
Arnold Robbins

Bash
Pocket
 Reference
HELP FOR 	POWER USERS & SYS ADMINS

2nd Edition

Arnold Robbins

Bash Pocket Reference
SECOND EDITION

978-1-491-94159-1

[M]

Bash Pocket Reference
by Arnold Robbins

Copyright © 2016 Arnold Robbins. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Kristen Brown
Proofreader: Jasmine Kwityn
Indexer: Arnold Robbins
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2016: Second Edition

Revision History for the Second Edition
2016-02-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491941591 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Bash
Pocket Reference, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491941591

Table of Contents

The Bash Shell 1
Conventions 2
History 2
Overview of Features 3
Invoking the Shell 4
Command Exit Status 6
Syntax 7
Functions 23
Variables 25
Arithmetic Expressions 47
Command History 49
Programmable Completion 54
Job Control 59
Shell Options 60
Command Execution 66
Coprocesses 68
Restricted Shells 69
Built-In Commands 70
Resources 133
Acknowledgments 134
Acknowledgments from the First Edition 134

Index 135

iii

The Bash Shell

This pocket reference covers Bash, particularly version 4.4, the
primary shell for GNU/Linux and Mac OS X. Bash is available
for Solaris and the various BSD systems, and can be easily com‐
piled for just about any other Unix system. It can even be com‐
piled for OpenVMS! The following topics are covered:

• History
• Overview of features
• Invoking the shell
• Command exit status
• Syntax
• Functions
• Variables
• Arithmetic expressions
• Command history
• Programmable completion
• Job control
• Shell options
• Command execution

1

• Coprocesses
• Restricted shells
• Built-in commands
• Resources

Conventions
Filenames, command names, options, and inline examples
are shown in constant width. Input that a user should type in
exactly as-is is shown in constant width userinput. Text that
should be replaced with real data in examples and syntax
descriptions is shown in constant width replaceable. New
terms and emphasized words and phrases are shown in italics.
Finally, references of the form name(N) refer to the manual
page for name in section N of the online manual (accessed via
the man command). Shell variable values (including environ‐
ment variables) are indicated as $VAR.

History
The original Bourne shell distributed with V7 Unix in 1979
became the standard shell for writing shell scripts. The Bourne
shell is still found in /bin/sh on many commercial Unix
systems. It has not changed that much since its initial release,
although it has seen modest enhancements over the years. The
most notable new features added were the CDPATH variable and
a built-in test command with System III (circa 1980), com‐
mand hashing and shell functions for System V Release 2 (circa
1984), and the addition of job control features for System V
Release 4 (1989).

Because the Berkeley C shell (csh) offered features that were
more pleasant for interactive use, such as command history
and job control, for a long time the standard practice in the
Unix world was to use the Bourne shell for programming and
the C shell for daily use. David Korn at Bell Labs was the first

2 | The Bash Shell

developer to enhance the Bourne shell by adding csh-like
features to it: history, job control, and additional programma‐
bility. Eventually, the Korn shell’s feature set surpassed both
that of the Bourne and C shells, while remaining compatible
with the former for shell programming. Today, the POSIX stan‐
dard defines the “standard shell” language and behavior based
on the System V Bourne shell, with a selected subset of features
from the Korn shell.

The Free Software Foundation, in keeping with its goal to pro‐
duce a complete Unix work-alike system, developed a clone of
the Bourne shell, written from scratch, named “Bash,” the
Bourne-Again SHell. Over time, Bash has become a POSIX-
compliant version of the shell with many additional features
overlapping those of the Korn shell, but Bash is not an exact
Korn shell clone. Today, Bash is probably the most widely used
Bourne-derived shell.

Overview of Features
The Bash shell provides the following features:

• Input/output redirection
• Wildcard characters for filename abbreviation
• Shell variables and options for customizing the

environment
• A built-in command set for writing shell programs
• Shell functions, for modularizing tasks within a shell

program
• Job control
• Command-line editing (using the command syntax of

either vi or Emacs)
• Access to previous commands (command history) and

the ability to edit them
• Integer arithmetic

Overview of Features | 3

• Arrays and arithmetic expressions
• Command-name abbreviation (aliasing)
• Upwards compliance with POSIX
• Internationalization facilities

• An arithmetic for loop

Invoking the Shell
The command interpreter for the Bash shell (bash) can be
invoked as follows:

bash [options] [arguments]

Bash can execute commands from a terminal, from a file (when
the first argument is a script), or from standard input (if no
arguments remain or if -s is specified). The shell automatically
prints prompts if standard input is a terminal, or if -i is given
on the command line.

On many systems, /bin/sh is a link to Bash. When invoked
as sh, Bash acts more like the traditional Bourne shell: login
shells read /etc/profile and ~/.profile, and regular shells read
$ENV, if it is set. Full details are available in the bash(1)
manpage.

Command-Line Options
Almost all the single-letter command-line options may also be
used with the built-in set command (see the entry for set on
page 113). The options are:

-c str
Read commands from string str.

-D, --dump-strings
Print all $"…" strings in the program.

4 | The Bash Shell

-i

-p

-s

Create an interactive shell (prompt for input). May not be
used with set.

-l, --login
Behave as a login shell.

-O option
Enable shopt option option. Use +O to unset option.

Start up as a privileged user. Do not read $ENV

or $BASH_ENV; do not import functions from the environ‐
ment; and ignore the values of the BASHOPTS, CDPATH,
GLOBIGNORE, and SHELLOPTS variables. The normal fixed-
name startup files (such as ~/.bash_profile) are read.

-r, --restricted
Create a restricted shell (see the section “Restricted Shells”
on page 69).

Read commands from standard input. Output from built-
in commands goes to file descriptor 1; all other shell out‐
put goes to file descriptor 2.

-v, --verbose
Print lines as the shell reads them.

--debugger

If the debugging profile is available at startup, read it and
turn on the extdebug option to shopt. For use by the Bash
debugger (see http://bashdb.sourceforge.net).

--dump-po-strings

Same as -D, but output in GNU gettext format.

