
for (int i=O; i<v.size(); ++i) 

if (h<V[i]) high = &v[i); 
return high; 

However, that wouldn't give us the flexibility we "accidentally" obtained from 
high() - we can't use find_highest() to fmd the element with the highest value in 
part of a vector. We actually achieved a practical benefit fmm writing a function 
that could be used for both arrays and vectors by "messing with pointers.'' We 
will remember that : generalization can lead to functions that are useful for more 
problems. 

20.2 STL ideals 
The C++ standard library provides a framework for dealing with data as se
quences of elements, called the sn. sn is usually said to be an acronym for 
"standard template library." The S1L is the part of the ISO C++ standard li
brary that provides containers (such as vector, list, and map) and generic algo
rithms (such as sort, find, and accumulate) . Thus we can - and do - refer to 
facilities, such as vector, as being part of both "the SU'' and "the standard li
brary." Other standard library features, such as ostream (Chapter 10) and C-style 
string functions (§B.10.3) , are not part of the SU. To better appreciate and un
derstand the sn, we will first consider the problems we must address when 
dealing with data and the ideals we have for a solution. 
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There are two major aspects of computing: the computation and the data. � 
Sometimes we focus on the computation and talk about if-statements, loops, U 
functions, error handling, etc. At other times, we focus on the data and talk about 
arrays, vectors, strings, ft.les, etc. However, to get useful work done we need both. 
A large amount of data is incomprehensible without analysis, visualization, and 
searching for "the interesting bits." Conversely, we can compute as much as we 
like, but it's going to be tedious and sterile unless we have some data to tie our 
computation to something real. Furthermore, the "computation part" of our pro-
gram has to elegantly interact with the "data part." 

Read 

When we talk about data in this way, we think of lots of data: dozens of Shapes, () 
hundreds of temperature readings. thousands of log records, millions of points, 
billions of web pages, etc.; that is, we talk about processing containers of data, 
streams of data, etc. In particular, this is not a discussion of how best to choose a 
couple of values to represent a small object, such as a complex number, a temper-
ature reading, or a circle. For such types, see Chapters 9, 1 1 ,  and 1 4. 

Consider some simple examples of something we'd like to do with "a lot of 
data":  

Sort the words in dictionary order. 

Find a number in a phone book, given a name. 

Fmd the highest temperature. 

Find all values larger than 8800. 

Find the first occurrence of the value 17. 

Sort the telemetry records by unit number. 

Sort the telemetry records by time stamp. 

Fmd the first value larger than "Petersen." 

Fmd the largest amount. 

Fmd the first difference between two sequences. 

Compute the pair-wise product of the elements of two sequences. 

Find the highest temperature for each day in a month. 

Find the top ten best sellers in the sales records. 

Count the number of occurrences of ''Stroustrup" on the web. 

Compute the sum of the elements. 
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Note that we can describe each of these tasks without actually mentioning how 
the data is stored. Clearly, we must be dealing with something like lists, vectors, 
files, input streams, etc. for these tasks to make sense, but we don't have to know 
the details about how the data is stored (or gathered) to talk about what to do 
with it. What is important is the type of the values or objects (the element type), 
how we access those values or objects, and what we want to do with them. 

These kinds of tasks are very common. Naturally, we want to write code per
forming such tasks simply and efficiently. Conversely, the problems for us as pro
grammers are : 

There is an infinite variation of data types ("kinds of data") . 

There is a bewildering number of ways to store collections of data ele
ments. 

There is a huge variety of tasks we'd like to do with collections of data. 

To minimize the effect of these problems, we'd like our code to take advantage of 
commonalities among types, among the ways of storing data. and among our 
processing tasks. In other words, we want to generalize our code to cope witl1 
these kinds of variations. We really don't want to hand-craft each solution from 
scratch; that would be a tedious waste of time. 

To get an idea of what support we would like for writing our code, consider 
a more abstract view of what we do with data: 

Collect data into containers 

Such as vector, list, and array 

Organize data 

For printing 

For fast access 

Retrieve data items 

By index (e.g., the 42nd element) 

By value (e.g., the first record with the "age field" 7) 

By properties (e.g., all records with tl1e "temperature field" >32 and 
<100) 

Modify a container 

Add data 

Remove data 

Sort (according to some criteria) 

Perform simple numeric operations (e.g., multiply all elements by 1 .7) 
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We'd like to do these things without getting sucked into a swamp of details about 
differences among containers, differences in ways of accessing elements, and dif
ferences among element types. If we can do that, we'll have come a long way to
ward our goal of simple and efficient use of large amounts of data. 

Looking back at the programming tools and techniques from the previous 
chapters, we note that we can (already) write programs that are similar independ
ently of the data type used: 

Using an int isn't all that different from using a double. 

Using a vector<inl> isn't all that different from using a vector<String>. 

Using an array of double isn't all that different from using a vec
tor<double>. 
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We'd like to organize our code so that we have to write new code only when we f_J 
want to do something really new and different. In particular, we'd like to provide 
code for common programming tasks so that we don't have to rewrite our solu-
tion each time we fmd a new way of storing the data or find a slightly different 
way of interpreting the data. 

Fmding a value in a vector isn't all that different from finding a value in 
an array. 

Looking for a string ignoring case isn't all that different from looking at 
a string considering uppercase letters different from lowercase ones. 

Graphing experimental data with exact values isn't all that different from 
graphing data with rounded values. 

Copying a ftle isn't all that different from copying a vector. 

We want to build on these observations to write code that's 

Easy to read 

Easy to modify 

Regular 

Short 

Fast 

To minimize our programming work, we would like 

U nifom1 access to data 

Independently of how it is stored 

Independently of its type 

Type-safe access to data 

Easy traversal of data 
• Compact storage of data 
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Fast 

Retrieval of data 

Addition of data 

Deletion of data 
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Standard versions of  the most common algorithms 

Such as copy, fmd, search, sort, sum, . . .  

The SU provides that, and more. We will look at it not just as a very useful set 
of facilities, but also as an example of a library designed for maximal flexibility 
and performance. The SU was designed by Alex Stepanov to provide a frame
work for general, correct, and efficient algorithms operating on data structures. 
The ideal was the simplicity, generality, and elegance of mathematics. 

The alternative to dealing with data using a framework with clearly articu
lated ideals and principles is for each programmer to craft each program out of 
the basic language facilities using whatever ideas seem good at the time. TI1at's a 
lot of extra work. Furthermore, the result is often an unprincipled mess; rarely is 
the result a program that is easily understood by people other than its original de
signer, and only by chance is the result code that we can use in other contexts. 

Having considered the motivation and the ideals, let's look at the basic defi
nitions of the sn, and then fmally get to the examples that'll show us how to ap
proximate those ideals - to write better code for dealing with data and to do so 
with greater ease. 

20.3 Sequences and iterators 
"D1e central concept of the SU is the sequence. From the SI1.. point of view, a 
collection of data is a sequence. A sequence has a beginning and an end. We can 
traverse a sequence from its beginning to its end, optionally reading or writing 
the value of each element. We identify the beginning and the end of a sequence 
by a pair of iterators. An iterator is an object that identifies an element of a se
quence. We can think of a sequence like this : 

Here, begin and end are iterators ; they identify the beginning and the end of the 
sequence. An sn sequence is what is usually called "half-open" ; that is, the cle
ment identified by begin is part of the sequence, but the end iterator points one 
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beyond the end of the sequence. The usual mathematical notation for such se
quences (ranges) is [begin:end). The arrows from one element to the next indi
cate that if we have an iterator to one element we can get an iterator to the next. 

What is an iterator? An iterator is a rather abstract notion: 

An iterator points to (refers to) an element of a sequence (or one beyond 
the last clement). 

You can compare two iterators using == and 1=. 

You can refer to the value of the element pointed to by an iterator using 
the unary • operator ("dereference" or "contents of') . 

You can get an iterator to the next element by using ++. 

For example, if p and q are iterators to elements of the same sequence: 

Basic standard iterator operations 

p=q true if and only if p and q point to the same element or both point to one 
beyond the last element 

p!=q ! (p=q) 

•p refers to the element pointed to by p 

•p=val writes to the element pointed to by p 

val=*p reads from the element pointed to by p 

++p makes p refer to the next element in the sequence or to one beyond the last 

element 

Clearly, the idea of an iterator is related to the idea of a pointer (§17.4) . In fact, a 
pointer to an element of an array is an iterator. However, many iterators are not 
just pointers; for example, we could defme a range-checked iterator that throws 
an exception if you try to make it point outside its [begin :end) sequence or tries 
to dereference end. It turns out that we get enormous flexibility and generality 
from having iterator as an abstract notion rather than as a specific type. This 
chapter and the next will give several examples. 

T R Y  T H I S  

Write a function void copy(int• f1, int• e1, int• fl) that copies the elements of 
an array of ints defined by [f1 : e1) into another [fl:f2+(e1-f1)). Use only the 
iterator operations mentioned above (not subscripting). 
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lterators are used to connect our code (algorithms) to  our data. The writer of 
the code knows about the iterators (and not about the details of how the iterators 
actually get to the data) , and the data provider supplies iterators rather than ex
posing details about how the data is stored to all users. The result is pleasingly 
simple and offers an important degree of independence between algorithms and 
containers. To quote Alex Stepanov: "The reason SU algorithms and containers 
work so well together is that they don't know anything about each other." In
stead, both understand about sequences defined by pairs of iterators. 

sort, find, search, copy, . . .  , my_very_own_algorithm, your_code, . . .  

vector, list, map, array, . . .  , my_container, your_container, . . .  

In other words, my code no longer has to know about the bewildering variety of 
ways of storing and accessing data; it just has to know about iterators. Con
versely, if I'm a data provider, I no longer have to write code to serve a bewilder
ing variety of users ; I just have to implement an iterator for my data. At the most 
basic level, an iterator is defined by just the •, ++, ==, and != operators. That 
makes them simple and fast. 

The sn framework consists of about ten containers and about 60 algo
rithms connected by iterators (see Chapter 2 1 ) .  In addition, many organizations 
and individuals provide containers and algorithms in the style of the sn. The 
sn is probably the currently best-known and most widely used example of 
generic programming (§1 9.3.2). If you know the basic concepts and a few exam
ples, you can use the rest. 

20.3.1 Back to the example 
Let's see how we can express the "find the element with the largest value" prob
lem using the sn notion of a sequence: 

template<class lterator > 
lterator high(lterator first, lterator last) 
II return an iterator to the element i n  !first:last) that has the h ighest value 
{ 

lterator high = first; 
for (lterator p = first; p !=last; ++p) 

if ( * high<*p) high = p; 
return high; 
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Note that we eliminated the local variable h that we had used t o  hold the highest 
value seen so far. When we don't know the name of the actual type of the ele
ments of the sequence, the initialization by -1 seems completely arbitrary and 
odd. That's because it was arbitrary and odd! It was also an error waiting to hap
pen: in our example -1 worked only because we happened not to have any nega
tive velocities. We knew that "magic constants," such as -1, are bad for code 
maintenance (§4.3. 1 ,  §7.6. 1 ,  §10. 1 1 . 1 ,  etc.). Here, we see that they can also limit 
the utility of a function and can be a sign of incomplete thought about the solu
tion; that is, "magic constants" can be - and often are - a sign of sloppy thinking. 

Note that this "generic" high() can be used for any element type that can be 
compared using <. For example, we could use high() to fmd the lexicographically 
last string in a vector<String> (see exercise 7). 

The high() template function can be used for any sequence defined by a pair 
of iterators. For example, we can exactly replicate our example program: 

double* get_from_jack(int• count); II lack puts doubles i nto an array and 
II returns the number of elements in •count 

vector<double>* get_from_jill(); II j i l l  fi l l s  the vector 

void fct() 
{ 

int jack_ count = 0; 
double• jack_data = get_from_jack(&jack_count); 
vector<double>* jill_data = get_from_jill(); 

double* jack_high = high(jack_data,jack_data+jack_count); 
vector<double>& v = *jill_data; 
double* jill_high = high(&v[O),&v[O)+v.size()); 
cout << "Jill's high " << •jill_ high << "; Jack's high " << •jack_high; 
II . . .  
delete[) jack_ data; 
delete jil l_data; 

For the two calls here, the lterator template argument type for high() is double•. 
Apart from (finally) getting the code for high() correct, there is apparently no dif
ference from our previous solution. To be precise, there is no difference in the 
code that is executed, but there is a most important difference in the generality of 
our code. The templated version of high() can be used for every kind of se
quence that can be described by a pair of iterators. Before looking at the detailed 
conventions of the sn and the useful standard algorithms that it provides to 
save us from writing common tricky code, let's consider a couple of more ways 
of storing collections of data elements. 
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T RY T H I S  

. • We again left a serious error in that program. Fmd it, fix it, and suggest a 
general remedy for that kind of problem. 

20.4 Linked lists 
f) Consider again the graphical representation of the notion of a sequence: 

beg;:JL=l end � 
0---c=J-- . . . --[3--E:.;�:J 

Compare it to the way we visualize a vector in memory: 

Basically, the subscript 0 identifies the same clement as docs the iterator v.begin(), 
and the subscript v.size() identifies the one-beyond-the-last element also identified 
by the itcrator v.end(). 

The elements of the vector are consecutive in memory. That's not required 
by STI;s notion of a sequence, and it so happens that there are many algorithms 
where we would like to insert an element in between two existing clements with
out moving those existing elements. The graphical representation of Lhe abstract 
notion suggests the possibility of inserting elements (and of deleting elements) 
without moving other elements. The sn notion of iterators supports that. 

The data structure most directly suggested by the sn sequence diagram is 
called a linked list. The arrows in the abstract model arc usually implemented as 
pointers. An clement of a linked list is part of a "link" consisting of the elemem 
and one or more pointers. A linked list where a link has just one pointer (to the 
next link) is called a singly-linked list and a list where a link has pointers Lo both tl1e 
previous and the next link is called a duubly-li11ked list. We will sketch the imple
mentation of a doubly-linked list, which is what the C++ standard library pro
vides under the name of list. Graphically, it can be represented like this: 
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This can be represented in code as 

template<class Elem> struct Link { 
Link• prev; II previous l ink  

}; 

Link* succ; II successor (next) l i nk  
Elem val; II the va l ue 

template<class Elem> struct list { 
Link<Eiem>* first; 
Link<Eiem>* last; II one beyond the last l i nk  

} ; 

l11c layout of a Link is 

1� ..... !", ' 

· · · -

,lfeilt·.·· · 
' __ , ,  · " · 

There arc many ways of implementing linked lists and presenting them to users. 
A description of the standard library version can be found in Appendix B. Here, 
we'll just outline the key properties of a list - you can insert and delete elements 
without disturbing existing elements - show how we can iterate over a list. and 
give an example of list use. 

When you try to think about lists, we strongly encourage you to draw little 
diagrams to visualize the operations you are considering. Linked-list manipula
tion really is a topic where a picture is worth lK words. 

20.4.1 List operations 
What operations do we need for a list? 
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l11e operations we have for vector (constructors, size, etc.), except sub- � 
scripting 

Insert (add an element) and erase (remove an element) 

Something that can be used to refer to elements and to traverse the list: 
an iterator 

In the SU, that iterator type is a member of its class, so we'll do the same: 
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template<class Elem> class list { 
II representation and implt>mentation detai ls 

public: 

}; 

class iterator; II member type: iterator 

iterator begin(); II iterator to first element 
iterator end( ) ;  II ilerator to one beyond last elemPnt 

iterator insert(iterator p, const Elem& v); II insert v inlo l ist aiter p 
iterator erase(iterator p); II remove p irom rhe l ist 

void push_back(const Elem& v); II insert v at end 
void push_front(const Elem& v); II insert v at front 
void pop_front(); II remove the first element 
void pop_back(); II remove the last element 

Elem& front(); 
Elem& back(); 

II . . .  

II the first element 
II the lclSt element 

Just as "our" vector is not the complete standard library vector, this list is not the 
complete definition of the standard library list. There is nothing wrong with this 
list; it simply isn't complete. The purpose of "our" list is to convey an under
standing of what linked lists are, how a list might be implemented, and how to 
usc the key features. For more information see Appendix B or an expert-level 
C++ book. 

The iterator is central in the defmition of an STL list. lterators are used to 
identify places for insertion and elements for removal (erasure) . They arc also 
used for "navigating" through a list rather than using subscripting. This use of it
erators is very similar to the way we used pointers to traverse arrays and vectors 
in §20. 1 and §20.3 . 1 .  This style of iterators is the key to the standard library al
gorithms (§2 1 . 1-3) .  

Why not subscripting for list? We could subscript a list, but it  would be a 
surprisingly slow operation: lst[1000] would involve starting from the first ele
ment and then visiting each link along the way until we reached element number 
1000. If we want to do that, we can do it ourselves (or use advance(): see §20.6.2). 
Consequently, the standard library list doesn't provide the innocuous-looking 
subscript syntax. 

We made list's iterator type a member (a nested class) because there was no 
reason for it to be global. It is used only with lists. Also, this allows us to name 
every container's iterator type iterator. In the standard library, we have 
list<T>: : iterator, vector<T>: : iterator, map<K, V>: : iterator, and so on. 
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20.4.2 Iteration 
The list iterator must provide •, ++, ==, and !=. Since the standard library list is a 
doubly-linked list, it also provides -- for iterating "backward" toward the front 
of the list: 

template<class Elem> class list<Eiem>: :  iterator { 
Link<Eiem>* curr; II current l ink 

public : 

}; 

iterator(Link* p) :curr(p) { }  

iterator& operator++() {curr = curr->Succ; return •this; } II iorward 
iterator& operator--() { curr = curr->prev; return *this; } II backward 
Elem& operator*() { return val;  } II get value (dereference) 

bool operator==(const iterator& b) const { return curr==b.curr; } 
bool operator!= (const iterator& b) const { return curr!=b.curr; } 

These functions are short and simple, and obviously efficient: there are no loops, 
no complicated expressions, and no "suspicious" function calls. If the implemen
tation isn't clear to you, just have a quick look at the diagrams above. This list it
erator is just a pointer to a link with the required operations. Note that even 
though the implementation (the code) for a list<Eiem>: : iterator is very different 
from the simple pointer we have used as an iterator for vectors and arrays, the 
meaning (the semantics) of the operations is identical. Basically, the List iterator 
provides suitable ++, --, •, ==, and I= for a Link pointer. 

Now look at high() again: 

template<class lterator > 
lterator high(lterator first, lterator last) 
II return an iterator to the element in !fi rst, last) that has the highest value 
{ 

lterator high = first; 
for (lterator p = first; pl=last; ++p) 

if ( * high<*p) high = p; 
return high; 
} 

We can use it for a list: 

void f() 
{ 

list<int> 1st; 
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int x; 
while (cin >> x) lst.push_front(x); 

list<int>: : iterator p = high(lst.begin(), lst.end()); 
cout << "the highest value was " << •p << endl; 

Here, the "value" of the lterator argument is list<int>: : iterator, and the imple
mentation of ++, •, and I= has changed dramatically from the array case, but the 
meaning is still the same. The template function high() still traverses the data 
(here a list) and finds the highest value. We can insert an element anywhere in a 

list, so we used push_ front() to add elements at the front just to show that we 
could. We could equally well have used push_back() as we do for vectors. 

T RY T H I S  

The standard library vector doesn't provide push_front(). Why not? lmple· 
ment push_front() for vector and compare it to push_ back(). 

Now, fmally, is the time to ask, "But what if the list is empty?" In other words, 
"What if lst.begin()==lst.end()?" In that case, •p will be an attempt to derefer
ence the one-beyond-the-last element, lst.end() : disaster! Or - potentially worse 
- the result could be a random value that might be mistaken for a correct answer. 

The last formulation of the question strongly hints at the solution: we can 
test whether a list is empty by comparing begin() and end() - in fact, we can test 
whether any sn sequence is empty by comparing its beginning and end: 

11uu 's the deeper reason for having end point one beyond the last elemem rather 
than at the last elemem: the empty sequence is noL a special case. We dislike spe
cial cases because - by definition - we have to remember Lo write special·case 
code for them. 

In our example, we could use that like this: 
list<int>: :  iterator p = high(lst.begin(), lst.end()); 
if (p==lst.end()) II did we reach the end? 

cout << "The list is empty" ;  
else 

cout << "the highest value is " << *p << endl; 
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We usc this kind o f  test systematically with STL algorithms. 
Because the standard library provides a list, we won't go further into the im

plementation here. Instead, we'll have a brief look at what lists are good for (see 
exercises 12-14 if you are interested in list implementation details). 

20.5 Generalizing vector yet again 
Obviously, from the examples in §20.3-4, the standard library vector has an 
iterator member type and begin() and end() member functions (just like std: : list). 
However, we did not provide those for our vector in Chapter 1 9. What does it 
really take for different containers to be used more or less interchangeably in the 
sn generic programming style presented in §20.3? First, we'll outline the solu
tion (ignoring allocators to simplify) and then explain it : 

template<class T> class vector { 
public: 

}; 

typedef unsigned long size_type; 
typedef T value_ type; 
typedef T* iterator; 
typedef const T* const_iterator; 

II . . .  

iterator begin(); 
const_iterator begin() const; 
iterator end(); 
const_iterator end() const; 

size_type size() ;  

II . . .  
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A typedef creates an alias for a type; that is, for our vector, iterator is a syn- •\ 
onyn1, another name, for the type we chose to use as our iterator: T* . Now, for a U 
vector called v, we can write 

vector<int>: :  iterator p = find(v.begin(), v.end(),32); 

and 

for (vector<int>: : size_type i = 0; i<v.size(); ++i) cout << v[i) << '\n'; 
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The point is  that to write that, we don't actually have to know what types are 
named by iterator and slze_type. In particular, the code above, because it is ex· 
pressed in terms of iterator and size_type, will work with vectors where size_type 
is not an unsigned long (as it is not on many embedded systems processors) and 
where iterator is not a plain pointer, but a class (as it is on many popular C++ 
implementations). 

The standard defmes list and the other standard containers similarly. For 
example: 

template<class Elem> class list { 
public : 

}; 

class Link; 
typedef unsigned long size_type; 
typedef Elem value_type; 
class iterator; II see §20.4.2 
class const_iterator; II l ike i lerator, 

II but not a l lowing writes to elements 

II . . .  

iterator begin(); 
const_iterator begin() const; 
iterator end(); 
const_iterator end() const; 

size_type size(); 

II . . .  

That way, we can write code that does not care whether it uses a list or a vector. 
All the standard library algorithms are defined in terms of these member type 
names, such as iterator and size_type, so that they don't unnecessarily depend 
on the implementations of containers or exactly which kind of container they op· 
erate on (see Chapter 21 ) . 

20.6 An example: a simple text editor 
The essential feature of a list is that you can add and remove elements without 
moving other elements of the list. Let's try a simple example that illustrates that. 
Consider how to represent the characters of a text document in a simple text edi
tor. The representation should make operations on the document simple and rea
sonably efficient. 
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Which operations? Let's assume that a document will fit in your computer's 
main memory. That way, we can choose any representation that suits us and simply 
convert it to a stream of bytes when we want to store it in a file. Similarly, we can 

read a stream of bytes from a ftle and convert those to our in-memory representa
tion. That decided, we can concentrate on choosing a convenient in-memory repre
sentation. Basically, there are five things that our representation must support well: 

Constructing it from a stream of bytes from input 

Inserting one or more characters 

Deleting one or more characters 

Searching for a string 

Generating a stream of bytes for output to a ftle or a screen 

The simplest representation would be a vector<char>. However, to add or delete 
a character we would have to move every following character in the document. 
Consider: 

This is he start of a very long document. 
There are lots of . . .  

We could add the t needed to get 

This is the start of a very long document. 
There are lots of . . .  

However. if those characters were stored in a single vector<char>, we'd have to 
move every character from h onward one position to the right. l11at could be a 
lot of copying. In fact, for a 70,000-character-long document (such as this chapter, 
counting spaces) ,  we would on average have to move 35,000 characters to insert 
or delete a character. The resulting real-time delay is likely to be noticeable and 
annoying to users. Consequently, we "break down" our representation into 
"chunks" so that we can change part of the document without moving a lot of 
characters around. We represent a document as a list of "lines," list<Line>, where 
a Line is a vector<char>. For example: 

;�--�.�-----· 1f�)[t.f!'�!t: 
Now, when we inserted that t, we only had to move the rest of the characters on that 
line. Furthem1ore, when we need to, we can add a new line without moving any 
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characters. For example, we could insert "This is  a new line." after "document." to 
get 

This is the start of a very long document. 
This is a new line. 
There are lots of . . .  

All we needed to do was to insert a new "line" in the middle: 

. ·document.; 

The logical reason that it is important to be able to insert new links in a list with
out moving existing links is that we might have iterators pointing to those links 
or pointers (and references) pointing to the objects in those links. Such iterators 
and pointers are unaffected by insertions or deletions of lines. For example, a 
word processor may keep a vector<list<Line>: : iterator> holding iterators to the 
beginning of every title and subtitle in the current Document: 

20.1 

I 
I 
I 
I 
I 
I 
I 

I I 
t I 
. .. .. .. . ... .... ... _. 

We can add lines to "paragraph 20.2" without invalidating the itcrator to "para
graph 20.3.'' 

In conclusion, we use a list of lines rather than a vector of lines or a vector of 
all the characters for both logical and performance reasons. Please note tl1at situ
ations where these reasons apply are rather rare so that the "by default, usc 
vector" rule of thumb still holds. You need a specific reason to prefer a list over a 

vector - even if you think of your data as a list of elements ! (Sec §20.7.) A list is a 
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logical concept that you can represent in your program as a (linked) list or as a 
vector. The closest SU analog to our everyday concept of a list (e.g., a to-do list, 
a list of groceries, or a schedule) is a sequence, and most sequences are best rep· 
resented as vectors. 

20.6.1 Lines 
How do we decide what's a "line" in our document? There are three obvious 
choices : 

1 .  Rely on newline indicators (e.g., '\n')  in user input. 

2. Somehow parse the document and use some "natural" punctuation (e.g., .) . 

3. Split any line that grows beyond a given length (e.g., 50 characters) into 
two. 

There are undoubtedly also some less obvious choices. For simplicity, we use al
ternative 1 here. 

We will represent a document in our editor as an object of class Document. 
Stripped of all refmements, our document type looks like this :  

typedef vector<char> Line; II a l i ne is a vector of characters 

struct Document { 

}; 

list<Line> line; II a document is a l ist of l i nes 
II l i ne[i ]  is the ith l ine 

Document() { line.push_back(Line()); } 

Every Document starts out with a single empty line : Document's constructor 
makes an empty line and pushes it into the list of lines. 

Reading and splitting into lines can be done like this : 

istream& operator>>(istream& is, Document& d) 
{ 

char ch; 
while (is>>ch) { 

d.line.back().push_back(ch); II add the character 
if (ch=='\n ') 

return is; 

d.line.push_back(Line()); II add another l i ne 
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Both vector and list have a member function back() that returns a reference to 
the last element. To use it, you have to be sure that there really is a last element 
for back() to refer to - don't use it on an empty container. That's why we defined 
an empty Document to have one empty Line. Note that we store every character 
from input, even the newline characters ( '\n' ) .  Storing those newline characters 
greatly simplifies output, but you have to be careful how you define a character 
count Gust counting characters will give a number that includes space and new
line characters). 

20.6.2 Iteration 
If the document was just a vector<char> it would be simple to iterate over it. 
How do we iterate over a list of lines? Obviously, we can iterate over the list 
using list<Line> : : iterator. However, what if we wanted to visit the characters one 
after another without any fuss about line breaks? We could provide an iterator 
specifically designed for our Document: 

class Text_iterator { II keep track of l i ne and character position within a l ine 
list<Line>: : iterator In; 
Line: : iterator pos; 

public: 

}; 

II start the iterator at l i ne l l 's character posi tion pp: 
Text_iterator(list<Line>: : iterator II, Line : : iterator pp) 

: ln(ll), pos(pp) { }  

char& operator•() { return •pos; } 
Text_iterator& operator++(); 

boo I operator==(const Text_iterator& other) const 
{ return ln==other.ln && pos==other.pos; } 

bool operator!=(const Text_iterator& other) const 
{ return ! (*this=other); } 

Text_iterator& Text_iterator: :operator++() 
{ 

if (pos==( *ln).end()) { 
++In; II proceed to next l ine 
pos = (*ln).begin(); 

++pos; 
return •this; 

II proceed to next character 
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To make Text_iterator useful, we need to equip class Document with conven
tional begin() and end() functions : 

struct Document { 
list<Line> line; 

Text_iterator begin() II iirst character oi first l ine 
{ return Text_iterator(line.begin(), (*line.begin()).begin()); } 

Text_iterator end() II one beyond the last l ine 
{ return Text_iterator(line.end(), (*line.end()).end()); } 

} ; 

We need the curious (*line.begin()).begin() notation because we want the begin
ning of what line.begin() points to; we could alternatively have used line.begin()-> 
begin() because the standard library iterators support ->. 

We can now iterate over the characters of a document like this: 

void print(Document& d) 
{ 

for (Text_iterator p = d.begin(); pl=d.end(); ++p) cout << •p; 

print(my_doc); 

Presenting the document as a sequence of characters is useful for many things, 
but usually we traverse a document looking for something more specific than a 
character. For example, here is a piece of code to delete line n:  

void erase _line( Document& d, int n)  
{ 

if (n<O II d.line.size()<=n) return; II ignore out-oi-range l ines 
d.line.erase(advance(d.line.begin(), n)); 

The call advance(n) moves an iterator n elements forward; advance() is a stan
dard library function, but we could have implemented it ourselves like this : 

template<class Iter> Iter advance( Iter p, int n) 
{ 

while (n>O) { ++p; --n;  } 
return p; 

II go forward 
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Note that advance() can b e  used to simulate subscripting. In fact, for a vector 
called v, •advance(v.begin(),n) is roughly equivalent to v[n). Note that "roughly" 
means that advance() laboriously moves past the first n-1 elements one by one, 
whereas the subscript goes straight to the nth element. For a list, we have to usc 
the laborious method. It's a price we have to pay for the more flexible layout of 
the clements of a list. 

For an iterator that can move both forward and backward. such as the itera
tor for list, a negative argument to the standard library advance() will move the 
iterator backward. For an iterator that can handle subscripting, such as the itcra
tor for a vector. the standard library advance() will go directly to the right ele
ment rather than slowly moving along using ++. Clearly, the standard library 
advance() is a bit smarter than ours. That's worth noticing: typically, the stall· 
dard library facilities have had more care and time spent on them than we could 
afford, so prefer the standard facilities to "home brew." 

T RY T H I S 

• Rewrite advance() so that it will "go backward" when you give it a negative 
argument. 

Probably, a search is the kind of iteration that is most obvious to a user. We search 
for individual words (such as milkshake or Gavin), for sequences of letters that 
can't easily be considered words (such as secret\nhomestead - i.e., a line ending 
with secret followed by a line starting with homestead), for regular expressions 
(e.g .. [bBJ\w•ne - i.e., all upper- or lowercase 8 followed by 0 or more letters fol
lowed by ne; see Chapter 23), etc. Let's show how to hal1dle the second case, fmd
ing a string, using our Document layout. We use a simple - non-optimal 
algorithm: 

Fmd the first character of our search string in the document. 

See if that character and the following characters match our search 
string. 

If so, we are finished : if not, we look for the next occurrence of that first 
character. 

For generality, we adopt the STL convention of defming the text in which to search 
as a sequence defined by a pair of iterators. That way we Call use our search func
tion for allY part of a document as well as a complete document. If we fmd an oc
currence of our string in the document, we return all iterator to its frrst character; if 
we don't ftnd an occurrence, we return an iterator to the end of the sequence: 
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Text_iterator find_txt(Text_iterator first, Text_iterator last, const string& s) 
{ 

if (s.size()==O) return last; II can't find an empty string 
char first_ char = s[O); 
while (true) { 

Text_iterator p = find(first,last,first_char); 
if (p==last II match(p,last,s)) return p; 

Returning the end of the sequence to indicate "not found" is an important SU 
convention. The match() function is trivial ; it just compares two sequences of 
characters. Try writing it yourself. The find() used to look for a character in the 
sequence of characters is arguably the simplest standard library algorithm 
(§2 1 .2). We can use our find_txt() like this: 

Text_iterator p = 
find_txt(my_doc.begin(), my_doc.end(),"secret\nhomestead"); 

if (p==my_doc.end()) 
cout << "not found"; 

else { 
II do something 

Our "text processor" and its operations are very simple. Obviously, we are aim
ing for simplicity and reasonable efficiency, rather than at providing a "feature
rich'' editor. Don't be fooled into thinking that providing dficien.t insertion, 
deletion, and search for arbitrary character sequences is trivial, though. We chose 
this example to illustrate the power and generality of the sn concepts sequence, 
iterator, and container (such as list and vector) together with some sn pro
gramming conventions (techniques) ,  such as returning the end of a sequence to 
indicate failure. Note that if we wanted to, we could develop Document into an 
S1L container - by providing Text_iterator we have done the key part of repre
senting a Document as a sequence of values . 

20.7 vector, list, and string 
Why did we use a list for the lines and a vector for the characters? More pre
cisely, why did we use a list for the sequence of lines and a vector for the se
quence of characters? Furthermore, why didn't we use a string to hold a line? 
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We can ask a slightly more general variant of  this question. We have now 
seen four ways to store a sequence of characters : 

char[) (array of characters) 

vector<char> 

string 

list<char> 

How do we choose among them for a given problem? For really simple tasks, 
they are interchangeable; that is, they have very similar interfaces. For example, 
given an iterator, we can walk through each using ++ and use * to access 1.he 
characters. If we look at tl1e code examples related to Document, we can actually 
replace our vector<char> with list<char> or string without any logical problems. 
Such interchangeability is fundamentally good because it allows us to choose 
based on performance. However, before we consider performance, we should 
look at logical properties of tl1ese types: what can each do that the others can't? 

Elem[J: Doesn't know its own size. Doesn't have begin(), end(), or any of 
the other useful container member functions. Can't be systematically 
range checked. Can be passed to functions written in C and C-stylc 
functions. The clements arc allocated contiguously in memory. The size 
of tl1e array is ftxed at compile time. Comparison (== and !=) and output 
(<<) use the pointer to the ftrst element of the array, not the elements. 

vector<Eiem>: Can do just about everything, including insert() and 
erase(). Provides subscripting. List operations, such as insert() and 
erase(), typically involve moving characters (that can be inefficient for 
large elements and large numbers of elements) .  Can be range checked. 
The elements arc allocated contiguously in memory. A vector is expand
able (e.g., use push_back()) . Elements of a vector are stored (contigu
ously) in an array. Comparison operators (==, ! =, <, <=, >, and >=) 
compare elements. 

string: Provides all the common and useful operations plus specific text 
manipulation operations, such as concatenation (+ and +=) . The ele
ments are not guaranteed to be contiguous in memory. A string is ex
pandable. Comparison operators (==, !=, <, <=, >, and >=) compare 
elements. 

list<Eiem>: Provides all the common and usual operations, except sub
scripting. We can insert() and delete() without moving other elements. 
Needs two words extra (for link pointers) for each element. A list is ex
pandable. Comparison operators (==, 1 =, <, <=, >, and >=) compare 
elements. 
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As we have seen (§17.2, §1 8.5), arrays are useful and necessary for dealing with • \ 
memory at the lowest possible level and for interfacing with code written in C U 
(§27. 1 .2, §27.5). Apart from that, vector is preferred because it is easier to use, 
more flexible, and safer. 

T RY T H I S 

What does that list of differences mean in real code? For each array of char, 
vector<char>, list<char>, and string, define one with the value "Hello", pass 
it to a function as an argument, write out the number of characters in the 
string passed, try to compare it to "Hello" in that function (to see if you re
ally did pass "Hello"),  and compare the argument to "Howdy" to see which 
would come first in a dictionary. Copy the argument into another variable of 
the same type. 

T RY T H I S 

1 �. Do the previous 'Iry this for an array of int, vector<inl>, and list<inl> each 
with the value { 1 ,  2, 3, 4, 5 }. 

20.7 .1 i nsert and erase 
The standard library vector is our default choice for a container. It has most of 
the desired features, so we use alternatives only if we have to. Its main problem is 
its habit of moving elements when we do list operations (insert() and erase()) ; 
that can be costly when we deal with vectors with many elements or vectors of 
large elements. Don't be too worried about that, though. We have been quite 
happy reading half a million floating-point values into a vector using push_back() 
- measurements conflnned that pre-allocation didn't make a noticeable differ-
ence. Always measure before making significant changes in the interest of per- f) 
formance; even for experts, guessing about performance is very hard. 

As pointed out in §20.6, moving elements also implies a logical constraint: f) 
don't hold iterators or pointers to elements of a vector when you do list opera-
tions (such as insert(), erase(), and push_back()) :  if an element moves, your itera-
tor or pointer will point to the wrong element or to no element at all. This is the 
principal advantage of lists (and maps; see §2 1 .6) over vectors. If you need a col
lection of large objects or of objects that you point to from many places in a pro
gram, consider using a list. 

Let's compare insert() and erase() for a vector and a list: Frrst we take an ex
ample designed only to illustrate the key points : 
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vector<inl>: : iterator p = v.begin(); II take a vector 
++p; ++p; ++p; II point to its 3rd element 
vector<int>: : iterator q = p; 
++q; II poi n l 10 i ts 4th element 

p = v. insert(p,99); 

p: 

.--..,---.----,r-'--r-..&r--, - • •  - - - - • • • •  - - • • • •  - .  - • •  -, 
' 

1.....-....L..---I..___JL...---L-...L--L .. .. .. ... - - - - - ... - - - ... - ... - - - - ... ... ! 

II p points at the inserted element 

Note that q is now invalid. The elements may have been reallocated as the size of 
the vector grew. If v had spare capacity, so that it grew in place, q most likely 
points to the element with the value 3 rather than the element with the value 4, 
but don't try to take advantage of that. 

p = v.erase(p) ; II p points at the element a iter the erased one 

That is, an insert() followed by an erase() of the inserted element leaves us back 
where we started, but with q invalidated. However, in between, we moved all the 
clements after the insertion point, and maybe all elements were relocated as v grew. 

To compare, we'll do exactly the same with a list: 

list<int>: : iterator p = v.begin(); 
++p; ++p; ++p; 
list<int>: : iterator q = p; 
++q; 

v: �-m 

II take a l ist 
II poi nt to its Jrd element 

II point to i ts 4th clement 
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p = v.insert(p,99); II p points al the inserted element 

p: 

v: � 
Note that q still points to the element with the value 4. 

p = v.erase(p); II p points at the element aiter the erc1Sl'd one 

Again we fmd ourselves back where we started. However, for list as opposed to 
for vector. we didn't move any elements and q was valid at all times. 

A list<char> takes up at least three times as much memory as the other three 
alternatives - on a PC a list<char> uses 12 bytes per element; a vector<char> 
uses 1 byte per clement. For large numbers of characters, that can be significant. 
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In what way is a vector superior to a string? Looking at the lists of their () 
properties, it seems that a string can do all that a vector can, and more. That's 
part of the problem: since string has to do more things, it is harder to optimize. In 
fact, vector tends to be optimized for "memory operations" such as push_back(), 
whereas string tends not to be. Instead, string tends to be optimized for handling 
of copying, for dealing with short strings, and for interaction with C-style strings. 
In the text editor example, we chose vector because we were using insert() and 
delete(). That is a performance reason, though. The major logical difference is 
that you can have a vector of just about any element type. We have a choice only 
when we are thinking about characters. In conclusion, prefer vector to string un-
less you need string operations, such as concatenation or reading whitespace
separated words. 

20.8 Adapting our vector to the STL 
After adding begin(), end(), and the typedefs in §20.5, vector now just lacks insert() 
and erase() to be as close an approximation of std : :vector as we need it to be: 

template<class T, class A = allocator<T> > class vector { 
int sz; II the size 
T* elem; II a pointer to the elements 
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int  space; 
A alloc; 

public : 

II number of elements p lus number oi free space "slots" 
II use a l locate to handle memory for elements 

} ; 

II . . . al l  the other stuff irom Chapter 1 9  and §20.5 . . . 
typedef T* iterator; II E lem* is the simplest possible iter a lor 

iterator insert(iterator p, const T& val); 
iterator erase(iterator p); 

We again used a pointer to the element type, T*, as the iterator type. That's the 
simplest possible solution. We left providing a range-checked iterator as an exer
cise (exercise 18). 

Typically, people don't provide list operations, such as insert() and erase(), 
for data types that keep their elements in contiguous storage, such as vector. 
However, list operations, such as insert() and erase(), are immensely useful and 
surprisingly efficient for short vectors or small numbers of elements. We have re
peatedly seen the usefulness of push_back(), which is another operation tradi
tionally associated with lists. 

Basically, we implement vector<T>: :  erase() by copying all clements after the 
element we erase (remove, delete). Using the definition of vector from §19.3.6 
with the additions above, we get 

template<class T, class A> 
vector<T,A>: : iterator vector<T,A>: : erase(iterator p) 
{ 

if (p==end()) return p; 
for (iterator pos = p+1 ; pos!=end(); ++pos) 

*(pos-1)  = •pos; II copy element "one position to the lcit" 
alloc.destroy(&*pos); II destroy surplus copy oi last elcnwnt 
--sz; 
return p; 

It is easier to understand such code if you look at a graphical representation: 

sz: 
elem: 

space: 

,...-----..,,...-----, · ... . .. . ... ... - ... ... .. , ... - J ... -i ... ... ... ... · - - - ... - - - - ... - ... . ..  - · .  '")'"' . .. ... - � 
' I I 1 

L...-----1----L ... ... ... .. ... ... ... ... ... ... !. ... ... ... ... ..!.. ... - - - - - ... ... ... - ... - ... ... .. ... ... ... ... ... - !  . .... ... ... • 

- - - · - - .. .. .. .. .. ... .. ... .. ... .. .. ... .. ..  - - - - -
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The code for erase() is quite simple, but it may b e  a good idea to try out a couple of 
examples by drawing them on paper. Is the empty vector correctly handled? Why 
do we need the p=end() test? What if we erased the last element of a vector? 
Would this code have been easier to read if we had used the subscript notation? 

Implementing vector<T,A>: : insert() is a bit more complicated: 

template<class T, class A> 
vector<T,A>: : iterator vector<T,A>: : insert(iterator p, const T& val) 
{ 

int index = p-begin(); 
if (sizeO==capacity()) reserve(2*size()); II make sure we have space 

II first copy last element into uninit ia l ized space; 
alloc.construct(elem+sz, *back()); 
++sz; 
iterator pp = begin()+index; II the place to put val 
for (iterator pos = end()-1 ; pos!=pp; --pos) 

•pos = *(pos-1); II copy elements one position to the right 
*(begin()+offset) = val ;  II "insert" va l 
return pos; 

Please note: 

An iterator may not point outside its sequence, so we use pointers, such 
as elem+space, for that. That's one reason that allocators are defined in 
terms of pointers and not iterators. 

When we use reserve(), the elements may be moved to a new area of 
memory. Therefore, we must remember the index of the element to be 
erased, rather than the iterator to it. When vector reallocates its ele
ments, iterators into that vector become invalid - you can tl-tink of them 
as pointing to the old memory. 

Our use of the allocator argument, A, is intuitive, but inaccurate. If you 
should ever need to implement a container, you'll have to do some care· 
ful reading of the standard. 

It is subtleties like these that make us avoid dealing with low-level mem· 
ory issues whenever we can. Naturally, the standard library vector - and 
all other standard library containers - get that kind of important seman· 
tic detail right. That's one reason to prefer the standard library over 
"home brew.'' 

For performance reasons, you wouldn't use insert() and erase() in the middle of a 
100,000-clement vector; for that, lists (and maps; see §21 .6) are better. However, tl1e 
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insert() and erase() operations are available for all vectors, and their performance is 
unbeatable when you are just moving a few words of data - or even a few dozen 
words - because modem computers are really good at this kind of copying; see ex
ercise 20. Avoid (linked) lists for representing a list of a few small elements. 

20.9 Adapting bui lt-in arrays to the STL 
We have repeatedly pointed out the weaknesses of the built-in arrays : they im· 
plicitly convert to pointers at the slightest provocation, they can't be copied using 
assignment, they don't know their own size (§18.5.2), etc. We have also pointed 
out their main strength: they model physical memory almost perfectly. 

To get the best of both worlds, we can build an array container that provides 
the benefits of arrays without the weaknesses. A version of array was introduced 
into the standard as part of a Technical Report. Since a feature from a TR is not 
required to be part of every implementation, array may not be part of the imple
mentation you use. However, the idea is simple and useful: 

template <class T, int N> II not qu ite the stand.1rd array 
struct array { 

}; 

typedef T value_type; 
typedef T* iterator; 
typedef T* const_iterator; 
typedef unsigned int size_type; II the type oi ,, subscripl 

T elems[N); 
II no exp l ic il conslruct/copy/destroy needed 

iterator begin() { return elems; } 
const_iterator begin() const { return elems; } 
iterator end() { return elems+N; } 
const_iterator end() const { return elems+N; } 

size_type size() const; 

T& operator[)(int n) { return elems[n); } 
const T& operator[)(int n) const { return elems[n); } 

const T& at(int n) const; 
T& at(int n); 

T • data() { return elems; } 

II range-checked acn'ss 
II range-checked .Kcess 

const T • data() const { return elems; } 
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This definition isn't complete or completely standards-conforming, but it will 
give you the idea. It will also give you something to use if your implementation 
doesn't yet provide the standard array. If available, it is in <array>. Note that be
cause array<T,N> "knows" that its size is N, we can (and do) provide assignment, 
==, !=, etc. just as for vector. 

As an example, let's use an array with the SIL version of high() from §20.4.2: 

void f() 
{ 

array<double,6> a =  { 0.0, 1 .1 ,  2.2, 3.3, 4.4, 5.5 }; 
array<double,6>: : iterator p = high(a.begin(), a.end()); 
cout << "the highest value was " << •p << endl; 

Note that we did not think of array when we wrote high(). Being able to use 
high() for an array is a simple consequence of following standard conventions for 
both. 

20. 1 0 Container overview 
The sn provides quite a few containers: 

Standard containers 

vector 

list 

deque 

map 

multlmap 

unordered_map 

a contiguously a l located sequence of elements; use it as 
the default container 

a doubly-l inked l ist; use it when you need to insert and 
delete elements without moving existing elements 

a cross between a list and a vector; don't use it unti l you 
have expert-level knowledge of algorithms and machine 
architecture 

a balanced ordered tree; use it when you need to access 
elements by va lue (see §2 1 .6. 1 -3)  

a balanced ordered tree where there can be multiple 
copies of a key; use it when you need to access elements 
by value (see §21 .6.1 -3) 

a hash table; an optimized version of map; use for large 
maps when you need high performance and can devise a 
good hash function (see §2 1 .6.4) 
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Standard containers (continued) 
unordered_multimap a hash table where there can be multiple copies of a key; 

an optimized version of multimap; use it for large maps 
when you need high performance and can devise a good 
hash function (see §2 1 .6.4) 

set a balanced ordered tree; use it when you need to keep 
track of individual values (see §2 1 .6.5) 

multiset a balanced ordered tree where there can be multiple 
copies of a key; use it when you need to keep track of 
individual values (see §2 1 .6.5) 

unordered_set like unordered_map, but just with va lues, not (key, value) 
pairs 

unordered_multiset like unordered_multimap, but just with values, not 
(key,value) pairs 

array a fixed-size array that doesn't suffer most of the problems 
related to the built-in arrays (see §20.6) 

You can look up incredible amounts of additional information on these contain
ers and their use in books and online documentation. Here are a few quality in
formation sources : 

Austem, Matt, ed. "Technical Report on C++ Standard Library Extensions," 
ISO/IEC PDTR 19768. (Colloquially known as TRl.) 

Austern, Matthew H. Gt71mc Programming and tlze S11. Addison-Wesley. 1999. 
ISBN 0201309564. 

Koenig, Andrew, ed. The C++ Standard. Wiley, 2003. ISBN 0470846747. (Not 
suitable for novices.) 

Lippman. Stanley B.,Josee Lajoie, and Barbara E. Moo. The C++ Prinu·r. Addison
Wesley, 2005. ISBN 020172 1481 .  (Use only the 4th edition.) 

Musser, David R., Gillmer J. Derge, and Atul Saini. STL 1idorial mul Re}ert7lce 
Guide: C++ Programming with the Standard Template Liln'aT)', Secmul Edition. 
Addison-Wesley, 2001 .  ISBN 0201379236. 

Stroustrup, Bjame. The C++ Programming lAnguage. Addison-Wesley, 2000. ISBN 
0201700735. 

The documentation for the SGI implementation of the STL and the iostream li
brary: www.sgi.com/tech/stl. Note that they also provide complete code. 

The documentation of tl1e Dinkumware implementation of the standard library: 
www.dinkumware.com/manuals/default.aspx. (Beware of several library ver
sions.) 

The documentation of the Rogue Wave implementation of the standard library: 
www2.roguewave.com/support!docs/index.cfm. 
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Do you feel cheated? Do you think we should explain all about containers 
and their use to you? That's just not possible. There are too many standard facil
ities. too many useful techniques, and too many useful libraries for you to absorb 
them all at once. Programming is too rich a field for anyone to know all facilities 
and techniques - it can also be a noble art. As a programmer, you must acquire 
the habit of seeking out new information about language facilities, libraries, and 
techniques. Programming is a dynamic and rapidly developing field, so just being 
content with what you know and are comfortable with is a recipe for being left 
behind. "Look it up" is a perfectly reasonable answer to many problems, and as 
your skills grow and mature, it will more and more often be the answer. 

On the other hand, you will find that once you understand vector, list, and 
map and the standard algorithms presented in Chapter 21 ,  you'll find other SU 
and SU-style containers easy to use. You'll also fmd that you have the basic 
knowledge to understand non-STL containers and code using them. 

What is a container? You can fmd the defmition of an STL container in all of 
the sources above. Here we will just give an informal definition. An STL container 

Is a sequence of elements [begin() :end()). 

Container operations copy elements. Copying can be done with assign
ment or a copy constructor. 

Nan1es its element type value_type. 

Has iterator types called iterator and const_iterator. lterators provide •, 
++ (both prefix and postfix}, ==, and I= with the appropriate semantics. 
The iterators for list also provide -- for moving backward in the se
quence; that's called a bidirectional ilerator. The iterators for vector also pro
vide --, [ ], +, and - and are called random-acce.sJ iJeraJars. (See §20.10. 1.) 

Provides insert() and erase(), front() and back(), push_back() and 
pop_back(), size(), etc.; vector and map also provide subscripting (e.g., 
operator [ 1 ) .  
Provides comparison operators (==, 1=, <, <=, >, and >=) that compare 
the elements. Containers use lexicographical ordering for <, <=, >, and 
>=; that is, they compare the elements in order starting with the first. 

The aim of this list is to give you an overview. For more detail see Appendix B. 
For a more precise specification and complete list, see The C++ Programming Li
lmay or the standard. 

Some data types provide much of what is required from a standard container, 
but not all. We sometimes refer to those as "almost containers." The most inter
esting of those are: 
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11Aimost containers" 

T[n) built-in array no size() or other member functions; prefer a container, such as 
vector, string, or array, over a built-in array when you have a 
choice 

string holds only characters but provides operations useful for text 
manipulat ion, such as concatenation (+ and +=); prefer the 
standard string to other strings 

valarray a numerical vector with vector operations, but with many 
restrictions to encourage high-performance implementations; 
use only if you do a lot of vector arithmetic 

In addition, many people and many organizations have produced containers that 
meet the standard container requirements, or almost do so. 

If in doubt, use vector. Unless you have a solid reason not to. usc vector. 

20.1 0.1 lterator categories 
We have talked about iterators as if all iterators are interchangeable. They are in
terchangeable if you do only the simplest operations, such as traversing a se
quence once reading each value once. If you want to do more, such as iterating 
backward or subscripting, you need one of the more advanced iterators. 

lterator categories 

input iterator 

output iterator 

forward iterator 

bidirectional iterator 

We can iterate forward using ++ and read element values 
using •. This is the kind of iterator that istream offers; see 
§2 1 .7.2. If (*p).m is valid, p->m can be used as a 
shorthand. 

We can iterate forward using ++ and write element values 
using •. This is the kind of iterator that ostream offers; see 
§21 .7.2. 

We can iterate forward repeatedly using ++ and read and 
write (unless the elements are const, of course) element 
values using •. If (*p).m is valid, p->m can be used as a 
shorthand. 

We can iterate forward (using ++) and backward 
(using --) and read and write (unless the elements are 
constl element values using •. This is the kind of iterator 
that list, map, and set offer. If (*p).m is valid, p->m can 
be used as a shorthand. 
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lterator categories (continued) 

random-access iterator We can iterate forward (using ++) and backward (using -) 
and read and write (unless the elements are const) element 
values using • or [ ). We can subscript and add an integer 
to a random-access iterator using + and subtract an integer 
using -. We can find the distance between two random
access iterators to the same sequence by subtracting one 
from the other. This is the kind of iterator that vector offers. 
If (*p).m is valid, p->m can be used as a shorthand. 

From the operations offered, we can see that wherever we can use an output itcr
ator or an input iterator, we can use a forward iterator. A bidirectional itcrator is 
also a forward iterator and a random-access iterator is also a bidirectional itcra
tor. Graphically, we can represent the iterator categories like this :  

Note that since the itcrator categories arc not classes, this hierarchy is not a class 
hierarchy implemented using derivation. 

�Drill 
1 .  Define an array of ints with the ten elements I 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } .  
2. Define a vector<int> with those ten elements. 
3. Define a list<int> with those ten elements. 
4. Defme a second array, vector, and list, each initialized as a copy of the 

first array, vector, and list, respectively. 
5. Increase the value of each element in the array by 2; increase the value of 

each element in the vector by 3; increase the value of each element in the 
list by 5. 
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6. Write a simple copy() operation, 

template<class lter1, class lter2> copy(lter f1, lter1 e1, lter2 f2); 

that copies [f1 ,e1) to [f2,f2+(e1-f1 )) just like the standard library copy 
function. Nate that if f1==e1 the sequence is empty, so that there is noth
ing to copy. 

7. Use your copy() to copy the array into the vector and to copy the list into 
the array. 

8. Use the standard library find() to see if the vector contains the value 3 
and print out its position if it does; use find() to see if the list contains the 
value 27 and print out its position if it does. The "position" of the first el
ement is 0, the position of the second element is 1 ,  etc. Note that if find() 
returns the end of the sequence, the value wasn't found. 

Remember to test after each step. 

Review 

1. Why does code written by different people look different? Give examples. 
2. What are simple questions we ask of data? 
3. What are a few different ways of storing data? 
4. What basic operations can we do to a collection of data items? 
5. What are some ideals for the way we store our data? 
6. What is an SIL sequence? 
7. What is an SIL iterator? What operations does it support? 
8. How do you move an iterator to the next element? 
9. How do you move an iterator to the previous element? 

10. What happens if you try to move an iterator past the end of a sequence? 
1 1 .  What kinds of iterators can you move to the previous element? 
12. Why is it useful to separate data from algorithms? 
13. What is the SU? 
14. What is a linked list? How does it fundamentally differ from a vector? 
15. What is a link (in a linked list} ? 
16. What does insert() do? What does erase() do? 
17. How do you know if a sequence is empty? 
18. What operations does an iterator for a list provide? 
19. How do you iterate over a container using the SU? 
20. When would you use a string rather than a vector? 
21 .  When would you use a list rather than a vector? 
22. What is a container? 
23. What should begin() and end() do for a container? 
24. What containers does the sn provide? 
25. What is an iterator category? What kinds of iterators does the STL offer? 
26. What operations are provided by a random-access iterator, but not a bi

directional iterator? 
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Terms 

algorithm 
array container 
begin() 
container 
contiguous 
doubly-linked list 
element 

Exercises 

empty sequence 
end() 
erase() 
insert() 
iteration 
iterator 
linked list 

sequence 
singly-linked list 
size_type 
SIL 
typedef 
value_type 

1 .  If you haven't already, do all Try this exercises in the chapter. 
2. Get the jack-and:Jill example from §20. 1 .2 to work. Use input from a 

couple of small ftles to test it. 
3. Look at the palindrome examples (§18.6) ; redo thejack-and:Jill example 

from §20.1 .2 using that variety of teclmiques. 
4. Find and ftx the errors in thejack-and:Jill example from §20.3 .1  by using 

SIL techniques throughout. 
5. Define an input and an output operator (>> and <<) for vector. 
6. Write a fmd-and-replace operation for Documents based on §20.6.2. 
7. Fmd the lexicographical last string in an unsorted vector<string>. 
8. Defme a function that counts the number of characters in a Document. 
9. Define a program that counts the number of words in a Document. Pro

vide two versions: one that defines "word" as "a whitespace·separated se
quence of characters" and one that deftnes "word" as "a sequence of 
consecutive alphabetic characters." For example, with the former defmi
tion, alpha.numeric and as12b are both single words, whereas with the 
second definition they are both two words. 

10. Defme a version of the word-counting program where the user can spec
ify the set of whitespace characters. 

1 1 . Given a list<int> as a (by·reference) parameter, make a vector<double> 
and copy the elements of the list into it. Verify that the copy was com
plete and correct. Then print the elements sorted in order of increasing 
value. 

12. Complete the defmition of list from §20.4.1-2 and get the high() exam
ple to run. Allocate a Link to represent one past the end. 

13. We don't really need a "real" one-past-the-end Link for a list. Modify 
your solution to the previous exercise to use 0 to represent a pointer to 
the (nonexistent) one-past-the-end Link (list<Eiem>: :end()} ; that way, the 
size of an empty list can be equal to the size of a single pointer. 

14. Define a singly-linked list, slist, in the style of std: : list. Which operations 
from list could you reasonably eliminate from slist because it doesn't 
have back pointers? 
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15. Define a pvector to be like a vector of pointers except that it contains 
pointers to objects and its destructor deletes each object. 

16. Defme an ovector that is like pvector except that the [ ] and • operators 
return a reference to the object pointed to by an element rather than the 
pointer. 

1 7. Define an ownership_ vector that hold pointers to objects like pvector, 
but provides a mechanism for the user to decide which objects are owned 
by the vector (i.e., which objects are deleted by the destructor) . Hint: 
Tills exercise is simple if you were awake for Chapter 13. 

1 8. Defme a range-checked iterator for vector (a random-access iterator) . 
19. Define a range-checked vector for list (a bidirectional iterator) . 
20. Run a small timing experiment to compare the cost of using vector and 

list. You can fmd an explanation of how to time a program in §26.6. 1 .  
Generate N random int  values in the range [O:N). As each int  is  gener
ated, insert it into a vector<int> (which grows by one element each time). 
Keep the vector sorted; that is, a value is inserted after every previous 
value that is less than or equal to the new value and before every previ
ous value that is larger than the new value. Now do the same experiment 
using a list<int> to hold the ints. For which N is the list faster than the 
vector? Try to explain your result. This experiment was first suggested 
by John Bentley. 

Postscript 

If we have N kinds of containers of data and M things we'd like to do with them, 
we can easily end up writing N* M pieces of code. If the data is of K different 
types, we could even end up with N* M* K pieces of code. The SIL addresses this 
proliferation by having the element type as a parameter (taking care of the K fac
tor) and by separating access to data from algorithms. By using iterators to access 
data in any kind of container from any algorithm, we can make do with N+ Mal
gorithms. This is a huge simplification. For example, if we have 12 containers and 
60 algorithms, the brute-force approach would require 720 functions, whereas the 
SIL strategy requires only 60 functions and 12 definitions of iterators: we just 
saved ourselves 90% of the work. In addition, the STL provides conventions for 
defining algorithms that simplify writing correct code and composable code, so 
the saving is greater still. 
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Al gor i th ms and Maps 

"In theory, practice is simple." 

-Trygve Reenskaug 

T his chapter completes our presentation of the fundamental 

ideas of the STL and our survey of the facilities it offers. 

Here, we focus on algorithms. Our primary aim is to introduce 

you to about a dozen of the most useful ones, which will save 

you days, if not months, of work. Each is presented with exam

ples of its uses and of programming techniques that it supports. 

Our second aim here is to give you sufficient tools to write your 

own - elegant and efficient - algorithms if and when you need 

more than what the standard library and other available libraries 

have to offer. In addition, we introduce three more containers : 

map, set, and unordered_map. 
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objects 
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21.5.3 Inner product 
21.5.4 Generalizing inner_product() 
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21 .6 Associative containers 
21 .6.1 Maps 
21.6.2 map overview 
21 .6.3 Another map example 
21.6.4 unordered_map 
21 .6.5 Sets 

21 .7 Copying 
21 .7.1 Copy 
21.7.2 Stream iterators 
21.7.3 Using a set to keep order 
21.7.4 copy_if 

21.8 Sorting and searching 

2 1 .1  Standard library algorithms 
The standard library offers about 60 algorithms. All are useful for someone 
sometimes; we focus on some that are often useful for many and on some that 
are occasionally very useful for someone: 

Selected standard algorithms 

r=find(b,e,v) 

r=find_if(b,e,p) 

x=count(b,e,v) 

x=count_if(b,e,p) 

sort(b,e) 

sort(b,e,p) 

copy(b,e,b2) 

unique_copy(b,e,b2) 

merge(b,e,b2,e2,r) 

r=equal_range(b,e,v) 

r points to the first occurrence of v in (b:e). 

r points to the first element x in (b:e) so that 
p(x) is true. 

x is the number of occurrences of v in (b:e). 

x is the number of elements in (b:e) so that 
p(x) is true. 

Sort (b:e) using <. 

Sort (b:e) using p. 

Copy (b:e) to (b2:b2+(e-b)); there had better 
be enough elements after b2. 

Copy (b:e) to (b2:b2+(e-b)l; don't copy 
adjacent duplicates. 

Merge two sorted sequences (b2:e2) and 
(b:e) into (r: r+(e-b)+(e2-b2)) . 

r is the subsequence of the sorted range (b:e) 
with the value v, basically, a binary search for v. 
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Selected standard algorithms (continued) 

equal(b,e,b2) 

x=accumulate(b,e,i) 

x=accumulate(b,e,i,op) 

Do all elements of (b:e) and lb2:b2+(e-b)) 
compare equal? 

x is the sum of i and the elements of !b:e). 

like the other accumulate, but with the 
"sum" calcu lated using op. 

x=inner_product(b,e,b2,1) x is the inner product of (b : e) and 
lb2:b2+(e-b)). 

x=inner_product(b,e,b2,i,op,op2) like the other inner_product, but with op 
and op2 instead of + and • .  
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By default, comparison for equality is done using == and ordering is done based � 
on < Qess-than). The standard library algorithms are found in <algorithm>. For � 
more information, see §B.S and the sources listed in §20.7. These algorithms take 
one or more sequences. An input sequence is defmed by a pair of iterators ; an 
output sequence is defmed by an iterator to its ftrst element. Typically an algo-
rithm is parameterized by one or more operations that can be defmcd as function 
objects or as functions. The algorithms usually report "failure" by returning the 
end of an input sequence. For example, find(b,e,v) returns e if it doesn't find v. 

2 1 .2 The simplest algorithm: fi nd() 
Arguably, the simplest useful algorithm is find(). It finds an element with a given 
value in a sequence: 

template<class In, class T> 
In find(ln first, In last, const T& val) 
II find the first element in lfirst.las!) that equals val 
{ 

while (first!=last && •first != val) ++first; 
return first; 

Let's have a look at the definition of find(). Naturally, you can use find() without 
knowing exactly how it is implemented - in fact, we have used it already (e.g., 
§20.6.2) . However, the defmition of find() illustrates many useful design ideas, so 
it is worth looking at. 

Frrst of all, find() operates on a sequence defined by a pair of iterators. We are � 
looking for the value val in the half-open sequence [first: last) . The result returned U 
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by find() is an iterator. That result points either to the first element of the sequence 
with the value val or to last. Returning an iterator to the one-beyond-the-last cle
ment of a sequence is the most common SIL way of reporting "not found." So we 
can use find() like this: 

void f(vector<inl>& v, int x) 
{ 

vector<int>: : iterator p = find(v.begin(),v.end(),x); 
if (pl=v.end()) { 

II we found x in v 

else { 
II no x in v 

} 
II . . .  

Here, as is common, the sequence consists of all the elements of a container (an 
SU vector). We check the returned iterator against the end of our sequence to 
see if we found our value. 

We now know how to use find() and therefore also how to usc a bunch of 
other algorithms that follow the same conventions as find(). Before proceeding 
with more uses and more algorithms, let's just have a closer look at that definition: 

template<class In, class T> 
In find(ln fi rst, In last, const T& val) 

II find the first element in l fi rst, last) that equals val 

while (first! =last && •first != val) ++first; 
return first; 

Did you fmd that loop obvious at first glance? We didn't. It is actually minimal, 
efficient, and a direct representation of the fundamental algorithm. However, 
until you have seen a few examples, it is not obvious. Let's write it "the pedes
trian way" and see how that version compares : 

template<class In, class T> 
In find( In first, In last, const T& val) 

II fi nd the first element in l fi rst.last) that equals val 
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for (In p = first; p!=last; ++p) 
if (•p == val) return p; 

return last; 

These two defmitions are logically equivalent, and a really good compiler will 
generate the same code for both. However, in reality many compilers arc not 
good enough to eliminate that extra variable (p) and to rearrange the code so that 
all the testing is done in one place. Why worry and explain? Partly, because the 
style of the ftrst (and preferred) version of find() has become very popular, and 
you must understand it to read other people's code; partly, because performance 
matters exactly for small, frequently used functions that deal with lots of data. 

T RY T H I S  

_ .  Are you sure those two definitions are logically equivalent? How would you 
be sure? Try constructing an argument for their being equivalent. That 
done, try both on some data. A famous computer scientist (Don Knuth) once 
said, "I have only proven the algorithm correct, not tested it." Even mathe· 
matical proofs can contain errors. To be confident, you need to both reason 
and test. 

21 .2.1 Some generic uses 
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The find() algorithm is generic. That means that it can be used for different data fJ 
types. In fact, it is generic in two ways; it can be used for 

Any STL·style sequence 

Any element type 

Here are some examples (consult the diagrams in §20.4 if you get confused) : 

void f(vector<inl>& v, int x) 
{ 

II works for vector of int 

vector<int>: : iterator p = find(v.begin(),v.end(),x) ; 
if (p!=v.end()) { t• we found x •t } 
II . . .  

Here, the iteration operations used by find() are those of a vector<int>: : iterator; fJ 
that is, ++ (in ++first) simply moves a pointer to the next location in memory 
(where the next element of the vector is stored) and • (in •first) dereferences such 
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a pointer. The iterator comparison (in first!=last) is a pointer comparison, and 
the value comparison (in •first!=val ) simply compares two integers. 

Let's try with a list: 

void f(list<string>& v, string x) 
{ 

II works for I ist of string 

list<string>: : iterator p = find(v.begin(),v.end(),x); 
if (pl=v.end()) { t• we found x •t } 
II . . .  

Here, the iteration operations used by find() are those of a list<String>: : iterator. 
The operators have the required meaning, so that the logic is the same as for the 
vector<int> above. The implementation is very different, though; that is, ++ (in 
++first) simply follows a pointer in the Link part of the element to where the next 
element of the list is stored, and • (in *first) fmds the value part of a Link. The it
erator comparison (in firstl=last) is a pointer comparison of Link•s and the value 
comparison (in •firstl=val) compares strings using string's != operator. 

So, find() is extremely flexible: as long as we obey the simple rules for itera
tors, we can use find() to find elements for any sequence we can think of and for 
any container we care to defme. For example, we can use find() to look for a 
character in a Document as defined in §20.6: 

void f(Document& v, char x) 
{ 

II works for Document of char 

Text_iterator p = find(v.begin(),v.end(),x); 
if (pl=v.end()) { t• we found x •t } 
II . . .  

This kind of flexibility is the hallmark of the STL algorithms and makes them 
more useful than most people imagine when they first encounter them. 

21 .3 The general search: find_if() 
We don't actually look for a specific value all that often. More often, we are inter
ested in fmding a value that meets some criteria. We could get a much more use
ful find operation if we could defme our search criteria ourselves. Maybe we 
want to fmd a value larger than 42. Maybe we want to compare strings without 
taking case (upper case vs. lower case) into account. Maybe we want to find the 
first odd value. Maybe we want to fmd a record where the address field is "17 
Cherry Tree Lane". 
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111e standard algorithm that searches based o n  a user-supplied criterion is 
find_if() :  

template<class In, class Pred> 
In find_if(ln first, In last, Pred pred) 
{ 

while (firstl =last && lpred(•first)) ++first; 
return first; 

Obviously (when you compare the source code), it is just like find() except that it 
uses ! pred(*first) rather than •firstl=val; that is, it stops searching once the predi
cate predO succeeds rather than when an element equals a value. 
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A predicate is a function that returns true or false. Clearly, find_if() requires � 
a predicate that takes one argument so that it can say pred(*first). We can easily 
write a predicate that checks some property of a value, such as "Does the string 
contain the letter x?" "Is the value larger than 42?" "Is the number odd?" For ex
ample, we can fmd the first odd value in a vector of ints like this : 

bool odd(int x) { return x%2; } II %  is the modulo operator 

void f(vector<int>& v) 
{ 

vector<int>: : iterator p = find_if(v.begin(), v.end(), odd); 
if (pl =v.end()) { t• we found an odd number •t } 
II . . .  

For that call of find_if(), find_if() calls odd() for each element until it finds the 
first odd value. 

Similarly, we can find the first element of a list with a value larger than 42 
like this : 

bool larger_than_ 42(int x) { return x>42; } 

void f(list<double>& v) 
{ 

list<double>: : iterator p = find_if(v.begin(), v.end(), larger_than_ 42); 
if (p! =v.end()) { /* we found a va lue > 42 •t } 
II . . .  
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{ 

Tills last example is not very satisfying, though. What if we next wanted to find 
an element larger than 41 ? We would have to write a new function. Find an ele
ment larger than 19? Write yet another function. There has to be a better way! 

If we want to compare to an arbitrary value v, we need somehow to make v 
an implicit argument to find_if()'s predicate. We could try (choosing v_val as a 
name that is less likely to clash with other names) 

int v_val; II the va lue to which larger_than_v() compares its argument 
bool larger_than_v(int x) { return X>v_val; } 

void f(list<double>& v, int x) 
{ 

v_val = 31 ; // set v_val to 3 1  for the next cal l  of larger_than_v 
list<double>: : iterator p = find_if(v.begin(), v.end(), larger_than_v); 
if (p! =v.end()) { /* we found a va lue > 3 1  •t } 

v_val = x; II set v_val to x for the next ca l l  oi larger_than_v 
list<double>: :  iterator q = find_if(v.begin(), v.end(), larger_than_v); 
if (q! =v.end()) { /* we iound a value > x•! } 

II . . .  

Yuck! We are convinced that people who write such code will eventually get what 
they deserve, but we pity their users and anyone who gets to maintain their code. 
Again: there has to be a better way! 

T RY T H I S  
.. Why are we so disgusted with that use of v? Give at least three ways this 

could lead to obscure errors. List three applications in which you'd particu
larly hate to find such code. 

21 .4 Function objects 
So, we want to pass a predicate to find_if(), and we want that predicate to com
pare elements to a value we specify as some kind of argument. In particular, we 
want to write something like this :  
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void f(list<double>& v, int x) 
{ 

list<double>: : iterator p = find_if(v.begin(), v.end(), Larger_than(31 )); 
if (pl=v.end()) { /* we iound a value > 31 •t } 

list<double>: : iterator q = find_if(v.begin(), v.end(), Larger_than(x)); 
if (q!=v.end()) { t• we iound a value > x •t } 

II . . .  

Obviously, Larger_than must be something that 

We can call as a predicate, e.g., pred(* first) 

Can store a value, such as 31 or x, for use when called 

735 

For that we need a "function object," that is, an object that can behave like a func- � 
tion. We need an object because objects can store data, such as the value with 
which to compare. For example: 

class Larger_than { 
int v; 

public: 
Larger_than(int vv) : v(vv) { } 
bool operator()(lnt x) const { return X>v; } 

}; 

II store the argument 
// compare 

Interestingly, this defmition makes the example above work as specified. Now we 
just have to figure out why it works. When we say Larger_than(31 ) we (obviously) 
make an object of class Larger_than holding 31 in its data member v. For example: 

find_if(v. begin(), v.end() ,Larger_than(31 )) 

Here, we pass that object to find_if() as its parameter called pred. For each ele
ment of v, find _if() makes a call 

pred(*first) 

l11is invokes the call operator, called operator(), for our funaion objea using the 
argument •first. The result is a comparison of the element's value, •first, with 31 . 

What we see here is that function call can be seen as an operator, the "( ) op- � 
erator," just like any other operator. The "( ) operator" is also called the .fimction 
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call operator and the application operator. So ( )  in pred(*first) is given a meaning by 
Larger_than : : operator(), just as subscripting in v[i] is given a meaning by 
vector: :operator[ ]. 

21 .4.1 An abstract view of function objects 
We have here a mechanism that allows for a "function" to "carry around" data 
that it needs. Clearly, function objects provide us with a very general, powerful, 
and convenient mechanism. Consider a more general notion of a function object: 

class F { II abstract example of a function object 
S s; II state 

public: 

} ;  

F(const S& ss) : s(ss) { /* establ ish initia l  state */ } 
T operator() (const S& ss) const 
{ 

II do somethi ng with ss to s 
II return a value of type T (T is often void, bool, or 5) 

const S& state() const { return s; } II revea l state 
void reset(const S& ss) { s = ss; } II reset state 

An object of class F holds data in its member s. If needed, a function object can 
have many data members. Another way of saying that something holds data is 
that it "has state." When we create an F, we can initialize that state. Whenever we 
want to, we can read that state. For F, we provided an operation, state(), to read 
that state and another, reset(), to write it. However, when we design a function 
object we are free to provide any way of accessing its state that we consider ap
propriate. And, of course, we can directly or indirectly call the function object 
using the normal function call notation. We defmed F to take a single argument 
when it is called, but we can define function objects with as many parameters as 
we need. 

Use of function objects is the main method of parameterization in the STL. 
We use function objects to specify what we are looking for in searches (§21 .3) , for 
defining sorting criteria (§2 1 .4.2) , for specifying arithmetic operations in numeri
cal algorithms (§2 1 .5) , for defming what it means for values to be equal (§2 1 .8) , 
and for much more. The use of function objects is a major source of flexibility 
and generality. 

Function objects are usually very efficient. In particular, passing a small func
tion object by value to a template function typically leads to optimal perform-
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ance. The reason is simple, but surprising to people more familiar with passing 
functions as arguments: typically, passing a function object leads to significantly 
smaller and faster code than passing a function! This is true only if the object is 
small (something like zero, one, or two words of data) or passed by reference and 
if the function call operator is small (e.g., a simple comparison using <) and de
fined to be inline (e.g., has its definition within its class itself) . Most of the exam
ples in this chapter - and in this book - follow this pattern. The basic reason for 
the high performance of small and simple function objects is that they preserve 
sufficient type information for compilers to generate optimal code. Even older 
compilers with unsophisticated optimizers can generate a simple "greater-than" 
machine instruction for the comparison in Larger_than rather than calling a func
tion. Calling a function typically takes 10 to 50 times longer than executing a 
simple comparison operation. In addition, the code for a function call is several 
times larger than the code for a simple comparison. 

21 .4.2 Predicates on class members 
As we have seen, standard algorithms work well with sequences of elements of 
basic types, such as int and double. However, in some application areas, contain
ers of class values are far more common. Consider an example that is key to ap
plications in many areas, sorting a record by several criteria : 

struct Record { 
string name; 
char addr[24l; 
II . . .  

}; 

vector<Record> vr; 

II sta ndard stri ng for ease of use 
II o ld style to match database layout 

Sometimes we want to sort vr by name, and sometimes we want to sort it by ad
dress. Unless we can do both elegantly and efficiently, our techniques are of lim
ited practical interest. Fortunately, doing so is easy. We can write 

II . . .  
sort(vr.begin(), vr.end(), Cmp_by_name()); II sort by name 
II . . .  
sort(vr.begin(), vr.end(), Cmp_by_addr()) ;  II sort by addr 
II . . .  
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Cmp_by_name is a function object that compares two Records by comparing their •\ 
name members. Cmp_by_addr is a function object that compares two Records by U 



738 CHAPT E R  2 1  • A L G O R I T H M S  A N D  MAPS 

comparing their addr members. To allow the user to specify such comparison cri
teria, the standard library sort algorithm takes an optional third argument specify
ing the sorting criteria. Cmp_by_name() creates a Cmp_by_name for sort() to use 
to compare Records. That looks OK - meaning that we wouldn't mind maintain
ing code that looked like that. Now all we have to do is to defme Cmp_by_name 
and Cmp_by_addr: 

II d ifferent comparisons for Record objects: 

struct Cmp_by_name { 

}; 

bool operator()(const Record& a, const Record& b) const 
{ return a. name < b.name; } 

struct Cmp_by_addr { 

}; 

bool operator()(const Record& a, const Record& b) const 
{ return strncmp(a.addr, b.add r, 24) < 0; } II ! ! !  

The Cmp_by_name class is pretty obvious. The function call operator, opera
tor()(), simply compares the name strings using the standard string's < operator. 
However, the comparison in Cmp_by_addr is ugly. That is because we chose an 
ugly representation of the address : an array of 24 characters (not zero termi
nated) . We chose that partly to show how a function object can be used to hide 
ugly and error-prone code and partly because this particular representation was 
once presented to me as a challenge: "an ugly and important real-world problem 
that the STL can't handle." Well, the STL could. The comparison function uses 
the standard C (and C++) library function strncmp() that compares fixed-length 
character arrays returning a negative number if the second "string" comes lexico
graphically after the first. Look it up should you ever need to do such an obscure 
comparison (e.g., §B.10.3) . 

2 1 .5 Numerical algorithms 
Most of the standard library algorithms deal with data management issues: they 
copy, sort, search, etc. data. However, a few help with numerical computations. 
These numerical algorithms can be important when you compute, and they 
serve as examples of how you can express numerical algorithms within the STL 
framework. 

There are just four STL-style standard library numerical algorithms: 
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Numerical algorithms 

x=accumulate(b,e,i) Add a sequence of values; e.g., for {a,b,c,d) 
produce a+b+c+d. The type of the resu lt x is the 
type of the initial value i. 

x=inner_product(b,e,b2,i) Mu ltiply pairs of values from two sequences and 
sum the resu lts; e.g., for {a,b,c,d) and {e,f,g.h) 
produce a*e+b*f+c*g+d*h. The type of the result 
x is the type of the initial value i .  

r=partial_sum(b,e,r) Produce the sequence of sums of the fi rst n 
elements of a sequence; e.g., for {a,b,c,d) 
produce [a, a+b, a+b+c, a+b+c+d). 

r=adjacent_difference(b,e,b2,r) Produce the sequence of differences between 
elements of a sequence; e.g., for {a,b,c,d) 
produce {a,b-a,c-b,d-c). 

They are found in <numeriC>. We'll describe the first two here and leave it for 
you to explore the other two if you feel the need. 

21 .5.1 Accumulate 
l11e simplest and most useful numerical algorithm is accumulate(). In its simplest 
form, it adds a sequence of values: 

template<class In, class T> T accumulate( ln first, In last, T init) 
{ 

while (first!=last) { 
init = init + •first; 
++first; 

return init; 

Given an initial value, init, it simply adds every value in the [flrst: last) sequence 
to it and returns the sum. The variable in which the sum is computed, init, is 
often referred to as the fKmmulaJor. For example: 

int a[) = { 1, 2, 3, 4, 5 }; 
cout << accumulate(a, a+sizeof(a)/sizeof(int), 0); 

This will print 15, that is, 0+ 1 +2+3+4+5 (0 is the initial value) . Obviously, accu
mulate() can be used for all kinds of sequences : 

739 
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void f(vector<double>& vd, int• p, int n) 
{ 

double sum = accumulate(vd.begin(), vd.end(), 0.0); 
int sum2 = accumulate(p,p+n,O); 

The type of the result (the sum) is the type of the variable that accumulate() uses 
to hold the accumulator. This gives a degree of flexibility that can be important. 
For example: 

void f(int• p, int n) 
{ 

int s1 = accumulate(p, p+n, 0); 
long sl = accumulate(p, p+n, long(O) ); 
double s2 = accumulate(p, p+n, 0.0); 

II sum into an int  
II sum I he ints i nto a long 
II sum the ints into a double 

A long has more significant digits than an int on some computers. A double can 
represent larger (and smaller) numbers than an int, but possibly with less preci· 
sion. We'll revisit the role of range and precision in numerical computations in 
Chapter 24. 

Using the variable in which you want the result as the initializer is a popular 
idiom for specifying the type of the accumulator: 

void f(vector<double>& vd, int• p, int n) 
{ 

double s1 = 0; 
s1 = accumulate(vd.begin(), vd.end(), s1 );  
int s2 = accumulate(vd.begin(), vd.end(), s2); 
float s3 = 0; 
accumulate(vd.begin(), vd.end(), s3); 

II oops 

II oops 

Do remember to initialize the accumulator and to assign the result of accumu
late() to the variable. In this example, s2 was used as an initializer before it was it
self initialized; the result is therefore undefmed. We passed s3 to accumulate() 
(pass-by-value; see §8.5.3), but the result is never assigned anywhere; that compi
lation is just a waste of time. 

21 .5.2 Generalizing accumu late() 
So, the basic three-argument accumulate() adds. However, there are many other 
useful operations, such as multiply and subtract, that we might like to do on a se-
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quence, so the S1L offers a second four-argument version of accumulate() where 
we can specify the operation to be used: 

template<class In, class T, class BinOp> 
T accumulate(ln first, In last, T in it, BinOp op) 
{ 

while (firstl=last) { 
init = op(init, •first); 
++first; 

return init; 

Any binary operation that accepts two arguments of the accumulator's type can 
be used here. For example: 

array<double,4> a =  { 1 .1, 2.2, 3.3, 4.4 }; II see §20.9 
cout << accumulate(a.begin(),a.end(), 1 .0, multiplies<double>()); 

This will print 35.1384, that is, 1 .0*1.1*2.2*3.3*4.4 (1.0 is the initial value). The bi
nary operator supplied here, multiplieS<double>O, is a standard library function 
object that multiplies; multiplieS<double> multiplies doubles, multiplieS<int> mul· 
tiplies ints, etc. There are other binary function objects: plus (it adds), minus (it 
subtracts), divides, and modulus (it takes the remainder). They are all defined in 
<functional> (§B.6.2). 

Note that for products of floating·point numbers, the obvious initial value is 1 .0. 
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As in the sort() example (§2 1 .4.2), we are often interested in data within class � 
objects, rather than just plain built-in types. For example, we might want to calcu· 
late the total cost of items given the unit prices and number of units: 

struct Record { 

};  

double unit_price; 
int units; II number of units sold 
II . . .  

We can let the accumulate's operator extract the units from a Record element as 
well as multiplying it to the accumulator value: 

double price(double v, const Record& r) 
{ 

return v + r.unit_price • r.units; II calculale price and acc umulate 
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void f(const vector<Record>& vr) 
{ 

double total = accumulate(vr.begin(), vr.end(), 0.0, price); 
II . . .  

We were "lazy" and used a function, rather than a function object, to calculate the 
price -just to show that we could do that also. We tend to prefer function objects 

If they need to store a value between calls, or 

If they are so short that inlining can make a difference (at most a handful 
of primitive operations) 

In this example, we might have chosen a function object for the second reason. 

T RY T H I S  

Define a vector<Record>, initialize it with four records of your choice, and 
compute their total price using the functions above. 

21 .5.3 Inner product 
Take two vectors, multiply each pair of elements with the same subscript, and 
add all of those sums. That's called the inner product of the two vectors and is a 
most useful operation in many areas (e.g., physics and linear algebra; see §24.6). 
If  you prefer code to words, here is the SIL version: 

template<class In, class ln2, class T> 
T inner_product(ln first, In last, ln2 first2, T init) 

II note: this is t he way we mult iply two vectors (yielding cl sca lar! 

while(first!=last) { 
init = init + (•first) • (•first2) ; 
++first; 
++first2; 

return init; 

II mult ip ly pairs of elements 

This generalizes the notion of inner product to any kind of sequence of any type 
of element. As an example, consider a stock market index. The way that works is 
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to take a set of companies and assign each a "weight." For example, in the Dow 
Jones Industrial index Alcoa had a weight of 2.4808 when last we looked. To get 
the current value of the index, we multiply each company's share price with its 
weight and add all the resulting weighted prices together. Obviously, that's the 
inner product of the prices and the weights. For example: 

II calcu lale I he Dow Jones Industrial  index: 
vector<double> dow_price; II share price for each company 
dow_price.push_back(81.86); 
dow _price.push_back(34.69); 
dow_price.push_back(54.45); 
II . . .  

list<double> dow_weight; II weighl in index for each company 
dow_ weight.push_back(5.8549); 
dow_ weight.push_back(2.4808); 
dow_weight.push_back(3.8940); 
II . . .  

double dji_index = inner_product( II mult iply (weight, va lue) pairs and add 
dow_price.begin(), dow_price.end(), 
dow_weight.begin(), 
0.0); 

cout << "DJI value " << dji_index << '\n' ;  
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Note that inner_product() takes two sequences. However, it takes only three ar- • \ 
guments : only the beginning of the second sequence is mentioned. The second U 
sequence is supposed to have at least as many elements as the first. If not, we 
have a run-time error. As far as inner_product() is concerned, it is OK for the sec-
ond sequence to have more elements than the first; those "surplus elements" will 
simply not be used. 

The two sequences need not be of the same type, nor do they need to have f) 
the same element types. To illustrate this point, we used a vector to hold the 
prices and a list to hold the weights. 

21 .5.4 Generalizing i n ner _product() 
The inner_product() can be generalized just as accumulate() was. For inner _prod
uct() we need twO extra arguments, though: one to combine the accumulator with 
the new value, exactly as for accumulate(), and one for combining the element 
value pairs: 
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template<class In,  class ln2, class T, class BinOp, class Bin0p2 > 
T inner_product(ln first, In last, ln2 first2, T init, BinOp op, Bin0p2 op2) 
{ 

while(first!=last) { 
init = op(init, op2(*first, •first2)); 
++first; 
++first2; 

return init; 

In §2 1 .6.3, we return to the Dow Jones example and use this generalized 
inner_product() as part of a more elegant solution. 

21 .6 Associative containers 
Mter vector, the most useful standard library container is probably the map. A 
map is an ordered sequence of (key, value) pairs in which you can look up a value 
based on a key; for example, my_phone_book["Nicholas") could be the phone 
number of Nicholas. The only potential competitor to map in a popularity con
test is unordered_map (see §2 1.6.4), and that's a map optimized for keys that are 
strings. Data structures similar to map and unordered_map are known under 
many names, such as associative arrays, hash tables, and red-blm:k trees. Popular and 
useful concepts always seem to have many names. In the standard library, we col
lectively call all such data structures associative containers. 

The standard library provides eight associative containers: 

Associative containers 

map an ordered container of (key, value) pairs 

set an ordered container of keys 

unordered_map an unordered container of (key, va lue) pairs 

unordered_set an unordered container of keys 

multimap a map where a key can occur multiple times 

multiset a set where a key can occur multiple times 

unordered_multimap an unordered_map where a key can occur multiple times 

unordered_multiset an unordered_set where a key can occur multiple times 

These containers are found in <map>, <Set>, <unordered_map>, and <un
ordered_set>. 
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21 .6.1 Maps 
Consider a conceptually simple task: make a list of the number of occurrences of 
words in a text. The obvious way of doing this is to keep a list of words we have 
seen together with the number of times we have seen each. When we read a new 
word, we see if we have already seen it; if we have, we increase its count by one; 
if not, we insert it in our list and give it the value 1. We could do that using a list 
or a vector, but then we would have to do a search for each word we read. That 
could be slow. A map stores its keys in a way that makes it easy to see if a key is 
present, thus making the searching part of our task trivial: 

int main() 
{ 

map<String,int> words; 

string s; 

II keep (word,frequency) pai rs 

while (cin>>s) ++words[s]; II note: words is subscripted by cl str ing 

typedef map<String,int>: :const_iterator Iter; 
for (Iter p = words.begin(); p !=words.end(); ++p) 

cout << p->first << " : " << p->second << '\n' ;  

The really interesting part of the program is ++words[s]. As we can see from the 
first line of main(), words is a map of (string,int) pairs; that is, words maps 
strings to ints. In other words, given a string, words can give us access to its cor
responding int. So, when we subscript words with a string (holding a word read 
from our input) , words[s] is a reference to the int corresponding to s. Let's look 
at a concrete example : 

words["sultan"] 
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If we have not seen the string "sultan" before, "sultan" will be entered into words � 
with the default value for an int, which is 0. Now, words has an entry ("sultan",O). � 
It follows that if we haven't seen "sultan" before, ++words["sultan"] will associate 
the value 1 with the string "sultan". In detail: the map will discover that "sultan" 
wasn't found, insert a ("sultan",O) pair, and then ++ will increment that value, 
yielding 1 .  

Now look again at the program: ++words[s] takes every "word" we get from 
input and increases its value by one. The first time a new word is seen, it gets the 
value 1 .  Now the meaning of the loop is clear: 

while (cin>>s) ++words[s]; 
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1bis reads every (whitespace-separated) word on input and computes the num
ber of occurrences for each. Now all we have to do is to produce the output. We 
can iterate though a map, just like any other sn container. The elements of a 
mapc:string,int> are of type pair<String,int>. The first member of a pair is called 
first and the second member second, so the output loop becomes 

typedef mapc:string,int>: :const_iterator Iter; 
for (Iter p = words.begin(); p!=words.end(); ++p) 

cout << p->first << 11 : 11 << p->Second << '\n';  

The typedef (§20.5 and §A. l6) is just for notational convenience and readability. 
As a test, we can feed the opening statements of the first edition of 17le C++ 

Programming Language to our program: 

C++ is a general purpose programming language designed to make pro· 
gramming more enjoyable for the serious programmer. Except for minor 
details, C++ is a superset of the C programming language. In addition to 
the facilities provided by C, C++ provides flexible and efficient facilities 
for defining new types. 

We get the output 

C: 1 
C++: 3 
C, : 1 
Except: 1 
In:  1 
a: 2 
addition: 1 
and:  1 
by: 1 
defining: 1 
designed: 1 
details, : 1 
efficient: 1 
enjoyable: 1 
facilities : 2 
flexible: 1 
for: 3 
general: 1 
is: 2 
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language : 1 
language. : 1 
make: 1 
minor: 1 
more: 1 
new: 1 
of: 1 
programmer. : 1 
programming: 3 
provided: 1 
provides: 1 
purpose: 1 
serious:  1 
superset: 1 
the: 3 
to: 2 
types. :  1 

If we don't like to distinguish between upper- and lowercase letters or would like 
to eliminate punctuation, we can do so: see exercise 13. 

21 .6.2 map overview 
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So what is a map? There is a variety of ways of implementing maps, but the SU � 
map implementations tend to be balanced binary search trees ; more specifically, � 
they are red-black trees. We will not go into details, but now you know the tech-
nical terms, so you can look them up in the literature or on the web, should you 
want to know more. 

A tree is built up from nodes (in a way similar to a list being built from links; 
see §20.4). A Node holds a key, its corresponding value, and pointers to two de
scendant Nodes. 

Map node: 

Here is the way a map<Fruit,inl> might look in memory assuming we had in
serted (Kiwi,lOO), (Qyince,O) , (Plum,8), (Apple,7), (Grape,2345), and (Orange,99) 
into it : 
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Given that the name of the Node member that holds the key value is first, the 
basic rule of a binary search tree is 

left->first<first && first<right->first 

That is, for every node, 

Its left sub-node has a key that is less than the node's key, and 

The node's key is less than the key of its right sub-node 

You can verify that this holds for each node in the tree. That allows us to search 
"down the tree from its root." Curiously enough, in computer science literature 
trees grow downward from their roots. In the example, the root node is (Orange, 
99) . We just compare our way down the tree until we find what we are looking 
for or the place where it should have been. A tree is called balanced when (as in 
the example above) each sub-tree has approximately as many nodes as every 
other sub-tree that's equally far from the root. Being balanced minimizes the av
erage number of nodes we have to visit to reach a node. 

A Node may also hold some more data which the map will use to keep its 
tree of nodes balanced. A tree is balanced when each node has about as many de
scendants to its left as to its right. If a tree with N nodes is balanced, we have to at 
most look at lo&�(N) nodes to fmd a node. That's much better than the average 
of .N72 nodes we have to examine if we had the keys in a list and searched from 
the beginning (the worst case for such a linear search is N) . (See also §2 1 .6.4.) 
For example, have a look at an unbalanced tree: 
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This tree still meets the criteria that the key of every node is greater than that of 
its left sub-node and less than that of its right sub-node: 

left->first<first && first<right->first 

However, this version of the tree is unbalanced, so we now have three "hops" to 
reach Apple and Kiwi, rather than the two we had in the balanced tree. For trees 
of many nodes the difference can be very significant, so the trees used to imple
ment maps are balanced. 

We don't have to understand about trees to use map. It is just reasonable to 
assume that professionals understand at least the fundamentals of their tools. 
What we do have to understand is the interface to map provided by the standard 
library. Here is a slightly simplified version: 

template<class Key, class Value, class Cmp = less<Key> > class map { 
II . . .  

} ;  

typedef pair<Key,Value> value_type; II a map deals  in  (Key, Value) pairs 

typedef sometype1 iterator; II probably a pointer to a tree node 
typedef sometype2 const_iterator; 

iterator begin(); 
iterator end(); 

II poi nts to first element 
II poi nts one beyond the last element 

Value& operator[J(const Key& k); II subscript with k 

iterator find(const Key& k); II is there an entry for k? 

void erase(iterator p); II remove element pointed to by p 
pair<iterator, bool> insert(const value_type&); II insert a (key, value) pair 
II . . .  
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You can find the real version in <map>. You can imagine the iterator to be a Node"', � 
but you cannot rely on your implementation using that specific type to implement U 
iterator. 

The similarity to the interfaces for vector and list (§20.5 and §B.4) is obvious. 
The main difference is that when you iterate, the elements are pairs - of type 
pair<Key, Value>. That type is another useful srL type: 

template<class T1, class T2> struct pair { 
typedef T1 first_ type; 
typedef T2 second_ type; 
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}; 
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T1 first; 
T2 second; 

pair() : first(T1 ()), second(T2()) { }  
pair(const T1& x, const T2& y) : first(x), second(y) { }  
template<class U, class V> 

pair(const pair<U,V>& p) : first(p.first), second(p.second) { }  

template<class T1, class T2> 
pair<T1 ,T2> rnake_pair(T1 x, T2 y) 
{ 

return pair<T1, T2>(x,y); 

We copied the complete definition of pair and its useful helper function make_pair() 
from the standard. 

Note that when you iterate over a map, the elements will come in the order 
defmed by the key. For example, if we iterated over the fruits in the example, we 
would get 

(Apple,7) (Grape, 100) (Kiwi,2345) (0range,99) (Pium,B) (Quince,O) 

The order in which we inserted those fruits doesn't matter. 
The insert() operation has an odd return value, which we most often ignore 

in simple programs. It is a pair of an iterator to the (key, value) element and a 
bool which is true if the (key, value) pair was inserted by this call of insert(). If the 
key was already in the map, the insertion fails and the bool is false. 

Note that you can defme the meaning of the order used by a map by supply
ing a third argument (Cmp in the map declaration) . For example: 

map<string, double, No_case> m; 

No_case defines case-insensitive compare; see §21 .8. By default the order is de
fmed by less<Key>, meaning less-than. 

21 .6.3 Another map example 
To better appreciate the utility of map, let's return to the Dow Jones example 
from §21 .5.3. The code there was correct if and only if all weights appear in the 
same position in their vector as their corresponding name. That's implicit and 
could easily be the source of an obscure bug. There are many ways of attacking 
that problem, but one attractive one is to keep each weight together with its com
pany's ticker symbol, e.g., ("AA",2.4808). A "ticker symbol" is an abbreviation of 
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a company name used where a terse representation is needed. Similarly we can 
keep the company's ticker symbol together with its share price, e.g., 
("AA",34.69). Fmally, for those of us who don't regularly deal with the U.S. stock 
market, we can keep the company's ticker symbol together with the company 
name, e.g., ("AA",''Alcoa Inc."); that is, we could keep three maps of correspon· 
ding values . 

Frrst we make the (symbol,price) map: 

mapc:string,double> dow_price; 
II Dow Jones I ndustrial index (symbol,price); 
II ior up-to-date quotes see www.djindexes.com 

dow_price["MMM") = 81.86; 
dow_price ["AA"] = 34.69; 
dow_price ["MO") = 54.45; 
II . . .  

The (symbol,weight) map: 

mapc:string,double> dow_ weight; II Dow (symbol,weighl l 

dow_weight.insert(make_pair("MMM", 5.8549)); 
dow_ weight. insert(make_pair( "AA" ,2.4808)); 
dow_weight.insert(make_pair("M0",3.8940)); 
II . . .  

We used insert() and make_pair() to show that the elements of a map really are 
pairs. The example also illustrates the value of notation; we find the subscript no
tation easier to read and - less important - easier to write. 

The (symbol,name) map: 

mapc:string,string> dow_name; II Dow (symbol. name) 
dow_name["MMM") = "3M Co.";  
dow_name["AA"] = "Alcoa Inc."; 
dow_name["MO") = "Aitria Group Inc. " ;  
II . . .  

Given those maps, we can conveniently extract all kinds of information. For 
example: 

double alcoa_price = dow_price ["AAA"]; 
double boeing_price = dow _price ["BA"); 

II read values from a map 

if (dow_price.find(" INTC") I=  dow_price.end()) II find an entry in a map 
cout << "Intel is in the Dow\n"; 
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Iterating through a map is easy. We just have to remember that the key is called 
first and the value is called second : 

typedef mapc:string,double>: : const_iterator Dow_iterator; 

II wrile price for each company in rhe Dow index: 
for (Dow_iterator p = dow_price.begin(); p!=dow_price.end(); ++p) { 

const string& symbol = p->first; II I he "I icker" symbol 
cout << symbol << '\t' 
<< p->second << '\t ' 
<< dow_name[symbol) << '\n'; 

We can even do some computation directly using maps. In particular, we can cal
culate the index, just as we did in §2 1 .5.3. We have to extract share values and 
weights from their respective maps and multiply them. We can easily write a 
function for doing that for any two mapc:string,double>s : 

double weighted_ value( 
const pair<String,double>& a, 
const pair<String,double>& b 

) II extract values and mu ltiply 

return a.second • b.second; 

Now we just plug that function into the generalized version of inner_product() 
and we have the value of our index: 

double dji_index = 
inner_product(dow_price.begin(), dow_price.end(), II a l l  companies 

dow_weight.begin(), II I heir weights 
0.0, II in i l ia l  va lue 
pluS<double>(), II add (as usual )  
weighted_ value); II exl racl values and weighls 

II and mul l iply 

Why might someone keep such data in maps rather than vectors? We used a 
map to make the association between the different values explicit. That's one 
conunon reason. Another is that a map keeps its elements in the order defmed by 
its key. When we iterated through dow above, we output the symbols in alpha
betical order; had we used a vector we would have had to sort. The most com-
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mon reason t o  use a map is simply that we want t o  look u p  values based on the 
key. For large sequences, finding something using find() is far slower than look
ing it up in a sorted structure, such as a map. 

T RY T H I S  

· (.. Get this little example to work. Then add a few companies of your own 
choice, with weights of your choice. 

21 .6.4 unordered_map 
To find an clement in a vector, find() needs to examine all the elements from the 
beginning to the element with the right value or to the end. On average, the cost 
is proportional to the length of the vector (N) ; we call that cost O(N) . 

To find an element in a map, the subscript operator needs to examine all the 
clements of the tree from the root to the element with the right value or to a leaf. 
On average the cost is proportional to the depth of the tree. A balanced binary 
tree holding X elements has a maximum depth of logl(N) ; the cost is O(lo&�(N)) .  
O(log2(N)) - that is, cost proportional to  lo&z(N) - is  actually pretty good com
pared to O(N) : 

N 15 128 1023 16,383 

logl(N) 4 7 10 14 

The actual cost will depend on how soon in our search we find our values and 
how expensive comparisons and iterations are. It is usually somewhat more ex
pensive to chase pointers (as the map lookup does) than to increment a pointer 
(as find() does in a vector). 
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For some types, notably integers and character strings, we can do even better � 
than a map's tree search. We will not go into details, but the idea is that given a 
key, we compute an index into a vector. That index is called a hash value and a 
container that uses this technique is typically called a has/z tahle. The number of 
possible keys is far larger than the number of slots in the hash table. For example, 
we often usc a hash function to map from the billions of possible strings into an 
index for a vector with 1000 clements. This can be tricky, but it can be handled 
well and is especially useful for implementing large maps. The main virtue of a 
hash table is that on average the cost of a lookup is (near) constant and inde
pendent of the number of elements in the table, that is, 0(1) .  Obviously, that can 
be a significant advantage for large maps, say a map of 500,000 web addresses. 
For more information about hash lookup, you can look at the documentation for 
unordered_map (available on the web) or just about any basic text on data struc-
tures (look for hash tabk and hashing) . 
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We can illustrate lookup in an (unsorted) vector, a balanced binary tree, and 
a hash table graphically like this: 

Lookup in unsorted vector: 

Lookup in map (balanced binary tree) : 

Lookup in unordered_map (hash table) : 
' ,  

�I 
' 

. . . . � - - - .f: .. 

The STL unordered_map is implemented using a hash table, just as the STL 
map is implemented using a balanced binary tree, and an STL vector is imple
mented using an array. Part of the utility of the STL is to fit all of these ways of 
storing and accessing data into a conunon framework together with algorithms. 
The rule of thumb is: 

Use vector unless you have a good reason not to. 

Use map if you need to look up based on a value (and if your key type 
has a reasonable and efficient less-than operation) .  

Use unordered_map if you need to do a lot of lookup in a large map and 
you don't need an ordered traversal (and if you can find a good hash 
function for your key type) . 

Here, we will not describe unordered_map in any detail. You can use an un
ordered_map with a key of type string or int exactly like a map, except that 
when you iterate over the elements, the elements will not be ordered. For exam
ple, we could rewrite part of the Dow jones example from §2 1 .6.3 like this: 
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unordered_mapc:string,double> dow_price; 

typedef unordered_map<string,double> : :  const_iterator Dow_iterator; 

for (Dow_iterator p = dow_price.begin(); pl=dow_price.end(); ++p) { 
const string& symbol = p->first; // the "ticker" symbol 

cout << symbol << '\t' 
<< p->second << '\t' 
<< dow_name[symbol) << '\n'; 

Lookup in dow might now be faster. However, that would not be significant be· 
cause there are only 30 companies in that index. Had we been keeping the prices 
of all the companies on the New York Stock Exchange, we might have noticed a 
performance difference. We will, however, notice a logical difference: the output 
from the iteration will now not be in alphabetical order. 

The unordered maps are new in the context of the C++ standard and not 
yet quite "ftrst·class members," as they are deftned in a Technical Report rather 
than in the standard proper. They are widely available, though, and where they 
are not you can often find their ancestors, called something like hash_map. 

T RY T H I S  

1 � Write a small program using #include<unordered_map>. H that doesn't 
work, u nordered_map wasn't shipped with your C++ implementation. H 
you really need unordered_map, you have to download one of the available 
implementations (e.g., see www.boost.org). 

21 .6.5 Sets 
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We can think of a set as a map where we are not interested in the values, or f) 
rather as a map without values. We can visualize a set node like this : 

Set node: 

We can represent the set of fruits used in the map example (§2 1 .6.2) like this :  
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What are sets useful for? As it happens, there are lots of problems that require us 
to remember if we have seen a value. Keeping track of which fruits are available 
(independently of price) is one example; building a dictionary is another. A 
slightly different style of usage is having a set of "records"; that is, the clements 
are objects that potentially contain "lots of' information - we simply usc a mem
ber as the key. For example: 

struct Fruit { 
string name; 
int count; 

}; 

double unit_price; 
Date last_sale_date; 
II . . .  

struct Fruit_order { 

}; 

bool operator()(const Fruit& a, const Fruit& b) const 
{ 

return a. name<b.name; 

set<Fruit, Fruit_order> inventory; 

Here again, we see how using a function object can significantly increase the 
range of problems for which an STL component is useful. 

Since set doesn't have a value type, it doesn't support subscripting (operator[]()) 
either. We must use "list operations;' such as insert() and erase(), instead. Unfortu
nately, map and set don't support push_back() either - the reason is obvious: the 
set and not the programmer determines where the new value is inserted. Instead 
use insert(). For example: 

inventory. insert( Fruit(" quince" ,5)); 
inventory.insert(Fruit("apple", 200, 0.37)); 
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One advantage of set over map is that you can use the value obtained from 
an iterator directly. Since there is no (key,value) pair as for map (§2 1 .6.3), the 
dereference operator gives a value of the element type: 

typedef set<Fruit>: :const_iterator Sl; 
for (SI p =  inventory.begin(), p !=inventory.end(); ++p) cout << •p << '\n'; 

Assuming, of course, that you have defined << for Fruit. 

2 1 .7 Copying 
In §21 .2, we deemed find() "the simplest useful algorithm." Naturally, that point 
can be argued. Many simple algorithms are useful - even some that are trivial to 
write. Why bother to write new code when you can use what others have written 
and debugged for you, however simple? When it comes to simplicity and utility, 
copy() gives find() a run for its money. The STI.. provides three versions of copy: 

Copy operations 

copy(b,e,b2) 

unique_copy(b,e,b2) 

copy _if(b,e,b2,p) 

2 1 .7.1 Copy 

Copy [b:e) to [b2:b2+(e-b)l. 

Copy [b:e) to [b2:b2+(e-b)l; suppress adjacent copies. 

Copy [b:e) to [b2: b2+(e-b)), but on ly elements that meet 
the predicate p. 

The basic copy algorithm is defined like this : 

template<class In, class Out> Out copy(ln first, In last, Out res) 
{ 

while (first !=last) { 
•res = *first; II copy element 
++res; 
++first; 

return res; 

Given a pair of iterators, copy() copies a sequence into another sequence speci· 
fied by an iterator to its first element. For example: 
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void f(vector<double>& vd, list<int>& li) 
II copy the elements oi a l ist of ints into a vector of doub les 

if (vd.size() < li.size()) error("target container too small"); 
copy(li.begin(), li.end(), vd.begin()); 
II . . .  

Note that the type of the input sequence of copy() can be different from Lhe type 
of the output sequence. That's a useful generality of STL algorithms: they work 
for all kinds of sequences without making unnecessary assumptions abouL their 
implementation. We remembered to check that there was enough space in the 
output sequence to hold the elements we put there. It's the programmer's job to 
check such sizes. STL algorithms are programmed for maximal generality and 
optimal performance; they do not (by default) do range checking or other paten· 
tially expensive tests to protect their users. At times, you'll wish they did, but 
when you want checking, you can add it as we did above. 

21 .7.2 Stream iterators 
You will have heard the phrases "copy to output" and "copy from input." That's a 
nice and useful way of thinking of some forms of 1/0, and we can actually usc 
copy to do exactly that. 

Remember that a sequence is something 

With a beginning and an end 

Where we can get to the next element using ++ 

Where we can get the value of the current clement using • 

We can easily represent input and output streams Lhat way. For example: 

ostream_iterator<String> oo(cout); II assign ing to *oo is to write to cout 

•oo = "Hello, " ;  
++oo; 
•oo = "World !\n" ;  

II meaning cout << "Hel lo, " 
II "get ready for next outpul operation" 
II meaning cout << "World ! \ n '' 

You can imagine how this could be implemented. The standard library provides 
an ostream_iterator type that works like that; ostream_iterator<T> is an iterator 
that you can use to write values of type T. 

Similarly, the standard library provides the type istream_iterator<T> for read
ing values of type T: 



2 1 . 7 COPY ING 

istream_iterator<String> ii(cin); II reading * i i  is  to read a string from cin 

II meaning cin>>sl string s1 = * ii; 
++ii; 
string s2 = * ii; 

II "get ready for the next input operation" 
II meaning cin>>s2 

Using ostream_iterator and istream_iterator, we can use copy() for our 1/0. For 
example, we can make a "quick and dirty" dictionary like this : 

int main() 
{ 

string from, to; 
cin >> from >> to; 

ifstream is(from.c_str()); 
ofstream os(to.c_str()); 

II get source and target fi le names 

II open input stream 
II open output stream 

istream_iterator<String> ii(is); II make input i terator for stream 
istream_iterator<string> eos; II input sentinel 
ostream_iterator<string> oo(os, "\n"); II make output iterator for stream 

vector<string> b(ii,eos); 
sort(b.begin() ,b.end()); 
copy(b.begin() ,b.end() ,oo); 

II b is a vector in i tia l ized from i nput 
II sort the buffer 
II copy buffer to output 

The iterator eos is the stream iterator's representation of "end of input." When 
an istream reaches end of input (often referred to as eof) ,  its istream_iterator will 
equal the default istream_iterator (here called eos). 

Note that we initialized the vector by a pair of iterators. As the initializers for 
a container, a pair of iterators (a, b) means "Read the sequence [a: b) into the con
tainer." Naturally, the pair of iterators that we used was (ii,eos) - the beginning 
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and end of input. That saves us from explicitly using >> and push_back(). We f) 
strongly advise against the alternative 

vector<string> b(max_size); 
copy(ii,eos,b. begin()); 

II don't guess about the amount of input! 

People who try to guess the maximum size of input usually find that they have 
underestimated, and serious problems emerge - for them or for their users -
from the resulting buffer overflows. Such overflows are also a source of security 
problems. 
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T R Y  T H I S  

( . • Flrst get the program as written to work and test it with a small file of, say, a 
few hundred words. Then try the empludicolly not recommended version that 
guesses about the size of input and see what happens when the input buffer b 
overflows. Note that the worst-case scenario is that the overflow led to noth
ing bad in your particular example, so that you would be tempted to ship it 
to users. 

In our little program, we read in the words and then sorted them. That seemed 
an obvious way of doing things at the time, but why should we put words in "the 
wrong place" so that we later have to sort? Worse yet, we find that we store a 
word and print it as many times as it appears in the input. 

We can solve the latter problem by using unique_copy() instead of copy(). A 
unique_copy() simply doesn't copy repeated identical values. For example, using 
plain copy() the program will take 

the man bit the dog 

and produce 

bit 
dog 
man 
the 
the 

If we used unique_ copy(), the program would write 

bit 
dog 
man 
the 

Where did those newlines come from? Outputting with separators is so common 
that the ostream_iterator's constructor allows you to (optionally) specify a string 
to be printed after each value: 

ostream_iterator<string> oo(os, "\n"); II make output iterator ior stream 
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Obviously, a newline is a popular choice for output meant for humans to read, 
but maybe we prefer spaces as separators? We could write 

ostream_iterator<String> oo(os," " ); II m ake output iter a tor for stream 

This would give us the output 

bit dog man the 

21 .7 .3 Using a set to keep order 
There is an even easier way of getting that output; use a set rather than a vector: 

int main() 
{ 

string from, to; 
cin >> from >> to; 

ifstream is(from.c_str()); 
ofstream os(to.c_str()); 

II get source and ta rget file names 

II make input stream 
II make output stream 

istream_iterator<string> ii(is); 
istream_iterator<string> eos; 
ostream_iterator<string> oo(os," " ) ;  

II make input iterator for stream 
II input sentinel 
II make output iterator for stream 

set<string> b(ii,eos); 
copy(b.begin() ,b.end() ,oo); 

II b is a set initia l ized from i nput 
II copy buffer to output 
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When we insert values into a set, duplicates are ignored. Furthermore, the ele- � 
ments of a set are kept in order so no sorting is needed. With the right tools, � 
most tasks are easy. 

21 .7.4 copy_if 
The copy() algorithm copies unconditionally. The unique_copy() algorithm sup
presses adjacent elements with the same value. The third copy algorithm copies 
only elements for which a predicate is true: 

template<class In, class Out, class Pred> 
Out copy_if( ln first, In last, Out res, Pred p) 

II copy elements that fu lfi l l  the predicate 
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while (firstl =last) { 
if (p(*first)) •res++ = •first; 
++first; 

return res; 

Using our Larger_than function object from §2 1 .4, we can fmd all clements of a 
sequence larger than 6 likc this: 

void f(const vector<inl>& v) 
II copy a l l  e lements with a value larger than 6 

vector<int> v2(v.size()); 
copy_if(v.begin(), v.end(), v2.begin(), Larger_than(6)); 
II . . .  

Thanks to a mistake I made, this algorithm is missing from the 1998 ISO Stan
dard. 11lis mistake has now been remedied, but you can still fmd implementa
tions without copy _if. If so, just use the definition from this section. 