--help

Print a usage message and exit successfully.

--init-file file, --rcfile file
Use file as the startup file instead of ~/.bashrc for interac‐
tive shells.

Invoking the Shell | 5

http://bashdb.sourceforge.net

--noediting

Do not use the readline library for input, even in an inter‐
active shell.

--noprofile

Do not read /etc/profile or any of the personal startup files.

--norc

Do not read ~/.bashrc. Enabled automatically when
invoked as sh.

--posix

Turn on POSIX mode.

--version

Print a version message and exit.

-, --
End option processing.

See the entry for set on page 113 for the remaining options.

Arguments
Arguments are assigned to the positional parameters $1, $2, etc.
If the first argument is a script, commands are read from it,
and the remaining arguments are assigned to $1, $2, and so on.
The name of the script is available as $0. The script file itself
need not be executable, but it must be readable.

Command Exit Status
When any command exits, it provides a numeric exit status or
return value. External commands, such as ls, provide this
value to the operating system. Internal commands, such as cd,
provide this value directly to the shell.

The shell automatically retrieves the return value when the
command exits. An exit status of zero is defined, by conven‐
tion, to mean true or success. Any other status means false or

6 | The Bash Shell

failure. This is how the shell makes use of commands in its con‐
trol flow statements such as if, while, and until.

Additionally, the shell makes the return value of the last exe‐
cuted command available in $? where your shell script may
access it. Usually you should save it in another variable, since
subsequent commands that are part of your script will over‐
write it.

Exit values may range from 0 to 255. The shell uses specific
numeric values to indicate certain conditions:

Numeric value Meaning

0 Success

2 Returned by built-in commands to indicate usage errors

126 Command was found but was not executable

127 Command not found

128 + N Command died due to receiving signal number N

Syntax
This section describes the many symbols peculiar to the shell.
The topics are arranged as follows:

• Special files
• Filename metacharacters
• Brace expansion
• Escape sequences
• Quoting
• Command forms
• Redirection forms

Syntax | 7

Special Files
The shell reads one or more startup files. Some of the files are
read only when a shell is a login shell. Bash reads these files, in
this order:

• /etc/profile. Executed automatically at login.
• The first file found from this list: ~/.bash_profile,

~/.bash_login, or ~/.profile. Executed automatically at
login.

• ~/.bashrc is read by every nonlogin shell. However, if
invoked as sh, or with --posix, Bash instead reads $ENV,
for POSIX compatibility.

The getpwnam() and getpwuid() C library functions are the
sources of home directories for ~name abbreviations. (On per‐
sonal systems, the user database is stored in /etc/passwd. How‐
ever, on networked systems, this information may come from
NIS, NIS+, LDAP, or some other source, not your workstation
password file.)

When an interactive login shell exits, or when non-interactive
login shell executes the exit built-in command, Bash reads
and executes ~/.bash_logout if that file exists. (A login shell is
one where the -l option is set.)

Filename Metacharacters
* Match any string of zero or more characters.

? Match any single character.

[abc…] Match any one of the enclosed characters; a hyphen can specify a
range (e.g., a-z, A-Z, 0-9).

[!abc…] Match any character not enclosed as above.

~ Home directory of the current user.

~name Home directory of user name.

8 | The Bash Shell

~+ Current working directory ($PWD).

~- Previous working directory ($OLDPWD).

With the extglob option on:

?(pattern) Match zero or one instance of pattern.

*(pattern) Match zero or more instances of pattern.

+(pattern) Match one or more instances of pattern.

@(pattern) Match exactly one instance of pattern.

!(pattern) Match any strings that don’t match pattern.

The pattern can be a sequence of patterns separated by |,
meaning that the match applies to any of the patterns. This
extended syntax resembles that available in egrep and awk.

With the globstar option on:

** Match all files and zero or more subdirectories. When followed by a slash,
only directories and subdirectories are matched.

Bash supports the POSIX [[=c=]] notation for matching char‐
acters that have the same weight, and [[.c.]] for specifying
collating sequences. In addition, character classes, of the form
[[:class:]], allow you to match the following classes of
characters:

Class Characters matched

alnum Alphanumeric characters

alpha Alphabetic characters

ascii ASCII characters (not in POSIX)

blank Space or Tab

cntrl Control characters

digit Decimal digits

graph Nonspace characters

Syntax | 9

Class Characters matched

lower Lowercase characters

print Printable characters

punct Punctuation characters

space Whitespace characters

upper Uppercase characters

word [[:word:]] is the same as [[:alnum:]_] (not in POSIX)

xdigit Hexadecimal digits

Tip
Bash reads scripts one line at a time. It parses each line com‐
pletely before beginning to execute any of the commands on
the line. This has two implications:

• You cannot define an alias and then use it on the same
line.

• You should place commands that affect parsing of the
script on lines by themselves, before the parts of the
script that are affected.

Similar concerns apply to functions; they are parsed all at once,
so you cannot turn on the extglob option inside a function
body expecting it to affect just that function. Thus, in order to
use the extended pattern matching facilities, you should put
this command on a line by itself at the beginning of your script:

shopt -s extglob # enable extended shell patterns

10 | The Bash Shell

Examples

ls new* List new and new.1

cat ch? Match ch9 but not ch10

gvim [D-R]* Match files beginning with D through R

pr !(*.o|core) | lpr Print non-object and non-core files

NOTE

On modern systems, ranges such as [D-R] are not portable;
the system’s locale may include more than just the upper‐
case letters from D to R in the range. However, see the
globasciiranges shell option for a way to control this.

Brace Expansion
Bash has long supported brace expansion, based on a similar
feature from the C shell. Unlike filename metacharacters, brace
expansion is purely textual; the words created by brace expan‐
sion do not have to match existing files. There are two forms:

pre{X,Y[,Z…]}post
Expands to preXpost, preYpost, and so on.

pre{start..end[..incr]}post
start and end are either integers or single letters. incr is an
integer. The shell expands this construct to the full range
between start and end, increasing by incr if supplied.

The prefix and postfix texts are not required for either form.
For numeric expansion, start or end or both may be prefixed
with one or more leading zeros. The results of expansion are
padded with zeros to the maximum of the widths of start and
end. Bash ignores leading zeros on incr, always treating it as a
decimal value.

Syntax | 11

Brace expansions may be nested, and the results are not sorted.
Brace expansion is performed before other expansions, and the
opening and closing braces must not be quoted for Bash to rec‐
ognize them. Bash skips over command substitutions within
brace expansions. To avoid conflict with parameter expansion,
${ cannot start a brace expansion.

Examples

Expand textually; no sorting
$ echo hi{DDD,BBB,CCC,AAA}there
hiDDDthere hiBBBthere hiCCCthere hiAAAthere

Expand, then match ch1, ch2, app1, app2
$ ls {ch,app}?

Expands to mv info info.old
$ mv info{,.old}

Simple numeric expansion
$ echo 1 to 10 is {1..10}
1 to 10 is 1 2 3 4 5 6 7 8 9 10

Numeric expansion with increment
$ echo 1 to 10 by 2 is {1..10..2}
1 to 10 by 2 is 1 3 5 7 9

Numeric expansion with zero padding
$ echo 1 to 10 with zeros is {01..10}
1 to 10 with zeros is 01 02 03 04 05 06 07 08 09 10

Escape Sequences
Bash recognizes and interprets special escape sequences in three
different contexts:

• The $'…' quoted string
• Arguments to echo -e and printf %b

• Format strings for printf

12 | The Bash Shell

The following table lists common escape sequences (those
accepted in all contexts) as well as the unique escape sequences
for each of the above contexts:

Sequence Availability Value

\a All ASCII BEL (visual or audible alert)

\b All Backspace

\c echo -e,
printf %b

Suppress the terminating newline (like
echo -n) and do not print any
following characters

\cX $'…' Control character X

\e All Escape

\E All Escape

\f All Formfeed

\n All Newline

\r All Carriage return

\t All Tab

\uHHHH All Unicode character HHHH

\UHHHHHHHH All Unicode character HHHHHHHH

\v All Vertical tab

\xHH All Hexadecimal value HH

\nnn $'…', printf Octal value nnn

\0nnn echo -e,
printf %b

Octal value nnn

\’ $'…' Single quote

\" $'…' Double quote

\? $'…' Question mark

\\ All Backslash

Syntax | 13

Additionally, the shell interprets a slightly overlapping set of
escape sequences in the values of the PS0, PS1, PS2, and PS4
prompt strings. This is discussed in the section “Special Prompt
Strings” on page 46.

Quoting
Quoting disables a character’s special meaning and allows it to
be used literally. The following table displays characters that
have special meaning:

Character Meaning

; Command separator

& Background execution

() Command grouping

| Pipe

< > & Redirection symbols

* ? [] ~ + - @ ! Filename metacharacters

" ' \ Used in quoting other characters

` Command substitution

$ Variable substitution (or command or arithmetic
substitution)

Start a comment that continues to the end of the line

space tab newline Word separators

14 | The Bash Shell

$

`

"

\

These characters can be used for quoting:

"…"

Everything between " and " is taken literally, except for the
following characters that keep their special meaning:

Variable (or command and arithmetic) substitu‐
tion will occur.

Command substitution will occur.

This marks the end of the double quoted string.

'…'

Everything between ' and ' is taken literally, except for
another '. You cannot embed another ' within such a
quoted string.

The character following a \ is taken literally. Use within
"…" to escape ", $, and `. Often used to escape itself,
spaces, or newlines.

$"…"

Just like "…", except that locale translation is done.

$'…'

Similar to '…', but the quoted text is processed for escape
sequences as described in the section “Escape Sequences”
on page 12.

Examples

$ echo 'Single quotes "protect" double quotes'
Single quotes "protect" double quotes
$ echo "Well, isn’t that \"special\"?"
Well, isn’t that "special"?
$ echo "You have `ls | wc -l` files in `pwd`"
You have 43 files in /home/bob
$ echo "The value of \$x is $x"
The value of $x is 100
$ echo $'A\tB'
A B

Syntax | 15

Command Forms
cmd & Execute cmd in background.

cmd1 ; cmd2 Command sequence; execute multiple cmds on the
same line.

{ cmd1 ; cmd2 ; } Execute commands as a group in the current shell.

(cmd1 ; cmd2) Execute commands as a group in a subshell.

cmd1 | cmd2 Pipe; use output from cmd1 as input to cmd2.

cmd1 `cmd2` Command substitution; use cmd2 output as
arguments to cmd1.

cmd1 $(cmd2) POSIX shell command substitution; nesting is
allowed.

cmd $((expression)) POSIX shell arithmetic substitution. Use the
numeric result of expression as a command-line
argument to cmd.

cmd1 && cmd2 AND; execute cmd1 and then (if cmd1 succeeds)
cmd2. This is a “short circuit” operation: cmd2 is
never executed if cmd1 fails.

cmd1 || cmd2 OR; execute either cmd1 or (if cmd1 fails) cmd2.
This is a “short circuit” operation; cmd2 is never
executed if cmd1 succeeds.

! cmd NOT; execute cmd, and produce a zero exit status if
cmd exits with a nonzero status. Otherwise,
produce a nonzero status when cmd exits with a
zero status.

Examples

Format in the background
$ nroff file > file.txt &

Execute sequentially
$ cd; ls

All output is redirected

16 | The Bash Shell

$ (date; who; pwd) > logfile

Sort file, page output, then print
$ sort file | pr -3 | lpr

Edit files found by grep
$ gvim `grep -l ifdef *.cpp`

Specify a list of files to search
$ egrep '(yes|no)' `cat list`

POSIX version of previous
$ egrep '(yes|no)' $(cat list)

Faster; not in POSIX
$ egrep '(yes|no)' $(< list)

Print file if it contains the pattern
Do so silently, by sending output and
errors to /dev/null
$ grep XX file > /dev/null 2>&1 && lpr file

Otherwise, echo an error message
$ grep XX file || echo "XX not found"

Redirection Forms
File descriptor Name Common abbreviation Typical default

0 Standard input stdin Keyboard

1 Standard output stdout Screen

2 Standard error stderr Screen

The usual input source or output destination can be changed,
as seen in the following sections.