2 1 .8 Sorting and searching 
Often, we want our data ordered. We can achieve that either by using a data 
structure that maintains order, such as map and set, or by sorting. The most 
conunon and useful sort operation in the SU is the sort() that we have already 
used several times. By default, sort() uses < as the sorting criterion, but we can 
also supply our own criteria: 

template<class Ran> void sort(Ran first, Ran last); 
template<class Ran, class Cmp> void sort( Ran first, Ran last, Cmp cmp); 

As an example of sorting based on a user-specified criterion, we'll show how to 
sort strings without taking case into account: 

struct No_ case { 
bool operator()(const string& x, const string& y) const 
{ 
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for (int i = 0; i<x.length(); ++i) { 
if (i == y.length()) return false; 
char xx = tolower(x[i)); 
char yy = tolower(y[i]); 
if (xx<yy) return true; 
if (yy<Xx) return false; 

ll y<x 

II x<y 
ll y<x 

return true; II x<y <iewer characters in x) 

}; 

void sort_and_print(vector<String>& vc) 
{ 

sort(vc.begin(),vc.end(),No_case()); 

for (vector<String>: :  const_iterator p = vc.begin(); p! =vc.end(); ++p) 
cout << •p << '\n' ;  
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Once a sequence is sorted, we no longer need to search from the beginning using f) 
find(); we can use the order to do a binary search. Basically, a binary search 
works like this: 

Assume that we arc looking for the value x; look at  the middle element: 

If the element's value equals x, we found it! 

If the element's value is less than x, any element with value x must be to 
the right, so we look at the right half (doing a binary search on that half) . 

• If the value of x is less than the element's value, any element with value x 
must be to the left, so we look at the left half (doing a binary search on 
that half) . 

• If we have reached the last element (going left or right) without finding x, 
then there is no element with that value. 

For longer sequences, a binary search is much faster than find() (which is a linear •\ 
search) . The standard library algorithms for binary search are search() and U 
equal_range(). What do we mean by "longer"? It depends, but ten elements are 
usually sufficient to give search() an advantage over find(). For a sequence of 1000 
elements, search() will be something like 200 times faster than find(); see §21 .6.4. 

The binary_search algorithm comes in two variants: 

template<class Ran, class T> 
bool binary _search( Ran first, Ran last, const T& val); 
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template<class Ran, class T, class Cmp> 
bool binary_search(Ran first, Ran last, const T& val, Cmp cmp); 

These algoritluns require and assume that their input sequence is sorted. If it isn't, 
"interesting things," such as infinite loops, might happen. A binary_search() simply 
tells us whether a value is present: 

void f(vector<string>& vs) 
{ 

II vs is sorted 

if (binary_search(vs.begin(),vs.end(), "starfruit")) { 
II we have a starfruit 

II . . .  

So, binary _search() is ideal when all we care about is whether a value is in a sc· 
quence or not. If we care about the element we fmd, we can use lower_bound(), 
upper_bound(), or equal_range() (§23.4, §B.5.4). In the cases where we care 
which element is found, the reason is usually that it is an object containing more 
information than just the key, that there can be many elements with the same 
key, or that we want to know which element met a search criterion. 

� Drill 
Mter each operation (as defmed by a line of this drill) print the vector. 

1 .  Define a struct Item { string name; int iid; double value; t• . . .  •t }; and 
make a vector<ltem>, vi, and fill it with ten items from a file. 

2. Sort vi by name. 
3. Sort vi by iid. 
4. Sort vi by value; print it in order of decreasing value (i.e., largest value 

ftrst) . 
5. Insert ltem("horse shoe" ,99, 12.34) and ltem("Canon S400", 9988,499.95). 
6. Remove (erase) two Items identified by name from vi. 
7. Remove (erase) two Items identified by iid from vi. 
8. Repeat the exercise with a list<ltem> rather than a vector<ltem>. 

Now try a map: 

1. Define a map<String,int> called msi. 
2. Insert ten (name,value) pairs into it, e.g., msi[" lecture")=21 . 
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3. Output the (name, value) pairs t o  cout in some format of your choice. 
4. Erase the (name,value) pairs from msi. 
5. Write a function that reads value pairs from cin and places them in msi. 
6. Read ten pairs from input and enter them into msi. 
7. Write the elements of msi to cout. 
8. Output the sum of the (integer) values in msi. 
9. Defme a map<int,string> called mis. 

10. Enter the values from msi into mis; that is, if msi has an element (" lec
ture",21), mis should have an element (21 ," 1ecture") .  

1 1 . Output the elements of mis to cout. 

More vector use: 

1. Read some floating·point values (at least 16 values) from a file into a vec
tor<double> called vd. 

2. Output vd to cout. 
3. Make a vector vi of type vector<int> with the same number of elements 

as vd; copy the elements from vd into vi. 
4. Output the pairs of (vd[i),vi[i]) to cout, one pair per line. 
5. Output the sum of the elements of vd. 
6. Output the difference between the sum of the elements of vd and the 

sum of the elements of vi. 
7. There is a standard library algorithm called reverse that takes a sequence 

(pair of iterators) as arguments; reverse vd, and output vd to cout. 
8. Compute the mean value of the elements in vd; output it. 
9. Make a new vector<double> called vd2 and copy all elements of vd with 

values lower than Qess than) the mean into vd2. 
10. Sort vd; output it again. 

Review 

1. What are examples of useful SIL algorithms? 
2. What does find() do? Give at least five examples. 
3. What does count_if() do? 
4. What does sort(b,e) use as its sorting criterion? 
5. How does an SU algorithm take a container as an input argument? 
6. How does an SIL algorithm take a container as an output argument? 
7. How does an SIL algorithm usually indicate "not found" or "failure"? 
8. What is a function object? 
9. In which ways does a function object differ from a function? 

10. What is a predicate? 
1 1 .  What does accumulate() do? 
12. What does inner_product() do? 
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13. What is an associative container? Give at least three examples. 
14. Is list an associative container? Why not? 
15. What is the basic ordering property of binary tree? 
16. What (roughly) does it mean for a tree to be balanced? 
17. How much space per element does a map take up? 
18. How much space per element does a vector take up? 
19. Why would anyone use an unordered_map when an (ordered) map is 

available? 
20. How does a set differ from a map? 
21 .  How does a multi_map differ from a map? 
22. Why use a copy() algorithm when we could "just write a simple loop"? 
23. What is a binary search? 

Terms 

accumulate() 
algorithm 
application: () 
associative container 
balanced tree 
binary _search() 
copy() 
copy_if() 
equal_range() 

Exercises 

find() 
find_if() 
function object 
generic 
hash function 
inner_product() 
lower_bound() 
map 
predicate 

searching 
sequence 
set 
sort() 
sorting 
stream iterator 
unique_ copy() 
unordered_ map 
upper_bound() 

1. Go through the chapter and do all Try this exercises that you haven't al· 
ready done. 

2. Fmd a reliable source of SU documentation and list every standard li· 
brary algorithm. 

3. Implement count() yourself. Test it. 
4. Implement count_if() yourself. Test it. 
5. What would we have to do if we couldn't return end() to indicate "not 

found"? Redesign and reimplement find() and count() to take iterators to 
the first and last elements. Compare the results to the standard versions. 

6. In the Fruit example in §21 .6.5, we copy Fruits into the set. What if we 
didn't want to copy the Fruits? We could have a set<Fruit*> instead. 
However, to do that, we'd have to define a comparison operation for that 
set. Implement the Fruit example using a set<fruit•, Fruit_ comparison>. 
Discuss the differences between the two implementations. 
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7 .  Write a binary search function for a vector<int> (without using the stan· 
dard one) . You can choose any interface you like. Test it. How confident 
arc you that your binary search function is correct? Now write a binary 
search function for a list<string>. Test it. How much do the two binary 
search functions resemble each other? How much do you think they 
would have resembled each other if you had not known about the SU? 

8. Take the word-frequency example from §2 1.6.1 and modify it to output 
its lines in order of frequency (rather than in lexicographical order) . An 
example line would be 3: C++ rather than C++: 3. 

9. Defme an Order class with (customer) name, address, data, and vec
tor<Purchase> members. Purchase is a class with a (product) name, 
unit_price, and count members. Define a mechanism for reading and 
writing Orders to and from a ftle. Define a mechanism for printing 
Orders. Create a ftle of at least ten Orders, read it into a vector<Order>, 
sort it by name (of customer) , and write it back out to ftle. Create an· 
other ftle of at least ten Orders of which about a third are the same as in 
the first file, read it into a l ist<Order>, sort it by address (of customer) , 
and write it back out to file. Merge the two files into a third using 
std : :merge( ). 

10. Compute the total value of the orders in the two files from the previous exer
cise. The value of an individual Purchase is (of course) its unit_price•count. 

1 1 . Provide a G UI interface for entering Orders into files. 
12 .  Provide a GUI interface for querying a ftle of Orders; e.g., "Fmd all or· 

ders from Joe," "Fmd the total value of orders in file Hardware," and 
"List all orders in file Clothing." Hint: Frrst design a non-G UI interface; 
then, build the G UI on top of that. 

13. Write a program to "clean up" a text file for use in a word query pro
gram; that is, replace punctuation with whitespace, put words into lower 
case, replace don't with do not (etc.) , and remove plurals (e.g., ships be· 
comes ship) . Don't be too ambitious. For example, it is hard to detennine 
plurals in general, so just remove an s if you find both ship and ships. Use 
that program on a real-world text file with at least 5000 words (e.g., a re
search paper) . 

14.  Write a program (using the output from the previous exercise) to answer 
questions such as: "How many occurrences of ship are there in a file?" 
"Which word occurs most frequently?" "Which is the longest word in 
the ftle?" "Which is the shortest?" "List all words starting with s." "List 
all four-letter words." 

15. Provide a G UI for the program from the previous exercise. 
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Postscript 

The SU is the part of the ISO C++ standard library concerned with containers 
and algorithms. As such it provides very general, flexible, and useful basic tools. 
It can save us a lot of work: reinventing the wheel can be fun, but it is rarely pro
ductive. Unless there are strong reasons not to, use the SIL containers and basic 
algorithms. What is more, the SIL is an example of generic programming, show
ing how concrete problems and concrete solutions can give rise to a collection of 
powerful and general tools. If you need to manipulate data - and most program
mers do - the sn provides an example, a set of ideas, and an approach that 
often can help. 
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I dea l s  and H i story 

"When someone says, 
'I want a programming language 

in which I need only say what I wish done,' 
give him a lollipop." 

-Alan Perlis 

T
his chapter is a very brief and very selective history of pro

gramming languages and the ideals they have been designed 

to serve. The ideals and the languages that express them are the 

basis for professionalism. Because C++ is the language we use in 
this book, we focus on C++ and languages that influenced C++. 

The aim is to give a background and a perspective to the ideas pre

sented in this book. For each language, we present its designer or 

designers: a language is not just an abstract creation, but a concrete 

solution designed by individuals in response to problems they faced 

at the time. 
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22.1 H istory, ideals, and professionalism 

"History is bunk," Henry Ford famously declared. The contrary opinion has 
been widely quoted since antiquity: "He who does not know history is con
demned to repeat it." The problem is to choose which parts of history to know 
and which parts to discard: "95% of everything is bunk" is another relevant 
quote (with which we concur, though 95% is probably an underestimate). Our 
view of the relation of history to current practice is that there can be no profes
sionalism without some understanding of history. If you know too little of the 
background of your field, you are gullible because the history of any field of 
work is littered with plausible ideas that didn't work. The "real meat" of history 
is ideas and ideals that have proved their wortl1 in practical use. 

We would have loved to talk about the origins of key ideas in many more lan
guages and in all kinds of software, such as operating systems, databases, graph
ics, networking, the web, scripting, etc., but you'll have to fmd those important 
and useful areas of software and programming elsewhere. We have barely enough 
space to scratch the surface of the ideals and history of programming languages. 

The ultimate aim of programming is always to produce useful systems. In 
the heat of discussions about programming techniques and programming lan
guages, that's easily forgotten. Don't forget that! If you need a reminder, take an
other look at Chapter 1 .  

22.1 .1  Programming language aims and philosophies 
What is a programming language? What is a programming language supposed 
to do for us? Popular answers to "What is a programming language?" include 

A tool for instructing machines 

A notation for algorithms 

A means of communication among programmers 

A tool for experimentation 
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A means of controlling computerized devices 

A way of expressing relationships among concepts 

A means of expressing high-level designs 

Our answer is "All of the above - and more!" Clearly, we are thinking about 
general-purpose programming languages here, as we will throughout this chap
ter. In addition, there are special-purpose languages and domain-specific lan
guages serving narrower and typically more precisely defined aims. 

What properties of a programming language do we consider desirable? 

• Portability 

• Type safety 

Precisely defined 

High performance 

Ability to concisely express ideas 

Anything that eases debugging 

Anything that eases testing 

Access to all system resources 

Platform independence 

Runs on all platforms 

Stability over decades 

Prompt improvements in response to changes in application areas 

Ease of learning 

• Small 

Support for popular programming styles (e.g., object-oriented program
ming and generic programming) 

Whatever helps analysis of programs 

Lots of facilities 

Supported by a large community 

Supportive of novices (students, learners) 

Comprehensive facilities for experts (e.g., infrastructure builders) 

Lots of software development tools available 

Lots of software components available (e.g., libraries) 

• Supported by an open software community 

Supported by major platform vendors (Microsoft, IBM, etc.) 

Unfortunately, we can't have all this at the same time. That's sad because every 
one of these "properties" is objectively a good thing: each provides benefits, and 
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a language that doesn't provide them imposes added work and complications on 
its users. The reason we can't have it all is equally fundamental: several of the 
properties are mutually exclusive. For example, you cannot be 100% platform in
dependent and also access all system resources; a program that accesses a re
source that is not available on every platform cannot run everywhere. Similarly, 
we obviously want a language (and the tools and libraries we need to use it) that 
is small and easy to learn, but that can't be achieved while providing comprehen
sive support for programming on all kinds of systems and for all kinds of appli
cation areas. 

This is where ideals become important. Ideals are what guide the technical 
choices and trade-offs that every language, library, tool, and program designer 
must make. Yes, when you write a program you are a designer and must make 
design choices. 

22.1 .2 Programming ideals 
The preface of The C++ Programming Language starts, "C++ is a general purpose 
programming language designed to make programming more enjoyable for the 
serious programmer." Say what? Isn't programming all about delivering prod
ucts? About correctness, quality, and maintainability? About time-to-market? 
About supporting software engineering? That, too, of course, but we shouldn't 
forget the programmer. Consider another example : Don Knuth said, "The best 
thing about the Alto is that it doesn't run faster at night." The Alto was a com
puter from the Xerox Palo Alto Research Center (PAR C) that was one of the first 
"personal computers," as opposed to the shared computers for which there was a 
lot of competition for daytime access. 

Our tools and techniques for programming exist to make a progranm1er, a 
human, work better and produce better results. Please don't forget that. So what 
guidelines can we articulate to help a programmer produce the best software with 
the least pain? We have made our ideals explicit throughout the book so this sec
tion is basically a summary. 

The main reason we want our code to have a good structure is that the struc
ture is what allows us to make changes without excessive effort. The better the 
structure, the easier it is to make a change, fmd and fix a bug, add a new feature, 
port it to a new architecture, make it run faster, etc. That's exactly what we mean 
by "good:' 

For the rest of tllis section, we will 

Revisit what we are trying to achieve, that is, what we want from our code 

Present two general approaches to software development and decide tl1at 
a combination is better than either alternative by itself 

Consider key aspects of program structure as expressed in code: 

Direct expression of ideas 
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Abstraction level 

Modularity 

Consistency and minimalism 

775 

Ideals are meant to be used. They are tools for thinking, not simply fancy � 
phrases to trot out to please managers and examiners. Our programs arc meant U 
to approximate our ideals. When we get stuck in a program, we step back to see 
if our problems come from a departure from some ideal; sometimes that helps. 
When we evaluate a program (preferably before we ship it to users) , we look for 
departures from the ideals that might cause problems in the future. Apply ideals 
as widely as possible, but remember that practical concerns (e.g., performance 
and simplicity) and weaknesses in a language (no language is perfect) will often 
prevent you from achieving more than a good approximation of the ideals. 

Ideals can guide us when making specific technical decisions. For example, • \ 
we can't just make every single decision about interfaces for a library individu- U 
ally and in isolation (§14.1 ) .  The result would be a mess. Instead we must go 
back to our first principles, decide what is important about this particular library, 
and then produce a consistent set of interfaces. Ideally, we would articulate our 
design principles and trade-offs for that particular design in the documentation 
and in comments in the code. 

During the start of a project, review the ideals and see how they relate to the • \ 
problems and the early ideas for their solution. This can be a good way to get U 
ideas and to refme ideas. Later in the design and development process, when you 
are stuck, step back and see where your code has most departed from the ideals 
- this is where the bugs are most likely to lurk and the design problems are most 
likely to occur. This is an alternative to the default technique of repetitively look-
ing in the same place and trying the same techniques to find the bug. "The bug is 
always where you are not looking - or you would have found it already." 

22.1 .2.1 What we want 

Typically, we want 

Correctness: Yes, it can be difficult to defme what we mean by "correct," � 
but doing so is an important part of the complete job. Often, others de- � 
fme for us what is correct for a given project, but then we have to inter· 
pret what they say. 

Mainlainahilily: Every successful program will be changed over time; it will 
be ported to new hardware and software platforms, it will be extended 
with new facilities, and new bugs will be found that must be fixed. The 
sections below about ideals for program structure address this ideal. 

Peifcmnance: Performance ("efficiency") is a relative term. Performance has 
to be adequate for the program's purpose. It is often claimed that efficient 
code is necessarily low-level and that concerns with a good, high-level 



776 CHAPT E R  2 2  • I D EALS  A N D  H I STORY 

structure of the code cause inefficiency. On the contrary, we fmd that ac
ceptable performance is often achieved though adherence to the ideals 
and approaches we recommend. The STL is an example of code that is si
multaneously abstract and very efficient. Poor performance can as easily 
arise from an obsession with low-level details as it can from disdain for 
such details. 

On-time delivery: Delivering the perfect program a year late is usually not 
good enough. Obviously, people expect the impossible, but we need to 
deliver quality software in a reasonable time. There is a myth that "com
pleted on time" implies shoddiness. On the contrary, we find that em
phasis on good structure (e.g., resource management, invariants, and 
interface design), design for testability, and use of appropriate libraries 
(often designed for a specific application or application area) is a good 
way to meet deadlines. 

Tills leads to a concern for structure in our code: 

If there is a bug in a program (and every large program has bugs) , it is 
easier to find in a program with a clear structure. 

If a program needs to be understood by a new person or needs to be 
modified in some way, a clear structure is comprehensible with far less 
effort than a mess of low-level details. 

If a program hits a performance problem, it is often easier to tunc a high
level program (one that is a good approximation of the ideals and has a 
well-defined structure) than a low-level or messy one. For starters, the 
high-level one is more likely to be understandable. Second, the high·level 
one is often ready for testing and tuning long before the low-level one. 

Note the point about a program being understandable. Anything that helps us 
understand a program and helps us reason about it is good. Fundamentally, reg
ularity is better than irregularity - as long as the regularity is not achieved through 
oversimplification. 

22.1 .2.2 General approaches 

There are two approaches to writing correct software: 

Bottom-up: Compose the system using only components proved to be correct. 

Top-down: Compose the system out of components assumed to contain 
errors and catch all errors. 

Interestingly, the most reliable systems combine these two - apparently contrary 
- approaches. The reason for that is simple: for a large real-world system, neither 
approach will deliver the needed correctness, adaptability, and maintainability: 
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We can't build and "prove" enough basic components to eliminate all 
sources of errors. 

We can't completely compensate for the flaws of buggy basic components 
(libraries, subsystems, class hierarchies, etc.) when combining them in the 
ftnal system. 

However, a combination of approximations to the two approaches can deliver 
more than either in isolation: we can produce (or borrow or buy) components 
that are sufficiently good, so that the problems that remain can be compensated 
for by error handling and systematic testing. Also, if we keep building better 
components, a larger part of a system can be constructed from them, reducing 
the amount of "messy ad hoc code" needed. 

777 

Testing is an essential part of software development. It is discussed in some • \ 

detail in Chapter 26. Testing is the systematic search for errors. "Test early and U 
often" is a popular slogan. We try to design our programs to simplify testing and 
to make it harder for errors to "hide" in messy code. 

22.1 .2.3 Direct expression of ideas 

When we express something - be it high-level or low-level - the ideal is to ex- ., 
press it directly in code, rather than though work-arounds. The fundamental � 
ideal of representing our ideas directly in code has a few specific variants: 

Represent ideas directly Ul code. For example, it is better to represent an argu
ment as a speciftc type (e.g., Month or Color) than as a more general one 
(e.g., int) . 

Represent independent ideas independently in code. For example, with a few ex
ceptions, the standard sort() can sort any standard container of any ele
ment type; the concepts of sorting, sorting criteria, container, and element 
type are independent. Had we built a "vector of objects allocated on the 
free store where the elements are of a class derived from Object with a 
before() member function defmed for use by vector: : sort()" we would 
have a far less general sort() because we made assumptions about storage, 
class hierarchy, available member functions, ordering, etc. 

Represent relatitmships arrumg ideas directly in rode. The most common relation
ships that can be directly represented are inheritance (e.g., a Circle is a 
kind of Shape) and parameterization (e.g., a vector<T> represents what's 
common for all vectors independently of a particular element type) . 

Combine ideas expressed in code .freely - where and only where combinations make 
sense. For example, sort() allows us to use a variety of element types and 
a variety of containers, but the elements must support < (if they do not, 
we use the sort() with an extra argument specifying the comparison crite
ria), and the containers we sort must support random-access iterators. 
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Express simple idea.s simply. Following the ideals listed above can lead to 
overly general code. For example, we may end up with class hierarchies 
with a more complicated taxonomy (inheritance structure) than anyone 
needs or with seven parameters to every (apparently) simple class. To 
avoid every user having to face every possible complication, we try to 
provide simple versions tl1at deal with the most common or most impor
tant cases . For example, we have a sort(b,e) that implicitly sorts using 
less-than in addition to the general version sort(b,e,op) that sorts using 
op. If we could (and we will be able to in C++Ox; see §22.2.8), we'd also 
provide versions sort( c) for sorting a standard container using less-than 
and sort(c,op) for sorting a standard container using op. 

22.1 .2.4 Abstraction level 

We prefer to work at tlze /zig/zest fiasible level rf abstraction; that is, our ideal is to ex· 
press our solutions in as general a way as possible. 

For example, consider how to represent entries for a phone book (as we might 
keep it on a PDA or a cell phone) . We could represent a set of (name,value) pairs 
as a vector<pair<String, Value_type>>. However, if we essentially always accessed 
that set using a name, map<String, Value_type> would be a higher level of abstrac· 
tion, saving us the bother of writing (and debugging) access functions. On the 
other hand, vector<pair<String, Value_type>> is itself a higher level of abstraction 
tl1an two arrays, string[max) and Value_type[max], where the relationship be
tween the string and its value is implicit. The lowest level of abstraction would be 
something like an int (number of elements) plus two void*s (pointing to some 
form of representation, known to the programmer but not to the compiler) . In our 
example, every suggestion so far could be seen as too low-level because it focuses 
on the representation of the pair of values, rather than their function. We could 
move closer to the application by defining a class that directly reflected a use. For 
example, we could write our application code using a class Phonebook with an in
terface designed for convenient use. That Phonebook class could be implemented 
using any one of the representations suggested. 

The reason for preferring the higher level of abstraction (when we have an 
appropriate abstraction mechanism and if our language supports it with accept
able efficiency) is that such formulations are closer to the way we think about our 
problems and solutions than solutions that have been expressed at the level of 
computer hardware. 

The reason given for dropping to a lower level of abstraction is typically "effi
ciency." This should be done only when really needed (§25.2.2). Using a lower-level 
(more primitive) language feature does not necessarily give better performance. 
Sometimes, it eliminates optimization opportunities. For example, using a Phone· 
book class, we have a choice of implementations, say, between string[max) plus 
Value_type[max) and map<String, Value_type>. For some applications the former is 
more efficient and for others the latter is. Naturally, performance would not be a 
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major concern i n  an application involving only your personal directory. However. 
this kind of trade-off becomes interesting when we have to keep track of - and ma
nipulate - millions of entries. More seriously, after a while, the use of low-level fea
tures soaks up the programmer's time so that opportunities for improvements 
(performance or otherwise) are missed because oflack of time. 

22.1 .2.5 Modularity 
Modularity is an ideal. We want to compose our systems out of "components" •\ 
(functions, classes, class hierarchies, libraries, etc.) that we can build, understand, U 
and test in isolation. Ideally, we also want to design and implement such compo-
nents so that they can be used in more than one program ("reused"). Reuse is the 
building of systems out of previously tested components that have been used else
where - and the design and use of such components. We have touched upon this in 
our discussions of classes, class hierarchies, interface design, and generic program-
ming. Much of what we say about "programming styles" (in §22. 1.3) relates to the 
design, implementation, and use of potentially "reusable'' components. Please note 
that not every component can be used in more than one program; some code is sim-
ply too specialized and is not easily improved to be usable elsewhere. 

Modularity in code should reflect important logical distinctions in the appli- • \ 
cation. We do not "increase reuse" simply by putting two completely separate U 
classes A and B into a "reusable component" called C. By providing the union of 
/l;s and B's interfaces, the introduction of C complicates our code: 

User I User 2 

User 1 User 2 

Here, User 1 and User 2 both use C. Unless you look into C, you might think 
that User 1 and User 2 gained benefits from sharing a popular component. Bene
fits from sharing ("reuse") would (in this case, wrongly) be assumed to include 
better testing, less total code, larger user base, etc. Unfortunately, except for a bit 
of oversimplification, this is not a particularly rare phenomenon. 

What would help? Maybe a common interface to A and B could be provided: 

User 1 User 2 User 1 User 2 
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These diagrams are intended to suggest inheritance and parameterization, respec
tively. In both cases, the interface provided must be smaller than a simple union 
of A's and B's interfaces for the exercise to be worthwhile. In other words, A and 
B have to have a fundamental conunonality for users to benefit from. Note how 
we again came back to interfaces (§9.7, §25.4.2) and by implication to invariants 
(§9.4.3) .  

22.1 .2.6 Consistency and minimalism 

Consistency and minimalism are primarily ideals for expressing ideas. So we 
might dismiss them as being about appearance. However, it is really hard to pres
ent a messy design elegantly, so demands of consistency and minimalism can be 
used as design criteria and affect even the most minute details of a program: 

Don't add a feature if you are in doubt about its utility. 

Do give similar facilities similar interfaces (and names), but only if the 
similarity is fundamental. 

Do give different facilities different names (and possibly different inter
face style), but only if the differences are fundamental. 

Consistent naming, interface style, and implementation style help maintenance. 
When code is consistent, a new programmer doesn't have to learn a new set of 
conventions for every part of a large system. The SU is an example (Chapters 
20-2 1, §B.4-6) . When such consistency is impossible (for example, for ancient 
code or code in another language), it can be an idea to supply an interface that 
matches the style of the rest of the program. The alternative is to let the foreign 
("strange," "poor") style infect every part of a program that needs to access the 
offending code. 

One way of preserving minimalism and consistency is to carefully (and con
sistently) document every interface. That way, inconsistencies and duplication 
are more likely to be noticed. Documenting pre-conditions, post-conditions, and 
invariants can be especially useful as can careful attention to resource manage
ment and error reporting. A consistent error-handling and resource management 
strategy is essential for simplicity (§19.5).  

To some progranuners, the key design principle is KISS ("Keep It Simple, 
Stupid") . We have even heard it claimed that KISS is the only worthwhile design 
principle. However, we prefer less evocative formulations, such as "Keep simple 
things simple" and "Keep it simple: as simple as possible, but no simpler." The 
latter is a quote from Albert Einstein, which reflects that there is a danger of sim
plifying beyond the point where it makes sense, thus damaging the design. The 
obvious question is, "Simple for whom and compared to what?" 
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22.1 . 3  Styles/paradigms 
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When we design and implement a program, we aim for a consistent style. C++ •\ 
supports four major styles that can be considered fundamental: U 

Procedural programming 

Data abstraction 

Object-oriented programming 

Generic programming 

These are sometimes (somewhat pompously) called "programming paradigms." 
There are many more "paradigms," such as functional programming, logic pro
gramming, rule-based programming, constraints-based programming, and as
pect-oriented programming. However, C++ doesn't support those directly, and 
we just can't cover everything in a single beginner's book, so we'll leave those to 
"future work" together with the mass of details that we must leave out about the 
paradigms/styles we do cover: 

Procedural programming: the idea of composing a program out of functions 
operating on arguments. Examples are libraries of mathematical func
tions, such as sqrt() and cos(). C++ supports this style of programming 
through the notion of functions (Chapter 8) . The ability to choose to 
pass arguments by value, by reference, and by const reference can be 
most valuable. Often, data is organized into data structures represented 
as structs. Explicit abstraction mechanisms (such as private data mem
bers or member functions of a class) are not used. Note that this style of 
programming - and functions - is an integral part of every other style. 

Data abstracti()ll: the idea of ftrst providing a set of types suitable for an ap
plication area and then writing the program using those. Matrices pro
vide a classical example (§24.3-6). Explicit data hiding (e.g., the use of 
private data members of a class) is heavily used. The standard string and 
vector are popular examples, which show the strong relationship be
tween data abstraction and parameterization as used by generic pro
gramming. This is called "abstraction" because a type is used through an 
interface, rather than by directly accessing its implementation. 

Oiject-oriented programming: the idea of organizing types into hierarchies to 
express their relationships directly in code. The classical example is the 
Shape hierarchy from Chapter 14. This is obviously valuable when the 
types really have fundamental hierarchical relationships. However, there 
has been a strong tendency to overuse; that is, people built hierarchies of 
types that do not belong together for fundamental reasons. When people 
derive, ask why. What is being expressed? How does the base/derived 
distinction help me in this particular case? 
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Generic programmi11g: the idea of taking concrete algorithms and "lifting" 
them to a higher level of abstraction by adding parameters to express 
what can be varied without changing the essence of an algorithm. The 
high() example from Chapter 20 is a simple example of lifting. The 
find() and sort() algorithms from the sn are classical algorithms ex
pressed in very general forms using generic programming. See Chapters 
20-2 1 and the following example. 

All together now! Often, people talk about programming styles ("paradigms") as 
if they were simple disjointed alternatives : either you use generic prograntming 
or you use object-oriented programming. If your aim is to express solutions to 
problems in the best possible way, you will use a combination of styles. By "best," 
we mean easy to read, easy to write, easy to maintain, and sufficiently efficient. 
Consider an example: the classical "Shape example" originated with Simula 
(§22.2.6) and is usually seen as an example of object-oriented programming. A 
first solution might look like this : 

void draw_all(vector<Shape*>& v) 
{ 

for(int i = 0; i<v.size(); ++i) v[i]->draw(); 

This does indeed look "rather object-oriented." It critically relies on a class hierar
chy and on the virtual function call fmding the right draw() function for every 
given Shape; that is, for a Circle, it calls Circle: :draw() and for an Open_polyline, 
it calls Open_polyline: : draw(). But the vector<Shape*> is basically a generic pro· 
gramming construct: it relies on a parameter (the element type) that is resolved at 
compile time. We could emphasize that by using a simple standard library algo
rithm to express the iteration over all elements: 

void draw_all(vector<Shape•>& v) 
{ 

for_each(v.begin(),v.end(),mem_fun(&Shape: :draw)); 

The third argument of for_each() is a function to be called for each element of 
the sequence specified by the ftrst two arguments (§B.S .l ) .  Now, that tllird func
tion call is assumed to be an ordinary function (or a function object) called using 
the f(x) syntax, rather than a member function, called by the p->f() syntax. So, 
we use the standard library function mem_fun() (§B.6.2) to say that we really 
want to call a member function (the virtual function Shape: :draw()). The point is 
that for_each() and mem_fun(), being templates, really aren't very "00-like"; 
they clearly belong to what we usually consider generic programming. More in
teresting still, mem_fun() is a freestanding (template) function returning a class 
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object. In other words, it can easily b e  classified as plain data abstraction (no in
heritance) or even procedural programming (no data hiding) . So, we could claim 
that this one line of code uses key aspects of all of the four fundamental styles 
supported by C++. 

But why would we write the second version of the "draw all Shapes" exam
ple? It fundamentally does the same as the first version; it even takes a few more 
characters to write it in that way! We could argue that expressing the loop using 
for_each() is "more obvious and less error-prone" than writing out the for-loop, 
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but for many that's not a terribly convincing argument. A better one is that •\ 
"for_each() says what is to be done (iterate over a sequence) rather than how it is U 
to be done." However, for most people the convincing argument is simply that 
"it's useful": it points the way to a generalization (in the best generic program-
ming tradition) that allows us to solve more problems. Why are the shapes in a 
vector? Why not a list? Why not a general sequence? So we can write a third 
(and more general) version: 

template<class Iter> void draw_all(lter b, Iter e) 
{ 

for_each(b,e,mem_fun(&Shape: : draw)); 

Tills will now work for all kinds of sequences of shapes. In particular, we can 
even call it for the elements of an array of Shapes : 

Point p(O, 100); 
Point p2(50,50); 
Shape• a[) = { new Circle(p,50), new Triangle(p,p2,Point(25,25)) }; 
draw _all(a,a+2); 

For lack of a better term, we call programming using the most appropriate mix of � 
styles multi-paradigm programming. � 

22.2 Programming language history overview 
In the very beginning, programmers chiseled the zeros and ones into stones by 
hand! Well, almost. Here, we'll start (almost) from the beginning and quickly in
troduce some of the major developments in the history of programming lan
guages as they relate to programming using C++. 

There are a lot of programming languages. The rate of language invention is 
at least 2000 a decade, and the rate of "language death" is about the same. Here, 
we cover almost 60 years by briefly mentioning ten languages. For more informa
tion, see http://research.ihost.com/hopl/HOPL.htm.l. There, you can find links to 
all the articles of the three ACM SIGPLAN HOPL (History of Programming 
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Languages) conferences. These are extensively peer-reviewed papers - and there
fore far more trustworthy and complete than the average web source of informa
tion. The languages we discuss here were all represented at HOPL. Note that if 
you type the full title of a famous paper into a web search engine, there is a good 
chance that you'll fmd the paper. Also, most computer scientists mentioned here 
have home pages where you can find much information about their work. 

Our presentation of a language in this chapter is necessarily very brief: each 
language mentioned - and hundreds not mentioned - deserves a whole book. 
We are also very selective in what we mention about a language. We hope you 
take this as a challenge to learn more rather than thinking, "So that's all there is 
to language X!" Remember, every language mentioned here was a major accom
plishment and made an important contribution to our world. There is just no 
way we could do justice to these language in this short space - but not mention
ing any would be worse. We would have liked to supply a bit of code for each 
language, but sorry, this is not the place for such a project (see exercises 5 and 6) . 

Far too often, an artifact (e.g., a programming language) is presented as sim
ply what it is or as the product of some anonymous "development process." This 
misrepresents history: typically - especially in the early and formative years - a 
language is the result of the ideals, work, personal tastes, and external constraints 
on one or (typically) more individuals. Thus, we emphasize key people associated 
with the languages. IBM, Bell Labs, Cambridge University, etc. do not design lan
guages; individuals from such organizations do - typically in collaboration with 
friends and colleagues. 

Please note a curious phenomenon that often skews our view of history. Pho
tographs of famous scientists and engineers are most often taken when they are 
famous and distinguished, members of national academies, Fellows of the Royal 
Society, Knights of St. John, recipients of the Turing Award, etc. - in other 
words, when they are decades older than when they did their most spectacular 
work. Almost all were/are among the most productive members of their profes
sion until late in life. However, when you look back to the birth of your favorite 
language features and programming techniques, try to imagine a young man 
(there are still far too few women in science and engineering) trying to figure out 
if he has sufficient cash to invite a girlfriend out to a decent restaurant or a parent 
trying to decide if a crucial paper can be submitted to a conference at a time and 
place that can be combined with a vacation for a young family. The gray beards, 
balding heads, and dowdy clothes come much later. 

22.2.1 The earliest languages 
When - starting in 1948 - the first "modem" stored-program electronic comput
ers appeared, each had its own language. There was a one-to-one correspondence 
between the expression of an algorithm (say, a calculation of a planetary orbit) 
and instructions for a specific machine. Obviously, the scientist (tl1e users were 
most often scientists) had notes with mathematical formulas, but the program 
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was a list of machine instructions. The first primitive lists were decimal or octal 
numbers - exactly matching their representation in the computer's memory. 
Later. assemblers and "auto codes" appeared; that is, people developed languages 
where machine instructions and machine facilities (such as registers) had sym
bolic names. So, a programmer might write "LD RO 123" to load the contents of 
the memory \•lith the address 123 into register 0. However, each machine had its 
own set of instructions and its own language. 

David Wheeler from the University of Cambridge Computer Laboratory is 
the obvious candidate for representing programming language designers of that 
time. In 1948, he wrote the first real program ever to run on a stored-program 
computer (the "table of squares" program we saw in §4.4.2. 1 ) .  He is one of about 
ten people who have a clain1 on having written the first compiler (for a machine
specific "auto code") .  He invented the function call (yes, even something so ap
parently simple needs to have been invented at some point) . He wrote a brilliant 
paper on how to design libraries in 195 1 ;  that paper was at least 20 years ahead 
of its time! He was co-author with Maurice Wilkes Oook him up) and D.J. Gill of 
the first book about programming. He received the first Ph.D. in computer sci
ence (from Cambridge in 195 1 )  and later made major contributions to hardware 
(cache arclutectures and early local-area networks) and algorithms (e.g., the TEA 
encryption algorithm [§25 .5.6] and the "Burrows-Wheeler transform" [the com
pression algorithm used in bzip2]) .  David Wheeler happens to have been Bjarne 
Stroustrup's Ph.D. thesis adviser - computer science is a young discipline. David 
Wheeler did some of his most important work as a grad student. He worked on 
to become a professor at Cambridge and a Fellow of the Royal Society. 
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TEA link: http://en. wikipedia.org!wikirrmy _Encryption_Algorithm. 
Wheeler, D. ]. "The Use of Sub-routines in Programmes." Proceedings of the 

1952 ACM National Meeting. (That's the library design paper from 1951 .) 
Wilkes, M. V., D. Wheeler, and D.J. Gill. Preparation of Program.sfor an Electronic 

Digital Computer. Addison-Wesley Press, 195 1 ;  2nd edition, 1957. The first book 
on programming. 

22.2.2 The roots of modern languages 
Here is a chart of important early languages : 

1950s: 1960s: 1970s: 

These languages are important partly because they were (and in some cases still 
are) widely used or because they became the ancestors to important modem lan
guages - often direct descendants with the same name. In this section, we ad
dress the three early languages - Fortran, COBOL, and Lisp - to which most 
modem languages trace their ancestry. 

22.2.2.1 Fortran 

The introduction of Fortran in 1956 was arguably the most significant step in the 
development of programming languages. "Fortran" stands for "Formula Transla
tion," and the fundamental idea was to generate efficient machine code from a 
notation designed for people rather than machines. The model for the Fortran 
notation was what scientists and engineers wrote when solving problems using 
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mathematics, rather than the machine instructions provided by the (then very 
new) electronic computers. 

From a modem perspective, Fortran can be seen as the first attempt to di
rectly represent an application domain in code. It allowed programmers to write 
linear algebra much as they found it in textbooks. Fortran provided arrays, loops, 
and standard mathematical functions (using the standard mathematical notation, 
such as x+y and sin(x)). There was a standard library of mathematical functions, 
mechanisms for 110, and a user could defme additional functions and libraries. 

The notation was largely machine independent so that Fortran code could 
often be moved from computer to computer with only minor modification. 11lis 
was a lzugt' improvement over the state of the art. Therefore, Fortran is considered 
the first high-level programming language. 

It was considered essential that the machine code generated from the Fortran 
source code was close to optimally efficient: machines were room-sized and enor
mously expensive (many times the yearly salary of a team of good program
mers), they were (by modem standards) ridiculously slow (such as 1 00,000 
instructions/second) ,  and they had absurdly small memories (such as 8K bytes) . 
However, people were fitting useful programs into those machines, and an im
provement in notation (leading to better programmer productivity and portabil
ity) could not be allowed to get in the way of that. 

Fortran was hugely successful in its target domain of scientific and engineering 
calculations and has been under continuous evolution ever since. The main ver
sions of the Fortran language are II, IV, 77, 90, 95, 03. It is still debated whether 
Fortran77 or Fortran90 is more widely used today. 
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The first deftnition o f  and implementation o f  Fortran were done by a team at 
IBM led by John Backus: "We did not know what we wanted and how to do it. It 
just sort of grew." How could he have known? Nothing like that had been done 
before, but along the way they developed or discovered the basic structure of 
compilers: lexical analysis, syntax analysis, semantic analysis, and optimization. 
To this day Fortran leads in the optimization of numerical computations. One 
thing that emerged (after the initial Fortran) was a notation for specifying gram
mars: the Backus-Naur Form (BNF) .  It was frrst used for Algol60 (§22.2.3.1)  
and is now used for most modem languages. We use a version of BNF for our 
grammars in Chapters 6 and 7. 

Much later, John Backus pioneered a whole new branch of programming 
languages ("functional programming") ,  advocating a mathematical approach to 
programming as opposed to the machine view based on reading and writing 
memory locations. Note that pure math does not have the notion of assignment, 
or even actions. Instead you "simply" state what must be true given a set of con
ditions. Some of the roots of functional programming are in Lisp (§22.2.2.3) ,  
and some of the ideas from functional programming are reflected in the STL 
(Chapter 2 1 ) .  
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22.2.2.2 COBOL 

COBOL ("The Common Business-Oriented Language") was (and sometimes 
still is) for business programmers what Fortran was (and sometimes still is) for 
scientiftc programmers. The emphasis was on data manipulation: 

• Copying 
• Storing and retrieving (record keeping) 
• Printing (reports) 



2 2 . 2  PROG RAMM I N G  L A N G UAG E  H I STORY OV E R V I E W  789 

Calculation/computation was (often correctly in COBOI:s core application do· 
mains) seen as a minor matter. It was hoped/claimed that COBOL was so close � 
to "business English" that managers could program and programmers would � 
soon become redundant. That is a hope we have heard frequently repeated over 
the years by managers keen on cutting the cost of programming. It has never 
been even remotely true. 

COBOL was initially designed by a committee (CODASYL) in 1959-60 at 
the initiative of the U.S. Department of Defense and a group of major computer 
manufacturers to address the needs of business-related computing. The design 
built directly on the FLOW-MATIC language invented by Grace Hopper. One of 
her contributions was the use of a close-to-English syntax (as opposed to the 
mathematical notation pioneered by Fortran and still dominant today) . Like For· 
tran - and like all successful languages - COBOL underwent continuous evolu
tion. l11e major revisions were 60, 6 1 ,  65, 68, 70, 80, 90, and 04. 

Grace Murray Hopper had a Ph.D. in mathematics from Yale University. 
She worked for the U.S. Navy on the very ftrst computers during World War II. 
She returned to the navy after a few years in the early computer industry: 

"Rear Admiral Dr. Grace Murray Hopper (U.S. Navy) was a remarkable 
woman who grandly rose to tile challenges of progran1ming tile first 
computers. During her lifetime as a leader in the field of software devel
opment concepts, she contributed to tile transition from primitive pro· 
gramming techniques to tile use of sophisticated compilers. She believed 
tilat 'we've always done it tilat way' was not necessarily a good reason to 
continue to do so." 

-Anita Borg, at tile "Grace Hopper Celebration of 
Women in Computing" conference. 1994 
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Grace Murray Hopper is often credited with being the first person to call an 
error in a computer a "bug." She certainly was among the early users of the term 
and documented a use: 

1 .  l ·  I 

As can be seen, that bug was real (a moth), and it affected the hardware directly. 
Most modem bugs appear to be in the software and have less graphical appeal. 
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22.2.2.3 Lisp 

Lisp was originally designed in 1958 by John McCarthy at MIT for linked-list 
and symbolic processing (hence its name: "LISt Processing"). Initially Lisp was 
(and is often still) interpreted, as opposed to compiled. There are dozens (most 
likely hundreds) of Lisp dialects. In fact, it is often claimed that "Lisp has an int
plied plural." The current most popular dialects are Common Lisp and Scheme. 
This family of languages has been (and is) the mainstay of artificial intelligence 
(AI) research (though delivered products have often been in C or C++). One of 
the main sources of inspiration for Lisp was the (mathematical notion of) lambda 
calculus. 

Fortran and COBOL were specifically designed to help deliver solutions to 
real-world problems in their respective application areas. The Lisp community 
was much more concerned with programming itself and the elegance of pro
grams. Often these efforts were successful. Lisp was the first language to separate 
its definition from the hardware and base its semantics on a form of math. If Lisp 
had a specific application domain, it is far harder to defme precisely: "AI" or 
"symbolic computation" don't map as clearly into common everyday tasks as 
"business processing" and "scientific prograntming." Ideas from Lisp (and from 
the Lisp community) can be found in many more modem languages, notably the 
functional languages. 
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Jolm McCarthy's B.S. was in mathematics from the California Institute of 
Technology and his Ph.D. was in mathematics from Princeton University. You 
may notice that there are a lot of math majors among the programming language 
designers. Mter his memorable work at MIT, McCarthy moved to Stanford in 
1 962 to help found the Stanford AI lab. He is widely credited for inventing the 
term artificial intelligence and made many contributions to that field. 
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22.2.3 The Algol family 
In the late 1 950s, many felt that programming was getting too complicated, too ad 
hoc, and too unscientific. They felt that the variety of progranuning languages 
was mmecessarily great and that those languages were put together with insuffi
cient concern for generality and sound fundamental principles. This is a sentiment 
that has surfaced many times since then, but a group of people came together 
under the auspices of IFIP (the International Federation of Information Process
ing), and injust a couple of years they created a new language that revolutionized 
the way we think about languages and their definition. Most modem languages -
including C++ - owe much to this effort. 
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22.2.3.1 Algol60 

The "ALGOrithmic Language," Algol, which resulted from the efforts of the 
IFIP 2.1 group, was a breakthrough of modem programming language concepts: 

Lexical scope 

Use of grammar to defme the language 

Clear separation of syntactic and semantic rules 

Clear separation of language definition and implementation 

Systematic use of (static, i.e., compile-time) types 

Direct support for structured programming 

The very notion of a "general-purpose programming language" came with Algol. 
Before that, languages were scientific (e.g., Fortran),  business (e.g., COBOL), list 
manipulation (e.g., Lisp), simulation, etc. Of these languages, Algol60 is most 
closely related to Fortran. 

Unfortunately, Algol60 never reached major nonacademic use. It was seen as 
"too weird" by many in the industry, "too slow" by Fortran programmers, "not 
supportive of business processing" by COBOL programmers, "not flexible 
enough" by Lisp programmers, "too academic" by most people in the industry 
(including the managers who controlled investment in tools), and "too Euro
pean" by many Americans. Most of the criticisms were correct. For example, the 
Algol60 report didn't defme any 1/0 mechanism! However, similar criticisms 
could have been leveled at just about any contemporary language - and Algol set 
the new standard for many areas. 

One problem with Algol60 was that no one knew how to implement it. That 
problem was solved by a team of programmers led by Peter Naur (the editor of 
the Algol60 report) and Edsger Dijkstra: 
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Peter Naur was educated (as an astronomer) at the University of Copen
hagen and worked at the Technical University of Copenhagen (DTH) and for 
the Danish computer manufacturer Regnecentralen. He learned programming 
early (1950-51 )  in the Computer Laboratory in Cambridge, England (Denmark 
didn't have computers that early) and later had a distinguished career spanning 
the academia/industry gulf. He was co-inventor of BNF (the"Backus-Naur 
Fonn") used to describe granunars and a very early proponent of formal reason
ing about programs (Bjarne Stroustrup first - in 1971 or so - learned the use of 
invariants from Peter Naur's technical articles). Naur consistently maintained a 
thoughtful perspective on computing, always considering the human aspects of 
programming. In fact, his later work could reasonably be considered part of phi
losophy (except that he considers conventional academic philosophy utter non
sense). He was the first professor of Datalogi at the University of Copenhagen 
(the Danish term diltalogi is best translated as "informatics"; Peter Naur hates the 
term computer sai:nce as a misnomer - computing is not primarily about computers). 

Edsger Dijkstra was another of computer science's all-time greats. He studied 
physics in Leyden but did his early work in computing in Mathematisch Cen
trum in Amsterdam. He later worked in quite a few places, including Eindhoven 
University of Technology, Burroughs Corporation, and the University of Texas 
(Austin). In addition to his seminal work on Algol, he was a pioneer and strong 
proponent of tlte usc of mathematical logic in programming, algorithms, and one 
of the designers and implementers of TIIE operating system - one of the ftrst 
operating systems to systematically deal with concurrency. TIIE stands for 
"Technische Hogeschool Eindhoven" - the university where Edsger Dijkstra 
worked at the time. Arguably, his most famous paper was "Go-To Statement 
Considered Harmful," which convincingly demonstrated the problems with un
structured control flows. 
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The Algol family tree is impressive: 

Note Simula67 and Pascal. These languages are the ancestors to many (probably 
most) modem languages. 
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22.2.3.2 Pascal 

The Algol68 language mentioned in the Algol family tree was a large and ambi
tious project. Like Algol60, it was the work of "the Algol committee" (I FIP work
ing group 2.1) ,  but it took "forever" to complete and many were impatient and 
doubtful that something useful would ever come from that project. One member 
of the Algol committee, Niklaus Wuth, decided simply to design and implement 
his own successor to Algol. In contrast to Algol68, that language, called Pascal, 
was a simplification of Algol60. 
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Pascal was completed in 1970 and was indeed simple and somewhat inflexi
ble as a result. It was often claimed to be intended just for teaching, but early pa
pers describe it as an alternative to J?ortran on the supercomputers of the day. 
Pascal was indeed easy to learn, and after a very portable implementation be
cante available it becante very popular as a teaching language, but it proved to be 
no threat to Fortran. 

Pascal was the work of Professor Niklaus Wirth (photos from 1969 and 
2004) of the Technical University of Switzerland in Zurich (ETH). His Ph.D. (in 
electrical engineering and computer science) is from the University of California 
at Berkeley, and he maintains a lifelong connection with California. Professor 
Wirth is the closest thing the world has had to a professional language designer. 
Over a period of 25 years, he designed and implemented 

• Algol W 

PlJ360 

Euler 

Pascal 

Modula 
• Modula-2 

Oberon 

Oberon-2 
• Lola (a hardware description language) 

Niklaus Wirth describes this as his unending quest for simplicity. His work has 
been most influential. Studying that series of languages is a most interesting exer
cise. Professor Wirth is the only person ever to present two languages at HOPL. 

In the end, pure Pascal proved to be too simple and rigid for industrial suc
cess. In the 1980s, it was saved from extinction primarily through the work of 
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Anders Hejlsberg. Anders Hejlsberg was one of the three founders of Borland. 
He first designed and implemented Turbo Pascal (providing, among other things, 
more flexible argument-passing facilities) and later added a C++-like object 
model (but with just single inheritance and a nice module mechanism) .  He was 
educated at the Technical University in Copenhagen, where Peter Naur occasion
ally lectured - it's sometimes a very small world. Anders Hejlsberg later de
signed Delphi for Borland and Glf for Microsoft. 

The (necessarily simplified) Pascal family tree looks like this : 
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22.2.3.3 Ada 

The Ada programming language was designed to be a language for all the pro
gramming needs of the U.S. Department of Defense. In particular, it was to be a 
language in which to deliver reliable and maintainable code for embedded sys
tems programming. Its most obvious ancestors are Pascal and Sinmla (see 
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§22.2.6). l11e leader of the group that designed Ada was Jean Ichbiah - a past 
chairman of the Simula Users' Group. The Ada design emphasized 

• Data abstraction (but no inheritance until 1995) 
• Su-ong static type checking 
• Direct language support concurrency 
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TI1e design of Ada aimed to be the embodiment of software engineering in pro- •\ 
granlming languages. Consequently, the U.S. DoD did not design the language; U 
it designed an elaborate process for designing the language. A huge number of 
people and organizations contributed to the design process, which progressed 
through a series of competitions, to produce the best specification and next to 
produce the best language embodying the ideas of the winning specification. 
This immense 20-year project (1975-98) was from 1980 managed by a depart-
ment called AJPO (Adajoint Program Office). 

In 1979, the resulting language was named after Lady Augusta Ada Lovelace 
(a daughter of Lord Byron, the poet) .  Lady Lovelace could be claimed to have 
been the first programmer of modem times (for some definition of "modem") be
cause she had worked with Charles Babbage (the Lucasian Professor of Mathe
matics in Cambridge - that's Newton's chair! )  on a revolutionary mechanical 
computer in t.l1e 1840s. Unfortunately, Babbage's machine was unsuccessful as a 
practical tool. 

'lllanks to the elaborate process, Ada has been considered the ultin1ate design
by-conunittee language. The lead designer of the winning design team, Jean Ichbiall 
from the French company Honeywell Bull, emphatically denied that. However, I 
suspect (based on discussion with him) that he could have designed a better lan
guage. had he not been so constrained by the process. 
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Ada's use was mandated for military applications by the DoD for many 
years, leading to the saying "Ada, it's not just a good idea, it's the law!" Initially. 
the use of Ada was just "mandated," but when many projects received "waivers" 
to use other languages (typically C++) , the U.S. Congress passed a law requiring 
the use of Ada in most military applications . lfiat law was later rescinded in the 
face of conunercial and technical realities. Bjame Stroustrup is one of the very 
few people to have had his work banned by the U.S. Congress. 

lfiat said, we insist that Ada is a much better language than its reputation 
would indicate. We suspect that if the U.S. DoD had been less heavy-handed 
about its use and the exact way in which it was to be used (standards for applica
tion development processes, software development tools, documentation, etc.), it 
could have become noticeably more successful. To this day, Ada is important in 
aerospace applications and similar advanced embedded systems application 
areas. 

Ada became a military standard in 1980, an ANSI standard in 1983 (the ftrst 
implementation was done in 1983 - three years qfler the ftrst standard!), and an 
ISO standard in 1987. The ISO standard was extensively (but of course compati
bly) revised for a 1 995 ISO standard. Notable improvements included more flex
ibility in the concurrency mechanisms and support for inheritance. 
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22.2.4 Simula 
Simula was developed in the early to mid-1960s by Kristen Nygaard and Ole
Johan Dahl at the Norwegian Computing Center and Oslo University. Simula is 
indisputably a member of the Algol family of languages. In fact, Simula is almost 
completely a superset of Algol60. However, we choose to single out Simula for 
special attention because it is the source of most of the fundamental ideas that 
today are referred to as "object-oriented programming." It was the first language 
to provide inheritance and virtual functions. The words class for "user-deftned 
type" and virtual for a function that can be overridden and called through the in
terface provided by a base class come from Simula. 
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Simula's conuibution is not limited to language features. It came with an ar- • \  
ticulated notion o f  object·oriented design based on the idea of modeling real- U 
world phenomena in code: 

Represent ideas as classes and class objects. 

Represent hierarchical relations as class hierarchies (inheritance). 

Thus, a program becomes a set of interacting objects rather than a monolith. 

Kristen Nygaard - the co-inventor (with Ole:Johan Dahl, to the left, wearing 
glasses) of Simula 67 - was a giant by most measures (including height), with an 
intensity and generosity to match. He conceived of the fundamental ideas of 
object·oriented programming and design, notably inheritance, and pursued their 
implications over decades. He was never satisfied with simple, short-term, and 
shortsighted answers. He had a constant social involvement that lasted over 
decades. He can be given a fair bit of credit for Norway staying out of the Euro
pean Union, which he saw as a potential centralized and bureaucratic nightmare 
that would be insensitive to the needs of a small country at the far edge of the 
Union - Norway. In the mid·1970s Kristen Nygaard spent significant time in the 
computer science department of the University of Aarhus, Denmark (where, at 
the time, Bjarne Strousuup was studying for his master's degree). 

Kristen Nygaard's master's degree is in mathematics from the University of 
Oslo. He died in 2002, just a month before he was (together with his lifelong 
friend Ole:Johan Dahl) to receive the ACM's Turing Award, arguably the highest 
professional honor for a computer scientist. 
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Ole:Johan Dahl was a more conventional academic. He was very interested 
in specification languages and formal methods. In 1968, he became the first full 
professor of informatics (computer science) at Oslo University. 

In August 2000 Dahl and Nygaard were made Commanders of the Order of 
Saint Olav by the King of Norway. Even true geeks can gain recognition in their 
hometown ! 
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22.2.5 c 
In 1970, it was "well known" that serious systems programming - in particular 
the implementation of an operating system - had to be done in assembly code 
and could not be done portably. That was much as tl1e situation had been for sci· 
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entific programming before Fortran. Several individuals and groups set out to 
challenge that orthodoxy. In the long run, the C programming language (Chap
ter 27) was by far the most successful of those efforts. 

Detmis Ritchie designed and implemented the C programming language in 
Bell Telephone Laboratories' Computer Science Research Center in Murray Hill. 
New Jersey. The beauty of C is that it is a deliberately simple programming lan
guage sticking very close to the fundamental aspects of hardware. Most of the 
current complexities (most of which reappear in C++ for compatibility reasons) 
were added after his original design and in several cases over Dennis Ritchie's 
objections. Part of C's success was its early wide availability, but its real strength 
was its direct mapping of language features to hardware facilities (sec §25.4-5). 
Dctmis Ritchie has succinctly described C as "a strongly typed, but weakly 
checked language''; that is, C has a static (compile-time) type system, and a pro
gram that uses an object in a way that differs from its definition is not legal. How
ever, a C compiler can't check that. That made sense when the C compiler had to 
run in 48K bytes of memory. Soon after C came into use, people devised a pro· 
gram. called lim, that separately from the compiler verified conformance to the 
type system. 

Together with Ken Thompson, Dennis Ritchie is the co-inventor of Unix, 
easily the most influential operating system of all times. C was - and is - associ
ated with the Unix operating system and through that with Linux and the open
source movement. 

Demus Ritchie is retired from Lucent Bell Labs. For 40 years he worked in Bell 
Laboratories' Computer Science Research Center. He is a graduate of Harvard 
Utuversity (physics) ;  his Ph.D. is in applied mathematics from Harvard University. 
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In the early years, 1974-1979. many people in Bell Labs influenced the de
sign of C and its adoption. Doug Mcllroy was everybody's favorite clitic, discus
sion partner. and ideas man. He influenced C, C++. Unix, and much more. 

Brian Kcmighan is a programmer and writer extraordinairc. Both his code 
and his prose arc models of clarity. The style of this book is in part derived from 
the tutorial sections of his masterpiece, Tile C Programming Lan�:,ruagt (known as 
"K&R" after its co-authors Brian Kernighan and Dennis Ritchie)_ 

It is not enough to have good ideas ; to be useful on a large scale, those ideas 
have to be reduced to their simplest form and articulated clearly in a way that is 
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accessible to large numbers of people in their target audience. Verbosity is among 
the worst enemies of such presentation of ideas ; so is obfuscation and over· 
abstraction. Purists often scoff at the results of such popularization and prefer 
"original results" presented in a way accessible only to experts. We don't: getting 
a nontrivial, but valuable, idea into the head of a novice is difficult, essential to 
the growth of professionalism, and valuable to society at large. 

Over the years, Brian Kernighan has been involved with many influential pro
gramming and publishing projects. Two examples are AWK - an early scripting 
language named by the initials of its authors (Aho, Weinberger, and Kernighan) -
and AMPL, "A Mathematical Programming Language." 

Brian Kernighan is currently a professor at Princeton University ; he is of 
course an excellent teacher, specializing in making otherwise complex topics 
clear. For more than 30 years he worked in Bell Laboratories' Computer Science 
Research Center. Bell Labs later became AT&T Bell Labs and later still split into 
AT&T Labs and Lucent Bell Labs. He is a graduate of the University ofToronto 
(physics) ;  his Ph.D. is in electrical engineering from Princeton University. 

The C language family tree looks like this : 

Ken Thompson, 
BTI, 1972 - - .  

· · · Martin Richards, \ Cambridge, 1967 
'
Christopher Strachey, 
Cambridge, mid- 1960s 

The origins of C lay in the never-completed CPL project in England, the 
BCPL (Basic CPL) language that Martin Richards did while visiting MIT on 
leave from Cambridge University, and an interpreted language, called B, done by 
Ken Thompson. Later, C was standardized by ANSI and the ISO and there were 
a lot of influences from C++ (e.g., function argument checking and consts). 

CPL was a joint project between Cambridge University and Imperial College 
in London. Initially, the project had been done in Cambridge, so "C" officially 
stood for "Cambridge." When Imperial College became a partner, the official ex
planation of the "C" became "Combined." In reality (or so we are told) , it always 
stood for "Christopher" after Christopher Strachey, CPL's main designer. 

References 

Brian Kernighan's home page: http://cm.bell-labs.com/cm/cs/who/bwk. 
Dennis Ritchie's home page: http://cm.bell-labs.com/cm/cs/who/dmr. 
ISO/IEIC 9899:1999. Programming Languages - C. (The C standard.) 
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Kernighan. Brian. and Dennis Ritchie. 'IIle C Programming Language. Prentice Hall. 
1978. Second Edition, 1989. ISBN 0131 103628. 

A list of members of the Bell Labs' Computer Science Research Center: http://cm.bell
labs.com/cm/cs/allUlUu.hllnl. 

Ritchards, Martin. BCPL - Tile Language wul /ts Compiler. Cambridge University 
Press, 1980. ISBN 0521219655. 

Ritchie, Dennis. "The Development of the C Programming Language. Proceed
ings of the ACM History of Progranuning Languages Conference (HOPL-2). 
ACM S/GPLAN Notia�s, Vol. 28 No. 3, 1993. 

Salus, Peter. A OJJarter Cmtury gfUNIX. Addison-Wesley, 1994. ISBN 0201547775. 

22.2.6 C++ 
C++ is a general-purpose progranuning language with a bias toward systems 
programming that 

• Is a better C 

• Supports data abstraction 

• Supports object-oriented progranuning 

• Supports generic programming 

It was originally designed and implemented by Bjarne Stroustrup in Bell Tele
phone Laboratories' Computer Science Research Center in Murray Hill, New 

Jersey, that is, down the corridor from Dennis Ritchie, Brian Kernighan, Ken 
Thompson, Doug Mcllroy, and other Unix greats. 
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Bjame Stroustrup received a master's degree (in mathematics with computer 
science) from the university in his hometown, Arhus in Denmark. Then he went 
to Cambridge, where he got his Ph.D. (in computer science) working for David 
Wheeler. The main contributions of C++ were to 
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Make abstraction techniques affordable and manageable for mainstream f) 
projects 
Pioneer the use of object-oriented and generic progranuning techniques 
in application areas where efficiency is a premium 

Before C++. these techniques (often sloppily lumped together under the label of 
"object-oriented programming") were mostly unknown in the industry. As with 
scientific programming before Fortran and systems programming before C. it 
was ''well known" that these teclmiques were too expensive for real-world use 
and also too complicated for "ordinary programmers'' to master. 

The work on C++ started in 1979 and led to a commercial release in 1985. 
Mter its initial design and implementation, Bjame Stroustrup developed it further 
together with f1iends at Bell Labs and elsewhere until its standardization officially 
started in 1990. Since then. the definition of C++ has been developed by first 
ANSI (the national standards body for the United States) and since 1991 by ISO 
(the international standards organization) . Bjarne Stroustrup has taken a major 
part in that effort as the chairman of the key subgroup in charge of new language 
features. The frrst international standard (C++98) was ratified 1998 and the sec
ond is in the works (C++Ox) . 

l11e most significant development in C++ after its initial decade of growth 
was the sn - the standard library's facilities for containers and algorithms. It 
was the outcome of work - primarily by Alexander Stepanov - over decades 
aiming at producing the most general and efficient software, inspired by the 
beauty and utility of mathematics. 
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Alex Stepanov is the inventor of the SU and a pioneer of generic progranl
ming. He is a graduate of the University of Moscow and has worked on robotics, 
algorithms, and more, using a variety of languages (including Ada, Scheme, and 
C++) . Since 1979, he has worked in U.S. academia and industry, notably at GE 
Labs, AT&T Bell Labs, Hewlett-Packard, Silicon Graphics, and Adobe. 

The C++ fanilly tree looks like this: 

1978-89 

"C with Classes" was Bjame Stroustrup's initial synthesis of C and Simula 
ideas. It died immediately following the implementation of its successor, C++. 

Language discussions often focus on elegance and advanced features. How
ever, C and C++ didn't become two of the most successful languages in the his
tory of computing that way. Their strengths were flexibility, performance, and 
stability. Major software systems live over decades, often exhaust their hardware 
resources, and often suffer completely unexpected changes of requirements. C 
and C++ have been able to thrive in that environment. Our fav01itc Dennis 
Ritchie quote is, "Some languages are designed to prove a point; others arc de
signed to solve a problem.'' By "others," he primarily meant C. Bjarnc Stroustrup 
is fond of saying, "Even I knew how to design a prettier language than C++." 
The aim for C++ - as for C - was not abstract beauty (though we strongly ap
preciate that when we can get it) , but utility. 

I have often regretted not being able to use C++Ox features in this book. It 
would have simplified many examples and explanations. However, unordered_map 
(§21 .6.4), array (§20.9), and regexp (§23.5-9) are exan1ples from the C++Ox Sta.ll
dard library. C++Ox will also feature better checking of templates, simpler and more 
general initialization, and in places a more robust notation. See my HOPL-III paper. 

References 

Alexander Stepanov's publications : www.stepanovpapers.com. 
Bjame Stroustrup's home page: www.research.au.com/-bs. 
ISO/IEC 14882:2003. Programming Languages - C++. (The C++ standard.) 
Stroustrup, Bjame. "A History of C++: 1979-199 1 .  Proceedings of the ACM 

History of Progranuning Languages Conference (HOPL-2) . ACM S/GPLAN 
Notices, Vol. 28 No. 3, 1993. 

Strousuup, Bjame. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN 
020 1543303. 

Stroustrup, Bjame. T/ze C++ Programming Language (Spedal Edition}. Addison-Wes
ley, 2000. ISBN 0201700735. 
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Stroustrup, Bjame. "C and C++: Siblings"; "C and C++: A Case for Compati
bility"; and "C and C++: Case Studies in Compatibility.'' The CIC++ UJm 
Joumal.July, Aug., and Sept. 2002. 

Stroustrup, Bjame. "Evolving a Language in and for the Real World: C++ 1991-
2006. Proceedings of the Third ACM SIGPLAN Conference on the History 
of Programming Languages (HOPL-111). San Diego, CA, 2007. http://portal. 
acm.org!toc.cfm?id=1238844. 

22.2.7 Today 
What programming languages are currently used and for what? That's a really 
hard question to answer. The family tree of current languages is - even in a most 
abbreviated form - somewhat crowded and messy: 
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In fact, most of tl1e statistics we fmd on the web (and elsewhere) are hardly better • \ 
tl1an rumors because tl1ey measure things that are only weakly correlated with U 
use, such as number of web postings containing the name of a programming lan
guage, compiler shipments, academic papers, books sales, etc. All such measures 
favor the new over the established. Anyway, what is a progran1mer? Someone 
who uses a programming language every day? How about a student who writes 
small programs just to learn? A professor who just talks about programming? A 
physicist who writes a program almost every year? Is a professional progran1mer 
who - almost by definition - uses several programming languages every week 
counted many times or just once? We have seen each of these questions an
swered each way for different statistics. 

However, we feel obliged to give you an opinion, so in 2008 there are about 
10 million professional progran1mers in the world. For that opinion we rely on 
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IDC (a data-gathering firm), discussions with publishers and compiler suppliers, 
and various web sources. Feel free to quibble, but we know the number is larger 
than 1 million and less than 100 million for any halfway reasonable definition of 
"programmer." Which language do they use? Ada, C, C++, C#, COBOL, For
tran, Java, PERL, PHP, and VIsual Basic probably Gust probably) account for 
significantly more than 90% of all programs. 

In addition to the languages mentioned here, we could list dozens or even 
hundreds more. Apart from trying to be fair to interesting or important lan
guages, we see no point. Please seek out information yourself as needed. A pro
fessional knows several languages and learns new ones as needed. There is no 
''one true language" for all people and all applications. In fact, all major systems 
we can think of use more than one language. 

22.2.8 Information sources 
Each individual language description above has a reference list. These are refer
ences covering several languages : 

More language designer linlulphotos 
www.angelfrre.com/tx4/cus/people/. 

A few examples o/ Languages 
http://dmoz.org/Computers/Programming/Languages/. 

Textbooks 
Scott, Michael L. Programming Language Pragmatics. Morgan Kaufmann, 2000. 

ISBN 155860442 1 .  
Sebesta, Robert W. Concepts qf Programming Languages. Addison-Wesley. 2003. 

ISBN 032 1 193628. 

Hutmy books 
Bergin, T.J., and R. G. Gibson, eds. Hirtory </Programming Languages - II. Addison

Wesley, 1996. ISBN 0201895021 .  
Hailpem, Brent, and Barbara G .  Ryder, eds. Proceedings of the Third ACM SIC

PLAN Conference on the History of Programming Languages (HOPL-1 11) . 
San Diego, CA, 2007. http://portal.acm.orgltoc.cfm?id=1238844. 

Lohr, Steve. Go To: The Story tf the Math MaJm, Bridge Pfa;•m, Enginem, CheJJ Wtz
ardJ, Maverick Scienti.rt.s and Iconoclasts-The Programmers Who Created the Software 
Revolution. Basic Books, 2002. ISBN 9780465042265. 

Sammet, Jean. Programming Languages: Hirtory• and Fundamentals. Prentice-Hall, 
1969. ISBN 0137299885. 

Wexelblat, Richard L., ed. Hirtory o/Progra11uning Ltu�gt�ages. Academic Press, 198 1 .  
ISBN 0127450408. 
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Review 

1 .  What are some uses of history? 
2. What are some uses of a programming language? List examples. 
3. List some fundamental properties of programming languages that are ob-

jectively good. 
4. What do we mean by abstraction? By higher level of abstraction? 
5. What are our four high-level ideals for code? 
6. List some potential advantages of high-level programming. 
7. What is reuse and what good might it do? 
8. What is procedural programming? Give a concrete example. 
9. What is data abstraction? Give a concrete example. 

10. What is object-oriented programming? Give a concrete example. 
1 1 .  What is generic programming? Give a concrete example. 
12. What is multi-paradigm programming? Give a concrete example. 
13. When was the first program run on a stored-program computer? 
14. What work made David Wheeler noteworthy? 
15. What was the primary contribution ofjohn Backus's ftrst language? 
1 6. What was the ftrst language designed by Grace Murray Hopper? 
17. In which field of computer science did john McCarthy primarily work? 
18. What were Peter Naur's contributions to Algol60? 
19. What work made Edsger Dijkstra noteworthy? 
20. What languages did Niklaus Wuth design and implement? 
2 1 .  What languages did Anders Hejlsberg design? 
22. What was jean Ichbiah's role in the Ada project? 
23. What style of programming did Simula pioneer? 
24. Where (outside Oslo) did Kristen Nygaard teach? 
25. What work made Ole:Johan Dahl noteworthy? 
26. Ken Thompson was the main designer of which operating system? 
27. What work made Doug Mcilroy noteworthy? 
28. What is Brian Kernighan's most famous book? 
29. Where did Dennis Ritchie work? 
30. What work made Bjarne Stroustrup noteworthy? 
3 1 .  What languages did Alex Stepanov use trying to design the STI? 
32. List ten languages not described in §22.2. 
33. Scheme is a dialect of which language? 
34. What are C++'s two most prominent ancestors? 
35. What does the C in C++ stand for? 
36. Is Fortran an acronym? If so, what for? 
37. Is COBOL an acronym? If so, what for? 
38. Is Lisp an acronym? If so, what for? 
39. Is Pascal an acronym? If so, what for? 
40. Is Ada an acronym? If so, what for? 
4 1 .  Which is the best programming language? 
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Terms 

In this chapter "Tenns" are really languages, people, and organizations. 

• Languages : • Organizations : 

• Ada 

• Algol 

• BCPL 

. c 
• C++ 

• COBOL 

• Fortran 

• Lisp 

• Pascal 

• Scheme 

• Simula 

• People: 

• Charles Babbage 

• John Backus 

• Ole:Johan Dahl 

• Edsger Dijkstra 

• Anders Hejlsberg 

• Grace Murray Hopper 

• Jean lchbiah 

• Brian Kernighan 

• John McCarthy 

• Doug Mcilroy 

• Peter Naur 

• Kristen Nygaard 

• Dennis Ritchie 

• Alex Stepanov 

• Bjarne Stroustrup 

• Ken Thompson 

• David Wheeler 

• Niklaus Wuth 

• Bell Laboratories 

• Borland 

• Cambridge University (Eng
land) 

• ETH (Swiss Federal Technical 
University) 

• IBM 

• MIT 

• Norwegian Computer Center 

• Princeton University 

• Stanford University 

• Technical University of 
Copenhagen 

• U.S. Department of Defense 

• U.S. Navy 
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Exercises 

1 .  Defme programming. 
2. Defme programming language. 
3. Go through the book and look at the chapter vignettes. Which ones were 

from computer scientists? Write one paragraph summarizing what each 
of those scientists contributed. 

4. Go through the book and look at the chapter vignettes. Which ones were 
not from computer scientists? Identify the country of origin and field of 
work of each. 

5. Write a "Hello, World!" program in each of the languages mentioned in 
this chapter. 

6. For each language mentioned in this chapter, look at a popular textbook 
and see what is used as the first complete program. Write that program in 
all of the other languages. Warning: This could easily be a 100-program 
project. 

7. We have obviously "missed" many important languages. In particular, 
we essentially had to cut all developments after C++. Make a list of five 
modem languages that you think ought to be covered and write a page 
and a half - along the lines of the languages sections in this chapter - on 
three of those. 

8. What is C++ used for and why? Write a 10- to 20-page report. 
9. What is C used for and why? Write a 10- to 20-page report. 

10. Pick one language (not C or C++) and write a 10- to 20-page description 
of its origins, aims, and facilities. Give plenty of concrete examples. Who 
uses it and for what? 

1 1 .  Who currently holds the Lucasian Chair in Cambridge? 
12. Of the language designers mentioned in this chapter, who has a degree in 

mathematics? Who does not? 
13. Of the language designers mentioned in this chapter, who has a Ph.D.? 

In which field? Who does not have a Ph.D.? 
14. Of the language designers mentioned in this chapter, who has received 

the Turing Award? What is that? Find the actual Turing Award citations 
for the winners mentioned here. 

15. Write a program that, given a ftle of (name,year) pairs, such as 
(Algol, 1960) and (C,1 974) , graphs the names on a timeline. 

16. Modify the program from the previous exercise so that it reads a file of 
(name,year, (ancestors)) tuples, such as (Fortran,1956,( )), (Algol,1960, (For
tran)), and (C++, 1985, (C,Simula)),  and graphs them on a timeline with 
arrows from ancestors to descendants. Use this program to draw improved 
versions of the diagrams in §22.2.2 and §22.2. 7. 
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Postscript 

Obviously, we have only scratched the surface of both the history of program
ming languages and of the ideals that fuel the quest for better software. We con
sider history and ideals sufficiently important to feel really bad about that. We 
hope to have conveyed some of our excitement and some idea of the immensity of 
the quest for better software and better programming as it manifest itself though 
the design and implementation of programming languages. That said, please re
member that programming - the development of quality software - is the funda
mental and important topic; a programming language is just a tool for that. 
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Text Man i pu l at ion 

"Nothing is so obvious that it's obvious . . . .  
The use of the word 'obvious' indicates 

the absence of a logical argument." 

-Errol Morris 

T
his chapter is mostly about extracting information from 

text. We store lots of our knowledge as words in docu

ments, such as books, email messages. or "printed'' tables, just to 

later have to extract it into some form that is more useful for 

computation. Here. we review the standard library facilities most 

used in text processing: strings, iostreams, and maps. Then, we 

introduce regular expressions (regexs) as a way of expressing 

patterns in text. Fmally, we show how to use regular expressions 

to find and extract specific data elements, such as ZIP codes 

(postal codes), from text and to verify the fmmat of text ftles. 
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23.1 Text 

23.2 Strings 

23.3 VO streams 

23.4 Maps 
23.4.1 Implementation details 

23.5 A problem 

23.6 The idea of regular expressions 

23.7 Searching with regular expressions 

23 . 1  Text 
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23.8 Regular expression syntax 
23.8.1 Characters and special 

characters 
23.8.2 Character classes 
23.8.3 Repeats 
23.8.4 Grouping 
23.8.5 Alternation 
23.8.6 Character sets and ranges 
23.8.7 Regular expression errors 

23.9 Matching with regular expressions 

23.10 References 

We manipulate text essentially all the time. Our books are full of text, much of 
what we see on our computer screens is text, and our source code is text. Our 
communication channels (of all sorts) overflow with words. Everything that is 
communicated between two humans could be represented as text, but let's not go 
overboard. Images and sound are usually best represented as images and sound 
(i.e., just bags of bits), but just about everything else is fair game for program text 
analysis and transformation. 

We have been using iostreams and strings since Chapter 3, so here, we '11 just 
briefly review those libraries. Maps (§23.4) are particularly useful for text pro· 
cessing, so we present an example of their use for email analysis. After this re· 
view, this chapter is concerned with searching for patterns in text using regular 
expressions (§23.3-10). 

23.2 Strings 
A string contains a sequence of characters and provides a few useful operations. 
such as adding a character to a string, giving the length of the string, and con
catenating strings. Actually, the standard string provides quite a few operations, 
but most are useful only when you have to do fairly complicated text manipula
tion at a low level. Here, we just mention a few of the more useful. You can look 
up their details (and the full set of string operations) in a manual or expert-level 
textbook should you need them. l11ey arc found in <string> (note : not 
<String. h>) : 
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Selected string operations 

s1 = s2 

s += x  

s[i) 

s1+s2 

s1=s2 

s1<S2 

s.size() 

s.length() 

s.c_str() 

s.begin() 

s.end() 

s.insert(pos,x) 

s.append(pos,x) 

s.erase(pos) 

pos = s.find(x) 

in>>S 

getline(in,s) 

out<<S 

Assign s2 to s1; s2 can be a string or a C-style string. 

Add x at end; x can be a character, a string, or a C-style string. 

Subscripting. 

Concatenation; the characters in the resulting string will be a 
copy of those from s1 followed by a copy of those from s2. 

Comparison of string values; s1 or s2, but not both, can be a C
style string. Also I= . 

lexicographical comparison of string values; s1 or s2, but not 
both, can be a C-style string. Also <=, >, and >=. 

Number of characters in s. 

Number of characters in s. 

C-style version of characters in s. 

lterator to first character. 

lterator to one beyond the end of s. 

Insert x before s[pos); x can be a character, a string, or a C-style 
string. s expands to make room for the characters from x. 

Insert x after s[pos); x can be a character, a string, or a C-style 
string. s expands to make room for the characters from x. 

Remove the character in s[pos). s's size decreases by 1 .  

Find x in s; x can be a character, a string, or a C-style string; pos 
is the index of the first character found, or npos (a position off 
the end of s). 

Read a whitespace-separated word into s from in. 

Read a line into s from in. 

Write from s to out. 

The 110 operations arc explained in Chapters 10 and 1 1  and summarized in 
§23.3. Note that the input operations into a string expand the string as needed, 
so that overflow cannot happen. 

The insert() and append() operations move characters to make room for 
new characters. The erase() operation moves characters "forward" in the string 
to make sure that no gap is left where we erased a character. 
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The standard library string is really a template, called basic_string, that sup
ports a variety of character sets, such as Unicode, providing thousands of charac
ters (such as [, Q, oo, �. 9, and -b in addition to "ordinary characters"). For 
example, if you have a type holding a Unicode character, such as Unicode, you 
can write 

basic_string<Unicode> a_unicode_string; 

The standard string, string, which we have been using, is simply the basic_string 
of an ordinary char: 

typedef basic_string<char> string; II string means basic_string<char> 

We do not cover Unicode characters or Unicode strings here, but if you need 
them you can look them up, and you'll fmd that they can be handled (by the lan
guage, by string, by iostreams, and by regular expressions) much as ordinary 
characters and strings. If you need to use Unicode characters, it is best to ask 
someone experienced for advice; to be useful, your code has to follow not just 
the language rules but also some system conventions. 

In the context of text processing, it is important that just about anything can 
be represented as a string of characters. For example, here on this page, the num
ber 12.333 is represented as a string of six characters (surrounded by whitespace) . 
If we read this number, we must convert those characters to a floating-point num
ber before we can do arithmetic operations on the number. This leads to a need 
to convert values to strings and strings to values. In §1 1 .4, we saw how to tum 
an integer into a string using a stringstream. This technique can be generalized 
to any type that has a << operator: 

template<class T> string to_string(const T& t) 
{ 

ostringstream os; 
OS << t; 
return os.str(); 

For example: 

string s1 = to_string(12.333); 
string s2 = to_string(1+5*6-99m; 

The value of s1 is now "12.333" and the value of s2 is "17". In fact, to_string() 
can be used not just for numeric values, but for any class T with a << operator. 
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The opposite conversion, from strings to numeric values, is about as easy, and as 
useful: 

struct bad_from_string : std : :bad_ cast 
II class for reporting string cast errors 

const char• what() const II override bad_ cast's what( ) 
{ 

return "bad cast from string"; 

}; 

template<class T> T from_string(const string& s) 
{ 

istringstream is(s); 
T t; 
if ( ! (is >> t)) throw bad_from_string(); 
return t; 

For example : 

double d = from_string<double>("12.333"); 

void do_something(const string& s) 
try 
{ 

int i =  from_string<int>(s); 
II . . .  

catch (bad_from_string e) { 
error ("bad input string" ,s); 

The added complication of from_string() compared to to_string() comes because 
a string can represent values of many types. This implies that we must say which 
type of value we want to extract from a string. It also implies that the string we 
are looking at may not hold a representation of a value of the type we expect. For 
example : 

int d = from_string<int>("Mary had a little lamb"); II oops! 
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So there is a possibility of error, which we have represented by the exception 
bad_from_string. In §23.9, we demonstrate how from_string() (or an equivalent 
function) is essential for serious text processing because we need to extract nu
meric values from text fields. In §16.4.3, we saw how an equivalent function 
get_int() was used in G UI code. 

Note how to_string() and from_string() are similar in function. In fact, they 
are roughly inverses of each other; that is (ignoring details of whitespace, round
ing, etc.), for every "reasonable type T" we have 

s=to_string(from_string<T>(s)) II for all s 

and 

t==from _string<T>(to _stri ng(t)) II for all t 

Here, "reasonable" means that T should have a default constructor, a >> operator. 
and a matching << operator defined. 

Note also how the implementations of to_string() and from_string() both use 
a stringstream to do all the hard work. 11lls observation has been used to define 
a general conversion operation between any two types with matching << and >> 
operations: 

struct bad lexical_ cast : std : :bad_ cast 
{ 

const char• what() const { return "bad cast"; } 
}; 

template<typename Target, typename Source> 
Target lexical_cast(Source arg) 
{ 

std : : stringstream interpreter; 
Target result; 

if ( ! (interpreter << arg) 
II ! (interpreter >> result) 
II ! (interpreter >> std : :ws).eof()) 

throw bad_lexical_cast(); 

return result; 

II read arg into stream 
II read result from stream 
II stuff left in stream? 

The curious and clever ! ( interpreter>>std : :ws).eof() reads any whitespace that 
might be left in the stringstream after we have extracted the result. Whitespace is 
allowed, but there should be no more characters in the input and we can check 
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that by seeing if we are at  "end of  fUe." So if  we are trying to  read an int from a 
string using lexical_cast, "123" and "123 " will succeed, but "123 5" will not be
cause of that last 5. 

Titis rather elegant, though oddly named, lexical_cast is provided by the 
boost library, which we will use for regular expression matching in §23.6-9. It 
will also be part of future versions of the C++ standard. 

23.3 1/0 streams 
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Considering the connection between strings and other types, we get to 110 � 
streams. The 110 stream library doesn't just do input and output; it also per- U 
fom1s conversions between string formats and types in memory. The standard li-
brary 110 streams provide facilities for reading, writing, and formatting strings of 
characters. The iostream library is described in Chapters 10 and 1 1 ,  so here we'll 
just summarize : 

Stream 1/0 

in >> x Read from in into x according to x's type. 

out << x Write x to out according to x's type. 

in.get(c) Read a character from in into c. 

getline(in,s) Read a line from in into the string s. 

Tite standard streams are organized into a class hierarchy (§14.3) : 

Together, these classes supply us with the ability to do 110 to and from flles and 
strings (and anything that can be made to look like a flle or a string, such as a 
keyboard and a screen; see Chapter 10). As described in Chapters 10 and 1 1 ,  the 
iostreams provide fairly elaborate formatting facilities. The arrows indicate inher
itance (see §14.3), so that, for example, a stringstream can be used as an iostream 
or as an istream or as an ostream. 

Like string, iostreams can be used with larger character sets such as Uni-
code, much like ordinary characters. Please again note that if you need to use • \ 
Unicode 110, it is best to ask someone experienced for advice; to be useful, your U 
code has to follow not just the language rules but also some system conventions. 
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23.4 Maps 
Associative arrays (maps, hash tables) are key (pun intended) to a lot of text pro
cessing. The reason is simply that when we process text, we collect information, 
and that information is often associated with text strings, such as names, ad
dresses, postal codes, Social Security numbers, job titles, etc. Even if some of 
those text strings could be converted into numeric values, it is often more con
venient and simpler to treat them as text and use that text for identification. The 
word-counting example (§2 1 .6) is a good simple example. If you don't feel com
fortable using maps, please reread §2 1.6 before proceeding. 

Consider email. We often search and analyze email messages and email logs 
- usually with the help of some program (e.g., Thunderbird or Outlook) . 
Mostly, those programs save us from seeing the complete source of the messages, 
but all the information about who sent, who received, where the message went 
along the way, and much more is presented to the programs as text in a message 
header. That's a complete message. There are thousands of tools for analyzing 
the headers. Most use regular expressions (as described in §23.5-9) to extract in
formation and some form of associative arrays to associate related messages. l<or 
example, we often search a mail file to collect all messages witl1 the same sender, 
the same subject, or containing infonnation on a particular topic. 

Here, we will use a very simplified mail flle to illustrate some of the tech
niques for extracting data from text flles. The headers are real RFC2822 headers 
from www.faqs.org/rfcs/rfc2822.hunl. Consider: 

XXX 
XXX 

from: John Doe <jdoe@machine.example> 
To: Mary Smith <mary@example.net> 
Subject: Saying Hello 
Date: Fri, 21 Nov 1997 09 :55:06 -0600 
Message- ID:  <1234@local .machine.example> 

This is a message just to say hello. 
So, "Hello" . 

From: Joe Q. Public <john.q.public@example.com> 
To: Mary Smith <®machine.tld:mary@example.net>, , jdoe@test .example 
Date: Tue, 1 Jul 2003 10:52:37 +0200 
Message-ID:  <5678.21- Nov-1997@example .com> 

Hi everyone. 
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To : "Mary Smith: Personal Account" <Smith@home.example> 
from: John Doe <jdoe@machine.example> 
Subject: Re: Saying Hello 
Date : Fri, 21 Nov 1997 1 1 :00:00 -0600 
Message- I D :  <abcd .1 234@local.machine.tld> 
In- Reply-To : <3456@example.net> 
References: <1234@local.machine.example> <3456@example.net> 

This is a reply to your reply. 

Basically. we have abbreviated the file by throwing most of the information away 
and eased the analysis by terminating each message by a line containing just ---
(four dashes). We will write a small "toy application" that fmds all messages sent 
by 'jolm Doc" and write out their "Subject." If we can do that, we can do many 
interesting things. 
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First, we must consider whether we want random access to the data or just to • 1 
analyze it as it streams by in an input stream. We choose the former because in a U 
real program, we would probably be interested in several senders or in several 
pieces of information from a given sender. Also, it's actually the harder of the two 
tasks, so it will allow us to examine more techniques. In particular, we get to use 
iterators again. 

Our basic idea is to read a complete mail file into a structure (which we call a 
Mail_file). This stmcture will hold all the lines of the mail file (in a 
vector<string>) and indicators of where each individual message starts and ends 
(in a vector<Message>) : 

Mail flle: 

\ 11· •. <',:r ·�i.- I .  
. � .. �·�, ��-·! I ' 

. ��.� _' 'j 

1---

'.� '• ·- etc.-... . . .. -.•t. · �-� .... . . . . 
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To this, we will add iterators and begin() and end() functions, so that we can iter
ate through the lines and through the messages in the usual way. Tllis "boiler
plate" will allow us convenient access to the messages. Given that, we will write 
our "toy application" to gather all the messages from each sender so that they are 
easy to access together: 

Mail file: 

Finally, we will write out all the subject headers of messages from 'john Doe" to 
illustrate a use of the access structures we have created. 

We use many of the basic standard library facilities : 

#include<string> 
#include<Vector> 
#include<map> 
#include<fstream> 
#include<iostream> 
using namespace std; 

We define a Message as a pair of iterators into a vector<String> (our vector of lines) : 

typedef vector<string>: :const_iterator Line_iter; 
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class Message { II ,, Message points to the first and the last l i nes oi a message 
Line_iter first; 
Line_iter last; 

public: 

}; 

Message(Line_iter p1 , Line_iter p2) : first(p1 ), last(p2) { } 
Line_iter begin() const { return first; } 
Line_iter end() const { return last; } 
II . . .  

We define a Mail_ file as a strucrure holding lines of text and messages: 

typedef vector<Message>: :const_iterator Mess_iter; 

struct Mail_file { II a Mai l_file holds a l l  the l ines irom a ii le 

}; 

II and simplifies access to messages 
// fi le name string name; 

vector<String> lines; 
vector<Message> m; 

II the l ines in order 
II Messages in order 

Mail_file(const string& n); II read fi le n into l ines 

Mess_iter begin() const { return m.begin(); } 
Mess_iter end() const { return m.end(); } 

Note how we added iterators to the data strucrures to make it easy to systemati· 
cally traverse them. We are not acrually going to use standard library algorithms 
here, but if we wanted to, the iterators are there to allow it. 

To fmd information in a message and extract it, we need two helper functions: 

II iind the name of the sender in a Message; 
II return true if iound 
II if found, place the sender's name in s: 
bool find_from_addr(const Message• m, string& s); 

II rl'turn the subject of the Message, i f  any, otherwise " ": 
string find_subject(const Message• m); 

Fmally, we can write some code to extract information from a file : 
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int main() 
{ 

C HAPTER  2 3  • TEXT  MA N I PU LAT ION  

Mail_file mfile("my-mail-file.txt"); II in i tia l ize mfi le from a fi le 

II first gather messages irom each sender together in  a mult i  map: 

multimap<string, const Message*> sender; 

for (Mess_iter p = mfile.begin(); p!=mfile.end(); ++p) { 
const Message& m = *p; 
string s; 
if (find_from_addr(&m,s)) 

sender.insert(make_pair(s,&m)); 

II now iterate through the multi map 
II and extract the subjects of John Doe's messages: 
typedef multimap<string, const Message*>: :const_iterator MCI; 
pair<MCI,MCI> pp = sender.equal_range("John Doe"); 
for(MCI p = pp.first; p!=pp.second;  ++p) 

cout << find_subject(p->Second) << '\n'; 

Let us examine the use of maps in detail. We used a multimap (§20.10, §B.4) be
cause we wanted to gather many messages from the same address together in one 
place. The standard library multimap does that (makes it easy to access elements 
with the same key) . Obviously (and typically), we have two parts to our task: 

Build the map. 

Use the map. 

We build the multimap by traversing all the messages and inserting them into the 
multimap using insert(): 

for (Mess_iter p = mfile.begin(); p! =mfile.end(); ++p) { 
const Message& m = *p; 
string s;  
i f  (find_from_addr(&m,s)) 

sender.insert(make_pair(s,&m)); 
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What goes into a map is a (key, value) pair, which we make with make_pair(). We 
use our "homemade" find_from_addr() to fmd the name of the sender. We use 
the empty string to indicate that an address wasn't found. 

Why do we introduce the reference m and pass its address? Why don't we 
just use p directly and say find_from_addr(p,s)? Because even though we know 
tltat Mess_iter refers to a Message, there is no guarantee that it is implemented as 
a pointer. 

Why did we first put the Messages in a vector and then later build a 
multimap? Why didn't we just put the Messages into a map immediately? The 
reason is simple and fundamental: 

First, we build a general structure that we can use for many things. 

Then, we use that for a particular application. 

'That way, we build up a collection of more or less reusable components. Had we 
immediately built a map in the Mail_file, we would have had to redefine it when· 
ever we wanted to do some different task. In particular, our multimap (significantly 
called senders) is sorted based on the Address field of a message. Most other appli
cations would not find that order particularly useful : they might be looking at Re
turn fields, Recipients, Copy-to fields, Subject fields, time stamps, etc. 
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This way of building applications in stages (or layers, as the parts are some- .\ 
times called) can dramatically simplify the design, implementation, documenta· U 
tion, and maintenance of programs. The point is that each part does only one 
thing and does it in a straightforward way. On the other hand, doing everything 
at once would require cleverness. Obviously, our "extracting information from 
an email header" program was just a tiny example of an application. The value of 
keeping separate things separate, modularization, and gradually building an ap· 
plication increases with size. 

To extract information, we simply fmd all the entries with the key "John 
Doe" using the equal_range() function (§B.4.10). Then we iterate through all the 
elements in the sequence [frrst,second) returned by equal_range(), extracting the 
subject by using find_subject(): 

typedef multimap<string, const Message*>: :const_iterator MCI; 

pair<MCI,MCI> pp = sender.equal_range("John Doe") ;  

for (MCI p = pp.first; p!=pp.second; ++p) 
cout << find_subject(p->second) << '\n'; 

When we iterate over the elements of a map, we get a sequence of (key,value) 
pairs, and as with all pairs, the frrst element (here, the string key) is called first 
and the second (here, the Message value) is called second (§2 1 .6). 
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23.4.1 Implementation details 
Obviously, we need to implement the functions we use. It was tempting to save a 
tree by leaving this as an exercise, but we decided to make this example complete. 
The Mail_file constructor opens the file and constructs the lines and m vectors : 

Mail_file: :Mail_file(const string& n) 
II open fi le named "n" 
II read the l ines from "n" i nto " l i nes" 
II find the messages in the l i nes and compose them in m 
II for si mplici ty assume every message is ended by a "----"  l ine 

ifstream in(n .c_str() ) ;  II open the fi le 
if ( ! in) { 

cerr << "no " << n << '\n'; 
exit(1 ) ;  II terminate the progra m 

string s; 
while (getline(in,s)) lines.push_back(s) ;  II bui ld  the  vector of l i nes 

Line_iter first = lines.begin(); II build the vector of Messages 
for (Line_iter p = lines.begin(); p!=lines.end(); ++p) { 

if (*p == "----") { II end of message 
m.push_back(Message(first,p)); 
first = p+ 1 ;  II ---- not part of message 

The error handling is rudimentary. If this were a program we planned to give to 
friends to use, we'd have to do better. 

T R Y  T H I S  

( <... What would be "better error handling"? Modify Mail_file's constructor to 
handle likely formatting errors related to the use of "----". 

The find_from_addr() and find_subject() functions are simple placeholders until 
we can do a better job of identifying information in a fJ..le (using regular expres
sions §23.6-10) : 
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int is_prefix(const string& s, const string& p)  
II i s  p thl' first part of  s ?  

int n = p.size() ;  
i f  (string(s,O,n)==p) return n; 
return 0; 

bool find_from_addr(const Message• m, string& s) 
{ 

for(Line_iter p = m->begin(); p!=m->end(); ++p) 
if (int n = is_prefix(*p, "from: ")) { 

s = string(*p,n); 
return true; 

return false; 

string find_subject(const Message& m) 
{ 

for(Line_iter p = m.begin(); p!=m.end(); ++p) 
if (int n = is_prefix(*p, "Subject: ")) return string(*p,n); 

return "";  
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Note the way we use substrings : string(s,n) constructs a string consisting of the � 
tail of s from s[n] onward (s[n] .. s[s.size()-1 ]), whereas string(s,O,n) constructs a � 
string consisting of the characters s[O] .. s[n-1].  Since these operations actually 
construct new strings and copy characters, they should be used with care where 
performance matters. 

Why are the find_from_addr() and find_subject() functions so different? For .\ 
example, one returns a bool and the other a string. They are different because � 
we wanted to make a point: 

find_from_addr() distinguishes between finding an address line with an 
empty address ("")  and fmding no address line. In the first case, 
find_from_addr() returns true (because it found an address) and sets s to 
"" (because the address just happens to be empty) . In the second case, it 
returns false (because there was no address line) . 

find_subject() returns "" if there was an empty subject or if there was no 
subject line. 
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Is the distinction made by find_from_addr() useful? Necessary? We think that the 
distinction can be useful and that we defmitely should be aware of it. It is a dis
tinction that comes up again and again when looking for infomtation in a data 
fUe: did we find the field we were looking for and was there something useful in 
it? In a real program, both the find_from_addr() and find_subject() functions 
would have been written in the style of find_from_addr() to allow users to make 
that distinction. 

This program is not tuned for performance, but it is probably fast enough for 
most uses. In particular, it reads its input file only once, and it does not keep mul
tiple copies of the text from that flle. For large flles, it may be a good idea to re
place the multimap with an unordered_multimap, but unless you measure, you'll 
never know. 

See §2 1 .6 for an introduction to the standard library associative containers 
(map, multimap, set, unordered_map, and unordered_multimap). 

23.5 A problem 
110 streams and string help us read and write sequences of characters, help us 
store them, and help with basic manipulation. However, it is very common to do 
operations on text where we need to consider the context of a string or involve 
many similar strings. Consider a trivial example. Take an email message (a se
quence of words) and see if it contains a U.S. state abbreviation and ZIP code 
(two letters followed by five digits) : 

string s; 
while (cin>>s) { 

if (s.size0==7 
&& isalpha(s[O]) && isalpha(s[1]) 
&& isdigit(s[2]) && isdigit(s[J]) && isdigit(s[4]) 
&& isdigit(s[5]) && isdigit(s[6])) 

cout << "found " << s << '\n '; 

Here, isletter(x) is true if x is a letter and isdigit(x) is true if x is a digit (see §1 1 .6). 
There are several problems with this simple (too simple) solution: 

It's verbose (four lines, eight function calls) . 

We miss (intentionally?) every ZIP code number not separated from its 
context by whitespace (such as "TXn845", TXn845-1234, and ATXn845). 

We miss (intentionally?) every ZIP code number with a space between 
the letters and the digits (such as TX n845). 
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We accept (intentionally?) every ZIP code number with the letters in 
lower case (such as tx77845) .  

If we decided to look for a postal code in a different format (such as CBJ 
OFD), we have to completely rewrite the code. 

There has to be a better way! Before revealing that way, let's just consider the 
problems we would encounter if we decided to stay with the "good old simple 
way" of writing more code to handle more cases. 

If we want to deal with more than one format, we'd have to start adding 
if-statements or switch-statements. 

If we want to deal with upper and lower case, we'd explicitly have to 
convert (usually to lower case) or add yet another if-statement. 

We need to somehow (how?) describe the context of what we want to 
fmd. That implies that we must deal with individual characters rather 
than with strings, and that implies that we lose many of the advantages 
provided by iostreams (§7.8.2). 

If you like, you can try to write the code for that, but it is obvious that on this 
track we are headed for a mess of if-statements dealing with a mess of special 
cases. Even for this simple example, we need to deal with alternatives (e.g., both 
five· and nine-digit ZIP codes) . For many other examples, we need to deal with 
repetition (e.g., any number of digits followed by an exclamation mark, such as 
123! and 123456! ) .  Eventually, we would also have to deal with both prefixes and 
suffixes. As we observed (§1 1 . 1 -2) , people's tastes in output formats are not lim
ited by a programmer's desire for regularity and simplicity. Just think of the be
wildering variety of ways people write dates: 

2007-06-05 
June 5, 2007 
jun 5, 2007 
12 June 2007 
61512007 
5/6107 

At this point - if not earlier - the experienced programmer declares, "There has 
to be a better way!" (than writing more ordinary code) and proceeds to look for 
it. The simplest and most popular solution is using what are called regular expres
.ritms. Regular expressions are the backbone of much text processing, the basis for 
the Unix grep command (see exercise 8), and an essential part of languages heav· 
ily used for such processing (such as AWK, PERL, and PHP) . 
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The regular expressions we will use are implemented by a library that will be 
part of the next C++ standard (C++Ox) . It is compatible with the regular expres
sions in PERL. 1bis makes many explanations, tutorials, and manuals available. 
For example, see the C++ standard committee's working paper (look for "WG21"  
on the web),john Maddoc's boost : :  regex documentation, and most PERL tutori
als. Here, we will describe the fundamental concepts and some of the most basic 
and useful ways of using regular expressions. 

T R Y  T H I S  

L ( . The last two paragraphs "carelessly" used several names and acronyms with
out explanation. Do a bit of web browsing to see what we are referring to. 

2 3.6 The idea of regular expressions 
The basic idea of a regular expression is that it defines a pattern that we can look 
for in a text. Consider how we might concisely describe the pattern for a simple 
ZIP code, such as TX77845. Here is a first attempt: 

wwddddd 

Here, w represents "any letter" and d represents "any digit." We use w (for 
"word") because I (for "letter") is too easily confused with the digit 1 .  Tills nota
tion works for this simple example, but let's try it for the nine-digit ZIP code for
mat (such as TX77845-5629) . How about: 

wwddddd-dddd 

That looks OK, but how come that d means "any digit" but - means "plain" dash? 
Somehow, we ought to indicate that w and d are special : they represent character 
classes rather than themselves (w means "an a or a b or a c or . . .  " and d means "a 
1 or a 2 or a 3 or . . .  "). That's too subtle. Let's prefix a letter that is a name of a class 
of characters with a backslash in the way special characters have always been indi
cated in C++ (e.g., \n is newline in a string literal) . Tills way we get 

\w\w\d\d\d\d\d-\d\d\d\d 

Tills is a bit ugly, but at least it is unambiguous, and the backslashes make it obvi
ous that "something unusual is going on." Here, we represent repetition of a char-
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acter by simply repeating. lbat can b e  a bit tedious and is potentially error-prone. 
Qyick: Did we really get the five digits before the dash and four after it right? We 
did, but nowhere did we actually say 5 and 4, so you had to count to make sure. 
We could add a count after a character to indicate repetition. For example : 

\w2\d5-\d4 

However, we really ought to have some syntax to show that the 2, 5, and 4 in that 
pattern are counts, rather than just the alphanumeric characters 2, 5, and 4. Let's 
indicate counts by putting them in curly braces: 

\w{2}\d{5}-\d{4} 

That makes { special in the same way as \ (backslash) is special, but that can't be 
helped and we can deal with that. 

So far, so good, but we have to deal with two more messy details : the final 
four digits in a ZIP code are optional. We somehow have to be able to say that 
we will accept both TX77845 and TX77845-5629. There are two fundamental ways 
of expressing that : 

\w{2}\d{5} or \w{2}\d{5}-\d{4} 

and 

\w{2}\d{5} and optionally -\d{4} 
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To say that concisely and precisely, we first have to express the idea of grouping � 
(or sub-pattern) to be able to speak about the \w{2}\d{5} and -\d{4} parts of U 
\w{2}\d{5}-\d{4}. Conventionally, we use parentheses to express grouping: 

(\w{2}\d{5} )(-\d{4}) 

Now we have split the pattern into two sub-patterns, so we just have to say 
what we want to do with them. As usual, the cost of introducing a new facility is 
to introduce another special character: ( is now "special" just like \ and {. Con
ventionally I is used to express "or" (alternatives) and l is used to express some
thing conditional (optional), so we might write: 

(\w{2}\d{5} >l(\w{2}\d{5}-\d{4}) 

and 
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(\w{2}\d{5} )(-\d{ 4})l 

As with the curly braces in the count notation (e.g., \w{2}), we use the question 
mark (l) as a sufflX. For example, (-\d{4})l means "optionally -\d{4}"; that is, we 
accept four digits preceded by a dash as a suffix. Actually, we are not using the 
parentheses around the pattern for the five-digit ZIP code (\w{2}\d{5}) for any
thing, so we could leave them out: 

\w{2}\d{5}(-\d{4} )l 

To complete our solution to the problem stated in §23.5, we could add an op
tional space after the two letters: 

\w{2} l\d{5}(-\d{4} )l 

That " l" looks a bit odd, but of course it's a space character followed by the l, 
indicating that the space character is optional. If we wanted to avoid a space 
being so unobtrusive that it looks like a bug, we could put it in parentheses: 

\w{2}( )l\d{5}((-\d{4})l 

If someone considered that still too obscure, we could invent a notation for a 
whitespace character, such as \s (s for "space"). That way we could write 

\w{2}\s l\d{5}(-\d{4} )l 

But what if someone wrote two spaces after the letters? As defmed so far, the pat
tern would accept TX77845 and TX 77845 but not TX 77845. That's a bit subtle. 
We need to be able to say "zero or more whitespace characters," so we introduce 
the suffix • to mean "zero or more" and get 

\w{2}\s*\d{5}(-\d{4} )l 

This makes sense if you followed every step of the logical progression. This nota
tion for patterns is logical and extremely terse. Also, we didn't pick our design 
choices at random: this particular notation is extremely common and popular. 
For many text-processing tasks, you need to read and write this notation. Yes, it 
looks a bit as if a cat walked over the keyboard, and yes, typing a single character 
wrong (even a space) completely changes the meaning, but please just get used to 
it. We can't suggest anything dramatically better, and this style of notation has al
ready been wildly popular for more than 30 years since it was first introduced for 
the Unix grep command - and it wasn't completely new even then. 
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23.7 Searching with regular expressions 
Now, we will use the ZIP code pattern from the previous section to fmd ZIP 
codes in a file. The program defines the pattern and then reads a flle line by line, 
searching for the pattern. If the program finds an occurrence of the pattern in a 
line, it writes out the line number and what it found: 

#include <boost/regex.hpp> 
#include <iostream> 
#include <String> 
#include <fstrearn> 
using namespace std; 

int main() 
{ 

ifstream in("file.txt"); II input fi le 
if (! in) cerr << "no file\n"; 

boost: : regex pat ("\\w{2}\\s*\\d{5}(-\\d{4} )l"); 
cout << "pattern : " << pat << '\n'; 

int lineno = 0; 
string line; II i nput buffer 
while (getline(in,line)) { 

++lineno; 

II ZIP code pattern 

boost: :smatch matches; II matched strings go here 
if (boost: :  regex_search(line, matches, pat)) 

cout << lineno << ": " << matches[OJ << '\n'; 

This requires a bit of a detailed explanation. First consider: 

#include <boost/regex.hpp> 

boost: : regex pat (''\\w{2}\\s*\\d{5}(-\\d{4})l"); II ZIP code pattern 
boost: : smatch matches; II matched strings go here 
if (boost: : regex_search(line, matches, pat)) 

We are using the boost implementation of the regex library that will soon be part 
of the standard library. To use that library, you may have to install it. To indicate 
which facilities are from the regex library, we use explicit qualifications with the 
library's namespace boost, e.g., boost: : regex. 
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Back to regular expressions ! Consider: 

boost: : regex pat ("\\w{2}\\s*\\d{5}(-\\d{4})l" ); 
cout << " pattern : " << pat << '\n'; 

Here we first defme a pattern, pat (of type regex), and then write it to output. 
Note that we wrote 

"\\w{2}\\s*\\d{5}(-\\d{4} )l" 

If you run the program, you'll see the output: 

pattern: \w{2}\s*\d{5}(-\d{4} )l 

In C++ string literals, backslash is the escape character (§A.2.4). so to get a (sin
gle) \ into a literal string we have to write \\. 

A regex pattern really is a kind of string, so we can output it using <<. A 
regex is not just a string, but the somewhat sophisticated mechanism for pattern 
matching that is created when you initialize a regex (or assign to one) is hidden 
and beyond the scope of this book. However, once we have initialized a regex 
with our pattern for ZIP codes, we can apply it to each line of our file: 

boost: :smatch matches; 
if (boost : :  regex_search(line, matches, pat)) 

cout << lineno << ": " << matches[OJ << '\n'; 

The regex_search(line, matches, pat) searches the line for anything that matches 
the regular expression stored in pat, and if it fmds any matches, it stores them in 
matches. Naturally, if no match was found, regex_search(line, matches, pat) re
!Ums false. 

The matches variable is of type smatch. The s stands for "sub." Basically, an 
smatch is a vector of sub-matches. The first element, here matches[O], is the com
plete match. We can treat matches[i] as a string if i<matches.size(). So if - for a 
given regular expression - the maximum number of sub-patterns is N, we find 
matches.size()==N+ 1 .  

So, what is a sub-pattern? A good first answer is, "Anything in parentheses in 
the pattern." Looking at "\\w{2}\\s*\\d{5}(-\\d{4})l",  we see the parentheses 
around the four-digit extension of the ZIP code. That's the only sub-pattern we 
see, so we guess (correctly) that matches.size0==2. We also guess that we can 
easily access those last four digits. For example: 

while (getline(in,line)) { 
boost: :smatch matches; 
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i f  (boost: : regex_search(line, matches, pat)) { 
cout << lineno << 11 : 11 << matches[OJ << '\n'; 
if (1<matches.size() && matches[1].matched) 

cout << "\t : " << matches[1] << '\n ' ;  

II whole match 

II sub-match 

Strictly speaking, we didn't have to test 1<matches.size() because we already had 
a good look at the pattern, but we felt like being paranoid (because we have been 
experimenting with a variety of patterns in pat and they didn't all have just one 
sub-pattern). We can ask if a sub-match succeeded by looking at its matched mem
ber, here matches[1).matched. In case you wonder: when matches[i).matched is 
false, the unmatched sub-pattern matches[i) prints as the empty string. Similarly, a 
sub-pattern that doesn't exist, such as matches[17) for the pattern above, is treated 
as an unmatched sub-pattern. 

We tried this program with a file containing 

address TX77845 
ffff tx 77843 asasasaa 
ggg TX3456-23456 
howdy 
zzz TX23456-3456sss ggg TX33456-1234 
cvzcv TX77845-1 234 sdsas 
xxxTx77845xxx 
TX12345-123456 

and got the output 

pattern : "\w{2}\s*\d{5}(-\d{4})l" 
1 :  TX77845 
2: tx 77843 
5: TX23456-3456 
: -3456 
6: TX77845-1 234 
: -1234 
7: Tx77845 
8: TX1 2345-1234 
: -1 234 

Note that we 

Did not get fooled by the ill-formatted "ZIP code" on the line with ggg 
(what's wrong with that one?) 
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Only found the first ZIP code from the line with zzz (we only asked for 
one per line) 

Found the correct suffixes on lines 5 and 6 

Found the ZIP code "hidden" among the xxx's on line 7 

Found (unfortunately?) the ZIP code "hidden" in TX12345-123456 

23.8 Regular expression syntax 
We have seen a rather basic example of regular expression matching. Now is the 
time to consider regular expressions (in the form they are used in the regex li· 
brary) a bit more systematically and completely. 

Regular expre.uions ("regexps" or "regexs") is basically a little language for ex
pressing patterns of characters. It is a powerful (expressive) and terse language, 
and as such it can be quite cryptic. Mter decades of use, there are many subtle 
features and several dialects. Here, we will just describe a (large and useful) sub
set of what appears to be the currently most widely used dialect (the PERL one). 
Should you need more to express what you need to say or to understand the reg
ular expressions of others, go look on the web. Tutorials (of wildly differing qual
ity) and specifications abound. In particular, the boost: : regex specification and 
its standard committee equivalent (in WG2 1 TRl) are easily found. 

The library also supports the ECMAscript, POSIX, awk, grep, and egrep 
notations and a host of search options. This can be extremely useful, especially if 
you need to match some pattern specified in another language. You can look up 
those options if you feel the need to go beyond the basic facilities described here. 
However, remember that "using the most features" is not an aim of good pro
gramming. Whenever you can, take pity on the poor maintenance programmer 
(maybe yourself in a couple of months) who has to read and understand your 
code: write code that is not unnecessarily clever and avoid obscure features 
whenever you can. 

23.8.1 Characters and special characters 
A regular expression specifies a pattern that can be used to match characters 
from a string. By default, a character in a pattern matches itself in a string. For ex· 
ample, the regular expression (pattern) "abc" will match the abc in Is there an 
abc herel 

The real power of regular expressions comes from "special characters" and 
character combinations that have special meanings in a pattern: 
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Characten with s pecial  meaning 

any single character (a "wildcard") 

character class 

count 

begin grouping 

end grouping 

\ next character has a special meaning 

zero or more 

+ one or more 

optional (zero or one) 

alternative (or) 
" start of line; negation 

$ end oi l ine 

For example, 

x.y 

matches any three-letter string starting with an x and ending with a y, such as 
xxy. xly, and xay, but not yxy, Jxy, and xy. 