Simple redirection

cmd > file
Send output of cmd to file (overwrite).

Syntax | 17

1 With <, the file is opened read-only, and writes on the file descriptor
will fail. With <>, the file is opened read-write; it is up to the applica‐
tion to actually take advantage of this.

cmd >> file
Send output of cmd to file (append).

cmd < file
Take input for cmd from file.

cmd << text
The contents of the shell script up to a line identical to text
become the standard input for cmd (text can be stored in a
shell variable). This command form is sometimes called a
here document. Input is typed at the keyboard or in the
shell program. Commands that typically use this syntax
include cat, ex, and sed. (If <<- is used, leading tabs are
stripped from the contents of the here document, and the
tabs are ignored when comparing input with the end-of-
input text marker.) If any part of text is quoted, the input
is passed through verbatim. Otherwise, the contents are
processed for variable, command, and arithmetic
substitutions.

cmd <<< word
Supply text of word, with trailing newline, as input to cmd.
(This is known as a here string, from the free version of the
rc shell; see the section “Resources” on page 133.)

cmd <> file
Open file for reading and writing on the standard input.
The contents are not destroyed.1

cmd >| file
Send output of cmd to file (overwrite), even if the shell’s
noclobber option is set.

18 | The Bash Shell

Redirection using file descriptors

cmd >&n
Send cmd output to file descriptor n.

cmd m>&n
Same as previous, except that output that would normally
go to file descriptor m is sent to file descriptor n instead.

cmd >&-
Close standard output.

cmd <&n
Take input for cmd from file descriptor n.

cmd m<&n
Same as previous, except that input that would normally
come from file descriptor m comes from file descriptor n
instead.

cmd <&-
Close standard input.

cmd <&n-
Move file descriptor n to standard input by duplicating it
and then closing the original.

cmd >&n-
Move file descriptor n to standard output by duplicating it
and then closing the original.

Multiple redirection

cmd 2> file
Send standard error to file; standard output remains the
same (e.g., the screen).

cmd > file 2>&1
Send both standard output and standard error to file.

cmd >& file
Same as previous.

Syntax | 19

cmd &> file
Same as previous. Preferred form.

cmd &>> file
Append both standard output and standard error to file.

cmd > filea 2> fileb
Send standard output to file filea and standard error to file
fileb.

cmd | tee files
Send output of cmd to standard output (usually the termi‐
nal) and to files. See tee(1).

cmd 2>&1 | tee files
Send standard output and error output of cmd through a
pipe to tee to standard output (usually the terminal) and
to files.

cmd |& tee files
Same as previous.

Bash allows multidigit file descriptor numbers without any spe‐
cial syntax. Most other shells either require a special syntax or
do not offer the feature at all.

NOTE

No space is allowed between file descriptors and a redirec‐
tion symbol; spacing is optional in the other cases.

Process substitution

cmd <(command)
Run command with its output connected to a named pipe
or an open file in /dev/fd, and place the file’s name in the
argument list of cmd. cmd may read the file to see the out‐
put of command.

20 | The Bash Shell

cmd >(command)
Run command with its input connected to a named pipe
or an open file in /dev/fd, and place the file’s name in the
argument list of cmd. Output written by cmd to the file is
input to command.

Process substitution is available on systems that support either
named pipes (FIFOs) or accessing open files via filenames
in /dev/fd. (This is true of all modern Unix systems.) It provides
a way to create non-linear pipelines.

Process substitution is not available in POSIX mode shells.

Saving file descriptors in variables

Bash allows {variablename} instead of a file descriptor number
in redirections. In such a case, the shell uses a file descriptor
number greater than 9, and assigns the value to the named shell
variable. variablename may name array elements and variables
that are special to the shell. For example:

Save file descriptor number
$ echo foo {foofd}> /tmp/xyzzy
foo
$ echo $foofd
11

This is most often used with redirections with exec, so that you
can use the file descriptor later on in a script.

NOTE

Once you open a file descriptor this way, you are responsi‐
ble for closing it. Bash will not close it for you.

Syntax | 21

Special filenames
Bash recognizes several special filenames in redirections. These
are interpreted internally by Bash only if they are not present
on your system:

/dev/stdin
A duplicate of file descriptor 0.

/dev/stdout
A duplicate of file descriptor 1.

/dev/stderr
A duplicate of file descriptor 2.

/dev/fd/<n>
A duplicate of file descriptor <n>.

/dev/tcp/<host>/<port>
Bash opens a TCP connection to <host>, which is either a
hostname or IP address, on port <port> and uses the file
descriptor in the redirection.

/dev/udp/<host>/<port>
Bash opens a UDP connection to <host>, which is either a
hostname or IP address, on port <port> and uses the file
descriptor in the redirection.

Examples

Copy part1 to book
$ cat part1 > book

Append part2 and part3
$ cat part2 part3 >> book

Send report to the big boss
$ mail tim < report

Here document is sed’s input
$ sed 's/^/XX /g' << END_ARCHIVE
> This is often how a shell archive is "wrapped",
> bundling text for distribution. You would normally

22 | The Bash Shell

> run sed from a shell program, not from
> the command line.
> END_ARCHIVE
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from
XX the command line.

To redirect standard output to standard error:

$ echo "Usage error: see administrator" 1>&2

The following command sends output (files found) to filelist,
and error messages (inaccessible files) to no_access:

$ find / -print > filelist 2> no_access

The following sorts two files and presents the differences
between the results using the diff command:

$ diff -u <(sort file1) <(sort file2) | less

Functions
A shell function is a grouping of commands within a shell
script. Shell functions let you modularize your program by
dividing it up into separate tasks. This way, the code for each
task is not repeated every time you need to perform the task.
The POSIX shell syntax for defining a function follows the
Bourne shell:

name () {
 function body’s code comes here
} [redirections]

Functions are invoked in the same way as regular shell built-in
commands or external commands. The command-line param‐
eters $1, $2, and so on receive the function’s arguments, tem‐
porarily hiding the global values of $1, $2, and so on. $0
remains the name of the full script. For example:

Functions | 23

fatal --- print an error message and die:

fatal () {
 # Messages go to standard error.
 echo "$0: fatal error:" "$@" >&2
 exit 1
}
…
if [$# = 0] # not enough arguments
then
 fatal not enough arguments
fi

A function may use the return command to return an exit sta‐
tus to the calling shell program.

Per the POSIX standard, any redirections given with the func‐
tion definition are evaluated when the function executes, not
when it is defined.

Bash allows you to define functions using a slightly different
syntax, as follows:

function name [()] { body } [redirections]

When using the function keyword, the parentheses following
the function name are optional.

Functions whose names do not include = or / may be exported
into the environment with export -f; see the entry for export
on page 92.

Functions share traps (see the entry for trap on page 125) with
the “parent” shell as described in the following table:

Trap type Shared/not shared

Signal-based traps Shared until the function redefines the trap

DEBUG Not shared unless function tracing is enabled (set -T or
set -o functrace). If not enabled a DEBUG trap
created by a function call remains in place when the
function returns

24 | The Bash Shell

Trap type Shared/not shared

ERR Not shared unless error tracing is enabled (set -E or
set -o errtrace)

EXIT Shared until the function redefines the trap

RETURN Not shared unless function tracing is enabled (set -T or
set -o functrace)

Functions may have local variables, and they may be recursive.
Unlike the Korn shell, the syntax used to define a function is
irrelevant.

Function names do not have to be valid shell identifiers (just as
external commands are not required to have names that are
valid shell identifiers). This does not apply to POSIX mode
shells, however. Additionally, POSIX mode shells disallow
defining functions with the same name as a POSIX special
built-in command. Doing so is an error in interactive shells; it
is fatal in noninteractive shells.

Bash uses a dynamic scoping model, whereby variables declared
with local are visible inside that function and in other func‐
tions that it calls. This is different from many other Bourne-
style shells.

Tip
Be careful not to use exit from within a function unless you
really wish to terminate the entire program.

Variables
This section describes the following:

• Variable assignment
• Variable substitution
• Indirect variables (namerefs)
• Built-in shell variables

Variables | 25

• Other shell variables
• Arrays
• Special prompt strings

Variable Assignment
Variable names consist of any number of letters, digits, or
underscores. Upper- and lowercase letters are distinct, and
names may not start with a digit. Variables are assigned values
using the = operator. There must not be any whitespace
between the variable name and the value. You can make multi‐
ple assignments on the same line by separating each one with
whitespace:

firstname=Arnold lastname=Robbins numkids=4 numpets=1

By convention, names for variables used or set by the shell have
all uppercase letters; however, you can use uppercase names in
your scripts if you use a name that isn’t special to the shell.

By default, the shell treats variable values as strings, even if the
value of the string is all digits. However, when a value is
assigned to an integer variable (created via declare -i), Bash
evaluates the righthand side of the assignment as an expression
(see the section “Arithmetic Expressions” on page 47). For
example:

$ i=5+3 ; echo $i
5+3
$ declare -i jj ; jj=5+3 ; echo $jj
8

The += operator allows you to add or append the righthand side
of the assignment to an existing value. Integer variables treat
the righthand side as an expression, which is evaluated and
added to the value. Arrays add the new elements to the array
(see the section “Arrays” on page 44). For example:

$ name=Arnold String variable
$ name+=" Robbins" ; echo $name

26 | The Bash Shell

Arnold Robbins
$ declare -i jj ; jj=3+5 Integer variable
$ echo $jj
8
$ jj+=2+4 ; echo $jj
14
$ pets=(blacky rusty) Array variable
$ echo ${pets[*]}
blacky rusty
$ pets+=(raincloud sophie)
$ echo ${pets[*]}
blacky rusty raincloud sophie

Variable Substitution
No spaces should be used in the following expressions. The
colon (:) is optional; if it’s included, var must be nonnull as
well as set. The variable substitution forms honor the value of
the shell nocasematch option.

In noninteractive shells with set -u enabled, using an unset
variable with the #, ##, %, %%, //, /#, /%, ^, ^^, ,, and ,, substitu‐
tions causes the shell to exit.

Consider single-quoted text in a variable substitution, such as
${var:=a'special-text'b}. Here, special-text is recognized
as being quoted. However, in POSIX mode, when a variable
substitution occurs inside double quotes, such single quotes do
not define a new, nested quoting context. There are exceptions:
single quotes do provide quoting when used with the #, ##, %,
%%, //, /#, /%, ^, ^^, ,, and ,, substitutions.

var=value … Set each variable var to a value.

${var} Use value of var; braces are optional if var is separated
from the following text. They are required for array
variables.

${var:-value} Use var if set; otherwise, use value.

Variables | 27

${var:=value} Use var if set; otherwise, use value and assign value to
var.

${var:?value} Use var if set; otherwise, print value and exit (if not
interactive). If value isn’t supplied, print the phrase
parameter null or not set to stderr.

${var:+value} Use value if var is set; otherwise, use nothing.

${#var} Use the length of var.

${#*}, ${#@} Use the number of positional parameters.

${var#pattern} Use value of var after removing text matching pattern
from the left. Remove the shortest matching piece.

${var##pattern} Same as #pattern, but remove the longest matching
piece.

${var%pattern} Use value of var after removing text matching pattern
from the right. Remove the shortest matching piece.

${var%%pattern} Same as %pattern, but remove the longest matching
piece.

${var^pattern} Convert the case of var to uppercase. The pattern is
evaluated as for filename matching. If the first letter of
var’s value matches the pattern, it is converted to
uppercase. var can be * or @, in which case the
positional parameters are modified. var can also be an
array subscripted by * or @, in which case the
substitution is applied to all the elements of the array.