Note that { . . .  }, •. +, and l are sufflX operators. For example, \d+ means 
"one or more decimal digits." 

If you want to use one of the special characters in a pattern, you have to "es
cape it" using backslash; for example, in a pattern + is the one-or-more operator, 
but \+ is a plus sign. 

23.8.2 Character classes 
TI1c most common combinations of characters are represented in a terse form as 
''special characters" : 

Special characten for character classes 

\d a decimal digit [[:digit:]] 

\1 a lowercase character [[: lower:]] 

\s a space (space, tab, etc.) [[: space:]] 

\u an uppercase character [[: upper:]] 

\w a letter (a-z or A-Z) or digit (0-9) or an underscore U [[:alnum: ]] 
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Special characten for character classes (continued) 

\0 not \d 

\L not \I  

\S not \s 

\U not \u  

\W not \w 

["[:digit :]] 

["[:lower: ]] 

["( :space:]] 

["[: upper: ]] 

["[:alnum:]] 

Note that an uppercase special character means "not the lowercase version of that 
special character." In particular, \W means "not a letter" rather than "an upper
case letter." 

The entries in the third column (e.g., [[: digit: J J) give an alternative syntax 
using a longer name. 

Like the string and iostream libraries, the regex library can handle large 
character sets, such as Unicode. As with string and iostream, we just mention 
this so that you can look for help and more information should you need it . Deal
ing with Unicode text manipulation is beyond the scope of this book. 

23.8.3 Repeats 
Repeating patterns arc specified by the suffix operators : 

Repetition 

{ n }  

{ n, } 

{n,m} 

exactly n t imes 

n or more times 

at least n and at most m times 

zero or more, that is, {0,} 

+ one or more, that is, {1 ,} 

optional (zero or one), that is, {0, 1} 

For example, 

Ax* 

matches an A followed by zero or more xs, such as 

A 
Ax 
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Axx 
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

If you want at least one occurrence, use + rather than •. For example, 

Ax+ 

matches an A followed by one or more xs, such as 

Ax 
Axx 
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

but not 

A 

The common case of zero or one occurrence ("optional") is represented by a 
question mark. For example, 

\d-l\d 

matches the two digits with an optional dash between them, such as 

1-2 
12 

but not 

1--2 

To specify a specific number of occurrences or a specific range of occurrences, 
use curly braces. For example. 

\w{2} -\d{4,5} 

matches exacdy two letters and a dash (-) followed by four or five digits, such as 

Ab-1234 
XX-54321 
22-54321 

but not 
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Ab-123 
lb-1234 

Yes, digits are \w characters. 

23.8.4 Grouping 
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To specify a regular expression as a sub-pattern, you group it using parentheses. 
For example: 

(\d* : )  

lbis defmes a sub-pattern of zero or more digits followed by a colon. A group 
can be used as part of a more elaborate pattern. For example: 

(\d* : )l(\d+) 

lbis specifies an optional and possibly empty sequence of digits followed by a 
colon followed by a sequence of one or more digits. No wonder people invented 
a terse and precise way of saying such things! 

23.8.5 Alternation 
The "or" character ( I ) specifies an alternative. For example: 

Subject: (fW:IRe: )l(. *) 

Tins recognizes an email subject line with an optional FW: or Re: followed by 
zero or more characters. For example : 

Subject: FW: Hello, world! 
Subject: Re: 
Subject: Norwegian Blue 

but not 

SUBJECT: Re: Parrots 
Subject FW: No subject! 

An empty alternative is not allowed: 

(jdef) II error 
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However. we can specify several altematives a t  once: 

(bsjBslbSjBS) 

23.8.6 Character sets and ranges 
TI1c special characters provide a shorthand for the most common classes of char
acters : digits (\d) ; letters, digits, and underscore (\w);  etc. (§23.7.2). However, it is 
easy and often useful to define our own. For example: 

[\w @] 

[a-z] 

[a-zA-ZJ 

[Pp] 

[\w\-J 

[asdfghjkl; '] 

[.] 

a word character, a space, or an @ 

the lowercase characters from a to z 

upper· or lowercase characters from a to z 

an upper- or lowercase P 

a word character or a dash (plain - means range) 

the characters on the middle line of a U.S. QWERTY keyboard 

a dot 

[.[{(\\*+l"$1 a character with special meaning in a regular expression 

In a character class specification - (dash) is used to specify a range, such as [1-3] 
(1 , 2, or 3) and [w-z] (w, x, y, or z) . Please usc such ranges carefully: not every 
language has the same letters and not every letter encoding has the same order
ing. If you feel the need for any range that isn't a sub-range of the most common 
letters and digits of the English alphabet, consult the documentation. 

Note that we can use the special characters, such as \w (meaning "any word 
character"), within a character class specification. So, how do we get a backslash 
(\) into a character class? As usual, we "escape it" with a backslash: \\. 
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When the first character of a character class specification is " ,  that " means fj 
negation. For example: 

["aeiouy] 

["\d) 

[ "aeiouy] 

not an English vowel 

not a digit 

an English vowel or a " 

In the last regular expression, the " wasn't the first character after the [, so it was 
just a character, not a negation operator. Regular expressions can be subtle. 

An implementation of regex also supplies a set of named character classes for 
usc in matching. For example, if you want to match any alphanumeric character 
(that is, a letter or a digit : a-z or A-Z or 0-9) you can do it by the regular expres
sion [ [ :alnum:]J. Here, alnum is the name of a set a characters (the set of alpha
numeric characters) .  A pattem for a nonempty quoted string of alphanumeric 
characters would be "[[ :alnum:JJ+" . To put that regular expression into a string, 
we have to escape the quotes: 
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string s =  "\"[[ :alnum: JJ+\'"' ;  

Furthem10re, to put that string into a regex, we must escape the backslashes as 
well as the quotes and use the ( ) style of initialization because regex's constructor 
from a string is explicit: 

regex s("\\\" [[:alnum:])+\\\" "); 

Using regular expressions leads to a lot of notational conventions. Anyway, here 
is a list of the standard character classes: 

Character classes 

alnum any alphanumeric character 

alpha any alphabetic character 

blank any whitespace character that is not a line separator 

cntrl any control character 

d any decimal digit 

digit any decimal digit 

graph any graphical character 

lower any lowercase character 

print any printable character 

punct any punctuation character 

s any whitespace character 

space any whitespace character 

upper any uppercase character 

w any word character (alphanumeric characters plus the underscore) 

xdigit any hexadecimal digit character 

An implementation of regex may provide more character classes. but if you de
cide to use a named class not listed here, be sure to check if it is portable enough 
for your intended use. 

23.8.7 Regular expression errors 
What happens if we specify an illegal regular expression? Consider: 

regex patl (" (lghi)") ;  
regex pat2(" [c-a)"); 

II missing alternat ive 
II not a range 
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When we assign a pattern to a regex, the pattern is checked, and if the regular ex- ., 
pression matcher can't use it for matching because it's illegal or too complicated, U 
a bad_expression exception is thrown. 

Here is a little program that's useful for getting a feel for regular expression 
matching: 

#include <boost/regex.hpp> 
#include <iostream> 
#include <String> 
#include <fstream> 
#include<Sstream> 
using namespace std; 
using namespace boost; II if you use the boost implementation 

II accept a pattern and a set of l ines from input 
II check the pattern and search for l ines with that pattern 

int main() 
{ 

regex pattern; 

string pat; 
cout << "enter pattern : " ;  
getline(cin,pat); II read pattern 

try { 
pattern = pat; II this checks pat 
cout << "pattern : " << pattern << '\n'; 

catch (bad_expression) { 
cout << pat << " is not a valid regular expression\n";  
exit(1 ); 

cout << "now enter lines:\n"; 
string line; II input buffer 
int lineno = 0; 

while (getline(cin,line)) { 
++lineno; 
smatch matches; 
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i f  (regex_search(line, matches, pattern)) { 

else 

cout << "line " << lineno << " :  " << line << '\n'; 
for (int i =  0; i<matches.size(); ++i) 

cout << "\tmatches[" << i << "] :  " 
<< matches[i] << '\n'; 

cout << "didn't match\n";  

TRY T H I S  

Get the program to run and use it to try out some patterns, such as abc, x. •x, 
(. *) , \(["))*\), and \w+ \w+( Jr\.)l. 

23.9 Matching with regular expressions 
There are two basic uses of regular expressions: 

Seardzing for a string that matches a regular expression in an (arbitrarily 
long) stream of data - regex_search() looks for its pattern as a substring 
in the stream 
Matchiii{; a regular expression against a string (of known size) -

regex_match() looks for a complete match of its pattern and the string 

The search for ZIP codes in §23.6 was an example of searching. Here, we will 
examine an example of matching. Consider extracting data from a table like this : 

KlASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT 

OA 1 2  1 1  23 

1 A  7 8 1 5  

1 8  4 1 1  1 5  

2A 1 0  1 3  23 

3A 1 0  1 2  22 

4A 7 7 1 4  

48 1 0  5 1 5  

SA 1 9  8 2 7  

6A 1 0  9 1 9  
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KLASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT 

68 9 1 0 1 9 
7A 7 1 9 26 
7G 3 5 8 
71 7 3 1 0 
8A 1 0 1 6  26 
9A 1 2  1 5  27 

OMO 3 2 5 

OPl 2 
OP2 0 5 5 

l OB 4 4 8 
l OCE 0 
l MO 8 5 1 3  
2CE 8 5 1 3  
3DCE 3 3 6 
4MO 4 5 

6CE 3 4 7 

8CE 4 4 8 
9CE 4 9 1 3  
REST 5 6 1 1  

Aile klasser 1 84 202 386 

This table (of the number of students in Bjarne Stroustrup's old primary school 
in 2007) was extracted from a context (a web page) where it looks nice and is 
fairly typical of Lhe kind of data we need to analyze: 

It has numeric data fields. 

It has character fields with strings meaningful only to people who under
stand the context of the table. (Here, that point is emphasized by the usc 
of Danish.) 

• The character strings include spaces. 
• The "fields" of this data are separated by a "separation indicator," which 

in this case is a tab character. 
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We chose this table to be "fairly typical" and "not too difficult," but note one sub- � 
tlcty we must face: we can't actually see the difference between spaces and tab U 
characters; we have to leave that problem to our code. 
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We will illustrate the use of  regular expressions to 

Verify that this table is properly laid out (i.e., every row has the right 
number of fidds) 

Verify that the numbers add up (the last line claims to be the sum of the 
columns above) 

If we can do that, we can do just about anything! For example, we could make a 
new table where the rows with the same initial digit (indicating the year: first 
grades start with 1) are merged or see if the number of students is increasing or 
decreasing over the years in question (see exercises 10-1 1) .  

To analyze the table, we need two patterns: one for the header line and one 
for the rest of the lines : 

regex header( "" [\\w 1+( 
regex row( "" [\\w 1+( 

[\\w 1+)*$" ); 
\\d+)( \\d+)( \\d+)$"); 

Please remember that we praised the regular expression syntax for terseness and 
utility; we did not praise it for ease of comprehension by novices . In fact, regular 
expressions have a well-earned reputation for being a "write-only language." Let 
us start with the header. Since it does not contain any numeric data, we could just 
have thrown away that first line, but - to get some practice - let us parse it. It con
sists of four "word fields" ("alphanumeric fields") separated by tabs. These fields 
can contain spaces, so we cannot simply use plain \w to specify its characters. In· 
stead, we use [\w l , that is, a word character Oetter, digit, or underscore) or a 
space. One or more of those is written [\w 1+. We want the first of those at the start 
of a line, so we get "([\w 1+). The "hat" (") means "start of line." Each of the rest 
of the fields can be expressed as a tab followed by some words : ( [\w 1+). Now we 
take an arbitrary number of those followed by an end of line: ( [\w 1+)*$. The 
dollar sign ($) means "end of line." Now to write that as a C++ string literal, we 
have to add extra backslashes, and we get 

" " [\\w 1+( [\\w 1+)*$" 

Note how we can't see that the tab characters are really tabs, but in this case they 
expand in the typesetting so as to reveal themselves. 

Now for the more interesting part of the exercise: the pattern for the lines from 
which we want to extract the numeric data. The first field is as before: "[\w 1+. It is 
followed by exactly three numeric fields, each preceded by a tab: ( \d+), so that we 
get 

"[\w 1+( \d+)( \d+)( \d+)$ 
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which, after putting it into a string literal, is 
" "(\\w ]+( \\d+)( \\d+)( \\d+)$" 

Now all we have to do is to use those patterns. First we will just validate the table 
layout: 

int main() 
{ 

ifstream in("table.txt"); II input iile 
if ( l in) error("no input file\n"); 

string line; II input buifer 
int lineno = 0; 

II ht•ader l ine regex header( " "(\\w ]+( 
regex row( ""(\\w ]+( 

(\\w )+)*$"); 
\\d+)( \\d+)( \\d+)$"); II data l i ne 

if (getline(in,line)) { II check header l i ne 
smatch matches; 
if ( ! regex_match(line, matches, header)) 

error("no header") ;  

while (getline(in,line)) { II check data l ine 
++lineno; 
smatch matches; 
if ( ! regex_match(line, matches, row)) 

error("bad line" ,to_string(lineno)); 

For brevity, we left out the #includes. We are checking all the characters on each 
line, so we usc regex_match rather than regex_search. The difference between 
those two is exactly that regex_match must match every character of its input to 
succeed, whereas regex_search looks at the input trying to fmd a substring that 
matches. Mistakenly typing regex_match when you meant regex_search (or vice 
versa) can be a most frustrating bug to find. However, both of those functions 
usc tl1cir "matches" argument identically. 

We can now proceed to verify the data in that table. We keep a sum of the 
number of pupils in the boys ("drenge") and girls ("piger") columns. For each 
row, we check that last field ("ELEVER IALT'') really is the sum of the first two 
fields. The last row ("Aile klasser") purports to be the sum of the columns above. 
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To check that, we modify row to make the text field a submatch so that we can 
recognize "Alle klasscr": 

int main() 
{ 

ifstream in("table.txt"); II input fi le 
if ( ! in) error("no input file"); 

string line; 
int lineno = 0; 

regex header( " "(\\w ]+( 
regex row( " " ((\\w ]+)( 

II input buffer 

(\\w ]+)*$"); 
\\d+)( \\d+)( \d+)$"); 

if (getline(in,line)) { II check header line 
boost: :smatch matches; 
if ( ! boost: : regex_match(line, matches, header)) { 

error(" no header"); 

II column totals: 
int boys = 0; 
int girls = 0; 

while (getline(in,line)) { 
++line no; 
smatch matches; 
if ( ! regex_match(line, matches, row)) 

cerr << "bad line: " << lineno << '\n' ;  

if (in.eof()) cout << "at eof\n"; 

II check row: 
int curr _boy = from_string<int>(matches[2]); 
int curr_girl = from_string<int>(matches[JJ); 
int curr_total = from_string<int>(matches[4]); 
if (curr_boy+curr_girl != curr_total) error("bad row sum \n"); 

if (matches[1 J=="AIIe klasser") { II last l i ne 
if (curr_boy != boys) error("boys don't add up\n"); 
if (curr_girl != girls) error("girls don't add up\n"); 
if ( ! (in>>ws).eof()) error("characters after total line"); 
return 0; 
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II update totals: 
boys += curr_boy; 
girls += curr_girl; 

error("didn't find total line"); 

The last row is semantically different from the other rows - it is their sum. We 
recognize it by its label (''Aile klasser"). We decided to accept no more non-white· 
space characters after that last one (using the technique from lexical_ cast (§23.2)) 
and to give an error if we did not find it. 

We used the from_string function from §23.2 to extract an integer value from 
the data fields. We had already checked that those fields consisted exclusively of 
digits so we did not have to check that the string·to-int conversion succeeded. 

23.1 0 References 
Regular expressions are a popular and useful tool. They are available in many 
programming languages and in many formats. They are supported by an elegant 
theory based on formal languages and by an efficient implementation technique 
based on state machines. The full generality of regular expressions, their theory, 
their implementation, and the use of state machines in general are beyond the 
scope of this book. However, because these topics are rather standard in com
puter science curricula and because regular expressions are so popular, it is not 
hard to fmd more information (should you need it or just be interested). 

For more information, see: 

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compliers: 
PrincijJU.s, Techniques, and Tools, Secmul Edition (usually called "The Dragon 
Book"). Addison-Wesley, 2007. ISBN 032 1547985. 

Austem, Matt, ed. "Draft Technical Report on C++ Library Extensions ." 
ISO/IEC DTR 1 9768, 2005. www.open-std.org/jtcl/sc22/wg2 1/docs/papers/ 
2005/n1 836.pdf. 

Boost.org. A repository for libraries meant to work well with the C++ standard 
library. www.boost.org. 

Cox, Russ. "Regular Expression Matching Can Be Simple and Fast (but Is Slow in 
Java, Perl, PHP, Python, Ruby, . . .  )." http://swtch.com/- rsdregexp/regexp1 .html. 

Maddoc,J. boost ::regex documentation. www.boost.org/libs/regex/doc/index.html. 
Schwartz, Randal L., Tom Phoenix, and Brian D. Foy. Learning ltrl, Fourth Editimz. 

O'Reilly, 2005. ISBN 0596 10 1058. 
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� Drill 
1 .  Find out if regex is shipped as part of your standard library. Hint: Try 

std: : reg ex and tr1 : : reg ex. 
2. Get the little program from §23. 7. 7 to work; that may involve getting 

boost: :  regex installed on your system (if it isn't already) and figuring 
out how to set the project and/or command-line options to link to the 
regex library and use the regex headers. 

3. Use the program from drill 1 to test tl1e patterns from §23.7. 

Review 

1. Where do we find "text"? 
2. What are the standard library facilities most frequently useful for text 

analysis? 
3. Does insert() add before or after its position (or iterator)? 
4. What is Unicode? 
5. How do you convert to and from a string representation (to and from 

some other type)? 
6. What is the difference between cin>>s and getline(cin,s) assuming s is a 

string? 
7. List the standard streams. 
8. What is the key of a map? Give examples of useful key types. 
9. How do you iterate over the elements of a map? 

10. What is the difference between a map and a multimap? Which useful 
map operation is missing for multimap, and why? 

1 1 .  What operations are required for a forward iterator? 
12. What is the difference between an empty field and a nonexistent field? 

Give two examples. 
13 .  Why do we need an escape character to express regular expressions? 
14. How do you get a regular expression into a regex variable? 
15.  What does \w+\s\d{4} match? Give three examples . What string literal 

would you use to initialize a regex variable with tl1at pattern? 
16. How (in a program) do you find out if a string is a valid regular expression? 
1 7. What does regex_search() do? 
18 .  What does regex_match() do? 
19 .  How do you represent the character dot (.) in a regular expression? 
20. How do you represent the notion of "at least three" in a regular expression? 
2 1 .  Is 7 a \w character? Is _ (underscore)? 
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22. What is the notation for an uppercase character? 
23 . How do you specify your own character set? 
24. How do you extract the value of an integer field? 
25. How do you represent a floating-point number as a regular expression? 
26. How do you extract a floating-point value from a match? 
27. What is a sub-match? How do you access one? 

Terms 

match 
multimap 
pattern 

Exercises 

regex_match() 
regex_search() 
regular expression 

search 
smatch 
sub-pattern 

1 .  Get the email flle example to run; test it using a larger file of your own 
creation. Be sure to include messages that are likely to trigger errors, 
such as messages with two address lines, several messages with the same 
address and/or same subject, and empty messages. Also test the program 
with something that simply isn't a message according to that program's 
specification, such as a large flle containing no • . .  lines. 

2. Add a multimap and have it hold subjects . Let the program take an input 
string from the keyboard and print out every message with that string as 
its subject. 

3. Modify the email example from §23 .4 to use regular expressions to fmd 
the subject and sender. 

4. Fmd a real email message file (containing real email messages) and mod
ify the email example to extract subject lines from sender names taken as 
input from Lhe user. 

5. Fmd a large email message flle (thousands of messages) and then time it 
as written with a multlmap and with that multlmap replaced by an un· 
ordered_multimap. Note that our application does not take advantage of 
the ordering of the multimap. 

6. Write a program that finds dates in a text flle. Write out each line con
taining at least one date in the format line-number: line. Start wilh a 
regular expression for a simple format, e.g., 12/24/2000, and test the pro
gram with that. Then, add more formats. 

7. Write a program (similar to the one in the previous exercise) that fmds 
credit card numbers in a file. Do a bit of research to fmd out what credit 
card formats are really used. 
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8 .  Modify the program from §23.8.7 so that i t  takes as inputs a pattern and 
a file name. Its output should be the numbered lines (line-number: line) 
that contain a match of the pattern. If no matches are found, no output 
should be produced. 

9. Using eof() (§8.7.2), it is possible to detennine which line of a table is the 
last. Use that to (try to) simplify the table-checking program from §23.9. 
Be sure to test your program with files that end with empty lines after the 
table and with flles that don't end with a newline at all. 

10. Modify the table-checking program from §23.9 to write a new table 
where the rows with the same initial digit (indicating the year: first 
grades start with 1 )  are merged. 

1 1 .  Modify the table-checking program from §23.9 to see if the number of 
students is increasing or decreasing over the years in question. 

12. Write a program, based on the program that finds lines containing dates 
(exercise 6), that fmds all dates and reforn1ats them to the ISO 
yyyy/nun/dd format. The program should take an input flle and produce 
an output me that is identical to the input flle except for the changed date 
formatting. 

13. Does dot (.) match '\n'? Write a program to fmd out. 
14. Write a program that, like the one in §23.8.7, can be used to experiment 

with pattern matching by typing in a pattern. However, have it read a file 
into memory (representing a line break with the newline character, '\n'), 
so that you can experiment with patterns spanning line breaks. Test it 
and document a dozen test patterns. 

15.  Describe a pattern that cannot be expressed as a regular expression. 
16.  For experts only: Prove that the pattern found in the previous exercise 

really isn't a regular expression. 

Postscript 

It is easy to get trapped into the view that computers and computation are all 
about numbers, that computing is a form of math. Obviously, it is not. Just look 
at your computer screen; it is full of text and pictures. Maybe it's busy playing 
music. For every application, it is important to use proper tools. In the context of 
C++, that means using appropriate libraries. For text manipulation, the regular 
expression library is often a key tool - and don't forget the maps and the stan· 
dard algoritluns. 
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N u mer ics 

"For every complex problem 
there is an answer that is 
clear, simple, and wrong." 

-H. L. Mencken 

T his chapter is an overview of some fundamental language 

and library facilities supporting numeric computation. We 

present the basic problems of size, precision, and truncation. The 

central part of the chapter is a discussion of multidimensional ar

rays - both C-style and an N-dimensional matrix library. We intro

duce random numbers as frequently needed for testing, simulation, 

and games. Finally, we list the standard mathematical functions 

and briefly introduce the basic functionality of the standard li

brary complex numbers. 
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24.1 Introduction 

24.2 Size, precision, and overflow 
24.2.1 Numeric limits 

24.3 Arrays 

24.4 C-style multidimensional arrays 

24.5 The Matrix library 
24.5.1 Dimensions and access 
24.5.2 1 D Matrix 
24.5.3 20 Matrix 
24.5.4 Matrix 1/0 24.5.5 30 Matrix 

24.1 I ntroduction 
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24.6 An example: solving linear 
equations 
24.6.1 Classical Gaussian elimination 
24.6.2 Pivoting 
24.6.3 Testing 

24.7 Random numbers 

24.8 The standard mathematical 
functions 

24.9 Complex numbers 

24.10 References 

For some people, numerics - that is, serious numerical computations - are every· 
thing. Many scientists, engineers, and statisticians are in this category. For many 
people, numerics are sometimes essential. A computer scientist occasionally col· 
laborating with a physicist would be in this category. For most people, a need for 
numerics - beyond simple arithmetic of integers and floating-point numbers - is 
rare. The purpose of this chapter is to address language-technical details needed 
to deal with simple numerical problems. We do not attempt to teach numerical 
analysis or the fmer points of floating-point operations ; such topics are far be· 
yond the scope of this book and blend with domain-specific topics in the applica· 
tion areas. Here, we present 

Issues related to the built-in types having flxed size, such as precision and 
overflow 

Arrays, both the built-in notion of multidimensional arrays and a Matrix 
library that is better suited to numerical computation 

A most basic description of random numbers 

The standard library mathematical functions 

Complex numbers 

The emphasis is on the Matrix library that makes handling of matrices (multi· 
dimensional arrays) trivial. 

24.2 Size, precision, and overflow 
When we use the built-in types and usual computational techniques, numbers 
are stored in flxed amounts of memory; that is, the integer types (int, long, etc.) 
are only approximations of the mathematical notion of integers (whole numbers) 
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and the floating-point types (float, double, etc.) are (only) approximations of the 
mathematical notion of real numbers. This implies that from a mathematical 
point of view, some computations are imprecise or wrong. Consider: 

float x = 1 .0/333; 
float sum = 0; 
for (int i=O; i<:333; ++i) sum+=x; 
cout << setprecision(15) << sum << "\n"; 

Running this, we do not get 1 as someone might naively expect, but rather 

0.999999463558197 

We expected something like that. What we see here is an effect of a rounding 
error. A floating-point number has only a fixed number of bits, so we can always 
"fool it" by specifying a computation that requires more bits to represent a result 
than the hardware provides. For example, the rational number 1 /3 cannot be rep
resented exactly as a decimal number (however many decimals we use). Neither 
can 11333, so when we add 333 copies of x (the machine's best approximation of 
1/333 as a float). we get something that is slightly different from l. Whenever we 
make significant use of floating-point numbers, rounding errors will occur; the 
only question is whether the error significantly affects the result. 
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Always check that your results are plausible. When you compute, you must • \ 
have some notion of what a reasonable result would look like or you could easily U 
get fooled by some "silly bug" or computation error. Be aware of the possibility 
of rounding errors and if in doubt, consult an expert or read up on numerical 
techniques. 

T RY T H I S  

..... Replace 333 in the example with 10 and run the example again. What result 
would you expect? What result did you get? You have been warned! 

TI1e effects of integers being of fixed size can surface more dramatically. The 
reason is that floating-point numbers are by definition approximations of (real) 
numbers, so they tend to lose precision (i.e., lose the least significant bits). lute· 
gers, on the other hand, tend to overflow (i.e., lose the most significant bits) .  That .\ 
tends to make floating-point errors sneaky (and often unnoticed by novices) and � 
integer errors spectacular (and typically hard not to notice) . Remember that we 
prefer errors to manifest themselves early and spectacularly so that we can fix 
them. 
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Consider an integer problem: 

short int y = 40000; 
int i = 1000000; 
cout << y << " " << i* i  << "\n"; 

Running this, we got the output 

-25536 -727379968 

C H A PT E R  2 4  • N UMER ICS  

That was expected. What we see here is the effect of overflow. Integer types rep· 
resent (relatively) small integers only. There just aren't enough bits to exactly rep· 
resent every number we need in a way that's amenable to efficient computation. 
Here, a 2·byte short integer could not represent 40,000 and a 4-byte int can't rep· 
resent 1 ,000,000,000,000. The exact sizes of C++ built-in types (§A.8) depend on 
the hardware and the compiler; sizeof(x) gives you the size of x in bytes for a 
variable x or a type x. By defmition, sizeof(char)==1 . We can illustrate sizes like 
this : 

char 

short 

int, long, float 

D 
rn 

double ._I -'---'--'-L----L--...L--'---' 

TI1ese sizes are for Windows using a Microsoft compiler. C++ supplies integers 
and floating-point numbers of a variety of sizes, but unless you have a very good 
reason for something else, stick to char, int, and double. In most (but of course 
not all) programs, the remaining integer and floating-point types are more trouble 
than they are worth. 

You can assign an integer to a floating-point number. If the integer is larger 
than tl1e floating-point type can represent, you lose precision. For example: 

cout << "sizes: " << sizeof(int) << 1 1 << sizeof(float) << '\n' ; 
int x = 2100000009; II large int 
float f = x; 
cout << x << ' ' << f << endl; 
cout << setprecision(15) << x << ' ' << f << '\n' ; 

On our machine, this produced 

Sizes: 4 4  
2100000009 2.1e+009 
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2100000009 2100000000 

A float and an int take up the same amount of space (4 bytes) .  A float is repre
sented as a "mantissa" (typically a value between 0 and 1 )  and an exponent 
(mantissa* lO"""""""), so it cannot represent exactly the largest int. (If we tried to, 
where would we find space for the mantissa after we had taken the space needed 
for the exponent?) As it should, f represented 2100000009 as approximately cor
rect as it could. However, that last 9 was too much for it to represent exactly -
and that was of course why we chose that number. 
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On the other hand, when you assign a floating-point number to an integer, • \ 
you get truncation; that is, the fractional part - the digits after the decimal point U 
- is simply thrown away. For example: 

float f = 2.8; 
int x = f; 
cout << x << ' ' << f << '\n' ; 

The value of x will be 2. It will not be 3 as you might imagine if you are used to 
"4/5 rounding rules." C++ float-ta-int conversions truncate rather than round. 

When you calculate, you must be aware of possible overflow and truncation. • \ 
C++ will not catch such problems for you. Consider: U 

void f(int i, double fpd) 
{ 

char c = i; 
short s = i;  
i = i+1 ; 
long lg = i•i; 
float fps = fpd; 
i = fpd; 
fps = i; 

void gO 
{ 

char ch = 0; 

II yes: chars re,ll ly are very small integers 
II beware: an int may not ii t in a short int 
II what i i i was the largest int? 
II beware: a long may not be any la rger th,l n ,m int 
II beware: a large double may not fit in  a iloat 
II truncates: e.g., 5 .7  - > 5 
II you can lose precision ( ior very la rge int values) 

for (int i = 0; i<500; ++i) 
cout << int(ch++) << '\t' ; 

If in doubt, check, experiment! Don't just despair and don't just read the docu
mentation. Unless you are experienced, it is easy to misunderstand the highly 
technical documentation related to numerics. 
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TRY T H I S  

Run gO. Modify f() to print out c, s, i, etc. Test it with a variety of values. 

The representation of integers and their conversions will be examined fur
ther in §25.5.3. When we can, we prefer to limit ourselves to a few data types. 
That can help minimize confusion. For example, by not using float in a program, 
but only double, we eliminate the possibility of double-to-float conversion prob· 
lems. In fact, we prefer to limit our use to int, double, and complex (see §24.8) 
for computation, char for characters, and bool for logical entities. We deal with 
the rest of the arithmetic types only when we have to. 

24.2.1 Numeric limits 
In <limits>, <limits.h>, and <float.h>, each C++ implementation specifies prop
erties of the built-in types, so that programmers can use those properties to check 
against limits, set sentinels, etc. These values are listed in §B.9. 1  and can be criti· 
cally important to low-level tool builders. If you think you need them, you are 
probably too close to hardware, but there arc other uses. For example, it is not 
uncommon to be curious about aspects of the language implementation, such as 
"How big is an int?" or "Are chars signed?" Trying to find the definite and cor
rect answers in the system documentation can be difficult, and the standard only 
specifies minimum requirements. However, a program giving the answer is trivial 
to write : 

cout << "number of bytes in an int: 11 << sizeof(int) << '\n'; 
cout << "largest int: " << I NT _MAX << end I; 
cout << "smallest int value: 11 << numeric_limits<int>: :min() << '\n'; 

if (numeric_limits<char>: : is_signed) 
cout << "char is signed\n";  

else 
cout << "char is unsigned\n 11 ; 

cout << "char with min value: " << numeric_limits<char>: :min() << '\n' ;  
cout << "min char value : " << int(numeric_limits<char> : : min()) << '\n'; 

When you write code intended to run on several kinds of hardware, it occasion
ally becomes immensely valuable to have this kind of information available to 
the program. The altemative would typically be to hand-code the answers into 
the program, thereby creating a maintenance hazard. 

These limits can also be useful when you want to detect overflow. 
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24.3 Arrays 
An aJT'9' is a sequence of elements where we can access an element by its index (po
sition) . Another word for that general notion is vector. Here we are particularly con
cerned with arrays where the elements are themselves arrays : multidimensional 
arrays. A common word for a multidimensional array is matrix. TI1e variety of 
names is a sign of the popularity and utility of the general concept. The standard 
vector (§B.4), array (§20.9), and the built-in array (§A.8.2) are one-dimensional. So, 
what if we need two dimensions (e.g., a matrix)? If we need seven dimensions? 

We can visualize one- and two-dimensional arrays like this: 
A vector (e.g., Matrix<inl> v(4)), 
also called a one-dimensional array, 
or even a 1 -by-N matrix 

I .. I · I I I A 3-by-4 matrix (e:g., M�trix.Ont,2> m(3,4)), 
· · · . · · · 

· · ·. · · :· ·

. 

' . · also called a two-dimensiOnal array 

Arrays arc fundamental to most computing ("number crunching") .  Most interest
ing scientific, engineering, statistics, and fmancial computations rely heavily on 
arrays. 
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We often refer to an array as consisting of rows and columns : f) 
A column 

A mw - - - - - - - - - - - / \ : : 0 • 

. . - -- - - -�- - _ _ ___ _ _ _  j ----- ___ t _ _ __ _ _ __ . . A 3-by-4 matrix, 
: •· · 1 !  ; also called a two-dimensional array 
I • t I 3 ' ·--- �"'l--�···� ��--�'!"'�-"'!� _..::.�.�------ rr-;..---·-.-- - � rows 

· 
· r • · : · 

4 columns ' ' ' ' 
' - - - - - - - - � - � 

A column is a sequence of elements with the same first (x) coordinate. A row is a 
set of clements with the same second (y) coordinate. 

24.4 C-style multidimensional arrays 
ll1c C++ built-in array can be used as a multidimensional array. We simply treat 
a multidimensional array as an array of arrays, that is, an array with arrays as cl
ements. For example : 
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int ai[4J; 
double ad[3][4]; 
char ac[3][4][5]; 
ai[1 ] = 7; 
ad[2][3] = 7.2; 
ac[2][3][4] = 'c'; 

II 1 -dimensional  array 
II 2-di mensiona l array 
II 3-dimensiona l array 
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This approach inherits the virrues and the disadvantages o f  the one-dimensional 
array: 

Advantages 

Direct mapping to hardware 

Efficient for low-level operations 

Direct language support 

Problems 

C-style multidimensional arrays are arrays of arrays (see below) . 

Fixed sizes (i .e., fixed at compile time) . If you want to determine a 
size at run time, you'll have to use free store. 

Can't be passed cleanly. An array turns into a pointer to its first ele
ment at the slightest provocation. 

No range checking. As usual, an array doesn't know its own size. 

No array operations, not even assignment (copy) . 

Built-in arrays are widely used for numeric computation. They are also a mqjor 
source of bugs and complexity. For most people, they are a serious pain to write 
and debug. Look them up if you are forced to use them (e.g., The C++ Program
ming Language , Appendix C, pp. 836-40) . Unfortunately, C++ shares its multi
dimensional arrays with C, so there is a lot ·of code "out there" using them. 

The most fundamental problem is that you can't pass multidimensional ar
rays cleanly, so you have to fall back on pointers and explicit calculation of loca
tions in a multidimensional array. For example: 

void f1 (int a[3][5]); II usefu l for [3 ] [5] mat rices only 

void f2(int [ ][5], int dim1 ); 11 1  st dimension can be a variable 

void f3(int [5 ] [  ] ,  int dim2); II error: 2nd di mension cannot be a variable 

void f4(int[ ][ ], int dim1 , int dim2); II error (and wouldn't work anyway ) 
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void f5(int• m, int dim1 , int dim2) II odd, but works 
{ 

for (int i=O; i<dim1 ; ++i) 
for (int j = 0; j<dim2; ++j) m[i*dim2+j) = 0; 

Here, we pass m as an int• even though it is a two-dimensional array. As long as 
the second dimension needs to be a variable (a parameter) , there really isn't any 
way of telling the compiler that m is a (dim1 ,dim2) array, so we just pass a pointer 
to the start of the memory that holds it. The expression m[i•dim2+j) really means 
m[i,j), but because the compiler doesn't know that m is a two-dimensional array, 
we have to calculate the position of m[i,j] in memory. 

This is too complicated, primitive, and error-prone for our taste. It can also 
be slow because calculating the location of an element explicitly complicates opti
mization. Instead of trying to teach you all about it, we will concentrate on a 
C++ library that eliminates the problems with the built-in arrays . 

24.5 The Matrix library 
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What are the basic "things" we want from an array/matrix aimed at numerical .\ 
computation? � 

"My code should look very much like what I fmd in my math/engineer-
ing textbook text about arrays." 

Or about vectors, matrices, tensors 

Compile-time and run-time checked. 

Arrays of any dimension 

Arrays with any number of elements in a dimension 

Arrays arc proper variables/objects. 

You can pass them around 

Usual array operations: 

• Subscripting: ( ) 

• Slicing: [ 1 
• Assignment: =  

• Scaling operations (+=, -=, •=, %=, etc.) 

• Fused vector operations (e.g., res[i] = a[i)*c+b[2]) 

• Dot product (res = sum of a[i)*b[i]; also known as tl1c inner _product) 
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Basically, transforms conventional array/vector notation into the code 
you would laboriously have had to write yourself (and runs at least as ef
ficiently as that) . 

You can extend it yourself as needed (no "magic" was used in its imple
mentation) . 

The Matrix library does that and only that. If you want more, such as advanced 
array functions, sparse arrays, control over memory layout, etc., you must write 
it yourself or (preferably) use a library that better approximates your needs. 
However, many such needs can be served by building algorithm and data struc
tures on top of Matrix. The Matrix library is not part of the ISO C++ standard li
brary. You fmd it on the course site as Matrix.h. It defmes its facilities in 
namespace Numeric_lib. We chose the name "matrix" because "vector" and 
"array" are even more overused in C++ libraries. The plural of matrix is malrices 
(with malri.:�:es as a rarer form) . Where "Matrix" refers to a C++ language entity, 
we will use Matrixes as the plural to avoid confusion. The implementation of the 
Matrix library uses advanced techniques and will not be described here. 

24.5.1 Dimensions and access 
Consider a simple example: 

#include "Matrix.h" 
using namespace Numeric_lib; 

void f(int n1, int n2, int n3) 
{ 

Matrix<double, 1> ad1 (n1);  
Matrix<int, 1> ai1 (n1 ); 
ad1 (7) = 0; 
ad1 [7] = 8; 

II elements are doubles; one di mension 
II elements are ints; one d imension 
II subscript using ( J - Fortran sty le 
// I I also works - C style 

Matrix<double,2> ad2(n1 ,n2); 
Matrix<double,l> ad3(n1 ,n2,n3); 
ad2(3,4) = 7.5; 

// 2 -dimensional 
II 3-dimensional 
// true multidim£>nsional suhsnipting 

ad3(3,4,5) = 9.2; 

So, when you define a Matrix (an object of a Matrix class), you specify the element 
type and the number of dimensions. Obviously, Matrix is a template, and the cle
ment type and the number of dimensions are template parameters. The result of 
giving a pair of arguments to Matrix (e.g., Matrix<double,2>) is a type (a class) of 
which you can define objects by supplying arguments (e.g., Matrix<double,2> 
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ad2(n1 ,n2)) ; those arguments specify the dimensions. So, ad2 is a two-dimensional 
array with dimensions n1 and n2, also known as an n1-by-n2 matrix. To get an 
element of the declared element type from a one-dimensional Matrix, you sub
script with one index; to get an element of the declared element type from a two
dimensional Matrix, you subscript with two indices ; and so on. 

Like built-in arrays, and vectors, our Matrix indices are zero-based (rather 
than 1 -based like Fortran arrays) ;  that is, the elements of a Matrix are numbered 
[O,max) , where max is the number of elements. 
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This is simple and "straight out of the textbook." If you have problems with .. 1 

this, you need to look at an appropriate math textbook, not a programmer's U 
manual. The only "cleverness" here is that you can leave out the number of di
mensions for a Matrix: "one-dimensional" is the default. Note also that we can 
use [ ] for subscripting (C and C++ style) or ( ) for subscripting (Fortran style). 
Having both allows us to better deal with multiple dimensions. The [x] subscript 
notation always takes a single subscript, yielding the appropriate row of the 
Matrix; if a is an n-dimensional Matrix, a[x] is an n-1 -dimensional Matrix. The 
(x,y,z) subscript notation takes one or more subscripts, yielding the appropriate 
element of the Matrix; the number of subscripts must equal the number of di
mensiOns. 

Let's see what happens when we make mistakes: 

void f(int n1, int n2, int n3) 
{ 

Matrix<int,O> aiO; II error: no 00 matrices 

Matrix<double, 1> ad1 (5); 
Matrix<int, 1> ai(5); 
Matrix<double, 1> ad1 1 (7); 

ad1 (7) = 0; 
ad1 = ai; 
ad1 = ad11 ;  

II Matrix_error exception (7  is out of range I 
II error: different element types 
II Matrix_error exception (different di mensions! 

Matrix<double,2> ad2(n1); 
ad2(3) = 7.5; 
ad2(1 ,2,3) = 7.5; 

II error: length of 2 nd dimension missing 
II error: wrong number of subscripts 
II error: wrong number of subscripts 

Matrix<double,l> ad3(n1,n2,n3); 
Matrix<dou ble ,3> ad33( n 1 ,  n2, n3); 
ad3 = ad33; II OK: same element type, same di mensions 
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We catch mismatches between the declared number of dimensions and their use 
at compile time. Range errors we catch at run time and throw a Matrix_error 
exception. 

The first dimension is the row and the second the column, so we index a 20 
matrix (two-dimensional array) with (row,column). We can also use the [row] [col
umn] notation because subscripting a 20 matrix with a single index gives the 1 0  
matrix that is the row. We can visualize that like this : 

a[1 )[2] 

a[O): 00 01 02 
a[1] :  10 11 12 13 
a[2] : 210 21 22 ZJ 

This Matrix will be laid out in memory in "row-first" order: 

I oo I o1 I 02 1  o3 l 1o I n  l 12 l 13 l 210 1 21 I n  I ZJ I 
A Matrix "knows" its dimensions, so we can address Lhe elements of a Matrix 
passed as an argument very simply: 

void init(Matrix<int,2>& a) II in i t ia l ize each element to a character i st ic va lut• 
{ 

for (int i=O; i<a.dim1 (); ++i) 
for (int j = 0; j<a.dim2(); ++j) 

a(i,j) = 10*i+j; 

void print(const Matrix<int,2>& a) II print the elements of a row by row 
{ 

} 

for (int i=O; i<a.dim1(); ++i) { 
for (int j = 0; j<a.dim2(); ++j) 

cout << a(i,j) <<'\t'; 
cout << '\n'; 

So, dim1 () is the number of elements in the first dimension, dim2() the number of 
elements in the second dimension, and so on. The type of the elements and the 
number of dimensions are part of the Matrix type, so we cannot write a function 
that takes any Matrix as an argument (but we could write a template to do that) : 

void init(Matrix& a) ; II error: element type and number of d imensions missing 
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Note that the Matrix library doesn't supply matrix operations, such as adding 
two 40 Matrixes or multiplying a 20 Matrix with a lD Matrix. Doing so ele
gantly and efficiently is currently beyond the scope of this library. Matrix li
braries of a variety of designs could be built on top of the Matrix library (sec 
exercise 12) . 

24.5 .2 1 D Matrix 
What can we do to the simplest Matrix, the lD (one-dimensional) Matrix? 

We can leave the number of dimensions out of a declaration because lD is 
the default: 

Matrix<int, 1> a1 (10); 
Matrix<int> a(10); 

II a 1 is a 1 0  Matrix oi i nts 
II means Matr ix<int, 1 > a( l m; 

So, a and a1 arc of the same type (Matrix<int, 1>) .  We can ask for the size (tl1e 
number of elements) and the dimension (the number of elements in a dimen
sion). For a lD Matrix, those are the same. 

a.size(); 
a.dim1 (); 

II nu mber of elements in Matrix 
II nu mber oi elements in 1 st dimension 

We can ask for the elements as laid out in memory, that is, a pointer to the first 
element: 

int• p = a.data(); II extract data as a pointer to an array 

This is useful for passing Matrix data to C-style functions taking pointer argu
ments. We can subscript: 

a(i); II ith element ( Fortran style), but range checked 
a[i]; II ith element {C style), range checked 
a(1,2); II error: a is a 1 0  Matrix 
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It is common for algorithms to refer to part of a Matrix. Such a "part" is called a � 
slice() (a sub-Matrix or a range of elements) and we provide two versions: U 

a.slice(i); // the elements from the a l i i to the last 
a.slice(i,n); II the n elements from the a l i l to a l i+n- 1 1 

Subscripts and slices can be used on the left-hand side of an assignment as well as 
on the right. They refer to the elements of their Matrix without making copies of 
them. For example: 
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a.slice(4,4) = a.slice(0,4); II assign fi rst half of a to second ha l i  

For example, if a starts out as 

{ 1 2 3 4 5 6 7 8 } 

we get 

{ 1 2 3 4 1 2 3 4 } 

Note that the most common slices are the "initial elements" of a Matrix and the 
"last elements"; that is, a.slice(O,j) is the range [O:j ) and a.slice(j) is the range 
[j:a.size()). In particular, the example above is most easily written 

a.slice(4) = a.slice(0,4); II assign first half of a to second hali 

That is, the notation favors the common cases. You can specify i and n so that 
a.slice(i,n) is outside the range of a. However, the resulting slice will refer only to 
the elements actually in a. For example, a.slice(i,a.size()) refers to the range 
[ i :a.size()) ,  and a.slice(a.size()) and a.slice(a.size(),2) are empty Matrixes. This 
happens to be a useful convention for many algorithms. We borrowed that con· 
vention from math. Obviously, a.slice(i,O) is an empty Matrix. We wouldn't write 
that deliberately, but there are algorithms that are simpler if a.slice(i,n) where n 
happens to be 0 is an empty Matrix (rather than an error we have to avoid). 

� We have the usual (for C++ objects) copy operations that copy all elements: 

Matrix<int> a2 = a; II copy in i t ia l ization 
a =  a2; II copy assignment 

f) We can apply a built-in operation to each element of a Matrix: 

a ·= 7; 
a =  7; 

II sca l ing: a l i l *=7 for each i (a lso +=, -=, 1=. etc . ) 
II a l i l =7  for each i 

This works for every assignment and every composite assig�m1ent operator (=, 
+=, -=, I=, *=, %=, "=, &=, 1=, >>=, <<=) provided the clement type supports that 
operator. We can also apply a function to each element of a Matrix: 

a.apply(O; 
a.apply(f,7); 

II al i l =fta l i ] )  for each element a l i i  
II cl l i ] =ft,l l i ] , 7 )  for each element a l i i 
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The composite assignment operators and apply() modify the elements of their 
Matrix argument. If we instead want to create a new Matrix as the result, we can 

usc 

b = apply(abs,a); II make a new Matr ix with b(i)==abs(a(i)) 

This abs is the standard library's absolute value function (§24.8). Basically, 
apply(f,x) relates to x.apply(f) as + relates to +=. For example : 

b = a•7; 
a ·= 7; 
y = apply(f,x); 
x.apply(f); 

II bl i l = a l i l *7 for each i 
II a l i i = a l i l *7 for each i 
II yl i l = f(x l i l l for each i 
II x l i l  = f(x l i ] )  for each i 

Here we get a==b and x==y. 
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In :Fortran, this second apply is called a "broadcast" function and is typically I 1 
written f(x) rather than apply(f,x). To make this facility available for every func- U 
tion f (rather than just a selected few functions as in Fortran), we need a name for 
the ''broadcast" operation, so we (re)usc apply. 

In addition, to match the two-argument version of the member apply, 
a.apply(f,x), we provide 

b = apply(f,a,x); II hl i l =fta l i l .x l  for each i 

For example: 

double scale(double d, double s) { return d*s; } 
b = apply(scale,a,7); II b I i I = a I i 1 *7 for each i 

Note that the "freestanding" apply() takes a function that produces a result from 
its argument; apply() then uses those results to initialize Lhe resulting Matrix. Typ
ically it docs not modify the Matrix to which it is applied. The member apply() 
differs in that it takes a function that modifies its argument; that is, it modifies cl
ements of the Matrix to which it is applied. For example: 

void scale_in_place(double& d, double s) { d *= s; } 
b.apply(scale_ln_place,7) ; ll hl i l ·= 7 for each i 

We also supply a couple of the most useful functions from traditional numerics 
libraries : 

Matrlx<int> a3 = scale_and_add(a,8,a2); 
lnt r = dot_product(al,a); 

II fused mult ip ly and add 
II dot product 
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• 1 The scale_and_add() operation is often referred to as .fosed multiply-add or simply 
U fmo.; its defmition is result(i)=arg1 (i)*arg2+arg3(i) for each i in the Matrix. The dot 

product is also known as the inner_product and is described in §2 1 .5.3 ;  its defini· 
tion is result+=arg1(i)*arg2(i) for each i in the Matrix where result starts out as 0. 

One-dimensional arrays are very common; you can represent one as a built-in 
array, a vector, or a Matrix. You use Matrix if you need the matrix operations pro· 
vided, such as *=, or if the Matrix has to interact with higher-dimensional Matrixes . 

• 1 You can explain the utility of a library like this as "It matches the math bet· 
U ter" or "It saves you from writing all those loops to do things for each element." 

Either way, the resulting code is significantly shorter and there are fewer oppor· 
tunities to make mistakes writing it. The Matrix operations - such as copy. as
signment to all elements, and operations on all elements - each save us from 
reading or writing a loop (and from wondering if we got the loop exactly right) . 

Matrix supports two constructors for copying data from a built-in array into a 
Matrix. For example: 

void some_function(double• p, int n) 
{ 

double val[] = { 1 .2, 2.3, 3.4, 4.5 }; 
Matrix<double> data(p,n); 
Matrix<double> constants(val); 
II . . .  

These are often useful when we have our data delivered in terms of arrays or 
vectors from parts of a program not using Matrixes. 

Note that the compiler is able to deduce the number of elements of an initial
ized array, so we don't have to give the number of elements when we define 
constants - it is 4. On the other hand, the compiler doesn't know the number of 
elements given only a pointer, so for data we have to specify both the pointer (p) 
and the number of elements (n) . 

24.5.3 2D Matrix 
The general idea of the Matrix library is that Matrixes of different dimensions 
really are quite similar, except where you need to be specific about dimensions, 
so most of what we said about a lD Matrix applies to a 20 Matrix: 

Matrix<int,2> a(3,4); 

int s = a.size(); 
int d1 = a.dim1 0; 
int d2 = a.dim2(); 
int• p = a.data(); 

II nu mber of elements 
II number of elements in a row 
II nu mber of elements in a col umn 
II extract data as a pointer to il C-style array 
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We can ask for the total number of elements and the number of elements of each 
dimension. We can get a pointer to the elements as they are laid out in memory 
as a matrix. 

We can subscript: 

a(i,j); 
a[i]; 
a[i)[j]; 

II ( i , j J th element ! Fortran sty le), but range checked 
II i th row (C style), range checked 
II ( i ,jJth element (C style) 
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For a 20 Matrix, subscripting with [i] yields the 10 Matrix that is the ist row. � 
This means that we can extract rows and pass them to operations and functions U 
that require a 10 Matrix or even a built-in array (a[i].data()) .  Note that a(i,j) may 
be faster than a[i][j], though that will depend a lot on the compiler and optimizer. 

[ · 1· .. ···--+ .. . .. . . t--· ····+-· .. . . ··f. :;. 
.. 

::::::1,2> a(l,4l 

We can take slices : 

a.slice(i); 
a.slice(i,n); 

// the rows irom the a l i i  to the last 
II the rows from the a l i i  to the a l i+n- 1 1  

a.slice(0,2)""' 

(: :�---·· . ---1-- - . . . . X:: :::::T::: ;: ::P Ma�lxdnt,2> a(l,4) 

· - - - - - - - - - - - - - - - -� a[2].slice(2) 

Note that a slice of a 20 Matrix is itself a 20 Matrix (possibly with fewer rows).  
TI1e distributed operations are the same as for 10 Matrixes. TI1ese opera

tions don't care how we organize the elements; they just apply to all elements in 
the order those elements are laid down in memory: 

Matrix<int,2> a2 = a; 
a = a2; 
a ·= 7; 
a.apply(f); 
a.apply(f,7); 
b=apply(f,a); 
b=apply(f,a,7); 

II copy ini t ia l ization 
II copy assignment 
II sca l i ng (and +=, -=. 1= . etc . l  
II a(i, j l=f(at i . j l l  for each element aO, j l  
II a(i , jl=f(a( i , j J ,7 l  ior each element a( i , j l  
II make a new Matrix with b(i , j )==f(a( i , j ) ) 
II make a new Matrix with b( i,j l==f(al i , j l ,7)  
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It ru ms  out that swapping rows is often useful, so we supply that: 

a.swap_rows(7,9); II swap rows a l 7 1 <- > a l9l 

There is no swap_columns(). If you need it, write it yourself (exercise 1 1 ) .  Be
cause of the row-ftrst layout, rows and columns are not completely symmetrical 
concepts. This asymmetry also shows up in that [i] yields a row (and we have not 
provided a column selection operator) . In that (i,j,k). the first index, i, selects the 
row. The asymmetry also reflects deep mathematical properties. 

There seems to be an infmite number of "things" that are two-dimensional 
and thus obvious candidates for applications of 20 Matrixes: 

enum Piece { none, pawn, knight, queen, king, bishop, rook }; 
Matrix<Piece,2> board(8,8); II a chessboard 

const int white_start_row = 0; 
const int black_start_row = 7; 

Piece init_posU = {rook, knight, bishop, queen, king, bishop, knight, rook}; 
Matrix<Piece> start_row(init_pos); II ini t ia l ize elements irom init_pos 
Matrix<Piece> clear_row(8) ; II 8 elements oi the default  va lue 

TI1e initialization of clear _row takes advantage of none==O and that cle
ments are by default initialized to 0. We would have liked to write 

Matrix<Piece> start_row 
= {rook, knight, bishop, queen, king, bishop, knight, rook}; 

However, that won't work until the next version of C++ (C++Ox) , so we must 
use the trick of initializing an array (here, in it_pos) and usc that to initialize the 
Matrix. We can use start_row and clear_row like this: 

board[white_start_row] = start_row; 
for (int I =  1 ;  1<7; ++i) board[i] = clear _row; 
board[black_start_row] = start_row; 

II reset wh ite pieces 
II clea r middle oi the board 
II reset black pieces 

Note when we extract a row, using [i], we get an lvalue (§4.3) ; that is, we can as
sign to the result of board[i]. 

24.5.4 Matrix 1/0 
The Matrix library provides very simple 1/0 for 10 and 20 Matrixes: 

Matrix<double> a(4); 
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cin >> a; 
cout << a; 

This will read four whitespace-separated doubles delimited by curly braces ; for 
example: 

{ 1 .2 3.4 5.6 7.8 } 

The output is very similar, so that you can read in what you wrote out. 
TI1e 1/0 for 20 Matrixes simply reads and writes a curly-brace-delimited se

quence of lD Matrixes. For exan1ple: 

Matrix<int,2> m(2,2); 
cin >> m; 
cout << m; 

This will read 

{ 
{ 1 2 }  
{ 3 4 }  
} 

TI1e output will be very similar. 
The Matrix << and >> operators are provided primarily to make the writing 

of simple programs simple. For more advanced uses, it is likely that you will need 
to replace them with your own. Consequently, the Matrix << and >> are placed 
in the MatrixiO.h header (rather tl1an in Matrix.h) so that you don't have to in
clude it to use Matrixes . 

24.5.5 3D Matrix 
Basically, a 3D (and higher-dimension) Matrix is just like a 20 Matrix, except 
with more dimensions. Consider: 

Matrix<int,l> a(1 0,20,30); 

a.size(); 
a.dim1(); 
a.dim2(); 
a.dim3(); 
int• p = a.data(); 
a(i,j,k); 
a[i]; 

II nu mber of elements 
II number oi elements in di mension 1 
II number oi elements in di mension 2 
II number oi elements in di mension 3 
II extract data as a pointer to a C-style array 
II ( i , j,k)th element !Fortran style), but range checked 
II ith row (C style), range checked 
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a[i][j] [k]; 
a.slice(i); 
a.slice(i,j); 
Matrix<int,3> a2 = a; 
a =  a2; 
a *= 7; 
a.apply<O; 
a.apply(f,7) ; 
b=apply(f,a) ; 
b=apply(f,a,7); 
a.swap_rows(7,9); 
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II ( i , j ,k)lh element (C sty le) 
// the elements from the ith to the last 
// the elements from the ith to the j th 
II copy in i t ia l ization 
II copy assignment 
II sca l ing (and +=, -=, 1=, etc .) 
II a(i, j , kl=f(a( i , j , k)) ior each element a(i , j ,k) 
II a( i , j ,k)=f(a( i , j ,k) ,7) for each element a( i , j ,kl 
II make a new Matrix with b(i,j,k)==f(a( i , j ,k) l 
II make a new Matrix with b( i , j ,k)==f(a(i , j ,k),7 l  
II swap rows a l7 1 <- > al 91 

If you understand 2D Matrixes, you understand 3D Matrixes. For example, here 
a is 3D, so a[i] is 2D (provided i is in range), a[i][j] is lD (provided j is in range), 
and a[i][j)[k] is the int element (provided k is in range). 

We tend to see the world as three-dimensional. TI1at leads to obvious uses of 
3D Matrixes in modeling (e.g., a physics simulation using a Cartesian grid):  

int  grid_nx; II grid resol ut ion; set at sta rtup 
int grid_ny; 
int grid_nz; 
Matrix<double,l> cube(grid_nx, grid_ny, grid_nz); 

And then if we add time as a fourth dimension, we get a 4D space needing a 4D 
Matrix. And so on. 

24.6 An example: solving linear equations 
The code for a numerical computation makes sense if you understand Lhe math 
that it expresses and tends to appear to be utter nonsense if you don't. The ex
ample used here should be rather trivial if you have learned basic linear algebra; 
if not, just see it as an example of transcribing a textbook solution into code with 
minimal rewording. 

The example here is chosen to demonstrate a reasonably realistic and impor
tant use of Matrixes. We will solve a set (any set) of linear equations of this fonn: 

a x + . .  · + a x = b tr,l I 11,11 II II 

Here, the x's designate the n unknowns; a's and b's are given constants. For sim
plicity, we assume that the unknowns and the constants are floating-point values. 
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The goal i s  t o  find values for the unknowns that simultaneously satisfy the n 
equations. These equations can compactly be expressed in terms of a matrix and 
two vectors : 

A:x = b  

Here, A is the square n-by-11 matrix defmed by the coefficients : 

A =  

a ... 

The vectors x and b are the vectors of unknowns and constants, respectively : 

XI hi 
x =  and b =  

x. h . 

This system may have zero, one, or an infinite number of solutions, depending 
on the coefficients of the matrix A and the vector b. There are various methods 
for solving linear systems. We use a classic scheme, called Gaussian elimination 
(see Freeman and Phillips, Parollel Numerical Algvnilnru; Stewart, Matrix Algvntlzms, 
Volume I; and Wood, IutrodJJch"on to Numerical Analysis) . First, we transform A and b 
so that A is an upper-triangular matrix. By upper-triangular, we mean all the co
efficients below the diagonal of A are zero. In other words, the system looks like 
this: 

au a� .. XI hi 
0 
0 0 a x. h ... " 

This is easily done. A zero for position a(i,j) is obtained by multiplying the equa
tion for row i by a constant so that a(i,j) equals another element in column}, say 
a(k,j) . That done, we just subtract the two equations and a(i,j) = 0 and the 
other values in row i change appropriately. 

If we can get all the diagonal coefficients to be nonzero, then the system has a 
unique solution, which can be found by "back substitution." The last equation is 
easily solved: 

Obviously, x{n] is b[n]la(u,n). Titat done, eliminate row n from the system and pro
ceed to find the value of x{11 - l] ,  and so on, until the value for x[l] is computed. 
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For each n, we divide by a(n,n) so the diagonal values must be nonzero. If  that 
does not hold, the back substitution method fails, meaning that the system has 
zero or an infmite number of solutions. 

24.6.1 Classical Gaussian elimination 
Now let us look at the C++ code to express this. First, we'll simplify our notation 
by conventionally nanling the two Matrix types that we are going to use: 

typedef Numeric_lib: : Matrix<double, 2> Matrix; 
typedef Numeric_lib: :Matrix<double, 1> Vector; 

Next we will express our desired computation: 

Vector classical_gaussian_elimination(Matrix A, Vector b) 
{ 

classical_elimination(A, b); 
return back_substitution(A, b); 

That is, we make copies of our inputs A and b (using call by value), call a func
tion to solve the system, and then calculate the result to return by back substitu
tion. The point is that our breakdown of the problem and our notation for the 
solution are right out of the textbook. To complete our solution, we have to im· 
plement classical_elimination() and back_substitution(). Again, the solution is in 
the textbook: 

void classical_elimination(Matrix& A, Vector& b) 
{ 

const Index n = A.dim1 (); 

II traverse from 1 st column to the next-to-last 
II fi l l ing zeros i nto a l l  elements under tht• diagona l:  
for (Index j = 0; j<n-1 ;  ++j) { 

const double pivot = A(j, j); 
if (pivot == 0) throw Elim_failure(j); 

II fi l l  zeros i nto each element under the diagona l of the ith row: 
for (Index i = j+ 1 ;  i<n; ++i) { 

const double mult = A(i, j) I pivot; 
A[i].slice(j) = scale_and_add(A[j].slice(j), -mult, A[i].slice(j)); 
b(i) -= mult • b(j); II make the corresponding change to b 
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The "pivot" is the element that lies on the diagonal of the row we are currently 
dealing witl1. It must be nonzero because we need to divide by it ; if it is zero we 
give up by tlrrowing an exception: 

Vector back_substitution(const Matrix& A, const Vector& b) 
{ 

const Index n = A.dim1 (); 
Vector x(n); 

for (Index i = n- 1 ;  i >= 0; --i) { 
double s =  b(i)-dot_product(A[i].slice(i+1),x.slice(i+1)); 

if (double m = A(i, i)) 
x(i) = s/ m; 

else 
throw Back_subst_failure(i); 

return x; 

24.6.2 Pivoting 
We can avoid the divide-by-zero problem and also achieve a more robust solution 
by sorting the rows to get zeros and small values away from the diagonal. By 
"more robust" we mean less sensitive to rounding errors. However, the values 
change as we go along placing zeros under the diagonal, so we have to also re
order to get small values away from the diagonal as we go along (that is, we can't 
just reorder Lhe matrix and then use the classical algorithm) : 

void elim_with_partial_pivot(Matrix& A, Vector& b) 
{ 

const Index n = A.dim1(); 

for (Index j = 0; j < n; ++j) { 
Index pivot_row = j ;  

II look ior a suitable pivot : 
for (Index k = j + 1 ;  k < n; ++k) 

if (abs(A(k, j)) > abs(A(pivot_row, j))) pivot_row = j; 

II swap the rows if we found a better pivot: 
if (pivot_row I= j) { 

A.swap_rows(j, pivot_ row); 
std : :  swap(b(j), b(pivot_row)) ;  
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II el imination : 
for (Index i = j + 1 ;  i < n; ++i) { 

const double pivot = A(j, j); 
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if (pivot==O) error("can't solve: pivot==O"); 
const double mult = A(i, j)/pivot; 
A[i].slice(j) = scale_and_add(A[j].slice(j), -mult, A[i].slice(j)); 
b(i) -= mult • b(j); 

We use swap_rows() and scale_and_multiplyO to make the code more conven
tional and to save us from writing an explicit loop. 

24.6.3 Testing 
Obviously, we have to test our code. Fortunately, there is a simple way to do that: 

void solve_random_system(lndex n) 
{ 

Matrix A =  random_matrix(n); II see §24.7 
Vector b = random_vector(n); 

cout << "A = " << A << endl; 
cout << "b = " << b << endl; 

try { 
Vector x = classical_gaussian_elimination(A, b); 
cout << "classical elim solution is x = " << x << endl; 
Vector v = A  • x; 
cout << " A • x = " << v << endl; 

catch(const exception& e) { 
cerr << e.what() << std : :endl; 

We can get to the catch clause in three ways: 

A bug in the code {but, being optimists, we don't think there are any) 

An input that trips up classical_elimination (we should have used 
elim_with_partial_pivot) 

Rounding errors 
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However, our test is not as realistic as we'd like because genuinely random matri
ces are unlikely to cause problems for classical_elimination. 

To verify our solution, we print out A*x, which had better equal b (or close 
enough for our purpose, given rounding errors) .  The likelihood of rounding er
rors is the reason we didn't just do 

if (A*x!=b) error( "substitution failed ");  

Because floating-point numbers are just approximations to real numbers, we have 
to accept approximately correct answers . In general, using == and != on the re
sult of a floating-point computation is best avoided: floating point is inherently an 
approximation. 

The Matrix library doesn't define multiplication of a matrix with a vector, so 
we did that for this program: 

Vector operator*(const Matrix& m, const Vector& u) 
{ 

const Index n = m.dim1(); 
Vector v(n); 
for (Index i = 0; i < n; ++i) v(i) = dot_product(m[i], u); 
return v; 

Again, a simple Matrix operation did most of the work for us. The Matrix output 
operations came from Matrix iO.h as described in §24.5.3. The random_matrix() 
and random_ vector() functions are simple uses of random numbers (§24. 7) and 
arc left as an exercise. Index is a typedef (§A. lS) for the index type used by the 
Matrix library. We brought it into scope with a using declaration: 

using Numeric_lib: : Index; 

24.7 Random numbers 
If you ask people for a random number, most say 7 or 17, so it has been sug
gested that those are the "most random" numbers. People essentially never give 
the answer 0. Zero is seen to be such a nice round number that it is not perceived 
as "random" and could therefore be deemed the "least random" number. From a 
mathematical point of view tllis is utter nonsense: it is not an individual number 
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that is random. What we often need, and what we often refer to as random num- � 
hers, is a sequence of numbers that confom1 to some distribution and where you U 
cannot easily predict the next number in the sequence given the previous ones. 
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Such numbers are most useful in testing (that's one way of generating a lot o f  test 
cases) ,  in games (that is one way of making sure that the next run of the game 
differs from the previous run), and in simulations (we can make a simulated en
tity behave in a "random" fashion within the limits of its parameters) .  

As a practical tool and a mathematical problem, random numbers reach a 
high degree of sophistication to match their real-world importance. Here, we will 
just touch the basics as needed for simple testing and simulation. In <cstdlib>, 
the standard library provides 

int rand(); II returns va lues in the range ID:RAND_MAXI 
RAND_MAX II the largest value that rand() can produce 
void srand(unsigned int); II seed the random nu mber generator 

Repeated calls of rand() produce a pseudo-random sequence of ints unifomuy 
distributed in the range [O : RAND_MAX]. We call the sequence of values pseudo
random because it is generated by a mathematical formula so that it repeats itself 
after a while (i.e., it is predictable and not perfectly random) . In particular, if we 
call rand() repeatedly in a program, it will give the same sequence every time the 
program is run. That's extremely useful for debugging. When we want different 
sequences, we call srand() with different values. For each different argument to 
srand(), we get a different sequence from rand(). 

For example, consider the function random_ vector() that was used in §24.6.3. 
A call random_vector(n) produces a Matrix<double,1> with n elements with ran
dom values in the range [O: n] :  

Vector random_vector(lndex n )  
{ 

Vector v(n); 

for (Index i = 0; i < n;  ++i) 
v(i) = 1 .0 * n • rand() I RAND_MAX; 

return v; 

Note the use of 1 .0 to make sure that we use floating-point arithmetic. It would 
be embarrassing if we had used integer division with RAND_MAX and always 
gotten the value 0. 

Getting an integer in a specific range, such as [O:max), is harder. Most peo
ple's first attempt looks like this: 

int val = rand()%max; 
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lllis used to b e  a really bad idea because this simply picks off the low-order bits 
of the random number and those bits are not properly randomized by many tra
ditional random number generators. Today, it apperu·s to be better on many sys
tems, but for portable code, "hide" the random number calculation in a function: 

int rand_int(int max) { return rand()%max; } 

int rand_int(int min, int max) { return rand_int(max-min)+min; } 

879 

That way, you can replace the defmition of rand_int() if you find a poor imple- • , 
mentation of rand(). For industrial-strength software or if you need a nonuniform U 
distribution, use one of the quality random number libraries that are widely 
available, such as Boost : : random. To get an idea of the quality of your system's 
random number generator, do exercise 10. 

24.8 The standard mathematical functions 
The standard mathematical functions (cos, sin, log, etc.) are provided by the 
standard library. Their declarations are found in <cmath>. 

Standard mathematical functions 

abs(x) 

ceil(x) 

floor(x) 

sqrt(x) 

cos(x) 

sin(x) 

tan(x) 

acos(x) 

asin(x) 

atan(x) 

sinh(x) 

cosh(x) 

tanh(x) 

exp(x) 

log(x) 

log10(x) 

absolute value 

smal lest integer >= x 

largest integer <= x 

square root; x must be nonnegative 

cosine 

sine 

tangent 

arccosine; result is nonnegative 

arcsine; result nearest to 0 returned 

arctangent 

hyperbolic sine 

hyperbolic cosine 

hyperbolic tangent 

base·e exponential 

natural logarithm, base-e; x must be positive 

base· 1 0  logarithm 
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The standard mathematical functions are provided for types float, double, long 
double, and complex (§24.9) arguments. If you do floating-point computations, 
you'll find these functions useful. If you need more details, documentation is 
widely available ; your online documentation would be a good place to start. 

If a standard mathematical function cannot produce a mathematically valid 
result, it sets the variable errno. For example: 

errno = 0; 
double s2 = sqrt(-1);  
if (errno) cerr << "something went wrong with something somewhere"; 
if (errno == EDOM) II doma in error 

cerr << "sqrt() not defined for negative argument" ;  
pow(very_large,2); II not a good idea 
if (errno==ERANGE) II range error 

cerr << "pow( " << very_large << ",2) too large for a double"; 

If you do serious mathematical computations you must check errno to ensure 
that it is still 0 after you get your result. If not, something went wrong. Look at 
your manual or online documentation to see which mathematical functions can 
set errno and which values they use for errno. 

As indicated in the example, a nonzero errno sin1ply means "Something 
went wrong.'' It is not uncommon for functions not in the standard library to set 
errno in case of error, so you have to look more carefully at the value of errno to 
get an idea of exactly what went wrong. If you test errno immediately after a 
standard library function and if you made sure that errno==O before calling it, 
you can rely on the values as we did with EDOM and ERANGE in the example. 
EDOM is set for a domain error (i.e., a problem with the result) . ERANGE is set 
for a range error (i.e., a problem with the arguments). 

Error handling based on errno is somewhat prinlltive. It dates from tl1e first 
(1975 vintage) C mathematical functions. 

24.9 Complex numbers 
Complex numbers are widely used in scientific and engineering computations. 
We assume that if you need them, you will know about their mathematical prop
erties, so we'll just show you how complex numbers are expressed in the ISO 
C++ standard library. You fmd the declaration of complex numbers and their as
sociated standard mathematical functions in <compleX>: 

template<class Scalar> class complex { 
II a complex is a pair of sca lar va lues, basically a coordinate pair 
Scalar re, im; 
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public : 
complex(const Scalar & r, const Scalar & i) : re(r), im(i) { }  
complex(const Scalar & r) : re(r), im(Scalar ()) { } 
complex() : re(Scalar ()), im(Scalar ()) { }  

}; 

Scalar real() { return re; } 
Scalar imagO { return im; } 

II operators: = += - ==  •= I== 

II rea l part 
II imaginary part 

The standard library complex is guaranteed to be supported for scalar types float, 
double, and long double. In addition to the members of complex and the standard 
mathematical functions (§24.8), <compleX> offers a host of useful operations: 

Complex operaton 

z1+z2 

z1-z2 

z1/z2 

z1=z2 

z1 1=z2 

norm(z) 

conj(z) 

polar(x,y) 

real(z) 

imag(z) 

abs(z) 

arg(z) 

out <<z 

in >>z 

addition 

subtraction 

multipl ication 

division 

equality 

inequality 

the square of abs(z) 

conjugate: if z is {re,im}, then conj(z) is (re,-im) 

make a complex given polar coordinates (rho, theta) 

real part 

imaginary part 

also known as rho 

also known as theta 

complex output 

complex input 

Note: complex does not provide < or %. 
Use complex<T> exactly like a built-in type, such as double. For example : 

typedef complex<double> dcmplx; II somet imes complex<double> 
II gets verbose 
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void f(dcmplx z, vector<dcmplx:>& vc) 
{ 

dcmplx z2 = pow(z,2); 
dcmplx z3 = z2*9.3+vc[3) ; 
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dcmplx sum = accumulate(vc.begin(), vc.end(), dcmplx()); 
II . . .  

Remember that not all operations that we are used to from int and double arc 
defined for a complex. For example: 

if (z2<zl) II error: there is no < for complex numbers 

Note that the representation Oayout) of the C++ standard library complex num
bers is compatible with their corresponding types in C and Fortran. 

24.1 0 References 
Basically, the issues discussed in this chapter, such as rounding errors, Matrix op
erations, and complex arithmetic, are of no interest and make no sense in isola
tion. We simply describe (some of) the support provided by C++ to people with 
the need and knowledge of mathematical concepts and techniques to do numeri
cal computations. 

In case you arc a bit rusty in those areas or simply curious. we can recom
mend some information sources: 

The Mac Tutor History of Mathematics archive, http://www-gap.dcs.st-and.ac.ukl 
- history 

A great link for anyone who likes math or simply needs to use math 

A great link for someone who would like to see the human side of math
ematics ; for example, who is the only major mathematician to win an 
Olympic medal? 

Famous mathematicians: biographies. accomplishments 

Curio 

Famous curves 

Famous problems 

Mathematical topics 

Algebra 

Analysis 

Numbers and number theory 
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Geometry and topology 

Mathematical physics 

Mathematical astronomy 

• The history of mathematics 

Freeman, T. L. . and Chris Phillips. Parallel Numerical Algorithms. Prentice Hall, 
1992. 

Gullbcrg,Jan. MaJiu:matics - From the Birt/1 cf Numbtn. W. W. Norton, 1 996. ISBN 
039304002X. One of the most enjoyable books on basic and useful mathemat
ics. A (rare) math book that you can read for pleasure and also use to look up 
specific topics, such as matrices. 

Knuth, Donald E. The Art cf Computer Programming, VOlume 2: Seminumerical Algo
titlmls, 7'hird .&/ilion. Addison-Wesley, 1 998. ISBN: 020 1896842. 

Stewart, G. W. Matrix Algorithms, Volume 1: Basic Decompositw11s. SIAM, 1998. ISBN 
0898714141 .  

Wood, Alistair. /nbvductiml to Numeriml Anab•Jis. Addison-Wesley, 1999. ISB N  
020 194291X. 

� Drill 
1 .  Print the size of a char, a short, an int, a long, a float, a double, an int•, 

and a double* (usc sizeof, not <limits>) . 
2. Print out the size as reported by sizeof of Matrix<int> a(10), Matrix<int> 

b(10). Matrix<double> c(10), Matrix<int,2> d(10, 10), Matrix<int,3> e(10, 
10, 10) .  

3. Print out the number of elements of each of the Matrixes from 2.  
4.  Write a program that takes ints from cin and outputs the sqrt() of each 

int, or "no square root" if sqrt(x) is illegal for some x (i.e., check your 
sqrt() return values) .  

5. Read ten floating·point values from input and put them into a Ma· 
trix<double>. Matrix has no push_back() so be careful to handle an at· 
tempt to enter a wrong number of doubles. Print out the Matrix. 

6. Compute a multiplication table for [O,n)* [O,m) and represent it as a 20 
Matrix. Take n and m from cin and print out the table nicely (assume 
that m is small enough that the results fit on a line) . 

7. Read ten complex<double>s from cin (yes, cin supports >> for complex) 
and put them into a Matrix. Calculate and output the sum of the ten com· 
plex numbers. 

8. Read six ints into a Matrix<int,2> m(2,3) and print them out. 
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Review 

1. Who uses numerics? 
2. What is precision? 
3. What is overflow? 
4. What is a common size of a double? Of an int? 
5. How can you detect overflow? 
6. Where do you fmd numeric limits, such as the largest int? 
7. What is an array? A row? A column? 
8. What is a C-style multidimensional array? 
9. What are the desirable properties of language support (e.g., a library) for 

matrix computation? 
10. What is a dimension of a matrix? 
1 1 .  How many dimensions can a matrix have (in theory/math)? 
12. What is a slice? 
13. What is a broadcast operation? List a few. 
14. What is the difference between Fortran-style and C-style subscripting? 
15. How do you apply an operation to each element of a matrix? Give 

examples. 
16. What is a fused operation? 
1 7. Defme dot product. 
18.  What is linear algebra? 
19.  What is Gaussian elimination? 
20. What is a pivot? (In linear algebra? In "real life"?) 
2 1 .  What makes a number random? 
22. What is a uniform distnbution? 
23. Where do you fmd the standard mathematical functions? For which ar

gument types are they defined? 
24. What is the imaginary part of a complex number? 
25. What is the square root of -1?  

Terms 

array 
c 
column 
complex number 
dimension 
dot product 
element-wise operation 
err no 

Fortran 
fused operation 
imaginary 
Matrix 
multidimensional 
random number 
real 
row 

scaling 
SIZe 
sizeof 
slicing 
subscripting 
uniform distribution 
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Exercises 

1 .  The function arguments f for a.apply<O and apply(f,a) are different. 
Write a double() function for each and use each to double the elements 
of an array { 1 2 3 4 5 }. Define a single double() function that can be used 
for both a.apply(double) and apply(double,a). Explain why it could be a 
bad idea to write every function to be used by apply() that way. 

2. Do exercise 1 again, but with function objects, rather than functions. 
flint: Matrix.h contains examples. 

3. Expert level only (this cannot be done with the facilities described in this 
book) : Write an apply(f,a) that can take a void (T&), a T  (const T&), and 
their function object equivalents. flint: Boost: :bind. 

4. Get the Gaussian elimination program to work; that is, complete it, get it 
to compile, and test it with a simple example. 

5. Try the Gaussian elimination program with A={ {0 1} {1 0} } and b={ 5 
6 }  and watch it fail. Then, try elim_with_partial_pivot() .  

6.  ln  the Gaussian elimination example, replace the vector operations 
dot_product() and scale_and_add() with loops . Test, and comment on 
the clarity of the code. 

7. Rewrite the Gaussian elimination program without using the Matrix li
brary; that is, use built-in arrays or vectors instead of Matrixes. 

8. Animate the Gaussian elimination. 
9. Rewrite the nonmember apply() functions to return a Matrix of the re

turn type of the function applied; that is, apply(f,a) should return a 
Matrix<R> where R is the return type of f. Warning: The solution re
quires information about templates not available in this book. 

10.  How random is your rand()? Write a program that takes two integers n 
an d as inputs and calls randint(n) d times, recording the result. Output 
the number of draws for each of [0: n) and "eyeball" how similar the 
counts are. Try with low values for n and with low values for d to see if 
drawing only a few random numbers causes obvious biases. 

1 1 .  Write a swap_columns() to match swap_rows() from §24.5.3. Obviously, 
to do that you have to read and understand some of the existing Matrix 
library code. Don't worry too much about efficiency: it is not possible to 
get swap_columns() to run as fast as swap_rows(). 

12. Implement 

Matrix<double> operator*(Matrix<double,2>&,Matrix<double>&); 

and 

Matrix<double,N> operator+(Matrix<double,N>&,Matrix<double,N>&) 

lf you need to, look up the mathematical defmitions in a textbook. 
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Postscript 

If you don't feel comfortable with mathematics, you probably didn't like this 
chapter and you'll probably choose a field of work where you are unlikely to 
need the information presented here. On the other hand, if you do like mathe
matics, we hope that you appreciate how closely the fundamental concepts of 
mathematics can be represented in code. 



t 
1 25 

E m bedded Systems 
Program m i ng 

" 'Unsafe' means 'Somebody may die.' " 

-Safety officer 

W e present a view of embedded systems programming; 

that is, we discuss topics primarily related to writing pro

grams for "gadgets" that do not look like conventional computers 

with screens and keyboards. We focus on the principles, program

ming techniques, language facilities, and coding standards needed 

to work "close to the hardware." The main language issues ad

dressed are resource management, memory management, pointer 

and array use, and bit manipulation. The emphasis is on safe use 

and on alternatives to the use of the lowest-level features. We do 

not attempt to present specialized machine architectures or direct 

access to hardware devices; that is what specialized literature and 

manuals are for. As an example, we present the implementation of 

an encryption/decryption algorithm. 
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25.1 Embedded systems 25.5 Bits, bytes, and words 

25.2 Basic concepts 
25.2.1 Predictability 
25.2.2 Ideals 
25.2.3 Uvlng with failure 

25.3 Memory management 
25.3.1 Free-store problems 
25.3.2 Alternatives to general free store 
25.3.3 Pool example 
25.3.4 Slack example 

25.4 Addresses, pointen, and arrays 
25.4.1 Unchecked conversions 
25.4.2 A problem: dysfunctional 

interfaces 
25.4.3 A solution: an interface class 
25.4.4 Inheritance and containers 

25.1 Embedded systems 

25.5.1 Bits and bit operations 
25.5.2 bilsel 
25.5.3 Signed and unsigned 
25.5.4 811 manipulation 
25.5.5 Bilflelds 
25.5.6 An example: simple encryption 

25.6 Coding standards 
25.6.1 What should a coding standard 

bel 
25.6.2 Sample rules 
25.6.3 Real coding standards 

Most computers in the world are not immediately recognizable as computers. 
They are simply a part of a larger system or "gadget." For example : 

Cars: A modem car may have many dozens of computers, controlling the 
fuel injection, monitoring engine performance, adjusting the radio, con
trolling the brakes, watching for underinflated tires, controlling the wind
shield wipers, etc. 

Telepho11es: A mobile telephone contains at least two computers ; typically 
one of those is specialized for signal processing. 

Airplanes: A modem airplane contains computers for everything from 
running the passenger entertaimnent system to wiggling the wing tips for 
optimal flight properties. 

Cameras: There are cameras with five processors and for which each lens 
even has its own separate processor. 

Credit cards (of the "smart card" variety) 

Medical equipme11t tnQ1litors a11d co11Jrollers (e.g., CAT scanners) 

Elevators (lifts) 

PDAs (Personal Digital Assistant) 

Pri11ler CQ1l/rollers 

Sou11d s;•slt71M 

MPJ players 
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Kitdu71 ajJjJ/ianm (such as rice cookers and bread machines) 

11-leplwtu· .1wiid1es (typically consisting of thousands of specializ..cd computers) 

Pump am/rollers (for water pumps and oil pumps. etc.) 

1#/ding robots: some for usc in tight or dangerous places where a human 
welder cannot go 

Wind turbint·s: some capable of generating megawatts of power and 70m 
(2 10ft) tall 

Setl-wa/1 gate conhr11lers 

As.wmbl;•-luu· qualil)• monitors 

Bar rode readt·rs 

Car ciSSt'lllh(l• robots 

Centnjzigt• rontro/lm (as used in many medical analysis processes) 

Di1k-tlrivc contro/kn 

l11csc computers arc parts of larger systems. Such "large systems" usually don't 
look like computers and we don't usually think of them as computers. When we 
sec a car coming down the street, we don't say, "Look, there's a distributed com· 
puter system!'' Well, the car is also a distributed computer system, but its opera· 
tion is so integrated with the mechanical, electronic, and electrical parts that we 
can't really consider the computers in isolation. The constraints on their compu
tations (in time and space) and the very definition of program correctness cannot 
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be separated from the larger system. Often, an embedded computer controls a • 1 

physical device, and the correct behavior of the computer is defmed as the cor· U 
rcct operation of the physical device. Consider a large marine diesel engine: 
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Note the man at the head of cylinder number 5. This is a big engine, the kind of 
engine that powers the largest ships. If an engine like this fails, you'll read about 
it on the front page of your moming newspaper. On this engine, a cylinder con
trol system, consisting of three computers, sits on each cylinder head. Each cylin
der control system is connected to the engine control system (another three 
computers) through two independent networks. The engine control system is 
then connected to the control room where the machine engineers can communi
cate with it through a specialized GUI system. The complete system can also be 
remotely monitored via radio (through satellites) from a shipping-line control 
center. For more examples, see Chapter 1 .  

So, from a programmer's point o f  view, what's special about the programs run
ning in the computers that are parts of that engine? More generally, what arc ex
amples of concerns that become prominent for various kinds of embedded systems 
that we don't typically have to worry too much about for "ordinary programs"? 

Often, reliabilily is aitical: Failure can be spectacular, expensive (as in "bil
lions of dollars"), and potentially lethal (for the people on board a wreck 
or the animals in its environment) . 

Often, resources (memory•, processar cycles, power) are limited: TI1at's not likely 
to be a problem on the engine computer, but think of cell phones, sen
sors, PDAs, computers on board space probes, etc. In a world where 
dual-processor 2GHz laptops with 2GB of memory are common. a criti
cal computer in an airplane or a space probe may have just 60MHz and 
256KB, and a small gadget just sub-lMHz and a few hundred words of 
RAM. Computers made resilient to environmental hazards (vibration, 
bumps, unstable electricity supplies, heat, cold, humidity, workers step
ping on them, etc.) are typically far slower than what powers a student's 
laptop. 

Often, real-time response is essential: If the fuel injector misses an injection 
cycle, bad things can happen to a very complex system generating 
lOO,OOOHp; miss a few cycles - that is, fail to function correctly for a sec
ond or so - and strange things can start happening to propellers that can 
be up to 33ft (lOrn) in diameter and weigh up to 130 tons. You really 
don't want that to happen. 

Often, a .!)•stem mustfimction unulietTUpted.for years: Maybe the system is run
ning in a communications satellite orbiting the earth, or maybe the sys
tem is just so cheap and exists in so many copies that any significant 
repair rate would ruin its maker (think of MP3 players, credit cards with 
embedded chips, and automobile fuel injectors). In the United States, the 
mandated reliability criterion for backbone telephone switches is 20 min
utes of downtime in 20 years (don't even think of taking such a switch 
down each time you want to cl1ange its program). 
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Often, hands-on 1tUJintenance is zi!lea.sible or very rare: You can take a large ship 
into a harbor to service the computers every second year or so when 
other parts of the ship require service and the necessary computer spe
cialists arc available in the right place at the right time. Unscheduled. 
hands-on maintenance is infeasible (no bugs are allowed while the ship is 
in a major storm in the middle of the Pacific). You simply can't send 
someone to repair a space probe in orbit around Mars. 
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Few systems suffer all of these constraints, and any system that suffers even one is .\ 
the domain of experts. Our aim is not to make you an "instant expert"; attempting U 
to do that would be quite silly and very irresponsible. Our aim is to acquaint you 
with the basic problems and the basic concepts involved in their solution so that 
you can appreciate some of the skills needed to build such systems. Maybe you 
could become interested in acquiring such valuable skills. People who design and 
implement embedded systems are critical to many aspects of our technological 
civilization. This is an area where a professional can do a lot of good. 

Is this relevant to novices? To C++ programmers? Yes and yes. There are 
many more embedded systems processors than there are conventional PCs. A 
huge fraction of programming jobs relate to embedded systems programming. so 
your first real job may involve embedded systems programming. Furthe1more, 
the list of examples of embedded systems that started this section is drawn from 
what I have personally seen done using C++. 

25.2 Basic concepts 
Much programming of computers that are parts of an embedded system can be • 1 

just like other programming, so most of the ideas presented in this book apply. U 
However. the emphasis is often different: we must adjust our use of program-
ming language facilities to the constraints of the task, and often we must manipu-
late our hardware at the lowest level: 

Com·chuss: l11is is even more important than usual . "Correctness" is not .\ 
just an abstract concept. In the context of an embedded system, what it U 
means for a program to be correct becomes not just a question of pro
ducing the correct results, but also producing them at the right time, in 
the right order, and using only an acceptable set of resources. Ideally, the 
details of what constitutes correcmess are carefully specified, but often 
such a specification can be completed only after some experimentation. 
Often, critical experiments can be performed only after the complete sys-
tem (of which the computer running the program is a part) has been 
built. Completely specifying correctness for an embedded system can at 
the same time be extremely difficult and extremely important. Here, "ex
tremely difficult" can mean "impossible given the time and resources 
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available" ; we must try our best using all available tools and teclrniqucs. 
Fortunately, the range of specification, simulation, testing, and other 
techniques in a given area can be quite impressive. Here, "extremely im
portant" can mean "failure leads to injury or ruin." 

Fault tolerance: We must be careful to specify the set of conditions that a 
program is supposed to handle. For example, for an ordinary student 
program, you might find it unfair if we kicked the cord out of the power 
supply during a demonstration. Losing power is not among the condi
tions an ordinary PC application is supposed to deal with. However, los
ing power is not uncommon for embedded systems, and some are 
expected to deal with that. For example, a critical part of a system may 
have dual power sources, backup batteries, etc. Worse, "But I assumed 
that the hardware worked correctly" is no excuse for some applications. 
Over a long time and over a large range of conditions, hardware simply 
doesn't work correctly. For example, some telephone switches and some 
aerospace applications arc written based on the assumption that sooner 
or later some bit in the computer's memory will just "decide" to change 
its value (e.g., from 0 to 1) .  Alternatively, it may "decide" tl1at it likes tl1c 
value 1 and ignore attempts to change that 1 to a 0. Such erroneous be
havior happens eventually if you have enough memory and usc it for a 
long enough time. It happens sooner if you expose the memory to hard 
radiation, such as you find beyond the earth's atmosphere. When we 
work on a system (embedded or not), we have to decide what kind of 
tolerance to hardware failure we must provide. The usual default is to as
sume tl1at hardware works as specified. As we deal with more critical 
systems, that assumption must be modified. 

No downtime: Embedded systems typically have to run for a long time 
without changes to the software or intervention by a skilled operator 
with knowledge of tl1e implementation. "A long time" can be days, 
months, years, or the lifetime of the hardware. This is not unique for em
bedded systems, but it is a difference from the vast majority of "ordinary 
applications" and from all examples and exercises in this book (so far) . 
This "must run forever" requirement implies an emphasis on error han
dling and resource management. What is a "resource"? A resource is 
something of which a machine has only a limited supply ; from a pro
gram you acquire a resource through some explicit action ("acquire the 
resource," "allocate") and return it ("release," "free," "deallocate") to the 
system explicitly or implicitly. Examples of resources are memory. fUe 
handles, network connections (sockets) ,  and locks. A program that is 
part of a long-running system must release every resource it requires ex
cept a few that it permanently owns. For example, a program that forgets 
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to  close a fUe every day will on most operating systems not survive for 
more than about a month. A program that fails to deallocate 100 bytes 
every day will waste more than 32K a year - that's enough to crash a 
small gadget after a few months. The nasty thing about such resource 
"leaks" is that the program will work perfectly for months before it sud
denly ceases to function. If a program will crash, we prefer it to crash as 
soon as possible so that we can remedy the problem. In particular, we 
prefer it to crash long before it is given to users. 
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Rml-time amstraints: We can classify an embedded system as hard real time ., 
if a certain response must occur before a deadline. If a response must � 
occur before a deadline most of the time, but we can afford an occasional 
time overrun. we classify the system as srfl real time. Examples of soft real 
time arc a controller for a car window and a stereo amplifier. A human 
will not notice a fraction of a second's delay in the movement of the win-
dow, and only a trained listener would be able to hear a millisecond's 
delay in a change of pitch. An example of hard real time is a fuel it*ctor 
tl1at has to ''squirt" at exactly the right time relative to the movement of 
tl1e piston. If the timing is ofT by even a fraction of a millisecond, per
formance suffers and the engine starts to deteriorate ; a major timing 
problem could completely stop the engine, possibly leading to accident 
or disaster. 

PredidahiliJ;·: This is a key notion in embedded systems code. Obviously. f) 
the term has many intuitive meanings, but here - in the context of pro· 
gramming embedded systems - we will use a specialized technical mean-
ing: an operation is predictable if it takes the same amount of time to 
execute every thne it is executed on a given computer, and if all such op
erations take tl1e same amount of time to execute. For example, when x 
and y are integers, x+y takes the same amount of titne to execute every 
time and xx+yy takes the same amount of time when xx and yy are two 
otl1er integers. Usually, we can ignore minor variations in execution 
speed related to machine architecture (e.g., differences caused by caching 
and pipelining) and simply rely on there being a ftxed, constant upper 
lhnit on the time needed. Operations that are not predictable (in this 
sense of the word) can't be used in hard real-time systems and must be 
used with great care in all real-time systems. A classical example of an 
unpredictable operation is a linear search of a list (e.g., find()) where the 
number of elements is unknown and not easily bounded. Only if we can 
reliably predict the number of elements or at least the maximum number 
of elements docs such a search become acceptable in a hard real-time sys-
tem; that is, to guarantee a response within a given ftxed time we must be 
able to - possibly aided by code analysis tools - calculate the time 
needed for every possible code sequence leading up to the deadline. 
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Concurrency: An embedded system typically has to respond to events from 
the external world. This leads to programs where many things happen 
"at once" because they correspond to real events that really happen at 
once. A program that simultaneously deals with several actions is called 
c01u.urrent or parallel. Unfortunately the fascinating, difficult, and impor
tant issue of concurrency is beyond the scope of this book. 

25.2.1 Predictability 
From the point of view of predictability, C++ is pretty good, but it isn't perfect. 
All facilities in the C++ language (including virtual function calls) are pre
dictable, except 

Free-store allocation using new and delete (see §25.3) 

Exceptions (§19.5) 

dynamic_cast (§A.5.7) 

These facilities must be avoided for hard real-time applications. The problems 
with new and delete are described in detail in §25.3 ; those are fundamental. 
Note that the standard library string and the standard containers (vector, map, 
etc.) indirectly use free store, so they are not predictable either. ll1e problem witl1 
dynamic_cast is a problem with current implementations but is not fundan1ental. 

The problem with exceptions is that when looking at a particular throw, the 
programmer cannot - without looking at large sections of code - know how 
long it will take to find a matching catch or even if tl1ere is such a catch. In an 
embedded systems program, there had better be a catch because we can't rely on 
a C++ programmer sitting ready to use the debugger. The problems with excep
tions can in principle be dealt with by a tool that for each throw tells you exactly 
which catch will be invoked and how long it will take the throw to get there, but 
currently, that's a research problem, so if you need predictability, you'll have to 
make do with error handling based on return codes and other old-fashioned and 
tedious, but predictable, techniques. 

25.2.2 Ideals 
When writing an embedded systems program there is a danger that the quest for 
performance and reliability will lead the prograniDler to regress to exclusively 
using low-level language facilities. That strategy is workable for individual small 
pieces of code. However, it can easily leave the overall design a mess, make it dif· 
ficult to be confident about correctness, and increase the time and money needed 
to build a system. 

As ever, our ideal is to work at the highest level of abstraction that is feasible 
given the constraints on our problem. Don't get reduced to writing glorified as
sembler code ! As ever, represent your ideas as directly in code as you can (given 
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all constraints) .  As ever, try hard to write the clearest, cleanest, most maintainable 
code. Don't optimize until you have to. Performance (in time or space) is often es
sential for an embedded system, but trying to squeeze performance out of every 
little piece of code is misguided. Also, for many embedded systems the key is to 
be correct and fast enough; beyond "fast enough" the system simply idles until an
other action is needed. Trying to write every few lines of code to be as efficient as 
possible takes a lot of time, causes a lot of bugs, and often leads to missed oppor
tunities for optimization as algorithms and data structures get hard to understand 
and hard to change. For example, that "low-level optimization" approach often 
leads to missed opportunities for memory optimization because almost similar 
code appears in many places and can't be shared because of incidental differences. 

John Bentley - famous for his highly efficient code - offers two "laws of 
optimization":  

Frrst law: Don't do it. 

Second law (for experts only) : Don't do it yet. 

Before optimizing, make sure that you understand the system. Only then can you 
be confident that it is - or can become - correct and reliable. Focus on algo
rithms and data structures. Once an early version of the system runs, carefully 
measure and tune it as needed. Fortunately, pleasant surprises are not uncom
mon: clean code sometimes runs fast enough and doesn't take up excessive mem
ory space. Don't count on that, though; measure. Unpleasant surprises are not 
uncommon either. 

25.2.3 living with fai lure 
Imagine that we are to design and implement a system that may not fail. By "not 
fail" let's say that we mean "will run without human intervention for a month." 
What kind of failures must we protect against? We can exclude dealing with the 
sun going nova and probably also with the system being trampled by an ele
phant. However, in general we cannot know what might go wrong. For a specific 
system, we can and must make assumptions about what kinds of errors are more 
common than otl1ers. Examples : 

Power surges/failure 

Connector vibrating out of its socket 

System hit by falling debris crushing a processor 

Falling system (disk might be destroyed by impact) 

X-rays causing some memory bits to change value in ways impossible ac
cording to the language definition 
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Transient errors are usually the hardest to find. A transient m-ar is one that hap- • \ 
pens "sometimes" but not every time a program is run. For example, we have U 
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heard of a processor that misbehaved only when the temperarure exceeded 
130°F (54°C) . It was never supposed to get that hot; however, it did when the 
system was (unintentionally and occasionally) covered up on the factory floor, 
never in Lhe lab while being tested. 

Errors that occur away from the lab are the hardest to ftx. You will have a 
hard time imagining the design and implementation effort involved in letting the 
JPL engineers diagnose software and hardware failures on the Mars Rovers 
(twenty minutes away from the lab for a signal traveling at the speed of light) and 
update the software to ftx a problem once understood. 

Domain knowledge - that is, knowledge about a system, its environment, 
and its use - is essential for designing and implementing a system with a good re· 
silience against errors. Here, we will touch only upon generalities. Note that 
every "generality" we mention here has been the subject of thousands of papers 
and decades of research and development. 

Preve11t resour« leaks: Don't leak. Be specific about what resources your 
program uses and be sure you conserve them (perfectly) .  Any leak will 
kill your system or subsystem eventually. The most fundamental re· 
sources are time and memory. Typically, a program will also use other 
resources, such as locks, communication channels, and fUes. 

Replicate: If a system critically needs a hardware resource (e.g., a com· 
puter, an output device, a wheel) to function, then the designer is faced 
with a basic choice: should the system contain several copies of the criti· 
cal resource? We can either accept failure if the hardware breaks or pro· 
vide a spare and let the software switch to using the spare. For example, 
the fuel injector controllers for the marine diesel engine are triplicated 
computers connected by duplicate networks. Note that "the spare'' need 
not be identical to the original (e.g., a space probe may have a primary 
strong antenna and a weaker backup) . Note also that "the spare" can 
typically be used to boost performance when the system works without 
a problem. 

&!fcheck: Know when the program (or hardware) is misbehaving. Hard· 
ware components (e.g., storage devices) can be very helpful in this re· 
spect, monitoring themselves for errors, correcting minor errors, and 
reporting major failures. Software can check for consistency of its data 
strucrures, check invariants (§9 .4.3),  and rely on internal "sanity checks" 
(assertions) .  Unfortunately, self-checking can itself be unreliable, and 
care must be taken that reporting an error doesn't itself cause an error 
it is really hard to completely check error checking. 

Have a quick way out '!fmisbehavi7lg code: Make systems modular. Base error 
handling on modules : each module has a specific task to do. If a module 
decides it can't do its task, it can report tl1at to some other module. Keep 
the error handling within a module simple (so that it is more likely to be 
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correct and efficient) . and have some other module responsible for seri
ous errors. A good reliable system is modular and multi-level. At each 
level, serious errors arc reported to a module at the next level - in the 
end, maybe to a person. A module that has been notified of a serious 
error (one that another module couldn't handle itself) can then take ap
propriate action - maybe involving a restart of the module that detected 
the error or running with a less sophisticated (but more robust) 
"backup'' module. Defining exactly what "a module" is for a given sys· 
tem is part of the overall system design, but you can think of it as a class, 
a library, a program, or all the programs on a computer. 

Monitor .mbsystems in case they can't or don't notice a problem themselves. 
In a multi-level system higher levels can monitor lower levels. Many sys
tems that really aren't allowed to fail (e.g., the marine engines or space 
station controllers) have tlu·ee copies of critical subsystems. This triplica
tion is not done just to have two spares, but also so that disagreements 
about which subsystem is misbehaving can be settled by 2-to-1 votes. 
Triplication is especially useful where a multi-level organization is diffi
cult (i.e., at the highest level of a system or subsystem that may not fail) .  
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We can design as much as we like and be as careful with the implementation as ,\ 
we know how to, but the system will still misbehave. Before delivering a system U 
to users, it must be systematically and thoroughly tested; see Chapter 26. 

25.3 Memory management 
Tite two most fundamental resources in a computer are time (to execute instruc
tions) and space (memory to hold data and code). In C++, there are three ways 
to allocate memory to hold data (§17.4, §A.4.2) :  

Static mmwry•: allocated by the linker and persists as long as the program 
lUllS 

Stach (automatic) mcnlory•: allocated when we call a function and freed when 
we retum from the function 

Dxnamic (l1eap) memory: allocated by new and freed for possible reuse by 
delete 

Let's consider these from the perspective of embedded systems programming. In 
particular. we will consider memory martagcment from the perspective of tasks 
where predictability (§25.2 .1 )  is considered essential, such as hard real-time pro
gramming and safety-critical programming. 

Static memory poses no special problem in embedded systems program
ming: all is taken care of before the program starts to run and long before a sys
tem is deployed. 
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Stack memory can b e  a problem because i t  is possible to use too much of it, 
but this is not hard to take care of. The designers of a system must determine that 
for no execution of the program will the stack grow over an acceptable limit. 'Ibis 
usually means that the maximum nesting of function calls must be limited; that is, 
we must be able to demonstrate that a chain of calls (e.g., f1 calls f2 calls . . .  calls fn) 
will never be too long. In some systems, that has caused a ban on recursive calls. 
Such a ban can be reasonable for some systems and for some recursive functions, 
but it is not fundamental. For example, I know that factorial(10) will call factorial at 
most ten times. However, an embedded systems programmer might very well pre
fer an iterative implementation of factorial (§15.5) to avoid any doubt or accident. 

Dynamic memory allocation is usually banned or severely restricted; that is, 
new is either banned or its use restricted to a startup period, and delete is 
banned. The basic reasons are 

Predictability: Free-store allocation is not predictable; that is, it is not guar
anteed to be a constant time operation. Usually, it is not: in many inlple
mentations of new, the time needed to allocate a new object can increase 
dramatically after many objects have been allocated and deallocated. 

Fragmentation: The free store may fragment; that is, after allocating and 
deallocating objects the remaining unused memory may be "frag· 
mented" into a lot of little "holes" of unused space that are useless be
cause each hole is too small to hold an object of the kind used by the 
application. Thus, the size of useful free store can be far less than the size 
of the initial free store minus the size of the allocated objects. 

The next section explains how this unacceptable state of affairs can arise. The 
bottom line is that we must avoid programming techniques that use both new 
and delete for hard real-time or safety-critical systems. The following sections ex
plain how we can systematically avoid problems with the free store using stacks 
and pools. 

25.3.1 Free-store problems 
What's the problem with new? Well, really it's a problem with new and delete 
used together. Consider tl1e result of this sequence of allocations and deallocations: 

Message• get_input(Device&); 

while(/* . . .  */) { 
Message• p = get_input(dev); 
II . . .  

II make a Message on the free store• 

Node* n1 = new Node(arg1 ,arg2); 
II . . .  



2 '> . 3 MEMORY MA NAG EMENT  

delete p; 
Node* n2 = new Node (arg3,arg4); 
II . . .  

Each time around the loop we create two Nodes, and in the process of doing so 
we create a Message and delete it again. Such code would not be unusual as part 
of building a data structure based on input from some "device." Looking at this 
code, we might expect to "consume" 2*sizeof(Node) bytes of memory (plus free· 
store overhead) each time around the loop. Unfortunately, it is not guaranteed 
that the "consumption" of memory is restricted to the expected and desired 
2*sizeof(Node) bytes . In fact, it is unlikely to be the case. 

Assume a simple (though not unrealistic) memory manager. Assume also 
that a Message is a bit larger than a Node. We can visualize the use of free space 
like this, using orange for the Message, green for the Nodes, and plain white for 
"a hole" (that is, "unused space") : 

� After creating n1 (one Message and one Node) 

After deleting p (one "hole" and one Node) 

I . I I ' I After creating n2 (two Nodes and a small "hole") 

� After creating n1 the 2nd tin1e through the loop 

I I I I 1 · I After creating n2 the 2nd tinle through the loop 

I :·J I .: :J, J I . . J.-.. �:· 1 I I After creating n2 the 3rd time through the loop 

So, we arc leaving behind some unused space ("a hole") on the free store each 
time we execute the loop. That may be just a few bytes, but if we can't use those 
holes it will be as bad as a memory leak - and even a small leak will eventually 
kill a long-running program. Having the free space in our memory scattered in 
many "holes" too small for allocating new objects is called memory.frag;mentatioll. 
Basically, the free-store manager will eventually use up all "holes'' that arc big 
enough to hold the kind of objects that the program uses, leaving only holes that 
are too small to be useful. This is a serious problem for essentially all long-run
ning programs that use new and delete extensively; it is not uncommon to find 
unusable fragments taking up most of the memory. That usually dramatically 
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increases the time needed to execute new as it has to search through lots of ob
jects and fragments for a suitably sized chunk of memory. Clearly this is not the 
kind of behavior we can accept for an embedded system. This can also be a seri
ous problem in naively designed non-embedded systems. 

Why can't "the language" or "the system" deal with tllis? Alternatively, can't 
we just write our program to not create such "holes"? Let's first examine the 
most obvious solution to having all those little useless "holes" in our memory: 
let's move the Nodes so that all the free space gets compacted into one contigu
ous area that we can use to allocate more objects. 

Unfortunately, "the system" can't do that. The reason is that C++ code 
refers directly to objects in memory. For example, the pointers n1 and n2 contain 
real memory addresses. If we moved the objects pointed to, those addresses 
would no longer point to the right objects . Assume tl1at we (somewhere) keep 
pointers to the nodes we created. We could represent the relevant part of our 
data structure like this : 

j j j j j j 
I I I ·  · 1  I I .  I 1 . .  · I Nodes with pointers to nodes 

Now we compact memory by moving an object so that all the unused memory is 
in one place: 

Unfortunately, we now have made a mess of those pointers by moving the ob
jects they pointed to without updating the pointers. Why don't we just update 
the pointers when we move the objects? We could write a program to do that, but 
only if we knew the details of the data structure. In general, "the system" (the 
C++ run-time support system) has no idea where the pointers are ; that is, given 
an object, the question "Which pointers in the program point to this object right 
now?" has no good answer. Even if that problem could be easily solved, this ap
proach (known as wmpacting garbage collection) is not always the right one. For ex
ample, to work well, it typically requires more than twice the memory that the 
program ever needs to be able to keep track of pointers and to move objects 
around in. That extra memory may not be available on an embedded system. In 
addition, an efficient compacting garbage collector is hard to make predictable. 

We could of course answer that "Where are the pointers?" question for our 
own data structures and compact those. That would work, but a simpler ap-
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proach i s  to avoid fragmentation in the first place. In the example here, we could 
simply have allocated both Nodes before allocating the message: 

while( . . .  ) { 
Node* n1 = new Node; 
Node* n2 = new Node; 
Message• p = get_input(dev); 
II . . .  store iniormation in nodes . . .  

delete p; 
II . . .  

However, rearranging code to avoid fragmentation isn't easy in general. Doing so 
reliably is at best very difficult and often incompatible with other rules for good 
code. Consequently, we prefer to restrict the use of free store to ways that don't 
cause fragmentation in the ftrst place. Often, preventing a problem is better than 
solving it. 

T R Y T H I S  
·)1- Complete the program above and print out the addresses and sizes of the ob

jects created to see if and how "holes" appear on your machine. H you have 
time, you might draw memory layouts like the ones above to better visualize 
what's going on. 

25.3.2 Alternatives to general free store 
So, we mustn't cause fragmentation. What do we do then? The first simple ob
servation is that new cannot by itself cause fragmentation; it needs delete to cre
ate the holes. So we start by banning delete. That implies that once an object is 
allocated, it will stay part of the program forever. 
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In the absence of delete, is new predictable; that is, do all new operations � 
take the same amount of time? Yes, in all common implementations, but it is not U 
actually guaranteed by the standard. Usually, an embedded system has a startup 
sequence of code that establishes the system as "ready to run" after initial power-
up or restart. During that period, we can allocate memory any way we like up to 
an allowed maximum. We could decide to use new during startup. Alternatively 
(or additionally) we could set aside global (static) memory for future use. For rea-
sons of program structure, global data is often best avoided, but it can be sensible 
to usc that language mechanism to pre-allocate memory. The exact rules for this 
should be laid down in a coding standard for a system (see §25.6) . 
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There are two data structures that are particularly useful for predictable 
memory allocation: 

Stacks: A stack is a data structure where you can allocate an arbitrary 
amount of memory (up to a given maximum size) and deallocate the last 
allocation (only) ;  that is, a stack can grow and shrink only at the top. 
There can be no fragmentation, because there can be no "hole" between 
two allocations. 

Rwls: A pool is a collection of objects of the same size. We can allocate 
and deallocate objects as long as we don't allocate more objects than the 
pool can hold. There can be no fragmentation because all objects are of 
the same size. 

For both stacks and pools, both allocation and dcallocation are predictable and fast. 
So, for a hard real-time or critical system we can define stacks and pools as 

needed. Better yet, we ought to be able to use stacks and pools as specified, imple
mented, and tested by someone else (as long as the specification meets our needs) .  

Note that the C++ standard containers (vector, map, etc.) and the standard 
string are not to be used because they indirectly use new. You can build (buy or 
borrow) "standard-like" containers to be predictable. but the default ones that 
come with your implementation are not constrained for embedded systems usc. 

Note that embedded systems typically have very stringent reliability require
ments, so whatever solution we choose, we must make sure not to compromise 
our programming style by regressing into using lots of low-level facilities directly. 
Code that is full of pointers, explicit conversions, etc. is unreasonably hard to 
guarantee as correct. 

25.3.3 Pool example 
A pool is a data structure from which we can allocate objects of a given type and 
later deallocate (free) such objects. A pool contains a maximum number of ob
jects ; that number is specified when the pool is created. Using green for "allo
cated object" and blue for "space ready for allocation as an object," we can 
visualize a pool like this : 

r · ·r· · t - � � .r · : · r · · J· ,, ··.1. -. 'T'·'"' · r, · --. - . .. 1 Pool : : ·
.
: · · � � .

· . .  � 1 • 1 ' ·_·: _ : _-' · · · c · . ' 1 ,  .• ' .'.': . ' ' · 

A Pool can be defined like this: 
template<class T, int N>class Pool { II Pool of N objects oi type T 
public: 

Pool(); 
T* get(); 
void free(T*); 
int available() const; 

II make pool of N Ts 
II get a T  from the pool; return 0 if no iree Ts 
II return a T  given out by get() to the pool 
II nu mber oi free Ts 
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private: 
II space for T(N) and data to keep track of which Ts are al located 
II and which are not (e.g., a list of free objects) 

}; 

Each Pool object has a type of elements and a maximum number of objects. We 
can use a Pool like this: 

Pooi<Small_buffer, 10> sb_pool; 
Pooi<Status_indicator,200:> indicator _pool; 

Small_buffer• p = sb_pool.get(); 
II . . .  
sb _pool. free(p); 

It is the job of the programmer to make sure that a pool is never exhausted. The 
exact meaning of ''make sure" depends on the application. For some systems, the 
progranuner must write the code such that get() is never called unless there is an 
object to allocate. On other systems, a programmer can test the result of get() 
and take some remedial action if that result is 0. A characteristic example of the 
latter is a telephone system engineered to handle at most 100,000 calls at a time. 
For each call, some resource, such as a dial buffer, is allocated. If the system runs 
out of dial buffers (e.g., dial_buffer_pool.get() returns 0), the system refuses to 
set up new connections (and may "kill" a few existing calls to create capacity). 
The would-be caller can try again later. 

Naturally, our Pool template is only one variation of the general idea of a 
pool. For example, where the restraints on memory allocation are less Draconian, 
we can defme pools where the number of clements is specified in the constructor 
or even pools where the number of elements can be changed later if we need 
more objects than initially specified. 

25.3.4 Stack example 
A stack is a data structure from which we can allocate chunks of memory and 
deallocate the last allocated chunk. Using green for "allocated memory" and blue 
for "space ready for allocation," we can visualize a stack like this : 

Top of stack 

Stack: 

As indicated, this stack "grows" toward the right. 
We could define a stack of objects, just as we defined a pool of objects : 
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template<class T, int N> class Stack { 
II . . .  