${var^^pattern} Same as ^pattern, but apply the match to every letter
in the string.

${var,pattern} Same as ^pattern, but convert matching characters to
lowercase. Applies only to the first character in the
string.

${var,,pattern} Same as ,pattern, but apply the match to every letter
in the string.

28 | The Bash Shell

${var@a} Use the flag values (as for declare) representing
var’s attributes. var may be an array subscripted with @
or *, in which case the transform applies to all the
elements.

${var@A} A string in the form of a command or assignment
statement that if evaluated recreates var and its
attributes. var may be an array subscripted with @ or *,
in which case the transform applies to all the elements.

${var@E} The value of var with $'…' escape sequences
evaluated (see the section “Escape Sequences” on page
12). var may be an array subscripted with @ or *, in
which case the transform applies to all the elements.

${var@P} The value of var with prompt string escape sequences
evaluated (see the section “Special Prompt Strings” on
page 46). var may be an array subscripted with @ or *,
in which case the transform applies to all the elements.

${var@Q} The value of var quoted in a way that allows entering
the values as input. var may be an array subscripted
with @ or *, in which case the transform applies to all
the elements.

${!prefix*},
${!prefix@}

List of variables whose names begin with prefix.

${var:pos},
${var:pos:len}

Starting at position pos (0-based) in variable var,
extract len characters, or extract rest of string if no len.
pos and len may be arithmetic expressions. A negative
len counts from the end of the string.
When var is * or @, the expansion is performed upon
the positional parameters. If pos is zero, then $0 is
included in the resulting list. Similarly, var can be an
array indexed by * or @.

${var/pat/repl} Use value of var, with first match of pat replaced with
repl.

${var/pat} Use value of var, with first match of pat deleted.

Variables | 29

${var//pat/repl} Use value of var, with every match of pat replaced with
repl.

${var/#pat/repl} Use value of var, with match of pat replaced with repl.
Match must occur at the beginning of the value.

${var/%pat/repl} Use value of var, with match of pat replaced with repl.
Match must occur at the end of the value.

${!var} Use value of var as name of variable whose value
should be used (indirect reference).

Examples

$ u=up d=down blank= Assign values to three variables
 (last is null)
$ echo ${u}root Braces are needed here
uproot
$ echo ${u-$d} Display value of u or d; u is set,
up so print it
$ echo ${tmp-`date`} If tmp not set, execute date
Tue Feb 2 22:52:57 EST 2016
$ echo ${blank="no data"} blank is set, so it is printed
 (blank line)
$ echo ${blank:="no data"} blank is set but null, print string
no data
$ echo $blank blank now has a new value
no data

Take the current directory name and remove the
longest character string ending with /, which
removes the leading pathname and leaves the tail
$ tail=${PWD##*/}

Use a famous word
$ word=supercalifragilisticexpialidocious

Modify the case of the first character
$ echo ${word^[r-t]}
Supercalifragilisticexpialidocious

30 | The Bash Shell

Modify the case of all matching characters
$ echo ${word^^[r-t]}
SupeRcalifRagiliSTicexpialidociouS

Indirect Variables (namerefs)
Indirect variables, or namerefs, are variables that name a sec‐
ond variable. All actions (references, assignments, and attribute
changes) applied to the nameref are done to the variable named
by the nameref ’s value. Namerefs are created using declare -n,
removed using unset -n, and tested for with test -R. For
example:

$ greeting="hello, world" Regular variable assignment
$ declare -n message=greeting Declare the nameref
$ echo $message Access through it
hello, world Value is $greeting
$ message="bye now" Assign through the nameref
$ echo $greeting Demonstrate the change
bye now

Bash also provides a special syntax that lets one variable indi‐
rectly reference another, but assignments with this syntax are
not possible:

$ text=greeting Regular variable assignment
$ echo ${!text} Use the alias
bye now

When a nameref is used as the control variable in a for loop,
the loop terms are treated as variable names and the nameref
refers to each in turn:

$ declare -n nr Set up nameref
$ i=1 A simple counter
$ for nr in v1 v2 v3 Start a loop
> do
> nr=$((i++)) Each variable gets a unique value
> done
$ echo $v1 $v2 $v3 Show results
1 2 3

Variables | 31

Converting an existing variable into a nameref disables the -c,
-i, -l and -u attributes (see the entry for declare on page 85).

Built-In Shell Variables
The shell automatically sets built-in variables; they are typically
used inside shell scripts. Built-in variables can use the variable
substitution patterns shown previously. Note that the $ is not
actually part of the variable name, although the variable is
always referenced this way. The following are available in any
Bourne-compatible shell:

$# Number of command-line arguments.

$- Options currently in effect (supplied on command line or to set). The
shell sets some options automatically.

$? Exit value of last executed command.

$$ Process number of the shell.

$! Process number of last background command.

$0 First word; that is, the command name. This will have the full pathname
if the command was found via a PATH search.

$n Individual arguments on the command line (positional parameters). The
Bourne shell allows only nine parameters to be referenced directly (n =
1–9); Bash allows n to be greater than 9 if specified as ${n}.

$*, $@ All arguments on the command line ($1 $2 …).

"$*" All arguments on the command line as one string ("$1 $2…"). The
values are separated by the first character in $IFS.

"$@" All arguments on the command line, individually quoted ("$1" "$2"
…).

32 | The Bash Shell

2 Not all variables are always set. For example, the COMP* variables
only have values while programmable completion functions are
running.

Bash automatically sets the following additional variables:2

$_ Temporary variable; initialized to the pathname
of the script or program being executed. Later,
stores the last argument of the previous
command. Also stores the name of the
matching MAIL file during mail checks.

BASH The full pathname used to invoke this instance
of Bash.

BASHOPTS A read-only, colon-separated list of shell
options that are currently enabled. Each item in
the list is a valid option for shopt -s. If this
variable exists in the environment when Bash
starts up, it sets the indicated options before
executing any startup files.

BASHPID The process ID of the current Bash process. In
some cases, this can differ from $$.

BASH_ALIASES Associative array variable. Each element holds
an alias defined with the alias command.
Adding an element to this array creates a new
alias.

BASH_ARGC Array variable. Each element holds the number
of arguments for the corresponding function or
dot-script invocation. Set only in extended
debug mode, with shopt -s extdebug. It
cannot be unset.

Variables | 33

BASH_ARGV An array variable similar to BASH_ARGC. Each
element is one of the arguments passed to a
function or dot-script. It functions as a stack,
with values being pushed on at each call. Thus,
the last element is the last argument to the
most recent function or script invocation. Set
only in extended debug mode, with shopt -s
extdebug. It cannot be unset.

BASH_CMDS Associative array variable. Each element refers
to a command in the internal hash table
maintained by the hash command. The index
is the command name and the value is the full
path to the command. Adding an element to
this array adds a command to the hash table.

BASH_COMMAND The command currently executing or about to
be executed. Inside a trap handler, it is the
command running when the trap was invoked.

BASH_EXECUTION_STRING The string argument passed to the -c option.

BASH_LINENO Array variable, corresponding to
BASH_SOURCE and FUNCNAME. For any given
function number i (starting at zero),
${FUNCNAME[i]} was invoked in file
${BASH_SOURCE[i]} on line
${BASH_LINENO[i]}. The information is
stored with the most recent function invocation
first. It cannot be unset.

BASH_REMATCH Array variable, assigned by the =~ operator of
the [[]] construct. Index zero is the text that
matched the entire pattern. The other indices
are the text matched by parenthesized
subexpressions. This variable is read-only.

BASH_SOURCE Array variable, containing source filenames.
Each element corresponds to those in
FUNCNAME and BASH_LINENO. It cannot be
unset.

34 | The Bash Shell

BASH_SUBSHELL This variable is incremented by one each time a
subshell or subshell environment is created.

BASH_VERSINFO[0] The major version number, or release, of Bash.

BASH_VERSINFO[1] The minor version number, or version, of Bash.

BASH_VERSINFO[2] The patch level.

BASH_VERSINFO[3] The build version.

BASH_VERSINFO[4] The release status.

BASH_VERSINFO[5] The machine type; same value as in
$MACHTYPE.

BASH_VERSION A string describing the version of Bash.

COMP_CWORD For programmable completion. Index into
COMP_WORDS, indicating the current cursor
position.

COMP_KEY For programmable completion. The key, or final
key in a sequence, that caused the invocation of
the current completion function.

COMP_LINE For programmable completion. The current
command line.

COMP_POINT For programmable completion. The position of
the cursor as a character index in
$COMP_LINE.

COMP_TYPE For programmable completion. A character
describing the type of programmable
completion. The character is one of Tab for
normal completion, ? for a completions list
after two Tabs, ! for the list of alternatives on
partial word completion, @ for completions if
the word is modified, or % for menu completion.

COMP_WORDBREAKS For programmable completion. The characters
that the readline library treats as word
separators when doing word completion.

Variables | 35

COMP_WORDS For programmable completion. Array variable
containing the individual words on the
command line.

COPROC Array variable that holds the file descriptors
used for communicating with an unnamed
coprocess. For more information, see the section
“Coprocesses” on page 68.

DIRSTACK Array variable, containing the contents of the
directory stack as displayed by dirs. Changing
existing elements modifies the stack, but only
pushd and popd can add or remove
elements from the stack.

EUID Read-only variable with the numeric effective
UID of the current user.

FUNCNAME Array variable, containing function names. Each
element corresponds to those in
BASH_SOURCE and BASH_LINENO.

FUNCNEST A value greater than zero defines the maximum
function call nesting level. When exceeded,
abort the current command.

GROUPS Array variable, containing the list of numeric
group IDs in which the current user is a member.

HISTCMD The history number of the current command.

HOSTNAME The name of the current host.

HOSTTYPE A string that describes the host system.

LINENO Current line number within the script or
function.

MACHTYPE A string that describes the host system in the
GNU cpu-company-system format.

MAPFILE Default array for the mapfile and
readarray commands. See the entry for
mapfile on page 105 for more information.

36 | The Bash Shell

OLDPWD Previous working directory (set by cd, or
inherited from the environment if it names a
directory).

OPTARG Value of argument to last option processed by
getopts.

OPTIND Numerical index of OPTARG.

OSTYPE A string that describes the operating system.

PIPESTATUS Array variable, containing the exit statuses of
the commands in the most recent foreground
pipeline. Note that a pipeline can contain only a
single command.

PPID Process number of this shell’s parent.

PWD Current working directory (set by cd).

RANDOM[=n] Generate a new random number with each
reference; start with integer n, if given.

READLINE_LINE For use with bind -x. The contents of the
editing buffer are available in this variable.

READLINE_POINT For use with bind -x. The index in
$READLINE_LINE of the insertion point.

REPLY Default reply; used by select and read.

SECONDS[=n] Number of seconds since the shell was started,
or, if n is given, number of seconds since the
assignment + n.

SHELLOPTS A read-only, colon-separated list of shell
options (for set -o). If set in the environment
at startup, Bash enables each option present in
the list before reading any startup files.

SHLVL Incremented by one every time a new Bash
starts up.

UID Read-only variable with the numeric real UID of
the current user.

Variables | 37

Many of these variables provide support for either programma‐
ble completion (see the section “Programmable Completion”
on page 54) or for the Bash Debugger (see http://bashdb.source
forge.net).

Other Shell Variables
The following variables are not automatically set by the shell,
although many of them can influence the shell’s behavior. You
typically set them in your .bash_profile or .profile file, where
you can define them to suit your needs. Variables can be
assigned values by issuing commands of the form:

variable=value

This list includes the type of value expected when defining
these variables:

BASH_COMPAT If set to a decimal or integer value (such as 4.3
or 43) that corresponds to a supported shell
compatibility level, enables that compatibility
level (e.g., 4.3 and 43 correspond to shopt
-s compat43). If unset or set to the empty
string, the compatibility is set to that of the
current shell. The shopt command does not
change this variable. This variable can be
inherited from the environment.