II stack oi Ts 

};  

However, most systems have a need for allocation of objects of varying sizes. A 
stack can do that whereas a pool cannot, so we'll show how to defme a stack 
from which we allocate "raw" memory of varying sizes rather than ftxed·sized 
objects : 

template<int N>elass Stack { II stack oi N bytes 
public: 

Stack(); 
void* get(int n); 

void free(); 
int available() const; 

private: 

II make an N-byte stack 
II al locate n bytes from the stack; 
II return 0 if no free space 
II return the last va lue returned by get() to the stack 
II number oi ava ilable bytes 

II space for char( N) and data to keep track of what is al located 
II and what is not (e.g., a top-of-stack pointer) 

} ;  

Since get() returns a void* pointing to  the required number of bytes, i t  is our job 
to convert that memory to the kinds of objects we want. We can use such a stack 
like this : 

Stack<50*1024> my_free_store; II SOK worth of storage to be used as a st,JCk 

void* pv1 = my_free_store.get(1024); 
int• buffer = static_cast<int*>(pv1); 

void* pv2 = my_free_store.get(sizeof(Connection)); 
Connection• pconn = new(pv2) Connection(incoming,outgoing,buffer); 

The use of static_cast is described in §17.8. The new(pv2) construct is a "place
ment new." It means "Construct an object in the space pointed to by pv2." It 
doesn't allocate anything. The assumption here is that the type Connection has a 
constructor that will accept the argument list (incoming,outgoing,buffer). If 
that's not the case, the program won't compile. 

Naturally, our Stack template is only one variation of the general idea of a 
stack. For example, where the restraints on memory allocation are less Dracon
ian, we can define stacks where the number of bytes available for allocation is 
specified in the constructor. 
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25.4 Addresses, pointers, and arrays 
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Predictability is a need of some embedded systems; reliability is a concern of all. � 
This leads to attempts to avoid language features and programming techniques U 
that have proved error-prone (in the context of embedded systems programming, 
if not necessarily everywhere). Careless use of pointers is the main suspect here. 
Two problem areas stand out: 

Explicit (unchecked and unsafe) conversions 

Passing pointers to array elements 

The former problem can typically be handled simply by severely restricting the 
use of explicit type conversions (casts). The pointer/array problems are more sub
tle, require understanding, and are best dealt with using (simple) classes or li
brary facilities (such as array, §20.9) . Consequently, tl1is section focuses on how 
to address the latter problems. 

25.4.1 Unchecked conversions 
Physical resources (e.g., control registers for external devices) and their most 
basic software controls typically exist at specific addresses in a low-level system. 
We have to enter such addresses into our programs and give a type to such data. 
For example: 

Device_driver• p = reinterpret_cast<Device_driver*>(0xffb8); 

See also §17.8. This is the kind of programming you do with a manual or online 
documentation open. The correspondence between a hardware resource - the 
address of the resource's register(s) (expressed as an integer, often a hexadecimal 
integer) - and pointers to tl1e software that manipulates the hardware resource is 
brittle. You have to get it right witl10ut much help from the compiler (because it is 
not a programming language issue) . Usually, a simple (nasty, completely 
unchecked) reinterpret_cast from an int to a pointer type is the essential link in 
tl1e chain of connections from an application to its nontrivial hardware resources. 

Where explicit conversions (reinterpret_cast, static_cast, etc.; see §A.5.7) are 
not essential, avoid them. Such conversions (casts) are necessary far less fre
quently than is typically assumed by programmers whose primary experience is 
with C and C-style C++. 

25.4.2 A problem: dysfunctional interfaces 
As mentioned (§18.5.1) ,  an array is often passed to a function as a pointer to an 
element (often, a pointer to the first element) . Thereby, they "lose" their size, so 
that tl1e receiving function cannot directly tell how many elements are pointed to, 
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if any. This is a cause of many subtle and hard-to-fix bugs. Here, we examine ex
amples of those array/pointer problems and present an alternative. We start with 
an example of a very poor (but unfortunatdy not rare) interface and proceed to 
improve it. Consider: 

void poor(Shape• p, int sz) II poor i nterface design 
{ 

for (int i = 0; i<sz; ++i) p[i].draw(); 

void f(Shape• q, vector<Circle>& sO) 
{ 

Polygon s1 [10]; 
Shape s2[10]; 
II init ia lize 

II very bad code 

Shape• p1 = new Rectangle(Point(O,O),Point(10,20)); 
poor(&sO[O],sO.size()); II 11 1  (pass the array from the vector) 
poor(s1, 10); II lt2 
poor(s2,20); II #3 
poor(p1 ,1); II #4 
delete p1 ; 
p1 = 0; 
poor(p1, 1) ;  II #5 

poor(q,max); II #6 

The function poor() is an example of poor interface design: i t  provides an inter
face that provides the caller ample opportunity for mistakes but offers the imple
menter essentially no opportunity to defend against such mistakes. 

T RY T H I S 

( • Before reading further, try to see how many errors you can find in f(). Specif
ically, which of the calls of poor() could cause the program to crash? 

At first glance, the calls look fme, but this is the kind of code that costs a pro
grammer long nights of debugging and gives a quality engineer nightmares. 

1. Passing the wrong element type, e.g., poor(&sO[O],sO.size()). Also, sO might 
be empty, in which case &sO[O] is wrong. 
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2. Usc of a "magic constant" (here, correct) : poor(s1, 10). Also, wrong ele-
ment type. 

3. Use of a "magic constant" (here, incorrect) : poor(s2,20). 

4. Correct (easily verified) : first call poor(p1, 1 ) .  

5.  Passing a null pointer: second call poor(p1, 1 ). 

6. May be correct: poor(q,max). We can't be sure from looking at tllis code 
fragment. To see if q points to an array with at least max elements, we 
have to fmd the defmitions of q and max and determine their values at 
our point of usc. 

In each case, tl1e errors are simple. We are not dealing with some subtle algorith
mic or data structure problem. The problem is that poor()'s interface, involving 
an array passed as a pointer, opens the possibility of a collection of problems. You 
may appreciate how the problems were obscured by our use of "technical" un
helpful names, such as p1 and sO. However, mnemonic, but misleading, names 
can make such problems even harder to spot. 

In theory, a compiler could catch a few of these errors (such as the second 
call of poor(p1 , 1 )  where p1==0), but realistically we are saved from disaster for 
this particular example only because the compiler catches the attempt to defme 
objects of the abstract class Shape. However, that is unrelated to poor()'s inter
face problems, so we should not take too much comfort from that. In the follow
ing, we use a variant of Shape that is not abstract so as not to get distracted from 
the interface problems. 

How come the poor(&sO[O],sO.size()) call is an error? The &sO[O] refers to the 
first clement of an array of Circles; it is a Circle* .  We expect a Shape* and we 
pass a pointer to an object of a class derived from Shape (here, a Circle*).  That's 
obviously acceptable: we need that conversion so that we can do object-oriented 
programming, accessing objects of a variety of types through their common in
terface (here, Shape) (§ 14.2) . However, poor() docsn't just use that Shape• as a 
pointer; it uses it as an array, subscripting its way through that array: 

for (int i = 0; i<sz; ++i) p[i].draw(); 

That is, it looks at tile objects starting at memory locations &p[O], &p[1], &p[2], etc.: 

&p[O] &p[1) &p[2) 

In terms of memory addresses, tilese pointers are sizeof(Shape) apart (§17.3. 1 ) .  
Unfortunately for poor()'s caller, sizeof(Circle) is larger tilan sizeof(Shape), so 
tilat tile memory layout can be visualized like this : 
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&p[O] &p[1] &p[2] 

1st Circle 2nd Circle 3rd Circle 

That is, poor() is calling draw() with a pointer into the middle of the Circles! This 
is likely to lead to inunediate disaster (crash) . 

The call poor(s1 ,10) is sneakier. It relies on a "magic constant" so it is immedi
ately suspect as a maintenance hazard, but there is a deeper problem. The only rca
son the use of an array of Polygons doesn't immediately suffer the problem we saw 
for Circles is that a Polygon didn't add data members to its base class Shape 
(whereas Circle did; sec §13.8 and §13.12) ; that is, sizeof(Shape)=sizeof(Polygon) 
and - more generally - a Polygon has the same memory layout as a Shape. In 
other words, we were 'just lucky"; a slight change in the definition of Polygon will 
cause a crash. So poor(s1 , 10) works, but it is a bug waiting to happen. TI1is is em
phatically not quality code. 

What we see here is the implementation reason for the general language mlc 
that "a D is a B" does not imply "a Container<D> is a Container<B>" (§19.3.3) . 
For example : 

class Circle : public Shape { /* . . .  */ }; 

void fv(vector<Shape>&); 
void f(Shape &) ; 

void g(vector<Circle>& vd, Circle & d) 
{ 

f(d); // OK: implici t  conversion from Circle to Shape 
f(vd); II error: no conversion from vector<C i rcle> to vector<Shape> 

OK, so the use of poor() is very bad code. but can such code be considered em
bedded systems code; that is, should this kind of problem concem us in areas 
where safety or perfonnance matters? Can we dismiss it as a hazard for pro
grammers of non-critical systems and just tell them, "Don't do that"? Well, many 
modem embedded systems rely critically on a GUI, which is almost always or
ganized in the object-oriented manner of our example. Examples include the iPod 
user interface, the interfaces of some cell phones, and operator's displays on 
"gadgets" up to and including airplanes. Another example is that controllers of 
similar gadgets (such as a variety of electric motors) can constitute a classical 
class hierarchy. In other words, this kind of code - and in particular, this kind of 
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function declaration - is exactly the kind of code we should worry about. We 
need a safer way of passing information about collections of data without causing 
other significant problems. 
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So, we don't want to pass a built-in array to a function as a pointer plus a • 1 

size. What do we do instead? The simplest solution is to pass a reference to a U 
container. such as a vector. The problems we saw for 

void poor(Shape• p, int sz); 

simply catmot occur for 

void general(vector<Shape>&); 

If you are programming where std : :  vector (or the equivalent) is acceptable. sim
ply usc vector (or the equivalent) consistently in interfaces; never pass a built-in 
array as a pointer plus a size. 

If you can't restrict yourself to vector or equivalents, you enter a territory 
that is more difficult and the solutions there involve techniques and language fea
tures that are not simple - even though the use of the class (Array_ref)  we pro
vide is straightforward. 

25 .4.3 A solution: an interface class 
Unfonunatcly, we cannot usc std: : vector in many embedded systems because it 
relies on free store. We can solve that problem either by having a special imple
mentation of vector or (more easily) by using a container that behaves like a 
vector but doesn't do memory management. Before outlining such an interface 
class, let's consider what we want from it: � 

It is a reference to objects in memory (it does not own objects, allocate 
o�jccts, delete objects, etc.) .  

It "knows" its size (so that it  is potentially range checked) . 

It "knows" the exact type of its elements (so that it cannot be tl1e source 
of type errors). 

It is as cheap to pass (copy) as a (pointer,count) pair. 

It does not implicitly conven to a pointer. 

It is easy to express a subrange of the range of elements described by an 
interface object. 

It is as easy to usc as built-in arrays. 

We will only be able to approximate "as easy to use as built-in arrays." We don't 
want it to be so easy to use that errors start to become likely. 
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Here is one such class: 

template<class T> 
class Array _ref { 
public: 

Array _ref(T* pp, int s) : p(pp), sz(s) { }  

T& operator[ ](int n) { return p[n]; } 
const T& operator[ ](int n) const { return p[n]; } 

bool assign(Array _ref a) 
{ 

if (a.sz!=a) return false; 
for (int i=O; i<sz; ++i) { p[i]=a.p[i]; } 

void reset(Array_ref a) { reset(a.p,a.sz); } 
void reset(T* pp, int s) { p=pp; sz=s; } 

int size() const { return sz; } 

II deiault copy operat ions: 
II Array _ref doesn't own any resources 
II Array _ref has reference semantics 

private: 

} ; 

T* p; 
int sz; 

Array _ref is close to minimal: 

No push_back() (that would require free store) and no at() (that would 
require exceptions) . 

Array_ref is a form of reference, so copying simply copies (p,sz). 

By initializing with different arrays, we can have Array _refs that arc of 
the same type but have different sizes. 

By updating (p,size) using reset(), we can change the size of an existing 
Array_ref (many algorithms require specification of subranges). 

No iterator interface (but that could be easily added if we needed it) . In 
fact, an Array .. ref is in conception very close to a range described by two 
iterators. 
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An Array_ref does not own its elements ; it does no memory management; it is .\ 
simply a mechanism for accessing and passing a sequence of elements. In that, it U 
differs from the standard library array (§20.9). 

To case the creation of Array _refs, we supply a few useful helper functions: 

template<class T> Array_ref<T> make_ref(T* pp, int s) 
{ 

return (pp) l Array_ref<T>(pp,s) : Array_ref<T>(O,O); 

If we initialize an Array _ref with a pointer, we have to explicitly supply a size. 
That's an obvious weakness because it provides us with an opportunity to give 
tl1c wrong size. It also gives us an opportunity to use a pointer that is a result of 
an implicit conversion of an array of a derived class to a pointer to a base class, 
such as Polygon[10] to Shape• (the original horrible problem from §25.4.2), but 
sometimes we simply have to trust the programmer. 

We decided to be careful about null pointers (because they are a common 
source of problems), and we took a similar precaution for empty vectors: 

template<class T> Array _ref<T> make_ref(vector<T>& v) 
{ 

return (v.size()) l Array_ref<T>(&v[O],v.size()) : Array_ref<T>(O,O); 

The idea is to pass the vector's array of elements. We concern ourselves with 
vector here even though it is often not suitable in the kind of system where 
Array _ref can be useful. The reason is that it shares key properties with contain
ers that can be used there (e.g., pool-based containers; sec §25.3.3). 

Fmally, we deal with built-in arrays where the compiler knows the size: 

template <class T, int S> Array_ref<T> make_ref(T (&pp)[s]) 
{ 

return Array _ref<T>(pp,s); 

lbe curious T(&pp)[s] notation declares the argument pp to be a reference to an 
array of s elements of type T. That allows us to initialize an Array_ref with an 
array, remembering its size. We can't declare an empty array, so we don't have to 
test for zero elements : 

Polygon ar[OJ; II error: no elements 
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Given Array_ref, we can try to rewrite our example: 

void better(Array _ref<Shape> a) 
{ 

for (int i = 0; i<a.size(); ++i) a[i].draw() ; 

void f(Shape• q, vector<Circle>& sO) 
{ 

Polygon s1 [10] ;  
Shape s2[20]; 
II in i t ia l ize 
Shape• p1 = new Rectangle(Point(O,O),Point(10,20)); 
better(make_ref(sO)); II error: Array_rekShape> required 
better(make_ref(s1)); II error: Array_rekShape> requi red 
better(make_ref(s2)); II OK (no conversion requi red) 
better(make_ref(p1 , 1 )); II OK: one element 
delete p1 ; 
p1 = 0; 
better(make_ref(p1 , 1));  II OK: no elements 
better(make_ref(q,max)); II OK (ii max is OKl 

We sec improvements: 

The code is simpler. The programmer rarely has to think about sizes, 
but when necessary they are in a specific place (the creation of an 
Array_ref),  rather than scattered throughout the code. 

The type problem with the Circle[]-to-Shape[] and Polygon[]-to-Shape[] 
conversions is caught. 

The problems with the wrong number of elements for s1 and s2 are im
plicitly dealt with. 

The potential problem with max (and other element counts for pointers) 
becomes more visible - it's the only place we have to be explicit about 
Stze. 

We deal implicitly and systematically with null pointers and empty vectors. 

25.4.4 Inheritance and containers 
But what if we wanted to treat a collection of Circles as a collection of Shapes, 
that is, if we really wanted better() (which is a variant of our old friend 
draw_all(); see §19.3.2, §22.1 .3) to handle polymorphism? Well, basically, we 
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can't. I n  §19.3.3 and §25.4.2, we saw that the type system has very good reasons 
for refusing to accept a vector<Circle> as a vector<Shape>. For the same reason, 
it refuses to accept an Array _ref<Circle> as an Array _ref<Shape>. If you have a 
problem remembering why, it might be a good idea to reread §19.3.3, because 
the point is pretty fundamental even though it can be inconvenient. 

Furthermore, to preserve run-time polymorphic behavior, we have to manip-
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ulate our polymorphic objects through pointers (or references) :  the dot in 6 1 
p[i].draw() in better() was a giveaway. We should have expected problems with U 
polymorphism the second we saw that dot rather than an arrow (->). 

So what can we do? First we must use pointers (or references) rather than ob
jects directly, so we'll try to use Array_ref<Circle*>, Array_ref<Shape*>, etc. 
rather than Array _ref<Circle>, Array _ref<Shape>, etc. 

However, we still cannot convert an Array_ref<Circle*> to an Array_ref<Shape*> 
because we might then proceed to put elements into the Array_ref<Shape*> that 
are not Circle*s. But there is a loophole: 

Here, we don't want to modify our Array_ref<Shape*>; we just want to 
draw the Shapes! 'Ibis is an interesting and useful special case : our argu
ment against the Array_ref<Circle*>-to-Array_ref<Shape*> conversion 
doesn't apply to a case where we don't modify the Array_ref<Shape*>. 

All arrays of pointers have the same layout (independently of what kinds 
of objects they point to), so we don't get into the layout problem from 
§25.4.2. 

"[bat is, there would be nothing wrong with treating an Array_ref<Circle*> as � 
an immutable Array_ref<Shape*>. So, we 'just" have to find a way to treat an U 
Array_ref<Circle*> as an immutable Array_ref<Shape*>. Consider: 

Circle 

Smiley_face 
(derived from 
Circle) 

There is no logical problem treating that array of Circle* as an immutable array 
of Shape* (from an Array_ref). 
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We seem to have strayed into expert territory. In fact, this problem is  gen
uinely tricky and is unsolvable with the tools supplied so far. However, let's see 
what it takes to produces a close-to-perfect alternative to our dysfunctional - but 
all too popular - interface style (pointer plus element count; see §25.4.2). Please 
remember: Don't go into "expert territory" just to prove how clever you are. 
Most often, it is a better strategy to find a library where some experts have done 
the design, implementation, and testing for you. 

First, we rework better() to something that uses pointers and guarantees that 
we don't "mess with" the argument container: 

void better2(const Array_ref<Shape•const> a) 
{ 

for (int i = 0; i<a.size(); ++i) 
if (a[i]) 

a[i]->draw(); 

We are now dealing with pointers, so we should check for null pointers. To make 
sure that better2() doesn't modify our arrays and vectors in unsafe ways through 
Array_ref, we added a couple of consts. The frrst const ensures that we do not 
apply modifying (mutating) operations, such as assign() and reset(), on our 
Array_ref. The second const is placed after the • to indicate that we want a con
stant pointer (rather than a pointer to constants) ; that is, we don't want to modify 
the element pointers even if we have operations available for that. 

Next, we have to solve the central problem: how do we express the idea that 
Array_ref<Circle*> can be converted 

To something like Array_ref<Shape*> (that we can use in better2()) 

But only to an immutable version of Array_ref<Shape*> 

We can do that by adding a conversion operator to Array_ref: 

template<class T> 
class Array _ref { 
public: 

II as before 

template<class Q> 
operator const Array_ref<const Q>O 
{ 

II check impl ic i t  conversion of elements: 
static_cast<Q>(*static_cast<T*>(O)); 
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II cast Array_ref: 
return Array _ref<const Q>(reinterpret_ cast<Q *>(p) ,sz); 

II as before 
}; 

This is headache-inducing, but basically: 

The operator casts to Array_ref<cost Q> for every type Q provided we 
can cast an element of Array_ref<T> to an element of Array_ref<Q> (we 
don't usc the result of that cast; we just check that we can cast the ele
ment types) . 

We construct a new Array_ref<const Q> by using brute force (reinter
pret_cast) to get a pointer to the desired element type. Brute-force solu
tions often come at a cost; in this case, never use an Array_ref conversion 
from a class using multiple inheritance (§A.12.4) . 

Note that const in Array_ref<const Q>: that's what ensures that we can
not copy a Array _ref<const Q> into a plain old mutable Array _ref<Q>. 

We did warn you that this was "expert territory" and "headache-inducing." How
ever, this version of Array_ref is easy to use (it's only the definition/implementa
tion that is tricky) :  

void f(Shape• q,  vector<Circle*>& s2) 
{ 

Polygon• s1 [10]; 
Shape• s2[20]; 
II i nit ia l ize 
Shape• p1 = new Rectangle(Point(O,O), 10); 
better2(make_ref(s0)); II OK: converts to Array _rei<Shape"const> 
better2(make_ref(s1 )); // OK: converts to Array_ref<Shape"const> 
better2(rnake_ref(s2)); II OK (no conversion needed) 
better2(rnake_ref(p1 , 1 )) ;  II error 
better2(make_ref(q,max)); II error 

1l1c attempts to use pointers result in errors because they are Shape•s whereas 
better2() expects an Array_ref<Shape*>; that is, better2() expects something that 
holds pointers rather than a pointer. If we want to pass pointers to better2(), we 
have to put them into a container (e.g., a built-in array or a vector) and pass that. 
For an individual pointer, we could use the awkward make_ref(&p1 ,1).  However, 
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there is no solution for arrays (with more than one element) that doesn't involve 
creating a container of pointers to objects. 

In conclusion, we can create simple, safe, easy-to-use, and efficient interfaces 
to compensate for the weaknesses of arrays. That was the major aim of this sec
tion. "Every problem is solved by another indirection" (quote by David Wheeler) 
has been proposed as "the first law of computer science." That was the way we 
solved this interface problem. 

25.5 Bits, bytes, and words 
We have talked about hardware memory concepts, such as bits. bytes, and words. 
before, but in general programming those are not the ones we think much about. In
stead we think in terms of objects of specific types, such as double, string, Matrix, 
and Simple_ window. Here, we will look at a level of programming where we have 
to be more aware of the realities of the underlying memory. 

If you are uncertain about your knowledge of binary and hexadecimal repre
sentations of integers, this may be a good time to review §A.2. 1 . 1 .  

25.5 .1  Bits and bit operations fJ Think of a byte as a sequence of 8 bits: 

7: 6: s: 4: 3: 2: 1 :  0: 

l 1 l o l 1 l o l o i 1 I DTJ 
Note the convention of numbering bits in a byte from the right (the least signifi
cant bit) to the left (the most significant bit) .  Now think of a word as a sequence 
of 4 bytes : 

3: 2 :  1 :  0: 

I Oxff I 0x1o I Oxde I 0xac1 
Again, we number right to left, that is, least significant byte to most significant 
byte. These pictures oversimplify what is found in the real world: there have 
been computers where a byte was 9 bits (but we haven't seen one for a decade), 
and machines where a word is 2 bytes are not rare. However, as long as you re
member to check your systems manual before taking advantage of "8 bits" and 
"4 bytes," you should be fine. 

In code meant to be portable, use <limits> (§24.2. 1 )  to make sure your as
sumptions about sizes are correct. 

How do we represent a set of bits in C++? The answer depends on how 
many bits we need and what kinds of operations we want to be convenient and 
efficient. We can use the integer types as sets of bits: 
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bool - 1 bit, but takes up a whole byte of space 

char - 8 bits 

short - 16 bits 

int - typically 32 bits, but many embedded systems have 16-bit ints 

long int - 32 bits or 64 bits 

TI1c sizes quoted arc typical, but different implementations may have different 
sizes, so if you need to know. test. In addition, the standard library provides ways 
of dealing with bits : 

std : :vector<bool> - when we need more than 8*sizeof(long) bits 

std : : bitset - when we need more than 8*sizeof(long) bits 

std : :  set - an unordered collection of named bits (see §21 .6.5) 

A fUc: lots of bits (see §25.5.6) 

Furthcmwre, we can use two language features to represent bits: 

Enumerations (enums) ; see §9.5 

Bitfields ; sec §25.5.5 

Tills variety of ways to represent "bits" reflects the fact that ultimately everything 
in computer memory is a set of bits, so people have felt the urge to provide a va
riety of ways of looking at bits, naming bits, and doing operations on bits. Note 
that the built-in facilities all deal with a set of a fixed number of bits (e.g., 8, 16, 
32, and 64) so that the computer can do logical operations on them at optimal 
speed using operations provided directly by hardware. In contrast, the standard 
library facilities all provide an arbitrary number of bits. This may limit perform-
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ance, but don't prejudge efficiency issues: the library facilities can be - and often • , 
are - optimized to run well if you pick a number of bits that maps well to the un- U 
dcrlying hardware. 

Let's first look at the integers. For these, C++ basically provides the bitwise 
logical operations that the hardware directly implements_ These operations apply 
to each bit of their operands : 

Bitwise operations 

or 

& and 

" exclusive or 

<< left shift 

>> right shift 

complement 

Bit n of xly is 1 if bit n of x or bit n of y is 1 .  
Bit n of x&y is 1 if bit n of x and bit n of y is 1 .  
Bit n of x"y is 1 if bit n of x or bit n of y is 1 but not if both are 1 .  
Bit n of x<<S is bit n+s of x. 

B it n of X>>S is bit n-s of x. 

Bit n of -x is the opposite of bit n of x. 
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You might fmd the inclusion o f  "exclusive or" ( " ,  sometimes called "xor") as a 
fundamental operation odd. However, that's the essential operation in much 
graphics and encryption code. 

The compiler won't confuse a bitwise logical << for an output operator, but 
you might. To avoid confusion, remember that an output operator takes an 
ostream as its left-hand operand, whereas a bitwise logical operator takes an inte
ger as its left-hand operand. 

Note that & differs from && and I differs from II by operating individually on 
every bit of its operands (§A.S.S) , producing a result with as many bits as its 
operands. In contrast, && and lljust return true or false. 

Let's try a couple of examples. We usually express bit patterns using hexa
decimal notation. For a half byte (4 bits) we have 

Hex Bits Hex Bits 

OxO 0000 Ox8 1000 

Ox1 0001 Ox9 1001 

Ox2 0010 Oxa 1010 

Ox3 0011 Oxb 1011  

Ox4 0100 Oxc 1100 

OxS 0101 Oxd 1101 

Ox6 0110 Oxe 1110 

Ox7 0111 Oxf 1111  

For numbers up to 9 we could have used decimal, but using hexadecimal helps 
us to remember that we are thinking about bit patterns. For bytes and words. 
hexadecimal becomes really usefuL The bits in a byte can be expressed as two 
hexadecimal digits. For example: 

Hex byte Bits 

OxOO 0000 0000 

OxOf 0000 1111 

OxfO 1111  0000 

Oxff 1111 1111 

Oxaa 1010 1010 

Ox55 0101 0101 
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So, using unsigned (§25.5.3) to keep things as simple as possible, we can write 

unsigned char a = Oxaa; 
unsigned char xO = -a; II complement of a 

a: 1 1  I o 1 1  I o l 1  I o 1 1  I o I 0xaa 

-a: I o 1 1  I o 1 1  I o 1 1  I o 1 1  I OxSs 

unsigned char b = OxOf; 
unsigned char x1 = a&b; II a and b 

a: 1 1  I 0 1 1  I 0 1 1  I 0 1 1  I 0 I Oxaa 

b: I o I o I o I o 1 1  1 1  1 1  1 1  I Oxf 

a&b: I 0 I 0 I 0 I 0 1 1  I 0 1 1  I 0 I Oxa 

unsigned char x2 = a"b; II exclusive or: a xor b 

a: 1 1  I o 1 1  I o 1 1  I o 1 1  I o I 0xaa 

b: I 0 I 0 I 0 I 0 1 1  1 1  1 1  1 1  I Oxf 

a"b: 1 1  I o 1 1  I o I o 1 1  I o 1 1  I OxaS 

unsigned char x3 = a<<1 ; II left shift 1 

a: 1 1  I 0 1 1  I 0 1 1  I 0 1 1  I 0 I Oxaa 

a<<1 : I o 1 1  I o 1 1  I o 1 1  I o I o I Ox54 

Note that a 0 is "shifted in" from beyond bit 7 to fUl up the byte. The leftmost bit 
(bit 7) simply disappears. 

unsigned char x4 = a>>2; II right shift 2 

a: 1 1  I o 1 1  I o 1 1  I o 1 1  I o I Oxaa 

a>>2 : I o I o 1 1  I o 1 1  I o 1 1  I o I 0x2a 

Note that a 0 is "shifted in" from beyond bit 0 to fill up the byte. The rightmost 2 
bits (bit 1 and bit 0) simply disappear. 
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We can draw bit patterns like this and it is good t o  get a feel for bit pattenlS, 
but it soon becomes tedious. Here is a little program that converts integers to 
their bit representation: 

int main() 
{ 

int i; 
while (cin>>i) 

cout << dec << i << "==" 
<< hex << "Ox" << i << "==" 
<< bitset<B*sizeof(int)>(i) << '\n'; 

To print the individual bits of the integer, we use a standard library bitset: 

bitset<B*sizeof(int)>(i) 

A bitset is a fixed number of bits. In this case, we use the number of bits in an int 
- B*sizeof(int) - and initialize that bitset with our integer i .  

T RY T H I S  

( _� ,r Get the bits example to work and try out a few values to develop a feel for bi-
nary and hexadecimal representations. H you get confused about the repre
sentation of negative values, just try again after reading §25.5.3. 

25 .5 .2 bitset 
The standard library template class bitset from <bitset> is used to represent and 
manipulate sets of bits. Each bitset is of a fixed size, specified at construction: 

bitset<4> flags; 
bitset<128> dword_bits; 
bitset<12345> lots; 

A bitset is by default initialized to "all zeros" but is typically given an initializer; 
bitset initializers can be unsigned integers or strings of zeros and ones. For 
example: 

bitsef<4> flags = Oxb; 
bitset<128> dword_bits(string("1010101010101010")); 
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bitset<12345> lots; 

Here lots will be all zeros, and dword_bits will have 1 12 zeros followed by the 16 
bits we explicitly specified. If you try to initialize with a string that has characters 
different from '0' and ' 1 ' ,  a std : : invalid_argument exception is thrown: 

string s; 
cin>>S; 
bitset<12345> my_bits(s); II may throw std::inva lid_argument 

We can use Lhe usual bit manipulation operators for bitsets. Assume that b1 , b2, 
and b3 are bitsets : 

b1 = b2&b3; 
b1 = b2jb3; 
b1 = b2"b3; 
b1 = -b2; 
b1 = b2<<2; 
b1 = b2>>3; 

II and 
II or 
II xor 
II complement 
II shift left 
II sh iii right 

Basically, for bit operations (bitwise logical operations) ,  a bitset acts like an 
unsigned int (§25.5.3) of an arbitrary, user-specified size. What you can do to an 
unsigned int (with the exception of arithmetic operations) ,  you can do to a 
bitset. In particular, bitsets are useful for 1/0: 

cin>>b; 
cout<<bitset<B>(' c'); 

II read a bitset from input 
II output the bit pattern for the character 'c' 

When reading into a b\\se\, an input stream \ooks [or z.cros and ones. Consider: 

10121 

This is read as 101 leaving 21 unread in the stream. 
As for a byte and a word, the bits of a bitset are numbered right to left (from 

the least significant bit toward the most significant), so that, for example, the nu
merical value of bit 7 is 27: 

7: 6: 5:  4: 3: 2: 1 :  0: 

!1 I o 1 1  I o I o 1 1  1 1  1 1  I 
For bitsets, the numbering is not just a convention because a bitset supports sub
scripting of bits. For example: 
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int main() 
{ 

const int max = 10; 
bitset<maX> b; 
while (cin>>b) { 

cout << b << '\n'; 
for (int i =0; i<max; ++i) cout << b[i); 
cout << '\n'; 

II reverse order 

If you need a more complete picture of bitsets, look them up in your online doc· 
umentation, a manual, or an expert-level textbook. 

25.5.3 Signed and unsigned 
Like most languages, C++ supports both signed and unsigned integers. Un· 
signed integers are trivial to represent in memory: bitO means 1 ,  bit1 means 2, 
bit2 means 4, and so on. However, signed integers pose a problem: how do we 
distinguish between positive and negative numbers? C++ gives the hardware de
signers some freedom of choice, but almost all implementations use the two's 
complement representation. The leftmost (most significant bit) is taken as the 
"sign bit": 

Sign bit 

{ I  8 bits == 1 byte 

1 6-bit (unsigned) int 

If the sign bit is 1, the number is negative. Almost universally, the two's comple· 
ment representation is used. To save paper, we consider how we would represent 
signed numbers in a 4-bit integer: 

Positive: 

Negative: 

0 
0000 0001 

1 1 1 1  
-1 

1110 
-2 

2 4 
0010 0100 

1 101 
-3 

101 1  
-5 

7 
01 1 1  

1000 
-8 

The bit pattern for - (X+1 ) can be described as the complement of the bits in x 
(also known as -x; see §25.5.1) .  
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S o  far, we have just used signed integers (e.g. , int). A slightly better set of 
rules would be: 

Use signed integers (e.g., int) for numbers. 

Use unsigned integers (e.g., unsigned int) for sets of bits. 

TI1at's not a bad rule of tlmmb, but it's hard to stick to because some people pre· 
fer unsigned integers for some fonns of aritllmetic and we sometimes need to use 
ilieir code. In particular, for historical reasons going back to tile early days of C 
when ints were 16 bits and every bit mattered, v.size() for a vector is an unsigned 
integer. For example : 

vector<int> v; 
II . . .  
for (int i = 0; i<v.size(); ++i) cout << v[i) << '\n' ;  

A "helpful" compiler may warn us iliat we are mixing signed (i.e., i )  and un· 
signed (i.e., v.sizeO) values. Mixing signed and unsigned variables could lead to 
disaster. For exan1ple, the loop variable i might overflow; iliat is, v.size() might be 
larger than tile largest signed int. Then, i would reach tile highest value that 
could represent a positive integer in a signed int (the number of bits in an int 
minus 1 to the power of two, minus 1 ,  e.g., 215-1).  Then, the next ++ couldn't 
yield tile next-highest integer and would instead result in a negative value. The 
loop would never terminate ! Each tinle we reached tile largest integer, we would 
start again from tile smallest negative int value. So for 16-bit ints that loop is a 
(probably very serious) bug if v.size() is 32*1024 or larger; for 32-bit ints tile 
problem occurs if i reaches 2*1024*1024*1024. 
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So, technically, most of tile loops in this book have been sloppy and could • , 

have caused problems. In oilier words, for an embedded system, we should ei- � 
thcr have verified tl1at tile loop could never reach tile critical point or replaced it 
with a different form of loop. To avoid iliis problem we can usc eiilier tile 
size_type provided by vector or iterators: 

for (vector<int>: : size_ type i = 0; i<v.size(); ++i) cout << v[i) << '\n '; 

for (vector<int>: : iterator p = v.begin(); p!=v.end(); ++p) cout << •p << '\n'; 

The size_type is guaranteed to be unsigned, so tile first (unsigned integer) form 
has one more bit to play witl1 ilian tile int version above. That can be significant, 
but it still gives only a single bit of range (doubling the number of iterations that 
can be done). The loop using itcrators has no such limitation. 
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T RY T H I S  
( - • The following example may look innocent, but it is an infinite loop: 

void infinite() 
{ 

unsigned char max = 160; II very large 
for (signed char i=O; i<max; ++i) cout << int(i) << '\n'; 

Run it and explain why. 

Basically, there are two reasons for using unsigned integers as integers, as op· 
posed to using them simply as sets of bits (i.e., not using +, -. •, and /) :  

To gain that extra bit of precision 

To express the logical property that the integer can't be negative 

The former is what programmers get out of using an unsigned loop variable. 
The problem with using both signed and unsigned types is that in C++ (as in 

C) they convert to each other in surprising and hard·to·remember ways. Consider: 

unsigned int ui = -1;  
int s i  = ui; 
int si2 = ui+2; 
unsigned ui2 = ui+2; 

Surprisingly, the first initialization succeeds and ui gets the value 4294967295, 
which is the unsigned 32-bit integer with the same representation (bit pattern) as 
the signed integer -1 ("all ones"). Some people consider that neat and use -1 as 
shorthand for "all ones"; others consider that a problem. The same conversion 
rule applies from unsigned to signed, so si gets the value -1 .  As we would expect, 
si2 becomes 1 (-1+2 == 1) ,  and so does ui2. The result for ui2 ought to surprise 
you for a second: why should 4294967295+2 be 1 ?  Look at 4294967295 as a 
hexadecimal number (Oxffffffff) and things become clearer: 4294967295 is the 
largest unsigned 32-bit integer, so 4294967297 cannot be represented as a 32-bit 
integer - unsigned or not. So we say either that 4294967295+2 overflowed or 
(more precisely) that unsigned integers support modular arithmetic; that is, arith· 
metic on 32-bit integers is modulo-32 arithmetic. 

Is everything clear so far? Even if it is, we hope we have convinced you that 
playing with that extra bit of precision in an unsigned integer is playing with fire. 
It can be confusing and is therefore a potential source of errors. 
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What happens if an integer overflows? Consider: 

lnt i = 0; 
while (++i) print(i); II print i as an integer fol lowed by a space 

What sequence of values will be printed? Obviously, this depends on the defmi
tion of lnt (no, for once, the use of the capital /isn't a typo) . For an integer type 
with a linuted number of bits, we will eventually overflow. If lnt is unsigned (e.g., 
unsigned char, unsigned int, or unsigned long long), the ++ is modulo arithmetic, 
so after the largest number that can be represented we get 0 (and the loop ternli
nates). If lnt is a signed integer (e.g., signed char), the numbers will suddenly tum 
negative and start working their way back up to 0 (where the loop will temunate) .  
l<c>r example, for a signed char, we will see 1 2 . . .  126 127 -128 -127 . . .  -2 -L 

What happens if an integer overflows? The answer is that we proceed as if 
we had enough bits, but throw away whichever part of the result doesn't fit in the 
integer into which we store our result. That strategy will lose us the leftmost 
(most significant) bits. That's the same effect we see when we assign: 

int si = 257; II doesn't fit into a char 
char c = si; II implicit conversion to char 
unsigned char uc = si; 
signed char sc = si; 
print(si); print( c); print(uc); print(sc); cout << '\n ' ;  

s i  = 129; 
c =  si; 
uc = si; 
sc = si; 

II doesn't fit into a signed char 

print(si); print(c); print(uc); print(sc); 

We get 

257 

129 -127 129 -127 

The explanation of this result is that 257 is two more than will fit into 8 bits (255 
is "8 ones") and 129 is two more than can fit into 7 bits (127 is "7 ones") so the 
sign bit gets set. Aside: This program shows that chars on our machine are un· 
signed (c behaves as uc and differs from sc). 

TRY T H I S 

Draw out the bit patterns on a piece of paper. Using paper, then figure out 
what the answer would be for si=128. Then run the program to see if your 
machine agrees. 

925 
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An aside: Why did we introduce that print() function? We could try: 

cout << i << 1 1; 
However, if i was a char, we would then output it as a character rather as an inte
ger value. So, to treat all integer types uniformly, we defined 

template<class T> void print(T i) { cout << i << '\t1; } 
void print(char i) { cout << int(i) << 1\11; }  
void print(signed char i) { cout << int(i) << '\t1; } 
void print(unsigned char i) { cout << int(i) << '\t1; } 

To conclude: You can use unsigned integers exactly as signed integers (including 
ordinary arithmetic) , but avoid that when you can because it is tricky and error· 
prone. 

Try never to use unsigned just to get another bit of precision. 

If you need one extra bit, you'll soon need another. 

Unfortunately, you can't completely avoid unsigned arithmetic: 

Subscripting for standard library containers uses unsigned. 

Some people like unsigned arithmetic. 

25.5.4 Bit manipulation 
Why do we actually manipulate bits? Well, most of us prefer not to. "Bit fid
dling" is low-level and error-prone, so when we have alternatives, we take them. 
However. bits are both fundamental and very useful, so many of us can't just pre· 
tend they don't exist. This may sound a bit negative and discouraging. but tl1at's 
deliberate. Some people really love to play with bits and bytes, so it is worth re
membering that bit fiddling is something you do when you must (quite possibly 
having some fun in the process) ,  but bits shouldn't be everywhere in your code. 
To quote john Bentley : "People who play with bits will be bitten" and "People 
who play with bytes will be bytten." 

So. when do we manipulate bits? Sometimes the natural objects of our appli
cation simply are bits, so that some of the natural operations in our application 
domain arc bit operations. Examples of such domains are hardware indicators 
("flags"), low-level communications (where we have to extract values of various 
types out of byte streams) , graphics (where we have to compose pictures out of 
several levels of images), and encryption (see the next section) . 
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For example, consider how to extract Oow-level) information from an integer 
(maybe because we wanted to transmit it as bytes, the way binary 110 does) : 

void f(short val) II assume 1 6-bit, 2-byte short integer 
{ 

unsigned char left = vai&Oxff; 
unsigned char right = (val>>8)&0xff; 
II . . .  

II leftmost ( least sign ificant) byte 
II rightmost (most significant) byte 

bool negative = vai&Ox8000; 
II . . .  

II sign b i t  

Such operations are common. They are known as "shift and mask." We "shift" 
(using << or >>) to place the bits we want to consider to the rightmost (least sig
nificant) part of the word where they are easy to manipulate. We "mask" using 
and (&) together with a bit pattern (here Oxff) to eliminate (set to zero) the bits we 
do not want in the result. 

When we want to name bits, we often use enumerations. For example: 

enum Printer_flags { 
acknowledge=1 , 
paper_empty=1<<1, 
busy=1<<2, 
out_of_black=1<<3, 
out_of_color=1<<4, 
II . . .  

}; 

This defmes each enumerator to have exactly the value that its name indicates : 

out_ of_ color 16 Ox10 0001 0000 

out_of_black 8 Ox8 0000 1000 

busy 4 Ox4 0000 0100 

paper_empty 2 Ox2 0000 0010 

acknowledge Ox1 0000 0001 

Such values are useful because they can be combined independently: 

unsigned char x = out_of_color I out_of_black; 
x I= paper_empty; 

II x becomes 24 ( 1 6+8) 
ll x  becomes 26 (24+2 ) 

Note how I= can be read as "set a bit" (or as "set some bits") . Similarly, & can be 
read as "Is a bit set?" For example : 
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if (x& out_of_color) { II is out_of_color set? (yes, it is) 
II . . .  
} 

We can still use & to mask: 

unsigned char y =  x &(out_of_color I out_of_black); II x becomes 24 

Now y has a copy of the bits from x's positions 4 and 3 (out_of_color and 
out_of_black) . 

It is very common to use an enum as a set of bits. When doing that, we need 
a conversion to get the result of a bitwise logical operation "back into" the enum. 
For example: 

Flags z = Printer_flags(out_of_color I out_of_black); II the cast is necessary 

The reason that the cast is needed is that the compiler cannot know that the result 
of out_ of_ color I out_of_black is a valid value for a Flags variable. The compiler's 
skepticism is warranted: after all, no enumerator has a value 24 (out_of_color I 
out_of_black), but in this case, we know the assignment to be reasonable (but the 
compiler docs not). 

25.5.5 Bitfields 
As mentioned, the hardware interface is one area where bits occur frequently. 
Typically, an interface is defined as a mixture of bits and numbers of various 
sizes. These "bits and numbers" are typically named and occur in specific posi
tions of a word, often called a device register. C++ has a specific language facility to 
deal with such fixed layouts: bi!fields. Consider a page number as used in the page 
manager deep in an operating system. Here is a diagram from an operating sys
tem manual: 

position: 31 : 9: 

PPN: 1 22  1 3 
name: PFN unused 

6: 3: 2: 1 :  o: 
1 3 1 1 1 1 1 1 1 1 I 

CCA I dirty I global 
nonreachable valid 

The 32-bit word is used as two numeric fields (one of 22 bits and one of 3 bits) 
and four flags (1 bit each) . The sizes and positions of these pieces of data arc 
fixed. There is even an unused (and unnamed) "field" in the middle. We can ex
press this as a struct: 
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struct PPN { II R6000 Physical Page Number 

}; 

unsigned int PFN : 22 ; II Page Frame Number 
int : 3 ;  II unused 
unsigned int CCA : 3 ;  II Cache Coherency Algorithm 
bool nonreachable : 1 ;  
bool dirty : 1 ; 
bool valid : 1 ; 
bool global : 1 ;  

We had to read the manual to see that PFN and CCA should be interpreted as un
signed integers, but otherwise we could write out that struct directly from the di
agram. Bitfields fill a word left to right. You give the number of bits as an integer 
value after a colon. You can't specify an absolute position (e.g., bit 8) . If you 
"consume" more bits with bitfields than a word can hold, the fields that don't fit 
are put into the next word. Hopefully, that's what you want. Once defined, a bit
field is used exactly like other variables : 

void part_ of_ VM_system(PPN • p ) 
{ 

II . . .  
if (p->dirty) { II  contents changed 

II copy to disk 
p->dirty = 0 ; 

} 
II . . .  

Bitfields primarily save you the bother of shifting and masking to get to informa· 
tion placed in the middle of a word. For example, given a PPN called pn we could 
extract the CCA like this: 

unsigned int x = pn.CCA; II extract CCA 

Had we used an int called pni to represent the same bits, we could instead have 
written: 

unsigned int y = (pni>>4)&0x7; II extract CCA 

That is, shift pn right so that the CCA is the leftmost bit, then mask all other bits 
off with the Ox7 (i.e., last three bits set) . If you look at the machine code, you'll 
most likely fmd that the generated code is identical for those two lines. 
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The "acronym soup" (CCA, PPN, PFN) is typical of code at this level and 
makes little sense out of context. 

25.5.6 An example: simple encryption 
As an example of manipulation of data at the level of the data's representation as 
bits and bytes, let us consider a simple encryption algoritl1m: the Tiny Encryp
tion Algorithm (TEA). It was originally written by David Wheeler of Cambridge 
University (§22.2 .1 ) .  It is small but the protection against undesired decryption is 
excellent. 

Don't look too hard at the code (unless you really want to and arc willing to 
risk a headache). We present the code simply to give you the flavor of some real
world and useful bit manipulation code. H you want to make a study of encryp
tion, you need a separate textbook for tl1at. For more information and variants of 
the algorithm in other languages, see http://en.wikipedia.org/wiki!liny _Encryp
tion_Algorithm and the TEA website of Professor Simon Shepherd. Bradford 
University, England. The code is not meant to be self-explru1atory (no comments!). 

The basic idea of enciphering/deciphering (also know as encryption/decryption) 
is simple. I want to send you some text, but I don't want others to read it. Therefore, 
I transform the text in a way tllat renders it unreadable to people who don't know 
exactly how I modified it - but in such a way that you can reverse my transforma
tion and read the text. That's called enciphering. To encipher I usc an algorithm 
(which we must assume an uninvited listener knows) and a string called the "key." 
You and I both have the key (and we hope that the uninvited listener does not). 
When you get the enciphered text, you decipher it using the "key"; that is, you re
constitute the "clear text" that I sent. 

TEA takes as argument an array of two unsigned longs (v[O],v[1]) represent
ing eight characters to be enciphered, an array of two unsigned longs (w[O],w[1]) 
into which the enciphered output is written, and an array of four unsigned longs 
(k[O] .. k[J]), which is the key: 

void encipher( 
const unsigned long *const v, 
unsigned long *const w, 
const unsigned long • const k) 

unsigned long y = v[O); 
unsigned long z = v[1 );  
unsigned long sum = 0; 
unsigned long delta = Ox9E3779B9; 
unsigned long n = 32; 
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while(n-- > 0) { 
y += (z << 4 " z >> 5) + z " sum + k[sum&3]; 
sum += delta; 
z += (y << 4 " y >> 5) + y " sum + k[sum>>1 1 & 3]; 

w[OJ=y; w[l ]=z; 

Note how all data is unsigned so that we can perform bitwise operations on it 
without fear of surprises caused by special treatment related to negative numbers. 
Shifts (<< and >>) . exclusive or (") , and bitwise and (&) do the essential work 
with an ordinary (unsigned) addition thrown in for good measure. This code is 
specifically written for a machine where there are 4 bytes in a long. The code is 
littered with "magic" constants (e.g., it assumes that sizeof(long) is 4) . That's 
generally not a good idea, but this particular piece of software fits on a single 
sheet of paper. As a mathematical formula, it fits on the back of an envelope or -
as originally intended - in the head of a programmer with a good memory. 
David Wheeler wanted to be able to encipher things while he was traveling with· 
out bringing notes. a laptop, etc. In addition to being small, this code is also fast. 
TI1e variable n determines the number of iterations : the higher the number of it· 
erations, the stronger the encryption. To the best of our knowledge, for n==32 
TEA has never been broken. 

Here is the corresponding deciphering function: 

void decipher( 
const unsigned long •const v, 
unsigned long •const w, 
const unsigned long • const k) 

unsigned long y = v[O); 
unsigned long z = v[1]; 
unsigned long sum = OxC6EF3720; 
unsigned long delta = Ox9E377989; 
unsigned long n = 32; 
II sum = delta<<S, in general sum = delta * n 
while(n-- > 0) { 

z -= (y << 4 " y >> 5) + y " sum + k[sum>>11 & 3]; 
sum -= delta; 
y -= (z << 4 " z >> 5) + z " sum + k[sum&3]; 

w[OJ=y; w[l ]=z; 
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We can use TEA lik e  this to produce a file to be sent over an unsafe connection: 

int main() 
{ 

II sender 

const int nchar = 2*sizeof(long); 
const int kchar = 2*nchar; 

string op; 
string key; 
string infile; 
string outfile; 

II 64 b its 
ll 1 2 8 bits 

cout << "please enter input file name, output file name, and key:\n"; 
cin >> in file >> outfile >> key; 
while (key. size()<kchar) key += 101 ; II pad key 
ifstream inf(infile.c_str()); 
ofstream outf(outfile.c_str()); 
if ( ! inf II !outf) error("bad file name"); 

const unsigned long• k = 
reinterpret_cast<const unsigned long*>(key.data()); 

unsigned long outptr[2); 
char inbuf[nchar]; 
unsigned long• inptr = reinterpret_cast<unsigned long*>(inbuO; 
int count = 0; 

while (inf.get(inbuf[count])) { 
outf << hex; II use hexadecimal output 
if (++count == nchar) { 

encipher(inptr,outptr,k); 
II pad with leading zeros: 
outf << setw(8) << setfill( 101 ) << outptr[O] << 1 1 

<< setw(8) << setfill( 101 ) << outptr[1 ]  << 1 1 ; 
count = 0; 

if (count) { II pad 
while(count != nchar) inbuf[count++] = 101 ; 
encipher(inptr,outptr,k); 
outf << outptr[O] << 1 1 << outptr[1] << 1 1 ; 
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The essential piece of code is the while loop; the rest is just support. The while 
loop reads characters into the input buffer, inbuf, and every time it has eight 
characters as needed by TEA it passes them to encipher(). TEA doesn't care 
about characters ; in fact, it has no idea what it is enciphering. For example, you 
could encipher a photo or a phone conversation. All TEA cares about is that it is 
given 64 bits (two unsigned longs) so that it can produce a corresponding 64 bits. 
So, we take a pointer to the inbuf and cast it to an unsigned long• and pass that 
to TEA. We do the same for the key; TEA will use Lhe first 128 bits (four un-
signed longs) of the key, so we "pad" the user's input to be sure that there are 128 
bits. The last statement pads the text with zeros to make up the multiple of 64 
bits (8 bytes) required by TEA. 

How do we transmit the enciphered text·� We have a free choice, but since it 
is 'just bits" rather than ASCII or Unicode characters, we can't really treat it as 
ordinary text. Binary 1/0 (see §1 1 .3 .2) would be an option, but here we decided 
to output the output words as hexadecimal numbers : 

5b8fb57c 8 0 6 fbcce 2db7 2 3 3 5  2 3 9 8 9d1d 9 9 1 2 0 6bc 03 63a308 
8 f 8 111ac 3 8 £3 £ 2 £3 9 110a4bb c5e13 8 9 f  64d7efe8 ba133559 
4cc00fa0 6 £77e537 bde7 9 2 5 f  £87045£0 47 2bad6 e dd2 2 8bc3 
a5 6869 03 5 1cc9a6 1 fc19144e d3bcde6 2  4 fdb7dc8 4 3d56 5e5 
f ld3 f 0 2 6  b2 8 8 7 4 12 9 7 5 8 0 6 9 0  d2ea4 f8b 2d8 fb3b7 9 3 6 c fa6d 
6a13ef90 fd0 3 6 7 2 1  b8 0 0 3 5e1 7467d8d8 d32bb67 e  2 9 9 2 3 fde 
197d4cd6 7 6 874951 4 18 e8a43 e9644c2a eb10e848 ba67dcd8 
7 1152 11£ dbe3 2 0 6 9  e4 e92£87 8bf3e33e b18f942c c965b87a 
44489114 18d4 £2bc 2 5 6dalbf c57b17 8 8  9 113c372 12662c2 3  
eeb6 3c45 8 2 4 9 9 6 57 a8 2 6 5£44 7c86 6aae 7c8 0a63 1 e9147 5e1 
5991ab8b 6aedbb73 7 1b642c4 8d7 8 f 6 8b d602bfe4 d1eadde7 
55£2 083 5 1a6d3a4b 2 02c36b8 6 6 a1e0f2 7 7 1 9 9 3 £ 3  1 1d1d0ab 
74a8cfd4 4ce54 f5a e5 fda09d acbd£ 110 2 5 9a1a19 b9 64a3a9 
4 5 6 fd8a3 1e7 8 5 9 1b 07c8f5a2 10 164 1ec d0c 9d7e1 6 0dbebll 
b9ad8e72 ad3 0b8 3 9  2 0 1fc553 a3 4a7 9c4 2 17 ca84d 3 0 £666c 6  
d0 18e61c d1c 94ea6 6ca7 3 3 14 cd6 0defl 6e16870e 45b94dc0 
d7b44 fcd 9 6 e0425a 7 2 8 3 9 £7 1  d5b6427c 2 14 3 4 0 £ 9  8745882£ 
0602c1a2 b4 37c759 ca0e3 9 0 3  bd4d8 4 6 0  edd0 551e 3 1d34dd3 
c 3 f 943ed d2cae4 77 4d9d0b6 1 f647c377 Od9d3 0 3 a  ce1de974 
£9449784 d£4 6 0 3 5 0  5d42b06c d4dedb54 17 8 1 1b5f 4 £7 2 3 6 92 
14d67edb 1 1da5447 67bc059a 4 6 0 0 £047 63e43 9e3 2 e9d15f7 
4 f2 1bbbe 3d7c 5e9b 433564£5 c 3 f f2 5 97 3 a1ea1df 3 0 5e2713 
942 1d2 0 9  2b52384f f78 fbae7 d03 c1f58 6 8 3 2 6 8 0a 2 07 6 0 9 £3 
9£2 c5a59 ee3 1£147 2 ebc3651 e0 17d9d6 d6d6 0 ce2 2be1f2f9 
eb9de5a8 9 5 657e30 cad3 7 fda 7bce06£4 457daf44 eb2 57206 
4 18 c24a5 de6 87477 5c1b3155 f744fbff 2 6 8 0 0 8 2 0  92224e9d 
43c03a51 d168 f2d1 6 2 4c54fe 73c994 7 3  1bce8 fbb 62452495 
5de3 82c1 1a789445 aa0 0178a 3e583446 dcbd64c5 ddda1e73 
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fa16 8da2 6 0bc109e 7 102ce40 9 fed3a0b 4424 5e5d f6 12ed4c 
b5c 161£8 97 f f2 fc0 ldb£ 5674 4 5965600 b04c0afa b537a770 
9ab9bee7 1624516 c  Od3 e556b 6de6eda7 d159b10e 7 1d5cla6 
b8bb87de 3 16a0fc9 62c0 1a3d Oa2 4a51f 8 6 3 6 58 4 2  52dabf4d 
372ac18b 9a5df 2 8 1  3 5c9 f8d7 07c8 £9b4 3 6b6d9a5 a0 8ae934 
2 3 9efba5 5fe3fa6f 659df805 faf4c378 4c2 04 8d6 e8bf4939 
3 1 167a93 43d17 8 1 8  9 9 8ba244 55dba8ee 7 9 9e07e7 43d2 6 aef 
d56 8 2 8 6 4  0 5e64 1dc b5948ec8 03457e3f 8 0c934fe cc5ad4 f9 
Odc16bb2 a50aalef d6 2eflcd f8 fbbf67 3 0c17 f 12 7 18 £4d9a 
432 95fed 56 1de2a0 

TRY T H I S  

The key was bs; what was the text? 

Any security expert will tell you that it is a dumb idea to store clear text and 
enciphered flles together and also express an opinion about padding, about using 
a two-letter key, etc., but this is a programming book, rather than a book on com
puter security. 

We tested the programs by reading the enciphered text and getting the origi
nal back. When writing a program, it is always nice to be able to conduct a sim
ple test of correctness. 

Here is the central part of the deciphering program: 

unsigned long inptr[2); 
char outbuf[nchar+1]; 
outbuf[nchar]=O; II terminator 
unsigned long• outptr = reinterpret_cast<unsigned long*>(outbuO; 
inf.setf(ios_base : :  hex ,ios_base: : basefield); II use hexadec imal input 

while (inf>>inptr[O]>>inptr[1]) { 
decipher(inptr,outptr,k); 
outf<<outbuf; 

Note the use of 

inf.setf(ios_base : : hex ,ios_base: : basefield); 

to read the hexadecimal numbers. For decryption, it's the output buffer, outbuf, 
that we treat as bits using a cast. 
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Is TEA an example of embedded systems programming? Not specifically, 
but you can imagine it being used wherever privacy is needed or financial trans
actions are conducted - that could include many "gadgets." Anyway, TEA , \ 
demonstrates many of the characteristics of good embedded systems code: it is U 
based on a well-understood (mathematical) model that makes us confident about 
its correctness, it's small, it's fast, and it relies directly on hardware properties . 
The interface style of encipher() and decipher() is not quite to our taste. How-
ever, encipher() and decipher() were designed to be C as well as C++ functions, 
so no C++ facilities that are not also supported by C could be used. In addition, 
the many "magic constants" came from direct hand translation from the math. 

25.6 Coding standards 
There are many sources of errors. The most serious and hardest to remedy relate � 
to high-level design decisions, such as overall error-handling strategies, confor- � 
mance to certain standards (or lack thereof) , algorithms, the representation of 
data, etc. These problems are not the ones we address here. Instead, we focus on 
errors that arise from code that is poorly written, that is, code that uses program-
ming language facilities in unnecessarily error-prone ways or expresses ideas in 
ways that obscure their meaning. 

Coding standards try to address the latter kinds of problems by defining a 
"house style" that guides programmers to a subset of the C++ language that is 
deemed appropriate for a given application. For example, a coding standard for 
embedded systems programming may prohibit the use of new. Typically a cod-
ing standard also tries to ensure that code written by two programmers is more 
similar than if they had chosen freely from all possible styles. For example, a cod-
ing standard may require for-statements be used for loops (thereby banning 
while-statements) .  This can make code more uniform, and in large projects that 
can be important for maintenance. Please note that a coding standard is aimed at 
improving code for a specific kind of programming given a specific kind of pro
grammers. There is no one coding standard suitable for all C++ applications and � 
all C++ programmers. 

So, the problems that a coding standard tries to address are problems that 
arise from the way we express our solutions rather than the problems that arise 
from inherent complexities of the problem we are trying to solve with our appli
cation. We could say that coding standards are trying to address incidental com
plexities rather that inherent complexities. 

The major sources of such incidental complexities are fJ 
Overly clever programmers, who use features they don't understand or de-
light in complicated solutions 

Undereducated programmers, who don't use the most appropriate language 
and library features 
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Umzecessary variatWns in programming style, causing code performing similar 
tasks to look different and confuse maintainers 

lnappropriak programming language, leading to usc of language fearures that 
are poorly adapted to a particular application area or to a particular 
group of programmers 

Instdficient library use, leading to lots of ad hoc manipulation of low-level 
resources 

Inappropriate coding standards, causing extra work or prohibiting the best 
solution to some classes of problems, thus becoming a source of the kind 
of problems that the standards were introduced to solve 

25.6.1 What should a coding standard be? 
A good coding standard should help a progranuner write good code; that is, it 
should help the programmer by giving answers to lots of little questions that each 
programmer would otherwise have to spend time deciding on a case-by-case 
basis. There is an old engineer's proverb that says, "Form is liberating." Ideally, a 
coding standard should be prescriptive, stating what should be done. That seems 
obvious, but many coding standards are simply a list of prohibitions, with no 
guidance about what to do after having obeyed a long list of don 'ts. Just being 
told what not to do is rarely helpful and often annoying. 

The rules of a good coding standard should be verifiable, preferably by a pro
gram; that is, once we have written the code, we should be able to look at it and 
easily answer the question, "Have I broken any rule of my coding standard?" 

A good coding standard should present a rationale for the rules. Program· 
mers should not just be told, "Because that's the way we do it!" When they are, 
they resent it. Worse, programmers invariably try to subvert parts of a coding 
standard that they see as pointless and as preventing them from doing a good 
job. Don't expect to like everything about a coding standard. Even the best cod
ing standard is a compromise, and most prohibit certain practices assumed to 
cause problems - even if they never caused you a problem. For example, incon
sistent naming rules are a source of confusion, but different people have strong 
attachments to some naming conventions and strong dislikes of others. For ex
ample, I consider the CameiCodingStyle of identifiers "pug ugly" and strongly 
prefer underscore_style as cleaner and inherently more readable, and many peo
ple agree. On the other hand, many reasonable people disagree. Obviously, no 
naming standard can please everyone, but in this case, as in many others, a con
sistent style is definitely better than the lack of a standard. 

To summarize: 

A good coding standard is designed for a specific application domain 
and a specific group of programmers. 
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A good coding standard is prescriptive as well as restrictive. 

Reconuuending some "foundation" library facilities is often the most 
effective use of prescriptive rules. 

A coding standard is a set of rules for what code should look like, 

Typically specifying naming and indentation rules; e.g., "Use 
'Stroustrup layout."' 

Typically specifying a subset of a language; e.g., "Don't use new or 
throw." 

Typically specifying rules for commenting; e.g., "Every function 
must have a comment explaining what it does." 

Often requiring the use of certain libraries ; e.g., "Use <ioslream> 
rather than <stdio.h>" or "Use vector and string rather than built-in 
arrays and C-style strings." 

Common aims of most coding standards are to improve 

Reliability 

Portability 

Maintainability 

Testability 

Reusability 

Extensibility 

Readability 

937 

A good coding standard is better than no standard. We wouldn't start a (_) 
major (multi-person, multi-year) industrial project without one. 

A poor coding standard can be worse than no standard. For exan1ple, f) 
C++ coding standards that restrict programming to something like the 
C subset do harm. Unforrunately, poor coding standards are not un
common. 

All coding standards are disliked by progranuuers, even the good ones. 
Most progranuuers want to write their code exactly the way they like it. 

25.6.2 Sample rules 
Here, we would like to give you a flavor of a coding standard by listing some 
rules. Naturally, we pick rules that we hope will be useful to you. However, we 
have never seen a real-world coding standard that could be described in fewer 
than 35 pages, and most are much longer. So, we don't try to give you a complete 
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set of rules here. Furthermore, every good coding standard is designed for a par
ticular application area and for a particular set of prograrnmers. So, we don't 
make any pretenses of universality. 

The rules are numbered and contain a (brief) rationale. Many rules contain 
examples for easier comprehension. We distinguish between ruommc7uliltiollJ, 
which a programmer may occasionally decide to ignore, and finn rules, which 
must be followed. In a real set of rules, a firm rule can usually be broken (only) 
with written pennission from a supervisor. Each violation of a recommendation 
or a firm rule requires a comment in the code. Any exceptions to a rule can be 
listed in the rule. A fim1 rule is identified by a capital R in its number. A recom
mendation is identified by a lowercase r in its number. 

The rules are classified as 

General 

Preprocessor 

Naming and layout 

Class rules 

Function and expression rules 

Hard real-time 

Critical systems 

The "hard real-time" and "critical systems" rules apply only to projects clas
sified as such. 

Compared to a good real-world coding standard, our terminology is under
specified (e.g., what does "critical" really mean?) and the rules overly terse. Sinu
larities between these rules and theJSF++ rules (see §25.6.2) are not accidental ; I 
helped fonnulate theJS F++ rules. However, the code examples in this book do 
not confom1 to the rules below - after all, the book code is not critical embedded 
systems code. 

General rules 

RlOO: Any one function or class shall contain no more than 200 logical source 
lines of code (non-comments). 
Reason: Long functions and long classes tend to be complex and therefore dif
ficult to comprehend and test. 

rlOl: Any one function or class should fit on a screen and serve a single logi
cal purpose. 
Reason: A programmer looking at only part of a function or class is more 
likely to overlook a problem. A function that tries to perform several logical 
functions is likely to be longer and more complex that one that doesn't. 
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R102: All code shall confonn to ISO/IEC 14882 :2003 (£) standard C++. 
Reason: Language extensions or variations from ISO/IEC 14882 arc likely to 
be less stable, to be less well specified, and to limit portability. 

Preprocessor rules 

R200: No macros shall be used except for source control using #ifdef and 
#ifndef. 
Reason: Macros don't obey scope and type rules. Macro usc is not obvious 
when visually examining source text. 

R201 : #include shall be used only to include header (• . h) mes. 
Reason: #include is used to access interface declarations - not implementation 
details. 

R202: All #include directives shall precede all non-preprocessor declarations. 
Reason: An #include in the middle of a me is more likely to be overlooked by 
a reader and to cause inconsistencies from a name resolved differently in dif
ferent places. 

R203: Header files (• .h) shall not contain non-const variable defmitions or 
non-inlinc non-template function definitions. 
Reason: Header files should contain interface declarations - not implementa
tion details. However, constants are often seen as part of the interface, some 
very simple functions need to be inline (and therefore in headers) for per
fonnance, and current template implementations require complete template 
dcfmitions in headers. 

Naming and layout 
R300: Indentations shall be used and be consistent within the same source 
me. 
Reason: Readability and style. 

R301: Each new statement starts on a new line. 
Rt•ason: Readability. 
Ewunple: 

EYamplt•: 

int a =  7; x = a+7; f(x,9); II violation 

int a =  7; II OK 
x = a+7; // OK 
f(x,9); II OK 

if (p<q) cout << •p; II violation 

939 
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if (p<q) 
cout << •p; II OK 

R302: Identifiers should be given descriptive names. 

Identifiers may contain common abbreviations and acronyms. 

When used conventionally, x, y, i, j, etc. are descriptive. 

Use the number_of_elements style rather than the 
numberOfEiements style. 

Hungarian notation shall not be used. 

Type, template, and namespace names (only) start with a capital letter. 

Avoid excessively long names. 

£yample: Device_driver and Buffer_pool. 
Reason: Readability. 
Note: Identifiers starting with an underscore arc reserved to the language im
plementation by the C++ standard and thus banned. 
Exception: When calling an approved library, the names from that library may 
be used. 
Exception: Macro names used for #include guards. 

R303: Identifiers shall not differ only by 

A mixture of case 

The presence/absence of the underscore character 

The interchange of the letter 0 with the number 0 or the letter D 

The interchange of the letter I with the number 1 or the letter I 
The interchange of the letter S with the number 5 

The interchange of the letter ..( with the number 2 

The interchange of the letter 11 with the letter h 

Example: Head and head II viola tion 
Reason: Readability. 

R304: No identifier shall be in all capital letters and underscores. 
£yample: BLUE and BLUE_ CHEESE II violation 
Reason: All capital letters are widely used for macros that may be used in 
#include flles for approved libraries. 

Function and expression rules 

r400: Identifiers in an inner scope should not be identical to identifiers in an 
outer scope. 
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Example: 
int var = 9; { int var = 7; ++var; } II violat ion: var hides var 

Reason: Readability. 

R401: Declarations shall be declared in the smallest possible scope. 
Reason: Keeping initialization and use close minimizes chances of confusion; 
letting a variable go out of scope releases its resources. 

R402: Variables shall be initialized. 
Example: 

int var; II violation: var is not in i t ia l ized 

Reason: Uninitialized variables are a common source of errors. 
Exception: An array or a container that is immediately filled from input need 
not be initialized. 

R403: Casts shall not be used. 
Reason: Casts are a common source of errors. 
Exception.: dynamic_ cast may be used. 
Exception: New-style casts may be used to convert hardware addresses into 
pointers and void* received from sources external to a program (e.g., a GUI 
library) into pointers of a proper type. 

R404: Built-in arrays shall not be used in interfaces ; that is, a pointer as func
tion argument shall be assumed to point to a single element. Use Array_ref to 
pass arrays. 
Reason: An array is passed as a pointer and its number of elements is not 
carried along to the called function. Also, the combination of implicit array-to
pointer conversion and implicit derived-to-base conversion can lead to mem
ory corruption. 

Class roles 

R500: Use class for classes with no public data members. Use struct for classes 
with no private data members. Don't use classes with both public and private 
data members. 
Reason: Clarity. 

r501: If a class has a destructor or a member of pointer or reference type, it 
must have a copy constructor and a copy assignment defined or prohibited. 
Reason: A destructor usually releases a resource. The default copy semantics 
rarely does "the right thing" for pointer and reference members or for a class 
with a destructor. 

941 
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R502: If a class has a virrual function i t  must have a virtual destructor. 
Reasun: A class has a virrual function so that it can be used through a base class 
interface. A function that knows an object only through that base class may 
delete it and derived classes need a chance to clean up (in their destructors).  

r503: A constructor that accepts a single argument must be declared explicit . 
Reason: To avoid surprising implicit conversions. 

Hard real-time rules 

R800: Exceptions shall not be used. 
Reason: Not predictable. 

R801 : new shall be used only during starrup. 
Reason: Not predictable. 
Exceptwn: placement-new (with the standard meaning) may be used for mem
ory allocated from stacks. 

R802 : delete shall not be used. 
Reason: Not predictable; can cause fragmentation. 

R803: dynamic_cast shall not be used. 
Reason: Not predictable (assuming common implementation technique). 

R804: The standard library containers, except std : :array, shall not be used. 
Reason: Not predictable (assuming common implementation technique) . 

Critical systems rules 

R900: Increment and decrement operations shall not be used as sub-expressions. 
Example: 

Example: 

int x = v[++i]; II violation 

++i ; 
int x = v[i]; II OK 

Reason: Such an increment might be overlooked. 

R901 : Code should not depend on precedence rules below the level of arith
metic expressions. 
Example: 

Example: 

x = a•b+c; II OK 

if( a<b II c<=d) II violat ion:  parenthesize (,1<1>) and (c<=dl 
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Rl'(l.ron: confusion about precedence has been repeatedly found in code writ
ten by programmers with a weak C/C++ background. 

We left gaps in the numbering so that we could add new mles without changing 
the numbering of existing ones and still have the general classification recognized 
through the numbering. It is very common for mles to become known by their 
number, so that renumbering would be resisted by the users. 

25 .6.3 Real coding standards 
"Incrc arc lots of C++ coding standards. Most are corporate and not widely 
available. In many cases, that's probably a good thing except possibly for the pro
grammers of those corporations. Here is a list of standards that - when used ap
propriately in areas to which they apply - can do some good: 

Henricson, Mats, and Erik Nyquist. hulwtrial Strength C++: Rule.r and Recam171C1ula
tian.r. Prentice Hall, 1996. ISBN 013 1209655. A set of mles written in a 
telcconununications company. Unfortunately, these mles are somewhat dated: 
the book was published before the ISO C++ standard. In particular, templates 
don't enter the picture to the extent they would have had these mles been writ
ten today. 

Lockheed Martin Corporation. 'Joint Strike Fighter Air Vehicle Coding Standards 
for the System Development and Demonstration Program." Document Number 
2RDU00001 Rev C. December 2005. Colloquially known as 'JSF++"; a set of 
mles written at Lockheed-Martin Aero for air vehicle (read "airplane") software. 
These mles really were written by and for programmers who produce software 
upon which human lives depend. www.research.att.com/-bs1SF-AV-mles.pdf. 

Programming Research. High-integrity C++ Coding Standard Manual Version 
2.4. www.programmingresearch.com. 

Sutter, Herb, and Andrei Alexandrescu. C++ Coding Smndards: 101 Rules, Guitk
lines, and Best Practices. Addison-Wesley, 2004. ISBN 032 1 1 13586. '"This is more 
of a "meta coding standard" ; that is, instead of specific mles it has guidance on 
which mles are good and why. 

943 

Note that there is no substitute for knowing your application area, your pro- • \ 
granuning language, and the relevant programming technique. For most applica- U 
tions - and certainly for most embedded systems programming - you also need 
to know your operating system and/or hardware architecture. If you need to usc 
C++ for low-level coding, have a look at the ISO C++ committee's report on per
fomlance (ISO/IEC TR 18015, www.research.att.com/ -bs/performanceTR.pdf) ; 
by "performance" they/we primarily mean "embedded systems programming." 

Language dialects and proprietary languages abound in the embedded sys- • \ 
terns world, but whenever you can, use standardized language (such as ISO U 
C++), tools, and libraries. That will minimize your learning curve and increase 
the likelihood that your work will last. 
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�Drill 
1.  Run this: 

int  v = 1 ;  for (int i =  0;  i<sizeof(v)*8; ++i) { cout << v << ' ' ;  v <<=1 ; } 

2 .  Run that again with v declared to be an unsigned int. 
3.  Using hexadecimal literals, defme short unsigned ints : 

a. With every bit set 

b. The lowest Oeast significant bit) set 

c. The highest (most significant bit) set 

d. The lowest byte all set 

e. The highest byte all set 

f. Every second bit set (and the lowest bit 1 )  

g. Every second bit set (and the lowest bit 0) 

4. Print each as a decimal and as a hexidecimal. 
5. Do 3 and 4 using bit manipulation operations (I, &, <<) and (only) the lit

erals 1 and 0. 

Review 
1 .  What is an embedded system? Give ten examples, out of which at least 

three should not be among those mentioned in this chapter. 
2. What is special about embedded systems? Give five concerns that are 

common. 
3. Defme predictability in the context of embedded systems. 
4. Why can it be hard to maintain and repair an embedded system? 
5. Why can it be a poor idea to optimize a system for performance? 
6. Why do we prefer higher levels of abstraction to low-level code? 
7. What are transient errors? Why do we particularly fear them? 
8. How can we design a system to survive failure? 
9. Why can't we prevent every failure? 

10. What is domain knowledge? Give examples of application domains. 
1 1 . Why do we need domain knowledge to program embedded systems? 
12. What is a subsystem? Give examples . 
13. From a C++ language point of view, what are the three kinds of storage? 
14. When would you like to use free store? 
15. Why is it often infeasible to use free store in an embedded system? 
16. When can you safely use new in an embedded system? 
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17. What is the potential problem with std : :vector in the context of embed· 
ded systems? 

18. What is the potential problem with exceptions in the context of embed· 
ded systems? 

19. What is a recursive function call? Why do some embedded systems pro· 
grammers avoid them? What do they use instead? 

20. What is memory fragmentation? 
2 1 .  What is a garbage collector (in the context of programming) ? 
22. What is a memory leak? Why can it be a problem? 
23. What is a resource? Give examples. 
24. What is a resource leak and how can we systematically prevent it? 
25. Why can't we easily move objects from one place in memory to another? 
26. What is a stack? 
2 7. What is a pool? 
28. Why doesn't the use of stacks and pools lead to memory fragmentation? 
29. Why is reinterpret_cast necessary? Why is it nasty? 
30. Why are pointers dangerous as function arguments? Give examples . 
3 1 .  What problems can arise from using pointers and arrays? Give examples. 
32. What are alternatives to using pointers (to arrays) in interfaces? 
33. What is "the first law of computer science"? 
34. What is a bit'? 
35. What is a byte? 
36. What is the usual number of bits in a byte? 
37. What operations do we have on sets of bits? 
38. What is an "exclusive or" and why is it useful? 
39. How can we represent a set (sequence, whatever) of bits? 
40. How do we conventionally number bits in a word? 
41 .  How do we conventionally number bytes in a word? 
42. What is a word? 
43. What is the usual number of bits in a word? 
44. What is the decimal value of Oxf7? 
45. What sequence of bits is Oxab? 
46. What is a bitset and when would you need one? 
47. How does an unsigned int differ from a signed int? 
48. When would you prefer an unsigned int to a signed int? 
49. How would you write a loop if the number of elements to be looped over 

was very high? 
50. What is the value of an unsigned int after you assign -3 to it? 
51 .  Why would we want to manipulate bits and bytes (rather than higher· 

level types) '? 
52. What is a bitfield? 
53 . For what are bitfields used? 
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54. What is encryption (enciphering) ? Why do we use it? 
55. Can you encrypt a photo? 
56. What does TEA stand for? 
57. How do you write a number to output in hexadecimal notation? 
58. What is the purpose of coding standards? List reasons for having them. 
59. Why can't we have a universal coding standard? 
60. List some properties of a good coding standard. 
61 .  How can a coding standard do harm? 
62. Make a list of at least ten coding rules that you like (have found useful)? 

Why are they useful? 
63 . Why do we avoid ALL_CAPITAL identifiers? 

Terms 

address 
bit 
bitfield 
bitset 
coding standard 
embedded system 

Exercises 

encryption 
exclusive or 
gadget 
garbage collector 
hard real time 
leak 

pool 
predictability 
real time 
resource 
soft real time 
unsigned 

1 .  If you haven't already, do the Try this exercises in this chapter. 
2. Make a list of words that can be spelled with hexadecimal notation. Read 

0 as o, read 1 as 4 read 2 as to, etc. For example, Fool and Beef. Kindly 
eliminate vulgarities from the list before submitting it for grading. 

3 .  Initialize a 32-bit signed integer with the bit patterns and print the result: 
all zeros, all ones, alternating ones and zeros (starting with a lefunost 
one) , alternating zeros and ones (starting with a lefunost zero) , the 
1 1001 1001 100 . . .  pattern, the 001 1001 1001 1  . . .  pattern, the pattern of 
all-one bytes and all-zero bytes starting with an all-ones byte, the pattern 
of all-one bytes and all-zero bytes starting with an all-zeros byte. Repeat 
that exercise with a 32-bit unsigned integer. 

4. Add the bitwise logical operators &, j, " , and - to the calculator from 
Chapter 7. 

5 .  Write an infinite loop. Execute it. 
6. Write an infinite loop that is hard to recognize as an infmite loop. A loop 

that isn't really infinite because it terminates after completely consuming 
some resource is acceptable. 

7. Write out the hexadecimal values from 0 to 400; write out the hexadeci
mal values from -200 to 200. 

8. Write out the numerical values of each character on your keyboard. 



CHAPT E R  2 5  POSTSCR I PT 

9. Without using any standard headers (such as <limits>) or documenta
tion, compute the number of bits in an int and determine whether char is 
signed or unsigned on your implementation. 

10. Look at the bitfield example from §25.5.5. Write an example that initial· 
izes a PPN, then reads and print each field value, then changes each field 
value (by assigning to the field) , and prints the result. Repeat this exer
cise, but store the PPN information in a 32-bit unsigned integer and use 
bit manipulation operators (§25.5.4) to access the bits in the word. 

1 1 .  Repeat the previous exercise, but keep the bits in a bitset<32>. 
12.  Write out the clear text of the example from §25.5.6. 
13. Use TEA (§25.5.6) to communicate "securely" between two computers. 

Email is minimally acceptable. 
14. Implement a simple vector that can hold at most N elements allocated 

from a pool. Test it for ...¥-==1000 and integer elements. 
15. Measure the time (§26.6 .1 )  it takes to allocate 10,000 objects of random 

sizes in the [1000:0)-byte range using new; then measure the time it takes 
to deallocate them using delete. Do this twice, once deallocating in the 
reverse order of allocation and once deallocating in random order. Then, 
do the equivalent for allocating 10,000 objects of size 500 bytes from a 
pool and freeing them. Then, do the equivalent of allocating 10,000 ob
jects of random sizes in the [1000:0) -byte range on a stack and then free 
them (in reverse order) . Compare the measurements. Do each measure
ment at least three times to make sure the results are consistent. 

16. Formulate 20 coding style rules (don't just copy those in §25.6) . Apply 
them to a program of more than 300 lines that you recently wrote. Write 
a short (a page or two) comment on the experience of applying those 
rules. Did you find errors in the code? Did the code get clearer? Did some 
code get less clear? Now modify the set of rules based on this experience. 

1 7. In §25.23-4 we provided a class Array_ref claimed to make access to ele
ments of an array simpler and safer. In particular, we claimed to handle 
inheritance correctly. Try a variety of ways to get a Rectangle• into a 
vector<Circle•> using an Array_ref<Shape•> but no casts or other opera
tions involving undefined behavior. This ought to be impossible. 

Postscript 

947 

So, is embedded systems programming basically "bit fiddling"? Not at all, espe- � 
cially if you deliberately try to minimize bit fiddling as a potential problem with 
correctness. However, somewhere in a system bits and bytes have "to be fid
dled"; the question is just where and how. In most systems, the low-level code 
can and should be localized. Many of the most interesting systems we deal with 
are embedded, and some of the most interesting and challenging programming 
tasks are in this field. 
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Test i ng 

"I have only proven the code correct, 
not tested it." 

-Donald Knuth 

T
his chapter covers testing and design for correctness. l11ese 

are huge topics, so we can only scratch their surfaces. The 

emphasis is on giving some practical ideas and techniques for test· 

ing units, such as functions and classes, of a program. We discuss 

the use of interfaces and the selection of tests to run against them. 

We emphasize the importance of designing systems to simplify 

testing and the use of testing from the earliest stages of develop

ment. Proving programs correct and dealing with performance 

problems are also briefly considered. 
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26.1 What we want 
26.1.1 Caveat 

26.2 Proofs 

26.3 Testing 
26.3.1 Regression tests 
26.3.2 Unit tests 
26.3.3 Algorithms and non-algorithms 
26.3.4 System tests 
26.3.5 Testing classes 
26.3.6 Finding assumptions that do not 

hold 

2 6.1 What we want 
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26.4 Design for testing 

26.5 Debugging 

26.6 Performance 
26.6.1 Timing 

26.7 References 

Let's try a simple experiment. Write a binary search. Do it now. Don't wait until 
the end of the chapter. Don't wait until after the next section. It's important that 
you try. Now! A binary search is a search in a sorted sequence that starts at the 
middle: 

If the middle element is equal to what we are searching for, we are fin
ished. 

If the middle element is less than what we are searching for, we look at 
the right-hand half, doing a binary search on that. 

If the middle element is greater than what we are searching for, we look 
at the left-hand half, doing a binary search on that. 

The result is an indicator of whether the search was successful and some
thing that allows us to modify the element, if found, such as an index, a 
pointer, or an iterator. 

Use less-than (<) as the comparison (sorting) criterion. Feel free to use any data 
structure you like, any calling conventions you like, and any way of returning the 
result that you like, but do write the search code yourself. In this rare case, using 
someone else's function is counterproductive, even with proper acknowledg
ment. In particular, don't use the standard library algorithm (binary_search or 
equal_range) that would have been your first choice in most situations. Take as 
much time as you like. 

So now you have written your binary search function. If not, go back to the 
previous paragraph. How do you know that your search function is correct? If 
you haven't already, write down why you are convinced that this code is correct. 
How confident are you about your reasoning? Are there parts of your argument 
that might be weak? 
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ll1at was a trivially simple piece of code. It implemented a very regular and � 
well-known algorithm. Your compiler is on the order of 200K lines of code, your U 
operating system is 10M to SOM lines of code, and the safety-critical code in the 
airplane you'll fly on for your next vacation or conference is SOOK to 2M lines of 
code. Docs that make you feel comfortable? How do the techniques you used for 
your binary search function scale to real-world software sizes? 

Curiously, given all that complex code, most software works correctly most 
of the time. We do not count anything running on a game-infested consumer PC 
as "critical.'' Even more importantly. safety-critical software works correctly just 
about all of the time. We cam10t recall an exan1ple of a plane or a car crashing be
cause of a software failure over the last decade. Stories about bank software get
ting seriously confused by a check for $0.00 are now very old: such things 
essentially don't happen anymore. Yet software is written by people like you. You 
know tl1at you make mistakes; we all do, so how do "they" get it right? 

l11c most fundamental answer is that "we" have figured out how to build re- f) 
liable systems out of unreliable parts. We try hard to make every program, every 
class, and every function correct, but we typically fail our first attempt at that. 
l11cn we debug, test, and redesign to fmd and remove as many errors as possible. 
However, in any nontrivial system, some bugs will still be hiding. We know that, 
but we can't find them - or rather, we can't find them with the time and effort we 
arc able and willing to expend. Then, we redesign the system yet again to recover 
from unexpected and "impossible" events. l11e result can be systems that are 
spectacularly reliable. Note that such reliable systems may still harbor errors -
they usually do - and still occasionally work less well than we would like. How-
ever, they don't crash and always deliver minimally acceptable service. For exam-
ple, a phone system may not manage to connect every call when demand is 
exceptionally high, but it never fails to connect many calls. 

Now, we could be philosophical and discuss whether an unexpected error 
that we have conjectured and catered for is really an error, but let's not. It is more 
profitable and productive for systems builders "just" to figure how to make our 
systems more reliable. 

26.1 .1  Caveat 
Testing is a huge topic. There are several schools of thought about how testing 
should be done and different industries and application areas have different tradi
tions and standards for testing. That's natural - you really don't need the same 
reliability standard for video gan1es and avionics software - but it leads to con
fusing differences in terminology and tools. Treat this chapter as a source of ideas 
for your personal projects and as a source of ideals if you encounter testing of 
major systems. The testing of major systems involves a variety of combinations 
of tools and organizational structures that it would make little sense to try to de
scribe here. 
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26.2 Proofs 
Wait a minute! Why don't we just prove that our programs are correct, rather 
than fussing around with tests? As Edsger Dijkstra succinctly pointed out, "Test
ing can reveal the presence of errors, not their absence." This leads to an obvious 
desire to prove programs correct "much as mathematicians prove theorems." 

Unfortunately, proving nontrivial programs correct is beyond the state of the 
art (outside very constrained applications domains) , the proofs themselves can 
contain errors (as can the ones mathematicians produce), and the whole field of 
program proving is an advanced topic. So, we try as hard as we can to structure 
our programs so that we can reason about them and convince ourselves that they 
arc correct. However, we also test (§26.3) and try to organize our code to be re
silient against remaining errors (§26.4). 

26.3 Testing 
In §5. 1 1 , we described testing as "a systematic way to search for errors." Let's 
look at techniques for doing that. 

People distinguish between uniJ testing and .system testing. A "unit" is something 
like a function or a class that is a part of a complete program. If we test such units 
in isolation, we know where to look for the cause of problems when we find an 
error; any error will be in the unit that we are testing (or in the code we use to 
conduct the tests) . This contrasts with system testing, where we test a complete 
system and all we know is that an error is "somewhere in the system." Typically, 
errors found in system testing - once we have done a good job at unit testing -
relate to undesirable interactions between units. They are harder to find than er
rors within individual units and often more expensive to fix. 

Obviously, a unit (say, a class) can be composed of other units (say, functions 
and other classes) , and systems (say, an electronic commerce system) can be com
posed of other systems (say, a database, a GUI, a networking system, and an 
order validation system) , so the distinction between unit testing and systems test
ing isn't as clear as you might have thought, but the general idea is that by testing 
our units well, we save ourselves work - and our end users pain. 

One way of looking at testing is that any nontrivial system is built out of 
units, and these units are themselves built out of smaller units. So, we start testing 
the smallest units, then we test the units composed from those, and we work our 
way up until we have tested the whole system; that is, "the system" is just the 
largest unit (until we usc that as a unit for some yet larger system) . 

So, let's first consider how to test a unit (such as a function, a class, a class hi· 
crarchy, or a template). Testers distinguish between white·box testing (where you 
can look at the detailed implementation of what you are testing) and black-box 
testing (where you can look only at the interface of what you are testing) . We will 
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not make a big deal of this distinction: by all means read the implementation of 
what you test. But remember that someone might later come and rewrite that im· 
plementation, so try not to depend on anything that is not guaranteed in Lhe in
terface. In fact, when testing anything, the basic idea is to throw anything we can 
at its interface to see if it responds reasonably. 
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Mentioning that someone (maybe yourself) might change the code after you � 
tested it brings us to regression testing. Basically, whenever you make a change, 
you have to retest to make sure that you have not broken anything. So when you 
have improved a unit, you rerun its unit tests, and before you give Lhe complete 
system to someone else (or use it for something real yourself) , you run the com· 
plcte system test. 

Running such complete tests of a system is often called regression testing be· 
cause it usually includes running tests that have previously found errors to sec if 
these errors are still flXed. If not, the program has "regressed'' and needs to be 
flXed again. 

26.3.1  Regression tests 
Building up a large collection of tests that have been useful for finding errors in f.J 
the past is a major part of building an effective test suite for a system. Assume 
that you have users; they will send you bugs. Never throw away a bug report! 
Professionals use bug-tracking systems to ensure that. Anyway, a bug report 
demonstrates either an error in the system or an error in a user's understanding 
of the system. Either way it is useful. 

Usually, a bug report contains far too much extraneous information, and the 
first task of dealing with it is to produce the smallest program that exhibits the rc· 
ported problem. This often involves cutting away most of the code submitted : in 
particular, we try to eliminate the use of libraries and application code that docs 
not affect the error. Fmding that minimal test program often helps us localize the 

bug in the system 's code. and that minimal program is what is added to the re· 
gression test suite. The way we find that minimal program is to keep removing 
code until the error disappears - and then reinsert the last bit of code we re· 
moved. This we do until we run out of candidates for removal. 

Just running hundreds (or tens of thousands) of tests produced from old bug 
reports may not seem very systematic, but what we are really doing here is to sys· 
tcmatically use the experience of users and developers. The regression test suite 
is a major part of a developer group's institutional memory. For a large system, 
we simply can't rely on having the original developers available to explain details 
of the design and implementation. The regression suite is what keeps a system 
from mutating away from what the developers and users have agreed to be its 
proper behavior. 
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26.3.2 Unit tests 
OK. Enough words for now! Let's try a concrete example: let's test a binary 
search. Here is the specification from the ISO standard (§25.3.3.4) : 

template<class Forwardlterator, class T> 
bool binary_search(Forwardlterator first , Forwardlterator last , 

const T& value ) ; 

template<class Forwardlterator, class T, class Compare> 
bool binary _search(Forwardlterator first , Forwardlterator last , 

const T& value , Compare comp ) ; 
Requires: The dements e of [first ,last ) are partitioned with respect to the 
expressions e < value and !(value < e) or comp (e, value) and !comp 
(value, e). Also, for all elements e of [first , last ), e < value implies !(value 
< e) or comp (e, value) implies !comp (value, e). 
Returns: true if there is an iterator i in the range [first ,last ) that satisfies 
the con·esponding conditions: !(*i < value ) && ! (value < *i) or comp (*i. 
value ) == false && comp (value . *i) == false. 
Complexity: At most log(last - first ) + 2 comparisons. 

Nobody said that a formal specification (well, semiformal) was easy to read for 
the uninitiated. However, if you actually did the exercise of designing and imple· 
menting a binary search that we strongly suggested at the beginning of the chap· 
ter, you have a pretty good idea of what a binary search does and how to test it. 
This (standard) version takes a pair of forward iterators (§20.10. 1 )  and a value as 
arguments and returns true if the value is in the range defmed by the iterators. 
"The iterators must defme a sorted sequence. The comparison (sorting) criterion 
is <. We'll leave the second version of binary_search that takes a comparison cri· 
terion as an extra argument as an exercise. 

Here, we will deal only with errors that are not caught by the compiler, so ex· 
amples like these are somebody else's problem: 

binary _search(1 ,4,5); 
vector<inl> v(10); 

II error: c1n int is not a forward iterator 

binary _search(v.begin(),v.end(), "7"); 

binary_search(v.begin(),v.end()); 

II error: can't search for a st ring 
II in ,, vector of ints 
II error: forgot the va lue 

How can we .sy.rtematically test binary_search()? Obviously we can't just try every 
possible argument for it, because every possible argument would be every possi· 
ble sequence of every possible type of value - that would be an infinite number 
of tests ! So, we must choose tests and to choose, we need some principles for 
making a choice: 
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Test for likely mistakes (fmd the most errors) . 

Test for bad mistakes (find the errors with the worst potential consequences) .  

By "bad," we mean errors that would have the direst consequences. In general, 
that's a fuzzy notion, but it can be made precise for a specific progran1. For exam
ple, for a binary search considered in isolation, all errors are about equally bad, 
but if we used that binary_search in a program where all answers were carefully 
double-checked, getting a wrong answer from binary _search might be far more 
acceptable than having it not return because it went into an infmite loop. In that 
case, we would spend greater effort tricking binary_search into an infinite (or 
very long) loop than we would trying to trick it into giving a wrong answer. Note 
our use of "tricking" here. Testing is - among other things - an exercise in ap
plying creative thinking to the problem of "how can we get this code to misbe
haver The best testers are not just systematic, but also quite devious (in a good 
cause, of course). 

26.3.2.1 Testing strategy 

How do we go about breaking binary_search? We start by looking at binary_ 
search's requirements, that is, what it assumes about its inputs. Unfortunately, 
from our perspective as testers, it is clearly stated that [first,last) must be a sorted 
sequence; that is, it is the caller's job to ensure that, so we can't fairly try to break 
binary_search by giving it unsorted input or a [first,last) where last<first. Note 
that the requirements for binary _search do not say what it will do if we give it 
input that doesn't meet its requirements. Elsewhere in the standard, it says that it 
may throw an exception in that case, but it is not required to. These facts are 
good to remember for when we test uses of binary_search, though, because a 
caller failing to establish the requirements of a function, such as binary_search, is 
a likely source of errors. 

We can in1agine the following kinds of errors for binary_search: 

Never returned (e.g., infmite loop) 

Crash (e.g., bad dereference, infmite recursion) 

Value not found even though it was in the sequence 

Value found even though it wasn't in the sequence 

In addition, we remember the following "opportunities'' for user errors: 

The sequence is not sorted (e.g., {2, 1 ,5,-7,2, 10}) . 

The sequence is not a valid sequence (e.g., binary_search(&a[100], 
&a[50),77)) .  

How might an implementer have made a mistake (for testers to fmd) for a simple 
call binary_search(p1 ,p2,v)? Errors often occur for "special cases." In particular, 
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when considering sequences (of any sort) , we always look for the beginning and 
the end. In particular, the empty sequence should always be tested. So, let's con
sider a few arrays of integers that arc properly ordered as required: 

{ 1 ,2,3,5,8, 13,21 } 
{ }  
{ 1 }  
{ 1,2,3,4 } 
{ 1 ,2,3,4,5 } 
{ 1, 1 ,  1 ,  1 ,  1, 1 ,  1 } 
{ 0,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 } 
{ O,O,O,O,O,O,O,O,O,O,O,O,O, 1 } 

II an "ordinary sequence" 
// the empty sequence 
II just one e lement 
II even nu mber of elements 
II odd number oi e lements 
II al l  elements equal 
II different e lement at end 
II different element at end 

Some test sequences are best generated by a program: 

vector<int> v1 ;  
for (int i=O; i<100000000; ++i) v.push_back(i); II a very large sequ<'nce 

Some sequences with a random number of clements 

Some sequences with random elements (but still ordered) 

This is not as systematic as we'd have liked. After all, we 'just picked" some se
quences. However, we used some fairly general rules of thumb that often arc use
ful when dealing with sets of values; consider : 

The empty set 

Small sets 

Large sets 

Sets with extreme distributions 

Sets where "what is of interest" happens near the end 

Sets with duplicate elements 

Sets with even and with odd numbers of elements 

Sets generated using random numbers 

We use the random sequences just to see if we can get lucky (i.e., find an error) 
with something we didn't think about. It's a brute-force technique, but relatively 
cheap in terms of our time. 

Why ''odd and even"? Well, lots of algorithms partition their input se
quences, e.g .. into the first half and the last half. and maybe the programmer con· 
sidered only the odd or the even case. More generally. when we partition a 
sequence, the point where we split it becomes the end of a subsequence, and we 
know that errors are likely near ends of sequences. 
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In general. we look for 

Extreme cases (large. small, strange distributions of input, etc.) 

Boundary conditions (anything near a limit) 

What that really means, depends on the particular program we are testing. 

26.3.2.2 A simple test harness 

We have two categories of tests : tests that should succeed (e.g., searching for a 
value that's in a sequence) and tests that should fail (e.g., searching for a value in 
an empty sequence) . For each of our sequences, let's construct some succeeding 
and some failing tests. We will start from the simplest and most obvious and 
proceed to improve until we have something that's good enough for our 
binary_search example : 

int a[) = { 1 ,2,3,5,8, 13,21 }; 
if (binary _search(a,a+sizeof(a)/sizeof( •a), 1 )  == false) cout << "failed" ;  
i f  (binary_search(a,a+sizeof(a)/sizeof(*a),5) == false) cout << "failed"; 
if  (binary_search(a,a+sizeof(a)/sizeof(*a),8) = false) cout << "failed" ;  
i f  (binary_search(a,a+sizeof(a)/sizeof(*a),21 ) == false) cout << "failed" ;  
if (binary_search(a,a+sizeof(a)/sizeof(*a),-7) == true) cout << "failed"; 
if (binary _search(a,a+sizeof(a)/sizeof(*a),4) == true) cout << "failed" ;  
if (binary _search(a,a+sizeof(a)/sizeof(*a),22) == true) cout << "failed"; 

Titis is  repetitive and tedious, but it  will do for a start. In fact, many simple tests 
are nothing but a long list of calls like this. Tilis naive approach has the virtue of 
being extremely simple. Even the newest member of the test team can add a new 
test to the set. However, we can usually do better. For example, when something 
failed here. we arc not told which test failed. That's unacceptable. So: 

int a[] = { 1,2,3,5,8, 13,21 }; 
if (binary_search(a,a+sizeof(a)/sizeof(*a), 1) == false) cout << "1 failed"; 
if (binary_search(a,a+sizeof(a)/sizeof(*a),5) = false) cout << "2 failed";  
if (binary_search(a,a+sizeof(a)/sizeof( *a),8) == false) cout << "3 failed "; 
if (binary_search(a,a+sizeof(a)/sizeof(*a),21) == false) cout << "4 failed"; 
if (binary_search(a,a+sizeof(a)/sizeof( *a),-7) == true) cout << "5 failed ";  
i f  (binary _search(a,a+sizeof(a)/sizeof( •a),4) = true) cout << "6 failed" ;  
i f  (binary _search(a,a+sizeof(a)/sizeof( *a),22) == true) cout << " 7  failed" ;  

Assuming that we will eventually have dozens of tests, this will make a huge dif· 
ferencc. For testing real-world systems, we often have many thousands of tests, so 
being precise about what test failed is essential. 
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Before going further, note another example of  (semi-systematic) testing tech
nique : we tested with correct values, choosing some from the ends of the se
quence and some from "the middle." For this sequence we could have tried all 
values, but typically that's not a realistic option. For the failing values, we chose 
one from each end and one in the middle. Again, this is not perfect.ly systematic, 
but we begin to see a pattem that is useful whenever we deal with sequences of 
values or ranges of values - and that's very common. 

What's wrong with these initial tests? 

We write the same things repeatedly. 

We number the tests manually. 

The output is very minimal (not very helpful) . 

After looking at this for a while, we decided to keep our tests as data in a flle. 
Each test would contain an identifying label, a value to be looked up, a sequence, 
and an expected result. For example: 

{ 27 7 { 1 2 3 5 8  13 21} 0 }  

Tilis is test number 27. It looks for 7 in the sequence { 1 ,2,3,5,8, 13,21 } expecting 
the result 0 (meaning false) . Why do we put the test inputs in a file rather than 
placing them right into the text of the test program? Well, in this case we could 
have typed the tests straight into the program text, but having a lot of data in a 

source code flle can be messy, and often, we use programs to generate test cases. 
Machine-generated test cases are typically in data flles. Also, we can now write a 
test progran1 that we can run with a variety of flles of test cases : 

struct Test { 

} ; 

string label; 
int val; 
vector<int> seq; 
bool res; 

istream& operator>>(istream& is, Test& t); II use the described fnrmJI 

int test_all() 
{ 

int error_ count = 0; 
Test t; 
while (cin>>t) { 

bool r = binary_search( t.seq.begin(), t.seq.end(), t.val); 
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if ( r  !=t.res) { 
cout << "failure: test " << t.label 

<< " binary_search:  " 
<< t.seq.size() << " elements, val==" << t.val 
<< " -> " << t.res << '\n'; 

++error_count; 

return error _count; 

int main() 
{ 

int errors = test_all(); 
cout << "number of errors: " << errors << ''\n"; 

Here is some test input using the sequences we listed above: 

{ 1 .1 1 { 1 ,2,3,5,8, 13,21 } 1 } 
{ 1 .2 5 { 1 ,2,3,5,8, 13,21 } 1 } 
{ 1 .3 8 { 1,2,3,5,8, 13,21 } 1 } 
{ 1 .4 21 { 1,2,3,5,8, 13,21 } 1 } 
{ 1 .5 -7 { 1 ,2,3,5,8, 13,21 } 0 } 
{ 1 .6 4 { 1,2,3,5,8, 13,21 } 0 }  
{ 1 .7 22 { 1 ,2,3,5,8, 13,21 } 0 } 

{ 2 1  { } 0 }  

{ 3.1 1 { 1 } 1 } 
{ 3.2 0 { 1 }  0 }  
{ 3.3 2 { 1 }  0 }  

Here we see why we used a string label rather than a number: that way we can 

"number" our tests using a more flexible system - here using a decimal system to 
indicate separate tests for the same sequence. A more sophisticated format would 
eliminate the need to repeat a sequence in our test data flle. 

26.3.2.3 Random sequences 

When we choose values to be used in testing, we try to outwit the implementers 
(who arc often ourselves) and to use values that focus on areas where we know 
bugs can hide (e.g., complicated sequences of conditions, the ends of sequences, 
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loops, etc.) . However, that's also what we did when we tried to write and debug 
the code. So, we might repeat a logical mistake from the design when we design 
the tests and completely miss a problem. This is one reason it is a good idea to 
have someone different from the developer(s) involved with designing the tests. 
We have one technique that occasionally helps with that problem: just generate (a 
lot of) random values. For example, here is a function that writes a test descrip
tion to cout using rand_int() from §24.7: 

void make_test(const string& lab, int n, int base, int spread) 
II write a test descript ion with the label lab I() cout 
II generate ., sequence of n elements SI< Hi ing at base 
// the average distance between elements is spread 

cout << "{ " << lab << " " << n << "  { " ;  
vector<int> v; 
int elem = base; 
for (int i = 0; i<n; ++i) { II make ell'ments 

elem+= rand_int(spread); 
v.push_back(elem); 

int val = base+ rand_int(elem-base); II make search va lue 
bool found = false; 
for (int i =  0; i<n; ++i) { II print elements and see ii val is iound 

if (v[il==val) found = true; 
cout << v[i) << " " ;  

cout << "} " << found << " }\n"; 

Note that we did not use binary_search to see if the random val was in the random 
sequence. We can't use what we are testing to determine the correct value of a test. 

Actually. binary_search isn't a particularly suitable example of the brute· 
force random number approach to testing. We doubt that this will find any bugs 
that are not picked up by our "hand-crafted" tests, but often this technique is usc· 
ful. Anyway, let's make a few random tests: 

int no_of_tests = rand_int(100); 
for (int i = 0; i<no_of_tests; ++i) { 

string lab = "rand_test_"; 
make_ test(lab+to _string(i), 

II make about SO tests 

// to_string from §2 3 .2 
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rand_int(500), 
0, 
rand_int(SO)); 

II number of elements 
II base 
II spread 

Generated tests based on random numbers are particularly useful when we need 
to test the cumulative effects of many operations where the result of an operation 
depends on how earlier operations were handled, that is, when a system has 
state; see §5.2. 

The reason that random numbers arc not all that useful for binary _search is 
that each search of a sequence is independent of all other searches of that se
quence. That of course assumes that the implementation of binary_search hasn't 
done something terminally stupid, such as modifying its sequence. We have a 
better test for that (exercise 5) . 

26.3.3 Algorithms and non-algorithms 
We have used binary_search() as an example. It's a proper algorithm with 

Well-specified requirements on its inputs 

A well-specified effect on its inputs (in this case, no effects) 

No dependencies on objects that are not its explicit inputs 

Without serious constraints imposed by the environment (e.g., no speci
fied time, space, or resource-sharing requirements) 

It has obvious and explicitly stated pre- and post-conditions (§5. 10) . In  other words, 
it's a tester's dream. Often, we are not so lucky: we have to test messy code that (at 
best) is defined by a somewhat sloppy English text and a couple of diagrams. 

Wait a minute! Are we indulging in sloppy logic here? How can we talk 
about correctness and testing when we don't have a precise specification of what 
the code is supposed to do? The problem is that much of what needs to be done 
in software is not easy to specify in perfectly clear mathematical terms. Also, in 
many cases where it in theory could be specified like that, the math is beyond the 
abilities of the programmers who write and test the code. So we are left with the 
ideal of perfectly precise specifications and a reality of what someone (such as us) 
can manage under real-world conditions and time pressures. 

So. assume that you have a messy function that you have to test. By "messy" 
we mean: 

Inputs: Its requirements on its (explicit or implicit) inputs are not specified 
quite as well as we would like. 

Outputs: Its (explicit or implicit) outputs are not specified quite as well as 
we would like. 
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Resources: Its use of resources (time, memory, fUes, etc.) are not specified 
quite as well as we would like. 

By "explicit or implicit" we mean that we have to look not just at the formal pa
rameter and the return value, but also on any effects on global variables, 
iostreams, flles, free-store memory allocation, etc. So, what can we do? First of 
all, such a function is almost certainly too long - or we could have stated its re
quirements and effects more clearly. Maybe we arc talking about a function that 
is five pages long or uses "helper functions" in complicated and non-obvious 
ways. You may think that five pages is a lot for a function. It is, but we have seen 
much, much longer functions than that. Unfortunately, they arc not uncommon. 

If it is our code and if we had time, we would first of all try to break such a 

"messy function" up into smaller functions that each come closer to our ideals of 
a well-specified function and first test those. However, here we will assume that 
our aim is to test the software - that is, to systematically fmd as many errors as 
possible - rather than (just) fixing bugs as we find them. 

So, what do we look for? Our job as testers is to find errors. Where are bugs 
likely to hide? What characterizes code that is likely to contain bugs? 

Subtle dependencies on "other code": look for use of global variables, 
non-const-reference arguments, pointers, etc. 

Resource management: look for memory management (new and delete), 
file use, locks, etc. 

Look for loops: check end conditions (as for binary_search()). 

if-statements and switches (often referred to as "branching") :  look for er
rors in their logic. 

Let's look at examples of each. 

26.3.3.1 Dependencies 

Consider this nonsense function: 

int do_dependent(int a, int& b) II messy function 
II undisc ip l ined dependencies 

int val ; 
cin>>val; 
vec[val] += 10; 
cout << a; 
b++; 
return b; 
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To test do_ dependent(). we can't just synthesize sets of arguments and see what 
it does with them. We have to take into account that it uses the global variables 
cin. eout, and vee. That's pretty obvious in this little nonsense function, but in 
real code tl1is may be hidden in a larger amount of code. Fortunately. there is 
software that can help us find such dependencies. Unfortunately, it is not always 
easily available or widely used. Assuming that we don't have analysis software to 
help us, we go through the function line by line, listing all its dependencies. 

To test do_ dependent(), we have to consider 

Its inputs : 

The value of a 

Tbe value of b and the value of the int referenced by b 

lne input from cin (into val) and the state of cin 

The state of eout 

The value of vee. in particular, the value of vee[val] 

Its outputs: 

The return value 

The value of the int referenced by b (we incremented it) 

The state of cin (beware of stream state and format state) 

The state of eout (beware of stream state and format state) 

The state of vee (we assigned to vee[val]) 

Any exceptions that vee might have thrown (vec[val] might be out of 
range) 
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This is a long list. In fact, that list is longer that the function itself. This goes a () 
long way toward explaining our dislike of global variables and our concerns 
about non-eonst references (and pointers) . There really is something very nice 
about a function that just reads its arguments and produces a result as a return 
value: we can easily understand and test it. 

Once the inputs and outputs are identified, we are basically back to the 
binary_seareh() case. We simply generate tests witl1 input values (for explicit and 
implicit inputs) to see if tl1ey give the desired outputs (considering both implicit 
and explicit outputs). With do_ dependent(), we would probably start with a 
very large val and a negative val. to see what happens. It looks as if vee had bet
ter be a range-checked vector (or we can very simply generate really bad errors) . 
We would of course check what the documentation said about all those inputs 
and outputs, but with a messy function like that we have little hope of the specifi
cation being complete and precise, so we will just break the functions (i.e., find 
errors) and start asking questions about what is correct. Often, such testing and 
questions should lead to a redesign. 
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Consider this nonsense function: 
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void do_resources1(int a ,  int b ,  const char• s )  II messy function 
II u ndiscipl ined resource use 

FILE* f = fopen(s, "r"); 
int• p = new int[a]; 
if (b<=O) throw Bad_arg(); 
int• q = new int[b]; 
delete[] p; 

II open fi le (C style) 
II al locate some memory 
II maybe throw an exception 
II ,, I locale some more memory 
II dea l locate the memory pointed to by p 

To test do_resources1 (), we have to consider whether every resource acquired 
has been properly disposed of, that is, whether every resource has been either re· 
leased or passed to some other function. 

Here, it is obvious that 

The file named s is not closed 

The memory allocated for p is leaked if b<=O or if the second new throws 

The memory for q is leaked if O<b 

In addition, we should always consider the possibility that an attempt at opening 
a flle might fail. To get this miserable result, we deliberately used a very old
fashioned programming style (fopen() is the standard C way of opening fUes) . 
We could have made the job for testers more straightfmward by writing 

void do_resources2(int a, int b, const char• s) II less messy function 
{ 

ifstream is(s); 
vector<int>v1(a); 
if (b<=O) throw Bad_arg(); 
vector<int> v2(b); 

II open fi le 
II create vector !owning memory) 
II maybe throw an exception 
II create another vector (owning memory I 

Now every resource is owned by an object with a destructor that will release it. 
Considering how we could write a function more simply (more cleanly) is some
times a good way to get ideas for testing. The "Resource Acquisition Is Initializa
tion" (RAil) technique from §1 9.5.2 provides a general strategy for this kind of 
resource management problem. 

Please note that resource management is not just checking that every piece of 
memory allocated is deleted. Sometimes we receive resources from elsewhere (e.g., 
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as an argument), and sometimes we pass resources out of a function (e.g., as a return 
value). It can be quite hard to detennine what is right about such cases. Consider: 

FILE• do_resources3(int a, int• p, const char• s) 
II undiscip l ined resource passing 

FILE• f = fopen(s, "r"); 
delete p; 
delete var; 
var = new int[27); 
return f; 

II messy iunction 

Is it right for do_resources3() to pass the (supposedly) opened file back as the re
turn value? Is it right for do_resources3() to delete the memory passed to it as 
the argument p? We also added a really sneaky use of the global variable var (ob
viously a pointer) .  Basically, passing resources in and out of functions is common 
and useful, but to know if it is correct requires knowledge of a resource manage
ment strategy. Who owns the resource? Who is supposed to delete/release it? 
The documentation should clearly and simply answer those questions. (Dream 
on.) In either case, passing of resources is a fertile area for bugs and a tempting 
target for testing. 
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Note how we (deliberately) complicated the resource management example • \ 
by using a global variable. Things can get really messy when we start to mix the U 
sources of likely bugs. As programmers, we try to avoid that. As testers, we look 
for such examples as easy pickings. 

26.3.3.3 Loops 

We have looked at loops when we discussed binary_search(). Basically most er
rors occur at the ends : 

Is everything properly initialized when we start the loop? 

Do we correctly end with the last case (often the last element)? 

Here is an example where we get it wrong: 

int do_loop(vector<int>& v) 
II undiscipl ined loop 

int i ;  
int sum; 

II messy function 

while(i<=vec.size()) sum+=v[i); 
return sum; 
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There are three obvious errors. (What are they?) In addition, a good tester will 
immediately spot the opportunity for an overflow where we are adding to sum: 

Many loops involve data and might cause some sort of overflow when 
they are given large inputs. 

A famous and particularly nasty loop error, the buffer overflow, falls into the 
category that can be caught by systematically asking the two key questions about 
loops : 

char buf[MAXJ; II fixed-size buffer 

char• read_line() II dangerously sloppy 
{ 

int i =  0; 
char ch; 
while(cin.get(ch) && ch l='\n ') buf[i++] = ch; 
buf[i+1] = 0; 
return buf; 

Of course, you wouldn't write something like thad (Why not? What's so wrong 
with read_line()?) However, it is sadly common and comes in many variations, 
such as 

II dangerously sloppy: 
gets(buO; II read a l ine into buf 
scanf("%s",bu0; II read a l ine into buf 

Look up gets() and scanf() in your documentation and avoid them like the 
plague. By "dangerous," we mean that such buffer overflows are a staple of 
"cracking" - that is, break-ins - on computers. Some implementations now warn 
against gets() and its cousins for exactly this reason. 

26.3.3.4 Branching 
Obviously, when we have to make a choice, we may make the wrong choice. 
This makes if-statements and switch-statements good targets for testers. There 
are two major problems to look for :  

Are all possibilities covered? 

Are the right actions associated with the right possibilities? 
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Consider this nonsense function: 

void do_branch1 (int x, int y) II messy function 
II undisc ip l ined use of if 

if (x<O) { 
if (y<O) 

cout << "very negative\n"; 
else 

cout << "somewhat negative\n"; 

else if (X>O) { 
if (y<O) 

cout << "very positive\n" ;  
else 

cout << "somewhat positive\n";  

llte most obvious error here is that we "forgot" the case where x i s  0.  When test
ing against zero (or for positive and negative values), zero is often forgotten or 
lumped with the wrong case (e.g., considered negative) .  Also, there is a more sub
tle (but not uncommon) error lurking here: the actions for (X>O && y<O) and (X>O 
&& y>=O) have ''somehow" been reversed. This happens a lot with cut-and-paste 
editing. 

The more complicated the use of if-statements is, the more likely such errors 
become. From a tester's point of view, we look at such code and try to make sure 
tltat every branch is tested. For do_branch1 () the obvious test set is 

do_branch1(-1,-1);  
do_branch1 (-1,  1 ); 
do _branch 1 (1 ,- 1); 
do_branch1(1,  1 ) ;  
do_branch1(-1,0); 
do_branch1 (0,-1); 
do_branch1 (1,0) ; 
do_branch1(0,1 );  
do_branch1(0,0); 

Basically, that's the brute-force "try all the alternatives" approach after we noticed 
that do_branch1() tested against 0 using < and >. To catch the wrong actions for 
positive values of x, we have to combine the calls with their desired output. 
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Dealing with switch-statements i s  fundamentally s imilar  to dealing with if
statements. 

void do_branch1(int x, int y) II messy function 
II undiscipl ined use of switch 

if (y<O && y<=l) 
switch (x) { 
case 1 :  

cout << "one\n"; 
break; 

case 2: 
cout << "two\n";  

case 3:  
cout << "three\n";  

Here we have made four classical mistakes: 

We range checked the wrong variable (y instead of x) . 

We forgot a break statement leading to a wrong action for x==2. 

We forgot a default case (thinking we had taken care of that with the if
statement). 

We wrote y<O when we meant to say O<y. 

As testers, we always look for unhandled cases. Please note that 'just fixing the 
problem" is not enough. It may reappear when we are not looking. As testers, we 
want to write tests that systematically catch errors. If we just fixed this simple 
code, we may very well get our fix wrong so that it either doesn't solve the prob
lem or introduces new and different errors. The purpose of looking at the code is 
not really to spot errors (though that's always useful) ,  but to design a suitable set 
of tests that will catch all errors (or, more realistically, will catch many errors).  

Note that loops have an implicit "if'': they test whether we have reached the 
end. Thus loops are also branching statements. When we look at programs con
taining branching, the flrst question is always, "Have we covered (tested) every 
branch?" Surprisingly that is not always possible in real code (because in real 
code, a function is called as needed by other functions and not necessarily in all 
possible ways) .  Consequently, a common question for testers is, "What is your 
code coverage?" and the answer had better be, "We tested most branches,'' fol
lowed by an explanation of why tl1e remaining branches are hard to reach. 1 OOOfo 
coverage is the ideal. 
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26.3.4 System tests 
Testing any significant system is a skilled job. For example, the testing of the com
puters that control telephone systems takes place in specially constructed rooms 
with racks full of computers simulating the traffic of tens of thousands of people. 
Such systems cost millions and are the work of teams of very skilled engineers . 
After it is deployed, a main telephone switch is supposed to work continuously 
for 20 years with at most 20 minutes of downtime (for any reason, including 
power failures, flooding, and earthquakes) . We will not go into detail here - it 
would be easier to teach a physics freshman to calculate course corrections for a 
Mars probe - but we'll try to give you some ideas that could be useful for a 
smaller project or for understanding the testing of a larger system. 
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Frrst of all, please remember that the purpose of testing is to fmd errors, es- • 1 
pecially potentially frequent and potentially serious errors. It is not simply to U 
write and run the largest number of tests. This implies that some understanding 
of the system being tested is highly desirable. Even more than for unit testing, ef
fective system testing relies on knowledge of the application (domain knowl
edge). Developing a system takes more than just knowledge of programming • 1 
language issues and computer science; it requires an understanding of the appli- U 
cation areas and of the people who use the applications. This is something we 
fmd important for motivating us to work with code: we get to see so many inter
esting applications and meet interesting people. 

For a complete system to be tested, it has to be built out of all of its parts 
(units) . This can take significant time, so many system tests are run just once a 
day (often at night while the developers are supposed to be asleep) after all unit 
tests have been done. Regression tests are a key component here. The areas of a 
program in which we are most likely to find errors are new code and areas of 
code where errors were found earlier. So running the collection of old tests (the 
regression tests) is essential; without those a large system will never become sta
ble. We would introduce new bugs as fast as we removed old ones. 

Note that we take it for granted that when we fix a few errors, we acciden- • \ 
tally introduce a few new ones. We hope the number of new bugs is lower than U 
the number of old ones that we removed, and that the consequences of the new 
ones are less severe. However, at least until we have rerun our regression tests 
and added new tests for our new code, we must assume that our system is bro-
ken (by our bug fixes) .  

26.3.4.1 Testing GUis 

Imagine sitting in front of a screen trying to be systematic about testing a pro
gram with an elaborate graphical user interface. Where do I click the mouse? In 
what order? What values do I enter? In what order? For any significant program, 
tins is hopeless. There are so many possibilities that we could consider hiring a 
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whole bunch o f  pigeons to peck at the screen at random (they work for bird 
feed!) .  Hiring large numbers of "ordinary novice users" and seeing where they 
"peck" is indeed not uncommon and also necessary, but it is not a systematic 
strategy. Any real solution has to involve some repeatable sequence of tests. This 
typically involves designing an interface to the application that bypasses the 
GUI. 

Why is it necessary to sit a human in front of a GUI application and "peck"? 
The reason is simply that testers cannot anticipate every action that a devious, 
clwnsy, naive, sophisticated, or hurried user can make. Even with the best and 
most systematic testing, we still need real people to try out the system. Experi
ence shows that for any significant system real users will do things that even ex
perienced designers, implementers, and testers have failed to anticipate. Or as a 
programmer's proverb has it, "As soon as you build a foolproof system. nature 
produces a better fool." 

So, the ideal for testing is that the GUI simply composes calls to some well
defmed interface to the "main program" ; that is, the GUI simply provides 1/0, 
and any significant processing is done in isolation from 110. Doing this implies 
that we can provide a different (non-graphical) interface: 

User User 

GUI Text I/O 

"Main program" 

That allows us to write or generate scripts for the "main program" just as we did 
for our unit testing (§26.3.2) . Then we can test the "main program" in isolation 
from the GUI: 
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Test output 
Script 

Text I/O 

"Main program" 

Interestingly, this also allows us to semi-systematically test the GUI: we can run 
scripts using the text 110 and watch the effect on the GUI (assuming that we 
send the output from the main progran1 to the GUI as well as the text-I/O inter
face) .  More radically, we might bypass the "main application" while we test the 
GUI by providing text commands that go "directly" to the GUI through a little 
text-to-G UI ·command ''translator" : 

Test output 
Script 

GUI 

Tllis illustrates two important aspects of good testing: 
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Parts of a system should (as far as possible) be testable in isolation. Only • \ 
"units" with clearly defmed interfaces arc testable in isolation. � 
Tests should (as far as possible) be repeatable. Essentially no test that in
volves a human is repeatable. 
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This i s  also a n  example of the "design for testing" that we have alluded to: some 
programs are far easier to test than others, and if we think about testing from the 
very onset of our design, we can build systems that are better organized and eas
ier to test (§26.2). Better organized? Consider: 

User 

1 �r with 

This diagram is obviously simpler than the diagrams above. We can start build
ing this system with less forethought - just use our favorite GUI library wher· 
ever in the code we need to communicate with the user. It will probably also 
require less code than our hypothetical application with both text and graphical 
1/0. How then can our application using an explicit interface and more parts be 
better organized than a "simple and straightforward" application where the GUI 
logic is dispersed throughout the code? 

Well, to have two interfaces, we need to carefully define the interface be
tween the "main program" and 1/0. In fact, we have to define a common 1/0 in
terface layer (similar to the "translator" we used to test the GUI in isolation from 
the "main program": 

GUI Text I/O 

1/0 interface 

"Main program" 
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We have seen an example o f  this : the graphical interface classes in Chapters 13-
16 provided an example. They isolate a "main program" (that is, the code you 
wrote) from the "off-the-shelf' GUI system: FLTK, Windows, Linux's GUI, 
whatever. With this design we can use any 1/0 system. 
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Is this important? We think it is immensely so. First, it helps testing, and • \ 
without systematic testing it is hard to be serious about correctness. Second, it of· U 
fers portability. Consider the following scenario : You have started a small com-
pany and written your initial application for an Apple because you happen to like 
that computer. Now, your company is getting successful, and you notice that 
most of your potential customers run their programs on Wmdows machines and 
non-Mac Linux systems. What do you do? With the "simple" organization of the 
code with (Apple Mac) GUI commands scattered throughout your code, you 
must rewrite everything. That's OK, because it (relying on ad hoc testing) proba-
bly has many hidden errors. But consider the alternative where the "main pro· 
gram" kept the GUI at arm's length (to simplifY systematic testing) . Now you 
simply interface another GUI to your interface classes (the "translator" on the di· 
agram) and keep most code unchanged across systems: 

GUI 3 
GUI 2 

GUI 1 

"Main program" 

Actually, this design is an example of the use of "thin" explicit interfaces to ex· f) 
plicitly separate parts of a program. It is similar to the use of "layers" that we saw 
in §12.4. Testing really reinforces the desire to have a program partitioned into 
clearly delimited parts (with interfaces that we can use for testing) . 

26.3.5 Testing classes 
Testing a class is technically unit testing, but since there are typically several 
member functions and some state involved, testing a class takes on aspects of sys· 
tern testing. This is even more true if the class we are trying to test is a base class, 
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so that we have to consider it in several contexts (as defined by different derived 
classes). Consider the Shape class from §14.2 : 

class Shape { II dea ls with color and style, and holds sequence oi l i nes 
public: 

void draw() const; II deal with color and draw l i nes 
virtual void move(int dx, int dy); II move the shape +=dx and += dy 

void set_color(Color col); 
Color color() const; 

void set_style(Line_style sty); 
Line_style style() const; 

void set_fill_color(Color col); 
Color fill_color() const; 

Point point(int i) const; 
int number_of_points() const; 

virtual -Shape() { } 

II read-only access to points 

protected: 
Shape(); 
virtual void draw_lines() const; 
void add(Point p); 
void set_point(int i,Point p); 

II draw the appropri,lte l i nes 
II add p to points 
II points l i l =p; 

private: 

} ; 

vector<Poinl> points; II not used by c1 l l  shapes 
Color lcolor; II color for l i nes and characters 
Line_style Is; 
Color fcolor; II fi l l  color 

Shape(const Shape&) ; II prevent copy ing 
Shape& operator=(const Shape&); 

How would we go about testing that? Let's first consider what (from a testing 
point of view) makes Shape different from binary_search: 

Shape has several functions. 

A Shape has a mutable state (we can add points, change color, etc.) ;  that 
is, the effect of one function can affect the behavior of another function. 
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Shape has virtual functions; that is, the behavior o f  a Shape depends on 
what (if any) class has been derived from it. 

Shape is not an algorithm. 

A change to a Shape can have an effect on the screen. 

The last point is really nasty. This basically means that we have to have a human 
sit and watch to see if a Shape behaves as intended. This is not conducive to sys
tematic, repeatable, and affordable testing. As mentioned in §26.3.4. 1 ,  we'll often 
go out of our way to avoid that. However, for now, we will assume an alert 
watcher who'll note if the image on the screen deviates from what was required. 
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Note an important detail: a user can add points, but not remove them. A user • \ 
or a Shape can read points, but not change them. From the point of view of test- � 
ing, anything that does not (or at least isn't supposed to) change eases our work. 

What can we test and what can't we test? To test Shape, we must try to test 
in isolation and in combination with a couple of derived classes. However, to test 
that Shape works correctly for a particular derived class, we have to test that de
rived class. 

We note that basically a Shape has a state (value) defmed by four data 
members: 

vector<Poinl> points; 
Color lcolor; II co lor for l ines and characters 
Line_style Is; 
Color fcolor; II fi l l  color 

All we can do to a Shape is to make changes to those and see what happens. For
tunately, the only way to change the data members is through the interface de
fmed by the member functions. 

The simplest Shape is a Line, so we start (using the most naive style) by mak
ing one and then making all the changes we can: 

Line ln(Point(10, 10), Point(100, 100)); 
ln .draw(); II see i f  i t  appears 

II check the points: 
if ( ln.number_of_points() != 2) cerr << "wrong number of points";  
if (ln.point(O) I=Point(10,10)) cerr<< "wrong point 1 " ; 
if (ln.point(1 ) !=Point(100,100)) cerr<< "wrong point 2"; 

for (int i=O; i<10; ++i) { 
ln.move(i+S,i+S); 
ln .draw(); 

II see if it moves 
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for (int i=O; i<10; ++i) { 
ln.move(i-5,i-5); 
ln.draw(); 

II see if it moves back to where it started 

if (point(O) !=Point(10,10)) cerr<< "wrong point 1 after move"; 
if (point(1 ) !=Point(100, 100)) cerr<< "wrong point 2 after move"; 

for (int i = 0; i<100; ++i) { II see i i  the color changes correct ly 
ln.set_color(Color(i*100)); 
if (ln.color() != i*100) cerr << "bad set_ color"; 
ln.draw(); 

for (int i =  0; i<100; ++i) { II see ii the style changes correct ly 
ln.  set_style(Line_style(i* 5)) ;  
if (ln.style() ! = i* 5)  cerr << "bad set_style";  
ln.draw(); 

In principle, this tests creation, movement, color, and style. In reality. we need to 
pick our test cases far more carefully (and deviously), just as we did for 
binary_search. Again, we will almost certainly conclude that reading in a descrip
tion of what tests to run from a fUe is a better solution and we'll find a better way 
of reporting errors. 

Also, we'll find that no human can keep up with the changes to the Shape, so 
we have just two alternatives. We can 

Slow down the program so that a human can keep up 

Find a representation of the Shape that we can have a program read and 
analyze 

What is almost completely missing so far is testing of add(Point). For that, we'd 
probably use an Open_polyline. 

26.3.6 Finding assumptions that do not hold 
The specification of binary _search clearly stated that the sequence in which we 
search must be sorted. TI1at deprived us of many opportunities for sneaky unit 
tests. But obviously there are opporrunities for writing bad code that we have not 
devised tests to detect (except for the system tests).  Can we usc our understand· 
ing of a system's "units" (functions, classes, etc.) to devise better tests? 

Unfortunately, the simplest answer is no. As pure testers, we cannot change 
the code, but to detect violations of an interface's requirements (pre-conditions), 
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someone must either check before each call or as part of the implementation of 
each call (see §5.5). However, if we are testing our own code, we can insert such • \ 
tests. If we are testers and the people who write the code will listen to us (that's U 
not always the case) , we can tell them about the unchecked requirements and 
have them ensure that they are checked. 

Consider again binary_search:  we couldn't test that the input sequence 
[first: last) really was a sequence and that it was sorted (§26.3.2.2). However, we 
could write a function that does check: 

template<class Iter, class T> 
bool b2(1ter first, Iter last, const T& value) 
{ 

II check ii !i irst : l asl ) is c1 sequence: 
if (last<first) throw Bad_sequence(); 

II check ii the sequence is ordered: 
if (2<last-first) 

for (Iter p = first+ 1; p<last; ++p) 
if (*p<*(p-1)) throw Not_ ordered(); 

II a l l 's OK, ca l l  binary_search: 
return binary _search(first,last,value); 

Now, there arc reasons why binary_search isn't written with such tests, including 
these: 

The test for last<first can't be done for a forward iterator; for example, 
the iterator for std: : list does not have a <  (§B.3.2). In general, there is no 
really good way of testing that a pair of iterators defines a sequence 
(starting to iterate from first hoping to meet last is not a good idea) . 

Scanning the sequence to check that the values are ordered is far more 
expensive than executing binary_search itself (the real purpose of 
binary_search is not to have to blindly walk through the sequence look
ing for a value the way std : : find does). 

So what could we do? We could replace binary_search with b2 when we are test
ing (only for calls to binary_search with random-access iterators, though). Alter
natively, we could have the implementer of binary_search insert code that a 
tester could enable: 
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template<class Iter, class T> II warning: contains pseudo code 
bool binary_search (Iter first, Iter last, const T& value) 
{ 

if (test enabled) { 
if (Iter is a random access iterator) { 

II check if !fi rst : lasl) is a sequence: 
if (last<first) throw Bad_sequence(); 

II check i f  the sequence is ordered: 
if (first! =last) { 

Iter prev = first; 
for (Iter p = ++first; pl=last; ++p, ++ prev) 

if (*p<*prev) throw Not_ ordered(); 

II now do binary_search 

Since the meaning of test enabled depends on how testing of code is arranged 
(for a specific system in a specific organization) , we have left it as pseudo code: 
when testing your own code, you could simply have a test_enabled variable. We 
also left the Iter is a random access iterator test as pseudo code because we 
haven't explained "iterator traits." Should you really need such a test, look up 
iJeralor traits in a more advanced C++ textbook. 

26.4 Design for testing 
When we start writing a program, we know that we would like it to eventually be 
complete and correct. We also know that to achieve that, we must test it. Conse
quently, we try to design for correctness and testing from day one. In fact, many 
good programmers have as their slogan "Test early and often" and don't write 
any code before they have some idea about how they would go about testing it. 
Thinking about testing early helps to avoid errors in the first place (as well as 
helping to fmd them later) . We subscribe to that philosophy. Some programmers 
even write unit tests before they implement a unit. 

The example in §26.3 .2.1 and the examples in §26.3.3 illustrate these key 
notions: 

Use well-defmed interfaces so that you can write tests for the use of tl1ese 
interfaces. 

Have a way of representing operations as text so that they can be stored, 
analyzed, and replayed. This also applies to output operations. 
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Embed tests of  unchecked assumptions (assertions) in the calling code to 
catch bad arguments before system testing. 

Minimize dependencies and keep dependencies explicit. 

Have a clear resource management strategy. 

Philosophically, this could be seen as enabling unit-testing techniques for sub· 
systems and complete systems. 
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If performance didn't matter, we could leave the test of the (otherwise) un· • 1 
checked assumptions (requirements, pre-conditions) enabled all the time. How· U 
ever, there are usually reasons why they are not systematically checked. For 
exan1ple, we saw how checking whether a sequence is sorted is both complicated 
and far more expensive than using binary_sort. Consequently, it is a good idea to 
design a system that allows us to selectively enable and disable such checks. For 
many systems, it is a good idea to leave a fair number of the cheaper checks en· 
abled even in the fmal (shipping) version: sometimes "impossible" things happen 
and we would prefer to know about them from a specific error message rather 
than from a simple crash. 

26.5 Debugging 
Debugging is an issue of technique and attitude. Of these, attitude is the more im- • 1 

portant. Please revisit Chapter 5. Note how debugging and testing differ. Both U 
catch bugs, but debugging is much more ad hoc and typically concerned with re· 
moving known bugs and implementing features. Whatever we can do to make 
debugging more like testing should be done. It is a slight exaggeration to say that 
we love testing, but we definitely hate debugging. Good early unit testing and de· 
sign for testing help minimize debugging. 

26.6 Performance 
Having a program correct is not enough for it to be usefuL Even assuming that it .\ 
has sufficient facilities to make it useful, it must also provide appropriate per· � 
fonnance. A good program is "efficient enough"; that is, it will run in an accept· 
able time given the resources available. Note that absolute efficiency is 
uninteresting, and an obsession with getting a program to run fast can seriously 
damage development by complicating code (leading to more bugs and more de
bugging) and making maintenance (including porting and performance tuning) 
more difficult and costly. 

So, how can we know that a program (or a unit of a program) is "efficient 
enough"? In tl1e abstract we cannot know, and for many programs the hardware 
is so fast that the question doesn't arise. We have seen products shipped that were 
compiled in debug mode (i.e., running about 25 times slower than necessary) to 
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enable better diagnostics for errors occurring after deployment (this can happen 
to even the best code when it has to coexist with code developed "elsewhere") . 

Consequently, the answer to the "Is it efficient enough?" question is: "Mea
sure how long interesting test cases take." To do that, you obviously have to 
know your end users well enough to have an idea of what they would consider 
"interesting" and how much time such interesting uses can acceptably take. Logi
cally, we simply clock our tests with a stopwatch and check that none consumes 
an unreasonable amount of time. This becomes practical when we use functions 
such as clock() (§26.6. 1 )  to do the timing for us, and we can automatically com
pare the time taken by tests with estimates of what is reasonable. Alternatively (or 
additionally) we can record how long tests take and compare them to earlier tests 
runs. This way we get a form of regression test for performance. 

Some of the worst performance bugs are caused by poor algorithms and can 
be found by testing. One reason for testing with large sets of data is to expose in
efficient algorithms. As an example, assume that an application has to make sums 
of the elements in rows of a matrix (using the Matrix library from Chapter 24) . 
Someone supplied an appropriate function: 

double row_sum(Matrix<double,2> m, int n); II sum of elements in m in i  

Now someone uses that to generate a vector of sums where v[n] is the sum o f  the 
elements of the first n rows: 

double row_accum(Matrix<double,2> m, int n) II sum of elements in m iO:n) 
{ 

double s =  0; 
for (int i=O; i<n; ++n) s+=row_sum(m,i);  
return s; 

II compute accumulated sums of rows of m: 
vector<double> v; 
for (int i = 0; i<m.dim10; ++i) v.push_back(row_accum(m,i+1 )); 

You can imagine this to be part of a unit test or executed as part of the application 
exercised by a system test. In either case, you will notice something strange if the 
matrix ever gets really large: basically, the time needed goes up with the square 
of the size of m. Why? What we did was to add all the elements of the first row, 
then we added all the elements in the second row (revisiting all the elements of 
the first row), then we added all the elements in the third row (revisiting all the el
ements of the first and second rows) , etc. 
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I f  you think this example was bad, consider what would have happened if 
the row_sum() had had to access a database to get its data. Reading from disk is 
many thousands of times slower than reading from main memory. 

Now, you may complain: "Nobody would write something that stupid !" 
Sorry, but we have seen much worse. and usually a poor algorithm (from the per
formance point of view) is not that easy to spot when buried in application code. 
Did you spot the performance problem when you first glanced at the code? A 
problem can be quite hard to spot unless you are specifically looking for that par
ticular kind of problem. Here is a simple real-world example found in a server: 

for (int i=O; i<strlen(s); ++i) { I* do something with s ! i l */ } 

Often. s was a string with about 20K characters. 
Not all performance problems have to do with poor algorithms. In fact (as 

we pointed out in §26.3 .3) ,  much of the code we write does not classify as proper 
algorithms. Such "non-algorithmic" performance problems typically fall under 
the broad classification of "poor design." They include 

Repeated recalculation of information (e.g., the row-summing problem 
above) 

Repeated checking of the same fact (e.g., checking that an index is in 
range each time it is used in a loop or checking an argument repeatedly 
as it is passed unchanged from function to function) 

Repeated visits to the disk (or to the web) 

Note the (repeated) rt1Jt'(l/ed. Obviously, we mean "unnecessarily repeated," but 
the point is that unless you do something many times, it will not have an impact 
on performance. We arc all for thorough checking of function arguments and 
loop variables, but if we do the same check a million times for the same values, 
those redundant checks just might hurt pcrfom1ance. If we - by measurement -
find that performance is hurt, we will try to see if we can remove a repeated ac
tion. Don't do that unless you arc sure that performance is really a problem. Pre
mature optimization is the source of many bugs and much wasted time. 

26.6.1 Timing 
How do you know if a piece of code is fast enough? How do you know how long 
an operation takes? Well, in many cases where it matters, you can simply look at 
a clock (stopwatch, wall clock, or wristwatch) . That's not scientific or accurate. 
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but if that's not feasible, you can often conclude that the program was fast •. \ 
enough. It is not good to be obsessed with perfonnance. U If you need to measure smaller increments of time or if you can't sit around 
with a stopwatch. you need to get your computer to help you; it knows the time 
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and can give it to you. For example, on a Unix system, simply prefiXing a com
mand with time will make the system print out the time taken. You might usc 
time to figure out how long it takes to compile a C++ source fUe x.cpp. Nor
mally, you compile it like this: 

g++ x.cpp 

To get that compilation timed, you just add time : 

time g++ x.cpp 

This will compile x.cpp and also print the time taken on the screen. This is a sim· 
pie and effective way of timing small programs.  Remember to always do several 
timing runs because "other activities" on your machine might interfere. If you get 
roughly the same answer three times, you can usually trust the result. 

But what if you want to measure something that takes just milliseconds? 
What if you want to do your own, more detailed, measurements of a part of a 
program? You use the standard library function clock() to measure the time used 
by a function do_something() like this: 

#include <ctime> 
#include <iostream> 
using namespace std; 

int main() 
{ 

int n = 10000000; 

clock_t t1 = clock(); 
if (t1 == clock_t(-1 )) { 

II repeal do_someth ingO n t imes 

II start t ime 
II clock_t(- 1 )  means "clock() didn't work" 

cerr << "sorry, no clock\n" ;  
exit(1) ;  

for (int i =  0; i<n; i++) do_something(); II t im ing loop 

clock_t t2 = clock(); II end t ime 
if (t2 == clock_t(- 1 )) { 

cerr << "sorry, clock overflow\n";  
exit(2); 
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cout << "do_somethingO " << n << " times took " 
<< double(t2-t1 )/CLOCKS_PER_SEC << " seconds" 
<< " (measurement granularity: " 
<< CLOCKS_PER_SEC << " of a second)\n"; 

The clock() function rerums a result of type clock_t. The explicit conversion 
double(t2-t1 ) before dividing is necessary because clock_t might be an integer. 
Exactly when the clock() starts running is implementation defined; clock() is 
meant to measure time intervals within a single run of a program. For the values 
t1 and t2 returned by clock(), double(t2-t1 )/CLOCKS_PER_SEC is the system's 
best approximation of the time in seconds between the two calls. You'll fmd 
CLOCKS_PER_SEC ("clock ticks per second") in <dime>. 

If clock() isn't provided for a processor or if a time interval is too long to 
measure, clock() returns clock_t(-1) .  

The clock() function is meant to measure intervals from a fraction of a sec
ond to a few seconds. For example, if (as is not uncommon) clock_t is a 32-bit 
signed int and CLOCKS_PER_SEC is 1000000, we can use clock() to measure from 
0 to just over 2000 seconds (about half an hour) in microseconds. 
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Again, don't believe any time measurement that you cannot repeat with .\ 
roughly the same result three times. What does "roughly the same" mean? U 
"Within 10%" is a reasonable answer. Remember that modem computers are.fa.st: 
1,000,000,000 instructions per second is common. This implies that you won't be 
able to measure anything unless you can repeat it tens of thousands of times or it 
does something really slow, such as writing to disk or accessing the web. In the 
latter case, you just have to get it to repeat a few hundred times, but you have to 
worry that so much is going on that you might not understand the results. 
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� Drill 
Get the test of binary_search to run: 

1. Implement the input operator for Test from §26.3.2.2. 
2. Complete a flle of tests for the sequences from §26.3 : 

a. { 1 ,2,3,5,8, 13,21 } II an "ordi nary sequence" 

b. { }  
c. { 1 } 
d. { 1 ,2,3,4 } II even nu mber of elements 

e. {1 ,2,3,4,5 } II odd nu mber of elements 

f. { 1, 1, 1, 1, 1 ,  1, 1 } II all elements equal 

g. { 0, 1 ,  1, 1 ,  1, 1 ,  1 ,  1 ,  1 ,  1, 1, 1 ,1 } II different element at end 

h. { O,O,O,O,O,O,O,O,O,O,O,O,O, 1 } II different element at end 

3. Based on §26.3 . 1 .3, complete a program that generates 

a. A very large sequence (what would you consider very large, and why?) 
b. Ten sequences with a random number of elements 
c. Ten sequences with 0, 1, 2 . . .  9 random elements (but still ordered) 

4. Repeat these tests for sequences of strings, such as { Bohr Darwin Einstein 
Lavoisier Newton Turing }. 

Review 
1. Make a list of applications, each with a brief explanation of Lhe worst 

thing that can happen if there is a bug; e.g., airplane control - crash: 231 
people dead; $500M equipment loss. 

2. Why don't we just prove our programs correct? 
3. What's the difference between unit testing and system testing? 
4. What is regression testing and why is it important? 
5. What is the purpose of testing? 
6. Why doesn't binary_search just check its requirements? 
7. If we can't check for all possible errors, what kinds of errors do we pri

marily look for? 
8. Where are bugs most likely to occur in code manipulating a sequence of 

elements? 
9. Why is it a good idea to test for large values? 

10. Why do we often represent tests as data rather than as code? 
1 1 .  Why and when would we use lots of tests based on random values? 
12. Why is it hard to test a progran1 using a GUI? 
13. What is needed to test a "unit" in isolation? 
14. What is the connection between testability and portability? 
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15. What makes testing a class harder than testing a function? 
16. Why is it important that tests be repeatable? 
17. What can a tester do when fmding that a "unit" relies on unchecked as-

sumptions (pre-conditions)? 
18. What can a designer/implementer do to improve testing? 
19. How does testing differ from debugging? 
20. When does performance matter? 
21 .  Give two (or more) examples of how to (easily) create bad performance 

problems. 

Terms 

assumptions 
black-box testing 
branching 
clock() 
design for testing 
inputs 
outputs 

Exercises 

post-condition 
pre-condition 
proof 
regression 
resource usage 
state 
system test 

test coverage 
test hruness 
testing 
timing 
unit test 
white-box testing 

1 .  Run your binary search algorithm from §26. 1 with the tests presented in 
§26.2. 1 .  

2. Modify the testing of binary_search to deal with arbitrary element types. 
Then, test it with string sequences and floating-point sequences. 

3. Repeat the exercise in §26.2 .1  with the version of binary_search that 
takes a comparison criterion. Make a list of new opportunities for errors 
introduced by that extra argument. 

4. Devise a format for test data so that you can defme a sequence once and 
run several tests against it. 

5. Add a test to the set of binary_search tests to try to catch the (unlikely) 
error of a binary_search modifying the sequence. 

6. Modify the calculator from Chapter 7 minimally to let it take input from a 
me and produce output to a flle (or use your operating system's facilities 
for redirecting 1/0) . Then devise a reasonably comprehensive test for it. 

7. Test the "simple text editor" from §20.6. 
8. Add a text-based interface to the graphics interface library from Chapters 

12-15. For example, the string Circle(Point(O, 1 ), 15) should generate a 
call Circle(Point(O, 1 ), 15). Use this text interface to make a "kid's draw
ing" of a two-dimensional house with a roof, two windows, and a door. 
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9 .  Add a text-based output format for the graphics interface library. For 
example, when a call Circle(Point(O, 1), 15) is executed, a string like 
Circle(Point(O, 1), 15) should be produced on an output stream. 

10. Use the text-based interface from exercise 9 to write a better test for the 
graphical interface library. 

1 1 . Ttme the sum example from §26.6 with m being square matrices with di
mensions 100, 10,000, 1 ,000,000, and 10,000,000. Use random element 
values in the range [-10: 10). Rewrite the calculation ofv to use a more ef
ficient (not 0(n"2)) algorithm and compare the timings. 

12.  Write a program that generates random floating-point numbers and sort 
them using std : :  sort(). Measure the time used to sort 500,000 doubles 
and 5,000,000 doubles. 

13. Repeat the experiment in the previous exercise, but with random strings 
of lengths in the [0: 100) range. 

14. Repeat the previous exercise, except using a map rather than a vector so 
that we don't need to sort. 

Postscript 

As programmers, we dream about writing beautiful programs that just work -
preferably the first time we try them. The reality is different: it is hard to get pro
grams right, and it is hard to get them to stay right as we (and our colleagues) 
work to improve them. Testing - including design for testing - is a major way of 
ensuring that the systems we ship actually work. Whenever we reach the end of 
a day in our highly technological world, we really ought to give a kind thought to 
the (often forgotten) testers. 
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The C Program m i ng 
La nguage 

"C is a strongly typed, 
weakly checked, 

programming language." 

-Den nis Ritchie 

This chapter is a brief overview of the C programming lan

guage and its standard library from the point of view of 

someone who knows C++. It lists the C++ features missing 

from C and gives examples of how a C programmer can cope 

without those. OC++ incompatibilities are presented, and C/C++ 

interoperability is discussed. Examples of 1/0, list manipulation, 

memory management, and string manipulation are included as 

illustration. 
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27.1 C and C++: siblings 27.4 Free store 
27. 1.1 C/C++ compatibility 
27.1.2 C++ features missing from C 
27.1.3 The C standard library 

27.2 Functions 
27 .2.1 No function name overloading 
27.2.2 Function argument type 

checking 
27.2.3 Function definitions 
27.2.4 Calling C from C++ and C++ 

from C 
27.2.5 Pointers to functions 

27.3 Minor language differences 
27 .3.1 struct tag namespace 
27.3.2 Keywords 
27 .3.3 Definitions 
27.3.4 C-style casts 
27.3.5 Conversion of void• 
27.3.6 enum 
27.3.7 Namespaces 

27.1 C and C++: siblings 

27.5 C-style strings 
27.5.1 C-style strings and const 
27.5.2 Byte operations 
27.5.3 An example: slrcpy() 
27 .5.4 A style issue 

27.6 Input/output: stdio 
27 .6.1 Output 
27.6.2 Input 
27 .6.3 Files 

27.7 Constants and macros 

27.8 Macros 
27.8.1 function-like macros 
27.8.2 Syntax macros 
27.8.3 Conditional compilation 

27.9 An examph:: intrusive containers 

The C programming language was designed and implemented by Dennis Ritchie 
at Bell Labs and popularized by the book The C Programming Language by Brian 
Kernighan and Dennis Ritchie (colloquially known as "K&R"), which is arguably 
still the best introduction to C and one of the great books on programming 
(§22.2.5) . The text of the original definition of C++ was an edit of the text of the 
1 980 definition of C, supplied by Dennis Ritchie. After this initial branch, both 
languages evolved further. Like C++, C is now defmed by an ISO standard. 

We sec C primarily as a subset of C++. Thus, from a C++ point of view, the 
problem of describing C boils down to two issues : 

Describe where C isn't a subset of C++. 

Describe which C++ features are missing in C and which facilities and 
techniques can be used to compensate. 

Historically, modern C and modern C++ are siblings. Both are direct descen
dants of "Classic C," the dialect of C popularized by the first edition of 
Kernighan and Ritchie's The C Programming Language plus structure assignment 
and enumerations : 
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The version of C that is used almost exclusively today is C89 (as described in the 
second edition of K&R), and that's what we are describing here. There is still 
some Classic C in use and a few examples of C99, but those should not cause 
you any problems when you know C++ and C89. 

Both C and C++ were "born" in the Computer Science Research Center of 
Bell Labs in Murray Hill, New Jersey (for a while, my office was a couple of doors 
down and across the corridor from those of Dennis Ritchie and Brian Kernighan) :  
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Both languages arc now defmed/controlled by ISO standards committees. For 
each, many supported implementations are in use. Often, an implementation 
supports both languages with Lhe desired language chosen by a compiler switch 
or a source flle sufflx. Both are available on more platfomlS than any other Ian· 
guage. Both were primarily designed for and are now heavily used for hard sys· 
tern programming tasks, such as 

Operating system kernels 

Device drivers 

Embedded systems 

Compilers 

CommunicatimlS systeOlS 

There are no performance differences between equivalent C and C++ pro· 
graOlS. 

Like C++, C is very widely used. Taken together, the C/C++ community is 
the largest software development community on earth. 

2 7  .1 .1 C/C++ compatibi lity 
It is not uncommon to hear references to "C/C++ :• However, there is no such 
language, and the use of "C/C++" is typically a sign of ignorance. We usc 
"C/C++" only in the context of C/C++ compatibility issues and when talking 
about the large shared C/C++ technical community. 

C++ is largely, but not completely, a superset of C. With a few very rare ex
ceptions, constructs that are both C and C++ have Lhe same meaning (seman
tics) in both languages. C++ was designed to be "as close as possible to C, but no 
closer": 

For ease of transition 

For coexistence 

Most incompatibilities relate to C++'s stricter type checking. 
An example of a program that is legal C but not C++ is one that uses a C++ 

keyword that is not a C keyword as an identifier (see §27.3.2) :  

int class(int new, int bool); /* C but not C++ */ 

Examples where the semantics differ for a construct that is legal in both lan
guages are harder to find, but here is one: 

int s = sizeof('a');  /* sizeof( intL oiten 4 in C i!nd 1 in C++ */ 
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�The type of a character literal, such as 'a', is int in C and char in C++. However, 
for a char variable ch we have sizeof(ch)==1 in both languages. 

Information related to compatibility and language differences is not exactly 
exciting. Titere are no new neat programming techniques to learn. You might like 
printf() (§27.6), but with that possible exception (and some feeble attempts at 
geek humor) , this chapter is bone dry. Its purpose is simple: to allow you to read 
and write C if you need to. This includes pointing out the hazards that are obvi
ous to experienced C programmers, but typically unexpected by C++ program
mers. We hope you can learn to avoid those hazards with minimal grief. 

Most C++ programmers will have to deal with C code at some point or an
otlter, just as most C programmers will have to deal with C++ code. Much of 
what we describe in this chapter will be familiar to most C programmers, but 
some will be considered "expert level." ll1c reason for that is simple: not every
one agrees about what is "expert level" and we just describe what is common in 
real-world code. Maybe understanding compatibility issues can be a cheap way 
of gaining an unfair reputation as a "C expert." But do remember: real expertise 
is in the use of a language (in this case C) , ratlter than in understanding esoteric 
language rules (as are exposed by considering compatibility issues) . 

References 

ISO/IEC 9899: 1999. Programming Languages - C. Tilis defmes C99; most imple
mentations implement C89 (often with a few extensions) .  

ISO/IEC 14882:2003-04-01 (second edition) . Programming Languages - C++. From 
a programmer's point of view, this standard is identical to the 1997 version. 

Kernighan, Brian W., and Demus M. Ritcllle. 17u: C Programming Language. Addison
Wesley, 1988. ISBN 013 1 103628. 

Stroustrup, Bjamc. "Leanung Standard C++ as a New Language." C/C++ Usm 
Journal, May 1999. 

Stroustrup, Bjame. ''C and C++: Siblings"; "C and C++: A Case for Compati
bility"; and "C and C++ : Case Studies in Compatibility." '17le C!C++ Ustrs 
Journal, July, Aug., and Sept. 2002. 

The papers by Stroustrup arc most easily found on my publications home page. 

27.1 .2 C++ features missing from C 
From a C++ perspective, C (i.e., C89) lacks a lot of features, such as 

Classes and member functions 

Use struct and global functions. 
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Derived classes and vinual functions 

Use structs, global functions, and pointers to functions (§27.2.3) .  

Templates and inline functions 

Use macros (§27.8) . 

Exceptions 

Use error codes, error return values, etc. 

Function overloading 

Give each function a distinct name. 

new/delete 

Use malloc()/free() and separate initialization/cleanup code. 

References 

Use pointers. 

const in constant expressions 

Usc macros. 

Declarations in for-statements and declarations as statements 

Place all declarations at the top of a block or introduce a new block 
for each set of defmitions. 

bool 

Use int. 

static_cast, reinterpret_cast, and const_cast 

Use C·style casts, e.g., (int)a rather than static<int>(a). 

II comments 

Use /* . . .  */ comments. 

Lots of useful code is written in C, so this list should remind us that no one Ian· 
guage feature is absolutely necessary. Most language features - even most C lan
guage features - are there for the convenience (only) of the programmer. After 
all, given sufficient time, cleverness, and patience, every program can be written 
in assembler. Note that because C and C++ share a machine model that is very 
close to the real machine, they are well suited to emulate varieties of program
ming styles. 
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The rest of  this chapter explains how to write useful programs without those 
features. Our basic advice for using C is: 

Emulate the programming techniques that the C++ features were de
signed to support with the facilities provided by C. 

When writing C, write in the C subset of C++. 

Usc compiler warning levels that ensure function argument checking. 

Use lint for large programs (see §27.2.2). 

Many of the details of C/C++ incompatibilities are rather obscure and technical. 
However. to read and write C, you don't actually have to remember most of those: 

l11c compiler will remind you when you are using a C++ feature that is 
not in C. 

If you follow the rules above, you are unlikely to encounter anything 
that means something different in C from what it means in C++. 

With the absence of all those C++ facilities, some facilities gain importance in C: 

Arrays and pointers 

Macros 

typedef 

size of 

Casts 

We give examples of a few such uses in this chapter. 
I introduced the II comments into C++ from C's ancestor BCPL when I got 

really fed up with typing /* . . .  */ comments. The II comments arc accepted by 
most C dialects including C99, so it is probably safe just to use them. Here. we 
will usc /* . . .  */ exclusively in examples meant to be C. C99 introduced a few 
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more C++ features (as well as a few features that are incompatible with C++) , .\ 
but here we will stick to C89, because that's far more widely used. U 
2 7  . 1 .3 The C standard library 
Naturally, a C++ library facility that depends on classes and templates is not .. \ 
available in C. This includes U 

vector 

map 

set 

string 

The STL algorithms: e.g., sort(), find(), and copy() 

iostreams 

regex 
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For these, there are often C libraries based on arrays, pointers, and functions to 
help compensate. The main parts of the C standard library arc 

<Stdlib.h>: general utilities (e.g., malloc() and free() ; see §27.4) 

<Stdio.h>: standard 1/0; see §27.6 

<string.h>: C-style string manipulation and memory manipulation: see 
§27.5 

<math.h>: standard floating-point mathematical functions ; see §24.8 

<errno.h>: error codes for <math.h>; see §24.8 

<limits.h>: sizes of integer types ; see §24.2 

<time.h>: date and time; see §26.6. 1 

<assert.h>: debug assertions; see §27.9 

<ctype.h>: charaaer classification; see §1 1.6 

<stdbool.h>: Boolean macros 

For a complete description, sec a good C textbook, such as K&R. All of these li
braries (and header flles) are also available in C++. 

27.2 Functions 
In C: 

There can be only one function of a given name. 

Function argument type checking is optional. 

There are no references (and therefore no pass-by-reference) .  

There are no member functions. 

There are no inline functions (except in C99).  

There is an alternative function defmition syntax. 

Apart from that, things are much as you are used to in C++. Let us explore what 
that means. 

2 7  .2 .1 No function name overloading 
Consider: 

void print(int); 
void print(const char*);  

/* print an int */ 
/* print a string */ /* error! */ 

The second declaration is an error because there cannot be two functions with 
the same name. So you'll have to invent a suitable pair of names : 
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void print_int(int); 
void print_string(const char*); 

/* print an int  */ 
/* print a string */ 

This is occasionally claimed to be a virtue: now you can't accidentally use the 
wrong function to print an int! Clearly we don't buy that argument, and the lack 
of overloaded functions does make generic programming ideas awkward to im
plement because generic programming depends on semantically similar functions 
having the same name. 

2 7  .2.2 Function argument type checking 
Consider: 

int main() 
{ 

f(2); 
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A C compiler will accept this : you don't have to declare a function before you call � 
it (though you can and should). lnere may be a definition of fO somewhere. That 
f() could be in another translation unit, but if it isn't, the linker will complain. 

Unfortunately, that definition in another source flle might look like this: 
1• other_fi lo.c: */ 

int f(char• p) 
{ 

int r = 0; 
while (*p++) r++; 
return r; 

The linker will not report that error. You will get a run-time error or some ran
dom result. 

How do we manage problems like that? Consistent use of header flles is a • 1 

practical answer. If every function you call or define is declared in a header that is U 
consistently #included whenever needed, we get checking. However, in large pro
grams that can be hard to achieve. Consequently, most C compilers have options 
that give warnings for calls of undeclared functions : use them. Also, from the ear-
liest days of C, there have been programs that can be used to check for all kinds 
of consistency problems. They are usually called lint. Use a lint for every non
trivial C program. You will find that lint pushes you toward a style of C usage 
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that is rather similar to using a subset of  C++. One of  the observations that led 
to Lhc design of C++ was that Lhe compiler could easily check much (but not all) 
of what lint checked. 

You can ask to have function arguments checked in C. You do that simply by 
declaring a function with its argument types specified (just as in C++). Such a 
declaration is called afimction prototype. However, beware of function declarations 
that do not specify arguments; those are not function prototypes and do not imply 
funaion argument checking: 

int g(double); 
int hO; 

void my _fctO 
{ 

gO; 
g("asdf") ;  
g(2); 
g(2,3); 

hO; 
h("asdf" ) ;  
h(2); 
h(2,3); 

/* prototype - like C++ function declaration */ 
/* not a prototype - the argument types are unspecified */ 

/* error: missing argument */ 
/* error: bad argument type */ 
/* OK: 2 is converted to 2 .0 */ 
/* error: one argument too many */ 

/* OK by the compiler! May give unexpected results */ 
/* OK by the compiler! May give unexpected results */ 
/* OK by the compi ler! May give unexpected results */ 
/* OK by the compi ler! May give unexpected results */ 

The declaration of gO specifies no argument type. This does not mean that gO 
doesn't accept arguments ; it means "Accept any set of arguments and hope they 
arc correct for the called function." Again, a good compiler warns and lint will 
catch the problem. 

C++ 

void fO; II preferred 

void f(void); 

void f( . . . ); II accept any arguments 

C equivalent 

void f(void); 

void f(void) ;  

void fO; /*  accept any arguments •1 

There is a special set of rules for converting arguments where no function proto
type is in scope. For example, chars and shorts are converted to ints, and floats 
are converted to doubles. If you need to know, say, what happens to a long, look 
it up in a good C textbook. Our recommendation is simple; don't call functions 
without prototypes. 
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Note that even though the compiler will allow an argument of the wrong 
type to be passed, such as a char• to a parameter of type int, the use of such an 
argument of a wrong type is an error. As Dennis Ritchie said, "C is a strongly 
typed, weakly checked, programming language." 

27.2.3 Function definitions 
You can define functions exactly as in C++ and such definitions are function 
prototypes : 

double square(double d) 
{ 

return d*d; 

void ff() 
{ 

double x = square(2); 
double y = square(); 
double y = square("Hello"); 
double y = square(2,3) ; 

I* OK: convert 2 to 2 .0  and ca l l  */ 
/* argu ment missing */ 
/* error: wrong argument type */ 
/* error: too many arguments */ 

A defmition of a function witl1 no arguments is not a function prototype : 

void f() { /* do someth ing */ } 

void gO 
{ 

f(2); /* OK in C; error in C++ */ 

Having 

void fO; /* no argument type specified */ 

mean "f() can take any number of arguments of any type" seemed really strange. 
In response, I invented a new notation where "nothing" was explicitly stated 
using the keyword void (uoid is a four-letter word meaning "nothing") :  

void f(void); /*  no arguments accepted */ 
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I soon regretted that, though, since that looks odd and is completely redundant 
when argument type checking is unifonnly applied. Worse. Dennis Ritchie (the fa
ther of C) and Doug Mcilroy (the ultimate arbiter of taste in the Bell Labs Com
puter Science Research Center; see §22.2.5) both called it "an abomination." 
Unfortunately, that abomination became very popular in the C conununity. Don't 
usc it in C++, though, where it is not only ugly, but also logically redundant. 

C also provides a second, Algol60-style function defmition, where the paranl
etcr types arc (optionally) specified separately from their nan1es : 

int old_style(p,b,x) char• p; char b; 
{ 

/* . . .  */ 

l11is "old-style definition'' predates C++ and is not a prototype. By default, an 
argument without a declared type is an int. So, x is an int parameter of 
old_style(). We can call old_style() like this: 

old_style(); 
old_style("hello", 'a', 17); 
old_style(12, 13, 14); 

/* OK: a l l  arguments missing */ 
/* OK: a l l  arguments are of the right type */ 
/* OK: 1 2  is the wrong type, */ 
I* but maybe old_style() won't use p */ 

The compiler should accept these calls (but would warn, we hope. for the first 
and third) . 

Our recommendation about function argument checking: 

Usc function prototypes consistently (use header flles) .  

Set compiler warning levels so that argument type errors are caught. 

Usc (some) lint. 

The result will be code that's also C++. 

27 .2 .4 Cal ling C from C++ and C++ from C 
You can link flles compiled with a C compiler together with flles compiled with a 
C++ compiler provided the two compilers were designed for that. For exan1plc, 
you can link object fllcs generated from C and C++ using your GNU C and 
C++ compiler (GCC) together. You can also link object files generated from C 
and C++ using your Microsoft C and C++ compiler (MSC++) together. This is 
common and useful because it allows you to use a larger set of libraries than 
would be available in just one of those two languages. 

C++ provides stricter type checking than C. In particular, a C++ compiler 
and linker check that two functions f(int) and f(double) are consistently defined 
and used - even in different source files. A linker for C d<>esn't do that kind of 
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checking. To call a function defined in C from C++ and to have a function de
fined in C++ called from C, we need to tell the compiler what we are doing: 

II ca l l ing C iunction from C++: 

extern "C" double sqrt(double) ; II l ink as a C function 

void my_c_plus_plus_fct() 
{ 

double sr = sqrt(2); 

Basically extern "C" tells the compiler to use C linker conventions. Apart from 
that, all is normal from a C++ point of view. In faa, the C++ standard sqrt(double) 
usually is the C standard library sqrt(double). Nothing is required from the C 
program to make a function callable from C++ in this way. C++ simply adapts 
to the C linkage convention. 

We can also use extern "C" to make a C++ function callable from C: 

II C++ function ca l lable irom C: 

extern "C" int call_f(S* p, int i) 
{ 

return p->f(i); 

In a C program, we can now call the member function f() indirectly, like this : 

/* ca l l  C++ function irom C: */ 

int call_f(S* p, int i); 
struct S* make_S(int,const char*); 

void my_c_fct(int i) 
{ 

/* . . .  */ 
struct S* p = make_S(x, "foo"); 
int x = call_f(p,i); 
/* . . .  */ 

No mention of C++ is needed (or possible) in C for this to work. 
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The benefit o f  this interoperability is obvious: code can b e  written in a mix 
of C and C++. In particular, a C++ program can use libraries written in C, and 
C programs can use libraries written in C++. Furthennore, most languages (no
tably Fortran) have an interface for calling to/from C. 

In the examples above, we assumed that C and C++ could share the class 
object pointed to by p. That is true for most class objects. In particular, if you 
have a class like this, 

II in C++: 
class complex { 

double re, im; 
public: 

II a l i the usual operat ions 
}; 

you can get away with passing a pointer to an object to and from C. You can even 
access re and im in a C program using a declaration: 

/* in C: */ 
struct complex { 

double re, im; 
/* no operations */ 

}; 

The rules for layout in any language can be complex, and the rules for layout 
among languages can even be hard to specify. However, you can pass built-in 
types between C and C++ and also classes (structs) without virtual functions. If 
a class has virtual functions, you should just pass pointers to its objects and leave 
the actual manipulation to C++ code. The call_f() was an example of this: f() 
might be virtual and then that example would illustrate how to call a virn1al func· 
tion from C. 

Apart from sticking to the built-in types, the simplest and safest sharing of 
types is a struct defined in a common C/C++ header flle. However, that strategy 
seriously limits how C++ can be used, so we don't restrict ourselves to it. 

2 7  .2 .5 Pointers to functions 
What can we do in C if we want to use object-oriented techniques (§14.2-4)? Ba· 
sically, we need an alternative to virtual functions. For most people, the first idea 
that springs to mind is to use a struct with a "type field" that describes what kind 
of shape a given object represents. For example: 
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struct Shape1 { 

}; 

enum Kind { circle, rectangle } kind; 
I* 0 0 0 *I 

void draw(struct Shape1 * p) 
{ 

switch (p->kind) { 
case circle : 

I* draw as circle *I 
break; 

case rectangle : 
I* draw as rectangle *I 
break; 

int f(struct Shape1 * pp) 
{ 

draw(pp); 
I* 0 0 0 *I 

This works. There are two snags, though: 

For each "pseudo-virtual" function (such as draw()), we have to write a 
new switch-statement. 

Each time we add a new shape, we have to modify every "pseudo-virtual" 
function (such as draw()) by adding a case to the switch-statement. 

The second problem is quite nasty because it means that we can't provide our 
"pseudo-virtual" functions as part of a library, because our users will have to 
modify those functions quite often. The most effective alternative involves point
ers to functions: 

typedef void (*PfctO)(struct Shape2*); 
typedef void (*Pfct1 int)(struct Shape2* ,int); 

struct Shape2 { 

}; 

PfctO draw; 
Pfctlint rotate; 
I* . . .  *I 
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void draw(struct Shape2* p) 
{ 

(p->draw)(p); 

void rotate(struct Shape2* p, int d) 
{ 

(p->rotate)(p,d); 

This Shape2 can be used just like Shape1. 

int f(struct Shape2* pp) 
{ 

draw(pp); 
/* . . .  */ 

With a little extra work, an object need not hold one pointer to a function for 
each pseudo-virtual function. Instead, it can hold a pointer to an array of pointers 
to functions (much as virtual functions are implemented in C++) . The main 
problem with using such schemes in real-world programs is to get the initializa
tion of all those pointers to functions right. 

27.3 Minor language differences 
This section gives examples of minor C/C++ differences that could trip you up if 
you have never heard of them. Few seriously impact programming in that the dif
ferences have obvious work-arounds. 

27.3.1 struct tag namespace 
In C, the names of structs (there is no class keyword) are in a separate name
space from other identifiers. Therefore, every name of a struct (called a slructun· 
tag) must be prefixed with the keyword struct. For example: 

struct pair { int x,y; }; 
pair p1 ; /* error: no identiiier "pair" in scope */ 
struct pair p2; /* OK */ 
int pair = 7; /* OK: the struct tag pair is not i n  scope */ 
struct pair pl; /* OK: the struct tag pai r  is not hidden by the int */ 
pair = 8; /* OK: "pai r" refers to the int */ 
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Amazingly enough, thanks to a devious compatibility hack, this also works in 
C++. Having a variable (or a function) with the same name as a struct is a fairly 
common C idiom, though not one we recommend. 
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If you don't want to write struct in front of every structure name, use a typedef • \ 

(§20.5). ll1e following idiom is common: U 
typedef struct { int x,y; } pair; 
pair p1 = { 1, 2 }; 

In general. you'll fmd typedefs more common and more useful in C, where you 
don't have the option of defming new types with associated operations. 

In C, names of nested structs are placed in the same scope as the struct in ... \ 
which they are nested. For example: U 

struct S { 
struct T { I* . . .  *I };  
I • . . .  */ 

}; 

struct T x; /* OK in C ( n<>l in C++) */ 

In C++, you would write 

S: :T x; II OK in C++ (not in 0 

Whenever possible, don't nest structs in C: their scope rules differ from what 
most people naively (and reasonably) expect. 

27 .3.2 Keywords 
Many keywords in C++ are not keywords in C (because C doesn't provide the 
functionality) and can be used as identifiers in C: 

C++ keywords that are not C keywords 

and and_eq asm bitand bitor boo I 

catch class com pi const_cast delete dynamic_ cast 

explicit export false friend in line mutable 

names pace new not not_eq operator or 

or_eq private protected public reinterpret_ cast static_ cast 

template this throw true try typeid 

type name using virtual wchar_t xor xor_eq 
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Don't use these names as identifiers in C, or your code will not b e  portable to 
C++. If you use one of these names in a header file, that header won't be useful 
from C++. 

Some C++ keywords are macros in C: 

C++ keywords that are C macros 

and 

not 

and_eq 

not_eq 

bitand 

or 

bitor 

or_eq 

boo I 

true 

compl 

wchar_t 

false 

xor xor_eq 

In C, they are defmed in <iso646.h> and <Stdbool.h> (bool, true, false) . Don't 
take advantage of the fact that they are macros in C. 

27 .3.3 Definitions 
C++ allows definitions in more places than C. For example: 

for (int i = 0; i<max; ++i) x[i] = y[i]; 

while (struct s• p = next(q)) { 
/* 0 0 0 */ 

void f(int i) 
{ 

II defi nit ion of i not a l lowed in C 

II defi ni t ion oi p not a l lowed in C 

if (i< 0 II max<=i) error(" range error"); 
int a[max]; II error: declaration after statement not a l lowed in C 
I* . . .  */ 

C (C89) doesn't allow declarations as initializers in for-statements, as conditions, 
or after a statement in a block. We have to write something like 

int i; 
for (i = 0; i<max; ++i) x[i] = y[i); 

struct s• p; 
while (p = next(q)) { 

/* 0 0 0 */ 

void f(int i) 
{ 

if (i< 0 II max<=i) error("range error"); 



2 7 . 3  M INOR  LA NG UAG E D I F F E R E NCES 

int a[max]; 
I* . . .  *I 

In C++, an uninitialized declaration is a definition; in C, it is just a declaration so 
that there can be two of them: 

int x; 
int x; I* deiines or declares a single integer cal led x in C; error in C++ *I 

In C++, an entity must be defmed exactly once. This gets a bit more interesting 
if the two ints are in different translation units : 

I* in ii le x .c: *I 
int x; 

I* in ii le y.c: *I 
int x; 

No C or C++ compiler will find any fault with either x.c or y. c. However, if x.c 
and y.c are compiled as C++. the linker will give a "double definition" error. If 
x.c and y.c are compiled as C, the linker accepts the program and (correctly ac
cording to C rules) considers there to be just one x that is shared between code in 
x.c and y. c. If you want a program where a global variable x is shared, say so 
explicitly : 

I* in ti le x . c :  *I 
int x = 0; I* the defi n i t ion *I 

1• in f i le y.c: *I 
extern int x; 1• a declaration, not a defin i t ion *I 

Better still, use a header file: 

I* in iile x .h: *I 
extern int x; 

I* in iile x .c: *I 
#include "x.h" 

I* a declaration, not a defini t ion *I 

int x = 0; I* the definit ion *I 
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I* in fi le y.c: *I 
#include "x.h" 
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/* the declaration of x i s  i n  the header */ 

Better still, avoid the global variable. 

27 .3 .4 C-style casts 
In C (and C++), you can explicitly convert a value v to a type T by this minimal 
notation: 

This "C-style cast" or "old-style cast" is beloved by poor typists and sloppy 
thinkers because it's minimal and you don't have to know what it takes to make 
a T from v. On Lhe other hand, this style of cast is rightfully feared by mainte
nance programmers because it is just about invisible and leaves no clue about the 
writer's intent. The C++ casts (new-sl)•le casts or template-style casts; see §A.5.7) were 
introduced to make explicit type conversion easy to spot (ugly) and specific. In 
C. you have no choice: 

int• p = (int*)7; 
int x = (int)7.5; 

/* reintc'rpret bit pattern: reinterpret_c,lst< int•>(O) */ 
I* truncate double: stat ic_cast<int>(7.5)  */ 

typedef struct S1 { /* . . . *I } S1 ; 
typedef struct S2 { /* . . .  *I } S2; 
S1 a; 
const S2 b; /* unin i t ia l ized consts are a l lowed i n C *I 

S1 * p = (Sl * )&a; 
S2* q = (S2*)&b; 
S1 * r = (Sl *)&a; 

I* reinterpret bit pa ltern: re interpret_cast<S 1 *><&aJ *I 
I* cast away const: const_cast<S2. ><&b) */ 
I* remove canst and change type; probably a bug */ 

We hesitate to recommend a macro (§27.8) even in C, but it may be an idea to ex
press intent like this : 

#define REINTERPRET_CAST(T,v) ((T)(v)) 
#define CONST_CAST(T,v) ((T)(v)) 

S1 * p = REINTERPRET_CAST (51 * ,&a) ; 
S2* q = CONST_CAST(S2* ,&b); 
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This does not give the type checking done by reinterpret_cast and const_cast, 
but it does make these inherently ugly operations visible and the programmer's 
intent explicit. 

27 .3.5 Conversion of void* 
In C ,  a void* may b e  used as the right-hand operand o f  an assignment t o  or ini
tialization of a variable of any pointer type; in C++ it may not. For example: 

void* alloc(s ize_t x); I* a l locate x bytes */ 

void f (int n) 
{ 

int• p = alloc(n*sizeof(int)); 
, . . . . . , 

I* OK in C; error in C++ *I 

Here, the void* result of alloc() is implicitly converted to an int•. In C++. we 
would have to rewrite that line to 

int• p = (int*)alloc(n*sizeof(int)); I* OK in C and C++ *I 

We used the C-style cast (§27.3.4) so that it would be legal in both C and C++. 
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Why is the void*-to-T* implicit conversion illegal in C++? Because such con- • 1 

versions can be unsafe: U 
void f() 
{ 

char i = 0; 
char j = 0; 
char• p = &i; 
void* q = p; 
int• pp = q; 
*pp = -1 ;  

/* unsafe; legal i n  C, error i n  C++ */ 
/* overwrite memory start ing at &i */ 

Here we can't even be sure what memory is ovetwritten. Maybe j and part of p? 
Maybe some memory used to manage the call of f() (fs stack frame) ? Whatever 
data is being ovetwritten here, a call of f() is bad news. 

Note that (the opposite) conversion of a T* to a void* is perfectly safe - you 
can't construct nasty examples like the one above for that - and those are al
lowed in both C and C++. 
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Unfortunately, implicit void*-to-T *  conversions are common in C and possi
bly the major C/C++ compatibility problem in real code (see §27.4). 

27.3.6 enum 
In C, you can assign an int to an enum without a cast. For example: 

enum color { red, blue, green }; 
int x = green; /* OK in C and C++ *I 
enum color col = 7; /* OK in C; error in C++ */ 

One implication of this is that we can use increment (++) and decrement (--) on 
variables of enumeration type in C. That can be convenient but does imply a 
hazard: 

enum color x = blue; 
++x; /* x becomes green; error in C++ */ 
++x; /* x becomes 3; error in C++ */ 

"Falling off the end" of the enumerators may or may not have been what we 
wanted. 

Note that like structure tags, the nan1es of enumerations are in their own 
namespace, so you have to prefix them with the keyword enum each time you 
usc them: 

color c2 = blue; 
enum color c3 = red; 

/* error in C: color not in scope; OK in C++ *I 
I* OK */ 

27 .3.7 Namespaces 
There arc no namespaces (in the C++ sense of the word) in C. So what do you 
do when you want to avoid name clashes in large C programs? Typically, people 
usc prefixes or sufflXes. For example:  

I* in bs.h :  */ 
typedef struct bs_string { /* . . .  *I } bs_string; 
typedef int bs_bool ; 

/* in pete.h: */ 
I* Pete's string */ 

I* Bjarne's string */ 
I* Bjarne's Boolean type */ 

typedef char• pete_string; 
typedef char pete_bool ; I* Pete's Boolean type */ 

This technique is so popular that it is usually a bad idea to use one- or two-letter 
preflXes. 
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27.4 Free store 
C does not provide the new and delete operators dealing with objects. To use 
free store, you use functions dealing with memory. The most important functions 
are defmed in the "general utilities" standard header <stdlib.h>:  

void* malloc(size_t sz); 
void free(void* p); 
void* calloc(size_t n, size_t sz); 
void* realloc(void* p, size_t sz); 

I* a l locate sz bytes */ 
I* dea l locate the memory poin ted to by p */ 
I* al locate n*sz bytes in i t ia l ized to 0 */ 
I* rea l locate the memory pointed to by p 

to a space oi s ize sz *I 

The typedef size_t is an unsigned type also defmed in <Stdlib.h>. 

1009 

Why does malloc() return a void*? Because malloc() has no idea which type fJ 
of object you want to put in that memory. Initialization is your problem. For 
example: 

struct Pair { 

}; 

const char• p; 
int val; 

struct Pair p2 = {"apple",78}; 
struct Pair* pp = (struct Pair*) malloc(sizeof(Pair)); 
pp->p = "pear"; /* in i t ia l i ze */ 
pp->val = 42; 

Note that we cannot write 

*pp = {"pear",  42}; /* error: not C or C++98 */ 

I* al locate */ 

in either C or C++. However, in C++, we would defme a constructor for Pair 
and write 

Pair* pp = new Pair("pear",  42); 

In C (but not C++; see §27.3.4), you can leave out the cast before malloc(), but 
we don't recommend that: 

int• p = malloc(sizeof(int)*n); /* avoid this */ 

Leaving out the cast is quite popular because it saves some typing and because it 
catches the rare error of (illegally) forgetting to include <stdlib.h> before using 
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malloc(). However, it can also remove a visual clue that a size was wrongly 
calculated: 

p = malloc(sizeof(char)*m); I* probably a bug - not room for m ints */ 

Don't use malloc()/free() in C++ programs; new/delete require no casts, deal 
with initialization (constructors) and cleanup (destructors) ,  report memory allo
cation errors (through an exception), and are just as fast. Don't delete an object 
allocated by malloc() or free() an object allocated by new. For example: 

int• p = new int[200]; 
II . . .  
free(p); II error 

X* q = (X*)malloc(n*sizeof(X)); 
II . . .  
delete q; II error 

This might work, but it is not portable code. Furthermore, for objects with con
structors or destructors, mixing C-style and C++-style free-store management is 
a recipe for disaster. 

The realloc() function is typically used for expanding buffers : 

int max = 1000; 
int count = 0; 
int c; 
char• p = (char*)malloc(max); 
while ((c=getchar() ) l=EOF) { /* read: ignore chars on eof l ine */ 

if (count==max-1 ) { /* need to expand buffer */ 
max += max; /* double the buffer size */ 
p = (char*)realloc(p,max); 
if (p==O) quit(); 

p[count++] = c; 

For an explanation of the C input operations, see §27.6.2 and §B. l0.2. 
The realloc() function may or may not move the old allocation into newly al

located memory. Don't even think of using realloc() on memory allocated by new. 
Using the C++ standard library, the (roughly) equivalent code is 

vector<char> buf; 
char c; 
while (cin .get(c)) buf.push_back(c); 
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Refer to the paper "Learning Standard C++ as a New Language" (see the refer
ence list in §27.1) for a more thorough discussion of input and allocation strategies. 

2 7.5 C-style strings 
In C, a string (often called a C stnizg or a C-style stn'11g in C++ literature) is a zero
tenninated array of characters. For example : 

char• p = "asdf"; 
char s[] = "asdf"; 

p: .___, _ __.�-----�l ·a• l •s• l ·d· l ·r I o I 
s : l •a• l •s• l 'd' l 'f' I 0 I 

In C. we cannot have member functions, we cannot overload functions, and we 
cannot define an operator (such as ==) for a struct. It follows that we need a set 
of (nonmember) functions to manipulate Gstyle strings. TI1e C and C++ stan
dard libraries provide such functions in <string.h>: 

size_t strlen(const char• s); 
char• strcat(char• s1, const char• s2); 
int strcmp(const char• s1 , const char• s2); 
char• strcpy(char• s1,const char• s2); 

char• strchr(const char •s, int c); 
char• strstr(const char *s1, const char *s2); 

char• strncpy(char•, const char•, size_t n); 
char• strncat(char•, const char, size_t n); 

I* count the characters */ 
I* copy s2 onto the end oi s 1 *I 
I* compare lex icographica l ly */ 
I* copy s2 into s1 */ 

/* find c in s */ 
I* iind s2 in s 1 *I 

I* strcpy. max n chars */ 
I* strcat with max n chars •t 

int strncmp(const char•, const char•, size_t n); /* strcmp with max n chars */ 

Tills is not the full set, but these are the most useful and most used functions. We 
will briefly illustrate their use. 
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We can compare strings. The equality operator (==) compares pointer val- • 1 

ues: the standard library function strcmp() compares Gstyle string values: U 
const char• s1 = "asdf" ; 
const char• s2 = "asdf"; 

if (s1==s2) { I* do s1 and s2 point to the same array? */ 
/* (typical ly not what you want) */ 
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i f  (strcmp(s1 ,s2)==0) { /* do sl and s2 hold the same characters? */ 

The strcmp() function does a three-way comparison of its two arguments. Given 
the values of s1 and s2 above, strcmp(s1,s2) will return 0, meaning a perfect 
match. If s1 was lexicographically before s2 it would return a negative number, 
and if s1 was lexicographically after s2 it would return a positive number. The 
term lexicographical means roughly "as in a dictionary." For example: 

strcmp("dog", "dog")==O 
strcmp("ape", "dodo")<O 
strcmp("pig" ,  "cow" )>O 

I* "ape" comes beiore "dodo" in a dictionary */ 
I* "pig" comes after "cow" in a dictionary *I 

The value of the pointer comparison s1==s2 is not guaranteed to be 0 (false). An 
implementation may decide to use the same memory to hold all copies of a char
acter literal, so we would get the answer 1 (true). Usually, strcmp() is the right 
choice for comparing Gstyle strings. 

We can fmd the length of a C-style string using strlen(): 

int lgt = strlen(s1 ); 

Note that strlen() counts characters excluding the terminating 0. In this case. 
strlen(s1 )==4 and it takes 5 bytes to store "asdf" . TI1is little difference is the 
source of many off-by-one errors. 

We can copy one Gstyle string (including the tenninating 0) into another: 

strcpy(s1 ,s2); /* copy characters irom s2 into s 1 *I 

It is your job to be sure that the target string (array) has enough space to hold the 
characters from the source. 

The strncpy(), strncat(), and strncmp() functions are versions of strcpy(), 
strcat(). and strcmp() that will consider a maximum of n characters, where n is 
their third argument. Note that if there are more than n characters in the source 
string, strncpy() will not copy a temlinating 0, so that the result will not be a valid 
C-style string. 

The strchr() and strstr() functions fmd their second argument in the string 
that is their first argument and return a pointer to the first character of the match. 
Like find(), they search from left to right in the string. 

It is an1azing both how much can be done with these simple functions and how 
easy it is to make minor mistakes. Consider a simple problem of concatenating a 
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user name with an address, placing the @ character in between. Using std: string 
this can be done like this: 

string s = id + '@'  + addr; 

Using the standard C-style string function we can write that as 

char• cat(const char• id, const char• addr) 
{ 

int sz = strlen(id)+strlen(addr)+2; 
char• res = (char*) malloc(sz); 
strcpy(res,id); 
res[strlen(id)+1] = '@'; 
strcpy(res+strlen(id)+2,addr); 
res[sz-1]=0; 
return res; 

Did we get that right? Who will free() the string returned from cat()? 

T R Y  T H I S  

<.. Test cat(). Why 2? We left a beginner's performance error in cat() ; find it and 
remove it. We "forgot" to comment our code. Add comments suitable for 
someone who can be assumed to know the standard Gstring functions. 

27 .5.1 C-style strings and const 
Consider: 

char• p = "asdf"; 
p[2] = 'x'; 
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This is legal in C but not in C++. In C++, a string literal is a constant, an im- • 1 
mutable value, so p[2J='x' (to make the value pointed to "asxf") is illegal. Unfor- U 
tunately, few compilers will catch the assignment to p that leads to the problem. 
If you arc lucky, a run-time error will occur, but don't rely on that. Instead, write 

const char• p = "asdf"; II now you can't write to "asdf" through p 

This recommendation applies to both C and C++. 
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The C strchr() has a similar but even harder-to-spot problem. Consider: 

char• strchr(const char• s, int c) ; I* find c in constant s (not C++) */ 

const char aa[] = "asdf"; 
char• q = strchr(aa, 'd'); 
•q = 'x'; 

/* aa is an array of constants */ 
/* finds 'd '  */ 
/* change 'd '  in a to ' x ' */ 

Again, this is illegal in C and C++, but C compilers can't catch it. Sometimes this 
is referred to as transmulalimz: it turns consts into non-consts, violating reasonable 
assumptions about code. 

In C++. the problem is solved by the standard library declaring strchr() 
differently: 

char const• strchr(const char• s, int c) ; 
char• strchr(char• s, int c); 

Similarly for strstr(). 

27 .5 .2 Byte operations 

II fi nd c in constant s 
II find c in s 

In the distant dark ages (tl1e early 1980s), before the invention of void*. C (and 
C++) progran1mers used the string operations to manipulate bytes. Now the 
basic memory manipulation standard library functions have void* parameters 
and return types to warn users about their direct manipulation of essentially un
typed memory: 

I* copy n bytes from s2 to s 1 ( l ike strcpy): */ 
void* memcpy(void* s1,  const void* s2, size_t n); 

/* copy n bytes from s2 to s 1 ( Is 1 :s 1 +n)  may overlap with j s2 :s2+n) ) : */ 
void* memmove(void* s1, const void* s2, size_t n);  

I* compare n bytes from s2 to s 1  ( l i ke strcmp): */ 
int memcmp(const void* s1,  const void* s2, size_t n); 

I* fi nd c (converted to an unsigned char) in  the first n bytes of s: */ 
void * memchr(const void* s, int c, size_t n);  

I* copy c (converted to an unsigned char) 
into each of the first n bytes that s points to: */ 

void* memset(void* s, int c, size_t n); 
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Don't use these functions in C++. In particular, memset() typically interferes 
with the guarantees offered by constructors. 

27.5.3 An example: strcpy() 
The definition of strcpyO is both famous and infamous as an example of the terse 
style that C (and C++) is capable of: 

char• strcpy(char• p, const char• q) 
{ 

while (*p++ = *q++);  
return p; 

We leave to you the explanation of why this actually copies the C-style string q 
into p. 

T R Y  T H I S  

..... Is this implementation of strcpy() correct? Explain why. 
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If you can't explain why, we won't consider you a C programmer (however com- • 'I 
pctent you arc at programming in other languages) . Every language has its own U 
idioms, and this is one of C's. 

27 .5.4 A style issue 
We have quietly taken sides in a long-standing, often furiously debated, and 
largely irrelevant style issue. We declare a pointer like tlus : 

char• p; II p is a pointer to a char 

and not like Lhis : 

char *p; I* p i s  something that you can dereference to get a char */ 

lbc placement of the whitcspacc is completely irrelevant to the compiler, but 
progran1mers care. Our style (common in C++) emphasizes the type of the vari
able being declared, whereas tl1e other style (more common in C) emphasizes the 
use of the variable. Note that we don't recommend declaring many variables in a 
single declaration: 

char c, •p, a[1 77), *f(); I* legal ,  but confusing */ 
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Such declarations are not uncommon in older code. Instead, use multiple lines 
and take advantage of the extra horizontal space for comments and initializers: 

char c = 'a'; 
char• p = 0; 
char a[1 77); 
char• fO; 

I* termination character for input using f() */ 
I* last cha r read by f() */ 
I* i nput bufier */ 
I* read into buffer a; return poi nter to first char read *I 

Also, choose meaningful names. 

27.6 I nput/output: stdio 
There are no iostreams in C, so we use the C standard 1/0 defined in <Stdio.h> 
and commonly referred to as stdio. The stdio equivalents to cin and cout are 
stdin and stdout. Stdio and iostream usc can be mixed in a single program (for 
the same 1/0 streams) , but we don't recommend that. If you feel the need to mix, 
read up on stdio and iostreams (especially ios_base: : sync_with_stdio()) in an 
expert-level textbook. See also §B. l  0. 

27.6.1 Output 
The most popular and useful function of stdio is printf(). The most basic use of 
printf() just prints a (C-style) string: 

#include<stdio.h> 

void f(const char• p) 
{ 

printf("Hello, Worldt\n"); 
printf(p); 

That's not particularly interesting. The interesting bit is that printf() can take an 
arbitrary number of arguments, and the initial string controls if and how those 
extra arguments are printed. The declaration of printf() in C looks like this: 

int printf(const char• format, . . .  ); 

The - . - means "and optionally more arguments." We can call printf() like this : 

void f1(double d, char• s, int i, char ch) 
{ 

printf("double %g string %s int %d char %c\n", d, s, i, ch); 
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Here. %g means "Print a floating-point number using the general format," %s 
means ''Print a C-style string,'' %d means "Print an integer using decimal digits," 
and %c means "Print a character." Each such format specifier picks the next so
far-unused argument, so %g prints d, %s prints s, %d prints i, and %c prints ch. 
You can find the full list of printf() formats in §8.10.2. 

Unforrunately, printf() is not type safe. For example: f.J 
char a[] = { 'a', 'b' }; I* no terminating 0 */ 

void f2(char• s, int i) 
{ 

printf("goof %s\n", i); 
printf("goof %d: %s\n", i); 
printf("goof %s\n", a); 

I* uncaught error *I 
I* uncaught error *I 
I* uncaught error */ 

The effect of the last printf() is interesting: it prints every byte in memory follow
ing a[1 ) until it encounters a 0. That could be a lot of characters. 

This lack of type safety is one reason we prefer iostreams over stdio even 
though stdio works identically in C and C++. The other reason is that the stdio 
functions arc not extensible: you cannot extend printf() to print values of your 
own types, the way you can using iostreams. For example, there is no way you 
can define your own %Y to print some struct Y. 

There is a useful version of printf() that takes a flle descriptor as its first 
argument: 

int fprintf(FILE* stream, const char• format, • • •  ); 

For example: 

fprintf(stdout,"Hello, Worldl\n"); II exactly l i ke pri ntf( ''Hel lo, World ! \n"); 
FILE* ff = fopen ("My_file", "w"); II open My_fi le for writing 
fprintf(ff,"Hello, Worldl\n"); II write "Hel lo, World ! \ n" to My_fi le 

Fl.le handles are described in §27.6.3. 

27 .6.2 Input 
The most popular stdio functions include 

int scanf(const char• format, • . .  ) ;  
int getchar(void) ; 

/* read irom stdin using a format */ 
I* get a char from stdin */ 
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int getc(FILE* stream); 
char• gets (char• s); 

/* get a char from stream */ 
/* get characters from std in */ 

The simplest way of reading a string of characters is using gets () . For example : 

char a[12]; 
gets(a); /* read into char array pointed to by a unt i l  a ' \ n ' is input */ 

Never do that! Consider gets() poisoned. Together with its close cousin 
scanf("%s"), gets() used to be the root cause of about a quarter of all successful 
hacking attempts. It is still a major security problem. In the trivial example 
above, how would you know that at most 1 1  characters would be input before a 
newline? You can't know that. Thus, gets() almost certainly leads to memory cor
ruption (of the bytes after the buffer), and memory corruption is a major tool of 
crackers. Don't think that you can guess a maximum buffer size that is "large 
enough for all uses." Maybe the "person" at the other end of the input stream is a 
program that does not meet your criteria for reasonableness. 

The scanf() function reads using a format just as printf() writes using a for
mat. Like printf() it can be very convenient: 

void f() 
{ 

int i ;  
char c; 
double d; 
char• s = (char* )malloc(100); 
/* read into variables passed as pointers: */ 
scanf( "%i %c %g %s", &i, &c, &d, s); 
/* %s skips init ia l  whitespace and is terminated by wh itespace */ 

Like printf(), scanf() is not type safe. The format characters and the arguments 
(all pointers) must match exactly, or strange things will happen at run time. Note 
also that the %s read into s may lead to an overflow. Don't ever use gets() or 
scanf("%s")! 

So how do we read characters safely? We can use a form of %s that places a 
limit on the number of characters read. For example : 

char buf[20); 
scanf( "%19s",bu0; 

We need space for a terminating 0 (supplied by scanf()), so 1 9  is the maximum 
number of characters we can read into buf. However, that leaves us with the 
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problem of  what to do i f  someone does type more than 19 characters. The 
"extra" characters will be left in the input stream to be "found'' by later input 
operations. 

The problem with scanf() implies that it is often prudent and easier to use 
getchar(). The typical way of reading characters with getchar() is 

while((x=getchar())! =EOF) { 
/* . . .  */ 

EOF is a stdio macro meaning "end of flle"; see also §27.4. 
The C++ standard library alternative to scanf("%s") and gets() doesn't suf

fer from these problems: 

string s;  
c in >> s;  II read a word 
getline(cin,s); II read a l i ne 

27 .6.3 Files 
In C (or C++) , flles can be opened using fopen()  and closed using fclose( ). 
These functions, together with the representation of a fUe handle, FILE, and the 
EOF (end-of-file) macro, are found in <Stdio.h>: 

FILE *fopen(const char• filename, const char• mode); 
int fclose(FILE *stream); 

Basically, you use flles like this: 

void f(const char• fn, const char• fn2) 
{ 

FILE* fi = fopen(fn, "r"); 
FILE* fo = fopen(fn2, "w"); 

/* open fn for read ing */ 
/* open fn for writing */ 

if (fi = 0) error("failed to open input file"); 
if (fo = 0) error("failed to open output file");  

/* read from f i le us ing stdio input functions, e.g. ,  getc() */ 
/* write from fi le using stdio output functions, e.g., fprintf( ) */ 

fclose(fo); 
fclose(fi); 
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Consider this: there are no exceptions in C, so how do we make sure that the 
files are closed whichever error happens? 

27.7 Constants and macros 
In C. a const is never a compile-time constant: 

const int max = 30; 
const int x; /* canst not ini t ia l ized: OK in C (error in C++) */ 

void f(int v) 
{ 

int a1 [max]; /* error: array bound not a constant (OK in C++) */ 
/* (max is not a l lowed in a constant expression ! )  */ 

int a2[x]; /* error: array bound not a constant */ 

switch (v) { 
case 1 :  

/* . . .  */ 
break; 

case max : /* error: case label not a constant (OK in C++) */ 
/* . . .  */ 
break; 

The technical reason in C (though not in C++) is that a const is implicitly acces
sible from other translation units: 

/* i i le x.c.:: */ 
const int x; 

/* fi le xx.c: */ 
const int x = 7; 

/* in i t ia l ize elsewhere */ 

/* here is the real deiinit ion */ 

In C++, that would be two different objects, each called x in its own flle. Instead 
of using const to represent symbolic constants, C programmers tend to use 
macros. For example: 

#define MAX 30 
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void f(inl v) 
{ 

inl a1 [MAX]; /* OK */ 

switch (v) { 
case 1 :  

/* . . .  */ 
break; 

case MAX : /* OK */ 
/* . . .  */ 
break; 

l11c name of the macro MAX is replaced by the characters 30, which is the value • 1 
of the macro; that is, the number of elements of a1 is 30 and the value in the sec- U 
o11d case label is 30. We use all capital letters for the MAX macro, as is conven
tional. lnis naming convention helps minimize errors caused by macros. 

27.8 Macros 
Beware of macros: in C there are no really effective ways of avoiding macros, but 
their usc has serious side effects because they don't obey the usual C (or C++) 
scope and type rules. Macros are a fmm of text substitution. See also §A. l7.2. 

How do we try to protect ourselves from the potential problems of macros 
apart from (relying on C++ alternatives and) minimizing their use? 

Give all macros we defme ALL_ CAPS names. 

Don't give anything that isn't a macro an ALL_ CAPS name. 

Never give a macro a short or "cute" name, such as max or min. 

Hope that everybody else follows this simple and common convention. 

The main uses of macros are 

Definition of "constants" 

Definition of function-like constructs 

''Improvements" to the syntax 

Control of conditional compilation 

In addition, there is a wide variety of less common uses. 
We consider macros seriously overused, but there are no reasonable and 

complete alternatives to the use of macros in C programs. It can even be hard to 
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avoid them in C++ programs (especially if you need to write programs that have 
to be portable to very old compilers or to platforms with unusual constraints) .  

Apologies to  people who consider the techniques described below "dirty 
tricks" and believe such are best not mentioned in polite company. However, we 
believe that programming is to be done in the real world and that these (very 
mild) examples of uses and misuses of macros can save hours of grief for the 
novice progranuner. Ignorance about macros is not bliss. 

27 .8. 1 Function-like macros 
Here is a fairly typical function-like macro: 

#define MAX(x, y) ((x)>=(y)?(x): (y)) 

We use the capital MAX to distinguish it from the many functions called max (in 
various programs). Obviously, this is very different from a function: there arc no 
argument types, no block, no rerum statement, etc., and what are all those paren
theses doing? Consider: 

int aa = MAX(1 ,2); 
double dd = MAX(aa++,2); 
char cc = MAX(dd,aa)+2; 

This expands to 

int aa = ((1 )>=( 2)?(1 ) : (2)); 
double dd = ((aa++)>=(2)?( aa++) : (2)); 
char cc = ((dd)>=(aa)l(dd) : (aa))+2; 

Had "all the parentheses" not been there. the last expansion would have ended 
up as 

char cc = dd>=aaldd:aa+2; 

That is. cc could easily have gotten a different value from what you would rea
sonably expect looking at the definition of cc. When you define a macro, remem
ber to put every use of an argument as an expression in parentheses. 

On the other hand, not all the parentheses in the world could save the sec
ond expansion. The macro parameter x was given the value aa++. and since x is 
used twice in MAX, a can get incremented twice. Don't pass an argument with a 
side effect to a macro. 

As it happens, some genius did define a macro like that and stuck it in a pop
ular header fUe. Unfortunately. he also called it max. rather than MAX. so when 
the C++ standard header defines 
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template<class T> inline T max(T a,T b) { return a<blb:a; } 

the max gets expanded with the arguments T a and T b, and the compiler sees 

template<class T> inline T ((T a)>=( T b)?( T a) : (  T b)) { return a<blb:a; } 

The compiler error messages are "interesting" and not very helpful. In an emer
gency, you can "undefine" a macro: 

#undef max 

Fortunately, that macro was not all that important. However, there are tens of 
thousands of macros in popular header files; you can't undefine them all without 
causing havoc. 

Not all macro parameters are used as expressions. Consider: 

#define ALLOC(T,n) ((T*)malloc(sizeof(T)*n)) 

This is a real example that can be very useful for avoiding errors stemming from 
a mismatch of the intended type of an allocation and its use in a sizeof: 

double* p = malloc(sizeof(int)*10); /* l i ke ly error */ 

Unfortunately, it is nontrivial to write a macro that also catches memory exhaus
tion. This might do, provided that you defme error_var and error() appropriately 
somewhere: 

#define ALLOC(T,n) (error _var = (T* )malloc(sizeof(n*n), \ 
(error_ var==O)\ 
?(error("memory allocation failure" ),O)\ 
:error_ var) 

The lines ending with \ are not a typesetting problem; it is the way you break a 
macro defmition across lines. When writing C++, we prefer to use new. 

27 .8.2 Syntax macros 
You can defme macros that make the source code look more to your taste. For 
example: 

#define forever for( ; ; )  
#define CASE break; case 
#define begin { 
#define end } 
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We strongly recommend against this . Many people have tried this idea. They (or 
the people who maintain their code) find that 

Many people don't share their idea of what is a better syntax. 

The "improved" syntax is nonstandard and surprising; others get confused. 

There arc uses of the "improved" syntax that cause obscure compile-time 
errors. 

What you sec is not what the compiler sees, and the compiler reports er
rors in the vocabulary it knows (and sees in source code), not in yours. 

Don't write syntactic macros to "improve" the look of code. You and your best 
friends might fmd it really nice, but experience shows that you'll be a tiny minor
ity in the larger community, so that someone will have to rewrite your code (as
suming it survives) . 

27 .8.3 Conditional compilation 
Imagine you have two versions of a header file, say, one for Linux and one for 
Wmdows. How do you select in your code? Here is a common way: 

#ifdef WINDOWS 
#include "my_windows_header.h" 

#else 
#include "my_linux_header.h" 

#end if 

Now, if someone had defined WINDOWS before the compiler sees this, the effect is 
#include "my_windows_header.h" 

Otherwise it is 

#include "my_linux_header.h" 

The #ifdef WINDOWS test doesn't care what WINDOWS is  dcfmcd to be; i t  just 
tests that it is defined. 

Most major systems (including all operating system variants) have macros 
dcfmcd so that you can check. The check whether you arc compiling as C++ or 
compiling as C is 

#ifdef _cplusplus 
II in C++ 

#else 
/* in C */ 

#end if 
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A similar construct, often called a n  include guard, is commonly used to prevent a 
header rue from being #included twice : 

/* my_windows_header.h: */ 
#ifndef MY _WINDOWS_HEADER 
#define MY_WINDOWS_HEADER 

/* here is the header i nformation */ 
#end if 

l11e #ifndef test checks that something is not defmed; i.e., #ifndef is the opposite 
of #ifdef. Logically, these macros used for source flle control are very different 
from the macros we usc for modifying source code. They just happen to use the 
same underlying mechanisms to do their job. 

27.9 An example: intrusive containers 
The C++ standard library containers, such as vector and map, are non-intrusive; 
that is, they require no data in the types used as elements. That is how they gen
eralize nicely to essentially all types {built-in or user-defined) as long as those 
types can be copied. There is another kind of container, an uzJrusive cmliauzer, that 
is popular in both C and C++. We will use a non-intrusive list to illustrate C
style use of slrucls, pointers, and free store. 

Let's define a doubly-linked list with nine operations : 

void inil(slruct List• lsi); 
slruct List• create(); 

/* in i t ia l ize l st to empty */ 

void clear(slruct List• lsi); 
void deslroy(slruct List• lsi); 

/* make a new empty l ist on free store */ 
/* free a l l  elements of 1st */ 
/* free a l l  elements of 1 st, then free 1st */ 

void push_back(slruct List• lsi, slruct Link* p); 
void push_fronl(slruct List•, slruct Link* p); 

/* insert q before p in  1st :  */ 

/* add p at end of 1st */ 
/* add p at front of 1st */ 

void inserl(struct List• lsi, slruct Link* p, struct Link* q); 
slruct Link* erase(slruct List• lsi, slruct Link* p); /* remove p from 1 st */ 

/* return l ink n "hops" before or after p: */ 
slruct Link* advance(slruct Link* p, int n); 

The idea is to dcfme these operations so that their users need only use List•s and 
Link*s. This implies that the implementation of these functions could be changed 
radically without affecting those users. Obviously, the naming is influenced by 
the sn. List and Link can be defmed in the obvious and trivial manner: 
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struct List { 

} ; 

struct Link* first; 
struct Link* last; 

struct Link { /* l ink for doubly- l inked l ist */ 
struct Link* pre; 
struct Link* sue; 

}; 

Here is a graphical representation of a List: 

List: 
·.---------, first 

It is not our aim to demonstrate clever representation techniques or clever algo
rithms, so there are none of those here. However, do note that there is no men
tion of any data held by the Links (the elements of a List) . Looking back at the 
functions provided, we note that we are doing something very similar to defining 
a pair of abstract classes Link and List. The data for Links will be supplied later. 
Link* and List• are sometimes called handles to opaque types ; that is, giving 
Link*s and List•s to our functions allows us to manipulate elements of a List with
out knowing anything about the internal structure of a Link or a List. 

To implement our List functions, we first #include some standard library 
headers : 

#include<stdio.h> 
#include<stdlib.h> 
#include<assert.h> 

C doesn't have namespaces, so we need not worry about using declarations or 
using directives. On the other hand, we should probably worry that we have 
grabbed some very common short nan1es (Link, insert, init, etc.), so this set of 
functions cannot be used "as is "  outside a toy program. 

Initializing is trivial, but note the use of assert() :  
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void init(struct List• 1st) 
{ 

assert(lst); 

/"' ini t ia l ize *p to the empty l ist */ 

lst->first = lst->last = 0; 

We decided not to deal with error handling for bad pointers to lists at run time. 
By using assert(), we simply give a (run-time) system error if a list pointer is null. 
The "system error" will give the file name and line number of the failed assert( ) ;  
assert() is a macro defmed in <assert.h> and the checking is enabled only during 
debugging. In the absence of exceptions, it is not easy to know what to do with 
bad pointers. 

l11e create() function simply makes a List on the free store. It is a sort of 
combination of a constructor (init() initializes) and new (malloc() allocates) :  

struct List• create() 
{ 

/* make a new empty l ist */ 

struct List• 1st = (struct List*)malloc(sizeof(struct List*)); 
init(lst); 
return 1st; 

l11e clear() function assumes that all Links are created on the free store and 
free()s them: 

void clear(struct List• 1st) /* free a l l  elements oi 1st */ 
{ 

assert(lst); 
{ 

struct Link* curr = lst->first; 
while(curr) { 

struct Link* next = curr->suc; 
free(curr); 
curr = next; 

lst->first = lst->last = 0; 

Note the way we traverse using the sue member of link. We can't safely access a 
member of a struct object after that object has been free()d, so we introduce the 
variable next to hold our position in the List while we free() a Link. 

1027 



1028 CHAPTER  27 • THE C PROGRAM M I N G  lANGUAGE 

If we didn't allocate all of our Links on the free store, we had better not call 
clear( ), or clear() will create havoc. 

The destroy() function is essentially the opposite of create( ). that is, a sort of 
combination of a destructor and a delete: 

void destroy(struct List• 1st) /* free a l l  elements of 1st; then free 1st */ 
{ 

assert( 1st); 
clear( 1st); 
free( 1st); 

Note that we are making no provisions for calling a cleanup function (destmc
tor) for the elements represented by Links. This design is not a completely faith
ful imitation of C++ techniques or generality - it couldn't and probably 
shouldn't be. 

The push_back( ) function - adding a Link as the new last Link - is pretty 
straightforward: 

void push_back(struct List• 1st, struct Link* p) 
{ 

assert(lst); 
{ 

struct Link* last = lst->last; 
if (last) { 

/* add p at end of 1st */ 

last->Suc = p; 
p->pre = last; 

/* add p after last */ 

else { 
lst->first = p; 
p->pre = 0; 

lst->last = p; 
p->SUC = 0; 

/* p is the first element */ 

/* p is the new last element */ 

However, we would never have gotten it right without drawing a few boxes and 
arrows on our doodle pad. Note that we "forgot" to consider Lhe case where the 
argument p was null. Pass 0 instead of a pointer to a Link and this code will fail 
miserably. This is not inherently bad code, but it is not industrial strength. Its pur
pose is to illustrate common and useful techniques (and, in this case. also a com
mon weakness/bug) . 
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The erase() function can be written like this: 

struct Link* erase(struct List• 1st, struct Link* p) 
/* 

remove r from 1 st; 
return a pointer to the l ink after p 

*/ 

assert( 1st); 
if (p==O) return 0; /* OK to erase(O) */ 

if (p == lst->first) { 
if (p->suc) { 

else { 

lst->first = p->suc; 
p->suc->pre = 0; 
return p->suc; 

I* the successor becomes fi rst */ 

lst->first = lst->last = 0; /* the l ist becomes empty */ 
return 0; 

else if (p == lst->last) { 
if (p->pre) { 

else { 

else { 

lst->last = p->pre; /* the predecessor becomes last */ 
p->pre->suc = 0; 

lst->first = lst->last = 0; /* the l ist becomes empty */ 
return 0; 

p->suc->pre = p->pre; 
p->pre->suc = p->suc; 
return p->suc; 

We will leave the rest of the functions as an exercise, as we don't need them for 
our (all too simple) test. However, now we must face the central mystery of this 
design: Where is the data in the elements of the list? How do we implement a 
simple list of names represented by a C-style string? Consider: 
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struct Name { 

}; 

struct Link Ink; 
char• p; 

/* the Link required by List operations */ 
/* the name string */ 

So far, so good, though how we get to use that Link member is a mystery; but 
since we know that a List likes its Links on the free store, we write a function cre
ating Names on the free store: 

struct Name• make_name(char• n) 
{ 

struct Name• p = (struct Name*)malloc(sizeof(struct Name)); 
p->p = n; 
return p; 

Or graphically: 

n 

Now let's use that: 

int main() 
{ 

struct List names; 
struct List• curr; 
init(&names); 

/* make a l ist */ 

/* m,1ke a few Names and add them to the l ist : */ 
push_back(&names,(struct Link*)make_name("Norah")); 
push_back(&names,(struct Link*)make_name("Annemarie")); 
push_back(&names,(struct Link*)make_name( "Kris")); 

/* remove the second name (with index 1 ): */ 
erase(&names,advance(names.first, 1 )); 
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curr = names.first; /* write out a l l  names •1 
int count = 0; 
for (;  curr!=O; curr=curr->suc) { 

count++; 
printf("element %d: %s\n", count, ((struct Name•)curr)->p); 

So we "cheated." We used a cast to treat a Name• as a Link• . In that way, the user 
knows about the "library-type" Link. However, the "library" doesn't know about 
the "application-type" Name. Is that allowed? Yes, it is: in C (and C++),  you can 
treat a pointer to a struct as a pointer to its first element and vice versa. 

Obviously, this List example is also C++ exactly as written. 

T R Y  T H I S  

A common refrain among C++ programmers talking with C programmers 
is, "Everything you can do, I can do better!" So, rewrite the intrusive List ex
ample in C++, showing how to make it shorter and easier to use without 
making the code slower or the objects bigger. 

"' Drill 
1 .  Write a "Hello, World!" program in C, compile it, and run it. 
2. Define two variables holding "Hello" and "World!" respectively; concate

nate them with a space in between; and output them as Hello, World!. 
3. Defme a C function that takes a char• parameter p and an int parameter 

x and print out their values in this format: p is "foo" and x is 7. Call it 
with a few argument pairs. 

Review 
In the following, assume that by C we mean ISO standard C89. 

1 .  Is C++ a subset of C? 
2. Who invented C? 
3.  Name a highly regarded C textbook. 
4. In what organization were C and C++ invented? 
5. Why is C++ (almost) compatible with C? 
6. Why is C++ only almost compatible with C? 
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7. List a dozen C++ features not present in C. 
8. What organization "owns" C and C++? 
9. List six C++ standard library components that cannot be used in C. 

10. Which C standard library components can be used in C++? 
1 1 .  How do you achieve function argument type checking in C? 
12. What C++ features related to functions are missing in C? List at least 

three. Give examples. 
13. How do you call a C function from C++? 
14. How do you call a C++ function from C? 
15. Which types are layout compatible between C and C++? (Just) give ex-

amples. 
16. What is a structure tag? 
17. List 20 C++ keywords that are not keywords in C. 
18. Is "int x; " a definition in C++? In C? 
19. What is a C-style cast and why is it dangerous? 
20. What is void* and how does it differ in C and C++? 
21 .  How do enumerations differ in C and C++? 
22. What do you do in C to avoid linkage problems from popular names? 
23. What are the three most common C functions from free-store use? 
24. What is the definition of a C-style string? 
25. How do == and strcmp() differ for C-style strings? 
26. How do you copy C-style strings? 
27. How do you find the length of a Gstyle string? 
28. How would you copy a large array of ints? 
29. What's nice about printf()? What are its problems/limitations? 
30. Why should you never use gets()? What can you use instead? 
31.  How do you open a file for reading in C? 
32. What is the difference between const in C and const in C++? 
33. Why don't we like macros? 
34. What are common uses of macros? 
35. What is an include guard? 

Terms 

#define 
#ifdef 
#ifndef 
Bell Labs 
Brian Kernighan 
CIC++ 
compatibility 
conditional compilation 
C-style cast 
C-style string 

Dennis Ritchie 
FILE 
fopen() 
format string 
intrusive 
K&R 
lexicographical 
linkage 
macro 
malloc() 

non-intrusive 
opaque type 
overloading 
printf() 
strcpy() 
structure tag 
three-way comparison 
void 
void* 



CHAPT E R  2 7  E X E RC I S ES 

Exercises 

For these exercises it may be a good idea to compile all programs with both a C 
and a C++ compiler. If you use only a C++ compiler, you may accidentally use 
non-C features. If you use only a C compiler, type errors may remain undetected. 

1 .  Implement versions of strlen(), strcmp(), and strcpy(). 
2. Complete the intrusive List example in §27.9 and test it using every 

function. 
3. "Pretty up" the intrusive List example in §27.9 as best you can to make it 

convenient to use. Do catch/handle as many errors as you can. It is fair 
game to change the details of the struct definitions, to use macros, whatever. 

4. If you didn't already, write a C++ version of the intrusive List example 
in §27.9 and test it using every function. 

5. Compare the results of exercises 3 and 4. 
6. Change the representation of Link and List from §27.9 without changing 

the user interface provided by the functions. Allocate Links in an array of 
links and have the members first, last, pre, and sue be ints (indices into 
the array) . 

7. What are the advantages and disadvantages of intrusive containers com· 
pared to C++ standard (non-intrusive) containers? Make lists of pros 
and cons. 

8. What is the lexicographical order on your machine? Write out every 
character on your keyboard together with its integer value; then, write 
the characters out in the order detennined by their integer value. 

9. Using only C facilities, including the C standard library, read a sequence 
of words from stdin and write them to stdout in lexicographical order. 
Hint: The C sort function is called qsort() ; look it up somewhere. Alter· 
natively, insert the words into an ordered list as you read them. There is 
no C standard library list. 

1 0. Make a list of C language features adopted from C++ or C with Classes 
(§27.1) .  

1 1 .  Make a list of C language features not adopted by C++. 
12. Implement a (C-style string, int) lookup table with operations such as 

find(struct table•, const char•), insert(struct table•, const char•, int), 
and remove(struct table•,  const char•) .  The representation of the table 
could be an array of a struct pair or a pair of arrays (const char•[] and 
int• ) ;  you choose. Also choose return types for your functions. Docu
ment your design decisions. 

13.  Write a program that does the equivalent of string s; cin>>s; in C; that 
is, defme an input operation that reads an arbitrarily long sequence of 
whitespace-terminated characters into a zero-terminated array of chars. 

14.  Write a function that takes an array of ints as its input and fmds the 
smallest and the largest elements. It should also compute the median and 
mean. Use a struct holding the results as the return value. 
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15. Simulate single inheritance in C. Let each "base class" contain a pointer 
to an array of pointers to functions (to simulate virtual functions as free
standing functions taking a pointer to a "base class" object as their first 
argument) ; see §27.2.3. Implement "derivation" by making the "base 
class" the type of the first member of the derived class. For each class, ini
tialize the array of "virtual functions" appropriately. To test the ideas, in1· 
plement a version of "the old Shape example" with the base and derived 
draw() just printing out the name of their class. Use only language fea
tures and library facilities available in standard C. 

16. Use macros to obscure (simplify the notation for) the implementation in 
the previous exercise. 

Postscript 

We did mention that compatibility issues are not all that exciting. However, there 
is a lot of C code "out there" (billions of lines of code) , and if you have to read or 
write it, this chapter prepares you to do so. Personally, we prefer C++, and the 
information in this chapter gives part of the reason for that. And please don't 
underestimate that "intrusive List" example - both "intrusive Lists" and opaque 
types are important and powerful techniques (in both C and C++). 
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Append i ces 





Language S u m mary 

"Be careful what you wish for;  
you might get it." 

-Traditional 

This appendix summarizes key language elements of C++. 

The summary is very selective and specifically geared to 

novices who want to explore a bit beyond the sequence of topics 

in the book. The aim is conciseness, not completeness. 
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A.1 General 
A.1.1 Terminology 
A.1.2 Program start and termination 
A.1.3 Comments 

A.2 Literals 
A.2.1 Integer literals 
A.2.2 Floating-point-literals 
A.2.3 Boolean literals 
A.2.4 Character literals 
A.2.5 String literals 
A.2.6 The pointer literal 

A.J Identifiers 
A.3.1 keywords 

A.4 Scope, storage class, and lifetime 
A.4.1 Scope 
A.4.2 Storage class 
A.4.3 Ufetime 

A.S Expressions 
A.5.1 User·deflned operators 
A.5.2 Implicit type conversion 
A.S.J Constant expressions 
A.5.4 sizeof 
A.S.S Logical expressions 
A.5.6 new and delete 
A.5.7 Casts 

A.6 Statements 

A.7 Declarations 
A.7.1 Definitions 

A.S Built-in types 
A.8.1 Pointers 
A.8.2 Arrays 
A.8.3 References 

A.l General 
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A.9 Functions 
A.9.1 Overload resolution 
A.9.2 Default arguments 
A.9.3 Unspecified arguments 
A.9.4 Unkage specifications 

A.10 User-defined types 
A.10.1 Operator overloading 

A.11 Enumerations 

A.12 Classes 
A.12.1 Member access 
A.12.2 Class member definitions 
A.12.3 Construction, destruction, and 

copy 
A.12.4 Derived classes 
A.12.5 Bitfields 
A.12.6 Unions 

A.13 Templates 
A.13.1 Template arguments 
A.13.2 Template instantiation 
A.13.3 Template member types 

A.14 Exceptions 

A.15 Namespaces 

A.16 Aliases 

A.17 Preprocessor directives 
A.17.1 #include 
A.17.2 #define 

This appendix is a reference. It is not intended to be read from beginning to end 
like a chapter. It (more or less) systematically describes key elements of the C++ 
language. It is not a complete reference, though; it is just a summary. Its focus 
and emphasis were detennincd by student questions. Often, you will need to 
look at the chapters for a more complete explanation. This summary does not at
tempt to equal the precision and tenninology of the standard. Instead, it attempts 
to be accessible. For more information, see Stroustrup, The C++ l+ogramming La11-
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g;uage. The definition of C++ is the ISO C++ standard, but that document is nci· 
ther intended for nor suitable for novices. Don't forget to usc your online docu· 
mentation. If you look at this appendix while working on the early chapters, 
expect much to be "mysterious," that is, explained in later chapters. 

For standard library facilities, see Appendix B. 
The standard for C++ is defmed by a committee working under the auspices 

of the ISO (the international organization for standards) in collaboration with na· 
tional standards bodies, such as INCITS (United States) , BSI (United Kingdom), 
and AFNOR (France). The current definition is ISO/IEC 14882:2003 Standard jar 
Programming Language C++. It is available electronically and as a book (on paper) : 
Tl1e C++ Standard, published by Wtley, ISBN 0470846747. 

A.1 .1 Terminology 
The C++ standard defines what a C++ program is and what the various con
structs mean: 

C()l!fomling: A program that is C++ according to the standard is called 
cor!fomling (or colloquially, legal or valid).  
Implemmlalion defined: A program can (and usually does) depend on fea
tures (such as the size of an int and the numeric value of 'a') that are only 
well defined on a given compiler, operating system, machine architecture, 
etc. The in1plementation-defmed features are listed in the standard and 
must be documented in implementation documentation, and many are 
reflected in standard headers, such as <limits> (see §B.l .l). So, being con
fanning is not the same as being portable to all C++ implementations. 

Unspecffied: TI1c meaning of some constructs is umpecffied, undefined, or not 
cor!fonnu1g but not requinng a diagnostic. Obviously, such features are best 
avoided. This book avoids them. The unspecified features to avoid 
include 

Inconsistent definitions in separate source ftles (use header ftles con
sistently; sec §8.3) 

Reading aTill writing the same variable repeatedly in an expression 
(the main example is a[i]=++i; )  

Many uses o f  explicit type conversion (casts), especially of reinter
pret_cast 

A.1 .2 Program start and termination 
A C++ program must have a single global function called main(). The program 
starts by executing main(). The return type of main() is int (void is not a conform
ing alternative) . The value returned by main() is the program's return value to 
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"the system." Some systems ignore that value, but successful termination is  indi
cated by returning zero and failure by returning a nonzero value or by an un
caught exception (but an uncaught exception is considered poor style). 

TI1e arguments to main() can be implementation defined, but every imple
mentation must accept two versions (though only one per program) : 

int main(); II no arguments 
inl main(int argc, char• argv[]); II argv l l  holds argc C-style strings 

The definition of main() need not explicitly return a value. If it doesn't, "drop
ping through the bottom," it returns a zero. 11Us is the minimal C++ program: 

int main() { } 

If you defme a global (namespace) scope object with a constructor and a destruc
tor, the constructor will logically be executed "before main()" and the destructor 
logically executed "after main()" {technically, executing those constructors is part 
of invoking main() and executing the destructors part of returning from main()) . 
Whenever you can, avoid global objects, especially global objects requiring non
trivial construction and destruction. 

A.1 .3 Comments 
What can be said in code, should be. However, C++ offers two comment styles 
to allow the programmer to say things tl1at are not well expressed as code: 

II this is a l ine comment 

,. 
this i s  a 
block comment 

., 

Obviously, block comments are mostly used for multi-line comments, though 
some people prefer single-line comments even for multiple lines: 

II this is a 
II multi-l ine comment 
II expressed usi ng three line comments 

1• and th is is  a si ngle l ine of comment expressed using ,, block comment •1 
Comments are essential for documenting the intent of code; see also §7.6.4. 
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A.2 Literals 
LiLerals represent values of various types. For example, the literal 12 represents 
Lhe integer value "Lwelve," "Morning" represents the character string value Mom
UJg, and true represent the Boolean value lnte. 

A.2 .1 Integer literals 
lnkgt.,. litt7"als come in three varieties : 

• Decimal : a series of decimal digits 
Decimal digits : 0, 1 ,  2, 3, 4, 5, 6, 7, 8, and 9 

• Octal: a series of octal digits starting with 0 
Octal digits : 0, 1, 2, 3, 4, 5, 6, and 7 

Hexadecimal: a series of hexadecimal digits starting with Ox or OX 
Hexadecimal digits : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, 
and F 

A suffix u or U makes an integer literal unsigned (§25.5.3), and a suffix I or L 
makes it long; for example, 10u and 123456UL. 

A.2.1 .1 Number systems 

We usually write out numbers in decimal notation. 123 means 1 hundred plus 2 
tens plus 3 ones, or 1* 100+2*10+3*1,  or (using " to mean "to the power of') 
1* 10"2+2* 10" 1+3* 10"0. Another word for decimal is ba.se-10. There is nothing 
really special about 10 here. What we have is 1 *base"2+2*base" 1+3*base"O 
where base==10. There are lots of theories about why we use base· lO. One Lhe· 
ory has been "built into" some natural languages : we have ten fingers and each 
symbol, such as 0, 1 .  and 2, that directly stands for a value in a positional num· 
her system is called a digit. Digit is Latin for "fmger." 

Occasionally, other bases are used. Typically, positive integer values in com· 
puter memory are represented in base·2 (it is relatively easy to reliably represent 
0 and 1 as physical staLes in materials) ,  and humans dealing with low·level hard
ware issues sometimes use base-8 and more often base·1 6  to refer to the content 
of memory. 

Consider hexadecimal. We need to name the 1 6  values from 0 to 15. Usu
ally, we use 0, 1. 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, where A has the decimal 
value 10, B Lhe decimal value 1 1 ,  and so on: 

A==lO, B==ll, C==12, 0==13, E==14, F==15 

We can now write the decimal value 123 as 78 using the hexadecimal notation. 
1<> see that, note that in the hexadecimal system 78 means 7* 16+11,  which is 
(decimal) 123. Conversely, hexadecimal 123 means 1 * 16"2+2*16+3, which is 
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1 *256+2*16+3, which is  (decimal) 291 .  If you have never dealt with non-decimal 
integer representations, we strongly recommend you try converting a few num· 
hers to and from decimal and hexadecimal. Note that a hexadecimal digit has a 
very simple correspondence to a binary value: 

Hexadecimal and binary 

hex 0 

binary 0000 

hex 8 

binary 1 000 

0001 

9 

1 001 

2 

001 0 

A 
1 0 1 0  

3 

001 1 

8 
1 01 1  

4 

01 00 

c 
1 1 00 

5 

01 01 

D 

1 1 01 

6 

01 1 0  

E 

1 1 1 0 

7 

01 1 1  

F 

1 1 1 1  

This goes a long way toward explaining the popularity of hexadecimal notation. 
In particular, the value of a byte is simply expressed as two hexadecimal digits. 

In C++, (fortunately) numbers are decimal unless we specify otherwise. To 
say that a number is hexadecimal, we prefix OX ("X for hex") , so 123==0X7B and 
OX123==291. We can equivalently use a lowercase x, so we also have 123==0x7B 
and Ox123==291 . Similarly, we can use lowercase a, b, c, d, e, and f for the hexa· 
decimal digits. For example, 123==0x7b. 

Octal is base·8. We need only eight octal digits: 0, 1, 2, 3, 4, 5, 6, 7. In C++, 
base·8 numbers are represented starting with a 0, so 0123 is not the decimal num
ber 123, but 1*81\2+2*8+3, that is, 1 *64+2*8+3, or (decimal) 83. Conversely. octal 
83, that is, 083, is 8*8+3, which is (decimal) 67. Using C++ notation, we get 
0123==83 and 083==67. 

Binary is base·2. We need only two digits, 0 and 1 .  We cannot directly repre
sent base·2 numbers as literals in C++. Only base-8 (octal) , base-10 (decimal), 
and base-1 6 (hexadecimal) are directly supported as literals and as input and out
put formats for integers . However, binary numbers are useful to know even if we 
cannot directly represent them in C++ text. For example, (decimal) 123 is 

which is 1 *64+1 *32+1 *16+1*8+0*4+1 *2+1 , which is (binary) 1 1 1 101 1 .  

A.2.2 Floating-point-literals 
A jloating-point-literal contains a decimal point (.) ,  an exponent (e.g., e3) , or a 
floating-point suffix (d or f ) .  For example: 

123 II i nt (no decimal point, suffix, or exponent) 
123. II double: 1 2 3 .0 
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123.0 II double 
.123 II double: 0.1 23  
0.123 II double 
1.23e3 II double: 1 230.0 
1 .23e-3 II double: 0.001 23 
1.23e+3 II double: 1 230.0 

Floating-point-liLcrals have type double unless a suffix indicates otherwise. For 
example: 

1 .23 II double 
1 .23f II iloat 
1 .23L II long double 

A.2.3 Boolean literals 
The literals of type bool are true and false. The integer value of true is 1 and the 
integer value of false is 0. 

A.2.4 Character literals 
A character literal is a character enclosed in single quotes, for example, 'a' and '®'. 
In addition, there are some "special characters": 

Name ASCII name C++ name 

newline NL \n 

horizontal tab HT \1 
vertical tab VT \v 

backspace BS \b 
carriage return CR \r 

form feed FF \f 

alert BEL \a 

backslash \ \\ 
question mark l \1 

single quote \' 

double quote \" 

octal number 000 \ooo 

hexadecimal number hhh \xhhh 
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A special character i s  represented as its "C++ name" enclosed in single quotes, 
for example, '\n' (newline) and '\t' (tab) . 

The character set includes the following visible characters : 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
0123456789 
!@#$%/\&*()_ +1-'{}[] : " ; '<>l,J 

In portable code, you cannot rely on more visible characters. The value of a 
character, such as 'a' for a, is implementation dependent (but easily discovered. 
for example, cout << int('a')) . 

A.2.5 String literals 
A shing literal is a series of characters enclosed in double quotes, for example, 
"Knuth" and "King Canute". A newline cannOL be part of a string; instead usc the 
special character \n to represent newline in a string: 

"King 
Canute " 
"King\nCanute" 

II error: newline in string l i tera l 
II OK: correct way to get a newl ine into a string l iteral 

Two string literals separated only by whitespace are taken as a single string lit
eral. For example: 

"King" "Canute" II equiva lent to "KingCanute" (no space) 

Nme that special characters, such as \n, can appear in string literals. 

A.2 .6 The pointer literal 
There is only one pointer literal: the null pointer, 0. Any constant expression that 
evaluates to 0 can be used as the null pointer. For example: 

t• p1 = 0; 
int• p2 = 2-2; 
int• p3 = 1 ;  
int z = 0; 
int• p4 = z; 

II OK: nu l l  pointer 
II OK: nu l l  pointer 
II error: 1 is an int. not a pointer 

II error: z is not a constant 

What is happening here is that the value 0 is implicitly converted to the null 
pointer. The null pointer is typically (but not always) represented as an all-zeros 
bit pattern, just like 0. 
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In C++ (but nOL in C, so beware of C headers) , NULL is defined to mean 0 
so that you can write 

int• p4 = NULL; II (given the right definition of NULL) the nu l l  pointer 

In C++Ox. the keyword nullptr will denote the null pointer. For now, we recom
mend just using 0 for the null pointer. 

A.3 Identifiers 
An identjfitT is a sequence of characters starting with a letter or an underscore fol
lowed by zero or more (uppercase or lowercase) leuers, digits, or underscores : 

int foo_bar; II OK 
int FooBar; II OK 
int foo bar; II error: space can't be used in an identifier 
int foo$bar; II error: $ can't be used in an identifier 

Identifiers starting with an underscore or containing a double underscore are re
served for usc by the implementation; don't use them. For example: 

int _foo; 
int foo_bar; 
int foo_bar; 
int foo_; 

A.3.1  Keywords 

II don't 
// OK 
II don't 
// OK 

Keywords arc identifiers used by the language itself to express language constructs. 

Keywords (reserved Identifiers) 

and and_eq asm auto bitand bitor 

boo I break case catch char class 

com pi const const_cast continue default delete 

do double dynamic_ cast else enum explicit 

export extern false float for friend 

goto if in line int long mutable 

names pace new not not_eq operator or 

1045 



1046 APP E N DI X  A • LANG U AG E  S UMMARY 

Keywords (reserved identifiers) (continued) 
or_eq private protected public register reinterpret_ cast 

return short signed sizeof static static_ cast 

struct switch template this throw true 

try typedef typeid typename union unsigned 

using virtual void volatile wchar_t while 

xor xor_eq 

A.4 Scope, storage class, and lifetime 
Every name in C++ (with the lamentable exception of preprocessor names; see 
§A.17) exists in a scope; that is, the name belongs to a region of texL in which iL 
can be used. Data (objects) are stored in memory somewhere; the kind of mem
ory used to store an objecL is called its storage cla.ss. The lifetime of an objecL is 
from the time it is first initialized until it is fmally destroyed. 

A.4.1 Scope 
There are five kinds of scopes (§8.4) : 

Global scope: A name is in global scope unless it is declared inside some 
language construct (e.g., a class or a function). 

Namespaa� scope: A name is in a namespace scope if it is defmed within a 
namespace and not inside some language construct (e.g., a class or a 
function) . Technically, the global scope is a namespace scope with "Lhe 
empty name." 

Local scope: A name is in a local scope if it is declared inside a funcLion 
(this includes function parameters) . 

Class scope: A name is in a class scope if iL is the name of a member of a 
class. 

Staft711e111 scope: A name is in a statemem scope if it is declared in the ( . . .  ) 
part of a for-, while-, switch-, or if-staLement. 

The scope of a variable exLends (only) to the end of Lhe statement in which it is 
defined. For example: 

for (int i =  0; i<v.size(); ++i) { 
II i  can be used here 

if (i < 27) II the i irom the for-statement is not in scope here 
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Class and namespace scopes have names, so  that we can refer to a member from 
"elsewhere." For example: 

void f(); II in global scope 

namespace N { 
void f() II in namespace scope N 
{ 

int v; 
: : f(); 

II in local scope 
II ca l l  the global f() 

void f() 
{ 

N : : f(); II ca l l  N's f() 

What would happen if you called N : : f() or : : f()? See also §A. lS. 

A.4.2 Storage class 
There are three storage classes (§17.4) : 

Automtdic storage: Variables defmed in functions (including function pa
rameters) are placed in automatic storage (i.e., "on the stack") unless ex
plicitly declared to be static. Automatic storage is allocated when a 
function is called and deallocated when a call returns; thus, if a function 
is (directly or indirectly) called by itself, multiple copies of automatic 
data can exist: one for each call (§8.5.8) . 
Static storage: Variables declared in global and namespace scope are stored 
in static storage. as are variables explicitly declared static in functions 
and classes. The linker allocates static storage "before the program starts 
rumung." 
Free store (heap): Objects created by new are allocated in the free store. 

For example: 

vector<int> vg(10); II constructed once at program start ("before main( )" )  

vector<int>• f(int x) 
{ 

static vector<int> vs(x); 
vector<int> vf(X+x); 

II constructed in iirst ca l l  of fO only 
II constructed in each ca l l  of f() 
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for (int i=1 ; i<IO; ++i) { 
vector<int> vl(i); 
II . . .  

APPE N D I X  A • L A N G U AG E S U MMARY 

II constructed in  each iteration 

II vl destroyed here (in each iteration) 

return new vector<int>(vf); II constructed on free store as a copy of vf 
} II vf destroyed here 

void ff() 
{ 

vector<int>• p = f(10); 
II . . .  
delete p; 

II get vector from fO 

II delete the vector from i 

The statically allocated variables vg and vs are destroyed at program termination 
("after main()") , provided they have been constructed. 

Class members are not allocated as such. When you allocate an objecL some· 
where, the non-static members are placed there also (with the same storage class 
as the class object to which they belong) . 

Code is sLOred separately from data. For example, a member function is not 
stored in each object of its class; one copy is stored with the rest of the code for 
the program. 

See also §14.3 and §17.4. 

A.4.3 Lifetime 
Before an object can be Oegally) used, it must be initialized. Tills initialization can 
be explicit using an initializer or implicit using a constructor or a rule for defaulL 
initialization of built-in types. The lifetime of an object ends at a point detennined 
by its scope and storage class (e.g., see §17.4 and §B.4.2) : 

Local {automatic) of?ject.s are constructed if/when the thread of execution 
gets to them and destroyed at end of scope. 

Temporary of?ject.f are created by a specific sub-expression and destroyed aL 
the end of their full expression. A full expression is an expression thaL is 
not a sub-expression of some other expression. 

Name.space of?jects and .static clas.s membm are constructed at the start of the pro
gram ("before main()") and destroyed at the end of the progran1 ("after 
main()"). 

Local .static of?ject.f arc constructed if/when the thread of execution gets to 
them and (if constructed) desLroyed at the end of the program. 

Free-store of?ject.s are constructed by new and optionally desLroyed using 
delete. 
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A temporary variable bound to a reference "lives" as long as the reference. For 
example: 

const char• string_tbl[] = { "Mozart", "Grieg", "Haydn", "Chopin" } ;  
const char• f(int i) { return string_tbl[i]; } 
void g(string s){} 

void h() 
{ 

const string& r = f(O); 
g(f(1)); 
string s = f(2); 
cout << "f(J) : " << f(J) 

<<" s: " << S 

II bind temporary string to r 
II make a temporary string and pass it 
II initial ize s from temporary string 
II make a temporary string and pass it 

<< " r: " << r << '\n' ; 

TI1e result is 

f(J): Chopin s :  Haydn r: Mozart 

The string temporaries generated for the calls f(1 ), f(2), and f(J) are destroyed at 
the end of the expression in which they were created. However, the temporary 
generated for f(O) is bound to r and "lives" until the end of h(). 

A.5 Expressions 
This section summarizes C++'s operators. We use abbreviations that we find 
mnemonic, such as m for a member name, T for a type name, p for an expression 
yielding a pointer, x for expression, v for an !value expression, and 1st for an ar
gument list. The result type of the arithmetic operations is detennined by "the 
usual arithmetic conversions" (§A.5.2.2) . The descriptions in this section are of 
the built-in operators, not of any operator you might defme on your own, though 
when you define your own operators, you are encouraged to follow the semantic 
rules described for built-in operations (§9.6) . 

Scope resolution 

N : :  m m is in the namespace N; N is the name of a namespace or a class. 

: :  m m is in the global namespace. 

Note that members can themselves nest, so that you can get N:  : C: : m; sec also 
§8.7. 
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Postfix expressions 

x . m  

p -> m  

p[x] 

f(lst) 

T(lst) 

V++ 

Y--

typeid(x) 

typeidm 

dynamic_casi<T>(x) 

static_casi<T>(x) 

cons I_ casi<T>(x) 

reinterprel_casi<T>(x) 

APPE N D I X  A • L A N G UAGE S UMMARY 

member access; x must be a class object 

member access; p must point to a class object; equivalent to (*p).m 

subscripting; equivalent to *(p+X) 

function cal l :  cal l  f with the argument l ist 1st 

construction: construct a T with the argument list lsi 

(post) increment; the value of V++ is the value of v before incrementing 

(post) decrement; the va lue of v-- is the value of v before decrementing 

run-time type identification for x 

run-time type identification for T 

run-time checked conversion of x to T 

compile-time checked conversion of x to T 

unchecked conversion to add or remove const from x's type to get T 

unchecked conversion of x to T by reinterpreting the bit pattern of x 

The typeid operator and its uses are not covered in this book; see an expert-level 
reference. Note that casts do not modify their argument. Instead, they produce a 
result of their type, which somehow corresponds to the argument value; see 
§A.5.7. 

Unary expressions 

sizeofm 

sizeof(x) 

++V 

--v 

-x 

IX  

&v 

•p 

new T 

new T(Ist) 

new(lst) T 

the size of a T in bytes 

the size of an object of x's type in bytes 

(pre) increment; equivalent to v+=1 

(pre) decrement; equivalent to v-=1 

complement of x; - is a bitwise operation 

not x; returns true or false 

address of v 

contents of object pointed to by p 

make a T on the free store 

make a T on the free store and initial ize it with 1st 

construct a T at location determined by 1st 



A . 5  E X P R E S S I O N S  

Unary expressions (continued) 

new(lst) T(ls12) 

delete p 

deleteD p 

(T)x 

construct a T at location determined by lsi and initialize it with ls12 

free the object pointed to by p 

free the array of objects pointed to by p 

C-style cast; convert x to T 

NoLe that the object(s) pointed to by p in delete p and delete[] p must be allo
caLed using new; see §A.5.6. Note that (T)x is far less specific - and therefore 
more error-prone - than the more specific casL operators ; see §A.5.7. 

Member selection 

x. •ptm the member of x identified by the pointer-to-member ptm 

p->*ptm the member of •p identified by the pointer-to-member ptm 

Not covered in this book; see an expert-level reference. 

Muhiplicative operators 

x•y Multiply x by y. 

xJy Divide x by y. 

x%y Modulo ( remainder) of x by y (not for floating-point types). 

The effect of xly and x%y is undefined if y==O. The effect of x%y is implementa
tion defmed if x or y is negative. 

Additive operators 

x+y Add x and y. 

x-y Subtract y from x. 

Shift operators 

x<<y Shift x left by y bit positions. 

X>>Y Shift x right by y bit positions. 
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For the (built-in) use of >> and << for shifting bits, see §25.5.4. When their left
most operators are iostreams, these operators are used for I/0; see Chapters 10 
and 1 1 . 

Relational operators 

x<y x less than y; returns a bool 

x<=y x less than or equal to y 

X>Y x greater than y 

X>=y x greater than or equal to y 

The result of a relational operator is a boo I. 

Equality operators 

x==y x equals y; returns a bool 

x!=y x not equal to y 

Note that x!=y is ! (x==y). The result of an equality operator is a bool. 

Bitwise and 

x&y bitwise and of x and y 

Note that & (like ", 1. -, >>, and <<) delivers a set of bits. For example, if a and b 
are unsigned chars, a&b is an unsigned char with each bit being the resulL of ap
plying & to the corresponding bits in a and b; see §A.5.5. 

Bitwise xor 

x"y bitwise exclusive or of x and y 

Bitwise or 

xiY bitwise or of x and y 

Logical and 

x&&y logical and; returns true or false; evaluate y only if x is true 
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Logical or 

xlly logical or; returns true or false; evaluate y only if x is false 

See §A.5.5. 

Conditional expression 

xly:z if x the resu lt is y; otherwise the result is z 

For example: 

template<class T> T& max(T& a, T& b) { return (a>b)la:b;  } 

The "question mark colon operator" is explained in §8.4. 

Assignments 

v=x 

v•=x 

v/=x 

v%=x 

v+=x 

v-=x 

V>>=X 

v<<=x 

v&=x 

vl=x 

assign x to v; result is the resu lting v 

roughly v=v•(x) 

roughly v=v/(x) 

roughly v=v"'o(x) 

roughly v=v+(x) 

roughly v=v-(x) 

roughly v=V>>(x) 

roughly v=v<<(x) 

roughly v=v&(x) 

roughly v=vA(x) 

roughly v=vl(x) 

By ''roughly v=v*(x)" we mean that v•=x has that value except thaL v is evaluated 
only once. For exan1ple v[++i1*=7+3 means (++i, v[i]=v[i)* (7+3)) rather than 
(v[++il=v[++il*(7+3)) (which would be undefined; see §8.6. 1 ) .  

Throw expression 

throw x throw the value of x 

The type of a throw-expression is void. 
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Comma expression 

x,y Execute x then y; the resul t  is y. 

Each box holds operators with the same precedence. Operators in higher boxes 
have higher precedence than operators in lower boxes. For example, a+b*c 
means a+(b*c) rather than (a+b)*c because • has higher precedence than +. Simi
larly, *p++ means *(p++), not (*p)++. Unary operators and assignment operators 
are right-associative; all others are left-associative. For example, a=b=c means 
a=(b=c) and a+b+c means (a+b)+c. 

An !value is an expression that identifies an object that could in principle be 
modified {but obviously an !value that has a const type is protected against mod
ification by the type system) and have its address taken. The complement to 
!value is rvalue, that is, an expression that identifies something that may not be 
modified or have its address taken, such as a value returned from a function 
(&f(x) is an error because f(x) is an rvalue) . 

A.5 .1 User-defined operators 
The rules defmed here are for built-in types. If a user-defmed operator is used. an 
expression is simply transformed into a call of the appropriate user-defmed opera
tor function, and the rules for function call determine what happens. For example: 

class Mine { /* . . .  •1 }; 
bool operator==(Mine, Mine); 

void f(Mine a, Mine b) 
{ 

if (a==b) { II a==b means operator==(a,bl 
II . . .  

A user-defined type is a class (§A12, Chapter 9) or an enumeration (§A. l l , §9.5) . 

A.5 .2 Implicit type conversion 
Integral and floating-point types (§A.8) can be mixed freely in assignments and 
expressions. Wherever possible, values are converted so as not to lose informa
tion. Unfortunately, value-destroying conversions are also perfonned implicitly. 

A.S.2.1 Promotions 

The implicit conversions that preserve values are commonly referred to as Jmnno
tums. Before an arithmetic operation is performed, integral promotio11 is used to ere-
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ate ints ouL of shorter integer types. 1bis reflects the original purpose o f  these 
promotions: to bring operands to the "natural" size for arithmetic operations. In 
addition, float to double is considered a promotion. 

Promotions are used as part of the usual arithmetic conversions (see 
§A.5.2.2). 

A.S.2.2 Conversions 

The fundamental types can be converted into each other in a bewildering num
ber of ways. When writing code, you should always aim to avoid undefmed be
havior and conversions that quietly throw away information (see §3.9 and 
§25.5.3) .  A compiler can warn about many questionable conversions. 

Integral conversUm.s: An integer can be converted to another integer type. 
An enumeration value can be converted to an integer type. If the dcsti· 
nation type is unsigned, the resulting value is simply as many bits from 
the source as will fit in the destination (high-order bits are thrown away if 
necessary) . If the destination type is signed, the value is unchanged if it 
can be represented in the destination type; otherwise, the value is imple· 
mentation defined. Note that bool and char are integer types. 

Floating-point conversions: A floating-point value can be converted to an· 
other floating-point type. If the source value can be exactly represemed 
in the destination type, the result is the original numeric value. If the 
source value is between two adjacent destination values, the result is one 
of those values. Otherwise, the behavior is undefined. Note that float to 
double is considered a promotion. 

RJinJer and referena conversions: Any pointer to an object type can be implic· 
itly converted to a void• (§17.8, §27.3.5) . A pointer (reference) to a de
rived class can be implicitly converted to a pointer (reference) to an 
accessible and unambiguous base (§14.3) .  A constant expression (§A.5, 
§4.3. 1 )  that evaluates to 0 can be implicitly converted to any pointer 
type. A T* can be implicitly converted to a const T*. Similarly, a T& can 
be implicitly converted to a const T&. 

Boolean conversions: Pointers, integrals, and floating-point values can be im
plicitly converted to bool. A nonzero value converts to true; a zero value 
converts to false. 

Floating-integral conversions: When a floating-point value is converted to an 
integer value, the fractional part is discarded. In other words, conversion 
from a floating-point type to an integer type truncates. The behavior is 
undefmed if the truncated value cannot be represented in the destination 
type. Conversions from integer to floating types are as mathematically 
correct as the hardware allows. Loss of precision occurs if an integral 
value cannot be represented exactly as a value of the floating type. 
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Usual arithmetic conuersions: These conversions are performed on the 
operands of a binary operator to bring them to a common type, which is 
then used as the type of the result: 

1. If either operand is of type long double, the other is converted to 
long double. Otherwise, if either operand is double, the other is 
converted to double. Otherwise, if either operand is float, the other 
is converted to float. Otherwise, integral promotions are performed 
on both operands. 

2. Then, if either operand is unsigned long, the other is converted to 
unsigned long. Otherwise, if one operand is a long int and the other 
is an unsigned int, then if a long int can represent all the values of 
an unsigned int, the unsigned int is converted to a long int; other
wise, both operands are converted to unsigned long int. Otherwise, 
if either operand is long, the other is converted to long. Otherwise, 
if either operand is unsigned, the other is converted to unsigned. 
Otherwise, both operands are int. 

Obviously, it is best not to rely too much on complicated mixtures of types, so as 
to minimize the need for implicit conversions. 

A.S.2.3 User-defined conversions 

In addition to the standard promotions and conversions, a programmer can de
fine conversions for user-defined types. A constructor that takes a single argu· 
ment defines a conversion from its argument type to its type. If the constructor is 
explicit (see §18.3 . 1 ) ,  the conversion happens only when the programmer explic
itly requires the conversion. Otherwise, the conversion can be implicit. 

A.5.3 Constant expressions 
A con.slall/ expre.trion is an expression that can be evaluated at compile time and in· 
valves only int operands. (That's a slight simplification, but good enough for 
most purposes.) For example: 

const int a =  2*3; 
const int b = a+J; 

Constant expressions are required in a few places, such as array bounds, case la
bels, enumerator initializers, and int template arguments. For example: 

int var = 7; 
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switch (x) { 
case 77: 
case a+2: 
case var: 

II . . .  
}; 

A.5.4 s izeof 

// OK 
// OK 
II l'rror (var is not a constant expression) 

In sizeof(x), x can be a type or an expression. If x is an expression, the value of 
sizeof(x) is the size of the resulting object. If x is a type, sizeof(x) is the size of an 
objccL of type x. Sizes arc measured in bytes. By defmition, sizeof(char)=1 . 

A.5.5 Logical expressions 
C++ provides logical operators for integer types: 

Bitwise logical operations 

x&y bitwise and of x and y 

xty bitwise or of x and y 

xAy bitwise exclusive or of x and y 

Logical operations 

x&&y logical and; returns true or false; evaluate y only if x is true 

xlly logical or; returns true or false; evaluate y only if x is false 

The bitwise operators do their operation on each bit of their operands, whereas 
the logical operators (&& and II) treat a 0 as the value false and anything else as 
the value true. The definitions of the operations are: 

& 

0 

0 

0 

0 

0 

A.5 .6 new and delete 

0 

0 1\ 0 

0 0 0 

0 

Memory on the free store (dynamic store, heap) is allocated using new and de
allocated ("freed") using delete (for individual objects) or deleten (for an array). 
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If memory is exhausted, new throws a bad_alloc exception. A successful new op
eration allocates at least 1 byte and returns a pointer to the allocated object. The 
type of object allocated is specified after new. For example: 

int• p1 = new int; 
int• p2 = new int(7); 
int• p3 = new int[100]; 
II . . .  

II al locate an (uninitial i zed) int 
II al locate an int i nitial ized to 7 
II al locate 1 00 (uninitial ized) ints 

delete p1 ; 
delete p2; 
delete[) pJ; 

II deal locate individual object 

II deal locate array 

If you allocate objects of a built-in type using new, they will not be initialized un
less you specify an initializer. If you allocate objects of a class with a constructor 
using new, a constructor is called; the default constructor is called unless you 
specify an initializer (§17.4.4) . 

A delete invokes the destructor, if any, for its operand. Note that a destructor 
may be virtual (§A. 12.3. 1 ) .  

A.5.7 Casts 
There are four type-conversion operators: 

Type-conversion operators 

x::dynamic_cast<D*>(p) 

x=dynamic_cast<D&>(*p) 

x=static_cast<l>(v) 

x=reinterpret_cast<T>(v) 

x=const_cast<T>(v) 

x=mv 

x=T(v) 

Try to convert v into a o• (may return 0). 

Try to convert •p into a D& (may throw bad_cast). 

Convert v into a T if a T can be converted into v's type. 

Convert v into a T represented by the same bit pattern. 

Convert v into a T  by adding or subtracting const. 

C-style cast: do any old cast. 

Functional cast: do any old cast. 

The dynamic cast is typically used for class hierarchy navigation where p is a 
pointer to a base class and D is derived from thaL base. It retums 0 if v is not a 
o•. If you want dynamic_cast to throw an exception (bad_ cast) instead of retum
ing 0, cast to a reference instead of to a pointer. The dynamic casL is the only cast 
that relies on run-time checking. 

Static cast is used for "reasonably well-behaved conversions," that is, where v 
could have been the result of an implicit conversion from a T; see §17.8. 
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Reinterpret casL is used for reinterpreting a bit pattcm. It is not guaranteed to 
be portable. In fact, iL is best to assume that every use of reinterpret_ cast is non
portable. A typical example is an int-to·pointer conversion to get a machine ad
dress into a program; sec §17.8 and §25.4. 1 .  

The C·style and functional casts can perform any conversion that can be 
achieved by a static_cast or a reinterpret_cast, combined with a const_cast. 

Casts arc best avoided. In most cases, consider their use a sign of poor pro
gramming. Exceptions to this rule arc presented in §17.8 and §25.4. 1 .  The C· 
style cast and function·style casts have the nasty property that you don't have to 
understand exactly what the cast is doing (§27.3 .4) . Prefer the named casts when 
you cannot avoid an explicit type conversion. 

A.6 Statements 
Here is a grammar for C++'s statemems (""' means "optional") : 

state7T1£Jlt: 
declaration 
{ s/alem.mt-lirtof>l } 
try { statement-listnp, } lumdler-/irt 
e:�;fm·ssion.1,, ; 
selution-slalement 
ileration-statement 
labeled-statem.mt 
con.tro/-statemmt 

se/ecti011-statement: 
if ( condition ) statement 
if ( cmuh'tion ) staJemenl else statt7nen/ 
switch ( amditimz ) slalement 

ite·ratimz-statement: 
while ( cmuli!Um ) statt7T1£Jlt 
do statemmt while ( expression ) ; 
for <.for-mit-statement cmuiitimz"f" ; expre.ssionnp, )  s/att7nent 

/abe/ed-slak'11U'Ilt: 
case cmz.rtant-expre.uimz : statement 
defau It : staft'11lt71t 
identifier : statement 
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control-statement: 
break ; 
continue ; 
return expressiono(ll ; 
go to identjfier ; 

statement-list: 
staleme�zt statemmt-listo(ll 

conditi011: 
expression 
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type-specffier declarator = expressi011 

for-init-statement: 
expressiono(ll ; 
type-specffier declarator = expressi011 ; 

handler-list: 
catch ( exception-declaration ) { statement-listvpr } 
1Ul1u0er-list haTuUn-listo(ll 

Note that a declaration is a statement and that there is no assigrunent statement 
or procedure call statement; assigrunents and function calls are expressions. 
More information: 

Iteration (for and while) ; see §4.4.2. 

Selection (if, switch, case, and break) ; see §4.4. 1 .  A break "breaks out of' 
the ncaresL enclosing switch-statement, while-statement, do-statement, or 
for-statement; that is, the next statement executed will be the statement 
following that enclosing statement. 

Expressions; see §A.S, §4.3. 

Declarations; see §A.6, §8.2. 

Exceptions (try and catch) ;  sec §5.6, §19.4. 

Here is an example concocted simply to demonstrate a variety of statements 
(what does it do?) : 

int• f(int p[], int n) 
{ 

if (p==O) throw Bad_p(n); 
vector<int> v; 
int x; 
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while (cin>>x) { 
if (x==terminator) break; II exit while loop 
v.push_back(x); 

for (int I =  0; i<v.size() && i<n; ++i) { 
if (v[i]==*p) 

return p; 
else 

++p; 

return 0; 

A.7 Declarations 
A declaration consists of three parts: 

• The name of the entity being declared 
• The type of the entity being declared 
• 1l1e initial value of the entity being declared (optional in most cases) 

We can declare 

• Objects of built-in types and user-defmed types (§A.8) 
• User-defined types (classes and enumerations) (§A.l0-11 ,  Chapter 9) 
• Templates (class templates and function templates) (§A. 13) 
• Aliases (§A. 16) 
• Namespaces (§A. lS, §8.7) 
• Functions (including member functions and operators) (§A.9, Chapter 8) 
• Enumerators (values for enumerations) (§A. l l , §9.5) 
• Macros (§A. 17.2, §27.8) 

A.7 .1 Definitions 
A declaration that initializes, sets aside memory, or in other ways provides all the in
fonnation necessary for using a name in a program is called a deji11ition. Each type, 
object, and function in a program must have exactly one definition. Examples: 

double f(); II a declaration 
double fO { !* . . .  *I }; II (a lsol a definition 
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extern const int x; 
int y; 

II a declaration 
II (a lso) a definition 

int z = 10; II a definition with an explicit in itia l izer 

A const musL be initialized. This is achieved by requiring an initializer for a const 
unless it has an explicit extern in its declaration (so that the initializer must be on 
its definition elsewhere) or it is of a type with a default constructor (§A. l 2.3) . 
Class members that are consts musL be initialized in every constructor using a 
member initializer (§A. I2.3) . 

A.8 Built-in types 
C++ has a host of fundamental types and types constructed from fundamental 
types using modifiers: 

Built-in types 

bool x 

char x 

short x 

int x 

float x 

double x 

void* p 

T* p 

T •const p 

T a[n] 

T& r 

T f(arguments) 

const l x  

long T x  

unsigned T x  

signed T x  

x is a Boolean (values true and false). 

x is a character (usually 8 bits). 

x is a short int (usually 1 6  bits). 

x is the default integer type. 

x is a floating-point number (a "short double"). 

x is a ("double-precision") floating-point number. 

p is a pointer to raw memory (memory of unknown type). 

p is a pointer to T. 

p is a constant ( immutable) pointer to T. 

a is an array of n Ts. 

r is a reference to T. 

f is a function taking arguments and returning a T. 

x is a constant (immutable) version of T. 

x is a long T. 

x is an unsigned T. 

x is a signed T. 

Here, T indicates "some type," so you can have a long unsigned int, a long 
double, an unsigned char, and a const char • (pointer to constant char) . However, 
this system is not perfectly general; for example, there is no short double (that 
would have been a float), no signed bool (that would have been meaningless), no 
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short long int (that would have been redundant) , and no long long long long int. 
Some compilers anticipaLe the C++Ox standard and accept long long int (read that 
as "very long integer"). A long long is guaranteed to hold at least 64 bits. 

TI1ejloatillg-jJOi11t types are float, double, and long double. They are C++'s 
approxinlation of real numbers. 

1l1e i11teger types (sometimes called i11tegral types) are bool, char, short, int, 
long, and (in C++Ox) long long and their unsigned variants. Note that an enu
meration type or value can often be used where an integer type or value is 
needed. 

The sizes of built-in types are discussed in §3.8, §17.3 .1 ,  and §25.5.1 .  Pointers 
and arrays are discussed in Chapters 17 and 18. References are discussed in 
§8.5.4-6. 

A.8.1 Pointers 
A poimer is an address of an object or a function. Pointers are stored in variables 
of pointer Lypes. A valid object pointer holds the address of an object : 

int x = 7; 
int• pi = &x; 
int XX = *pi; 

II pi points to x 

II "pi is the va lue of the object pointed to by pi ,  that is, 7 

An invalid pointer is a pointer that does not hold the value of an object: 

int• pi2; 
•pi2 = 7; 
pi2 = 0; 
•pi2 = 7; 

II un in it ia l i zed 
II undefined behavior 
II the nu l l  pointer (pi2 is st i l l  inva l id)  
II undefined behavior 

pi2 = new int(7); 
int XXX = *pi2; 

II now pi2 is va l id 
// fine: x x x  becomes 7 

We try to have invalid pointers hold the null pointer (0) , so that we can test it: 

if (p2 == 0) { II " if  inval id" 
II don't use *p2 

Or simply 

if (p2) { II "if val id'" 
II use *p2 
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See §17.4 and §18.5.4. 
The operations on a (non-void) object pointer are: 

Pointer operations 

•p dereference/indirection 

p[i] dereference/subscripting 

p=q assignment and init ial ization 

p=q equal i ty 

pl=q i nequal i ty 

p+i add integer 

p-i subtract integer 

p-q distance: subtract pointers 

++p pre-increment (move forward) 

p++ post-increment (move forward) 

--p pre-decrement (move backward) 

p-- post-decrement (move backward) 

p+=i move forward I elements 

p-=1 move backward i elements 

Note that any form of pointer arithmetic (e.g., ++p and p+=7) is allowed only for 
pointers into an array and that the effect of dereferencing a pointer pointing out
side the array is undefined (and most likely not checked by the compiler or the 
language run-time system) . 

The only operations on a void• pointer are copying (assignment or initializa
tion) and casting (type conversion) . 

A pointer to function (§27.2.5) can only be copied and called. For example: 

typedef void (*Handle_type)(int); 
void my_handler(int); 
Handle_type handle = my_handler; 
handle(10); II equivalent to my_handler( 1 0) 

A.8.2 Arrays 
An arTay is a fixed-length contiguous sequence of objects (clements) of a given type: 

int a[10]; II 1 0  i n ts 
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I f  an array is global, its elemems will be initialized to the appropriate default 
value for the type. For example, the value of a[7) will be 0. If the array is local (a 
variable declared in a function) or allocated using new, elements of built-in types 
will be uninitialized and elements of class types will be initialized as required by 
the class's constructors. 

TI1e name of an array is in1plicitly converted to a pointer to its first element. 
For example: 

int• p = a; II p poi nts to a iD  I 

An array or a pointer to an element of an array can be subscripted using the [ ] 
operator. For example: 

a[7) = 9; 
int XX = p(6); 

Array clements are numbered starting with 0; see §1 8.5. 
Arrays are not range checked, and since they are often passed as pointers, the 

infonnation to range check them is not reliably available to users. Prefer vector. 
The size of an array is the sum of the sizes of its elements. For example: 

int a[max]; II sizeof(a)==sizeof(a !O I )*max==sizeof( i nt)*max 

You can define and use an array of an array (a two-dimensional array), an array 
of an array of an array, etc. (multidimensional arrays). For example: 

double da[100][200](300]; II 300 elements of type 
11 200 elements of type 
Il l  00 type double 

da[7)[9](1 1 ]  = 0; 

Nontrivial uses of multidimensional arrays are subtle and error-prone; see §24.4. 
If you have a choice, prefer a Matrix library (such as the one in Chapter 24) . 

A.8.3 References 
A n:Ji:rt?lce is an alias (alternative name) for an object: 

int a =  7; 
int& r = a; 
r = 8; II a becomes 8 

References are most common as function parameters, where they are used to 
avoid copying: 

1065 



1066 

void f(const string& s); 
II . . .  
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f("this string could be somewhat costly to copy, so we use a reference"); 

See §8.5.4-6. 

A. 9 Functions 
A }Unction is a named piece of code taking a (possibly empty) set of arguments and 
optionally returning a value. A function is declared by giving the return type fol
lowed by its name followed by the parameter list: 

char f(string, int); 

So, f is a function taking a string and an int returning a char_ If the function is just 
being declared, the declaration is terminated by a semicolon. If the function is 
being defmed, the argument declaration is followed by the function body: 

char f(string s, int i) { return s[i]; } 

The function body must be a block (§8.2) or a try-block (§5.6.3) . 
A function declared to return a value must return a value (using the return

statement) : 

char f(string s, int i) { char c = s[i] ; } II error: no va lue returned 

The main() function is the odd exception to that rule (§A.l .2)_ Except for main(), 
if you don't want to return a value, declare the function void; that is, use void as 
the "return type": 

void increment(int& x) { ++x; } II OK: no return va l ue requi red 

A function is called using the call operator (application operator), (), with an ac
ceptable list of arguments : 

char x1 = f(1 ,2); II error: fO's first argument must be a st ring 
string s = "Battle of Hastings"; 
char x2 = f(s); II error: fo requires two arguments 
char x3 = f(s,2); II OK 

For more information about functions, see Chapter 8. 
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A.9.1  Overload resolution 
Overload mo/ution is the process of choosing a function to call based on a set of ar
guments. For example: 

void print(int); 
void print(double); 
void print(const std: : string&); 

print(123); II use print( in! )  
print(1 .23); II use prinl (double) 
print("123"); II use prinl(const string& ) 

It is the compiler's job to pick the right function according to the language rules. 
Unfortunately, in order to cope with complicated examples, the language rules 
are quite complicated. Here we present a simplified version. 

Fmding the right version to call from a set of overloaded functions is done by 
looking for a best match between the type of the argument expressions and the 
parameters (formal arguments) of the functions. To approximate our notions of 
what is reasonable, a series of criteria is tried in order: 

1 .  Exact match, that is, match using no or only trivial conversions (for ex
ample, array name to pointer, function name to pointer to function, and 
T to const T) 

2. Match using promotions, that is, integral promotions (bool to int, char 
to int, short to int, and their unsigned counterparts; see §A.8) and float 
to double 

3. Match using standard conversions, for example, int to double, double to 
int, double to long double, Derived• to Base• (§14.3), T* to void* (§17.8) , 
int to unsigned int (§25.5.3) 

4. Match using user-defmed conversions (§A.5.2.3) 

5. Match using the ellipsis . . .  in a function declaration (§A.9.3) 

If two matches are found at the highest level where a match is found, the call is 
rejected as ambiguous_ The resolution rules are this elaborate primarily to take 
into account the elaborate rules for built-in numeric types (§A.5_3). 

For overload resolution based on multiple arguments, we first fmd the best 
match for each argument. If one function is at least as good a match as all other 
functions for every argument and is a better match than all other functions for 
one argument, that function is chosen; otherwise the call is ambiguous_ For 
example: 
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void f(int, const string&, double); 
void f(int, const char•, int); 

f(1 ,"hello",1 ) ;  
f(1 ,string("hello"), 1 .0); 
f(1 , "hello",1 .0); 

// OK: cal l f( i nt, canst char• , i nt l  
II OK: ca l l  f( int ,  const stri ng&, double) 
II error: ambiguous 

In the last call, the "hello" matches const char• without a conversion and const 
string& only with a conversion. On the other hand, 1 .0 matches double without 
a conversion, but int only with a conversion, so neither f() is a beuer match than 
the other. 

If these simplified rules don't agree with what your compiler says and what 
you thought reasonable, please first consider if your code is more complicated 
than necessary. If so, simplify your code; if not, consult an expert-level reference. 

A.9.2 Default arguments 
A general function sometimes needs more arguments than are needed for the most 
common cases. To handle that, a programmer may provide default arguments to 
be used if a caller of a function doesn't specify an argument. For example: 

void f(int, int=O, int=O); 
f(1 ,2,3); 
f(1 ,2); 
f(1 ); 

II ca l ls  i( 1 ,2,0) 
II cal ls f( l ,0,0) 

Only trailing arguments can be defaulted and left oUL in a call. For example: 

void g(int, int =7, int); 
f(1,1); 

II error: defaul t  for non-tra i l ing argument 
II error: second argument m iss ing 

Overloading can be an alternative to using default arguments (and vice versa). 

A.9.3 Unspecified arguments 
It is possible to specify a function without specifying the number or types of its 
arguments. Tills is indicated by an ellipsis ( . . .  ), meaning "and possibly more ar
guments." For example, here is the declaration of and some calls to what is ar
guably the most famous C function, printf() (§27.6.1 ,  §B. l0.2) : 

void printf(const char• format . . . ); II 1.1kes a iormat stri ng and maybe more 

int x = 'x'; 
printf("hello, world! "); 
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printf("print a char '%c'\n" ,x); II pri nt the int x as  a char 
printf("print a string \"%s\'"',x); II shoot yourself in the ioot 

Titc ''fomtat specifiers" in the format string, such as %c and %s, determine if and 
how further arguments are used. As demonstrated, this can lead to nasty type er
rors. In C++. unspecified arguments are best avoided. 

A.9.4 Linkage specifications 
C++ code is often used in the same program as C code; that is, parts of a pro
granl are written in C++ (and compiled by a C++ compiler) and other parts in 
C (and compiled by a C compiler) . To case thaL, C++ offers li11kage specfficaJions 
for the programmer to say that a funcLion obeys C linkage conventions. A C link
age specification carl be placed in from of a function declaration: 

extern "C" void callable_from_C(int); 

Alternatively iL carl apply Lo all declarations in a block: 

extern "C" { 
void callable_from_C(int); 
int and_this_one_also(double, int•); 
, . . . . .  , 

For details of use, see §27.2.3. 
C doesn't offer function overloading, so you carl put a C linkage specifica

tion on aL mosL one version of a C++ overloaded function. 

A.l 0 User-defined types 
There are two ways for a programmer to defme a new (user-defined) type: as a 
class (class, struct, or union; see §A.12) and as an enumeration (enum; see §A. ll ) .  

A.l 0.1 Operator overloading 
A programmer can defme the meaning of most operators to take operands of one 
or more user-defined types. It is not possible to change the standard meaning of 
an operaLor for builL-in types or to introduce a new operator. The name of a user
defined opcraLor ("overloaded operator") is the operator prefixed by the key
word operator; for example, the name of a function defining + is operator +: 

Matrix operator+(const Matrix&, const Matrix&); 
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For examples, see std: :ostream (Chapters 10-11 ) ,  std: :vector (Chapters 17-1 9, 
§B.4), std: : complex (§B.9.3), and Matrix (Chapter 24) . 

All but the following operators can be user-defmed: 

l :  . .  sizeof typeid 

Functions defining the following operators must be members of a class: 

= [ ] ( )  -> 

All other operators can be defmed as member functions or as freestanding functions. 
Note that every user-deftned type has = (assignmem and initialization) , & 

(address of), and , (comma) deftned by default. 
Be restrained and conventional with operator overloading. 

A.1 1 Enumerations 
An enumeration defines a type with a set of named values (enumeralors) : 

enum Color { green, yellow, red }; 

By default the value of the ftrst enumerator is 0, so that green==O, and the values 
increase by one, so that yellow==1 and red==2. It is also possible to explicitly de
ftne the value of an enumerator: 

enum Day { Monday=1 , Tuesday, Wednesday }; 

Here, we get Monday==1 , Tuesday==2, and Wednesday=3. 
Note that enumerators are not in the scope of their enumeration but belong 

to its enclosing scope: 

int x = green; II OK 
int y = Color: :green; II error 

Enumerators and enumeration values implicitly convert to integers, but integers 
do not implicitly convert to enumeration types : 

int x = green; 
Color c = green; 
c = 2; 
c = Color(2); 
int y = c; 

II OK: implicit Color-ta- i nt conversion 
// OK 
II error: no implicit int-to-Color conversion 
II OK: (unchecked) expl icit conversion 
II OK: implicit Color-ta-i nt conversion 
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For a discussion of the uses of enumerations, see §9.5. 

A.1 2 Classes 
A class is a type for which the user defines the representation of its objects and the 
operations allowed on those objects : 

class X { 
public: 

II user interface 
private: 

II implt'mentation 
}; 

A variable, function, or type defmed within a class declaration is called a member 
of the class. See Chapter 9 for class technicalities. 

A.1 2.1 Member access 
A public member can be accessed by users; a private member can be accessed 
only by the class's own members: 

class Date { 
public: 

II . . .  
int next_day(); 

private: 
int y, m, d; 

}; 

void Date: : next_ day() { return d+ 1 ;  } II OK 

void f(Date d) 
{ 

int nd = d.d+1 ; 
II . . .  

II error: Date::d is pr ivate 

A struct is a class where members are by default public: 

struct S { 
II members (public un less exp l ici t l y declared private) 

}; 
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For more details of member access, including a discussion of protected, see §14.3.4. 
Members of an object can be accessed through a variable or referenced using 

the . (dot) operator or through a pointer using the -> (arrow) operator: 

struct Date { 
int d, m, y; 
int day() const { return d; } II defined in-class 
int month() const; II just declared; defined elsewhere 
int year() const; II just declared; defined elsewhere 

}; 

Date x; 
x.d = 15; 
int y = x.day(); 
Date• p = &x; 
p->m = 7; 

II access through variable 
II ca l l  through variable 

int z = p->month(); 
II access through pointer 
II call through pointer 

Members of a class can be referred to using the :: (scope resolution) operator: 

int Date: :year() const { return y; } II out-of-class defin i t ion 

Within a member function, we can refer to other members by their unqualified 
name: 

struct Date { 

}; 

int d, m, y; 
int day() const { return d; } 
II . . .  

Such unqualified names refer to the member of the object for which the member 
function was called: 

void f(Date d1, Date d2) 
{ 

d1.day(); 
d2.day(); 
II . . .  

// wi l l  access d l .d 
// wi l l  access d2 .d 
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A.1 2.1 .1  The this pointer 

If we want to be explicit when referring to the object for which the member func
tion is called, we can use the predefmed pointer this: 

struct Date { 

} ; 

int d, m, y; 
int month() const { return this->m; } 
II . . .  

A member function declared const (a const member function) cannot modify the 
value of a member of the object for which it is called: 

struct Date { 

}; 

int d, m, y; 
int month() const { ++m; } II error: month() is canst 
II . . .  

For more information about const member functions, see §9.7.4. 

A.1 2 . 1 .2 Friends 

A function that is not a member of a class can be granted access to all members 
through a friend declaration. For example: 

II needs access to Matrix and Vector members: 
Vector operator*(const Matrix&, const Vector&); 

class Vector { 
friend 

}; 

Vector operator*(const Matrix&, const Vector&); II grant access 
II . . .  

class Matrix { 
friend 

}; 

Vector operator*(const Matrix&, const Vector&); II grant access 
II . . .  
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As shown, this is usually done for functions that need to  access two classes. An
other use of friend is to provide an access function that should not be called 
using the member access syntax. For example: 

class Iter { 
public: 

int distance_to(const iter& a) const; 
friend int difference(const Iter& a, const Iter& b); 
II . . .  

}; 

void f(lter& p, Iter& q) 
{ 

int x = p.distance_to(q); 
int y = difference(p,q); 
II . . .  

II invoke using member syntax 
II i nvoke using "mathematical syntax" 

Note that a function declared friend cannot also be declared virtual. 

A.1 2.2 Class member defin itions 
Class members that are integer constants, functions, or types can be defmed/ini
tialized either in-da.ss or out-if-class: 

struct S { 

}; 

static const int c = 1 ;  
static const int c2; 

void f() { }  
void f2(); 
struct SS { int a; }; 
struct SS2; 

The members that were not defmed in-class must be defmed "elsewhere": 

const int S: :c2 = 7; 

void S: :f2() { }  

struct S :  : SS2 { int m; }; 
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The static const int members arc an odd special case. They just define symbolic 
integer constants and do not take up memory in the object. Non-static data mem
bers do not require separate definition, cannot be separately defmed, and cannot 
have in-class initializers : 

struct X { 
int x; 

}; 

int y = 7; II t'rror: non-static data members 
II cannot have in-class initial izers 

static int z = 7; // error: non-canst data members 
II cannot have i n-class in i t ia l izers 

static const string ae = "7"; II error: non-integral type 
II cannot have in-c lass in i t ia l izers 

static const int oe = 7; II OK: static cons! integral type 

int X :  : x  = 7; II error: non-static data members cannot be defined out-of-c lass 

If you want to ensure initialization of non-static, non-const data members, do it 
in constructors. 

Function members do not occupy space in an object: 

struct S { 

} ; 

int m; 
void f(); 

Here, sizeof(S)==sizof(int). That's not actually guaranteed by the standard, but it 
is true for all implementations we know of. But note that a class with a virtual 
function has one "hidden" member to allow virtual calls (§14.3.1) .  

A.1 2.3 Construction, destruction, and copy 
You can define the meaning of initialization for an object of a class by defining 
one or more corzstmcton. A constructor is a member function with the san1e name 
as its class and no return type: 

class Date { 
public: 

Date(int yy, int mm, int dd) :y(yy), m(mm), d(dd) { }  
II . . .  

private: 
int y,m,d; 

} ; 
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Date d1 (2006,11,15); 
Date d2; 

II OK: i n i t ia l ization done by the constructor 
II error: no in i t ia l izers 

Date d3(11 ,15); II error: bad initial izers (three in i t ia l izers required) 

Note that data members can be initialized by using an initializcr list in the con
structor (a base and member initializer list) . Members will be initialized in the 
order in which they are declared in the class. 

Constructors are typically used to establish a class's invariant and to acquire 
resources (§9.4.2-3). 

Class objects are constructed "from the bottom up," starting with base class 
objects (§14.3.1) in declaration order, followed by members in declaration order, 
followed by the code in the constructor itself. Unless the programmer does some
thing really strange, this ensures that every object is constn1cted before usc. 

Unless declared explicit, a single-argument constructor defmes an implicit 
conversion from its argument type to its class : 

class Date { 
public : 

Date(string); 
explicit Date(long); II use an integer encoding of date 
II . . .  

}; 

void f(Date); 

Date d1 = "June 5, 1848"; II OK 
f("June 5, 1848"); II OK 

Date d2 = 2007*12*31+6.31+5; 
f(2007*12.31 +6*31 +5); 

II error: Date( long) is expl icit 
II error: Date( long) is expl icit 

Date d3(2007*12.31+6*31+5) ; II OK 
Date d4 = Date(2007•12.31+6*31+5); II OK 
f(Date(2007*12*31+6*31+5)); II OK 

Unless a class has bases or members that require explicit arguments, and unless the 
class has other constructors, a default constructor is automatically generated. This 
default constructor initializes each base or member that has a default constructor 
Oeaving members without default constructors uninitialized). For example: 

struct S { 

}; 

string name, address; 
int x; 
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1bis S has an implicit constructor SO that initializes name and address, but not x. 

A. 1 2.3.1 Destructors 

You can define the meaning of an object being destroyed (e.g., going out of scope) 
by defining a destmctor. The name of a destructor is - (the complement operator) 
followed by the class name: 

class Vector { II vector oi doubles 
public: 

explicit Vector(int s) : sz(s), p(new double[s]) { } 
-Vector() { delete[] p� } 
II . . .  

private: 

}; 

int sz; 
double* p; 

void f(int ss) 
{ 

Vector v(s); 
II . . .  

II constructor 
II destructor 

} II v w i l l  be destroyed upon exit from i(); Vector's destructor w i l l  be cal led ior v 

Destructors that invoke the destructors of members of a class can be generated by 
the compiler, and if a class is to be used as a base class, it usually needs a virtual 
destructor; see §17.5.2. 

A destructor is typically used to "clean up" and release resources. 
Class objects are destructed "from the top down" starting with the code in 

the destructor itself, followed by members in declaration order, followed by the 
base class objects in declaration order, that is, in reverse order of construction 
(§A. l2.3. 1 ) .  

A.1 2.3.2 Copying 

You can defme the meaning of copyi11g an object of a class : 

class Vector { II vector oi doubles 
public: 

explicit Vector(int s) : sz(s), p(new double[s]) { } 
-Vector() { delete[) p� } 
Vector(const Vector&); 
Vector& operator=(const Vector&); 
II . . .  

II constructor 
II destructor 
II copy constructor 
II copy assignment 
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private: 

}; 

int sz; 
double• p; 

void f(int ss) 
{ 

Vector v(s); 
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Vector v2 = v; II use copy constructor 
II . . .  
v = v2; II use copy assignment 
II . . .  

By default (that is, unless you define a copy constructor and a copy assignmem) , 
the compiler will generate copy operations for you. The default meaning of copy 
is memberwise copy; see also §14.2.4 and §18.2. 

A.1 2.4 Derived classes 
A class can be defined as derived from other classes, in which case it inherits the 
members of the classes from which it is derived (its base classes) : 

struct 8 { 
int mb; 
void fb() { }; 

}; 

class D :  8 { 
int md; 
void fd(); 

}; 

Here 8 has two members, mb and fb(). whereas D has four members, mb, fb(), 
md, and fd(). 

Like members, bases can be public or private: 

Class DD : public 81, private 82 { 
II . . .  

}; 

So, the public members of 81 become public members of DD. whereas the public 
members of 82 become private members of DD. A derived class has no special ac-
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cess to members o f  its bases, s o  DD does not have access to the private members 
of B1 or 82. 

A class with more than one direct base class (such as DD) is said to use multi
ple i11heritallce. 

A pointer to a derived class, D, can be implicitly converted to a pointer to its 
base class, B, provided B is accessible and is unambiguous in D. For example: 

struct B { }; 
struct 81 : B { }; 
struct 82: B { }; 
struct C { }; 

II B is a public base of B 1 
II B is a public base of 82 

struct DD : 81,  82, private C { }; 

DD* p = new DD; 
81 * pb1 = p; // OK 
B• pb = p; // error: ambiguous: B 1 ::B  or B2: :B 
c• pc = p; II error: DD::C is  private 

Similarly, a reference Lo a derived class can be implicitly converted Lo an unam
biguous and accessible base class. 

For more infonnation about derived classes, see §1 4.3. For more information 
about protected, see an expert-level textbook or reference. 

A.1 2.4.1 Virtual functions 

A llirtual.fimction is a member function that defmes a calling interface to functions 
of tl1e same nan1e taking the same argument types in derived classes. When call
ing a virtual function, the function invoked by the call will be the one defined for 
the most derived class. The derived class is said to override the virtual function 
in the base class. 

class Shape { 
public: 

}; 

virtual void draw(); 
virtual -Shape() { } 
II . . .  

II "virtual" means "can be overridden" 
II virtual  destructor 

class Circle : public Shape { 
public: 

void draw(); II override Shape::draw 
-circle(); II override Shape: :-ShapeO 
II . . .  

}; 
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Basically, the virtual functions of a base class (here, Shape) defmc a calling inter
face for the derived class (here, Circle) : 

void f(Shape& s) 
{ 

II . . . 
s.draw(); 

void gO 
{ 

Circle c(Point(O,O), 4); 
f(c); II w i l l  cal l  Circ le's draw 

Note that f() doesn't know abouL Circles, only about Shapes. An objecL of a class 
with a virtual function contains one extra pointer Lo allow it to find the set of 
overriding functions ; see §14.3. 

Note that a class with virtual functions usually needs a virtual destructor (as 
Shape has) ; see §17.5.2. 

A.1 2.4.2 Abstract classes 

An abstract class is a class that can be used only as a base class. You ca1mot make 
an object of an abstract class: 

Shape s; II error: Shape is abstract 

class Circle : public Shape { 
public: 

void draw(); II override Shape::draw 
II . . .  

}; 

Circle c(p,20); II OK: Circle is not abstract 

The most common way of making a class abstract is to defme at least one pure 
virtual function. A pure virtual.fonclio11 is a virtual function that requires overriding: 

class Shape { 
public: 

}; 

virtual void draw() = 0; 
II . . .  

II =0 means "pure" 
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See §14.3.5. 
The rarer, but equally effective, way of making a class abstract is to declare 

all its constructors protected (§14.2 .1 ) .  

A.1 2.4.3 Generated operations 

When you defme a class, it will by default have several operations defmed for its 
objects: 

Default constructor 

Copy operations (copy assignment and copy initialization) 

Destructor 

Each is (again by default) defmed to apply recursively to each of its base classes 
and members. Construction is done "bottom-up," that is, base before members. 
Destruction is done "top-down," that is, members before bases. Members and 
bases are constructed in order of appearance and destroyed in the opposite order. 
That way, constructor and destructor code always relies on well-defmed base and 
member objects. For example: 

struct D : 81, 82 { 
M1 m1;  
M2 m2; 

} ; 

Assuming that 81 ,  82, M1,  and M2 are defmed, we can now write 

void f() 
{ 

D d; II deiault  in i t ia l izat ion 
D d2 = d; II copy in i t ia lization 
d = DO; II defaul t  in i t ia l ization iol lowed by copy assignment 

II d and d2 are dest royed here 

For example, the default initialization of d invokes four default constructors (in 
order) : 81 : : 81(), 82: : 82(), M1 : :M1(), and M2: : M2(). If one of those doesn't exisL 
or can't be called, the construction of d fails. The destruction of d invokes four 
destrucLors (in order) : M2: :-M2(), M1 : :-M1(), 82: :-82(), and 81 : :-81(). If one 
of those doesn't exist or can't be called, the destruction of d fails. Each of these 
constructors and destructors can be either user-defined or generated. 

TI1e implicit (compiler-generated) default constructor is not defined (gener
ated) if a class has a user-defmed constructor. 
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A.1 2.5 Bitfields 
A bi!field is a mechanism for packing many small values into a word or to match 
an externally imposed bit-layout fom1at (such as a device register) . For example: 

struct PPN { 

}; 

unsigned int PFN : 22; 
int : 3; II unused 
unsigned int CCA; 
bool nonreacheable; 
bool dirty; 
bool valid; 
bool global; 

Packing the bitfields into a word left to right leads to a layout of bits in a word 
like this (see §25.5.5) : 

position: 31 : 9: 6: 3: 2: 1 :  o: 

PPN: 1 22  1 3 1 3  1 1  1 1  1 1  1 1  I 
name: PFN unused CCA I dirty I global 

nonreachable valid 

A bitfield need not have a name, but if it doesn't, you can't access it. 
Surprisingly, packing many small values into a single word does not neces

sarily save space. In fact, using one of those values often wastes space compared 
to using a char or an int to represent even a single bit. The reason is that it takes 
several instructions (which have to be stored in memory somewhere) to extract a 
bit from a word and to write a single bit of a word without modifying other bits 
of a word. Don't try to use bitfields to save space unless you need lots of objects 
with tiny data fields. 

A.1 2.6 Unions 
A union is a class where all members are allocated starting at the same address. A 
union can hold only one element at a time, and when a member is read it must 
be the same as was last written. For example: 

union U { 
int x; 
double d; 

U a; 
a.x = 7; 
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int x1 = a.x; II OK 
a.d = 7.7; 
int x2 = a.x; II oops 

The rule requiring consistent reads and writes is not checked by the compiler. 
You have been warned. 

A.1 3 Templates 
A ll'mpuLte is a class or a funcLion parameterized by a set of types and/or integers: 

template<class T> 
class vector { 
public: 

II . . .  
int size() const; 

private: 

}; 

int sz; 
y• p; 

template<class T> 
int vector<T>: : size() const 
{ 

return sz; 

In a template argument list, class means type; typename is an equivalent altema· 
Live. A member function of a template class is implicitly a Lemplate function with 
the same templaLe arguments as its class. 

Integer Lemplate arguments must be constant expressions : 

template<typename T, int SZ> 
class Fixed_array { 
public: 

T a[sz]; 
II . . .  
int size() const { return sz; }; 

}; 

Fixed_array<char,256> x1;  
int  var = 226; 
Fixed_array<char,var> x2; 

// OK 

II error: non-const templ,11e argument 
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A.1 3 .1  Template arguments 
Arguments for a template class are specified whenever its name is used: 

vector<int> v1 ; 
vector v2; 
vector<int,2> v3; 
vector<2> v4; 

// OK 
II error: template argument missing 
II error: too many template arguments 
II error: type template argument expected 

Arguments for template functions are typically deduced from the function 
arguments: 

template<class T> 
T find(vector<l>& v, int i) 
{ 

return v[i] ; 

vector<int> v1 ; 
vector<double> v2; 
II . . .  
int x1 = find(v1,2); 
int x2 = find(v2,2); 

II find()'s T is int 
II find()'s T is double 

It is possible to define a template function for which it is not possible to deduce 
its template arguments from its function arguments. In that case we must specify 
the missing template arguments explicitly (exactly as for class templates). For 
example: 

template<class T, class U> T* make(const U& u) { return new T(u); } 
int• pi = make<int>(2); 
Node• pn = make<Node>(make_pair("hello", 17)); 

This works if a Node can be initialized by a pair<const char • ,int> (§B.6.3). Only 
trailing template arguments can be left out of an explicit argument specialization 
(to be deduced) . 

A.1 3 .2 Template instantiation 
A version of a template for a specific set of template arguments is called a specia/iz.a
tWn. The process of generating specializations from a template and a set of argu
ments is called template instantiation. Usually, the compiler generates a specialization 
from a template and a set of template arguments, but the programmer can also de-
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fine a specific specialization. This is usually done when a general template is un
suitable for a particular set of arguments. For example: 

template<class T> struct Compare { II general compare 
bool operator()(const T& a, const T& b) const 
{ 

return a<b; 

}; 

template<> struct Compare<const char*> { II compare C-style stri ngs 
bool operator()(const char• a, const char• b) const 
{ 

return strcmp(a,b)==O; 

} ; 

Compare<int> c2; II general compare 
Compare<const char*> c; II C-style string compare 

bool b1 = c2(1,2); II use general compare 
bool b2 = c("asd", "dfg"); II use C-style st ring compare 

For functions, the rough equivalent is achieved through overloading: 

template<class T> bool compare(const T& a, const T& b) 
{ 

return a<b; 

bool compare (const char• a, const char• b) II compare C-style strings 
{ 

return strcmp(a,b)==O; 

bool b3 = compare(2,3); II use genera l compare 
bool b4 = compare("asd", "dfg"); II use C-style string compare 

Separate compilation of templates (i.e., keeping declarations only in header files 
and unique defmitions in .cpp ftles) does not work portably, so if a template 
needs to be used in several .cpp files, put its complete definition in a header ftle. 
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A.1 3 .3 Template member types 
A template can have members that are types and members that are not types (such 
as data members and member functions). 1bis means that in general, it can be 
hard to tell whether a member name refers to a type or to a non-type. For language
technical reasons, the compiler has to know, so occasionally we must tell it. For 
that, we use the keyword typename. For example: 

template<class T> struct Vee { 

}; 

typedef T value_type; II a member type 
static int count; II a data member 
II . . .  

template<class T> void my_fct(Vec<T>& v) 
{ 

int x = Vec<T>: :count; II by deiault members names 
II are assumed to refer to non-types 

v.count = 7; II a simpler way to refer to a non-type member 
typename Vec<T>: :value_ type xx = x; II "typename" is needed here 
II . . .  

For more information about templates, see Chapter 19. 

A.1 4  Exceptions 
An exception is used (with a throw statement) to tell a caller about an error that 
cannot be handled locally. For example, move Bad_ size out of Vector: 

struct Bad_size { 
int sz; 
Bad_size(int S) : SS(S) { } 

} ; 

class Vector { 

} ; 

Vector(int s) { if (s<O II maxsize<s) throw Bad_size(s); } 
II . . .  

Usually, we throw a type that is defmed specifically to represent a particular 
error. A caller can catch an exception: 
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void f(int x) 
{ 

try { 
Vector v(x); II may throw 
II . . .  

catch (Bad_size bs) { 
cerr << "Vector with bad size (" << bs.sz << ")\n"; 
II . . .  

A "catch all" clause can be used to catch every exception : 

try { 
II . .  . 

} catch ( . . .  ) { II catch a l l  exceptions 
II . .  . 

Usually, the RAil ("Resource Acquisition Is Initialization") technique is better (sim· 
pier, easier, more reliable) than using lots of explicit trys and catches; see §19.5. 

A throw without an argument (i.e., throw; ) re-throws the current exception. 
For example: 

try { 
/1 . . .  

} catch (Some_ exception& e) { 
II do loc a l cleanup 
throw; // let my ca l ler do the rest 

You can define your own types for use as exceptions. The standard library de
fmes a few exception types that you can also use; sec §B.2. 1 .  Never use a built-in 
type as an exception (someone else might have done that and your exceptions 
might be confused with those). 

When an exception is thrown, the run-time support system for C++ 
searches "up the call stack" for a catch-clause with a type that matches the type of 
the object thrown; that is, it looks through try-statements in the function that 
threw, then through the function that called the function that threw, then through 
the function that called the function that called, etc. , until it fmds a match. If it 
doesn't fmd a match, the program terminates. In each function encountered in 
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this search of a matching catch-clause and in each scope on the way, destructors 
are called to clean up. 1bis process is called stack unwUuling. 

An object is considered constructed once its constructor has completed and 
will then be destroyed during unwinding or any other exit from its scope. This 
implies that partially constructed objects (with some members or bases con
structed and some not) , arrays, and variables in a scope are correctly handled. 
Subobjccts arc destroyed if and only if they have been constructed. 

Do not throw an exception so that it leaves a destructor. This implies that a 
destructor should not fail. For example: 

X: :-X() { if (in_a_real_mess()) throw Mess(); } II never do this! 

The primary reason for this Draconian advice is that if a destructor throws (and 
doesn't itself catch the exception) during unwinding, we wouldn't know which 
exception to handle. It is worthwhile to go to great lengths to avoid a destructor 
exiting by a throw because we know of no systematic way of writing con-ect code 
where that can happen. In particular, no standard library facility is guaranteed to 
work if that happens. 

A.1 5 Namespaces 
A namespace groups related declarations together and is used to prevent name 
clashes : 

int a; 

namespace Foo { 
int a; 
void f(int i) 
{ 

a+= i; II that's Foo's a (Foo::a) 

void f(int); 

int main() 
{ 

a =  7; 
f(2); 
Foo: : f(3); 

II that's the global a (::a) 
II that's the global f (::f) 
II that's Foo's f 
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: : f(4); II that's t he global i (::fl 

Names can be explicitly qualified by their namespace name (e.g., Foo: : f(3)) or by 
: :  (e.g. , : : f(2)), indicating the global scope. 

All names from a namespace (here, the standard library namespace. std) can 
be made accessible by a single namespace directive: 

using namespace std; 

Be restrained in the usc of using directives. The notational convenience offered 
by a using directive is achieved at the cost of potential name clashes. In particu
lar, avoid using directives in header ftles. A single name from a namespace can be 
made available by a namespace declaration: 

using Foo: :g; 
g(2); II that's Foo'�; g (Foo::g) 

For more information about names paces, see §8. 7. 

A.1 6 Aliases 
We can defme an alias for a name; that is, we can define a symbolic name that 
means exactly the same as what it refers to (for most uses of the name) : 

typedef int• Pint; II Pint means pointer to int 

namespace Long_library_name { /* . . .  •1 } 
namespace Lib = Long_library_name; II Lib means Long_library_11.1me 

int x = 7; 
int& r =  x; II r means x 

A reference (§8.5.5, §A.8.3) is a run-time mechanism, referring to objects. The 
typedef (§20.5, §27.3. 1 )  and namespace aliases are compile-time mechanisms, re
ferring to names. In particular, a typedef does not introduce a new type, just a 
new name for a type. For example: 

typedef char• Pchar; 
Pchar p = " ldefix"; 
char• q = p; 
int x = strlen(p); 

II Pchar is a name for char* 
II OK: p is a char• 
II OK: p and q are both char*s 
II OK: p is a char* 
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A.1 7 Preprocessor di rectives 
Every C++ implementation includes a preprocessor. In principle, the preprocessor 
runs before the compiler proper and transforms the source code we wrote into 
what the compiler sees. In reality, this action is integrated into the compiler and 
uninteresting except when it causes problems. Every line starting with # is a pre
processor directive. 

A.1 7.1 #include 
We have used the preprocessor extensively to include headers. For example: 

#include 11file.h11 

This is a directive that tells the preprocessor to include the contents of file.h at 
the point of the source text where the directive occurs. For standard headers, we 
can also use < . . .  > instead of 11 • • •  11 • For example: 

#include<vector> 

That is the recommended notation for standard header inclusion. 

A.1 7.2 #define  
The preprocessor implements a form of character manipulation called ma.rro sub
stitution. For example, we can define a name for a character string: 

#define FOO bar 

Now, whenever FOO is seen, bar will be substituted: 

int FOO = 7; 
int FOOL = 9; 

Given that, the compiler will sec 

int bar = 7; 
int FOOL = 9; 

Note that the preprocessor knows enough about C++ names not to replace the 
FOO that's part of FOOL 

You can also define macros that take parameters: 

#define MAX(x,y) (((x)>(y))l(x) : (y)) 
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And we can use it like this: 

int xx = MAX(f00+1 ,7); 
int yy = MAX(++xx,9); 

1bis will expand to 

int xx = (((bar+1)>( 7))l(bar+1) : (7));  
int  yy = (((++XX)>( 9))l(++XX) : (9)) ;  

Note how the parentheses were necessary to get the right result for F00+1. Also 
note that xx was incremented twice in a very non-obvious way. Macros are im
mensely popular - primarily because C programmers have few alternatives to 
using them. Common header ftles define thousands of macros. You have been 
warned! 

If you must use macros , the convention is to name them using All_CAPI
TAL_LETTERS. No ordinary name should be in all capital letters . Don't depend on 
others to follow this sound advice. For example, we have found a macro called 
max in an otherwise reputable header ftle. 

See also §27.8. 
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Standard L i brary S u m mary 

"All complexities should, 
if possible, 

be buried out of sight." 

- David j. Wheeler 

T 
his appendix summarizes key C++ standard library facili

ties. The suiiiDlary is selective and geared to novices who 

want to get an overview of the standard library facilities and ex

plore a bit beyond the sequence of topics in the book. 
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8.1 Overview 
8.1.1 Header files 
8.1.2 Namespace std 
8,1.3 Description style 

8.2 Error handling 
8.2.1 Exceptions 

8.3 lterators 
8.3.1 lterator model 
8.3.2 lterator categories 

8.4 Containers 
8.4.1 Overview 
8.4.2 Member types 
8.4.3 Constructors, destructors, and 

assignments 
8.4.4 lterators 
8.4.5 Element access 
8,4,6 Stack and queue operations 
8.4.7 List operations 
8.4.8 Size and capacity 
8.4.9 Other operations 
8.4.10 Associative container operations 

8.5 Algorithms 
8.5.1 Nonmodlfylng sequence 

algorithms 
8.5.2 Modifying sequence algorithms 
8.5.3 Utility algorithms 
8.5.4 Sorting and searching 
8.5.5 Set algorithms 
8.5.6 Heaps 
8.5.7 Permutations 
8.5.8 min and max 

8.1 Overview 

8.6 STL utilities 
8,6,1 Inserters 
8.6.2 Function objects 
8.6.3 pair 

8.7 1/0 streams 
8.7.1 1/0 streams hierarchy 
8.7.2 Error handling 
8.7.3 Input operations 
8.7.4 Output operations 
8.7.5 Formatting 
8.7.6 Standard manipulators 

8.8 String manipulation 
8.8.1 Character classification 
8.8.2 String 
8.8.3 Regular expression matching 

8.9 Numerics 
8.9.1 Numerical limits 
8.9.2 Standard mathematical functions 
8.9.3 Complex 
8.9.4 valarray 
8.9.5 Generalized numerical algorithms 

8.10 C standard library functions 
8.10.1 Files 
8.10.2 The printf() family 
8.10.3 C·style strings 
8.10.4 Memory 
8.10.5 Date and time 
8.10.6 Etc. 

8.11 Other libraries 

1bis appendix is a reference. It is not intended to be read from beginning to end 
like a chapter. It (more or less) systematically describes key elements of the C++ 
standard library. It is not a complete reference, though: it is just a summary with 
a few key examples. Often. you will need to look at the chapters for a more com· 
plete explanation. Note also that this summary does not attempt to equal the pre
cision and terminology of the standard. For more information, sec Stroustrup, 
The C++ Programming Language. The complete definition is the ISO C++ stan
dard, but that document is not intended for or suitable for novices . Don't forget 
to use your online documentation. 

What use is a selective (and therefore incomplete) summary? You can 
quickly look for a known operation or quickly scan a section to sec what com-



B . l OV E RVI EW 

man operations are available. You may very well have to look elsewhere for a de
tailed explanation, but that's fme: now you have a clue as to what to look for. 
Also, this summary contains cross-references to tutorial material in the chapters . 
This appendix provides a compact overview of standard library facilities . Please 
do not try to memorize the information here; that's not what it is for. On the con
trary, this appendix is a tool that can save you from spurious memorization. 

This is a place to look for useful facilities - instead of trying to invent them 
yourself. Everything in the standard library (and especially everything featured 
in this appendix) has been useful to large groups of people. A standard library fa
cility is almost certainly better designed, better implemented, better documented, 
and more portable than anything you could design and implement in a hurry. So 
when you can, prefer a standard library facility over "home brew." Doing so will 
also make your code easier for others to understand. 

If you are a sensible person, you'll fmd the sheer mass of facilities intimidat
ing. Don't worry; ignore what you don't need. If you are a "details person," 
you'll fmd much missing. However, completeness is what the expert-level guides 
and your online documentation offer. In either case, you '11 find much that will 
seem mysterious, and possibly interesting. Explore some of it! 

8.1 .1 Header files 
The interlaces to standard library facilities are defined in headers. The list below 
contains a few headers that are not part of the C++ 1998 ISO standard, but that 
will be part of the next standard and are widely available. The latter ones are 

marked "C++Ox," and their use may require installation and/or use of a narnespace 
different from std (e.g., tr1 or boost) . Use this section to gain an overview of what 
is available and to help guess where a facility might be defined and described: 

The STL (containers, iterators, and algorithms) 

<algorithm> 

<array> 

<bitsel> 

<deque> 

<functionab 

<iterator> 

<list> 

<map> 
<memory> 

<queue> 

<Set> 

algorithms; sort(), find(), etc. (§8.5, §2 1 . 1 )  

fixed-sized array (C++Ox) (§20.9) 

array of bool (§25.5.2) 

double-ended queue 

function objects (§8.6.2) 

iterators (§8.4.4) 

doubly-linked l ist (§8.4, §20.4) 

(key, value) map and multirnap (§8.4, §2 1 .6. 1 -3) 

allocators for containers 

queue and priority _queue 

set and multiset (§8.4, §2 1 .6.5) 
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The sn (containers, iterators, and algorithms) (continued) 
<Stack> 

<Unordered_map> 

<Unordered_sel> 

<Utility> 

<Vector> 

110 streams 

stack 

hash maps (C++Ox) (§2 1 .6.4) 

hash sets (C++Dx) 

operators and pair (§8.6.3) 

vector (dynamically expandable) (§8.4, §20.8) 

<iostream> l/0 stream objects (§8.7) 

<fstream> file streams (§8.7 . 1 ) 

<Sst ream> string streams (§B.7 . 1 ) 

<iosfwd> declare (but don't define) l/0 stream facilities 

<ioS> l/0 streams base classes 

<Streambuf> stream buffers 

<istream> input streams (§8.7) 

<astream> output streams (§8.7) 

<iomanip> formatting and manipulators (§8.7.6) 

String manipulation 

<String> 

<reg eX> 

Numerics 

string (§8.8.2) 

regular expressions (C++Oxl (Chapter 23) 

<compleX> complex numbers and arithmetic (§8.9.3) 

<random> random number generation (C++Ox) 

c:valarray:> numeric arrays 

<numerie> generalized numeric algorithms, e.g., accumulate() (§8.9.5) 

<limitS> numerical limits (§8.9. 1 ) 
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Utility and language support 

<exception> exception types (§8.2 . 1 ) 

<Stdexcepl> exception hierarchy (§8.2 .1 ) 

<locale> culture-specific formatting 

<typeinfo> standard type information (from typeid) 

<neW> al location and deal location functions 

C standard libraries 

<cstring> C-style string manipulation (§8.1 0.3) 

<cstdio> C-style 1/0 (§8.1 0.2) 

<clime> clock(), time(), etc. (§8.1 0.5) 

<cmath> standard floating-point math functions (§8.9.2) 

<cstdlib> etc. functions: abort(), abs(), malloc(), qsort(), etc. (Chapter 27) 

<cermo> C-style error handling (§24.8) 

<casserl> assert macro (§2 7.9) 

<clocale> culture-specific formatting 

<climitS> C-style numerical l imits (§B. 9. 1 )  

<dloal> C-style floating-point l imits (§8.9. 1 )  

<cstddef> C language support; size_t, etc. 

<cstdarg> macros for variable argument processing 

<csetjmp> stejmp() and longjmp() (never use those) 

<csignal> signal handling 

<cwchar> wide characters 

<cctype> character type classification (§8.8. 1 )  

<cwctype> wide character type classification 

For each of the C standard library headers, there is also a version without the ini
tial c in its name and with a trailing .h, such as <time.h> for <clime>. TI1e .h ver
sions defme global names rather than names in namespace std. 

Some - but not all - of the facilities defmed in these headers are described in 
the sections below and in the chapters. If you need more information, look at 
your online documentation or an expert-level C++ book. 
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8.1 .2 Namespace std 
The standard library facilities are defined in namespace std, so to use them, you 
need an explicit qualification, a using declaration, or a using directive: 

std: : string s; II explicit qua l i fication 

using std : :vector; II using declaration 
vector<inl>v(7) ; 

using namespace std; II using directive 
map<string,double> m; 

In this book, we have used the using directive for std. Be very frugal with using 
directives ; see §A. IS. 

8.1 .3 Description style 
A full description of even a simple standard library operation, such as a construc
tor or an algorithm, can take pages . Consequently, we use an extremely abbrevi
ated style of presentation. For example: 

Examples of notation 

p=op(b,e,x) 

foo(x) 

bar(b,e,x) 

op does something to the range [b:el and x, returning p. 

foo does something to x, but returns no result. 

Does x have something to do with [b:e)? 

We try to be mnemonic in our choice of identifiers, so b,e will be iterators speci
fying a range, p a pointer or an iterator, and x some value, all depending on con
text. In this notation, only the commentary distinguishes no result from a 
Boolean result, so you can confuse those if you try hard enough. For an opera
tion returning bool, the explanation usually ends with a question mark. 

Where an algorithm follows the usual pattern of returning the end of an 
input sequence to indicate "failure," "not found," etc. (§B.3.1 ) ,  we do not mention 
that explicitly. 

8.2 Error handling 
The standard library consists of components developed over a period of almost 
40 years. Thus, their style and approaches to error handling are not consistent. 
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C-style libraries consist of functions, many of which set errno to indicate 
that an error happened; see §24.8. 

Many algorithms operating on a sequence of elements return an iterator 
to the one-past-the-last element to indicate "not found" or "failure." 

The 1/0 streams library relies on a state in each stream to reflect errors 
and may (if the user requests it) throw exceptions to indicate errors; see 
§10.6, §B.7.2. 

Some standard library components, such as vector, string, and bitset, 
throw exceptions to indicate errors. 

TI1e standard library is designed so that all facilities obey "the basic guarantee" 
(see §19.5.3) ;  that is, even if an exception is thrown, no resource (such as mem
ory) is leaked and no invariant for a standard library class is broken. 

8.2.1 Exceptions 
Some standard library facilities report errors by throwing exceptions: 

Standard library exceptions 

bit set 

dynamic_ cast 

iostream 

new 

regex 

string 

typeid 

vector 

throws invalid_argument, out_of_range, overnow_error 

throws bad_cast if it cannot perform a conversion 

throws ios_base: :failure if exceptions are enabled 

throws bad_alloc if it cannot al locate memory 

throws regex_error 

throws length_error, out_of_range 

throws bad_typeid if it cannot deliver a type_info 

throws out_of_range 

These exceptions may be encountered in any code that directly or indirectly uses 
these facilities. Unless you know that no facility is used in a way that could throw 
an exception, it is a good idea to always catch one of the root classes of the stan
dard library exception hierarchy (such as exception) somewhere (e.g., in main()) . 

We strongly recommend that you do not throw built-in types, such as int and 
C-style strings. Instead, throw objects of types specifically defined to be used as 
exceptions. A class derived from the standard library class exception can be used 
for that: 

class exception { 
public: 
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exception(); 
exception(const exception&); 
exception& operator=(const exception&); 
virtual -exception(); 
virtual const char• what() const; 

The what() function can be used to obtain a string that is supposed to indicate 
something about the error that caused the exception. 

This hierarchy of standard exception classes may help by providing a classifi
cation of exceptions: 

You can define an exception by deriving from a standard library exception like 
this: 

struct My_error : runtime_error { 
My_error(int x) : interesting_value(x) { }  
int interesting_value; 
const char• what() const { return "My_error"; } 

}; 

8.3 lterators 
lterators are the glue that ties standard library algorithms to their data. Con
versely, you can say that iterators are the mechanism used to minimize an algo
rithm's dependence on the data structures on which it operates (§20.3):  
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sort, find, search, copy, . . .  , my_very_own_algorithm, your_code, . . .  

vector, list, map, array, . . .  , my_container, your_container, . . .  

8.3.1 lterator model 
An iterator is akin to a pointer in that it provides operations for indirect access 
(e.g., • for dereferencing) and for moving to a new element (e.g., ++ for moving 
to the next element) . A sequence of elements is defined by a pair of iterators defin
ing a half-open range [begin:  end) : 

That is, begin points to the first element of the sequence and end points to one be
yond the last element of the sequence. Never read from or write to •end. Note that 
the empty sequence has begin==end; that is, [p : p) is the empty sequence for any 
iterator p. 

To read a sequence, an algorithm usually takes a pair of iterators (b,e) and it· 
erates using ++ until the end is reached: 

while (b!=e) { II use ! = rather than < 
II do something 
++b; II go to next element 

Algorithms that search for something in a sequence usually return the end of the 
sequence to indicate "not found" ; for example: 

p = find(v.begin(),v.end(),x); 
if (p !=v.end()) { 

II x found at p 

else { 

II look for x in v 

II x not found i n  [v.begin():v.end()) 
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See §20.3. 
Algorithms that write to a sequence often are given only an iterator to its first 

element. In that case, it is the programmer's responsibility not to write beyond 
the end of that sequence. For exan1ple: 

lemplale<class Iter> void f(lter p, inl n) 
{ 

while (n>O) •p = --n;  

vector<inl> v(10); 
f(v.begin(),v.size()); 
f(v.begin(), 1000) ;  

// OK 
II big trouble 

Some standard library implementations range check - that is, throw an exception 
- for that last call of f(), but you can't rely on that for portable code; many im· 
plementations don't check. 

The operations on iterators arc :  

lteralor operations 

++p 

p++ 

--p 

p--

• p 

p[n) 

p->m 

p=q 

pl=q 

Pre-increment: make p refer to the next element in the 
sequence or to one-beyond-the-last-element (11advance one 
element"); the resulting value is p+1 . 

Post-increment: make p refer to the next element in the 
sequence or to one-beyond-the-last-element ("advance one 
element"); the resulting value is p (before the increment). 

Pre-decrement: make p point to previous element (11go back 
one element"); the resulting value is p-1 . 

Post-decrement: make p point to previous element ("go back 
one element"); the resulting value is p (before the decrement). 

Access (dereference): •p refers to the element pointed to by p. 

Access (subscripting): p[n) refers to the element pointed to by 
p+n; equivalent to •(p+n). 

Access (member access); equivalent to (*p).m. 

Equality: true if p and q point to the same element or both 
point to one-beyond-the-last-element. 

Inequality: l (p==q). 
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lterator operations (continued) 

p<q 

p<=q 

p>q 
p>=q 

p+=n 

p-=n 

q=p+n 

q=p-n 

advance(p,n) 

x=difference(p,q) 

Does p point to an element before what q points to? 

p<q ll p=q 

Does p point to an element after what q points to? 

P>Ci ll p--=q 
Advance n: make p point to the nth element after the one it 
points to. 

Advance -n: make p point to the nth element before the one it 
points to. 

q points to the nth element after the one pointed to by p. 

q points to the nth element before the one pointed to by p; 
afterward, we have q+n=p. 

Advance: l ike p+=n; advance() can be used even if p is not a 
random-access iterator; it may take n steps (through a list). 

Difference: l ike q-p; difference() can be used even if p is not 
a random-access iterator; it may take n steps (through a list). 

Note that not every kind of iterator (§B.3.2) supports every iterator operation. 

8.3.2 lterator categories 
The standard library provides five kinds of iterators (five ''iterator categories") : 

llerator categories 

input iterator 

output iterator 

forward iterator 

We can iterate forward using ++ and read each element 
once only using "'. We can compare iterators using = and 
1=. This is the kind of iterator that istream offers; see 
§2 1 .7.2. 
We can iterate forward using ++ and write each element 
once only using •. This is the kind of iterator that ostream 
offers; see §2 1 .7.2. 
We can iterate forward repeatedly using ++ and read and 
write (unless the elements are const) elements using •. If it 
points to a class object, it can use -> to access a member. 
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llerator categories (continued) 
bidirectional iterator We can iterate forward (using ++) and backward (using -) 

and read and write (unless the elements are consl) 
elements using •. This is the kind of iterator that list, map, 
and set offer. 

randomaccess iterator We can iterate forward (using ++ or +=) and backward 
(using - or -=l and read and write (unless the elements 
are const) elements using • or []. We can subscript, add an 
integer to a random-access iterator using +, and subtract an 
integer using -. We can find the distance between two 
random-access iterators to the same sequence by 
subtracting one from the other. We can compare iterators 
using <. <=, >, and >=. This is the kind of iterator that 
vector offers. 

Logically, these iterators are organized in a hierarchy (§20.8) : 

Note that since the iterator categories are not classes, this hierarchy is not a class 
hierarchy implemented using derivation. If you need to do something advanced 
with iterator categories, look for iterator_traits in an advanced reference. 

Each container supplies iterators of a specified category: 

vector - random access 

list - bidirectional 

deque - random access 

bitset - none 
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set - bidirectional 

multiset - bidirectional 

map - bidirectional 

multimap - bidirectional 

unordered_set - forward 

unordered_multiset - forward 

unordered_map - forward 

unordered_mu ltimap - forward 

8.4 Containers 
A container holds a sequence of objects. The elements of the sequence are of the 
member type called value_type. The most commonly useful containers arc: 

Sequence containers 

array<T,N> 

deque<T> 

list<l> 

vector<T> 

fixed-size array of N elements of type T (C++Oxl 

double-ended queue 

doubly-linked list 

dynamic array of elements of type T 

Associative containers 

map<K,V> 

multimap<K, V> 

set<K> 

multiset<K> 

unordered_map<K, V> 

unordered_multimap<K, V> 

unordered_set<K> 

unordered_multiset<K> 

map from K to V; a sequence of (K,Vl pairs 

map from K to V; duplicate keys al lowed 

set of K 

set of K (duplicate keys al lowed) 

map from K to V using a hash function (C++Dxl 

map from K to V using a hash function; duplicate 
keys allowed (C++Ox) 

set of K using a hash function (C++Dxl 

set of K using a hash function; duplicate keys 
al lowed (C++Ox) 
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Container adaptors 

priority_queue<T> 

queue<T> 

stack<T> 

priority queue 

queue with push() and pop() 

stack with push() and pop() 

These containers are defined in <Vector>, <list>, etc. (see §B. 1 . 1 ) .  The sequence 
containers are contiguously allocated or linked lists of elements of their 
value_type (T in the notation used above) . The associative containers are linked 
structures (trees) with nodes of their value_type (pair(K,V) in the notation used 
above) . The sequence of a set, map, or multimap is ordered by its key values (K) . 
The sequence of an unordered_ • does not have a guaranteed order. A multimap 
differs from a map in that a key value may occur many times. Container adap
tors are containers with specialized operations constructed from other containers. 

If in doubt, use vector. Unless you have a solid reason not to, use vector. 
A container uses an "allocator" to allocate and deallocate memory (§19.3.6). 

We do not cover allocators here; if necessary, see an expert-level reference. By de
fault, an allocator uses new and delete when it needs to acquire or release mem
ory for its elements. 

Where meaningful, an access operation exists in two versions: one for const 
and one for non-const objects (§18.4). 

This section lists the common and almost common members of the standard 
containers. For more details, see Chapter 20. Members that are peculiar to a spe
cific container, such as list's splice(), are not listed; see an expert-level reference. 

Some data types provide much of what is required from a standard container, 
but not all. We sometimes refer to those as "almost containers." The most inter· 
esting of those are: 

11Aimost containers" 

T[n) 
built-in array 

string 

valarray 

no size() or other member functions; prefer a container, such as 
vector, string, or array, over array when you have a choice 

holds only characters but provides operations useful for text 
manipulation, such as concatenation (+ and +=l; prefer the standard 
string to other strings 

a numerical vector with vector operations, but with many restrictions 
to encourage high-performance implementations; use only if you do a 
lot of vector arithmetic 
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8.4.1 Overview 
The operations provided by the standard containers can be summarized like this : 

Container: 
constructor, Copy constructor, 
default constructor, begin(), end(), 
rbegin(), rend(), =, !=, <, <=, >, >=, 
=, swap(), size(), max_size(), empty(), 
insert(), erase(), clear() 

Sequential container: 
assign(), front(), back(), 
push_back(), pop_back(), 
resize() 

list: 
push_front(), 
pop_front(), 
splice(), 
remove(), 
remove_if(), 
unique(), 
merge(), 
sort(), 
reverse() 

operator[], 
at(), 
capacity(), 
reserve() 

deque: 
operator[], 
at(), 
push_frontO, 
pop_front() 

Associative containers: 
key_comp(), 
value_comp(), find(), 
count(), lower_bound(), 
equal_range() 

set, 
multiset, 
and 
multi map 

array: 
operator[], 
at() 

map: 
operatorD 
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8.4.2 Member types 
A container defines a set of member types : 

Member types 

value_type 

size_type 

difference_type 

iterator 

const_iterator 

reverse_iterator 

const_reverse_iterator 

reference 

const_reference 

pointer 

const_pointer 

key_type 

mapped_type 

key_compare 

allocator _type 

type of element 

type of subscripts, element counts, etc. 

type of difference between iterators 

behaves l ike value_type"' 

behaves l ike const value_ type* 

behaves like value_ type* 

behaves like const value_type* 

value_type& 

const value_type& 

behaves like value_type* 

behaves l ike const value_ type* 

type of key (associative containers only) 

type of mapped value (associative containers only) 

type of comparison criterion (associative containers onlyl 

type of memory manager 

8.4.3 Constructors, destructors, and assignments 
Containers provide a variety of construcLOrs and assignment operations. For a 
container called C (e.g., vector<double> or map<string,int>) we have: 

Constructors, destructors, and assignment 

C c; 

co 
C c(n); 

C c(n,x); 

C c(b,e); 

c is an empty container. 

Make an empty container. 

c initialized with n elements with default element value (not for 
associative containers). 

c ini tial ized with n copies of x (not for associative containers). 

c initial ized with elements from lb:el. 
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Constructors, destructors, and assignment (continued) 
C c(c2); 

-co 
c1=c2 

c.assign(n,x) 

c.assign(b,e) 

c is a copy of c2. 
Destroy a C and al l  of its elements (usually invoked implicitly). 

Copy assignment; copy all elements from c2 to c1; after the 
assignment c1=c2. 

Assign n copies of x (not for associative containers). 

Assign from lb:el. 

Note that for some containers and some element types, a constructor or an ele· 
ment copy may throw an exception. 

8.4.4 lterators 
A container can be viewed as a sequence either in the order defmed by the con· 
tainer's iterator or in reverse order. For an associative container, the order is 
based on the container's comparison criterion (by default <) : 

llerators 

p=c.begin() 

p=c.endO 

p=c.rbegin() 

p=c.rend() 

p points to first element of c. 

p points to one past last element of c. 

p points to first element of reverse sequence of c. 

p points to one past last element of reverse sequence of c. 

8.4.5 Element access 
Some elements can be accessed directly: 

Element access 

c. front() 

c. back() 

c[i] 

c.al(i) 

reference to first element of c 

reference to last element of c 

reference to element i of c; unchecked access (not for l ist) 

reference to element i of c; checked access (vector and deque only) 

Some implementations - especially debug versions - always do range checking, 
but you cannot portably rely on that for correcmess or on the absence of checking 
for performance. Where such issues are important, examine your implementations. 
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8.4.6 Stack and queue operations 
The standard vector and deque provide efficient operations at the end (back) of 
their sequence of elements. In addition, list and deque provide the equivalent op
erations on the start (front) of their sequences : 

Stack and queue operations 

c.push_back(x) 

c.pop_back() 

c.push_fronl(x) 

c.pop_front() 

Add x to the end of c. 

Remove last element from c. 

Add x to c before first element ( list and deque only). 

Remove first element from c (list and deque only). 

Note that push_front() and push_back() copy an element into a container. This 
implies that the size of the container increases (by one) . If the copy constructor of 
the clement type can throw an exception, a push can faiL 

Note that pop operations do not return a value. Had they done so, a copy 
constructor throwing an exception could have seriously complicated the implc· 
mentation. Use front() and back() (§B.4.5) to access stack and queue elements_ 
We have not recorded the complete set of requirements here; feel free to guess 
(your compiler will usually tell you if you guessed wrong) and to consult more 
detailed documentation. 

8.4.7 List operations 
Containers provide list operations: 

List operations 

q=c.insert(p,x) 

q=c.insert(p,n,x) 

q=c.insert(p,first,last) 

q=c.erase(p) 

q=c.erase(first,last) 

c.clear() 

Add x before p. 

Add n copies of x before p. 

Add elements from I first: last) before p. 

Remove element at p from c. 

Erase lfirst : last) of c. 

Erase all elements of c. 

For insert() functions, the result, q, points to the last element inserted. For erase() 
functions, q points to the clement that followed the last element erased. 

8.4.8 Size and capacity 
The size is the number of elements in the container; the capacity is the number of 
elements that a container can hold before allocating more memory: 
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Size and capacity 

x=c.size() 

c. empty() 

x=c.max_size() 

x=c.capacity() 

c.reserve(n) 

c.resize(n) 

x is the number of elements of c. 

Is c empty? 

x is the largest possible number of elements of c. 

x is the space allocated for c (vector and string only). 

Reserve space for n elements for c (vector and string only). 

Change size of c to n (vector, string, list, and deque only). 

When changing the size or the capaciLy, the elements may be moved to new stor
age locations. That implies that iterators (and pointers and references) to ele
ments may become invalid (e.g., point to the old element locations) . 

8.4. 9 Other operations 
Containers can be copied (see §B.4.3), compared, and swapped: 

Comparisons and swap 

c1=c2 

c1 1=c2 

C1<c2 

c1<=c2 

c1>c2 

c1>=c2 

swap(c1,c2) 

c1.swap(c2) 

Do all corresponding elements of c1 and c2 compare equal? 

Do any corresponding elements of c1 and c2 compare not equal? 

Is c1 lexicographically before c2? 

Is c1 lexicographically before or equal to c2? 

Is c1 lexicographically after c2? 

Is c1 lexicographically after or equal to c2? 

Swap elements of c1 and c2. 

Swap elements of c1 and c2. 

When comparing containers with an operator (e.g., <), their elements arc com
pared using the equivalent element operator (i.e., <) . 

8.4.1 0 Associative container operations 
Associative containers provide lookup based on keys: 

Associative container operations 

c[k) 

p=c.find(k) 

Refers to the element with key k (containers with 
unique keys). 

p points to the first element with key k. 
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Assodative container operations (continued) 

p=c. lower_bound(k) p points to the first element with key k. 

p=c.upper_bound(k) p points to the first element with key greater than k. 

pair(p1,p2)=c.equal_range(k) lp1,p2) are the elements with key k. 

r=c.key_comp() r is a copy of the key-comparison object. 

r=c.value_comp() r is a copy of the mapped_ value-comparison 
object. If a key is not found, c.end() is returned. 

The first iterator of the pair returned by equal_range is lower_bound and 
the second is upper_bound. You can print the value of all elements with the key 
"Marian" in a multimap<string,int> like this: 

string k = "Marian";  
typedef multimap<string,int>: : iterator Ml ;  
pair<MI,MI> pp = m.equal_range(k); 
if (pp.first l=pp.second) 

cout << "elements with value 1 "  << k << " 1 :\n" ;  
else 

cout << "no element with value 1 "  << k << " 1\n" ;  
for (MI p = pp.first; pl =pp.second; ++p) cout << p->second << 1\n 1 ; 

We could equivalently have used: 

pair<MI,MI> pp = make_pair(m.lower_bound(k),m .upper_bound(k)); 

However, that would take about twice as long to execute. The equal_range, 
lower_bound, and upper_bound algorithms are also provided for sorted se
quences (§B.5.4) . The definition of pair is in §B.6.3 . 

8.5 Algorithms 
There are about 60 standard algorithms defmed in <algorithm>. They all oper
ate on sequences defined by a pair of iterators (for inputs) or a single iterator (for 
outputs) . 

When copying, comparing, etc. two sequences, the first is represented by a 
pair of iterators [b :e) but the second by just a single iterator, b2, which is consid
ered the start of a sequence holding sufficient elements for the algorithm, for ex
ample, as many elements as the first sequence: [b2:b2+(e- b)) .  

Some algorithms, such as sort, require random-access iterators, whereas 
many, such as find, only read their elements in order so that they can make do 
with a forward iterator. 
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Many algorithms follow the usual convention of returning the end of a se
quence to represent "not found." We don't mention that for each algorithm. 

8.5.1  Nonmodifying sequence algorithms 
A nonmodifying algorithm just reads the elements of a sequence; it does not re
arrange the sequence and does not change the value of the elements :  

Nonmodifying sequence algorithms 

f=for_each(b,e,f) 

p=find(b,e,v) 

p=find_if(b,e,f) 

p=find_firsl_of(b,e,b2,e2) 

p=find_first_of(b,e,b2,e2,f) 

p=adjacent_find(b,e) 

p=adjacent_find(b,e,f) 

equal(b,e,b2) 

equal(b,e,b2,f) 

pair(p1,p2)=misrnatch(b,e,b2) 

pair(p1 ,p2)=misrnalch(b,e,b2,f) 

p=search(b,e,b2,e2) 

p=search(b.e,b2,e2,f) 

p=find_end(b,e,b2,e2) 

p=find_end( b,e,b2,e2,f) 

p=search_n(b,e,n,v) 

p=search_n(b,e,n,v,f) 

x=counl(b,e,v) 

x=count_if(b,e,v,f) 

Do f for each element in lb: e); return f. 

p points to the first occurrence of v in lb:e). 

p points to the first element in lb:e) so that f(*p). 

p points to the first element in lb:e) so that •p=•q for some 
q i n  lb2:e2). 

p points to the first element in lb:e) so that f(•p,•q) for some 
q in lb2:e2). 

p points to the first p in l b:e) such that •p==*(p+1). 

p points to the first p in lb:e) such that f(•p, *(p+1)). 

Do all elements of l b:e) and lb2: b2+(e-b)l compare equal? 

Do all elements of lb:e) and lb2:b2+(e-b)) compare equal 
using f(•p, •q) as the test? 

(p1,p2) points to the first pair of elements in lb:e) and 
lb2:b2+(e-b)l for which l (*p1==*p2) . 

(p1,p2) points to the first pa ir of elements in lb:e) and 
lb2:b2+(e-b)) for which l f(*p1, *p2). 

p points to the first •p in lb:e) such that •p equals an element 
in lb2:e2). 

p points to the first •p in lb:e) such that f(•p, •q) for an 
element •q in lb2:e2). 

p points to the last •p in lb:e) such that •p equals an element 
in lb2:e2). 

p points to the last •p in lb:e) such that f(•p, •q) for an 
element •q in lb2:e2). 

p points to the first element of lb:e) such that each element in 
lp:p+nl has the value v. 

p points to the first element of lb:e) such that for each 
element •q in lp:p+nl we have f(*q,v). 

x is the number of occurrences of v in lb:e). 

x is the number of elements in lb:e) so that f(*p,v) . 
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Note that nothing stops the operation passed to for_each from modifying ele
ments ; that's considered acceptable. Passing an operation that changes the ele
ments it examines to some other algorithm (e.g_, count or ==) is not acceptable. 

An example (of proper use) : 

bool odd(int x) { return x&1 ;  } 

int n_even(const vector<int>& v) II count the number oi even v,t lues in v 
{ 

return v.size()-count_if(v.begin(),v.end(),odd); 

8.5.2 Modifying sequence algorithms 
The modifying algorithms (also called mutating sequence algoritlzms) can (and often 
do) modify the elements of their argumem sequences. 

Modifying sequence algorithms 

p=transform(b,e,out,f) 

p=transform(b,e,b2,out,f) 

p=copy(b,e,out) 

p=copy _backward(b,e,oul) 

p=unique(b,e) 

p=unique(b,e,f) 

p=unique_copy(b,e,out) 

p=unique_copy(b,e,out,f) 

replace(b,e,v,v2) 

replace(b,e,f,v2) 

p=replace_copy(b,e,out,v,v2) 

Apply •p2=f(*p1) to every *p1 in lb:e) writing to the 
corresponding •p2 in lout:out+(e-b)); p:out+(e-b) 

Apply *p3::f(*p1, •p2) to every element in •p1 in lb:e) and 
the corresponding element *p2 in lb2:b2+(e-b)), writing to 
•p3 in lout:out+(e-b)); p:out+(e-b) 

Copy lb:e) to lout :p). 

Copy lb:e) to lout: pl starting with its last element. 

Move elements in lb:e) so that lb:p) has adjacent dupl icates 
removed (== defines "duplicate"). 

Move elements in lb:e) so that lb:p) has adjacent dupl icates 
removed (f defines "duplicate"). 

Copy lb:e) to lout:p); don't copy adjacent dupl icates. 

Copy lb:e) to lout :pl; don't copy adjacent dupl icates (f 
defines "dupl icate"). 

Replace elements •q in lb:e) for which •q==v with v2. 

Replace elements •q in lb:e) for which f(*q) with v2. 

Copy lb:e) to lout:p), replacing elements •q in lb:e) for 
which •q=v with v2. 
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Modifying sequence algorithms (continued) 

p=replace_copy(b,e,out,f,v2) 

p=remove(b,e,v) 

p=remove(b,e,v,f) 

Copy lb:el to lout:pl, replacing elements •q in lb:e) for 
which f(•q) with v2. 

Move elements •q in lb:el so that lb:pl becomes the 
elements for which l (*q=v). 

Move elements •q in lb:e) so that lb:pl becomes the 
elements for which !f(*q). 

Copy elements from lb:e) for which !(*q==v) to lout :p). 

Copy elements from lb:e) for which l f(*q,v) to lout: pl. 

Reverse the order of elements in lb:e). 

Copy lb:e) into loul :pl in reverse order. 
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p=remove_copy(b,e,oul,v) 

p=remove_copy _if(b,e,out,f) 

reverse(b,e) 

p=reverse_copy(b,e,out) 

rolate(b,m,e) Rotate elements: treat lb:e) as a circle with the first element 
right after the last. Move •b to •m and in general move *(b+i) 
to *((b+(i+(e-m))%(e-b)). 

p=rolate_copy(b,m,e,out) 

random_shuffle(b,e) 

random_shufne(b,e,f) 

Copy lb:e) into a rotated sequence lout: pl. 

Shuffle elements of lb:e) into a distribution using the default 
uniform random number generator. 

Shuffle elements of lb:e) into a distribution using f as a 
random number generator. 

A shuffie algorithm shuffies its sequence much in the way we would shuffie a pack 
of cards; that is, after a shuffie, the elements are in a random order, where "ran
dom" is defmed by the distribution produced by the random number generator. 

Please note that these algorithms do not know if their argument sequence is a 
container, so they do not have the ability to add or remove elements. Thus, an al
gorithm such as remove cannot shorten its input sequence by deleting (erasing) 
elements; instead, it (re)moves the elements it keeps to the front of the sequence: 

typedef vector<int>: : iterator VII; 

void print_digits(const string& s, VI I b, VII e) 
{ 

cout << s; 
while (bl=e) { cout << *b; ++b; } 
cout << '\n' ;  
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void ffO 
{ 

int a(] = { 1, 1, 1, 2,2, 3, 4,4,4, 3,3,3, 5,5,5,5, 1, 1,1 }; 
vector<int> v(a,a+sizeof(a)/sizeof(int)); 
print_digits(11all: 11 ,v.begin(), v.end()); 

vector<int>: : iterator pp = unique(v.begin(),v.end()); 
print_digits(11head: 11 ,v.beginO,pp); 
print_digits(11tai l :  11,pp,v.end()); 

pp=remove(v.begin(),pp,4); 
print_digits(11head: 11 ,v.begin(),pp); 
print_digits( 11tai l :  11 ,pp,v.end()); 

The resulting output is 

all : 1 1 12234443335555111 
head: 1234351 
tail: 443335555111 
head: 123351 
tail: 1443335555111 

8.5.3 Util ity algorithms 
Technically, these utility algorithms are also modifying sequence algorithms, but 
we thought it a good idea to list them separately, lest they get overlooked. 

Utility algorithms 

swap(x,y) 

iter _swap(p,q) 

swap_ranges(b,e,b2) 

fill(b,e,v) 

fill_n(b,n,v) 

generate(b,e,f) 

generale_n(b, n, f) 

uninilialized_fill(b,e,v) 

uninitialized_copy(b,e,out) 

Swap x and y. 

Swap •p and •q. 

Swap the elements of lb:e) and lb2:b2+(e-b)). 

Assign v to every element of lb:e). 

Assign v to every element of lb: b+n). 

Assign f() to every element of lb:e). 

Assign f() to every element of lb:b+n). 

Initialize all elements in lb:e) with v. 

In itialize all elements of lout:out+(e-b)) with the 
corresponding element from lb:e). 
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Note that uninitialized sequences should occur only at the lowest level of pro
gramming, usually inside the implementation of containers. Elements that are 
targets of uninit ialized_fi ll or uninitialized_copy must be of built-in type or 
uninitialized. 

8.5.4 Sorting and searching 
Sorting and searching are fundamental and the needs of programmers are quite 
varied. Comparison is by default done using the < operator and equivalence of a 
pair of values a and b is detennined by ! (a<b)&&! (b<a) rather than requiring op
erator ==. 

Sorting and searching 

sort(b,e) 

sort(b,e,f) 

stable_sorl(b,e) 

stable_sorl(b,e,f) 

partial_sorl(b,m,e) 

partial_sort(b,m,e,f) 

partial_sort_copy(b,e,b2,e2) 

partial_sort_copy(b,e,b2,e2,f) 

nth_elemenl(b,e) 

nth_elemenl(b,e,f) 

p=lower _bound(b,e,v) 

p=lower_bound(b,e,v,f) 

p=upper_bound(b,e,v) 

p=upper_bound(b,e,v,f) 

binary_search(b,e,v) 

binary _search(b,e,v,f) 

pair(p1,p2)=equal_range(b,e,v) 

Sort lb:e). 

Sort [b:e) using f(*p, •q) as the sorting criterion. 

Sort lb:e), maintaining order of equivalent elements. 

Sort lb:e) using f(•p, •q) as the sorting criterion, mainta ining 
order of equivalent elements. 

Sort lb:e) to get lb:m) into order; lm:e) need not be sorted. 

Sort lb:e) using f(*p, •q) as the sorting criterion to get lb:m) 
into order; lm:e) need not be sorted. 

Sort enough of lb:e) to copy the e2-b2 first elements to 
lb2:e2). 

Sort enough of lb:e) to copy the e2-b2 first elements to 
lb2:e2); use f as the comparison. 

Put the nth element of lb:e) in its proper place. 

Put the nth element of lb:e) in its proper place using f for 
comparison. 

p points to the first occurrence of v in [b:e). 

p points to the first occurrence of v in lb:e) using f for 
comparison. 

p points to the first value larger than v in lb:e). 

p points to the first value larger than v in lb:e) using f for 
comparison. 

Is v in the sorted sequence lb:e)? 

Is v in the sorted sequence lb:e) using f for comparison? 

lp1,p2l is the subsequence of lb:e) with the value v; basically, 
a binary search for v. 
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Sorting and searching (continued) 
pair(p1,p2)=equal_range(b,e,v,f) lp1,p2l is the subsequence of lb:e) with the value v using f for 

comparison; basically, a binary search for v. 

p=merge(b,e,b2,e2,out) Merge two sorted sequences lb2:e2) and lb:e) into lout:pl. 

p=merge(b,e,b2,e2,out,f) Merge two sorted sequences lb2:e2) and lb:e) into 
lout,oul+pl using f as the comparison. 

inplace_merge(b,m,e) Merge two sorted subsequences lb:m) and lm:e) into a sorted 
sequence lb:e). 

inplace_merge(b,m,e,f) Merge two sorted subsequences lb:ml and lm:e) into a sorted 
sequence lb:e) using f as the comparison. 

p=partition(b,e,f) Place elements for which f(*p1) in lb:pl and other elements in 
lp:e). 

p=slable_partition(b,e,f) Place elements for which f(*p1) in lb:pl and other elements in 
lp:e), preserving relative order. 

For example: 

vector<inl> v; 
list<double> 1st; 
v.push_back(3); v.push_back(1); 
v.push_back(4); v.push_back(2); 
lst.push_back(0.5); I st. push_back(1 .5); 
lst.push_back(2); lst.push_back(2.5); II 1st is in order 
sorl(v.begin(),v.end()) ; II put v in order 
vector<double> v2; 
merge(v.begin(),v.end(),lst.begin(),lst.end(),back_inserter(v2)); 
for (in I i = 0; i<v2.size(); ++i) cout << v2[i] << 11 , 11 ; 

For inserters, see §B.6. 1. The output is 

0.5, 1, 1 .5, 2, 2, 2.5, 3, 4, 

The equal_range, lower_bound, and upper_bound algorithms are used just 
like their equivalents for associative containers ; see §B.4.10. 

8.5.5 Set algorithms 
These algorithms treat a sequence as a set of elements and provide the basic set 
operations. The input sequences are supposed to be sorted and the output se
quences arc also sorted: 
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Set algorithms 

includes(b,e,b2,e2) 

includes(b,e,b2,e2,f) 

p=set_union(b,e,b2,e2,oul) 

p=set_union(b,e,b2,e2,out,f) 

p=set_intersection(b,e,b2,e2,out) 

p=set_intersection(b,e,b2,e2,out,f) 

p=set_difference(b,e,b2,e2,out) 

p=sel_ difference(b,e ,b2,e2,out, f) 

p=sel_symmetric_difference(b,e,b2,e2,out) 

p=sel_symmetric_difference(b,e,b2,e2,out,f) 

8.5.6 Heaps 
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Are al l  elements of lb2:e2) also in lb:e)? 

Are all elements of lb2:e2) also in lb:e) using f 
for comparison? 

Construct a sorted sequence lout:pl of 
elements that are in either lb:e) or lb2:e2). 

Construct a sorted sequence loul:pl of 
elements that are in either lb:e) or lb2:e2) 
using f for comparison. 

Construct a sorted sequence loul:pl of 
elements that are in both lb:e) and lb2:e2). 

Construct a sorted sequence [out:p) of 
elements that are in both lb:e) and lb2:e2) 
using f for comparison. 

Construct a sorted sequence loul :p) of 
elements that are in lb:e) but not in lb2:e2). 

Construct a sorted sequence [out :pl of 
elements that are in lb:e) but not in lb2:e2) 
using f for comparison. 

Construct a sorted sequence loul:pl of elements 
that are in lb:e) or lb2:e2) but not in both. 

Construct a sorted sequence loul :pl of 
elements that are in lb:e) or lb2:e2) but not in 
both using f for comparison. 

A heap is a data structure that keeps the element with highest value first. The 
heap algorithms allow a programmer to treat a random-access sequence as a heap: 

Heap operations 

make_heap(b,e) 

make_heap(b,e,f) 

push_heap(b,e) 

push_heap(b,e,f) 

Make sequence ready to be used as a heap. 

Make sequence ready to be used as a heap, using f for 
comparison. 

Add element to heap ( in its proper place). 

Add element to heap, using f for comparison. 
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Heap operations (continued) 

pop_heap(b,e) 

pop_heap(b,e,f) 

sort_heap(b,e) 

sort_heap(b,e,f) 

Remove largest (first) element from heap. 

Remove element from heap, using f for comparison. 

Sort the heap. 

Sort the heap, using f for comparison. 

The point of a heap is to provide fast addition of elements and fast access to the 
element with the highest value. The main use of heaps is to implement priority 
queues. 

8.5.7 Permutations 
Permutations are used to generate combinations of elements of a sequence. For 
example, the permutations of abc are abc, acb, bac, bca, cab, and cba. 

Permutations 

x=next_permutation(b,e) Make [b:e) the next permutation in lexicographical 
order. 

x=next_permulalion(b,e,f) Make [b:e) the next permutation in lexicographical 
order, using f for comparison. 

x=prev_permulalion(b,e) Make [b:e) the previous permutation in 
lexicographical order. 

x=prev_permulalion(b,e,f) Make [b:e) the previous permutation in 
lexicographical order, using f for comparison. 

The retum value (x) for next_permutation is false if [b :e) already contains the 
last permutation (cba in the example) ; in that case, it returns the first permutation 
(abc in the example) . The return value for prev_permutation is false if [b :e) al· 
ready contains the first permutation (abc in the example) ; in that case, it retums 
the last permutation (cba in the example) . 

8.5.8 min and max 
Value comparisons are useful in many contexts : 
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min and max 

x=max(a,b) x is the larger of a and b. 

x=max(a,b,f) x is the larger of a and b using f for 
comparison. 

x=min(a,b) x is the smal ler of a and b. 

x=min(a,b,f) x is the smal ler of a and b using f for 
comparison. 

p= max_elemenl(b,e) p points to the largest element of lb:e). 

p=max_elemenl(b,e,f) p points to the largest element of lb:e) 
using f for the element comparison. 

p=min_elemenl(b,e) p points to the smal lest element of lb:e). 

p=min_elemenl(b,e,f) p points to the smal lest element of lb:e) 
using f for the element comparison. 

lexicographical_compare(b,e,b2,e2) Is lb:e}<lb2:e2)? 

lexicographical_compare(b,e,b2,e2,f) Is lb:e}<lb2:e2), using f for the element 
comparison? 

8.6 STL uti lities 
The standard library provides a few facilities for making it easier to use standard 
library algorithms. 

8.6.1 Inserters 
Producing output through an iterator into a container implies that elements 
pointed to by the iterator and following it can be overwritten. This also implies 
the possibility of overflow and consequent memory corruption. For example: 

void f(vector<int>& vi) 
{ 

fill_n(vi.begin(), 200,7 );  II assign 7 to v i iO I  . .  I 1 99 I  

If  vi  has fewer than 200 elements, we are in trouble. 
In <ilerator>, the standard library provides three iterators to deal with this 

problem by adding (inserting) elements to a container rather than overwriting old 
clements. Three functions are provided for generating those inserting iterators : 
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Inserters 

r=back_inserter(c) 

r=front_inserter(c) 

r=inserter(c,p) 
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•r=x causes a c.push_back(x). 

•r=x causes a c.push_fronl(x). 

•r=x causes a c.insert(p,x). 

For inserter(c,p), p must be a valid iterator for the container c. Naturally, a con· 
tainer grows by one element each time a value is written to iL through an insen iL· 
erator. When written to, an inserter inserts a new element into a sequence using 
push_back(x), c.push_front(), or insert() rather than overwriting an existing ele· 
ment. For example: 

void g(vector<int>& vi) 
{ 

fill_n(back_inserter(vi), 200,7 ) ; II add 2 00 7s to the end of vi 

8.6.2 Function objects 
Many of the standard algorithms take function objects (or functions) as argu· 
ments to control the way they work. Common uses are comparison criteria, pred
icates (functions returning bool) , and arithmetic operations. In <functional>, the 
standard library supplies a few common function objects. 

Predicates 

p=equal_to<l>() 

p=not_equai_IO<T>O 

p=greater<l>O 

p=lesS<T>O 

p=greater_equai<T>O 

p=less_ equai<T>O 

p=logical_and<l>O 

p=logical_or<l>O 

p=logical_not<l>() 

For example: 

p(x,y) means x=y when x and y are of type T. 

p(x,y) means x!=y when x and y are of type T. 

p(x,y) means X>y when x and y are of type T. 

p(x,y) means x<y when x and y are of type T. 

p(x,y) means X>=y when x and y are of type T. 

p(x,y) means X<=y when x and y are of type T. 

p(x,y) means x&&y when x and y are of type T. 

p(x,y) means xlly when x and y are of type T. 

p(x) means lx when x is of type T. 



B . 6  S T L  U T I L I T I ES 

vector<int> v; 
II . . .  
sort(v.begin(),v.end(),greater<int>()) ;  II sort v in decreasing order 

Note that logical_and and logical_or always evaluate both their arguments 
(whereas && and II do not) . 

Arithmetic operations 

f=plus<l>O 

f=minus<1>0 

f=multiplies<l>O 

f=divides<l>O 

f=modulus<l>O 

f=negate<1>0 

Adaptors 

f(x,y) means x+y when x and y are of type 1. 

f(x,y) means x-y when x and y are of type 1. 

f(x,y) means x*y when x and y are of type 1. 

f(x,y) means xly when x and y are of type 1. 

f(x,y) means x%y when x and y are of type 1. 

f(x) means -x when x is of type 1. 

f=bind2nd(g,y) f(x) means g(x,y). 

f=bind1st(g,x) f(y) means g(x,y). 

f=mem_fun(mf) f(p) means p->mf(). 

f=mem_fun_ref(mf) f(r) means r.mf(). 

f=not1(g) f(x) means lg(x). 

f=not2(g) f(x,y) means lg(x,y). 

8.6.3 pair 
In <utility>, the standard library provides a few "utility components," including 
pair: 

template <class 11, class T2> 
struct pair { 

typedef 11 first_ type; 
typedef T2 second_type; 
11 first; 
12 second; 
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} ; 
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pair(); II default constructor 
pair(const 11& x ,  const T2& y ); 

II copy operations: 
template<class U , class V > pair(const pair<U , V >& p ); 

template <class 11, class T2> 
pair<11,T2> make_pair(11 x, T2 y) { return pair<11,12>(x,y); } 

The make_pair function makes the use of pairs simple. For example, here is the 
outline of a function that returns a value and an error indicator: 

pair<double,error_indicator> my_fct(double d) 
{ 

errno = 0; II c lear C-style global error indicator 
II do a lot of computation involving d computing x 

error_indicator ee = errno; 
errno = 0; II c lear C-style global error indicator 
return make_pair(x,ee); 

This example of a useful idiom can be used like this: 

pair<int,error_indicator> res = my_fct(123.456); 
if (res.second==O) { 

II use res. first 

else { 
II oops: error 

8.7 1/0 streams 
The 1/0 stream library provides formatted and unformatted buffered 1/0 of text 
and numeric values. The defmitions for 110 stream facilities arc found in 
<istream>, <ostream>, etc.; see §B. l . l .  

An ostream converts typed objects to a stream of characters (bytes) :  
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Values of various types Character sequences 

"Somewhere" 

An istream converts a stream of characters (bytes) to typed objects: 

Values of various types Character sequences 

"Somewhere" 

An iostream is a stream that can act as both an istream and an ostream. The 
buffers in the diagrams are "stream buffers" (streambufs) . Look them up in an 
expert·level textbook if you ever need to define a mapping from an iostream to a 
new kind of device, file, or memory. 

There are three standard streams: 

Standard VO streams 

cout the standard character output (often by default a screen) 

cin the standard character input (often by default a keyboard) 

cerr the standard character error output (unbuffered) 
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8.7 .1  1/0 streams hierarchy 
An lttream can be connected to an input device (e.g., a keyboard), a ftle, or a 
strlna. Similarly, an o1tream can be connected to an output device (e.g., a text win
dow), a file, or a 1trlng. The 110 stream facilities are organized in a class hierarchy: 

A stream can be opened either by a constructor or by an open() call: 

Stream types 

1trlng1tream(m) 

•trlngttream(t,m) 

f1treamo 

fltream(t,m) 

fa.open(l,m) 

fa. I•� open() 

Make an empty string stream with mode m. 

Make a string stream containing 1trln1 1 with mode m. 

Make a fi le stream for later opening. 

Open file cal led 1 with mode m and make a file stream to refer 
to it. 

Open file cal led 1 with mode m and have f1 refer to it. 

Is f1 open? 

For ftle streams, the file name is a C-style string. 
You can open a ftle in one of several modes : 

Stream modes 

loa_ba1e1 1app append ( i .e., add to the end of the file) 

lol_ba1e1 1ate "at end" (open and seek to end) 

loa_batel l binary binary mode - beware of system-specific behavior 

loa_balc!l l ln for reading 

loa_baae1 1out for writing 

loa . bale 1 1 trunc truncate file to 0 length 
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In each case, the exact effect of opening a ftle may depend on the operating sys
tem, and if an operating system cannot honor a request to open a ftle in a certain 
way, the result will be a stream that is not in the good() state. 

An example: 

void my_code(ottreaml OM)J II my tnd�:• tt111 use t1 11Y ostr!MI11 

ottrlng•tream oa; II o fur "mi l put" 
of1tream of("my _file"); 
If ( !of) error("couldn't opun 'myJIIe' for wrltlns">J 
my __ code(ot)J II ll'i<' o1 r.rr lng 
my _code(of); II liM' a fi le 

See §1 1.3. 

8.7 .2 Error handling 
An lotttream can be in one of four states : 

Stream states 

good() 

eofO 

fall() 

bad() 

The operations succeeded. 

We hit end of input ("end of file"). 

Something unexpected happened (e.g., we looked for a digit and found 1X1). 
Something unexpected and serious happened (e.g., disk read error). 

By using a.except lont(),  a programmer can request an lottream to throw an ex
ception if it turns from good() into another state (see §10.6) . 

Any operation attempted on a stream that is not in the sood() state has no ef
fect; it is a "no op." 

An lottruam can be used as a condition. In that case, the condition is true 
(succeeds) if the state of the lottruam is good() . That is the basis for the common 
idiom for reading a stream of values : 

)( XI II ill1 "Input buffer" for holdln� orw v.1 I U1• of IYP'' X 
whllu (cln>>x) { 

II do !!OI1Wih ii1R wllh x 

II Wl' Rl'l hl't(' wht•l1 ;>)o couldn't tl:'o1d o1 110IIwr X from ! " In  
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8.7 .3 Input operations 
Input operations are found in <istream> except for the ones reading into a string; 
those are found in <String>: 

Formatted input 

in >> x  

getline(in,s) 

Read from in into x according to x's type. 

Read a l ine from in into the string s. 

Unless otherwise stated, an istream operation returns a reference to its istream, 
so that we can "chain" operations, for example, cin>>X>>y; . 

Unformatted input 

x=in.get() 

in. get( c) 

in.get(p,n) 

in.get(p,n,t) 

in.getline(p,n) 

in.getline(p,n,t) 

in.read(p,n) 

x=in.gcount() 

Read one character from in and return its integer value. 

Read a character from in into c. 

Read at most n characters from in into the array starting at p. 

Read at most n characters from in into the array starting at p; 
consider t a terminator. 

Read at most n characters from in into the array starting at p; 
remove terminator from in. 

Read at most n characters from in into the array starting at p; 
consider t a terminator; remove terminator from in. 

Read at most n characters from in i nto the array starting at p. 

x is number of characters read by most recent unformatted input 
operation on in. 

The get() and get line() functions place a 0 at the end of the characters (if any) 
written to p[O] . . .  ; getline() removes the terminator (t) from the input, if found, 
whereas get() does not. A read(p,n) does not write a 0 to the array after the char
acters read. Obviously, the formatted input operators are simpler to use and less 
error-prone than the unformatted ones. 

8.7 .4 Output operations 
Output operations are found in <ostream> except for the ones writing oUL a 
string; those are found in <String>: 
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Output operations 

out « x Write x to out according to x's type. 

out.pui(C) Write the character c to out. 

out.wrlte(p,n) Write the characters p[O) .. p[n-1] to out. 

Unless otherwise stated, an o1tream operation returns a reference to its olitream, 
so that we can "chain" operations, for example, cout << x<<y; . 

8.7.5 Formatting 
The fom1at of stream 110 is controlled by a combination of object type, stream 
state, locale information (see <locale>) , and explicit operations. Chapters 10 and 
1 1  explain much of this. Here, we just list the standard manipulators (operations 
modifying the state of a stream) because they provide the most straightforward 
way of modifying formatting. 

Locales are beyond the scope of this book. 

8.7.6 Standard manipulators 
The standard library provides manipulators corresponding to the various formaL 
states and state changes. The standard manipulators are defmed in <IOI>, 
<ltUream>, <Oitream>, <loltream>, and <lomanlp> (for manipulators that take 
arguments) :  

VO manipulators 

�<eboolalpha 

t<<noboolalpha 

t«thowbue 

1«no11howbaae 

I«Mhowpolnt 

t«nothowpolnt 

ll«thowpot 

t«nothowpot 

1»1klpw1 

a»notklpwt 

l«uppercate 

Use symbolic representation of true and fal1e (input and 
output). 

t.untetf<lot_batea a boolalpha). 

On output prefix oct by 0 and hex by Ox . 

t. unttetf(lot=batel l thowbale). 

Always show decimal point. 

t.untetf<lo•�bate l l thowpolnt). 

Show + for positive numbers. 

t.unttetf<lo•=baae a a ahowpoa). 

Skip whitespace. 

l.unaetf(loa_bllel llklpwl). 

Use uppercase in numeric output, e.g., 1 .2E10 and OX1A2 
rather than 1 .2e10 and Ox1a2. 
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VO manipulators (continued) 

S<<nouppercase 

S<<internal 

S<<left 

S<<right 

S<<dec 

S<<hex 

S<<Oct 

S<<fixed 

S<<Scientific 

S<<endl 

S<<ends 

S<<flush 

S>>ws 

S<<resetiosflags(f) 

S<<Setiosflags(f) 

S<<Setbase(b) 

S<<Setfill( c) 

S<<Setprecision(n) 

S<<Setw(n) 

x and e rather than X and E. 

Pad where marked in formatting pattern. 

Pad after value. 

Pad before value. 

Integer base is 1 0. 

Integer base is 1 6. 

Integer base is 8. 

Floating-point format dddd.dd. 
Scientific format d.ddddEdd. 

Put '\n1 and flush. 

Put '\01 • 
Flush stream. 

Eat whitespace. 

Clear flags f. 
Set flags f. 
Output integers in base b. 

Make c the fi l l  character. 

Precision is n digits. 

Next field width is n characters. 

Each of these operations returns a reference to its ftrst (stream) operand, s. 
For example: 

cout << 1234 << 1,1 << hex << 1234 << 1, 1 << oct << 1234 << end I; 

produces 

1234,4d2,2322 

and 

cout << 1(1 << setw(4) << setfill(1#1) << 12 << ") (" << 12 << ")\n"; 
produces 

(##12) (12) 
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To explicitly set the general output format for floating-point numbers use 

b.setf(ios_base: : fmtflags(O), ios_base: : floatfield) 

See Chapter 1 1 .  

8.8 String manipulation 
The standard library offers character classification operations in <cctype>, 
strings with associated operations in <String>, regular expression matching in 
<regeX> (C++Ox) , and support for C-style strings in <cstring>. 

8.8.1 Character classification 
The characters from the basic execution character set can be classified like this: 

Character classification 

isspace(c) 

isalpha(c) 

isdigit(c) 

isxdigit(c) 

isupper(c) 

is lower( c) 

isalnum(c) 

iscntrl(c) 

ispunct(c) 

isprint(c) 

isgraph(c) 

Is c whitespace (' ', '\1', '\n', etc.)? 

Is c a letter ('a' . .'z', 'A' . .'Z'l? (Note: not '_'. )  

Is c a decimal digit ('0' .. '9')? 

Is c a hexadecimal digit (decimal digit or 'a' . .'f' or 'A' . .'f'l? 

Is c an uppercase letter? 

Is c a lowercase letter? 

Is c a letter or a decimal digit? 

Is c a control character (ASCII 0 . . 3 1  and 1 27)? 

Is c not a letter, digit, whitespace, or invisible control character? 

Is c printable (ASCII ' ' .. '- ' )? 

Is c isalphaOiisdigitOiispunct()? (Note: not space.) 

In addition, the standard library provides two useful functions for getting rid of 
case differences : 

Upper and lower case 

toupper(c) 

tolower(c) 

c or c's uppercase equivalent 

c or c's lowercase equivalent 

Extended character sets, such as Unicode, are supported but are beyond the 
scope of this book. 
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8.8.2 String 
The standard library string class, 1trlna. is a specialization of a general string tem
plate hulc_ltrlng for the character type char; that is, litrlns is a sequence of thilrs : 

String operations 

till 

1+12 

11<12 

1.1lzeO 

llolength() 

•·c�1trO 

•. beslnO 

1.endO 

1.ln•ert<po11,x) 

!l.append(pol, X) 
t.erue(po•) 

l.puth_back(c) 

po1•1. flnd(x) 

In»• 

Assign 12 to I; 12 can be a string or a C-style string. 

Append x at end of I; x can be a character, a string, or a C-style 
string 

Subscripting. 

Concatenation; the resu lt is a new string with the characters from 
II fol lowed by the characters from 12. 

Comparison of string values; 111 or 112, but not both, can be a C
style string. 

Comparison of string values; li or 1:&, but not both, can be a C
style string. 

Lexicographical comparison of string values; 8 or 12, but not 
both, can be a C-style string. 

Lexicographical comparison of string values; I or 112, but not 
both, can be a C-style string. 

Lexicographical comparison of string values; 1 or 12, but not 
both, can be a C-style string. 

Lexicographical comparison of string values; 11 or 12, but not 
both, can be a C-style string. 

Number of characters in 1. 

Number of characters in 1. 

C-style string version (zero terminated) of characters in 1. 

lterator to first character. 

lterator to one beyond the end of 1. 
Insert x before l(pot); x can be a character, a string, or a C-style 
string. 

Insert X after 11(po8); X can be a character, a string, or a C-style string. 

Remove the character in l(pol). 

Append the character c. 

Find x in 1; x can be a character, a string, or a C-style string; poll 
is the index of the first character found, or npo1 (a position off 
the end of 1). 

Read a word into 1 from ln. 
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8.8.3 Regular e"presslon matching 
1l1e regular expression library is not yet part of the standard library, but it will 
soon be and it is widely available, so we list it here. See Chapter 23 for more de
tailed explanations. The main creaeo functions are 

• Searching for a string that matches a regular expression in an (arbitrarily 
long) stream of data - supported by n�sex _lttAreh() 

• Matching a regular expression against a string (of known size) - sup
ported by rtsex_match() 

• Repkuement of matches - supported by resex __ replaceO; not described in 
this book; see an expert-level text or manual 

The result of a resex_IUArchO or a resux�matc:h() is a collection of matches, typi
cally represented as an MmAtth: 

rU81X rOW( II (\ (\\W J+( \\d+)( \\d+)( \\d+)$")1  

whllu (getllne(ln, llne)) { // ( hvck tlo1 1.1 l l rw 
llmltCh mAtChUII 
If (l resex�match(llne, matchei, row)) 

error("bld line", llneno)J 

II c_ lll'rk row: 
lnt fleld1 • from tUrlngclnl>(matchu11( 1 J)J  
lnt fleld2 • from_llltrlng<lnt>(matchuii(2J)J 
lnt fleld3 • from_.trlns<lnl>(matchui(JJ)J 
II . . .  

II d.11.1 l im• 

The syntax of regular expressions is based on characters with special meaning 
(Chapter 23) : 

Regular expression special characters 

any single character (a "wildcard") 

character class 

count 

begin grouping 

end grouping 

next character has a special meaning 

zero or more 

+ one or more 
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Regular expression special characters (continued) 

$ 

Repetition 

{ n }  

{ n, } 

{n,m} 

+ 

optional (zero or one) 

alternative (or) 

start of l ine; negation 

end of l ine 

exactly n times 

n or more times 

at least n and at most m times 

zero or more, that is, {0,} 

one or more, that is, {1 ,} 

optional (zero or one), that is {0, 1} 

Character classes 

alnum 

alpha 

blank 

cntrl 

d 

digit 

graph 

lower 

print 

punct 

s 

space 

upper 

w 

xdigit 

any alphanumeric character or the underscore 

any a lphabetic character 

any whitespace character that is not a l ine separator 

any control character 

any decimal digit 

any decimal digit 

any graphical character 

any lowercase character 

any printable character 

any punctuation character 

any whitespace character 

any whitespace character 

any uppercase character 

any word character (alphanumeric characters) 

any hexadecimal digit character 
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Several character classes are supported by shorthand notation: 

Character class abbreviations 

\d a decimal digit 

\1 a lowercase character 

\8 a space (space, tab, etc.) 

\u an uppercase character 

\w a letter, a decimal digit, or an underscore U 
\D not \d 
\I. not \1 
'& not \8 
\U not \u 

\W not \w 

11 1 dlslu n 
U 1 loworaJJ  

((  l lf)AClH II 
(( 1 uppera Jl 

( ( IAinumiJI 

(II  ( I  digit i Jl 

( 11 ( 1 1owtrall 

[11t l llpACtlll 

( 11 ( 1 upperaJJ 

[ll[ utlnumiJJ 

8.9 Numerics 
The C++ standard library provides the most basic building blocks for mathemat
ical (scientific, engineering, etc.) calculations. 

8.9 . 1  Numerical limits 
Each C++ implementation specifics properties of the built-in types, so that pro
grammers can use those properties to check against limits, set sentinels, etc. 

From <llmltM>, we get numerlc_llmlt1 <1'> for each built-in or library type f. 
In addition, a programmer can define numerlc_llmlti<X> for a user-defined nu
meric type X. For example: 

clan numerlc_llmltM<float> { 
publiC I 

1tatlc conMt bool l1_11peclallaed • true1 

Mittie conMt lnt radix • 21 II h.l�t' ur t•xpurwnt On thl!� ( ''"t', hh1.11'Yl 
1tatlc conMt lnt dlsltM • 241 // munht•r ur t.ullx diRit� h1 nMnl l ��., 
Mittie con1t lnt dlsltM10 • 61 // rwml wr or lltl!lt'- 1 o diMIIll In n�tulti s�., 

lllttlc conMt booi iM_II&ned • true1 
lllatlc con1t booi iMJnteser • fal111 
Mittie: Conllt booi ii_IXICI • fAIIIel 
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static float min() { return 1 .17549435E-38F; } 
static float max() { return 3.40282347E+38f; } 

II example value 
II example value 

static float epsilon() { return 1 .19209290E-07F; } II example value 
static float round_ error() { return O.SF; } II example value 

static float infinity() { return /• some value */; } 
static float quiet_NaN() { return /* some value */; } 
static float signaling_NaN() { return /* some value •1; } 
static float denorm_min() { return min(); } 

static const int min_ exponent = -125; 
static const int min_exponent10 = -37; 
static const int max_ exponent = +128; 
static const int max_exponent10 = +38; 

static const bool has_infinity = true; 
static const bool has_quiet_NaN = true; 
static const bool has_signaling_NaN = true; 

II example va lue 
II example va lue 
II example va lue 
II example va lue 

static const float_denorm_style has_denorm = denorm_absent; 
static const bool has_denorm_loss = false; 

static const bool is_iec559 = true; II conforms to IEC-559 
static const bool is_bounded = true; 
static const bool is_modulo = false; 
static const bool traps = true; 
static const bool tinyness_before = true; 

static const float_round_style round_style = round_to_nearest; 

From <limits.h> and <float.h>, we get macros specifying key properties of inte
gers and floating-point numbers, including: 

Umit macros 

CHAR_ BIT 

CHAR_ MIN 

CHAR_MAX 

INT_MIN 

INT_MAX 

number of bits in a char (usually 8) 
minimum char value 

maximum char value (usual ly 1 2 7 i f  char is signed and 255 if 
char is unsigned) 

smallest int value 

largest int value 
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Limit macros (continued) 

LONG_MIN smal lest int value 

LONG_MAX largest int value 

FLT_MIN smal lest positive float value (e.g., 1 . 1 7549435 1  e-38F) 

FLT_MAX largest float value (e.g., 3 .402823466e+38F) 

FLT_DIG number of dec imal digits of precision (e.g., 6) 

FLT_MAX_10_EXP largest decimal  exponent (e.g., 38) 

DBL_MIN smal lest double value 

DBL_MAX largest double value (e.g., 1 .  797693 1 3486231 58e+ 308) 
DBL_EPSILON smallest such that 1 .0+DBL_EPSILON I = 1.0 

B. 9.2 Standard mathematical functions 
The standard library provides the most common mathematical functions (de
fmed in <cmath> and <compleX>) : 

Standard mathematical functions 

abs(x) 

ceil(x) 

floor(x) 

sqrt(x) 

cos(x) 

sin(x) 

tan(x) 

acos(x) 

asin(x) 

atan(x) 

sinh(x) 

cosh(x) 

tanh(x) 

exp(x) 

log(x) 

log10(x) 

absolute value 

smal lest integer >= x 

largest integer <= x 

square root; x must be nonnegative 

cosine 

sine 

tangent 

arccosine; resu lt is nonnegative 

arcsine; result nearest to 0 returned 

arctangent 

hyperbolic sine 

hyperbolic cosine 

hyperbolic tangent 

base-e exponential 

natural logarithm, base-e; x must be positive 

base-1 0 logarithm 
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There are versions taking floilt. doublo. long doublo, and eomplo11 arguments. 
For each function, the return type is the same

-
as the argument type. 

If a standard mathematical function cannot produce a mathematically valid 
result, it sets the variable orrno. 

8.9.3 Complex 
The standard library provides complex number types eomplo1Ccfloil1>, eom· 
ploiCcdoublo>, and eomplollclong doublo>. A eomplo11dnlilr> where Snlilr is 
some other type supporting the usual arithmetic operations usually works but is 
not guaranteed to be portable. 

tomplilto<dillili Snlilr> dillil eomplo11 ( 
11 ,1 { nmph•' i� •l p.1 ir  ol "'•l iM v.l luto�. IMiiit .1 l ly .1 t ourdi rMit• p.l i r  
Seillilr ro, lm1 

publiCI 

) ' 

eomploll(eonlit Seillilr & r, eon1t Snlilr & I) a rl'(r), lm(l) ( ) 
eomploiC(eon!lt Seillilr & r) a ro(r), lm(Seillilr ()) ( ) 
eomploxO aro(Seillilr ()), lm(Snlilr ()) ( ) 

Snlilr rotliO ( roturn "'' ) 
Snlilr lmilgO ( roturn lm1 ) 

II n•,11 1w1 
II inMHi n.uy !Mrl 

In addition to the members of complex, ceomploD offers a host of useful operations: 

Complex operators 

11+12 
11=12 
11'1!1 
11/1!1 
11••1!1 
11 1 •11 
norm(l) 

fonj(l) 

po!ir(ll,y) 

rul(l) 

addition 

subtraction 

multipl ication 

division 

equality 

inequality 

the square of ilb!l(l) 

conjugate: if 1 is (I'@, 1m) then fonj(l) is (I'@, .. 1m) 
make a complex given polar coordinates (rho, theta) 

real part 
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Complex operators (continued) 
imag(z) 

abs(z) 

arg(z) 

OUt << Z  

in >> z  

imaginary part 

also known as rho 

also known as theta 

complex output 

complex input 

The standard mathematical functions (see §B.9.2) are also available for complex 
numbers. Note: complex does not provide < or %; see also §24.9. 

8.9.4 valarray 
The standard valarray is a single-dimensional numerical array; that is, it provides 
arithmetic operations for an array type (much as Matrix in Chapter 24) plus sup
port for slices and strides. 

8.9.5 Generalized numerical algorithms 
These algorithms from <numeriC> provide general versions of common opera
tions on sequences of numerical values: 

Numerical algorithms 

x = accumulate(b,e,l) 

x = accumulate(b,e,i,f) 

x = inner_product(b,e,b2,i) 

x = inner_product(b,e,b2,i,f,f2) 

p=partlal_sum(b,e,out) 

p=partial_sum(b,e,out,f) 

p=adjacent_difference(b,e,out) 

p=adjacent_difference(b,e,out,f) 

x is the sum of i and the elements of [b:e). 

Accumulate, but with f instead of +. 

x is the inner product of [b:e) and [b2:b2+(e-b)), 
that is, the sum of i and (*p1)*(*p2) for a l l  p1 
in [b:e) and a l l  corresponding p2 in 
[b2:b2+(e-b)). 

inner_product, but with f and f2 instead of + 
and •, respectively. 

Element i of [out:p) is the sum of elements O .. i 
of [b:e). 

partlal_sum, using f instead of +. 

Element i of [out:p) is *(b+i)-*(b+i-1) for i>1; 
if e-b>O then •out is *b. 

adjacent_difference, using f instead of -. 
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8.1 0 C standard library functions 
The standard library for the C language is with very minor modifications incor
porated into the C++ standard library. The C standard library provides quite a 
few functions that have proved useful over the years in a wide variety of contexts 
- especially for relatively low-level progranuning. Here, we have organized them 
into a few conventional categories : 

C-style 110 

C-style strings 

Memory 

Date and time 

Etc. 

There are more C standard library functions than we present here; sec a good C 
textbook, such as Kernighan and Ritchie, 1711' C Programming lAnguage (K&R), if 
you need to know more. 

8.1 0.1  Flies 
The <llldlo> 110 system is based on "files." A ftle (a FlU') can refer to a ftlc or to 
one of the standard input and output streams, 11tdln. 11tdout, and 11tdorr. The 
standard streams are available by default; other files need to be opened: 

File open and close 

f•fopen(!i,m) 

IC•ffl081(f) 

Open a fi le stream for a file named !I with the mode m. 

Close fi le stream f: return 0 if successfu l .  

A "mode" is a string containing one or more directives specifying how a file is to 
be opened: 

File modes 

"r" reading 
"w" writing (discard previous contents) 
11i111 append (add at end) 

"r+" reading and writing 
"w+" reading and writing (discard previous contents) 

11b11 binary; use together with one or more other modes 



B. l 0 C STA N DA R D  L I BRARY F U NCT IONS  

There may be  (and usually are) more options on a specific system. Some options 
can be combined; for example, fopon("foo", "rb") tries to open a file called too for 
binary reading. The 110 modes should be the same for stdio and lolilro"ms (§B.7.1) 

8.1 0.2 The prlntfO family 
The most popular C standard library functions are the 110 functions. However, 
we recommend lolilroilms because that library is type safe and extensible. The 
formatted output function, prlntf(), is widely used (also in C++ programs) and 
widely imitated in other programming languages : 

prlntt 

n•prlntf(fmi,A'111) Print the "format string" tmt to 11tdout inserting the 
arguments il'11 as appropriate. 

nafprlntf(f,fml,il'1!1) Print the "format string" fmt to fi le t, inserting the arguments 
ilr(lli as appropriate. 

n•llprlntf(!l,fmt,ilrll!il Print the "format string" fmt to the C-style string li, inserting 
the arguments ilrllll as appropriate. 

For each version, n is the number of characters written or a negative number if 
the output failed. The return value from prlntf() is essentially always ignored. 

The declaration of prlntt() is 

lnt prlntt<conlil chilr• formill . . .  )J 

In other words, it takes a C-style string (typically a string literal) followed by an 
arbitrary number of arguments of arbitrary type. The meaning of those "extra 
arguments" is controlled by conversion specifications, such as '%•f (print as char · 
acter) and 'Yod (print as decimal integer) , in the format string. For example: 

lnl lc ""  '' 
conlit ch"r• p • 11il!idf" 1 
prlntf(" tho villuo of II IIi '%d' ilnd tho villuo of li IIi 11�•1i'\n" ,IC,Ii)J 

A character following a '%. controls the handling of an argument. The first "'' ap
plies to the first "extra argument" (here, %d applies to 11), the second 'Yo to the sec
ond "extra argument" (here, %1J applies to !i) , and so on. In particular, the output 
of that call to prlnlfO is 

followed by a newline. 
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In general, the correspondence between a % conversion directive and the 
type to which it is applied cannot be checked, and when it can, it usually is not. 
For example: 

printf("the value of x is '%s' and the value of s is '%d'\n" ,x,s); II oops 

The set of conversion specifications is quite large and provides a great degree of 
flexibility (and possibilities for confusion) . Following the %, there may be: 

- an optional minus sign that specifies left adjustmem of the converted 
value in the field. 

+ an optional plus sign that specifies that a value of a signed type will al
ways begin with a + or - sign. 

0 an optional zero that specifies that leading zeros arc used for padding of 
a numeric value. If- or a precision is specified, this 0 is ignored. 

# an optional # that specifies that floating-point values will be printed with 
a decimal point even if no nonzero digits follow, that trailing zeros will be 
printed, that octal values will be printed with an initial 0, and that hexa
decimal values will be printed with an initial Ox or OX. 

d an optional digiL string specifying a field width; if the convened value 
has fewer characters than the field width, it will be blank-padded on the 
left (or right, if the left-adjustment indicator has been given) to make up 
the field width; if the field width begins with a zero, zero padding will be 
done instead of blank padding. 

an optional period that serves to separate the field width from the next 
digit string. 

dd an optional digit string specifying a precision that specifics the number of 
digits to appear after the decimal point, for e- and f-convcrsion, or the 
maximum number of characters to be printed from a string. 

• a field width or precision may be • instead of a digit string. In this case, 
an integer argument supplies the field width or precision. 

h an optional character h, specifying that a following d, o, x, or u corre
sponds to a short integer argument. 

an optional character I (the letter 1), specifying that a following d, o, x, or 
u corresponds to a long integer argument. 

L an optional characLer L, specifying that a following e, E, g, G, or f corre
sponds to a long double argument. 

% indicating that the character % is to be printed; no argument is used. 
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c a character that indicates the type of conversion to be applied. The con
version characters and their meanings are: 

d The integer argument is converted to decimal notation. 

The integer argument is converted to decimal notation. 

o The integer argument is converted to octal notation. 

x The integer argument is converted to hexadecimal notation. 

X The integer argument is converted to hexadecimal notation. 

f The float or double argument is converted to decimal notation in 
the style [-]ddd.ddd. The number of d's after the decimal point is 
equal to the precision for the argument. If necessary, the number is 
rounded. If the precision is missing, six digits are given; if the preci
sion is explicit1y 0 and # isn't specified, no decimal point is prinLed. 

e The float or double argument is converted to decimal notation in 
the scientific style [-]d.ddde+dd or [-]d.ddde-dd, where there is one 
digit before the decimal point and the number of digits after the dec
imal point is equal to the precision specification for the argument. If 
necessary, the number is rounded. If the precision is missing, six dig
its are given; if the precision is explicit1y 0 and # isn't specified, no 
digits and no decimal point are printed. 

E As e, but with an uppercase E used to identify the exponent. 

g The float or double argument is printed in style d, in style f, or in 
style e, whichever gives the greatest precision in minimum space. 

G As g, but with an uppercase E used to identify the exponent. 

c The character argument is printed. Null characters are ignored. 

s The argument is taken to be a string (character pointer), and charac
ters from the string are printed until a null character or until the 
number of characters indicated by the precision specification is 
reached; however, if the precision is 0 or missing, all characters up to 
a null are printed. 

p The argumem is taken to be a pointer. The representation printed is 
implementation dependent. 

u The unsigned integer argument is converted to decimal notation. 

n The number of characters written so far by the call of printf(), 
fprintf(), or sprintf() is written to the int pointed to by the pointer to 
int argument. 

In no case does a nonexistent or small field width cause truncation of a 
field; padding takes place only if the specified field width exceeds the ac
tual width. 
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Because C does not have user-defmed types in the sense that C++ has, there are 
no provisions for defining output formats for user-defmed types, such as comple11, 
vector, or tiring. 

The C standard output, tldout, corresponds to cout. The C standard input. 
1tdln, corresponds to cln. The C standard error output, 1tderr, corresponds to 
cerr. This correspondence between C standard 110 and C++ 110 streams is so 
close that C-style 110 and 110 streams can share a buffer. For example, a mix of 
eout and 1tdout operations can be used to produce a single output stream (that's 
not uncommon in mixed C and C++ code) . This flexibility carries a cost. For 
better performance, don't mix stdio and lo1tream operations for a single stream 
and call los_bttle l l lync_wlth_!ildlo(falae) before the first 110 operation. 

The stdio library provides a function, teant(), that is an input operation with 
a style that mimics prlntt(). For example: 

lnt "' 
chAr l(buf_IIZtt)J 
lnt I • ICAnf("the value of " I• 'o/nd' And the VAlue of • I• '%•'\n" ,a.x,t) J 

Here, scant() tries to read an integer into x and a sequence of non-whitespace 
characters into •· Non-format characters specify that the input should contain 
that character. For example, 

the value of " 1• '123' And the value of 1 11 'string '\n" 

will read 123 into x and 1trlng followed by a 0 into •· If the call of !!Canto succeeds, 
the result value (I in the call above) will be the number of argument pointers as· 
signed to (hopefully 2 in the example) ; otherwise, EOF. This way of specifying 
input is error-prone (e.g., what would happen if you forgot the space after 11trlng 
on that input line?) . All arguments to IJCAnto must be pointers. We strongly rec
ommend against the use of •canto. 

So what can we do for input if we are obliged to use stdio? One popular an· 
swer is, "Use the standard library function gett()": 

II Vl'rY d.lll�l'fllll'• t C l(h• : 
chAr ll(buLiilze) J 
char• p • geii(I)J II rtwl .1 l l rw I nto " 

The call p•goll(l) reads characters into 1 until a newline or an end of file is en
countered and a 0 character is placed after the last character written to 1. If an 
end of ftle is encountered or if an error occurred, p is set to NULL (that is, 0) ; 
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otherwise it is set to s .  Never use gets(s) o r  its rough equivalent (scanf("%s",s)) ! 
For years, they were the favorites of virus writers : by providing an input that 
overflows the input buffer (s in the example) , a program can be corrupted and a 
computer potentially taken over by an attacker. The sprintf() function suffers 
similar buffer-overflow problems. 

The stdio library also provides simple and useful character read and write 
functions: 

stdio character functions 

x=getc(st) 

x=putc(c,st) 

x=getchar() 

x=putchar(c) 

x=ungetc(c,sl) 

Read a character from input stream st; return the character's integer 
value; x=EOF if end of file or an error occurred. 

Write the character c to the output stream st; return the integer 
value of the character written; x=EOF if an error occurred. 

Read a character from stdin; return the character's integer va lue; 
x==EOF if end of fi le or an error occurred. 

Write the character c to stdou1; return the integer value of the 
character written; x=EOF if an error occurred. 

Put c back onto the input stream st; return the integer value of the 
character pushed; x==EOF if an error occurred. 

Note that the result of these functions is an int (not a char, or EOF couldn't be re· 
turned) . For example, this is a typical C-style input loop: 

int ch; /* not char ch; •1 
while ((ch=getchar())I =EOF) { /* do something */ } 

Don't do two consecutive ungetch()s on a stream. The result of that is undefmed 
and (therefore) non-portable. 

There are more stdio functions ; see a good C textbook, such as K&R, if you 
need to know more. 

8.1 0.3 C-style strings 
A C-style string is a zero-terminated array of char. This notion of a string is sup· 
ported by a set of functions defined in <cstring> (or <String.h>; note: rwl <String>) 
and <cstdlib>. These functions operate on C-style strings through char• pointers 
(const char• pointers for memory that's only read) : 
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C-style string operations 

•••trlen(!l) 

p••trcpy(l,l:l) 

p•ltrcal(l,l:l) 

x•ltrcmp(l, 1:1) 

p••trncpy(l,!l:l,n) 

p••trncal(l,l:l,n) 

•••trncmp(l,l:l,n) 

p•ltrchr(I,C) 

P••trrchr(I,C) 

P•ltrltr(t,l:l) 

P•ltrpbrk(l,l:l) 

x•atof(l) 

x-atol(l) 

x•atol(l) 

•••trtod(l,p) 

x•ltrtol(l,p) 

x•ltrtoul(l,p) 

Count the characters (excluding the terminating 0). 

Copy 1:1 into 1: [lll+n) and [l:ll l:l+n) may not overlap; p•l; 
the terminating 0 is copied. 

Copy 1:1 onto the end of 1; p•l; the terminating 0 is copied. 

Compare lexicographical ly: if 1<1:1 then x is negative; if •••1:1 
then x•.O; if 1>1:1 then x is positive. 

1trcpy; max n characters; may fai l  to copy terminating 0; p••· 
1trcat; max n characters; may fai l  to copy terminating 0; p••· 

1trcmp; max n characters. 

Make p point to the first c in 1. 

Make p point to the last c in 11. 
Make p point to the first character of 1 that starts a substring 
equal to 1:1. 

Make p point to the first character of 1 also found in 1:1. 

Extract a double from •· 

Extract an lnt from 1. 
Extract a long lnt from 1. 

Extract a double from 1: set p to the first character after the 
double. 
Extract a long lnt from 1; set p to the first character after the 
long. 

Extract an un1lsned long lnt from 1; set p to the first character 
after the Ions. 

Note that in C++, 1trchrO and 1tntr() are duplicated to make them type safe (they 
can't tum a conlit chAr• into a char• the way the C equivalents can) ; see also §27.5. 

An extraction function looks into its C-style string argument for a conven
tionally formatted representation of a number, such as " 1 24" and " 1 .4". If no 
such representation is found, the extraction function returns 0. For example: 

lnt " • Atol("fortytwo"); 

8.1 0.4 Memory 
The memory manipulation functions operate on "raw memory" (no type known) 
through void• pointers (eonat void• pointers for memory that's only read) : 
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C-style memory operations 

q•memmove(p,p:l,n) 

x•memcmp(p,p:l,n) 

free(p) 

Copy n bytes from p:l to p ( l ike llrcpy); lpap+n) and 
lp:lap:l+n) may not overlap; q•p. 
Copy n bytes from p:l to p; q•p. 

Compare n bytes from p:l to the equivalent n bytes from p 
(l ike llrcmp). 
Find c (converted to an un•lsned charl in p(O] . . pln- 1 1  and 
let q point to that element; q•O if c is not found. 

Copy c (converted to an unll&ned charl into each of 
p(Ol .. (n- 1 1; q•p. 
Allocate n•11 bytes initial ized to 0 on free store; p.O if n•1 
bytes could not be al located. 

Allocate 1 uninitialized bytes on free store; p•O if 11 bytes 
could not be allocated. 

Allocate 1 bytes on free store; p must be a pointer returned 
by malloc() or calloc(); if possible reuse the space pointed 
to by p; if that is not possible copy al l  bytes in the area 
pointed to by p to a new area; q.O if 1 bytes could not be 
al located. 

Deal locate the memory pointed to by p; p must be a 

pointer returned by malloc(), calloc(), or rulloc(). 

Note that mAIIoc(), etc. do not invoke constructors and free() doesn't invoke de
structors. Do not use these functions for types with constructors or destructors. 
Also, mem1eiO should never be used for any type with a constructor. 

The mom* functions are found in <Cslrlnp and the allocation functions in 
<CIIdllb>. 

See also §27.5.2. 

8.1 0.5 Date and time 
In <clime>, you can find several types and functions related to date and time. 

Date and time types 

clock_ I 

lime . I  

lm 

an arithmetic type for holding short time intervals (maybe just intervals 
of a few minutes) 

an arithmetic type for holding long time intervals (maybe centuries) 

a 11truct for holding date and time {since year 1 900) 
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struct tm is defmed like this :  

struct tm { 

};  

int tm_sec; II second of minute 10:6 1 1 ; 60 and 61 represent leap seconds 
int tm_min; II minute of hour 10,591  
int tm_hour; II hour of day 10,231  
int tm_mday; II day of month 1 1 ,3 1 1 
int tm_mon; II month of year 10, 1 1 ] ;  0 means january (note: not [1 : 1 2 1 l  
int tm_year; II year since 1 900; 0 means year 1 900, and 1 02 means 2002 
int tm_wday; II days si nce Sunday 10,61 ;  0 means Sunday 
int tm_yday; II days since january 1 (0,3 65 1 ;  0 means January 1 
int tm_isdst; II hours of Daylight Savings Time 

Date and time functions: 

clock_t clock(); II number of clock ticks si nce the start of the program 

time_t time(time_t• pt); II cu rrent calendar time 
double difftime(time_t 12, time_t 11 ) ;  II t2-t1 in seconds 

tm• localtime(const time_t• pt); II loca l time for the *pt 
tm• gmtime(const time_t• pt); II Greenwich Mean Time (GMT) tm for *pt, or 0 

time_t mktime(tm• ptm); II time_t for *ptm, or time_t(- 1 )  

char• asctime(const tm• ptm); II C-style string representation for *ptm 
char• ctime(const time_t• t) { return asctime(localtime(t)); } 

An example of the result of a call of asctime() is "Sun Sep 16 01 :03:52 1973\n". 
Here is an example of how clock can be used to time a function (do_some

thing()) : 

int main(int argc, char• argv[]) 
{ 

int n = atoi(argv[1 ]); 

clock_t 11 = clock(); II start t ime 
if (11 == clock_t(-1 )) { II clock_t(- 1 )  means "clock() didn't work" 

cerr << "sorry, no clock\n";  
exit(1 ) ;  
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for (int i = 0; i<n; i++) do_something(); II timing loop 

clock_t t2 = clock(); II end time 
if (t2 = clock_t(-1))  { 

cerr << "sorry, clock overflow\n"; 
exit(2); 

cout << "do_something() " << n << " times took " 
<< double(t2-t1 )/CLOCKS_PER_SEC << " seconds" 
<< " (measurement granularity: " << CLOCKS_PER_SEC 
<< " of a second)\n";  

The expliciL conversion dou ble(t2-t1) before dividing is necessary because 
clock_t might be an integer. For values t1 and t2 returned by clock(), double(t2-
t1 )/CLOCKS_PER_SEC is Lhe system's best approximation of the time in seconds 
between the two calls . 

If clock() isn't provided for a processor or if a time interval was too long to 
measure, clock() returns clock_t(-1). 

8.1 0.6 Etc. 
In <cstdlib> we find: 

Etc. stdlib functions 

abort() 

exit(n) 

system(s) 

qsort(b,n,s,cmp) 

bsearch(k,b,n,s,cmp) 

d=rand() 

srand(d) 

Terminate the program "abnormally." 

Terminate the program with value n; n==O means 
successful termination. 

Execute the C-style string as a command (system 
dependent). 

Sort array starting at b with n elements of size s using the 
comparison function cmp. 

Search for k in the sorted array starting at b with n elements 
of size s using the comparison function cmp. 

d is a pseudo-random number in the range 
[O: RAND_MAX]. 

Start a sequence of pseudo-random numbers using d as the 
seed. 
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The comparison function (cmp) used by q1orl() and bleArch() must have the type 

That is, no type information is known to the sort function that simply "sees" its 
array as a sequence of bytes. The integer returned is 

NegaLive if •p is considered less than •q 
• Zero if •p is considered equal to •q 

Positive if •p is considered greater than •q 
Note LhaL exit() and abort() do not invoke destructors . If you want destructors 
called for constructed automatic and static objects (§A.4.2), throw an exception. 

For more standard library functions see K&R or some other reputable C lan
guage reference. 

8.1 1 Other libraries 
Looking through the standard library facilities, you'll undoubtedly have failed to 
find something you could use. Compared to the challenges faced by program
mers and the number of libraries available in the world, the C++ standard li
brary is minute. There are many libraries for 

Graphical user interfaces 

Advanced math 

Database access 

Networking 

XML 

DaLe and time 

Ftle system manipulation 

3D graphics 

Animation 

Etc. 

However, such libraries are noL part of the standard. You can find Lhem by 
searching the web or by asking friends and colleagues. Please don't get the idea 
that the only useful libraries are those that are part of the standard library. 



Getti ng Sta rted with 
Vi sua l Stud io 

"The universe is not only queerer 
than we imagine, 

it's queerer than we can imagine." 

-J. B. S. Haldane 

This appendix explainH the HtepH you lmve to go throul(h to 
enter a prugr�tm, compile it, and have it run using MicJ'nHuft 

Visual Studio. 
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C.1 Getting a program to run 

C.2 Installing Visual Studio 

C.3 Creating and running a program 
C.3.1 Create a new project 
C.3.2 Use lhe std_llb_facllitles.h header 

file 
C.3.3 Add a C++ source file to the 

project 
C.3.4 Enter your source code 
C.3.5 Build an executable program 
C.3.6 Execute the program 
C,3.7 Save lhe program 

C.4 Later 

C.l Getting a program to run 
To get a program to run, you need to somehow place the ftles together (so that 
when a file refers to another - e.g., your source ftle refers to a header ftle - it 
finds it) . You then need to invoke the compiler and the linker (if nothing else, 
then to link to the C++ standard library), and fmally you need to run (execuLe) 
the program. There are several ways of doing thaL, and differem sysLcms (e.g., 
Windows and Linux) have different conventions and Lool sets. However, you can 
run all of the examples from this book on all major sysLems using any of Lhc 
major tool sets. This appendix explains how to do it for one popular system. Mi· 
crosofL's Visual Studio. 

Personally, we fmd few exercises as frustrating as geLting a first program Lo 
work on a new and strange system. This is a task for which it makes sense to ask 
for help. However, if you do get help, be sure that the helper teaches you how to 
do it, rather than just doing iL for you. 

C.2 Instal ling Visual Studio 
Visual Studio is an inLeractive development environment (IDE) for Windows. If 
Visual Studio is not installed on your computer, you may purchase a copy and 
follow the instructions that come with it, or download and install the free Visual 
C++ Express from www.microsoft.com/express/download. The description here 
is based on Visual SLudio 2005. Other versions may differ slightly. 
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C.3 Creating and running a program 
The steps are: 

1 .  Create a new project. 

2. Add a C++ source ftle to the project. 

3. Enter your source code. 

4. Build an executable file. 

5. Execute the program. 

6. Save the program. 

C.3.1 Create a new project 
In Visual Studio, a "project" is a collection of ftles that together provide what iL 
takes to create and run a program (also called an application) under Windows. 

1. Open the Visual C++ IDE by clicking the Microsoft Visual Studio 2005 
icon, or select iL from Start > Programs > Microsoft VISual Studio 
2005 > Microsoft VISual Studio 2005. 

2. Open the File menu, point to New, and click Project. 

3. Under Project Types, selecL VISual C++. 

4. In the Templates section, select Wm32 Console Application. 

5. In the Name text box type the name of your project, for example, 
Hello, World!. 

6. Choose a directory for your project. The default, C:\Documents and 
Settings\Your Name\My Documents\ Visual Studio 2005 Projects, is 
usually a good choice. 

7. Click OK. 

8. The WIN32 Application Wizard should appear. 

9. Select Application Settings on the left side of the dialog box. 

10. Under Additional Options select Empty Project. 

1 1 . Click Ftnish. All compiler settings should now be initialized for your 
console project. 

C.3.2 Use the stdJib_facllltles.h header file 
For your flrsL programs, we strongly suggest that you use the custom header ftle 
lldJlb_facll ltlal.h from www.stroustrup.com/programminglstd_lib_facilities.h. 
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Place a copy of it in the directory you chose in §C.3. 1 ,  step 6. (Note: Save as text, 
not mML.) To use it, you need the line 

#include " .. /.Jstd_lib_facilities .h" 

in your program. The " .J .. f' tells the compiler that you placed the header in 
C:\Documents and Settings\ Your Name\My Documents\ VISual Studio 2005 
Projects where it can be used by all of your projects, rather than right next to 
your source file in a project where you would have to copy it for each project. 

C.3.3 Add a C++ source file to the project 
You need at least one source ftle in your program (and often many) : 

1 .  Click the Add New Item icon on the menu bar (usually the second icon 
from the left). That will open the Add New Item dialog box. Select 
Code under the Visual C++ category. 

2. Select the C++ F'lle (.cpp) icon in the template window. Type the name 
of your program file (Hello,World!) in the Name text box and click 
Add. 

You have created an empty source code file. You are now ready to type your 
source code program. 

C.3.4 Enter your source code 
At this point you can either enter the source code by typing it directly into the 
IDE, or you can copy and paste it from another source. 

C.3.5 Build an executable program 
When you believe you have properly entered the source code for your program. 
go to the Build menu and select Build Solution or hit the triangular icon point
ing to the right on the list of icons near the top of the IDE window. The IDE will 
try to compile and link your program. If it is successful, the message 

Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped 

should appear in the Output window. Otherwise a number of error messages 
will appear. Debug the program to correct the errors and Build Solution again. 

If you used the triangular icon, the program will automatically starL running 
(executing) if there were no errors. If you used the Build Solution menu item. 
you have to explicitly start the program, as described in §C.3.6. 
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C.3.6 Execute the program 
Once all errors have been eliminated, execute the program by going to the 
Debug menu and selecting Start Without Debugging. 

C.3.7 Save the program 
Under the File menu, click Save All. If you forget and try to close the IDE, the 
IDE will remind you. 

C.4 Later 
The IDE has an apparent infinity of features and options. Don't worry about 
those early on - or you'll get completely lost. If you manage to mess up a project 
so that it "behaves oddly," ask an experienced friend for help or build a new proj
ect from scratch. Over time, slowly experiment with new features and options. 
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I nsta l l i ng FLTK 

"If the code and the comments disagree, 
then both arc probably wrong." 

- Norm Schryer 

T his nppendix de!lcribe�J how to duwnload, in11tnll, und link 

w the FLTK gntphicH tmd G UI toulkit. 
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0.1 I ntroduction 

0.2 Downloading FLTK 

0.3 I nstalling FLTK 

0.4 Using FLTK in Visual Studio 

0.5 Testing if it all worked 

D.l Introduction 

A PPE N D I X  D • I N STA L L I N G  F LT K  

We chose FLTK, the Fast Light Tool Kit (pronounced "full tick") , as the base for 
our presentation of graphics and GUI issues because it is portable, relatively sim
ple, relatively conventional, and relatively easy to install. We explain how to in
stall FLTK under Microsoft Visual Studio because that's what most of our 
students use and because it is the hardest. If you use some other system (as some 
of our students also do), just look in the main folder (directory) of the down
loaded ftles (§D.3) for directions for your favorite system. 

Whenever you use a library that is not part of the ISO C-t+ standard, you (or 
someone else) have to download it, install it, and correctly use it from your own 
code. That's rarely completely trivial, and installing FLTK is probably a good exer
cise - because downloading and installing even the best library can be quite frus
trating when you haven't tried before. Don't be too reluctant to ask advice from 
people who have tried before, but don't just let them do it for you: learn from them. 

Note that there might be slight differences in files and procedures from what 
we describe here. For example, there may be a new version of FLTK or you may 
be using a different version of Visual Studio from what we describe in §D.4 or a 
completely different C++ implementation. 

0.2 Downloading FLTK 
Before doing anything, first see if FLTK is already installed on your machine; see 
§D.S. If it is not there, the first thing to do is to get the ftles onto your computer: 

1. Go to http://fltk.org. (In an emergency, instead download a copy from 
our book support website: www.stroustrup.com/Programming!FLTK.) 

2. Click Download in the navigation menu. 

3. Choose FLTK l.l.x in the drop-down and click Show Download Loca
tions. 

4. Choose a download location and download the .zip file. 

The ftle you get will be in .zip format. That is a compressed format suitable for 
transmitting lots of ftles across the net. You'll need a program on your machine to 
"unzip" it into normal flies; on Windows, WinZip and 7-Zip are examples of 
such programs. 
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0.3 Installing FLTK 
Your main problem in following our instructions is likely to be one of two: some
thing has changed since we wrote and tested them (it happens) , or the terminol
ogy is alien to you (we can't help with that; sorry) . In the latter case, find a friend 
to translate. 

1. Unzip the downloaded ftle and open the main folder, fltk-1.1 .?. In a 
Visual C++ folder (e.g., vc2005 or vcnet) , open fltk.dsw. If asked about 
updating old project ftles, choose Yes to All. 

2. From the Build menu, choose Build Solution. This may take a few min
utes. The source code is being compiled into static link libraries so that 
you do not have to recompile the FLTK source code any time you make 
a new project. When the process has finished, close Visual Studio. 

3. From the main FLTK directory open the lib folder. Copy (not just 
move/drag) all the .lib ftles except README.Iib (there should be 
seven) into C:\Program F"lles\Miaosoft VISual Studio\Vc\lib. 

4. Go back to the FLTK main directory and copy the FL folder into 
C:\Program F"lles\Miaosoft VISual Studio\Vc\include. 

Experts will tell you that there are better ways to install than copying into 
C:\Program F"lles\Miaosoft VISual Studio\Vc\lib and C:\Program F"lles\Mi
aosoft Visual Studio\Vc\include. They are right, but we are not trying to make 
you VS experts. If the experts insist, let them be responsible for showing you the 
better alternative. 

0.4 Using FLTK in Visual Studio 
1.  Create a new project in Visual Studio with one change to the usual pro

cedure: create a "Wm32 project" instead of a "console application" when 
choosing your project type. Be sure to create an "empty project"; other
wise, some "software wizard" will add a lot of stuff to your project that 
you are unlikely to need or understand. 

2. In Visual Studio, choose Project from the main (top) menu, and from 
the drop-down menu choose Properties. 

3. In the Properties dialog box, in the left menu, click the Linker folder. 
Tlus expands a sub-menu. In this sub-menu, click Input. In the Addi
tional Dependencies text field on the right, enter the following text: 

fltkd.lib wsock32.1ib comctl32.1ib fltkjpegd.lib fltkimagesd.lib 

[The following step may be unnecessary because it is now the default.] 
In the Ignore Specific Library text field, enter the following text: 

libcd.lib 
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4 .  [Tills step may be unnecessary because /MDd is now the default.] In the 
left menu of the same Properties window, click C/C++ to expand a dif
ferent sub-menu. Click the Code Generation sub-menu item. In the right 
menu, change the Runtime Library drop-down to Multi-threaded 
Debug DLL (/MDd). Click OK to close the Properties window. 

0.5 Testing if it all worked 
Create a single new .cpp ftle in your newly created project and enter the follow
ing code. It should compile without problems. 

#include <FUFI.h> 
#include <FUFI_Box.h> 
#include <FUFI_Window.h> 

int main() 
{ 

FI_Window window(200, 200, "Window title"); 
FI_Box box(0,0,200,200, "Hey, I mean, Hello, World! "); 
window. show(); 
return Fl: : run(); 

If it did not work: 

"Compiler error stating a .lib ftle could not be found": Your problem is 
most likely in the installation section. Pay attention to step 3. which in
volves putting the link libraries (.lib) ftles where your compiler can easily 
fmd them. 

''Compiler error stating a .h file could not be opened" : Your problem is 
most likely in the installation section. Pay attention to step 4, which in
volves putting the header (.h) files where your compiler can easily find 
them. 

"Linker error involving unresolved extental symbols": Your problem is 
most likely in the project section. 

If that didn't help, find a friend to ask. 



G U I  I m p l ementati on 

"When you fmally understand 
what you are doing, 
things will go right." 

-Bill Fairbank 

This appendix presents implementation details of callbacks, 

Window, Widget, and Vector_ref. In Chapter 16, we 

couldn't assume the knowledge of pointers and casts needed for 

a more complete explanation, so we banished that explanation to 

this appendix. 
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E.1 Callback implementation 

E.2 WldR.t implementation 

E.J Window implementation 

E.4 V1ctor _ret 
E.S An example: manipulating Widgets 

APPE N D I X  E • G U I  I M PL EME NTATION 

E.1 Callback implementation 
We implemented callbacks like this: 

void Slmple _ _  wlndow a a cb�ntxt(Addren, Address t�ddr) 
II "-•1 1 1  SII11IJII•_wlmlow: : r 1t'xl0 fm thl' wl t1duw lot.lll•d .11 11W 

referente_to<Simple_wlndoW>(dddr) .nextOJ 

Once you have understood Chapter 17, it is pretty obvious that an Address must 
be a void' .  And, of course, rtferunce_tucSimple_wlndOW>(addr) must somehow 
create a reference to a Simple_ window from the void• called 11ddr. However, un· 
less you had previous programming experience, there was nothing ''pretty obvi
ous" or "of course" about that before you read Chapter 17, so let's look at the use 
of addresses in detail. 

As described in §A. 17, C++ offers a way of giving a name to a type. For 
example: 

typedef void• AddrttliiiJ II Addrt·�� I!! J !1yrmny111 fm void* 

This means that the name Addrttlili can now be used instead of void•. Here, we 
used Addrelil to emphasize that an address was passed, and also to hide the fact 
that void • is the name of the type of pointer to an object for which we don't 
know the type. 

So cb�next() receives a void• called addr as an argument and - somehow 
promptly converts it to a Simple_ window& : 

reference_to<Simple .. wlndoW>(ilddr) 

The referencu_to is a template function (§A. 13) : 

tumplatuctlillili W> WI reference_to(Addrelll pw) 
II l 1'1'o11 ti l1 tll ldti'S'\ ,, , ,, rt•fl'tl'lll l' to tl w 
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return •static_cast<W*>(pw); 

Here, we used a template function to write ourselves an operation that acts as a 
cast from a void• to a Simple_window&. The type conversion, static_cast, is de· 
scribed in §17.8. 

The compiler has no way of verifying our assertion that addr points to a 
Simple_window, but the language rule requires the compiler to trust the pro
grammer here. Fortunately, we arc right. The way we know that we are right is 
that FLTK is handing us back a pointer that we gave to it. Since we knew the 
type of the pointer when we gave it to FLTK, we can use reference_to to "get it 
back." This is messy, unchecked, and not all that uncommon at the lower levels 
of a system. 

Once we have a reference to a Simple_window, we can use it to call a mem
ber function of Simple_window. For example (§16.3) :  

void Simple_window: : cb_next(Address, Address pw) 
II call Simple_window: :next() for the window located at pw 

reference_tO<Simple_windoW>(pw).next(); 

We usc the messy callback function cb_next() simply to adjust the types as 
needed to call a perfectly ordinary member function next(). 

E.2 Widget implementation 
Our Widget interface class looks like this: 

class Widget { 
// Widget is a handle to a F l_widgct - it is *not• a Fl_widget 
// we try to keep ou r interface classes at arm's length from FLTK 

public: 

{ }  

Widget(Point xy, int w, int h, const string& s, Callback cb) 
: loc(xy), width(w), height(h), label(s), do_it(cb) 

virtual -Widget() { } II destructor 

virtual void move(int dx,int dy) 
{ hide(); pw->position(loc.x+=dx, loc.y+=dy); show(); } 
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vlrtu11l void hide() { pw->hldeOJ ) 
virtual void 11how() ( pw->MhowOJ } 

virtual void attach(Windowl) • 01 II tJ,II h Wh 1�1·1 1 l1•fl r11' .. .  11 ll··l�l 
// 1 1111' tll l l l lll fm tl Wl lldiiW 

Point lOCI 
lnt wldthJ 
lnt helshtJ 
11trlns label, 
Cillbitk doJt1 

protuc:tvd a 

) ' 
Window• own1 
FI_Widset• pw1 

II t'vl •ty Witl�t'l l 11 • l1 111�" lo .1 Wl r1r l1 1w 
// ,a Wir l�el "k 1 1 1 1w�" I I� � � -Wid�t·l 

Note that our Wld1Jtt keeps track of its FLTK widget and the Window with 
which it is associated. Note that we need pointers for that because a Wldset can 

be associated with different Windows during its life. A reference or a named ob
ject wouldn't suffice. {Why not?) 

It has a location (loc), a rectangular shape (width and helsht), and a libel. 
Where it gets interesting is that it also has a callback function (do_lt) - it con
nects a Wldset's image on the screen to a piece of our code. The meaning of the 
operations (move(), !ihow(), hide(), and ilttach()) should be obvious. 

Wldset has a "half-fmished" look to it. It was designed as an implementation 
class that users should not have to see very often. It is a good candidate for a re
design. We are suspicious about all of those public data members , and "obvious" 
operations typically need to be reexamined for unplrumed subtleties. 

Wldatt has virtual function and can be used as a base class, so it has a virtual 
destructor (§17.5.2) . 

E.3 Window implementation 
When do we use pointers and when do we use references instead? We examine 
that general question in §8.5.6. Here, we'll just observe that some progranm1ers 
like pointers and that we need pointers when we want to point to different objects 
at different times in a program. 

So far, we have not shown one of the central classes in our graphics and G Ul 
library, Window. The most significant reasons are that it uses a pointer and that 
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its implementation using FLTK requires free store. As found in Wlndow.h, here 
it is: 

dan Window 1 public fl_ Window { 
public: 

II l l 't t l ll' �y�lt•111 pit � t lw lm .1 1 io r 1 :  
Wlndow(lnt w, lnt h, tonst strlns& tltle) J 
II top ll'ft l l ltlll't 1 1 1  x�·: 
Wlndow(Polnt xy, lnt w, lnt h, ronlit strlns& tltle)J 

vlrtuii -Window() { ) 

lnt x_max() const { return WI ) 
lnt y _mix() const { return h1 ) 

void reslle(lnt ww, lnt hh) { w•ww, h•hh1 slze(ww,hh)J  ) 

void seUabel(const strln(l& !1) { label(!.c_str())J ) 

void attach(Shape& !i) { shapes.pu!lh_back(&I)J ) 
void attach(Widset&) J  

void detach(5hape& s)J 
void detach(Widget& w); 

II l't 'lni iVl' w ft11111 !111.1pt•!l 
II l'l'!Hovt• w ftum window 
II lrle.H:t lv.l lt'" c ,, l l b.H � .. 1 

void put_ on Jop(Shape& p)J II put p 1 111 top of otlwr· !'IIMpe� 
protected : 

void drawOJ 
private : 

) ' 

vector<Shape•> shapes1 II �h.1pe� att.ll llt'd lo wl t1duw 
lnt w,hJ II wl 11tlow �lit' 

void lnlt()J 

So. when we attach() a Shape we store a pointer in shapes so that the Window 
can draw it. Since we can later detach() that shape, we need a pointer. Basically, 
an attiiCh()ed shape is still owned by our code; we just give the Window a refer
ence to it. Wlndow1 111ttach() converts its argument to a pointer so that it can 
store it. As shown above, attach() is trivial; detach() is slightly less simple. Look
ing in Wlndow.cpp, we find: 
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void Window: :detach(Shape& s)  
II guess that the last attached wi l l  be  first released 

for (unsigned int i =  shapes.size(); O<i; -- i) 
if (shapes[i-11==&s) shapes.erase(&shapes[i-1]); 

The erase() member funaion removes ("erases") a va1ue from a vector, decreas
ing the vector's size by one (§20.7.1) .  

Window is meant to be used as a base class, so it  has a virtual destructor 
(§1Z5.2) . 

E.4 Vector _ref 
Basica11y, Vector_ref simulates a vector of references . You can initia1ize it with ref
erences or with pointers : 

If an object is passed to Vector_ref as a reference, it is assumed to be 
owned by the ca11er who is responsible for its lifetime (e.g., the objca is a 
scoped variable) . 

If an object is passed to Vector_ref as a pointer, it is assumed to be allo
cated by new and it is Vector_refs responsibility to delete it. 

An clement is stored as a pointer - not as a copy of the object - into the 
Vector_ref and has reference semantics. For example, you can put a Circle into a 
Vector_ref<Shape> without suffering slicing. 

template<class T> class Vector_ref { 
vector<T*> v; 
vector<T*> owned; 

public : 
Vector_ref() {} 
Vector_ref(T* a, T* b = 0, T* c = 0, T* d = 0); 

-Vector_ref() { for (int i=O; i<owned.size(); ++i) delete owned(i]; } 

void push_back(T& s) { v.push_back(&s); } 
void push_back(T* p) { v.push_back(p); owned.push_back(p); } 

T& operator[](int i) { return •v[i] ; } 
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const T& operator(](int i )  const { return •v[i]; } 

int size() const { return v.size(); } 
} ; 

Vector_ref's destructor deletes every object passed to it as a pointer. 

E.5 An example: manipulating Widgets 
Here is a complete program. It exercises many of the Widget/Window features. It 
is only minimally commented. Unfortunately, such insufficient commenting is 
not uncommon. It is an exercise to get this program to run and to explain it. 

Basically, when you run it, it appears to define four buttons : 

#include " .JGUI.h" 
using namespace Graph_lib; 

class W7 : public Window { 
II four ways to make it appear that a button moves around: 
II show/hide, change location, create new one, and attach/detach 

public: 
W7(int h, int w, const string& t); 

Button• p1; 
Button• p2; 
bool sh_left; 

Button• mvp; 
bool mv_left; 

Button• cdp; 
bool cd_left; 

Button• adp1;  
Button• adp2; 
bool ad_left; 

void sh(); 
void mv(); 
void cd(); 
void ad(); 

II show/hide 

II move 

II create/dest roy 

II activate/deactivate 

II actions 
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tt11tlc void cb  _ th(Addrett, Addreu addr) II c.1Hh.1rko; 
( reference_tocW7>(addr).lh0J ) 

ttatlc void cb_mv(Addrett, Addre11 1ddr) 
( reference_tocW7>(addr) .mvOJ ) 

11tatlc void cb_cd(Addrett, Addre11 addr) 
( reference�tocW7>(addr).cdOJ ) 

titatlc void c:b_ ad(Addreu, Addreu addr) 
( reference.Jo<W7>(addr).ad()J ) 

However, a W7 (Window experiment number 17) really has six buttons ; it just 
keeps two hidden: 

W7: :W7(1nt h, lnt w, c:on1t string& t) 
1 Wlndow(h,w,t), 
•hJeft(true), mv _left(true), cdJeft(true), ad_left(true) 

p1 • new Button(Polnt(100, 100),50,20, 111ihow" ,cb_th)J 
p2 • new Button(Polnt(200, 100),50,20, "hide" ,c:b_th)J 

mvp • new Button(Polnt(100,200),50,20, "move" ,cb_mV)J 

cdp • new Button(Polnt(100,300),50,20, "create" ,c:b_ cd); 

adp1 • new Button(Polnt(100,400),50,20, "act ivate" ,cb_id); 
adp2 • new Button(Polnt(200,400),80,20, "deac:tlvatv" ,cb_ad); 

attac:h(•p1 )1 
attach(•p2)J 
attach(•mvp); 
attach(•cdp); 
p2->hldU()j 
attach(•adp1);  

There are four callbacks. Each makes it appear that the button you press disap
pears and a new one appears. However, this is achieved in four different ways : 

void W7: : 1h() 
( 

II hldt• ,, hutto11, !thow .motlwr 

If <•h_left) ( 
p1->hldU()j 
p2->lhow()J 
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else { 
p1->Show(); 
p2->hide(); 

} 
sh_left = !sh_left; 

void W7: :mv() 
{ 

II move the button 

if (mv_left) { 
mvp->move(100,0); 

else { 
mvp->move(-100,0); 

mv_left = fmv_left; 

void W7: :cd() II delete the button and create a new one 
{ 

cdp->hide(); 
delete cdp; 
string lab = "create"; 
int x = 100; 
if (cd_left) { 

lab = "delete"; 
X =  200; 

cdp = new Button(Point(x,300), 50, 20, lab, cb_cd); 
attach(*cdp); 
cd_left = fcd_left; 

void W7: :ad() II detach the button from the window and attach its replacement 
{ 

if (ad_left) { 
detach(*adp1 ); 
attach ( • adp2); 

else { 
detach(*adp2); 
attach(*adp1); 

} 
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ad _ _  left • ladJttftJ 

lnt main() 
( 

W7 w(400,500,"mole")J 
return gul_malnOJ 

APPE N D I X  E • G U I  I M P L E M E N TAT I O N  

This program demonstrates the fundamental ways of adding and subtracting 
widgets to/from a window - or just appearing to. 
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"Often, a few well-chosen words 
are worth a thousand pictures ." 

-Anonymous 

A glossary is a brief explanation of words used in a text. This is a rather short glos
sary of the terms we thought most essential, especially in the earlier stages of 
leaming programming. The index and the "Terms" sections of the chapters 
might also help. A more extensive glossary, relating specifically to C++, can be 
found at www. research.att.com/-bs/glossary.html, and there is an incredible vari
ety of specialized glossaries (of greatly varying quality) available on the web. 
Please note that a term can have several related meanings (so we occasionally list 
some) and that most terms we list have (often weakly) related meanings in other 
contexts ; for example, we don't define ah.stracl as it relates to modem painting, 
legal practice, or philosophy. 

abstract class a class that cannot be directly used to create objects; often used to 
defme an interface to derived classes. A class is made abstract by having a pure 
virtual function or a protected constructor. 

abstraction a description of something that selectively and deliberately ignores 
(hides) details (e.g., implementation details) ; selective ignorance. 

address a value that allows us to fmd an object in a computer's memory. 
algorithm a procedure or formula for solving a problem; a finite series of com

putational steps to produce a result. 
alias an alternative way of referring to an object; often a name, pointer, or refer

ence. 
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application a program or a collection of programs that is considered an entity 
by its users. 

approximation something (e.g., a value or a design) that is close to the perfect 
or ideal (value or design). Often an approximation is a result of tradc-offs 
among ideals. 

argument a value passed to a function or a template, in which it is accessed 
through a parameter. 

array a homogeneous sequence of clements, usually numbered, e.g . . [O:max). 
assertion a statement inserted into a program to state (assert) that something 

must always be true at this point in the program. 
base class a class used as the base of a class hierarchy. Typically a base class has 

one or more virtual functions. 
bit the basic unit of information in a computer. A bit can have the value 0 or the 

value 1 .  
bug an error in a program. 
byte the basic unit of addressing in most computers. Typically, a byte holds 8 

bits. 
class a user-defined type that may contain data members, function members, 

and member types. 
code a program or a part of a program; ambiguously used for both source code 

and object code. 
compiler a program that turns source code into object code. 
complexity a hard-to-precisely-defme notion or measure of the difficulty of con

structing a solution to a problem or of the solution itself. Sometimes comfJ!exiJ;• 
is used to (simply) mean an estimate of the number of operations needed to ex
ecute an algorithm. 

computation the execution of some code, usually taking some input and pro-
ducing some output. 

concrete class class for which objects can be created. 
constant a value that cannot be cl1anged (in a given scope) ; not mutable. 
constructor an operation that initializes ("constructs") an object. Typically a con-

structor establishes an invariant and often acquires resources needed for an ob
ject to be used (which are then typically released by a destructor). 

container an object that holds elements (other objects) .  
correctness a program or a piece of  a program is correct if i t  meets its specifica

tion. U11fortunately, a specification can be incomplete or inconsistent, or can 

fail to meet users' reasonable expectations. Thus, to produce acceptable code, 
we sometimes have to do more than just follow the formal specification. 

cost the expense (e.g., in progran1mcr time, run time, or space) of producing a 
program or of executing it. Ideally, cost should be a function of complexity. 

data values used in a computation. 
debugging the act of searching for and removing errors from a program; usually 

far less systematic than testing. 
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declaration the specification of a name with its type in a program. 
definition a declaration of an entity Lhal supplies all information necessary to 

complete a program using the entity. Simplified defmition: a declaration that 
allocates memory. 

derived class a class derived from one or more base classes. 
design an overall description of how a piece of software should operate to meet 

its specification. 
destructor an operation that is implicitly invoked (called) when an object is de

stroyed (e.g., at tl1e end of a scope) . Often, it releases resources. 
error a mismatch between reasonable expectations of program behavior (often 

expressed as a requirement or a users' guide) and what a program actually 
does . 

executable a program ready to be run (executed) on a computer. 
feature creep a tendency to add excess functionality to a program "just in case." 
file a container of permanent information in a computer. 
floating-point number a computer's approximation of a real number, such as 

7.93 and 10.78e-3 . 
function a named unit of code that can be invoked (called) from different parts 

of a program; a logical unit of computation. 
generic programming a style of programming focused on the design and effi

cient implementation of algorithms. A generic algorithm will work for all argu
ment types that meet its requirements. In C++, generic programming typically 
uses templates . 

header a ftle containing declarations used to share interfaces between parts of a 
program. 

hiding the act of preventing a piece of information from being directly seen or 
accessed. For example, a name from a nested (inner) scope can prevent that 
same name from an outer (enclosing) scope from being directly used. 

ideal the perfect version of something we are striving for. Usually we have to 
make trade-offs and settle for an approximation. 

implementation (1) the act of writing and testing code; (2) the code that imple· 
ments a program. 

infinite loop a loop where tl1e termination condition never becomes true. See 
iteration. 

infinite recursion a recursion that doesn't end until the machine runs out of 
memory to hold tl1e calls. In reality, such recursion is never infmite but is ter
minated by some hardware error. 

information hiding the act of separating interface and implementation, thus 
hiding implementation details not meant for the user's attention and providing 
an abstraction. 

initialize giving an object its first (initial) value. 
input values used by a computation (e.g., function arguments and characters 

typed on a keyboard). 
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integer a whole number, such as 42 and -99. 
interface a declaration or a set of declarations specifying how a piece of code 

(such as a function or a class) can be called. 
invariant something that must be always true at a given point (or points) of a 

program: typically used to describe the state (set of values) of an object or the 
state of a loop before entry into the repeated statement. 

iteration the act of repeatedly executing a piece of code; see recursion. 
iterator an object that identifies an element of a sequence. 
library a collection of types, functions, classes, etc. implementing a set of facilities 

(abstractions) meant to be potentially used as part of more that one program. 
lifetime the time from the initialization of an object until it becomes unusable 

(goes out of scope, is deleted, or the program terminates). 
linker a program that combines object code ftles and libraries into an executable 

program. 
literal a notation that directly specifies a value, such as 12 specifying the integer 

value "twelve." 
loop a piece of code executed repeatedly; in C++, typically a for-statement or a 

while-statement. 
mutable changeable; the opposite of immutable, constant, and variable. 
object ( 1 )  an initialized region of memory of a known type which holds a value 

of that type; (2) a region of memory. 
object code output from a compiler intended as input for a linker (for the linker 

to produce executable code). 
object file a ftle containing object code. 
object-oriented programming a style of programming focused on the design 

and use of classes and class hierarchies. 
operation something that can perform some action. such as a function and an 

operator. 
output values produced by a computation (e.g., a function result or lines of char

acters written on a screen) . 
overflow producing a value that cannot be stored in its intended target. 
overload defining two functions or operators with the same name but different 

argumem (operand) types. 
override defining a function in a derived class with the same name and argu

ment types as a virtual function in the base class. thus making the function 
callable through the interface defined by the base class. 

paradigm a somewhat pretentious term for design or programming style; often 
used with the (erroneous) implication that there exists a paradigm that is supe
rior to all others. 

parameter a declaration of an explicit input to a function or a template. When 
called, a function can access the arguments passed through the names of its 
parameters. 
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pointer (1 )  a value used to identify a typed object in memory ; (2) a variable 
holding such a value. 

post-condition a condition that must hold upon exit from a piece of code, such 
as a function or a loop. 

pre-condition a condition that must hold upon entry into a piece of code, such 
as a function or a loop. 

program code (possibly with associated data) that is sufficiently complete to be 
executed by a computer. 

programming the art of expressing solutions to problems as code. 
programming language a language for expressing programs. 
pseudo code a description of a computation written in an informal notation 

rather than a progranuning language. 
pure virtual function a virtual function that must be overridden in a derived 

class. 
RAil ("Resource Acquisition Is Initialization") a basic technique for resource 

management based on scopes. 
range a sequence of values that can be described by a start point and an end 

point. For example, [0:5) means the values 0, 1, 2, 3, and 4. 
regular expression a notation for patterns in character strings. 
recursion the act of a function calling itself; see also iteration. 
reference ( 1 )  a value describing the location of a typed value in memory; (2) a 

variable holding such a value. 
requirement ( 1) a description of the desired behavior of a program or part of a 

program; (2) a description of the assumptions a function or template makes of 
its arguments. 

resource something that is acquired and must later be released, such as a ftle 
handle, a lock, or memory. 

rounding conversion of a value to the mathematically nearest value of a less pre
cise type. 

scope the region of program text (source code) in which a name can be referred 
to. 

sequence elements that can be visited in a linear order. 
software a collection of pieces of code and associated data; often used inter

changeably with program. 
source code code as produced by a programmer and (in principle) readable by 

other progranuners. 
source file a ftle containing source code. 
specification a description of what a piece of code should do. 
standard an officially agreed upon defmition of something, such as a program

ming language. 
state a set of values. 
string a sequence of characters. 
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style a set of techniques for programming leading to a consistent use of language 
features; sometimes used in a very restricted sense to refer just to low-level 
rules for naming and appearance of code. 

subtype derived type; a type that has all the properties of a type and possibly more. 
supertype base type; a type that has a subset of the properties of a type. 
system (1)  a program or a set of programs for performing a task on a computer; 

(2) a shorthand for "operating system," that is, the fundamental execution en
vironment and tools for a computer. 

template a class or a function parameterized by one or more types or (compile-
time) values; the basic C++ language construct supporting generic programming. 

testing a systematic search for errors in a program. 
trade-off the result of balancing several design and implementation criteria. 
truncation loss of information in a conversion from a type into another that can-

not exactly represent the value to be converted. 
type something that defines a set of possible values and a set of operations for an 

object. 
uninitialized the (undefined) state of an object before it is initialized. 
unit (1) a standard measure that gives meaning to a value (e.g., km for a dis

tance); (2) a distinguished (e.g., named) part of a larger whole. 
use case a specific (typically simple) use of a program meant to test its function-

ality and demonstrate its purpose. 
value a set of bits in memory interpreted according to a type. 
variable a named object of a given type; contains a value unless uninitialized. 
virtual function a member function that can be overridden in a derived class. 
word a basic unit of memory in a computer, usually the unit used to hold an 

integer. 
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!. See Not, 1050 
! =- See Not equal (inequality) , 67. 1052. 

1064 
" . . .  ". See String literal, 62 
#, See Preprocessor directives, 1090-

1091 
$. See End of line, 837, 1 134 
%. See 

Output format specifier, 1 1 4 1  
Remainder (modulo) ; 68 

%=. See Remainder and assign, 1053 
&. See 

Address of, 574, 1050 
Bitwise logical operations (and), 

917, 10.12, 10.17 
Reference to (in declarations), 273-

277, 1062 
&&. See Logical and, 1053, 1057 
&=. See Bitwise logical operations (and 

and assign), 1053 
• . . .  • .  See Character literals, 159, 1043-

1044 
(). Sn: 

Expression (grouping) , 95. 83 1 ,  
837, 840 

Function call, 282, 735-736 
Function of (in declarations) ,  1 12-

1 14, 1062 
Regular expression (grouping) , 1 133 

I ndex 

•. See 
Contents of (dereference) , 579-580 
Multiply, 105 1 
Pointer to (in declarations),  573, 

1062 
Repetition (in regex), 832, 837-

838, 1 1 33-1 134 
•t end of block comment, 237 
•=. See Multiply and assign (scale). 67 
+. See 

Add, 66, 105 1 
Concatenation (of strings), 68-69. 

815,  1 132 
Repetition in regex, 837-839, 

1 1 33-1 134 
++. See Increment, 66, 695 
+=. See 

Add and assign, 1053 
Move forward, 1064 
string (add at end), 815, 1 132 

, (comma) . See 
Comma operator, 1054 
List separator, 1066, 1084 

- . See 
Minus (subtraction), 66, 1051 
Regular expression (range), 84 1 

--. See Decrement, 66, 1 102, 1050 
-> (arrow). See Member access, 593, 

1050-105 1 .  1072, 1 102 
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-=.  Set• 
Move backward. 1064 
Subtract and assign. 67, 1053. 1 103 

. (dot) . See 
Member access, 302, 592-593, 

1050-105 1 
Regular expression, 837, 1 133 

. . .  (ellipsis). Set� 

Arguments (unchecked),  1068-
1069 

Catch all exceptions, 150 
I. See Divide, 66, 105 1  
II. See Line comment. 45 
t• . . .  */. See Block comment. 237 
1=. See Divide and assign, 67, 1053 
: (colon) .  See 

Base and member initializers. 3 10, 
471 , 543 

Conditional expression, 266 
Label, 104-107, 302, 502, 1059 

: : . See Scope (resolution), 291, 3 10, 
1049 

; (semicolon) .  See Statement (temtina· 
tor). 50, 99 

<. See Less than. 67. 1052 
<<. See 

Bitwise logical operations (left 
shift). 917, 105 1  

Output, 357-359. 1 1 29 
<=. St·e Less than or equal. 67, 1052 
«=. See Bitwise logical operations 

(shift left and assign), 1053 
< . . .  >. See Template (arguments and 

parameters) ,  1 5 1 .  656-657 
=. See 

Assignment, 66. 1053 
Initialization, 69-73, 1 173 

= = .  See Equal. 67, 1052 
>. See 

Greater than, 67, 1052 
Input prompt, 221 
Template (argument-list tenninator), 

656-657 
>=. See Greater than or equal, 67, 1052 
>>. See 

Bitwise logical operations (right 
shift), 917, 105 1 

I N D E X  

Input. 6 1 ,  359 
»=. See Bitwise logical operations 

(sruft right and assign), 1053 

Conditional expression f:. 266. 
1053 

Regular expression. 83 1-832, 837, 
838-839. 1 1 34 

[ ) . See 
Array of (in declaration),  627, 1062 
Regular expression (dtaracter 

class), 837, 1 133 
Subscripting, 579-590, 628, 1064 

\ (hacks lash) . Set• 
Character literal, 1043 
Escape character. 1 133 
Regular expression (escape charac· 

ter) . 830-83 1 , 837, 841 
" · See 

Bitwise logical operations (exdu· 
sive or), 917-918, 1052, 1057 

Regular expression (not), 837. 
1 1 34 

"=· See Bitwise logical operations (xor 
and assign) , 1053 

_ . See Underscore, 75, 76, 1045 
(}. See 

Block delimiter, 47, 1 10 
Regular expression (range). 83 1 .  

837-839, 1 1 33-1 134 
I · See 

Bitwise logical operations (bitwise 
or). 917. 1052, 1057 

Regular expression (or), 83 1-832, 
837, 840-84 1 ,  1 1 34 

I =. See Bitwise logical operations (or 
and assign) . 1053 

I I ·  See Logical or, 1053. 1057 
-. See 

Bitwise logical operations (comple· 
ment), 917, 1050 

Destructors, 586-588 
0 (zero) . See 

Null pointer. 583-584 
Preflx, 378, 380 
printfO format specifier, 1 1 42 

Ox. See Prefix, 378. 380 
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A 
a, append flle mode, 1 1 40 
\a alert, character literal. 1043 
abort(), 1 149 
abs(), absolute value, 879. 1 137 

complex, 88 1 ,  1 1 39 
Abstract classes. 487, 1 171 

class hierarchies, 503 
creating. 487. 503-504. 1080-108 1  
Shape example. 487-488 

Abstract-first approach to progranuning, 
10 

Abstraction. 92-93, 1 171 
level. ideals, 778-779 

Access control, 302, 496, 501-502 
base classes, 50 1-502 
encapsulation, 496 
members, 484-485 
private, 496, 50 1-502 
private by default, 302-303 
private IJJ. public, 302-304 
private: label, 302 
protected, ��96, 502 
protected: label, 5 02 
public, 302, 496, 501 -502 
public by default, 303-304. Set: also 

struct. 
public: label, 302 
Shape example, 488-491 

accumulate(), 729, 739-740, 1 139 
accumulator, 739 
generalizing, 740-742 

acos(). arccosine, 879, 1 137 
Action, 47 
Activation record, 284. Ser also Stacks. 
Ad hoc polymorphism, 659-661 
Ada language. 796-798 
Adaptors 

bindlst(), 1 1 23 
bind2nd(), 1 123 
container, 1 106 
function objects, 1 123 
mem_fun(). 1 123 
mem_fun_ref(). 1 1 23 
noll (), 1 123 
not20. 1 123 

priority_queue, 1 106 
queue. 1 106 
stack. 1 106 

add0. 445, 483-484. 600-602 
Add (plus) +, 66. 105 1 
Add and assign +=, 66, 73, 1053 
Additive operators, 105 1 
Address, 574, 1 1 71 

unchecked conversions, 905 
Address of (unary) &, 574, 1050 
adjacent_difference(), 739, 1 1 39 
adjacent_find(), 1 1 1 3 
advance(), 600-602, 708-710, 1 103 
Affordability, software. 34 
Age distribution example, 527-528 
Alert markers, 3 
Algol family of languages, 791-798 
Algol60 language, 792-794 
<algorithm>, 729, 1095 
Algorithms, 1 171 

and containers, 696 
header flies, 1095-1096 
numerical. 1 139 
passing arguments to. See Function 

objects. 
Algorithms. numerical, 739, 1 1 39 

accumulate(), 729. 739-742, 1 1 39 
adjacent_difference(), 739. 1 139 
inner_product(), 729. 739, 742-744, 

1 13 9  
partial_sum(), 739. 1 1 39 

Algorithms. SllL. 1 1 1 2-1 1 13 
<algorithm>, 729 
binary_search(), 764 
comparing clements, 729 
copy(), 728, 757-758 
copy_if(), 757 
copying elements, 728 
count(), 728 
count_ifO, 728 
equal(), 729 
equal_range(), 728, 763-764 
find(), 728, 729-732 
find_if(), 728, 732-734 
heap, 1 1 1 9-1 120 
lower_boundO. 764 
max, 1 12 1  
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Algorithms, STL (continued) 
merge(), 728 
merging sorted sequences, 728 
min, 1 12 1  
modifying sequence, 1 1 14- 1 1 1 6  
mutating sequence, 1 1 14-1 1 1 6  
nonmodifying sequence, 1 1 13-

1 1 14 
numerical. See Algorithms, numeri-

cal. 
permutations, 1 120 
search(}, 763-764 
searching, 1 1 17-1 1 18. Seuilio 

find(}: find_if(}. 
set, 1 1 18- 1 1 1 9  
shuffie, 1 1 15- 1 1 1 6 
sort(}. 728, 762-763 
sorting, 728, 762-763, 1 1 17-

1 1 18 
summing elements, 729 
testing, 96 1 -968 
unique_copyO. 728, 757, 760-76 1 
upper_bound(}, 764 
utility. 1 1 1 6- 1 1 17 
value comparisons, 1 1 20-1 121  

Aliases, 1089, 1 171 .  See alro References. 
Allocating memory 

See alro Deallocating memory: 
Memory. 

allocator_type, 1 108 
bad_alloc exception. 1058 
C++ and C, 1009-1010 
calloc(}, 1 1 47 
embedded systems, 897-898, 902-

904 
free store, .178-579 
malloc(}, 1009, 1 147 
new, 1057-1058 
pools, 902-903 
realloc() ,  1010 
stacks, 903-904 

allocator_type. 1 1 08 
Almost containers, 72 1 -722, 1 106 
alnum. regex character class, 842, 

1 134 
alpha, regex character class, 842. 1 134 

I N D E X  

Alternation 
patterns, 192-193 
regular expressions. 840-841 

Ambiguous function call, 1067- 1068 
Analysis, 35, 174. 177 
and, synonym for &. 1003. 1004 
and_eq, synonym for &=. 1003, 1004 
app mode, 385. 1 126 
append(}, 8 15. 1 132 
Append 

flles. 385. 1 140 
string +=, 8 15 

Application 
collection of programs. 1 172 
operator (}, 735-73 6 

Approximation. 521-526, 1 172 
Arccosine, acos(}, 879 
Arcsine. asin(}, 879 
Arctangent, alan(}, 879 
argO. of complex number. theta, 88 1 .  

1 139 
Argument deduction, 664-665 
Argumem errors 

callee responsibility, 141-143 
caller responsibility, 1 40-141 
reasons for. 142-143 

Arguments, 270, 1 172 
formal. See Parameters. 
functions. 1068-1069 
passing. See Passing arguments. 
program input. 91 
source of exceptions, 145-146 
templates, 1083-1084 
types, class interfaces, 3 1 9-321 
unchecked, 995-996. 1068-1069 
unexpected. 134 

Arithmetic if f:, 266. Ser alrtl Condi
tional expression. 

Arithmetic operations. Set• Numerics. 
array standard library class, 718-719. 

1 105 
<array>. 1095 
Arrays. 627-628. 1 172 

Set• tWo Containers: vector. 

I I  declaration, 627 
I I dereferencing, 628 
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accessing elements, 628, 863-865 
assignment, 633 
associative. See Associative contain· 

ers. 
built-in, 718-719 
Gstyle strings. 633-634 
copying, 632 
dereferencing, 628 
clement numbering, 627 
initiaUring, 582-583, 633-634 
multidimensional, 859-861 ,  1065 
palindrome example. 638-640 
passing pointers to arrays, 905-

912 
pointers to elements, 628-63 1 
range checking, 628 
subscripting [ ] ,  628 
terminating zero, 633 
vector alternative, 909-912 

Arrays and pointers, 630-636 
debugging, 634-637 

asin(}, arcsine, 879, 1 137 
asm, assembler insert, 1003 
Assemblers, 785 
Assertions 

assert(}, 1026- 1027 
<Casserb, 1097 
debugging, 1 6 1  
defmition, 1 172 

assign(}, 1 1 09 
Assignment =, 69-73 

arrays, 633 
assignment and initialization, 69-

73 
composite assignment operators, 

73-74 
containers, 1 108-1 109 
Date example, 305-306 
enumerators, 3 14 
expressions, 1053 
string, 8 15 
vector, resizing, 653-655 

Assignment operators (composite), 66 
%=, 73, 1053 
&=, 1053 
·=, 73, 1053 

+=, 73, 1053, 1 103 
- =, 73, 1053. 1 103 
1=, 73, 1053 
<<=, 1053 
>>=, 1053 
1\:, 1053 
1 =.  1053 

Associative arrays. See Associative con
tainers. 

Associative containers, 744, 1 105 
email example, 820-824 
header f:tles. 744 
map, 744 
multimap, 744, 824-825 
multiset, 744 
operations, 1 1 1 1 -1 1 12 
set, 744 
unordered_map, 744 
unordered_multimap, 744 
unordered_multiset, 744 
unordered_set, 744 

Assumptions, testing, 976-978 
at(}, range-checked subscripting, 668-

669, 1 109 
atan(}, arctangent, 879, 1 137 
ate mode, 385, 1 1 26 
atof(}, string to double, 1 146 
atoi(}, string to int, 1 1 46 
atol(}, string to long, 1 146 
AT&T Bell Labs, 803 
AT&T Labs, 803 
attach(} uJ. add(} example, 483-484 
Automatic storage, 577 
auto_ptr, 678 
Axis example, 420-422, 439, 5 1 8-521 ,  

532-534 

8 
b, binary flle mode, 1 140 
Babbage, Charles, 797 
back(}, last element, 708, 1 109 
back_inserter(}, 1 122 
Backus,John, 788 
Backus-Naur (BNF) Form, 788, 793 
bad(} stream state, 349, 1 1 27 

1185 



1186 

bad_alloc exception, 1058 
Balanced trees, 748-750 
Base-2 number system (binary), 1042 
Base-8 number system (octal), 1041-

1042 
Basc-10 

logarithms, 879 
number system (decimal), 10<B-

1042 
Base-1 6  number system (hexadecimal), 

1 04 1-1042 
Base and member initializers, 3 10, 471, 

543 
Base classes, 485-488, 496-499, 1 172 

abstract classes, 487, 503-504, 
1080-1081 

access control, 501-502 
derived classes, 1078-1079 
description, 496-497 
initialization of, 417, 543 
interface. 503-505 
object layout. 497-499 
overriding, 500-501 
Shape example, 487-488 
virtual function calls, 493. 498-

499 
vptr, 498 
vtbl, 498 

Base-e exponentials, 879 
Basic guarantee, 677 
basic_string. 8 1 6  
BCPL language, 803 
begin() 

iterator, 1 109 
numeric example, 12 1-122 
string, 8 15. 1 132 
vector, 695 

Bell Telephone Laboratories (Bell 
Labs), 801,  803-806, 988-989 

Bentley.John, 895, 926 
Bidirectional iterator, 1 104 
bidirectional iterators. 722-723 
Big-0 notation, complexity, 573 
Binary 1/0, 386-389 
binary mode, 385, 1 126 
Binary number system, 1042 

I N D E X  

Binary search, 728, 747, 763-764 
binary _search(). 764, 1 1 1 7 
bindlst() adaptor. 1 123 
bind2nd() adaptor. 1 123 
bitand, synonym for &. 1003, 1004 
Bitficlds, 917, 928-930, 1082 
bitor, synonym for I ,  1003, 1004 
Bits, 78, 9 1 6, 1 172 

bitfields, 917 
bool, 917 
char, 917 
enumerations, 917 
integer types, 917 
manipulating, 926-928 
signed, 922-926 
size, 9 1 6-917 
two's complement, �)22 
unsigned, 922-926 

<bitsel>, 1095 
bitset, 920-922 

bitwise logical operations. 922 
construction, 92 1 
exceptions, 1099 
1!0. 922 

Bitwise logical operations. 917-920, 
1057 

and &. 917-9 18, 1052, 1057 
and and assign &=, 1053 
complement -, 917 
exclusive or ", 917-9 18. 1052, 

1057 
exclusive or and assign "=. 1053 
left shift «. 917 
left shift and assign « = ,  1053 
or I ,  9 17-918, 1052. 1057 
or and assign, I =. 927 
right shift », 917 
right shift and assign »-. 1053 

Black·box testing, 952-953 
Blackboard, 36 
blank, character class, regex, 842, 1 134 
Block, 1 1 0 

debugging. 159 
delimiter (}. 47, 1 10 
nesting within functions, 268-269 
try block, 144- 1 45 
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Block comment t •  . . .  •t, 237 
Blue marginal alerts, 3 
BNF (Backus-Naur) Form, 788, 793 
Body, functions, 1 13 
bool, 63, 66-67, 1062 

bit space, 917 
bits in memory, 78 
C++ and C, 992, 1003, 1004 
size, 78 

boolalpha, manipulator, 1 129 
Boolean conversions, 1055 
Borland, 796 
Bottom-up approach, 9, 776-777 
Bounds error, 147 
Branching, testing, 966-968. See also 

Conditional statements. 
break, case label termination, 104-107 
Broadcast functions, 867 
bsearch(}, 1 1 49 
Buffer, 342 

flushing, 239-240 
iostream, 402 
overflow, 639, 759, 966. See also 

gets(}, scanf(}. 
Bugs, 156, 1 172 

See also Debugging; Testing. 
finding the last, 1 64-1 65 
first documented, 790 
regression tests, 953 

Built-in types, 300, 1062 
arrays, 718-719, 1064-1065 
bool, 77, 1063 
characters, 77, 855, 1063 
default constructors, 323 
exceptions, 1087 
floating-point, 77, 855-858, 1063 
integers, 77, 855-858, 922-926, 1063 
pointers, 574-586, 1063-1064 
references, 277-278, 1065- 1066 

Button example, 439, 548-550 
attaching to menus, 558 
detecting a click, 544-546 
"Next," 418-420, 541-542 

Byte, 78, 1 172 
operations, C-stylc strings, 1014-

1015 

c 
.c sufli.x, 995 
.cpp, sufli.x, 48, 1 154 
C# language, 796 
C++ language, 804-806 

See also PTograrrurring; PTogr�; 
Software. 

coding standards, list of, 943 
portability, 1 1  
usc for teaching, .xxiv, 6-9 

C++ and C, 988-990 
C functions, 994-998 
C linkage convention, 999 
C missing features, 99 1 -993 
calling one from the other, 998-1000 
casts, 1006-1007 
compatibility, 990-99 1 
const, 1020- 1021 
constants, 1020-1021 
container example, 1025-103 1  
definitions, 1004-1006 
enum, 1008 
extern "C", 999 
family tree, 989 
free-store, 1009- 10 1 1  
input/output, 101 6-1020 
keywords, 1003-1004 
layout rules, 1000 
macros, 1020-1 025 
malloc(}, 1009 
namcspaccs, 1008 
nesting structs, 1003 
old-style casts, 1006 
opaque types, 1026 
performance, 990 
realloc(}, 1010 
structure tags, 1002- 1003 
type checking, 998-999 
void, 996 
void•, 1007-1008 

"C first" approach to prograrrurring, 9 
C languagc, 800-804 

See also C standard library. 
C++ compatibility, 988-990. See 

also C++ and C. 
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C language (co111inued) 
K&JR, 802, 988-989 
linkage convention, 999 
missing features, 991-993 

C standard library 
C-style strings. 1 1 45-1 146 
header flies, 1097 
input/outpu t. &oe C-style 1/0 

(stdio). 
memory, 1 146-1 147 

Gstyle casts, 1006-1007, 105 1 .  1058 
C-style 1/0 (stdio) 

%, conversion specification. 1 14 1  
conversion specifications, 1 1 4 1 -

1 143 
file modes. 1 140- 1 1 4 1  
flies. opening and closing, 1 1 40-

1 1 4 1  
fprintfO. 1017, 1 1 41 
getchO. 10 18. 1 145 
getchar(). 10 10, 10 17-1019. 1 1 45 
gets(), 1018, 1 1 44-1 145 
output formats, user-defined types, 

1 144 
padding, 1 1 43 
printf(), 1016-10 17. 1 1 4 1  
scanf(), 1017-1019. 1 144- 1 145 
stderr, 1 144 
stdin, 1 144 
stdout. 1 144 
truncation, 1 143 

C-style strings, 633-634, 101 1-1013, 
1 1 45 

byte operations. 1014-1015 
from string, c_str(), 344, 815 
const. 1013-1014 
copying. 1012-10 13, 1015 
executing as a command, system(), 

1 149 
lexicographical comparison. 1012 
operations, 1 146 
pointer declaration, 1015-1016  
strcal(), concatenate. 1012-1013 
strchr(), fmd character, 1014 
strcmpO, compare. 101 1-1013 
strcpyO, copy. 1012-1013.  1015 

strlen(), length of, 1012 
strncat(), 1012-1013 
strncmp(), 1012-1013 
strncpyO, 1012-1013 
three-way comparison, 1012 

CAD/CAM. 27, 33 

I N DEX  

Calculator example, 172. 185-186 
analysis and design. 174-177 
expression(), 1 94-198 
get_token(), 1 94 
grammars and progranuning, 186-

1 93 
parsing. 1 88-191  
primary().  1 94. 206 
symbol table, 246 
term(), 194, 1 95-200. 204-205 
Token, 1 82-1 83 
Token_stream. 204-2 12, 239-240 

Call stack, 287 
Callback functions, 544-546 
Callback implementation, 1 1 62-1 1 1)3 
Calling functions. &oe• Function calls. 
calloc(). 1 147 
Cambridge University, 803 
capacity(), 65 1 -65 2. 1 1 1 1  
Capital letters. See Case. 
Case (of characters) 

formatting, 393-394 
identifying, 393 
islower(), 393. 1 13 1  
map container. 750 
in names, 74-77 
sensitivity. 393-394 
tolower(). changing case. 394. 1 13 1  
toupper(}, changing case, 394, 

1 13 1  
case labels. 104-107 
<casserl>, 1097 
Casting away const. 594-595 
Casts 

See also Type conversion. 
C++ and C, 992, 1003 
C-style casts. 1006-1007 
casting away const. 594 
const_cast, 1058 
dynamic_cast. 894, 1058 
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lexical_ cast example, 819 
narrow_cast example, 151 
reinterpret_cast. 594 
static_cast. 594, 905, 1058 
unrelated types. 594 

CAT scans, 30 
catch, 145, 1003 
Catch all exceptions .... 150 
Catching exceptions. 1 44-150, 238-

240. 1087 
cb_next() example. 544-546 
<cctype>, 1097. 1 13 1  
ceil(), 879, 1 137 
cerr, 149. 1 125, 1 1 44 
<cerrno>, 1097 
<cfloat>, 1097 
Chaining operations. 178-179 
char type, 63, 66-67. 78 

bits, 917 
built·in. 1062 
properties, 712-713 
signed liS. unsigned, 858, 925 

Character classes 
list of, 1 134-1 135 
in regular expressions. 837-838, 

842 
Character classification, 393-394. 

1 1 3 1  
Character literals. 159, 1043-104·� 
CHAR_BIT limit macro, 1 136 
CHAR_MAX lintit macro, 1 13 6  
CHAR_MIN limit macro. 1 13 6  
cin. 6 1  

C equivalent. See stdin. 
standard character input, 6 1 ,  341 ,  

1 125 
Circle example. 464-467, 489 

us. Ellipse. 467 
Circular reference. Set' Reference (cir

cular). 
class, 181 .  1002-1003 
Class 

abstract, 487, 503-504, 1080-108 1 .  
See also Abstract class. 

base, 496-497 
coding standards, 94 1 -942 

concrete, 487-488, 1 172 
const member fu nctions, 1073 
consi.Tllctors, 1075-1 077. 1081 
copying. 1077-1078. 1081 
creating objects. See Concrete 

classes. 
default consi.TUctors. 322-325 
defining. 210. 301,  1071 .  1 172 
derived, 496 
desi.TUctors, I 077, 1081 
encapsulation, 496 
friend declaration, 1073-1074 
generated operations, 1081 
grouping related, 503-504 
hierarcllies. 503 
history of, 799 
implementation, 302-304 
inheritance, 496-497, 504-505 
interface. 504-505 
member access. See Access control. 
naming. See Namespaces. 
nesting, 268 
object layout. 497-499 
orgruuzing. Set· Namespaces. 
parameterized. 659-66 1 .  See also 

Templates. 
private. 302-304, 496, 50 1-502. 

1071-1072 
protected, 487, 496, 50 1 -502 
public, 302-304. 496. 501 -502, 

1071 -1072 
run-tinte polymorphism, 496 
subclasses. 496-497. See also De

rived class. 
superclasses, 496-497. See abo Base 

class. 
templates, 658-661 
testing, 973-976 
this pointer, 1073 
types as parameters. See Tem-

plates. 
union, 1082-1083 
unqualified name, 1072 
uses for, 301 

Class interfaces, 3 1 8, 1071 
argument types, 3 1 9-32 1  
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const member functions, 325-326 
constants, 325-326. See also const. 
copying, 321-322 
helper functions. 326-328 
immutable values, 325, 326 
initializing objects, 322-325 
members. 326-328 
mutable values, 326-328 
public us. private, 3 02-304 
symbolic constants, defming, 321 
uninitialized variables, 322-325 

Class members, 301 ,  1071 
-> (arrow), 1072 
. (dot), 302, 1072 
:: (scope resolution), 1072 
accessing. 302. See also Access con-

trol. 
allocated at same address, 1082-

1083 
bitfields. 1082 
class interfaces, 326-328 
data, 301 
defmitions. 1074-1 075 
function, 309-3 13 
in-class definition, 1074-1075 
static const int members. 1075 
Token example, 1 8 1 - 1 82 
Token_stream example, 210 
out-of-class defmition, 1074-1 075 

Class scope. 264, 1046 
Class template 

parameterized class, 659-661 
parameterized type, 659-66 1  
specialization. 658-65�) 
type generators. 658-659 

classic_elimination() example, 874-875 
Cleaning up code 

comments. 23 6-237 
functions. 233-234 
layout, 234-236 
logical separations. 233-234 
revision history, 236-237 
scaffolding, 233-234 
symbolic constants, 23 1-233 

clear(), 349-352, 1 1 1 0 
<climits>, 1097 

<clocale>, 1097 
clock(), 98 1-983 
clock_t, 1 1 47 
clone() example, 496 
close() flle, 346 

I N D E X  

Closed_polyline example, 45 1-453 
liS. Polygon, 453 

<cmath>, 879, 1097, 1 137 
cntrl, 842, 1 1 34 
COBOL language. 788-790 
Code 

definition. 1 172 
layout, cleaning up. 234-236 
libraries, uses for. 175 
storage, 577 
structure. ideals, 776 
test coverage, 968 

Coding standards, 935-936 
C++, list of. 943 
complexity, sources of, 035-93 6 
ideals, 936-937 
sample rules, 938-943 

Color example. 421-422, 445-447 
color chat example, 459-461 
fill. 427-428. 456-458. 4H2 
transparency, 447 

Columns, matrices, 864-865. 870 
Comments. 45-46 

block /* . . . •1. 237, 1040 
C++ and C. 992 
cleaning up, 236-237 
us. code, 237 
line //, 45-46, 1040 
role in debugging, 157-158 

Common Lisp language. 790 
Conmtunication skills. programmers. 22 
Compacting garbage collection, 900-

90 1 
Comparison, (i7 

Set: also ==; <. 

C-style strings, 101 1 -1012 
characters, 71 1 
containers, 1 1 1 1  
key_compare, 1 108 
lexicographical, C-style strings, 
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lexicographical_compare(), 1 1 2 1  
min/max algoritlmlS, 1 1 20- 1 1 2 1  
string, 8 15 
three-way, 1012 

Compatibility. See C++ and C. 
Compile-time errors. See Errors. 

compile-time. 
Compiled languages. 47-48 
Compilers. 48, 1 172 

compile-time errors, 5 1  
conditional compilation. 1024-

1025 
syntax checking. 48-50 

compl, synonym for -, 1003, 1045 
complex 

!=. not equal (inequality). 88 1 .  
1 138 

•, multiply, 88 1 .  1 138 
+, add (plus).  88 1 ,  1 1 38 
- , subtract (minus). 88 1 .  1 138 
«, output, 88 1 ,  1 139 
==, equal. 88 1 .  1 138 
», input. 88 1 .  1 139 
/, divide. 88 1 .  1 138 
abs(}.  absolute value, 88 1 ,  1 139 
conj(}, conjugate. 881 
Fortran language, 882 
imagO, imaginary part, 881 
norm(}, square of abs(), 881 
number types, 1 138-1 139 
polar(), polar coordinate, 881 
real(). real part, 88 1 
rho, 881 
square of abs(}, 88 1 
theta. 88 1 

<complex> 1096 
complex operators. 88 1 ,  1 138-1 139 
standard math functimlS, 1 1 37 

Complex numbers, 880-882 
Complexity, 1 172 

sources of, 935-93 6 
Composite assigrunent operators, 73-74 
Compound statements. 1 10 
Computation, 9 1  

See also Programs; Software. 
correcmess, 92-94 

data structures, 90 
efficiency, 92-94 
input/output, 91 
objectives, 92-94 
organizing programs. 92-94 
prognumuner ideals, 92-94 
simplicity, 92-94 
state, defmition, 90 

Computation us. data, 691 -693 
Computer-assisted surgery, 30 
Computer science, 1 2. 24-25 
Computers 

CAT scans, 30 
computer-assisted surgery, 30 
in daily life. 1 9-21 
information processing, 3 1 -32 
Mars Rover. 32-33 
medicine, 30 
pervasiveness of. 1 9-21 
server fanns, 3 1  
shipping, 26-28 
space exploration. 32-33 
telecommu nications. 28-29 
timekeeping, 26 
world total. 1 9  

Concatenation of strings. 66 
+, 68-69, 8 1 5. 1 132 
+=. 68-69. 8 15. 1 1 32 

Concept-based approach to program· 
ming. 6 

Concrete classes. 487-488, 1 1 72 
Concrete-first approach to progrant· 

ming, 6 
Concurrency. 894 
Conditional compilation. 1024- 1025 
Conditional expression f:. 266. 1053 
Conditional statements 

See also Branching, testing. 
for, 1 10-1 1 2 
if, 101-103 
switch, 104-107 
while. 108-109 

Conforming programs, 1039 
Confusing variable names, 77 
conj(), complex conjugate, 88 1 ,  1 138 
Conjugate, 881 
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Consistency. ideals, 780 
Console. as user interface, 540 
Console input/output, 540 
Console window, displaying. 1 60 
const. 95-96 

Str also Constant; Static storage, 
static const. 

C++ and C. 992. 1020-1021 
C-style strings. 1013-1014 
class interfaces, 325-326 
declarations, 260-261 
initializing. 260 
member fu nctions. 325-326. 1073 
overloading on, 626-627 
passing arguments by. 273-276, 

279-281 
type. 1062 

•const, immutable pointer, 1062 
Constant 

See also cons I. 
expressions, 1056-1057 

const_cast, casting away const. 594, 1058 
const_iterator, 1 1 08 
Constraints, vector range checking, 670 
Constructors, 306-309, 1075-1077 

Ste also Destructors; Initializers. 
containers, 1 1 08-1 109 
cop� 6 14-6 1 6, 620-624 
Date example 307, 3 1 9-321 
debuggjng, 622-624 
default, 322-325, 1081 
error handling 309, 675-677 
essential operations, 620-624 
exceptions, 675-677 
explicit, 62 1 -622 
implicit conversions, 621 -622 
initialization of bases and members, 

3 10, 471,  543 
invariant, 309, 676-677 
need for default, 620-62 1 
Token example, 182-183 
Token_stream example, 210 

Container adaptors, 1 106 
Containers, 146, 720-72 1, 1 172 

Ste also Arrays; list; map; vector. 
and algorithms, 696 

I N D E X  

almost containers, 72 1-722, 1 106 
assignments, 1 108-1 109 
associative, 1 105, 1 1 1 1-1 1 1 2 
capacity() ,  1 1 10-1 1 1 1  
of characters . See string. 
comparing, 1 1 1 1  
constructors, 1 108-1 109 
contiguous storage, 712 
copying, 1 1 1 1  
destructors, 1 108-1 109 
dement access, 1 109 
embedded systems, 912-9 16 
header flies, 1095-1096 
information sources about, 720-721 
iterator categories. 722-723 
iterators. 1 109 
list operations, 1 1 10 
member types, 1 108 
operations overview. 1 107 
queue operations. 1 1 10 
sequence, 1 105 
size(). 1 1 10-1 1 1 1  
stack operations, 1 1 10 
standard library. 1 105-1 1 1 1  
swapping. 1 1 1 1  
templates, 661-662 

Contents of • (dereference, indirec· 
cion), 579-580 

Contiguous storage. 712 
Control characters. iscntriO. 393 
Control inversion, G Uls. 556-557 
Control variables. 109 
Controls. Ste Widgets. 
Conversion specifications, printf(). 

1 14 1 -1 1 43 
Conversion 

Ste also Type conversion. 
character case, 3 94 
representation, 3 68-370 
unchecked, 905 

Coordinates 
See also Point. 
computer screens, 'H5-4 1 6  
graphs, 422-423 

copy(), 757-758, 1 1 1 4 
Copy assignments, 6 1 6-618, 620-624 
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Copy constructors, 614-6 16, 620-624 
copy_backward(), 1 1 1 4 
copy_if(), 757 
Copying, 6 13-6 1 9  

arrays. 632 
C-style strings, 10 12-1013.  1015 
class interfaces, 321-322 
containers, 1 1 1 1  
1/0 streams, 758-761 
objects, 494-496 
sequences, 728, 757-762 
vector, 613-6 18, 1 108-1 109 

Correctness 
definition, 1 172 
ideals. 92-94. 775 
impmtance of. 891 -892 
software, 34 

cos(). cosine, 5 17-5 18, 879, 1 137 
cosh(), hyperbolic cosine. 1 137 
Cost, definition, 1 172 
count(), 728, 1 1 13 
count_if(). 728, 1 1 13 
cout, 45 

C equivalent. See stdout. 
"Hello, World!" example, 45-46 
printing error messages, 149. See 

alw cerr. 
standard output, 341 ,  1 1 25 

Critical systems, coding standards, 
942-943 

<cstddef>. 1097 
<cstdio>, 1007 
<csldlib>, 1097, 1 1 47, 1 1 49 
c_str(), 1 132 
<cstring>, 1097. 1 13 1,  1 1 47 
<clime>, 1097, 1 147 
Curre!ll object, 3 1 2-3 13.  See also this 

pointer. 
Cursor. defmition, 45 
<cwchar>, 1097 
<cwctype>. 1097 

D 
d, any decimal digit, regex, 842, 1 134 
\d, decimal digit, regex, 837, 1 1 35 

\ D, not a decimal digit_ regex, 838, 1 135 
d sulftx, 1042 
Dahl, Ole:Johan, 798-800 
Data 

See also Containers; Sequences; 
vector; map; list. 

abstraction, 781 
collections. See Containers. 
us. computation, 691 -693 
genera1Uing code, 688-690 
in memory. See Free store. 
processing, overview, 686-690 
separating from algorithms, 696 
storing. See· Containers. 
structure. See Containers; struct; 

class. 
traversing. See Iteration ; lterators. 
uniform access and manipulation, 

688-690. See also STI... 
Data member, 301 ,  484-485 
Data structure. See Data; struct. 
Data type. See Type. 
Date and time, 1 1 47-1 1 49 
Date example. See Chapters 6-7. 
DBL_EPSILON limit macro, 1 137 
DBL_MAX limit macro, 1 137 
DBL_MIN linut macro, 1 137 
Deallocating memory, 584-586, 1057-

1058. See also delete; delete [ ) .  
Debugging. 52, 156, 1 172 

See also Errors ; Testing. 
arrays and pointers, 634-637 
assertions, 1 6 1  
block termination, 159 
bugs, 156 
character literal termination, 159 
commenting code, 157-158 
compile-time errors, 159 
cons�tent code layout, 158 
constructors, 622-624 
declaring names, 1 59 
displaying the console window, 

160 
expression termination, 159 
fmding the last bug, 1 64- 165 
function size, 158 

1193 



1194 

Debugging (conlinued) 
G Uls, 562-564 
input data, 1 64 
invariants, 1 60-161  
keeping i t  simple, 158 
logic errors, 152- 154 
matching parentheses, 159 
naming conventions, 158 
post-conditions, 163-164 
pre-conditions, 1 6 1 - 1 63 
process description, 156-157 
reponing errors, 157 
stepping through code, 1 60 
string literal termination, 159 
systematic approach, 1 64- 1 65 
test cases, 1 64, 225 
testing, 979 
tracing code execution, 160- 1 6 1  
transient bugs, 581 
using library facilities, 158 
widgets, 563-564 

dec manipulator, 378-379, 1 1 30 
Decimal digits, isdigit(), 393 
Decimal integer literals, 1041 
Decimal number system, 377-379, 

1041- 1042 
Deciphering (decryption}, example, 

93 0-935 
Declaration operators, 1062 

& reference to, 273-277, 1062 
() function of, 1 12- 1 1 4, 1062 
* pointer to, 573, 1062 
[I array of, 627, 1062 

Declarations, 5 1 ,  1061 -1062 
C++ and C, 992 
classes, 302 
collections of. See Header Hies. 
constants, 260-261 
definition, 51 ,  77, 255, 1 173 , 106 1 -

1062 
us. defmitions, 257-258 
entities used for, 259 
extern keyword, 257 
fmward, 259 
function, 255-256, 1066 
function arguments, 270-271 

I N D E X  

function return type, 270-271 
grouping. &r Nantespaces. 
managing. &r Header files. 
need for, 259 
order of, 213-214 
parts of, 1061 
subdividing progrants, 258-259 
"undeclared identifier" errors, 256 
uses for, 106 1 
variables, 258, 260-261 

Decrementing - - ,  97-98 
iterator, 1 10 1-1 104 
pointer, 630 

Deep copy, 619 
Default constructors, 323-324 

alternatives for, 324-325 
for built-in types, 323 
initializing objects, 322-323 
need for, identifying. 620-62 1 
uses for, 323-324 

#define, 1090- 1091 
Defmitions. 77. 256-257, 1 173 

See also Declarations. 
C++ and C. 1004- 1006 
us. declarations, 257-258 
function, 1 1 2- 1 14, 270-271 

delete 
C++ and C. 992. 1003 
deallocating free store, 1057- 1058 
destructors, 586-590 
embedded systems, 894, 898-90 1,  

901-902 
free-store dcallocation, 584-586 
in unary expressions. 105 1 

delete[ I ,  585, 105 1 .  1057- 1058 
Delphi language. 796 
Dependencies, testing, 962-963 
Depth·first approach to programming, 

6 
deque, double ended queue, 1 105 
<deque>, 109.1 
Dereference/i1tdirection 

•, 579-580. See also Contents of. 
->, 593. See alw Member access. 
I I , 1 1 6-1 17. &e a/so Subscripting. 

Derivation, classes, 496 
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Derived classes, 496, 1 173 
access control, 501-502 
base classes, 1078-1079 
uruheritance, 1078-1079 
multiple uruheritance, 1079 
object layout, 497-499 
overview, 496-497, 1078-1079 
private bases and members, 501-

502 
protected bases and members, 502 
public bases and members, 502 
specifying, 499 
vinual functions, 1079-1080 

Design, 35, 174, 1 77, 1 173 
Design for testing, 978-979 
Dcstmctors, 586-588, 1077, 1 173 

See also Constmctors. 
containers, 1 108-1 109 
debuggjng, 622-624 
default, 1081 
essential operations, 620-624 
exceptions, 675-677 
and free store, 589-590 
freeing resources, 3 18, 675-677 
generated, 588-589 
RAil, 675-677 
virtual, 589-590 
where needed, 621 

Device drivers, 340 
Dictionary examples, 121- 123, 756 
difference(}, 1 1 03 
difference_type, 1 108 
digit, character class, 842, 1 134 
Digit, word origin, 1041 
Dijkstra, Edsger, 792-793, 952 
Dimensions, matrices, 862-865 
Direct expression of ideas, ideals, 777-

778 
Dispatch, 496 
Display model, 409-4 10 
Divide /, 66, 105 1 
Divide and assign 1=, 67, 1053 
Divide and conquer, 93 
Divide-by-zero error, 1 99-200 
divides(}, 1 123 
Domain knowledge, 896 

Dot product. See inner_product(}. 
double floating-point type, 63, 66-67, 

78, 1062 
Doubly-linked lists, 598, 698. See also 

list. 
draw(} example 

fill color, 492 
line visibility, 492 
Shape, 491-494 

draw_lines(} example 
See also draw(} example. 
Closed_polyline, 452 
Marked_polyline, 469 
Open_polyline, 45 1 
Polygon, 454-455 
Rectangle, 459 
Shape, 49 1-494 

Dynamic dispatch, 496. See also VIrtual 
fu nctions. 

Dynamic memory. See Free store. 
dynamic_cast, type conversion, 1058 

exceptions, 1099 
predictability, 894 

E 
Efficiency 

ideals, 92-94, 775-776 
vector range checking, 670 

Einstein, Albert, 780 
Elements 

See also vector. 
numbering, 627 
pointers to, 628-63 1 
variable number of, 628 

EIIEpse example, 466-468 
w. Circle, 467 

else, in if-statements, 102-103 
Email example, 820-83 0 
Embedded systems 

coding standards, 935-937, 943 
concurrency, 894 
containers, 912-9 1 6  
correctness, 891-892 
delete operator, 894 
domain knowledge, 896 
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Embedded systems (continued) 
dynamic_cast, 894 
error hat1dling, 895-897 
examples of, 888-890 
exceptions, 894 
fault tolerance, 892 
fragmentation, 898, 899 
free-store, 898-902 
hard real time, 893 
ideals, 894-895 
maintenance, 891 
memory management, 902-904 
new operator, 894 
predictability. 893, 894 
real-time constraints, 893 
real-time response, 890 
reliability. 890 
resource leaks, 893 
resource limitations, 890 
soft real time, 893 
special concerns, 890-891 

Ellipsis . . .  
arguments (u nchecked}, 1068-

1 069 
catch all exceptions, 150 

Empty 
empty(), is container empty?, 1 1 1 1  
lists, 702 
sequences, 702 
statements, 100 

Encapsulation, 496 
Enciphering (Encryption}, example, 

93 0-935 
end() 

iterator, 1 109 
string, 8 15, 1 132 
vector, 695 

End of line $ (in regular expressions}, 
837, 1 134 

End of flle 
eof(), 349, 1 1 27 
flie streams, 360 
1!0 error, 349 
stringstream, 390-3 9 1  

Ending programs. See Tenninating, 
programs. 

endl manipulator, 1 130 
ends manipulator, 1 130 

I N D E X  

English grammar us. programming 
grammar, 191-192 

enum, 3 1 4-3 1 7, 1008. See also Enumer
ations. 

Enumerations, 3 1 4-3 17, 1070 
enum, 3 14-3 17, 1008 
enumerators, 3 1 4-3 17, 1070- 1071 

EOF macro, 1019- 1 020 
eof() stream state, 349, 1 127 
equal(), 729, 1 1 13 
Equal ==, 67, 1052 
Equality operators, expressions, 1052 
equal_range(), 728, 763-764 
equal_to(), 1 122 
erase() 

list , 713-715, 1 1 10 
list operations, 600-602 
string, 8 15, 1 13 2  
vector, 715-718 

errno, error indicator, 880, 1 13 8  
error() example, 140- 1 4 1  

passing multiple strings, 150 
"u ncaught exception" error, 151 

Error diagnostics, templates, 661 
Error handling 

See also Errors ; Exceptions. 
% for floating-point numbers, 

228-23 1 
catching exceptions, 238-240 
flies fail to open, 385 
GUis, 563 
hardware replication, 896 
1!0 errors. See 1/0 errors. 
1/0 streams, 1 127 
mathematical errors, 880 
modular systems, 896-897 
monitoring subsystems, 897 
negative numbers, 227-228 
positioning in flies, 389 
predictable en·ors, 895 
recovering from errors, 238-240 
regular expressions, 842-844 
resource leaks, 896 
self-checking, 896 
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Sl1.. (Standard Template Library), 
1098-1 100 

testing for errors, 224-227 
transient errors, 895-896 
vector resource exceptions, 677 

Error messages 
See also error(}; Reporting errors; 

runtime_error. 
exceptions, printing, 148-149 
templates, 661  
writing your own. 140 

Errors. 1 173 
See also Debugging: Testing. 
classifying. 132 
compile-time, 48-50, 132, 134-135 
detection ideal, 133 
error(}, 140-141  
estimating results, 155-156 
incomplete programs. 134 
input format, 64-65 
link-time. 132. 137-138 
logic. 132. 152-154 
poor specifications. 134 
recovering from, 238-240. See also 

Exceptions. 
sources of. 134 
syntax, 135-136 
translation units. 137- 138 
type mismatch, 136-137 
undeclared identifier, 256 
unexpected arguments, 134 
unexpected input. 134 
unexpected state, 134 

Errors, run-time, 132. 138- 140 
See also Exceptions. 
callee responsibility, 141-143 
caller responsibility, 140-141 
hardware violations, 139 
reasons for, 142-143 
reporting, 143-144 

Estimating development resources, 175 
Estimating results. 155- 156 
Exantples 

age distribution, 527-528 
calculator. See Calculator example. 
Date. See Date exantple. 

deciphering, 930-935 
deleting repeated words, 71 -73 
dictionary, 1 2 1-123. 756 
Dow Jones tracking, 750-753 
email analysis, 820-830 
embedded systems, 888-890 
enciphering (encryption}, 930-

935 
exponential fu nction, 5 17-518 
finding largest element, 687-690, 

696-697 
fruits. 747-750 
Gaussian elimination, 874-876 
graphics, 4 1 0-414. 432 
graphing data, 527-528 
graphing functions, 5 17-5 1 8  
GUI (graphical user interface). 

552-556, 560-56 1 , 563-564 
Hello, World!, 45-46 
intrusive containers, 1025-103 1  
Lines_ window, 552-556, 560-561 .  

563-564 
Link, 598-607 
list (doubly linked), 598-607 
map container, 747-753 
Matrix, 872-877 
palindromes, 637-64 1 
Pool allocato� 902-903 
Punct_stream, 397-40 1 
reading a single value, 353-357 
reading a structured file. 36 1-370 
regular expressions, 844-849 
school table. 844-849 
searching, 828-836 
sequences, 696-698 
Stack allocator, 903-904 
TEA (Tmy Encryption Algorithm), 

930-935 
text editor, 704-71 1 
vector. See vector example. 
Widget manipulation, 552-.156, 

1 1 67-1 170 
windows, 552-556 
word frequency, 745-477 
writing a program. See Calculator 

example. 
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Examples (amtU!ued) 
writing ftles, 346-348 
ZI P code detection. 828-83 6 

<exception>, 1097 
Exceptions. 144-148, 1086 

See also Error handling; Errors. 
bounds error, 147 
C++ and C. 992 
catch. 145, 238-240, 1087 
cerr. 149 
cout, 149 
destructors, 1088 
embedded systems, 894 
error messages, printing. 148-149 
exception, 150. 1099-1 100 
failure to catch, 151  
GUis, 563 
input, 148-151  
narrow_cast example, 1 5 1  
otT-by-one error, 147 
out_of_range. 147 
overview. 144- 145 
RAil (Resource Acquisition Is In.i· 

tialization). 1087 
range errors, 146-148 
re-throwing, 677, 1087 
runtime_error, 140, 149, 1 5 1  
stack unwinding, 1088 
standard library exceptions, 1099-

l lOO 
terminating a program. 140 
throw. 1 45. 1086 
truncation. 151  
type conversion, 1 5 1  
uncaught exception. IS 1 
user-defined types, 1087 
vector range checking. 668-669 
vector resources. See vector. 

Executable code, 48, 1 173 
E.xecu ting a program. l l ,  l l54 
exit(). terminating a program. l l 49 
explicit constructor, 62 1 -622. 1003 
Expression, 94-95, 1049- 1054 

cod.ing standards, 940-94 1 
constant expressions. 1056- 1057 

conversions, 1054-1056 
debugging. 159 

I N D E X  

grouping 0 .  95, 83 1,  837. 840 
lvalue, 94-95, 1054 
magic constants, 96, 141. 23 1-233, 

697 
memory management. 1057- 1058 
mixing types. 98-99 
non-obvious literals. 96 
operator precedence, 95 
operators, 97, 1049-1059 
order of operations, 179 
precedence, 1054 
preserving values. 1054-1055 
promotions, 98-99, 1054-1055 
rvalue, 94-95, 1054 
scope resolution. 1049 
type conversion, 98-99. 1 058-

1059 
usual arithmetic conversions, 1056 

Expression statement, 99 
Empty statement, 1001 
extern. 257, 999 
Extracting text from flies, 820-825. 

828-830 

F 
f/F sulftx, 1042 
fail() stream state, 349, 1 127 
Falling through end of functions. 272 
false, 1003-1004 
Fault tolerance, 892 
fclose(). 10 19-1020. l l 40 
Feature creep. 186, 199. l l73 
Feedback, programming, 3 6  
Fields, formatting, 383-384 
FILE, 1019-1020 
Hie 1/0, 343-344 

binary 110, 387 
convening representations, 368-

370 
close(). 346 
closing ftles. 346, l l 40-l l41 
modes, l l40- l l 4 1  
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open(), 346 
opening Hies. See Opening Hies. 
positioning in Hies, 389 
reading. See Reading Hies. 
writing. Sa Writing Hies. 

Flies, 1 173 
See also FJle 1/0. 
C++ and C, 1019-1020 
opening and closing, C·style 1/0, 

1 140- 1 1 4 1  
fill(), 1 1 1 6  
Fill color example, 456-459, 492 
fill_n(), 1 1 1 6 
find(), 728-73 1 

associative container operations, 
1 1 1 1  

finding links ,  600-602 
generic usc, 73 1 -732 
nonmoclifying sequence algo-

rithms, 1 1 13 
string operations, 815,  1 132 

find_end(), 1 1 1 3 
find_first_of(), 1 1 13 
find_if(), 728, 732-734 
Finding 

See abo Matching; Searching. 
associative container operations, 

1 1 1 1  
elements, 728 
links, 600-602 
patterns, 828-830, 833-836 
strings, 815, 1 1 32 

fixed format, 383 
fixed manipulator, 381,  1 130 
float type, 1062 
<float.h>, 858, 1 136 
Floating·point, 63, 855, 1 173 

% remainder (modulo), 199 
assigning in tegers to, 856-857 
assigning to integers, 857 
conversions, 1055 
fixed format, 383 
general format, 383 
input, 1 80, 1 99-200 
integral conversions, 1055 

literals, 180, 1042-1043 
mantissa, 857 
output, formatting, 380-381 
p•·ecision, 382-383 
and real numbers, 855 
rou nding, 382-383 
scientific format, 383 
truncation, 857 
vector example, 1 1 9- 121 

floor(), 879, 1 1 37 
FLT _DIG limit macro, 1 1 37 
FLTK (Fast Light Toolkit), 414, 1 1 58 

code portability, 414 
color, 447, 459-461 
current style, obtaining, 492 
do�oading, 1 158 
fill, 459 
in graphics code, 432 
installing, 1 159 
lines, drawing, 449, 452-453 
outlines, 459 
rectangles, drawing, 459 
testing, 1 1 60 
in VIsual Studio, 1 159- 1 1 60 
waiting for user action. 547-548, 

556-557 
FLT_MAX limit macro. 1 137 
FLT_MAX 10 EXP limit macro, 1 1 37 
FLT_MIN limit macro, 1 1 37 
flush manipulator, 1 1 30 
Flushing a buffer. 239-240 
Fonts for Graphics example. 463-464 
fopen(), 1019-1020, 1 1 40 
for-statement, 1 1 0-1 12 
Ford, Henry, 772 
for _each(), 1 1 13 
Formal arguments. See Parameters. 
Formatting 

See also 1!0 streams, 1 1 28-1 129. 
See also C-style 1/0, 1016-1019. 
See also Manipulators, 1 129-1 1 30. 
case, 393-394 
fields, 383-384 
precision, 382-383 
whitespace, 393 
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Fortran language, 786-788 
array indexing, 863 
complex, 882 
subscripting, 863 

FoJWard declarations, 259 
FoiWard iterators, 722-723, 1 103 
fprintf(}, 1017, 1 14 1  
Fragmentation, embedded systems, 

898, 899 
free(}, deallocate, 1009- 1010, 1 1 47 
Free store (heap storage) 

allocation, 578-579 
C++ and C, 1009-1 0 1 1  
deallocation, 584-586 
delete, 584-586. 586-590 
and destructors. See destructors. 
embedded systems, 898-902 
garbage collection, 585 
leaks, 584-586, 586-590 
new, 578-579 
object lifetime, 1048 

Freeing memory. Se( Deallocating 
memory. 

friend, 1003, 1073-1 074 
from_string(} example, 817-8 1 8  
front(}, first clement, 1 1 09 
front_inserter(}, 1 122 
fstream(}, 1 126 
<fstream>, 1096 
fstream type. 344-346 
Fully qualified names, 291-293 
Function example, 439, 5 15-5 1 8  
Function, 47, 1 1 2- 1 14 

See also Member functions. 
accessing class members, 1073- 1074 
arguments. See Function argu-

ments. 
in base classes, 496 
body, 47, 1 1 3 
C++ and C, 994-998 
callback, GUis, 544-546 
calling, 1066 
cleaning up, 233-234 
coding standards, 940-941 
common style, 482-483 
debugging. 158 

declarations, 1 15-1 1 6, 1066 
defurition, 1 12, 269, 1 173 
in derived classes, 493, 496 
falling through. 272 

I N D E X  

formal arguments. See Function pa-
rameters. 

friend declaration, 1073-1 07�� 
generic code, 483 
global variables, modifying, 267 
graphing. Se( Function example. 
inline, 3 1 2, 992 
linkage specifications, 1069 
naming. Se( Names paces. 
nesting, 267 
organizing. See Namespaces. 
overload resolution, 1067-1068 
overloading, 3 1 6-3 1 8, 51 6, 992 
parameter, 1 13 .  See also Function 

parameters. 
pointer to, 1000-1002 
post-conditions, 1 63-164 
pre-conditions, 1 6 1-163 
pure virtual, 1 175 
requirements, 1 5 1 .  See also Pre-

conditions. 
retum type, 47, 270-271 
return, 1 1 2-1 1 3, 271 -272, 1066 
standard mathematical, 518, 1 137-

1 138 
types as parameters. See Templates. 
uses for, 1 14- 1 15 
virtual, 1000- 1002. See also Vrrtual 

functions. 
Function activation record. 284 
Function argument 

See also Function parameter: 
Parameters. 

checking, 281-282 
conversion, 281-282 
declaring, 270-271 
formal. See· Parameters. 
naming, 270-271 
omitting, 270 
passing. Se( Function call. 

Function call. 282 
(} operator. 735-736 
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call stack, 287 
expression() call example, 284-287 
function activation record, 284 
history of, 785 
memory for, 577 
pass by const reference, 273-276, 

279-28 1 
pass by non-const reference, 279-

281 
pass by reference, 276-281 
pass by value. 273, 279-281 
recursive, 286 
stack growth, 284-287. Se( also 

Function activation record. 
temporary objects, 280 

Function-like macros, 1022-1023 
Function member 

definition, 301-302 
same name as class. See Construc

tors. 
Function object. 734-736 

() function call operator, 735-736 
abstract view, 736-737 
adaptors, 1 123 
arithmetic operations, 1 123 
parameterization, 736-737 
predicates, 737-738, 1 122-1 123 

Function parameter (formal argument) 
... ellipsis, unchecked arguments, 

1068 
pass by const reference, 273-276, 

279-281 
pass by non-const reference, 279-281 
pass by reference, 276-281 
pass by value, 273, 279-28 1  
temporary objects, 280 
unused, 270 

Function template 
algorithms, 659-661 
argument deduction, 664-665 
parameterized functions, 659-66 1  

<functional>, 1095, 1 122-1 123 
Functional cast, 1058 
Functional programming, 788 
Fused multiply-add, 868 

G 
Gadgets. See Embedded systems. 
Garbage collection, 585, 900-901 
Gaussian elimination, 874-875 
gcount(), 1 128 
general format, 383 
general manipulator, 381 
generate(), 1 1 1 6 
generate_n(), 1 1 1 6 
Generic code, 483 
Generic programming, 659-661,  782, 

1 173 
Geometric shapes, 423 
get(), 1 128 
getc(), 1018, 1 145 
getchar(), 1019, 1 1 45 
getline(), 39 1 -392, 815, 8 1 9, 1 128 
gets(), 1018 

C++ alternative », 1019 
dangerous, 1018 
scanf(}, 1 144- 1 145 

get_token() example, 1 94 
GIF images, 473-475 
Global scope, 264, 267, 1046 
Global variables 

functions modifying, 267 
memory for, 577 
order of initialization, 288-290 

Going out of scope, 266-267, 287 
good() stream state. 349, 1 127 
G P. Se( Generic programming. 
Grammar example 

alternation, panerns, 192-193 
English grammar, 191-192 
Expression example 186-1 9 1 ,  1 95-

198, 200-201 
parsing, 188-191  
repetition, patterns, 192-193 
rules us. tokens, 192-193 
sequencing rules, 1 92-193 
terminals. Se( Tokens. 
writing, 187, 1 92-193 

Graph.h, 4 17-4 1 8  
Graphical user interfaces. Se( GUis.  
Graphics, 408 
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Graphics (continued) 
See also Color; Graphics example : 

Shape. 
display model, 409-4 10 
displaying, 472-475 
drawing on screen, 4 1 9-420 
encoding, 473 
filling shapes, 427 
formats, 473 
geometric shapes, 423 
GIF, 473-475 
graphics libraries, 474-475 

graphs, 422-423 
images from flles, 429-430 
importance of, 408-409 

JPEG, 473-475 
line style, 427 
loading from flles, 429-430 
screen coordinates, 4 15-4 1 6  
selecting a sub-picture from, 473 
user interface. See G Uls (graphical 

user interfaces). 
Graphics example 

Graph.h, 417-4 18 
GUI system, giving control to, 

419 
header flles, 4 17-4 1 8  
main(), 4 1 7-4 1 8  
Point.h, 440 
points, 422-423 
Simple_window.h, 440 
wait_for_button(), 419 
Window.h, 440 

Graphics example, design principles 
access control. See Access control. 
attach() vs. add(), 483-484 
class diagram, 497 
class size, 481-482 
common style, 482-483 
data modification access, 484-485 
generic code, 483 
inheritance, interface, 504-505 
inheritances, implementation, 504-

505 
mutability, 484-485 
naming, 483-484 

I N D E X  

object-oriented programming, ben-
efits of, 504-505 

operations, 482-483 
private data members, 484-485 
protected data, 484-485 
public data, 484-485 
types, 480-482 
width/height, specifying, 482 

Graphics example, GUI classes, 438-
440 

&e alw Graphics example (interfaces). 
Button, 439 
ln_box, 439 

Menu, 439 
Out_box, 439 
Simple_window, 41 8-420, 439 
Widget, 548-550, 1 1 63-1 164 
Window, 439, 1 1 64-1 1 66 

Graphics example, interfaces, 438-
439 

See also Graphics example (GUI 
classes) .  

Axis, 420-422, 439, 518-52 1 
Circle, 464-467, 489 
Closed_polyline, 45 1-453 
Color, 445-447 
Ell ipse, 466-468 
Function, 439, 5 1 4-5 18 
lmage, 439, 472-475 
Line, 44 1 -444 
Lines, 443-445, 489 
Line_style, 448-450 
Mark, 470-472 
Marked_polyline, 468-469 
Marks, 469-470, 489 
Open_polyline, 450-45 1 ,  489 
Point, 422-423, 441 
Polygon, 423-424, 453-455, 489 
Rectangle, 424-427, 455-459, 489 
Shape, 440-44 1 , 445, 485-499, 

504-505 
Text, 427-429, 462-464 

Graphing data example, 527-534 
Graphing functions example, 510-5 14, 

52 1-526 
Graph_lib namespace, 417-4 18 
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Graph example 
&:e abo Grids. 
Axis, 420-422 
coordinates, 422-423 
drawing, 422-423 
points, labeling, 468-469 

greater(}, 1 1 22 
Greater than >, 67, 1052 
Greater than or equal >=, 1052 
greater _equal(), 1122 
Green marginal alerts, 3 
Grids, drawing, 444-445, 448-450 
Grouping regular expressions, 83 1 ,  

837, 840 
Guarantees, 676-678 
GUI system, giving control to, 419 
Guidelines. &:e Ideals. 
GUis (graphical user interfaces}, 540-

541 
See also Graphics example (GUI 

classes) .  
callback functions, 544-546 
callback implementation, 1 1 62-

1 1 63 
cb_next(} example, 544-546 
common problems, 562-564 
control inversion, 556-557 
controls. &:e Widgets. 
coordinates, computer screens, 

415-416 
debuggUng, 562-564 
error handling, 563 
examples, 552-556, 560-561,  

563-564 
exceptions, 563 
FLTK (Fast Light Toolkit}, 414 
layers of code, 544-545 
next() example, 546 
pixels, 4 15-416 
portability, 414 
standard library, 414-4 15 
system tests, 969-973 
toolkit, 4 14 
vector of references, simulating, 

1 1 66- 11 67 
vector_ref example, 1 1 66-1 1 67 

H 

wait loops, 547-548 
wait_for_button(} example, 547-548 
waiting for user action, 547-548, 

556-557 
Widget example, 548-556, 1 1 63-

1 1 64, 1 1 67- 1 170 
Window example, 552-556, 1 1 64-

1 1 66 

.h fJle suffix, 46 
Half open sequences, 694-695 
Hard real·time, 893, 942 
Hardware replication, error handling, 

896 
Hardware violations, 139 
Hash function, 753-754 
Hash tables, 753 
Hash values, 753 
Hashed container. See unordered_map. 
Hashing, 753 
Header fJles, 46, 1 173 

C standard library, 1097 
declarations, managUng, 261-262 
definitions, managing, 261-262 
graphics example, 417-418 
including in source fJles, 262-264, 

1090- 1091 
multiple inclusion, 1025 
standard library, 1095-1097 

Headers . Set Header files. 
Heap algorithm, 1 1 19-1 120 
Heap memory, 897-898. See also Free 

store. 
Hejlsberg, Anders, 796 
"Hello, World!" program, 45-47 
Helper functions 

!= inequality, 328 
== equality, 328 
class interfaces, 326-328 
Date example, 305-306, 327 
namespaces, 328 
validity checking date values, 306 

hex manipulator, 378-379, 11 30 
Hexadecimal digits, 393 
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Hexadecimal number system, 377-379, 
104 1 -1042 

Hiding information, 1 173 
Hopper. Grace Murray, 789-790 
Hyperbolic cosine, cosh(),  879 
Hyperbolic sine. sinh(),  879 
Hyperbolic tangent, tanh( ),  879 

I 
1/0 errors 

bad() stream state, 349 
clear(), 349-352 
end of file. 349 
eof() stream state, 349 
error handling. 1 127 
fail() stream state, 349 
good() stream state, 349 
ios_base, 35 1 
stream states, 349 
recovering from, 349-352 
unexpected errors, 349 
unget(). 349-352 

1/0 strecl!llS, 1 124-1 125 
<< output operator, 819 
>> input operator, 819 
cerr, standard error output stream, 

149, 1 1 25, 1 1 44 
cin standard input, 341 
class hierarchy. 8 1 9, 1 1 26-1 127 
cout standard output. 341 
error handling, 1 127 
formatting, 1 1 28-1 129 
fstream, 384-386. 389, 1 126 
get(), 819 
getline(). 8 1 9  
header flles, 1096 
ifstream, 384-386, 1 1 26 
input operations, 1 1 28 
input streams, 34 1 -343 
iostream library, 341 -343, 1 124-

1 125 
istream. 31H -343, 1 1 25-1 126 
istringstream. 1 126 
ofstream, 384-386, 1 126 
ostream, 341-343, 1 1 24-1 1 6  

I N D E X  

ostringstream, 384-386. 1 1 26 
output operations, 1 1 28-1 129 
output streams. 341-343 
standard manipulators, 378, 1 129-

1 1 3 1  
standard streams, 1 1 25 
states, 1 127 
streanl behavior, changing. 378 
streant butTers, streambufs, 1 125 
stream modes. 1 126 
string, 819 
stringstream, 390-391,  1 126 
throwing exceptions, 1 1 27 
unformatted input, 1 128 

IBM, 786-788 
lchbiah,Jean. 797 
IDE (interactive development environ· 

ment), 52 
Ideals 

abstraction level, 778-779 
bottom-up approach. 776-777 
class interfaces, 3 1 8  
code structure. 776 
coding standards, 936-937 
consistency, 780 
correct approaches. 776-777 
correctness, 775 
defmition, 1 173 
direct expression of ideas. 777-778 
efficiency. 775-776 
embedded systems, 894-895 
intportance of, 8 
KISS, 780 
maintainability, 775 
minimalism. 780 
modularity, 779-780 
on-tinte delivery, 776 
overview, 774-775 
performance. 775-776 
software, 34-37 
top-down approach, 776-777 

Identifiers. 1045. See also Names. 
reserved. 75-76. See abo Keywords. 

if-statements, 101 -103 
#ifdef, 1024- 1025 
#ifndef, 1025 
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ifstream type, 344-346 
imagO, imaginary part, 88 1 ,  1 139 
Image example, 439, 472-475 
Images. See Graphics. 
Imaginary part, 881 
Immutable values, class interfaces, 

325-326 
Implementation, 1 173 

class, 302-304 
inheritance, 504-505 
programs, 35 

lmplementation-defmed feature, 1039 
Implicit conversions, 62 1-622 
In·class member definition, 1074- 1075 
in mode, 385, 1 126 
ln_box example, 439, 550-55 1 
#include, 46, 262-264, 1090 
Include guard, 1025 
includes(), 1 1 1 9 
Including headers, 1090-1091 .  See also 

#include. 
Incrementing ++, 66, 695 

iterators, 694-695, 72 1, 1 101-1 104 
pointers, 630 
variables, 73-74, 97-98 

Indenting nested code, 269 
Inequality != (not equal) , 67, 1052, 

1064 
complex, 881 ,  1 138 
containers, 1 1 1 1  
helper function, 328 
iterators, 695, 1 102 
string, 67, 815, 1 132 

Infinite loop, 1 173 
Infinite recursion, 196, 1 173 
Information hiding, 1 173 
Information processing. 3 1 -32 
Inheritance 

class diagram. 497 
defmition, 496 
derived classes, 1078- 1079 
embedded systems, 912-916  
history of, 799 
implementation, 504-505 
interface, 504-505 
multiple, 1079 

pointers us. references, 598 
templates, 661-6 62 

Initialization, 69-73, 1 173 
arrays, 582-583, 633-634 
constants, 260, 324-325. 1062 
constructors, 306-309 
Date example, 305-309 
default, 261.  322-323, 1048 
invariants, 309, 676-677 
menus, 558 
pointer targets, 582-583 
pointers, 582-583, 635 
Token example, 183 

inline, 1003 
lnline 

functions. 992 
member functions, 312 

inner_product(), 729 
See also Dot product. 
description, 742-743 
gener.tlUdng, 743-744 
matrices, 868 
multiplying sequences, 1 139 
standard library, 729, 739 

inplace_merge(), 1 1 18  
Input, 60-62 

See also 1/0 streams; Input ». 
binary 1/0, 386-389 
C++ and C, 1017-1019 
calculator example, 177, 180, 183-

184, 199-200, 204-206 
case sensitivity, 64 
cin, standard input stream, 61  
dividing functions logically, 353-

356 
files. See FJle 1/0. 
format errors, 64-65 
individual characters, 392-394 
integers, 379-380 
istringstream, 390 
line-oriented input, 391-392 
newline character \n, 61-62, 64 
potential problems, 352-357 
prompting for, 6 1 ,  177 
separating dialog from function, 

35 6-357 
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Input (cmztinued) 
a series of values, 350-352 
a single value, 352-357 
source of exceptions, 148-151  
stringstream, 390-391 
tab character \t, 64 
terminating, 61-62 
type sensitivity, 64-65 
whitespace, 64 

Input >>, 61  
case sensitivity, 64 
complex, 88 1 ,  1 139 
formatted input, 1 128 
multiple values per statement, 65 
strings, 815, 1 132 
text input, 815, 819 
user-defmed, 359 
whitespace, ignoring, 64 

Input devices, 340-34 1 
Input iterators, 722-723, 1 103 
Input loops, 359-361  
Input/output, 341-343 

See abo Input; Output. 
butTering, 342, 402 
C++ and C. See stdio. 
computation overview, 91  
device drivers, 340 
errors. See 1/0 errors. 
flles. See Flle 1/0. 
formatting. See Manipulators; printf(). 
irregularity, 376 
istream, 34 1-348 
natural language diiTerences, 402 
ostream, 341-348 
regularity, 376 
streams . See 1!0 streams 
strings, 8 1 9  
text in GUis, 550-55 1 
whites pace, 393, 394-401 

Input prompt >, 22 1 
Input streams, 341-343. See abo 1!0 

streams. 
Inputs, testing, 961 
insert() 

list, 600-602, 71 3-715 

map container, 750, 751 
string, 815, 1 1 10, 1 132 
vector, 715-718 

inserter(), 1 122 
Inserters, 1 121-1 122 
Inserting 

list clements, 713-715 
into strings, 815, 1 1 10, 1 132 
vector clements, 715-718 

Installing 

I N D E X  

FLTK (Fast Light Toolkit), 1 159 
VIsual Studio, 1 152 

Instantiation, templates, 658-659, 
1084-1085 

int, integer type, 66-67, 78, 1062 
bits in memory, 78, 917 

Integers, 77-78, 854-855, 1 174 
assigning floating-point numbers 

to, 857 
assigning to floating-point num-

bers, 856-857 
decimal, 377-379 
input, formatting, 379-380 
largest, finding, 879 
literals, 1 04 1 
number bases, 377-379 
octal, 377-379 
outpu� formatting, 377-379 
reading, 379-380 
smallest, finding, 879 

Integral conversions, 1055 
Integral promotion, 1054-1055 
Interactive development environment 

(IDE), 52 
Interface classes. See Graphics example 

(interfaces). 
Interfaces, 1 174 

classes. See Class interfaces. 
inheritance, 504-505 
user. See User interfaces. 

internal manipulator, 1 130 
INT_MAX limit macro, 1 136 
INT_MIN limit macro, 1 136 
Intrusive containers, example, 1025-

103 1 
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Invariants, 309, 1 174 
&e also Post-conditions; Pre-condi-

tions. 
assertions, 161  
debu�ng, 160-161 
default constructors, 620 
documenting, 780 
Date example, 309 
invention of, 793 
Polygon example, 455 

Invisible. See Transparency. 
<iomanip>, 1096, 1 129 
<ios:>, 1096, 1 129 
<iosfwd>, 1096 
iostream 

butTers, 402 
C++ and C, 1016  
exceptions, 1099 
library, 341-343 

<iostream>, 1096, 1 129 
Irregularity, 376 
is_open(), 1 126 
isalnum() classify character, 393, 1 13 1  
isalpha() classify character, 247, 393, 

1 13 1  
iscntrl() classify character, 393, 1 13 1  
isdigitO classify character, 393, 1 13 1  
isgraphO classify character, 393, 1 13 1  
islower() classify character, 393, 1 13 1  
isprint() classify character, 393, 1 13 1  
ispunct() classify character, 393, 1 13 1  
isspace() classify character, 393, 1 13 1  
istream, 34 1-343, 1 125-1 126 

», text input, 815, 1 128 
>>, user-defmed, 359 
binary 1!0, 386-389 
corutecting to input device, 1 126 
me 1/0, fstream, 343-348, 1 126 
get(), get a single character, 393 
getline(), 391-392, 1 128 
stringstreams, 390-39 1 
unfonnaued input, 391-393, 1 128 
using together with stdio, 1016-

1017 
<istream>, 1096, 1 124, 1 128-1 129 

istream_iterator type, 758-761 
istringstream, 390 
isupper() classify character, 393, 1 131  
isxdigit() classify character, 393, 1 131  
Iteration 

See also lterators. 
control variables, 109 
defmition, 1 174 
example, 708-71 1 
for-statements, 1 10-1 12 
linked lists, 701-703, 708-71 1 
loop variables, 109 
strings, 815 
through values. See vector. 
while-statements, 108-109 

iterator, 1 108 
<iterator>, 1095, 1 121  
lterators, 694-696, 1 100-1101 ,  1 174 

See also S1L iterators. 
bidirectional iterator, 722-723 
category, 722-723, 1 103-1 105 
containers, 1 109, 1 104-1 1 OS 
empty list, 702 
example, 708-71 1 
forward iterator, 722-723 
header flles, 1095-1096 
input iterator, 722-723 
operations, 695, 1 102-1 103 
output iterator, 722-723 
us. pointers, 1 10 1  
random-access iterator, 723 
sequence of elements, 1 101-1 102 

iter_swap(), 1 1 1 6 

J 
Japanese age distribution example, 

527-528 
JPEG images, 473-475 

K 
Kennghan, Brian, 802-803, 988-989 
key_comp(), 1 1 12 
key_compare, 1 108 
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key_type. 1 108 
Key,value pairs, containers for, 744 
Keyvvords, 1003-1004, 1045-1046 
KISS, 780 
Knuth, Don. 774-775 
K&R, 802, 988 

L 
1/L sulftx, 104 1 
\1, ''lowercase character," regex, 837, 

1 135 
\L, "not lowercase." regex, 939, 1 135 
Label 

access control. 302, 502 
case, 104-107 
graph example, 5 1 8-521 
of statement, 1059 

Largest integer, finding, 879 
Laws of optimization, 893 
Layers of code, GUis, 544-545 
Layout rules, 939-940, 1000 
Leaks, memory, 584--586, 586-590, 

899 
Leap year, 305 
left manipulator, 1 1 30 
Legal programs, 1039 
length(). 8 15. 1 132 
Length of strings, finding, 8 15, 1012, 

1 1 32 
less(), 1 1 22 
Less than <. 1052 
Less than or equal <=, 67, 1052 
less_equal(). 1 1 22 
Letters, identifying, 247, 393 
lexical_cast, 819 
Lexicographical comparison 

< comparison. 8 15, 1 1 32 
<= comparison, 1 1 32 
> comparison, 1 132 
>= comparison, 1 1 32 
C-style strings, 1012 
lexicographical_compare(), 1 1 2 1  

Libraries, 5 1 ,  1 174 
Set• also Standard library. 
role in debugging. 158 
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uses for, 1 75 
Lifetime, objects, 1048-1049. 1 174 
Limit macros, 1 1 36-1 137 
Limits, 858 
<limits>, 858, 1096, 1 135 
<limits.h>, 858, 1 136 
Line comment //, 45 
Line example, 44 1-443 

VJ. Lines, 444 
Line-oriented input. 39 1 -392 
Linear equations example, 872-877 

back_substitution(), 874-875 
classic_elimination(), 874-875 
Gaussian elimination, 874-875 
pivoting. 875-876 
testing, 876-877 

Lines example, 443-445, 489 
w. Line, 444 

Lines (graphic), drawing 
Set: aho draw _lines() ;  Graphics. 
on graphs, 5 1 8-521 
line styles, 448-450 
multiple lines, 443-4-45 
single lines. 441-443 
styles, 427, 449 
visibility, 492 

Lines (of text), identifying, 707-708 
Line_style example, 448-450 
Lines_ window example, 552-556, 560-

561.  563-564 
Link example, 598-607 
Link-time errors. Set: Errors, link-time. 
Linkage convention, C. 999 
Linkage specifications, 1069 
Linked lists, 698. Set: aho Lists. 
Linkers, 5 1 ,  1 174 
Linking programs, 51 
Links, 598-602, 606-607, 699 
Lint, consistency checking program, 80 1 
Lisp language. 790-791 
list, 700, 1 107- 1 1 1 1  

add (), 600-602 
advance(), 600-602 
back(), 708 
erase(), 600-602, 713-715 
find(), 600-602 
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insert(), 600-602, 713-715 
operations, 600-602 
properties, 712-713 
referencing last element, 708 
sequence containers, l l 05 
subscripting, 700 

<list>, I095 
Lists 

containers, I l l  0 
doubly linked, 598, 698 
empty, 702 
erasing elements, 713-715 
examples, 598-600, 704-71 I 
finding l�, 600-602 
getting the nth element, 600-602 
inserting elements, 600-602, 713-

715 
iteration, 70 I-703, 708-71 I  
link manipulation, 600-602 
links, examples, 598-600, 606-607, 

699 
operations, 699-700 
removing elements, 600-602 
singly linked, 598, 698 
this pointer, 603-605 

Literals, 62, 104 I ,  l l74 
character, I59, I043-I044 
decimal integer, I04 I 
in expressions, 96 
f/F sufftx, 1042 
floating-point, 1042-1043 
hexadecimal integer, I04 I  
integer, I04 I 
1/L sufftx, 104I 
magic constants, 96, I 4 I ,  23 I -233, 

697 
non-obvious, 96 
null pointer, 0, I044-I 045 
number systems, I04 I -1042 
octal integer, I04 I  
special characters, I 043-I 044 
string, I59, I044 
termination, debugging, I59 
for types, 63 
u/U suffiX, I04I 
unsigned, I04I 

Local (automatic) objects, lifetime, 1048 
Local classes, nesting, 268 
Local functions, nesting, 268 
Local scope, 265-266, I046 
Local variables, array pointers, 636-637 
Locale, 402 
<locale>, I097 
logO, 879, l l 37 
logl O(), 879, l l 37 
Logic errors. See Errors, logic. 
Logical and &&, I052, 1057 
Logical operations, I057 
Logical or I I , I053, 1057 
logical_and(), l l22 
logical_not(), I I 22 
logical_or(), I I 22 
Logs, graphing, 5 I7-5 I8 
long integer, 9I7, I 062 
LONG_MAX limit macro, I I37 
LONG_MIN limit macro, I I 37 
Look-ahead problem, 202-207 
Loop, 109, l l i , l l74 

examples, parser, I 98 
infinite, I96, l l73 
testing, 965-966 
variable, I 09, I l l  

Lovelace, Augusta Ada, 797 
lower, 842, l l 34 
lower_bound(), 764, l l i2, I l l7 
Lower case. See Case. 
Lucent Bell Labs, 803 
Lvalue, 94-95, 1054 

M 
Machine code. See Executable code. 
Macro substitution, I 090-I 09I 
Macros, I 02 I -1022 

conditional compilation, 1024-
1025 

#define, I022-I024, I090-I09I 
function-like, I022-1023 
#ifdef, I 024-I 025 
#ifndef, I 025 
#include, I024, I090 
include guard, I025 
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Macros (conlinued) 
naming conventions, 102 1  
syntax, 1023-1024 
uses for, 1021 

Maddoc,Jolm, 830 
Magic constants, 96, 141 ,  23 1-233, 

697 
Magical approach to programming. 10 
main(), 46-47 

arguments to. 1040 
global objects, 1040 
return values, 47, 1039-1040 
starting a program, 1039-1040 

Maintainability, software, 34, 775 
Maintenance, 89 1 
make_heap(). 1 1 1 9 
make_pairO, 75 1 ,  1 124 
make_vec(), 677 
malloc(), 1009, 1 147 
Manipulators, 378, 1 129-1 1 3 1  

complete list of, 1 129-1 130 
dec, 1 130 
endl, 1 130 
fixed, 1 130 
hex, 1 1 30 
noskipws, 1 129 
oct, 1 130 
resetiosflags(), 1 130 
scientific. 1 1 30 
setiosflagsO. 1 130 
setprecision(), 1 130 
skipws, 1 129 

Mantissa, 857 
map, associative array, 744-750 

&e also set: unordered_map. 

[ 1. subscripting. 745, 1 1 1 1  
balanced trees, 748-750 
binary search trees, 747 
case sensitivity, No_case example, 

762-763 
counting words example, 745-747 
Dow Jones example, 750-753 
email example, 820-836 
erase(), 749, 1 1 10 
finding clements in, 745, 749, 

1 1 1 1-1 1 12 

fruits example, 747-750 
insert(), 750, 75 1 ,  1 1 10 
iterators, 1 105 
key storage, 745 
make_pair(), 75 1 

I N DE X  

No_case example, 750, 762-763 
Node example, 747-750 
red·black trees, 747 
lJJ. set, 756 
standard library, 1 107- 1 1 12 
tree structure, 747-750 
without values. See set. 

<map>, 744, 1095 
mapped_type, 1 108 
Marginal alerts, 3 
Mark example, 470-472 
Marked_polyline example, 468-469 
Marks example, 469-470, 489 
Mars Rover. 32-33 
Matching 

See also Finding; Searching. 
regular expressions, regex, 1 133-1 135 
text patterns. Set- Regular expressions. 

Math functions, 518. 1 137-1 138 
Mathematics. See Numerics. 
Mathematical functions, standard 

abs(), absolute value, 879 
acos(), arccosine. 879 
asin(), arcsine, 879 
alan(), arctangent, 879 
ceil(), 879 
<cmath>. 879, 1096 
<complex>, 881 
cos(), cosine, 879 
cosh(), hyperbolic cosine, 879 
errno, error indicator, 880 
error handling, 880 
expO, natural exponent, 879 
floor(), 879 
logO, natural logarithm, 879 
logl 0(), base·1 0 logarithm, 879 
sinO, sine. 879 
sinh(), hyperbolic si.ue, 879 
sqrtO, square root. 879 
tan(), tangent. 879 
tanh(), hyperbolic tangent, 879 
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Matrices, 863-865, 869 
Matrix library example, 863-865, 869 

(), subscripting (Fortran style) , 863 
[ ) , subscripting (C style), 860, 863 
accessing array clements, 863-865 
apply(), 867 
broadcast functions, 867 
clear _row, 870 
columns, 864-865, 870 
dimensions, 862-865 
dot product, 868 
fused multiply-add, 868 
initializing, 870 
inner _product, 868 
input/output, 870-871 
linear equations example, 874-877 
multidimensional matrices, 862-872 
rows, 864-865, 870 
scale_and_add(), 868 
slice(), 865-866, 869 
start_row, 870 
subscripting, 863-865, 869 
swap_columns(), 870 
swap_rows(), 870 

max(), 1 1 20- 1 1 2 1  
max_element(), 1 12 1  
max_size(), 1 1 1 1  
McCarthy, John, 79 1 
Mcllroy, Doug, 802, 998 
Medicine, compu ter use, 30 
Member, 301-303 

See also Class. 
allocated at same address, 1082-

1083 
class, nesting, 268 
definition, 1071 
defuutions, 107 4-1 075 
in-class definition, 107 4-1075 
out-of-class definition, 1074-1075 
static const int members, 1075 

Member access 
See also Access control. 
. (dot) , 1072 
-> (arrow), 593, 1072 
:: scope resolution, 3 10, 1072 
notation, 182 

operators, 593 
this pointer, 1073 
by unqualilled name, 1072 

Member function 
See al.so Class members; Constructors; 

Destructors; Date example. 
calls, 1 1 8  
nesting, 267 
Token example, 182-183 

Member initializer list, 183 
Member selection, expressions, 105 1  
Member types 

containers, 1 108 
templates, 1086 

memchr(), 1 1 47 
memcmp(), 1 147 
memcpyO, 1 1 47 
mem_fun() adaptor, 1 1 23 
mem_fun_ref() adaptor, 1 1 23 
memmove(), 1 147 
Memory, 574-576 

addresses, 574 
allocating. See Allocating memory. 
automatic storage, 577 
bad_alloc exception, 1058 
C staudard library functions, 

1 1 46-1 147 
for code, 577 
deallocatiug, 584-586 
embedded systems, 902-904 
exhausting, 1058 
free store, 577-579 
freeing. See Deallocatiug memory. 
for function calls, 577 
for global variables, 577 
heap. See Free store. 
layout, 577 
object layout, 497-499 
object size, getting, 576-577 
pointers to, 574-576 
sizeof, 576-577 
stack storage, 577 
static storage, 577 
text storage, 577 

<memory>, 1095 
memset(), 1 1 47 
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Menu example, 439, 55 1 ,  557-562 
merge(), 728, 1 1 18 
Messages to the user. 551 
min(), 1 120- 1 1 2 1  
min_element(), 1 1 21 
Minimalism, ideals, 780 
Minus -. See Subtraction. 
minus(), 1 123 
Missing copies, 624 
MIT, 79 1 ,  803 
Modifying sequence algorithms, 1 1 14-

1 1 1 6 
Modular systems, error handling, 

896-897 
Modularity, ideals, 779-780 
Modulo (remainder) %, 66. See also 

Remainder. 
modulus(), 1 1 23 
Monitoring subsystems, error handling, 

897 
move(), 494, 549 
Move backward -=. 1064 
Move fmward +=, 1064 
Multi·paradigm progranuning languages, 

783 
Multidimensional matrices, 862-872 
multimap, 744, 824-825, 1 105 
<multimap>, 744 
Multiplicative operators, expressions, 

105 1  
multiplies(), 1 1 23 
Multiply • ,  66, 105 1  
Multiply and assign •=, 67 
multiset, 744. 1 105 
<multiset>, 744 
Mutability, 484-485, 1 1 74 

class interfaces, 326-328 
and copying, 494-496 

mutable, 1003 
Mutating sequence algorithms, 1 1 14-

1 1 16 

N 
\n newline, character literal, 6 1-62, 

M, l043 

I N D EX 

Named character classes, in regular ex· 
pressions, 84 1 -84 2 

Names, 74-77 
_ (underscore), 75, 76 
capital letters, 76-77 
case sensitivity, 75 
confusing, 77 
conventions, 74-75 
declarations, 255-256 
descriptive, 76 
function, 47 
length, 76 
overloaded, 1 38, 500, 1067-1068 
reserved, 75-76. See also Keywords. 

namespace, 269, 1003 
Namespaces, 290, 1088 

See also Scope. 
:: scope resolution. 291 
C++ and C. 1008 
fully qualified names, 291-293 
helper functions, 328 
objects, lifetime, 1048 
scope, 264, 1046 
std, 291-292 
for the s·rr., 1098 
using declarations, 29 1-293 
using directives, 29 1 -293, 1089 
variables, order of initialization. 

288-290 
Naming conventions, 74-77 

coding standards, 939-940 
enu merators, 3 1 6  
functions, 483-484 
macros, 1021 
role in debugging, 158 
scope, 267 

narrow_cast example, 1 5 1  
Narrowing conversions, 80-83 
Narrowing errors, 151  
Natural language differences, 402 
Natural logaritlmts, 879 
Naur, Peter, 792-793 
negate(), 1 1 23 
Negative nu mbers, 227-228 
Nested blocks, 268-269 
Nested classes, 268 
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Nested functions, 268 
Nesting 

blocks within functions, 268-269 
classes within classes, 268 
classes within functions, 268 
functions within classes, 267 
fu nctions within functions, 268 
indenting nested code, 269 
local classes, 268 
local functions, 268 
member classes, 268 
member functions, 267 
structs, 1003 

new, 578, 582 
C++ and C, 992, 1003 
and delete, 1057-1058 
embedded systems, 894, 898-90 1 ,  

901 -902 
example, 578-579 
exceptions, 1099 
types, constructing, 1050, 105 1  

<new>, 1097 
New-style casts, 1006 
next_permutation(), 1 1 20 
No-throw guarantee, 677 
noboolalpha, 1 129 
No_case example, 750 
Node example, 747-750 
Non-algorithms, testing, 961-968 
Non·errors, 137 
Non-intrusive containers, 1025 
Nonmodifying sequence algorithm, 

1 1 13-1 1 14 
Nonstandard separators, 394-401 
norm(), 88 1 ,  1 138 
Norwegian Computing Center, 798-

800 
noshowbase, 379, 1 1 29 
noshowpoint, 1 1 29 
noshowpos, 1 1 29 
noskipws, 1 129 
not, synonym for !, 1003, 1004 
Not·conforrni.ng constructs, 1039 
Not !, 1050 
noll () adaptor, 1 123 
not2() adaptor, 1 123 

Notches, graphing data example, 5 1 8-
52 1 , 532-534 

Not equal != (inequality), 67, 1052, 
1064 

not_eq, synonym for !=, 1003, 1004 
not_equaUoO, 1 1 22 
nouppercase manipulator, 1 1 30 
nth_element(), 1 1 17 
Null pointer, 583-584, 634-635, 

1044-1045 
Number example, 187 
Number systems 

base·2, binary, 1042 
base-8, octal, 377-380, 104 1 - 1042 
base-10, decimal, 377-380, 1041-

1042 
base- 1 6, hexadecimal, 377-380, 

104 1 -1042 
<numeric>, 1096, 1 139 
Numerical algorithms. See Algorithms, 

numerical. 
Numerics, 854-855 

absolute values, 879 
arithmetic function objects, 1 1 23 
arrays. See Matrix library example. 
<cmath>, 879 
columns, 859 
complex, 88 1 ,  1 1 38-1 139 
<complex>, 881 
floating-point rounding errors, 

856-857 
header files, 1096 
integer and floating-point, 856-857 
integer overflow, 854-857 
largest integer, fmdi.ng, 879 
limit macros, 1 136-1 137 
limits, 858 
mantissa, 857 
mathematical fu nctions, 879-880 
Matrix library example, 861 -872 
multi-dimensional array, 859-861 
numeric_limits, 1 1 35-1 136 
numerical algorithms, 1 1 39 
overflow, 854-858 
precision, 854-858 
rand(), random number, 878 
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Numerics (amlinued) 

random numbers, 877-879 
real numbers, 855. Ste also Floating· 

point. 
results, plausibility checking, 855 
rounding errors. 855 
rows, 859 
size, 854-858 
sizeof(), 856 
smallest integer, fmding, 879 
srandO, seed random number gen· 

erator, 878 
standard mathematical functions, 

879-880, 1 137-1 138 
truncation, 857 
valarray, 1 139 
whole numbers. Ste Integers. 

Nygaard, Kristen, 798-800 

0 
.obj file suffix, 48 
Object code. 48, 1 174. Ste also Exe

cutable code. 
Object·oriented programming, 1 174 

"from day one," 10 
VJ. generic programming, 660 
for graphics, benefits of, 504-505 
history of. 78 1-783, 798-799 

Object. 60, 1 1 74 
aliases. See• References. 
behaving like a function. &e Func· 

tion object. 
constructing, 182-183 
copyut� 1077- 1078, 1081 
current (this), 3 1 2-3 1 3  
Date example, 328-332 
initializing. 322-325. Ste also Con· 

stn1ctors. 
layout in memory, 304, 497-499 
lifetime, 1048-1049 
named. Ste Variables. 
Shape example, 487 
sizeof(), 576-577 
state, 301.  Ste also Value. 
type. 77-78 
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value. Ste Value. 
oct manipulator, 378-379, 1 130 
Octal number system, 377-379, 1041-

1042 
OIT·hy·one error, 147 
ofstream, 345-346 
Old-style casts, 1006 
On·time delivery, ideals. 776 
One-dimensional (10) matrices, 865-

868 
\ooo octal, character literal, 1043 
OOP. Ste Object-oriented programming. 
Opaque types. 1026 
open(), 346, 1 1 26 
Open modes, 385-386 
Open shapes, 450-45 1 
Opening flles, 344-346 

Ste also FJle 110. 
app mode ("append"), 385 
ate mode ("at end"), 385 
binary flles, 386-389 
binary mode, 385 
C-style 1/0, 1 140- 1 1 4 1  
failure to open, 385 
f1ie sueams, 344-346 
in mode ("for reading") ,  385 
nonexistent files, 385-386 
open modes, 385-386 
out mode ("for writing"), 385 
testing after opening. 346 
trunc mode (''truncate"), 385 

Open_polyline example, 450-45 1 . 489 
Operations. 66-6B, 301 ,  1 174 

chailling, 178- 179 
graphics classes, 482-483 

operator, 100:� 
Operator overloading, 3 1 6  

C++ standard operators, 3 1 7-
3 1 8  

restrictions, 3 17 
user·defined operators. 3 17 
uses for, 3 1 6-3 18 

Operator, 97 
! not, 1050 
!= not·equal (inequality). 1052 
& (unary) address of, 574, 1050 
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& (binary) bitwise and, 917, 1052, 
1057 

&& logical and, 10.52. 1057 
&= and and assign, 1053 
% remainder (modulo), 105 1 
%= remainder (modulo) and as· 

sign, 1053 
• (binary) multiply, 105 1 
• (unary) object contents. pointing 

to. 1050 
·= multiply and assign, 1053 
+ add (plus), 1051 
++ increment, 1050 
+= add and assign, 1053 
- subtract (minus), 105 1 
-- decrement, 1050 
-= subtract and assign, 1053 
-> (arrow) member access, 1050-

105 1  
. (dot) member access, 1050, 105 1 
I divide. 105 1 
I= divide and assign. 1053 
:: scope resolution. 1049 
< less than. 1052 
« shift left. 1 05 1 .  See also ostream. 

«= shift left and assign, 1053 
<= less than or equal, 1052 
= assign, 1053 
== equal, 1052 
> greater than, 1052 
>= greater than or equal, 1052 
» shift right, 105 1 .  See also 

istream. 
»= shift right and assign, 1053 
f: conditional expression (arith· 

metic if), 1053 
[ I  subscript. 1050 
" bitwise exclusive or, 1052. 1057 
"= xor and assign, 1053 
I bitwise or, 1052, 1057 
I = or and assign, 1053 
I I  logical or, 1053. 1057 
- complement. 1050 
additive operators, 105 1 
const_cast. 1050, 1058 
delete, 105 1 ,  1057- 1058 

delete[ !. 105 1 ,  1057- 1058 
dereference. See Contents of. 
dynamic_cast, 1050, 1058 
expressions. 1049-1059 
new, 1050, 105 1 ,  1057-1058 
reinterpret_cast, 1050, 1058 
sizeof, 1050, 1057 
static_cast, 1050, 1058 
throw, 1053 
typeid, 1050 

Optimization, laws of, 893 
or, synonym for 1 .  1003, 1004 
Order of evaluation, 287-288 
or_eq, synonym for I =, 1003, 1004 
ostream, 34 1-343, 1 124-1 125 

<<, text output, 81 5, 819 
«, user·defmed, 357-359 
binary 110. 386-389 
connecting to output device. 1 126 
file 110, fstream, 343-348, 1 126 
stringstreams, 390-391 
using together with stdio, 1016-

1017 
<ostream>, 1096, 1 124, 1 129 
ostream_iterator type, 758-761 
ostringstream, 390 
out mode, 385, 1 126 
Out·of·class member defmition, 1 074-

1075 
Out·of·range conditions, 581 
Out_box example, 439, 550-55 1 
out_of_range, 147 
Output, 1 174 

See also Input/output; 110 streams. 
devices, 340-34 1 
to flle. See FJle 110, writing files. 
floating-point values, 380-381 
format specifier %, 1 1 4 1  
formatting. See Input/output (for· 

matting) . 
integers, 377-379 
iterator, 722-723, 1 1 03 
operations, 1 128-1 129 
streams. See 110 stream modeL 
to string. See stringstream. 
testing, 96 1 
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Output «, 47, 67, 1 129 
complex. 88 1 ,  1 139 
string, 815 
text output, 8 15, 819 
user·defined, 357-359 

Overflow, 854-858, 1 174 
Overloading, 1067-1068, 1 174 

alternative to, 516 
C++ and C,  992 
on const, 626-627 
linkage, 138 
operators. S« Operator overloading. 
and overriding 500 
resolution, 1067-1068 

Override, 500-501 ,  1 1 74 

p 
Padding. C-style 1/0, 1 143 
pair, 1 123-1 124 

reading sequence elements. 1 1 12-
1 1 1 3  

searching, 1 1 1 7-1 1 1 8 
soning, 1 1 17-1 1 18 

Palindromes, example, 637-638 
Paradigm, 78 1-783, 1 174 
Parameterization. function objects, 

736-737 
Parameterized type, 659-66 1 
Parameters, 1 174 

functions, 47, 1 13 
list, 1 13 
naming, 270-271 
omitting, 270 
templates, 656-659, 662-664 

Parametric polymorphism, 659-66 1 
Parsers, 1 88, 193 

functions required, 194 
grammar rules, 192-193 
Expression example, 187, 195-198, 

200-201 
rules VJ. tokens, 192-193 

Parsing 
expressions. 1 88-191  
grammar, English, 191 -192 
grammar, programming. 1 88-191 

tokens, 1 88-191 
partial_sort(). 1 1 17 
partial_sort_copyO, 1 1 17 
partial_sum(), 739, 1 1 39 
partition(), 1 1 1 8 
Pascru language, 794-796 
Passing arguments 
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by const reference, 273-276, 279-281 
copies of, 273 
modified arguments, 276-279 
by non-const reference. 279-281 
by reference, 276-281 
temporary objects, 280 
unmodified arguments, 275 
by value, 273, 279-281 

Patterns. See Regular expressions. 
Performance 

C++ and C, 990 
ideals, 775-776 
testing, 979-981 
timing, 98 1 -983 

Permutations, 1 120 
Petersen, Lawrence. 15 
Pictures. Set.' Graphics. 
Pivoting, 875-876 
Pixels, 415-4 16 
plus(). 1 123 
Point example, 44 1 -423 
pointer, 1 1 08 
Pointers, 579-580 

See aho Array; lterators; Memory. 
• contents of, 579-580 
• pointer to (in declarations), 573, 

1062 
- >  (arrow) member access. 593, 

1050-105 1  
[ )  subscriptin� 579-580 
arithmetic, 630-63 1 
array. See Pointers and arrays. 
casting. See Type conversion. 
to class objects, 59 1 -593 
conversion. See Type conversion. 
to current object, this, 603-605 
debu�� 634-637 
declaration, C-style strings. 10 15-

1016 
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decrementing, 630 
defurition, 573-574. 1 175 
deleted, 636 
explicit type conversion. Se( Type 

conversion. 
to functions, 1000-1002 
incrementing, 630 
initializing, 582-583, 635 
11.1. iterators, 1 101 
literal (0), 1044-1 045 
to local variables, 636-637 
moving around, 630 
to nonexistent elements, 635-636 
null, o, 583-584, 634-635, 1044-

1045 
NULL macro, 1 1 44 
w. objects pointed to, 579 
out·of·range conditions, 581 
palindromes. example, 640-641 
ranges. 580-582 
reading and writing through, 579-

582 
semantics, 6 1 9  
size, getting. 576-577 
subscripting [ I, 579-580 
this, 654-655 
unknown, 593-595 
void•, 593-595 

Pointers and arrays 
converting array names to, 63 1 -

633 
pointers to array clements, 628-

63 1 
Pointers and inheritance 

polymorphism, 9 12-916 
a problem 905-909 
a solution, 909-9 12 
user-defined interface class. 909-912 
vector alternative, 909-9 12 

Pointers and references 
differences, 595-596 
inheritance. 598 
list example, 598-607 
this pointer, 603-605 
parameters, 596-597 

polar(), 88 1 ,  1 1 38 

Polar coordinates, 88 1 ,  1 1 38 
Polygon example, 423-424, 453-455, 

489 
VJ. Closed_polyline. 453 
invariants, 455 

Polyline example 
closed, 45 1 -453 
marked, 468-469 
open, 450-45 1 
w. rectangles, 425-427 

Polymorphism 
ad hoc, 659-66 1  
embedded systems, 91 2-9 1 6  
parametric, 659-661 
run-time, 496 
templates, 660-66 1 

Pools, embedded systems, 902-903 
Pop-up menus, 559 
pop_back(), 1 1 10 
pop_front(), 1 1 1 0 
pop_heap(), 1 120 
Portability, 1 1  

C++, 1039 
FLTK, 4 14, 1 158 

Positioning in files, 389 
Post-conditions, 1 63-164, 96 1-962, 

1 175. Se( also Invariants. 
Post-decrement -, 1050, 1064 
Post-increment ++, 1050, 1064 
Postftx expressions, 1050 
Pre-conditions, 1 6 1 - 1 63, 96 1 -962, 

1 175. Se( also Invariants. 
Pre-decrement --, 1050, 1064 
Pre-increment ++, 1050, 1064 
Precedence, in expressions, 1054 
Precision, numeric, 382-383, 854-858 
Predicates, 733 

on class members, 737-738 
function objects, 1 122-1 123 
passing. Se( Function objects. 
searching, 733-734 

Predictability, 893 
error handling, 895 
features to avoid. 894 
memory allocation, 898, 902 

Preprocessing. 263 
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Preprocessor directives 
#define, macro substitution, 1090-

1 09 1  
#ifdef, 1024 
#ifndef. 1025 
#include, including headers, 1090-

1091 
Preprocessor, 1090 

coding standards, 939 
prev _permutation(), 1 120 
Princeton University, 803 
print, character class, 842, 1 134 
Printable characters, identifying, 393 
printf() family 

% ,  conversion specification, 1 1 4 1  
conve1·sion specifications, 1 1 4 1 -

1 143 
gets(), 10 18, 1 1 44-1 145 
output formats, user·defmed types, 

1 144 
padding, 1 143 
printf(), 1016-10 17, 1 1 41 
scanf(), 1017-10 19, 1 1 44- 1 1 45 
stderr, 1 1 44 
stdin, 1 144 
stdio, 1 1 44-1 145 
stdout, 1 144 
synchronizing with 1/0 streams, 

1 0 1 6-1017 
truncation, 1 1 43 

Printing 
error messages, 148-149 
variable values, 246 

priority _queue container adaptor, 1 1 06 
Private, 308 

base classes, 502 
implementation details, 208, 3 02-

304, 3 08-3 09 
members, 484-485, 496, 50 1 -502 
private: label, 302, 1003 

Problem analysis, 173 
development stages, 174 
estimating resources, 175 
problem statement, 174-175 
prototyping, 176 
strategy, 17 4-176 

I N DE X  

Problem statement, 174-175 
Procedural programming languages. 

781 
Programmers 

S« also Programming. 
communication skills, 22 
computation ideals, 92-94 
skills requirements, 22-23 
stereotypes of, 2 1 -22 
worldwide numbers of, 807 

Programming, xxiii, 1 175 
S« also Computation; Software. 
abstract-first approach, 10 
analysis stage, 35 
author's philosophy, 6-9 
bottom-up approach, 9 
C first approach, 9 
concept-based approach, 6 
concrete-first approach, 6 
depth-first approach, 6 
design stage, 35 
environments, 52 
feedback, 36 
generic, 1 173 
implementation, 35 
magical approach, 10 
object-oriented, 10, 1 174 
programming stage, 35 
software engineering principles 

first approach, 1 0  
stages of, 3 5  
testing stage, 3 5  
top-down approach, 1 0  
writing a program. S« Calculator 

exantple. 
Programming languages, 783-784. 

786, 807 
Ada, 796-798 
Algol family, 791 -798 
Algol60, 792-794 
assemblers, 785 
auto codes, 785 
BCPL, 803 
C, 800-804 
C#, 796 
C++, 804-806 
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COBOL, 788-790 
Common Lisp, 790 
Delphi, 796 
Fortran, 786-788 
Lisp. 790-79 1 
Pascal, 794-796 
Scheme, 790 
Simula, 798-800 
Turbo Pascal, 796 

Programming philosophy, 772-773, 1 175. 
Se( also C++ programs; Program

ming ideals; Programming lan
guages. 

Programming ideals 
abstraction level, 778-779 
aims, 772-774 
bottom-up approach, 776-777 
code structure, 776 
consistency, 780 
coiTect approaches, 776-777 
correcUless, 775 
data abstraction. 78 1 
desi1-able properties, 773 
direct expression of ideas, 777-778 
efficiency, 775-776 
generic programming, 782 
KISS, 780 
mai.ntainability, 775 
minimalism, 780 
modularity, 779-780 
multi-paradigm, 783 
object-oriented programming, 78 1 -

783 
on-time delivery. 776 
overview, 774-775 
paradigms, 781-783 
performance, 775-776 
philosophies, 772-774 
procedural, 781 
styles, 781 -783 
top·dowtl approach, 776-777 

Programming, history, 783-784 
Se( also Programming languages. 
BNF (Backus-Naur) Form, 788, 

793 
classes, 799 

CODASYL committee, 789 
early languages, 784-786 
frrst documented bug, 790 
frrst modem stored program, 784-

786 
first programming book, 785 
function calls, 785 
functional programming. 788 
inheritance, 799 
K&R. 802 
lint, 801 
object-oriented design. 798-799 
STL (Standard Template Library). 

805-806 
virtual functions, 799 

Programs, 44, 1 175 
Se( also Compu tation: Software. 
audiences for, 46 
compiling. Se( Compilation. 
computing values. Se( Expressions. 
conforming, 1039 
experimental. Se( Prototyping. 
flow, tracing, 72 
implementation defmed. 1039 
legal, 1039 
linking, 5 1  
not-conforming constructs, 103 9 
run. Se( VIsual Studio; Command 

line. 
starting exerution, 46-47, 1039-1040 
stored on a computer. 108 
subdividing, 175-176 
terminating, 206-207, 1039-1040 
text of. Se( Source code. 
translation units. 5 1  
troubleshooting. Se( Debugging. 
unspecified constructs, 1039 
valid, 1039 
writing, example. Se( Calculator 

example. 
writing your first, 45-47 

Program organization 
Se( also Programming ideals. 
abstraction, 92-93 
divide and conquer, 93 

Projects, VIsual Studio, 1 153- 1 154 

1219 



1220 

Promotions, 98-99, 1054-1055 
Prompting for input, 6 1  

>, input prompt, 22 1 
calculator example, 177 
sample code, 220-223 

Proofs, testing, 952 
protected, 484-485, 496, 502, 1 003 
Prototyping, 176 
Pseudo code, 177, 1 175 
Public, 3 02, 1003 

base class, 500-501 
interface, 208, 488-49 1 
member, 302 
public by default, struct, 303 
public: label, 302 

punct, punctuation character class, 
842, 1 134 

Punct_stream example, 397-401 
Pure virtual functions, 487, 1 175 
push_ back() 

growing a vector, 1 18- 1 19 
queue operations, 1 1 10 
resizing vector, 652-653 
stack operations, 1 1 10 
string operations, 1 132 

push_front(), 1 1 1 0 
push_heapO, 1 1 19 
put(), 1 129 
putbackO 

naming convention, 209 
putting tokens back, 204-205 
return value, disabling, 210 

pule(), 1 1 45 
putcharO, 1 145 
Putting back input, 204-206 

Q 
qsort(), 1 149 
<queue>, 1095 
queue container adaptor, 1 106 
Qyeue operations, 1 1 10 

R 
\r carriage return, character literal, 

1043 
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r ,  reading file mode, 1 140 
r+, reading and writing me mode, 1 140 RAil (Resource Acquisition Is Initial-

ization) 
definition, 1 175 
exceptions, 675-676, 1087 
testing, 964-965 
for vector, 678-680 

rand (), 878, 1 149 
<random>, 1096 
Random numbers, 877-879 
Random-access iterators, 723, 1 104 
Range 

definition, 1 175 
errors, 146-148 
pointers, 580-582 
regular expressions, 84 1-842 

Range checking 
( ] ,  628-63 1 ,  668-671 
arrays, 628-63 1 
at(), 668-669 
compatibility, 670 
constraints, 670 
design considerations, 670-671 
efficiency, 670 
exceptions, 668-669 
macros, 671-672 
optional checking, 671 
overview, 668-669 
pointer, 628-63 1 
vector, 668-671 

rbeginO, 1 109 
Re-throwing exceptions, 677, 1087 
read(), unformatted input, 1 128 
Readability 

expressions, 95 
indenting nested code, 269 
nested code, 269 

Reading 
dividing functions logically, 353-

356 
files. See Reading files. 
with iterators, 1 101-1 102 
numbers, 2 1 2-213 
potencial problems, 352-357 
separating dialog from function, 

356-357 
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a series of values, 350-352 
a single value, 352-357 
into strings, 815 
tokens, 183- 184 

Reacting files 
binary 1/0, 387 
convening representations, 368-

370 
to end of me, 360 
e.xample, 346-348 
fstream type. 344-346 
ifstream type, 344-346 
in-memory representation, 362-

364 
input loops, 359-3 6 1  
istream type, 343-348, 387 
ostream type, 387 
process steps, 344 
structured files, 361-370 
structured values, 3 64-3 68 
symbolic representations, 3 68-370 
terminator character, specifying. 

360 
real(), 88 1 ,  1 138 
Real numbers, 855 
Real part, 881 
Real-time constraints, 893 
Real-time response, 890 
realloc(), 1010, 1 1 47 
Recovering from errors, 23 8-240, 349-

352. Set· also Error handling; 
E.xceptions. 

Rectangle e.xample. 424-427, 455-459. 
489 

Recursion 
defini tion, 1 175 
infinite, 196, 1 173 
looping. 198 

Recursive function calls, 286 
Red-black trees, 747. See also Associative 

containers; map. 
Red margin alerts, 3 
Reference semantics, 619 
References, 227, 1 175 

See also Aliases. 
& in declarations, 273-277 
to arguments, 274-276 

circular. See Circular reference. 
to last vector clement, back(), 708 
vs. pointers. See Pointers and refer-

ences. 
<regex>, 1096, 1 13 1  
regex. See Regular e.xpressions. 
regex_error e.xception, 1099 
regex_match(), 1 133 

vs. regex_search(). 847 
regex_search(), 1 133 

w. regex_match(), 847 
Regression tests, 953 
Regular e.xpressions, 830-832, 836, 

1 175 
See also regex pattern matching. 
character classes. 837-838 
error handling. 842-844 
grouping. 83 1 ,  837, 840 
syntaX. See regex operators. 
uses for, 830 
ZIP code e.xample, 844-849 

regex pattem matching, 830-832 
S end of line, 837. 1 1 34 
() grouping, 83 1 ,  837, 840 
• zero or more occurrences, 832. 

837-838 
+ one or more occurrences. 837. 

838-839 
- range specification, 84 1 
. wildcard, 837 
f optional occurrence, 83 1-832. 

837, 838-839 
[I character class, 837 
\ escape character, 830-83 1 .  837 
\ as literal, 841 
" negation, 837 
" start of line. 837 
(} count, 83 1, 837-839 
I alternative (or), 83 1-832, 837, 

840-84 1 
alternation, 840-84 1 
character classes. See regex charac-

ter classes. 
character sets, 84 1-842 
definition, 834 
grouping. 840 
matches. 834 
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regex pattern matching (amtinued) 

pattern matching, 836-837 
ranges, 84 1 -842 
regex_match(), 1 133 
regex_search(), 1 133 
repeating patterns. 838-840 
searching with, 833-836, 844 
smatch. 834 
special characters. See regex opera· 

tors. 
sub-patterns, 831 ,  834 
regex operators. 837, 1 133-1 134 

regex character classes, 84 1-842 
alnum, 842 
alpha, 842 
blank, 842 
cntrl, 842 
d, 842 
\ D, 838 
\d, 837 
digit, 842 
graph, 842 
\L, 838 
\1. 837 
lower, 842 
print, 842 
punct, 842 
regex_match() l!J. regex_search(), 847 
s. 842 
\5, 838 
\s. 837 
space, 842 
\U,  838 
\u, 837 
upper, 842 
w, 842 
\W, 837 
\w, 837 
xdigit, 842 

Regularity, 376 
reinterpret_cast, 594-595, 1058 

casting unrelated types, 594 
hardware access, 905 

Relational operators, 1052 
Reliability. software. 34, 890 
Remainder and assign %=. 1053 

I N D E X  

Remainder % (modulo) , 66, 1 05 1  
correspondence t o  • and / ,  68 
floating-point, 199, 228-23 1 
i.ntegcr and floating-point, 66 

remove(), 1 1 1 5 
remove_copy(), 1 1 15 
remove_copy_if(), 1 1 15 
rend(), 1 109 
Repeated words examples, 71 -74 
Repeating patterns, 192- 193 
Repetition, 1 134. See aLso Iterating: regex. 
replace(), 1 1 14 
replace_copyO, 1 1 14- 1 1 15 
Reporting errors 

Date cxantple, 3 13-3 1 4  
debugging, 157 
error(), 140-1 4 1  
run·time, 143- 144 
syntaX errors, 135-136 

Representation, 301, 649-65 1 
Requirements, 1 175 

See also Invariants: Post-conditions: 
Pre-conditions. 

for functions, 151  
reserve(), 65 1-652, 717, 1 1 1 1  
Reserved names, 75-76. See aLso Key· 

words. 
resetiosflagsO manipulator, 1 130 
resize(), 652, 1 1 1 1  
Resource, 1 175 

leaks, 893, 896 
limitations, 890 
management. Ser Resource man

agement. 
testing, 962 
vector example, 672-673 

Resource Acquisition Is Initialization 
(RAil). 1 175 

exceptions, 675-676, 1087 
testing, 964-965 
for vector, 678-680 

Resource management, 672-677 
See aLso vector example. 
auto_ptr, 678 
basic guarantee, 677 
error handling, 677 
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guarantees, 676-678 
make_ vee(), 677 
no-throw guarantee, 677 
problems, 673-675 
IWI, 675-676. 678-680 
resources, examples, 672-673 
strong guarantee, 677 
testing, 964-965 

Results, 9 1 .  Srt• also Retu rn  values. 
return statement, 271-272 
Retum types, functions, 47, 270-271 
Retum values, 1 12 

functions, 1066 
no return value, void, 2 1 0  
omitting, 1 13 
retuming, 271-272 

reverse(), 1 1 1 5 
reverse_copyO, 1 1 15 
reverse_iterator, 1 1 08 
Revision history, 236-237 
Rho, 88 1 
R.ichards, Martin, 803 
right manipulator, 1 130 
Ritchie, Dermis, 80 1.  806, 988-989, 

998 
Robot-assisted surgery, 3 0  
rotate(), 1 1 15 
rotate_copyO, 1 1 15 
Rounding, 382, 1 175 

See also Truncation. 
errors, 855 
floating-point values, 382-383 

Rows, matrices, 864-865, 870 
Rules, for programming. See Ideals. 
Rules, grammatical, 192-193 
Run-time dispatch, 496. See also VIrtUal 

functions. 
Run·time errors. See Errors, run·time. 
Run-time polymorphism, 496 
runtime_error, 140, 149, 1 5 1  
Rvalues, 94-95, 1054 

s 
s, character class, 842, 1 134 
\5, "not space," regex, 838, 1 135 

\s, "space," regex, 837, 1 135 
Safe conversions, 79-80 
Safety, type. See Type, safety. 
Scaffolding, cleaning up, 233-234 
scale_and_add() example, 868 
scale_and_multiplyO example, 876 
Scaling data, 53 1 
scanf(), 1018, 1 144-1 145 
Scenarios. See Use cases. 
Scheme language, 790 
scientific format, 383 
scientific manipulator, 3 8 1 ,  1 130 
Scope, 264-265, 1046-1047, 1 175 

class, 264, 1046 
enumerators, 3 1 6  
global, 264, 267, 1046 
going out of. 266-267 
kinds of, 264-265 
local, 265-266, 1046 
namespace, 264, 269. 1046 
resolution ;;, 29 1 ,  1049 
statement, 265, 1046 

Scope and nesting 
blocks within functions, 268-269 
classes within classes, 268 
classes within functions, 268 
functions within classes, 267 
functions within functions, 268 
indenting nested code, 269 
local classes, 268 
local functions, 268 
member classes, 268 
member functions, 267 
nested blocks, 268-269 
nested classes, 268 
nested functions, 268 

Scope and object lifetime, 1048-1049 
free-store objects, 1048 
local (automatic) objects, 1048 
namespace objects, 1048 
static class members, 1048 
temporary objects, 1048 

Scope and storage class, 1047-1048 
automatic storage, 1047 
free store (heap), 1047 
static storage, 1047 
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Screens 
See also G VIs (graphical user inter-

faces). 
data graph layout, 530-53 1 

drawing on, 4 1 9-420 

labeling, 42 1 

search(), 763-764, 1 1 13 

Searching 
See also find(); find_ifO ; Fmding; 

Matching. 
algorithms for, 1 1 17- 1 1 1 8 

binary searches, 747, 763-764 

in C, 1 149 

for characters, 7 1 1  

(key, value) pairs, by key. See Asso-
ciative containers. 

for links. 600-602 

map elements. Ser unordered_ map. 
predicates, 733 

with regular expressions, 833-836, 

844-849, 1 133-1 135 

search_n(), 1 1 13 

Self reference. See this. 
Self assignment, 654 

Self-checking, error handling, 896 

Separators, nonstandard, 394-401 

Sequence containers, 1 1 05 

Sequences, 694, 1 175 

algorithms. Set• standard library al
gorithms. 

differences between adjacent cle-
ments, 739 

empty. 702 

exantple, 696-698 

half open. 694-695 

Sequencing rules, 192- 193 

Server farms, 3 1  

set. 744. 755-757 

iterators, 1 105 

vs. map. 756 

subscripting, 756 

set(), 590-59 1 

<set>, 744, 1095 

Set algorithms, 1 1 18-1 1 1 9 

setbase() manipulator, 1 130 

set_difference(), 1 1 1 9  

setfiiiO manipulator, 1 130 

set_intersection(), 1 1 1 9 

I N D E X  

setiosflagsO manipulator, 1 130 

setprecision() manipulator, 382-383, 

1 130 

set_symmetric_difference(), 1 1 19 

set_union(), 1 1 1 9 

setw() manipulator, 1 130 

Shallow copies, 619 

Shape cxan1ple, 485-486 

abstract classes, 487-488 

access control, 488-49 1 

attaching to Window. 533-534 

as base class, 44 1 ,  487-488 

clone(), 496 

copying objects, 494-496 

draw(). 491-494 

draw_lines(), 491 -494 

fill color, 492 

implementation inheritance, 504-505 

interface inheritance, 504-505 

line visibility, 492 

move(), 494 

mutability, 494-496 

number_of_points(), 445 

object layout, 497-499 

object-oriented progranmting, 504-

505 

point(), 445 

slicing shapes, 495 

virtual function calls, 493, 498-

499 

Shift operators, 105 1 

Shipping, computer usc, 26-28 

short, 917. 1062 

Shorthand notation, regular expres-
sions, 1 135 

showbase, manipulator, 379, 1 129 

showpoint, manipulator, 1 129 

showpos. manipulator, 1 1 29 

Shuffie algorithm, 1 1 15-1 1 1 6 

Signed and unsigned integers, 922-

926 

signed type, 1062 

Simple_window, 418-420. 439 

Simplicity ideal, 92-94 
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Simula language, 798-800 
sinO, sine, 879, 1 137 
Singly-linked lists, 598, 698 
sinh(), hyperbolic sine, 879, 1 137 
Size 

bit strings, 916-917 
containers, 1 1 10-1 1 1 1  
getting, sizeofO, 576-577 
of numbers, 854-858 
vectors, getting, 1 18- 1 1 9  

size() 
container capacity, 1 1 1 1  
number of elements, 1 18, 815 
string length, 815, 1 132 
vectors, 1 1 8, 121  

sizeof(), 576-577, 1057 
object size, 1050 
value size, 856 

size_type, 704, 1 108 
skipws, 1 129 
slice(), 865-866, 869 
Slicing 

matrices, 865-866, 869 
objects, 495 

Smallest integer, fmding, 879 
smatch, 834 
Soft real-time, 893 
Software, 19, 1 175 

See also Programming; Programs. 
affordability, 34 
correctness, 34 
ideals, 34-37 
maintainability, 34 
reliability, 3 4 
troubleshooting. See Debugging. 
useful design, 34 
uses for, 19-32 

"Software engineering principles ftrst" 
approach to programming, 10 

Software layers, G Uls, 544-545 
sort(), 728, 762-763, 1 1 17 
sort_heap(), 1 120 
Sorting 

algorithms for, 1 1 17-1 1 18 
in C, qsort(), 1 149 
sort(), 728, 762-763, 1 1 17 

Source code 
defirlltion, 48, 1 175 
entering, 1 154 

Source files, 48, 1 175 
adding to projects, 1 1 54 

space, 842, 1 134 
Space exploration, computer use, 32-33 
Special characters, 1043-1044 

regular expressions, 1 133-1 134 
Specialization, 658-659, 1084-1085 
Specifications 

definition, 1 175 
source of errors, 134 

Speed of light, 96 
sprintf(), 1 14 1  
sqrt(), square root, 879, 1 137 
Square of abs(), norm, 881 
srand(), 878, 1 149 
<sstream>, 1096 
stable_partition(), 1 1 18 
stable_sort(), 1 1 17 
<Stack>, 1096 
stack container adaptor, 1 106 
Stack of activation records, 284 
Stack storage, 577 
Stacks 

container operations, 1 1 10 
embedded systems, 902, 903-904, 

897-898 
growth, 284-287 
unwinding, 1088 

Stages of programming, 35 
Standard 

conformance, 801, 935, 1039 
ISO, 1039, 1 175 
manipulators. See Manipulators. 
mathematical functions, 879-880 

Standard library 
See also C standard library; SlL 

(Standard Template Library) . 
algorithms. See Algorithms. 
complex. See complex. 
containers. See Containers. 
Gstyle 1/0. See printf() family. 
Gstyle strings. See Gstyle strings. 
date and time, 1 147-1 149 
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Standard library (amtitwed) 

function objects. See Function ob
jects. 

110 streams. See Input: Input/output; 
Output. 

iterators. See lterators. 
mathematical functions. See Mathe

matical functions (standard) . 
numerical algorithms. See Algo-

rithms (numerical) ; Numerics. 
string. See string. 

cinae, 982-983, 1 1 47-1 149 
valarray. See valarray. 

Standard library header files, 1095-
1097 

algorithms, 1095-1096 
C standard libraries, 1097 
containers, 1095-1096 
110 streams, 1096 
iterators, 1095-1096 
numerics, 1096 
string manipulation, 1096 
utility and language support, 1097 

Standard library 110 streams, 1 124-
1 125. See also 110 streams. 

Standard library string manipulation 
character classification, 1 13 1  
containers. See vector; map; set: 

unordered_map. 
input/output. See 110 streams. 
regular expressions. � regex. 

string manipulation. See string. 
Stanford University, 791 
Starting programs, 1039-1040. See also 

main(). 

State, 90, 1 175 
1/0 stream, 1 1 27 
of objects, 301 
source of errors, 134 
testing, 96 1 
valid state, 309 
validity cltecking, 309 

Statement scope, 265, 1046 
Statements. 47 

grammar, 1059-106 1 
named sequence of. See Functions. 
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terminator ; (semicolon), 50, 99 
Static storage, 577, 1047 

class members, lifecinae, 1048 
embedded systems, 897-898, 905 
static, 1047 
static const, 321 .  See also const. 

static const int members, 1075 
static local variables, order of ini-

tialization, 290 
std namespace, 29 1 -292, 1098 
stderr, 1 144 
<stdexcepl>. 1097 
stdi n, 10 1 6, 1 1 44. See also stdio. 
stdio, standard C 1/0, 1016,  1 1 44-

1 145 
EOF macro, 1019-1020 
errno. error indicator, 880 
fclose(), 1019-1020 
FILE, 1019-1020 
fopenO, 1019-1020 
getchar(). 1019, 1044 
gets(). 10 18, 1 1 44-1 145 
input, 1017-1019 
output, 10 16-1017 
printfO. 1016-1017, 1 141-1 144 
scanf() ,  1018, 1 144 
stderr, cerr equivalent. 1 1 44 
stdin, cin equivalent, 1016, 1 1 44 
stdout, cout equivalent, 1016, 1 144 

std_lib_facilities.h header me, 1 153-
1 154 

stdout, 1016, 1 1 44. See also stdio. 
Stepanov, Alexander, 694, 696, 805-

806 
Stepping through code, 1 60 
Stereotypes of programmers, 21-22 
S1L (Standard Template Library), 

690, 1 1 10-1 124 
See also C standard library: Stan-

dard library. 
algorithms. See S1L algorithms. 
containers. See S1L containers. 
function objects. &·e S1L function 

objects. 
history of, 805-806 
ideals, 690-694 
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iterators. See S1L iterators. 
namespace. std, 1098 

S1L algo•ithms, 1 1 12-1 121 
Set• Algorithms (S1L) . 
alternatives to, 1 1 SO 
built-in arrays, 718-71 9 
computation vs. data, 691 -693 
heap. 1 1 19-1 120 
max(), 1 1 20-1 121 
min(), 1 1 20- 1 1 2 1  
modifying sequence. 1 1 1 4-1 1 1 6 
mutating sequence, 1 1 14-1 1 1 6 
nonmodifying sequence. 1 1 13-

1 1 14 
pemlll tations, 1 1 20 
searching, 1 1 17-1 1 18 
set, 1 1 1 8-1 1 1 9 
shuffie, 1 1 1S-1 1 1 6  
sorting, 1 1 17- 1 1 1 8 
utility, 1 1 16-1 1 17 
value comparisons, 1 120- 1 1 2 1  

STL comainers, 720-72 1 .  1 10S-1 1 1 2 
almost, 72 1-722, 1 106 
assignmeuts, 1 1 08-1 109 
associative, 1 1 0S, 1 1 1 1-1 1 12 
capacity, 1 1 10- 1 1 1 1  
comparing. 1 1 1 1  
constructors, 1 108-1 109 
container adaptors, 1 1 06 
copying. 1 1 1 1  
destructors, 1 108- 1 109 
elemem access. 1 1 09 
information sources about, 720-

721 
ite•·ator categories for, 722-723, 

1 104-1 1 0S, 1 109 
list operations, 1 1 10 
member types, 1 108 
operations overview. 1 107 
queue operation s. 1 1 1 0 
sequence, 1 1  OS 
size, 1 1 10-1 1 1 1  
stack operations, 1 1 1 0 
swapping, 1 1 1 1  

S1L function objects, 1 122- 1 1 23 
adaptors, 1 1 23 

arithmetic operations, 1 1 23 
inserters, 1 12 1-1 122 
predicates, 738-73 8, 1 1 22- 1 123 

S1L iterators, 1 100-1 10S 
basic operations, 69S 
categories, 1 1 03-1 1  OS 
definition, 694, 1 100-1 1 0 1  
description, 69S-696 
empty lists, 702 
example, 708-71 1 
operations, 1 102-1 103 
vs. pointers, 1 1 01 
sequence of elements, 1 1 0 1-1 102 

Storage class, 1047-1048 
automatic storage, 1047 
free store (heap).  1047 
static storage. 1047 

Storing data. See Containers. 
str(), string extractor, 390-39 1  
strcat(), 10 1 2-1013 .  1 1 46 
strchr(), 1014, 1 146 
strcmp(), 1012-1013, 1 1 46 
strcpyO, 10 12-1013. 101S, 1 146 
Stream 

buffers, 1 1 2S 
iterators, 7S8-76 1 
modes, 1 1 26 
states, 349 
types, 1 126 

streambuf, 402, 1 12S 
<Streambuf>, 1096 
<String>, 1096, 1 1 28 
String literal, 62, 1044 
string, 66. 81 S, 1 17S 

See also Text. 
+ concatenation, 68-69. 81S,  1 13 2  
+= append, 81S 
< lexicographical comparison. 815 
<< output. 8 1 S  
= assign, 8 1 5  
== equal. 81S 
» input, 81S 
II subscripting, 81S 
almost container, 1 1 06 
append(), 81S 
basic_string. 816 
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string (continued) 
C++ to C-style conversion, 815 
c_str(), C++ to C-style conversion, 

345, 815 
erase(). removing characters, 815 
exceptions, 1099 
find(), 815 
from_string(), 8 17-818 
getline(), 815 
input terminator (whitespace). 65 
Insert(), adding characters, 815 
length(). number of characters, 815 
lexical_cast example, 819 
literals, debugging, 159 
operations. 815, 1 132 
operators, 66-67, 68 
palindromes. example, 637-638 
pattern matching. Set� Regular ex-

pressions. 
properties, 712-713 
size, 78 
size(), number of characters, 815 
standard library. 8 1 6  
string t o  value conversion, 817-818 
stringstream, 816-8 18 
subscripting I I .  815 
to_stringO example, 8 1 6-8 18 
values to string conversion, 816 
11.1. vector. 715 
whitespace, 818-8 19 

stringstream, 390-39 1 , 8 1 6-8 1 8, 1 126 
strlen(). 1012. 1 1 46 
strncatO. 10 12-1013. 1 146 
strncmp(), 10 12-1013,  1 146 
strncpyO. 10 12-1013, 1 146 
Strong guarantee. 677 
Stroustn1p, Bjame 

advisor. 785 
biography, 1 4-15 
Bell Labs colleagues, 80 1 -804. 989 
education on invariants, 793 
inventor of C++, 804-806 
Kristen Nygaard, 799 

strpbrk(). 1 146 
strrchrO. 1 146 
strstr(). 1 1 46 

strtod(), 1 146 
strtol(), 1 1 46 
strtoul(), 1 146 
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struct, 303-304. See also Data structures. 
struct tag names pace, 1 002- 1003 
Stmcture 

of data. See Data structures. 
of pro�, 2 13-2 14 

Structured files. 361-370 
Style, defmition. 1 1 76 
Sub·patterns, 83 1 , 834 
Subclasses, 496, 1 1 16. See alw Derived 

classes. 
Subdividing programs, 175-176 
Subscripting, 1 1 6-1 17 

0 Fortran style, 863 
II C Style, 669, 863 
arrays. 628. 863 
at(), checked subscripting. 669, 

1 109 
Matrix example. 863-865, 869 
poimers, 1064 
string, 8 15, 1 132 
vector, 579-580, 592-593, 625-

626 
Substrings. 827 
Subtract and assign -=. 67, 1053. 1 103 
Subtraction - (minus) 

complex. 881.  1 1 38 
definition, 105 1 
integers. 1064 
iterators, 1 104 
pointers, 1064 

Subtype, definition, 1 1 76 
Summing values. See accumulate(). 
Superclasses, 496, 1 176. See also Base 

classes. 
swap(). 279, 1 1 1 1 . 1 1 1 6  
Swapping 

columns. 870 
containers, 1 1 1 1  
ranges. 1 1 1 6  
rows. 870. 876 

swap_ranges(), 1 1  H i  
switch-statements 

break, case tennination, 104-107 
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case labels, 104-107 
most common error, 107 
1�. string·based selection, 105 

Symbol tables, 2'l6 
Symbolic constants 

See also Enumerations. 
cleaning up, 231-233 
defining, with static const, 32 1 

Symbolic names. tokens, 232 
Symbolic representations, reading, 

368-370 
Syntax analyzers, 188 
Syntax checking, 48-SO 
Syntax errors 

examples, 48-50 
overview, 135-136 
reporting, 135-13 6 

Syntax macros, 1023-1024 
system(}, 1 149 
System, definition, 1 176 
System tests, 969-973 

T 
\1 tab character, 108, 1043 
tan(}, tangent, 879, 1 137 
tanh(}, hyperbolic tangent, 879, 1 137 
TEA (Tmy Encryption Algorithm). 

785, 930-935 
Tedmical U 1uversity of Copenhagen, 

793 
Telecommunications. 28-29 
·rc:mperatul'e data, example, 1 19-121 
template, 1003 
·rcmplate, 656, 1083, 1 176 

arguments, 1083-1084 
class, 658-661 .  See also Class tern· 

plate. 
compiling, 66 1 
containers, 661-662 
error diagnostics, 661 
function, 659-665. See also Func· 

tion template. 
generic programming, 659-661 
inheritance, 661 -662 
instantiation, 658-659, 1084-1085 

integer parameters, 662-664 
member types, 1086 
parameters, 656-659, 662-664 
parametric polymorphism, 659-

661 
specialization, 1084-1085 
type parameters, 656-659 
typename, 1086 
weaknesses, 661 

Template-style casts, 1006 
Tempor.u-y objects, 280, 1048 
Terminals, in grammars. See Tokens. 
Termination 

abort(} a program, 1 149 
on exceptions, 140 
exit(} a program, 1 149 
input, 61-62, 177 
normal program termination, 

1039-1040 
for string input, 65 
zero, for C-style strings, 633 

Terminator character, specifying, 360 
Testing, 952-953, 1 176 

&e also Debugging. 
algori�uns, 961-968 
for bad input, 102-103 
black box, 952-953 
branching, 966-968 
bug reports, retention period, 953 
calculator example, 223-227 
classes, 973-976 
code coverage, 968 
debugging, 979 
dependencies, 962-963 
designing for, 978-979 
faulty assumptions, 976-978 
flies, after opening, 346 
FLTK, 1 1 60 
inputs, 961 
loops, 96.1-966 
non-algorithms, 961-968 
outputs, 961 
performance, 979-983 
pre- and post-conditions, 961-962 
proofs, 952 
RAil, 964-965 
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Testing (continued) 
regression tests, 953 
resource management, 964-965 
resources, 962 
stage of progranuning, 3S 
state, 961 
system tests, 969-973 
test cases, defmition, 1 64 
test harness, 9S7-959 
timing, 981-983 
white box, 952-953 

Testing units 
formal specification, 954-955 
random sequences, 959-961 
strategy for. 955-957 
systematic testing, 954-955 
test harness, 957-959 

Text 
character strings. See string; C-style 

strings. 
email example, 820-825, 828-830 
extracting text from fJ.!es, 820-82S, 

828-830 
fmding patterns, 828-830, 833-

836 
in graphics. See Text. 
implementation details, 826-828 
input/output, GUis, 550-55 1 
maps. See map. 
storage, 577 
substrings. 827 
vector example, 1 2 1-123 
words frequency example, 745-

747 
Text example, 427-429, 462-464 
Text editor example, 708-71 1  
11teta. 88 1 
this pointer. 603-605. 654-655 
11wmpson, Ken, 80 1-803 
Three-way comparison. 1012 
Thmwing exceptions. 14S, 1086 

110 stream. 1 127 
re-throwing, 677 
standard library, 1099- 1 100 
throw, 145, 1053. 1086-1088 
vector, 672-673 

Tune 
date and time, 1 1 47-1 149 
measuring, 981-983 

Tunekeeping, computer use, 26 
time_t, 1 147 
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Tmy Encryption Algorithm \fEA), 
785, 930-935 

tm, 1 147 
Token example, 181-184 
Token_stream example, 204-2 12 
tolower(), 394, 1 1 3 1  
Top-down approach, 10, 776-777 
to_string() example. 8 1 6-8 18 
toupperO, 394, 1 13 1  
Tracing code execution, 1 60-1 6 1  
Trade-otT, definition, 1 176 
transform(), 1 1 1 4  
Transient errors, handling, 89S-896 
Translation units, 5 1 ,  137-138 
Transparency, 447, 457 
Tree structure, map container. 747-750 
true, 1003, 1004 
trunc mode. 385. 1 126 
Truncation, 82, 1 176 

C-style 110, 1 143 
exceptions, 151  
floating-point numbers, 857 

try-catch. 144-150. 668-669, 1003 
Turbo Pascal language, 796 
Two-dimensional matrices, 868-870 
Two's complement. 922 
Type conversion 

casting, 594-595 
const_cast. casting aw<�y const. 

S94-595 
exceptions. lS 1 
explicit, 594 
in expressions, 98-99 
function arguments, 281-282 
implicit. 62 1-622 
int to pointer. 576 
operators, 1058-1059 
pointers, 576, 594-595 
reinterpret_cast, 594 
safety, 79-83 
static_ cast. 594 
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string to value, 817-8 18 
truncation, 82 
value to string, 816 

Type conversion, implicit, 621-622 
bool, 1 055 
compiler warnings, 1055-1056 
floating-point and integral, 1055 
integral promotion, 1054-1055 
pointer and reference, 1055 
preserving values, 1054-1055 
promotions, 1 054-1055 
user-defined, 1056 
usual arithmetic, 1056 

Type safety, 78-79 
implicit conversions, 80-83 
narrowing conversions, 80-83 
pointers, 580-583, 634-637 
range error, 146-148, 580-582 
safe conversions, 79-80 
unsafe conversions, 80-83 

typedef, 703 
typeid, 1003, 1 050, 1099 
<lypeinfo>, 1097 
typename, 1003, 1086 
Type, 60, 77, 1 176 

aliases, 703 
built-in. See Built-in types. 
checking, C++ and C, 998-999 
generators, 658-659 
graphics classes, 480-482 
mismatch errors, 136-137 
mixing in expressions, 98-99 
naming. See Namespaces. 
objects, 77-78 
operations, 301 
organizing. See Namespaces. 
parameterized, 659-661 .  See also 

Templates. 
as parameters. See Templates . 
pointers. See Pointer. 
promotion, 98-99 
representation of object, 304, 497-

499 
safety, 78-79, 82 
subtype, 1 176 
supertype, 1 176 

u 

truncation, 82 
user-defmed. See UDTs. 
uses for, 300 
values, 77 
variables . See Variables, types. 

u/U sufftx, 104 1  
\U, "not uppercase," regex, 838, 1 1 35 
\u, "uppercase character," regex, 837, 

1 1 35 
UDT (User-defined type). See Class;  

Enumeration. 
Unary expressions, 1050-1051 
"Uncaught exception" error, 1 5 1  
Unchecked conversions, 905 
"Undeclared identifier" error, 256 
Undefmed order of evaluation, 261 
unget(), 349-352 
ungetc(), 1 1 45 
Uninitialized variables, 322-325, 1 176 
uninitial ized_copyO, 1 1 1 6-1 1 17 
uninitialized_fill(),  1 1 1 6-1 1 17 
union, 1082-1 083 
unique(), 1 1 1 4  
unique_copyO, 728, 757, 760-76 1 ,  1 1 14 
Unit tests 

formal specification, 954-955 
random sequences, 959-961 
strategy for, 955-957 
systematic testing, 954-955 
test hamess, 957-959 

Unnamed objects, 459-461 
<unordered_map>, 744, 1096 
unordered_map, 744 

See also map. 
fmding elements, 753-755 
hash tables, 753 
hash values, 753 
hashing, 753 
iterators, 1 105 

unordered_multimap, 744, 1 105 
unordered_multiset, 744, 1 105 
<unordered_sel>, 744, 1096 
unordered_set, 744, 1 105 
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Unsafe conversions, 80-83 
unsetf(), 380 
Unsigned and signed, 922-926 
unsigned type, 1062 
Unspecified constructs, 1039 
upper, character class, 842. 1 134 
upper_bound(), 764, 1 1 12, 1 1 17 
Uppercase. See Case. 
uppercase, 1 129 
U.S. Department of Defense, 796 
U.S. Navy, 789-790 
Use cases, 177. 1 176 
User-defined conversions, 1056 
User-defined operators, 1054 
User·defmed types (UDTs), 300 

See also Class; Enumeration. 
exceptions, 1087 
operator overloading, 1069-1070 
operators, 1070 
standard library types, 300 

User interfaces 
console input/output, 540 
graphical. See GUI. 
web browser, 540-541 

using declarations, 291-293 
using directives, 291-293, 1089 
Usual arithmetic conversions, 1056 
Utilities, S'Il... 

function objects, 1 122-1 123 
inserters, 1 12 1-1 122 
make_pairO. 1 124 
pair, 1 123-1 124 

<utility>, 1096, 1 123-1 124 
Utility algorithms, 1 1 1 6-1 1 17 
Utility and language support. header 

fJ.!es, 1097 

v 
\v vertical tab, character literal, 1043 
valarray, 1 106, 1 139 
<valarray>, 1096 
Valid programs, 1039 
Valid state, 309 
Validity checking, 309 

constructors, 309 

enumerations, 3 15  
invariants, 309 
rules for, 309 

Value semantics, 619  
value_compO, 1 1 12 
Values, 77-78, 1 176 

I N D E X  

symbolic constants for. See Enu
merations. 

and variables, 62, 73-74. 242 
value_type, 1 108 
Variables, 62-63, 1 1 6-1 17, 1061 -1062 

++ increment, 73-74 
= assignment, 69-73 
changing values, 73-74 
composite assignment operators, 

73-74 
constructing, 287-288 
declarations, 258, 260-261 
going out of scope. 287 
incrementing ++, 73-74 
initialization. 69-73 
input, 60 
naming, 74-77 
type of, 66-67 
uninitialized, class interfaces, 322-

325 
value of, 73-74 

<vector>, 1096 
vector example, 570-573, 612-618, 

646-656 
-> access through pointer. 593 
. (dot) access, .192-593 
= assignment, 653 
[) subscripting, 625-626, 668-672 
allocators, 666 
at(), checked subscripting, 669 
changing size, 646-656 
copying, 613-618 
destructor, 506-590 
element type as parameter, 656-

659 
erase() (removing elements),  715-

718 
excepcions, 668-669, 678-680 
explicit constructors, 62 1-622 
inheritance, 661-662 
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insert() (adding elements),  715-718 
overloading on const, 626-627 
push_back(), 652-653, 667 
represelllation, 650-65 1 
reserve(). 651 ,  667, 679-680 
resize(), 6S2, 668 
subscripting, 579-580, 592-593, 

625-626 
vector, standard library. 1 107-1 1 1 1  

< less than. 1 1 1 1  
= assignment, 1 109 
== equality, 1 1 1 1  
I I  subscripting, 1 109 
assign(). 1 109 
at(), checked subscripting, 1 109 
back(), reference to last element, 

1 109 
begin(), iterator to first element, 

1 109 
capacity(), 1 1 1 1  
const_iterator, 1 108 
constructors. 1 108-1 109 
destructor. 1 109 
difference_type, 1 108 
end(), one beyond last element, 

1 109 
erase(). removing elements, 1 1 10 
front(). reference to first element, 

1 109 
insert(), adding elements, 1 1 10 
iterator, l l08 
member functions, lists of, 1 108-

1 1 1 1  
member types, list of, 1 108 
push_back(),  add element at end, 

1 1 10 
size(), number of elements, 1 1 1 1  
size_type, 1 108 
value_type, 1 108 

vector of references, simulating, 1 1 66-
1 1 67 

Vector_ref example, 440, 1 166-1 1 67 
virtual, 1003 
Virtual destructors. 590. See also De

structors. 
Virtual function, 493, 498-499 

declaring, 499-500 
definition. 493, 1 176 
history of, 799 
object layout, 497-499 
overriding, 500-501 
pure, 502-504 
Shape example, 493, 498-499 
vptr, 498-499 
vtbl, 498 

Visibility 
Set· also Scope; Transparency. 
menus, 560-561 
of names, 264-269, 290-293 
widgets, 549 

Visual Studio 
FLTK (Fast Light Toolkit), 1 159-

1 160 
installing, 1 152 
running programs, 1 153- 1 1 54 

void, 1 13 
function results, 1 13, 270, 272 
pointer to, 593-595 
putback(), 2 10 

void•, 593-595, 1007-1008, 1062 
vptr, virtual function pointer, 498-499 
vtbl, virtual function table, 498 

w 
w, writing me mode, 842, 1 134, 1 140 
w+, writing and reading me mode, 1 140 
\ W, "not word character," regex, 837, 

1 135 
\w, "word character," regex, 837, 1 135 
wait(), 547-548, 556-557 
Wait loops, 547-548 
wait_for_button() example, 547-548 
Waiting for user action. 547-548. 556-

557 
wchar _I, 1003, 1004 
Web browser, as user interface, 540-54 1 
Wheeler, David, 108, 785, 930 
while-statements, 108-109 
White-box testing, 952-953 
Whites pace 

formatting, 393, 394-401 
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Whitcspace (continued) 
identifying, 393 
in input, 64 
string, 818-8 19 
ws, manipulator, 1 1 30 

Widget example, 548-549 
Butlon, 418-420, 541-550 
control inversion, 556-557 
debugging, 563-564 
hide(), 549 
implementation, 1 1 63-1 1 64 
ln_box(), 550-55 1 
line drawing example, 552-556 
Menu, 55 1 , 557-562 
move(), 549 
Out_box(), 550-55 1 
put_on_top() ,  1 1 65 
show(), 549 
technical example, 1 1 67-1 170 
text input/output, 550-551 
visibility, 549 

WJld cards, regular expressions, 1 133 
Wllkes, �aurice, 785 
Window example, 4 1 6, 439 

canvas, 416 
creating, 418-420, 542-544 
disappearing, 563 
drawing area, 4 1 6  
implementation, 1 1 64-1 1 66 
line drawing example, 552-556 
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put_on_topO, 1 1 65 
with "Next" button, 418-420 

Window.h example, 417-4 18 
W�, NilUaus, 794-795 
Word frequency, example, 745 
Words (of memory) , 1 176 
write(), unformatted output, 1 129 
Writing flies. 344 

See also FJle 1/0. 
appending to, 385 
binary 110, 387 
example, 346-348 

fstream type, 344-346 
ofstream type, 345-346 
ostream type, 343-348, 387 

ws manipulator, 1 1 30 

X 
xdigit, 842, 1 134 
\xhhh, hexadecimal character literal, 

1043 
xor, synonym fm· ",  1003, 1004 
xor_eq, synonym for "=, 1003, 1004 

z 
zero-terminated array, 101 1 .  See also C

style string. 
ZIP code example, 844-849 
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Photo of Bjame Stroustrup, 2005. Source : Bjame Stroustrup. 
Photo of Lawrence "Pete" Petersen. 2006. Source: Dept. of Compllter Science, 
Texas A&M University. 
Photo of digital watch from Casio. Source: www.casio.com. 
Photo of analog watch from Casio. Source: www.casio.com. 
MAN marine diesel engine 12K98ME: MAN Burgmeister & Waine. Source: 
MAN Diesel NS, Copenhagen, Denmark. 
Emma Maersk; the world's largest container ship; home port Arhus, Den
mark. Source: Getty Images. 
Digital telephone switchboard. Source: Alamy Images. 
Sony-Ericsson W-920 cell phone with music system, cell phone, and web con
nectivity. Source : www.sonyericsson.com. 
Trading floor of the New York Stock Exchange in Wall Street. Source: Alamy 
Images. 
A representation of parts of the intemet backbone by Stephen G. Eick . 
Source: S. G. Eick. 
CAT scanner. Source : Alamy Images. 
Computer-aided surgery. Source: Da Vinci Surgical Systems, www.intu
itivesurgical.com. 
Ordinary computer setup (the left-hand screen is connected to a Unix desktop 
box, the right-hand screen is a Wmdows laptop). Source: Bjame Stroustrup. 
Computer rack from a server famt. Source : lstockphoto. 
View from a Mars rover. Source: NASA, www.nasa.gov. 
The EDSAC team 1949. Maurice Wtlkes center, David Wheeler without a 
tie. Source: The Cambridge University Computer Laboratory. 
David Wheeler lecturing circa 1974. Source : University of Cambridge Com
puter Laboratory. 
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·:· Preparat£onfor Programming in the Real ftVorld 

The book as.•umc" that you aim eventually to write non-trivial programs , whether for woTk in wftw;m• 
dcvclopmem or in some other technical field. 

·=· Focus on Fundamental Concepts and Techniques 
The book explains fundamental concepts and techniques in greater d.,pth than traditional introductiom. 
This approach will give you a wlid found;uion for writ in� u�ful, correct , maintainable, and effit:ient code. 

·:· Programming with Tod.{/y's C++ 
The book �'  .m int roduction to programming in gcncr.1l ,  including object-oriented programming and 
generic programming. h it alw a solid introduction to the C++ pmgrammin��: language, onc of tlu- most 
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