BASH_ENV If set at startup, names a file to be processed
for initialization commands. The value
undergoes parameter expansion, command
substitution, and arithmetic expansion before
being interpreted as a filename.

BASH_LOADABLES_PATH One or more pathnames, delimited by colons,
in which to search for dynamically loadable
built-in commands specified by enable.

BASH_XTRACEFD=n File descriptor to which Bash writes trace
output (from set -x).

38 | The Bash Shell

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net

CDPATH=dirs Directories searched by cd; allows shortcuts in
changing directories; unset by default.

CHILD_MAX=n Set the maximum number of child processes
for which the shell will remember exit
statuses. The maximum is 8192; the minimum
is system-dependent.

COLUMNS=n Screen’s column width; used in line edit modes
and select lists. Defaults to current
terminal width.

COMPREPLY=(words …) Array variable from which Bash reads the
possible completions generated by a
completion function.

EMACS If the value starts with t, Bash assumes it’s
running in an Emacs buffer and disables line
editing.

ENV=file Name of script that is executed at startup in
POSIX mode or when Bash is invoked
as /bin/sh; useful for storing alias and function
definitions. For example,
ENV=$HOME/.shellrc.

EXECIGNORE=patlist Colon-separated list of glob patterns
describing the set of filenames to ignore when
searching for executable files. Useful for
ignoring shared library files which have
execute permission. The value of the
extglob shell option is honored.

FCEDIT=file Editor used by fc command. The default
is /bin/ed when Bash is in POSIX mode.
Otherwise, the default is $EDITOR if set, vi
if unset.

FIGNORE=patlist Colon-separated list of suffixes describing the
set of filenames to ignore when doing
filename completion with the readline library.

Variables | 39

GLOBIGNORE=patlist Colon-separated list of patterns describing the
set of filenames to ignore during pattern
matching. The value of the nocasematch
and extglob shell options are honored.

HISTCONTROL=list Colon-separated list of values controlling how
commands are saved in the history file.
Recognized values are ignoredups,
ignorespace, ignoreboth, and
erasedups.

HISTFILE=file File in which to store command history.
Default value is ~/.bash_history.

HISTFILESIZE=n Number of lines to be kept in the history file.
This may be different from the number of
commands. If zero, no commands are stored. If
negative or nonnumeric, there is no limit.
Default is 500.

HISTIGNORE=list A colon-separated list of patterns that must
match the entire command line. Matching
lines are not saved in the history file. An
unescaped & in a pattern matches the
previous history line. The value of the
extglob shell option is honored.

HISTSIZE=n Number of history commands to be kept in the
history list. If zero, no commands are stored. If
negative or nonnumeric, there is no limit.
Default is 500.

HISTTIMEFORMAT=string A format string for strftime(3) to use for
printing timestamps along with commands
from the history command. If set (even if
null), Bash saves timestamps in the history file
along with the commands.

HOME=dir Home directory; set by login (from the /etc/
passwd file).

40 | The Bash Shell

HOSTFILE=file Name of a file in the same format as /etc/hosts
that Bash should use to find hostnames for
hostname completion.

IFS='chars' Input field separators; default is space, Tab,
and newline.

IGNOREEOF=n Numeric value indicating how many successive
EOF characters must be typed before Bash
exits. If null or nonnumeric value, default is
10. Applies only to interactive shells.

INPUTRC=file Initialization file for the readline library. This
overrides the default value of ~/.inputrc.

LANG=locale Default value for locale; used if no LC_*
variables are set.

LC_ALL=locale Current locale; overrides LANG and the other
LC_* variables.

LC_COLLATE=locale Locale to use for character collation (sorting
order).

LC_CTYPE=locale Locale to use for character class functions. (See
the section “Filename Metacharacters” on
page 8.)

LC_MESSAGES=locale Locale to use for translating $"…" strings.

LC_NUMERIC=locale Locale to use for the decimal-point character.

LC_TIME=locale Locale to use for date and time formats.

LINES=n Screen’s height; used for select lists.
Defaults to current terminal height.

MAIL=file Default file to check for incoming mail; set by
login.

MAILCHECK=n Number of seconds between mail checks;
default is 60 (one minute).

Variables | 41

MAILPATH=files One or more files, delimited by colons, to
check for incoming mail. Along with each file,
you may supply an optional message that the
shell prints when the file increases in size.
Messages are separated from the filename by
a ? character, and You have mail in
$_ is the default message. $_ is replaced with
the name of the file. For example, you might
have MAILPATH="$MAIL?Candy
gram!:/etc/motd?New Login Mes

sage"

OPTERR=n When set to 1 (the default value), Bash prints
error messages from the built-in getopts
command.

PATH=dirlist One or more pathnames, delimited by colons,
in which to search for commands to execute.
The compiled-in default is /usr/local/
bin:/usr/local/sbin:/usr/

bin:/usr/sbin:/bin:/sbin:.. The
default for many systems
is /bin:/usr/bin.

POSIXLY_CORRECT=string When set at startup or while running, Bash
enters POSIX mode, disabling behavior and
modifying features that conflict with the
POSIX standard.

PROMPT_COMMAND=command If set, Bash executes this command each time
before printing the primary prompt.

PROMPT_DIRTRIM=n Indicates how many trailing directory
components to retain for the \w or \W special
prompt strings (see the section “Special
Prompt Strings” on page 46). Elided
components are replaced with an ellipsis.

PS0=string String printed by interactive shells after
reading a command but before executing it.

42 | The Bash Shell

PS1=string Primary prompt string; default is
'\s-\v\$ '.

PS2=string Secondary prompt (used in multiline
commands); default is >.

PS3=string Prompt string in select loops; default is
#?.

PS4=string Prompt string for execution trace (bash -x or
set -x); default is +. Shells running as root
do not inherit this variable from the
environment.

SHELL=file Name of user’s default shell (e.g., /bin/sh).
Bash sets this if it’s not in the environment at
startup.

TERM=string Terminal type.

TIMEFORMAT=string A format string for the output from the time
keyword. See the bash(1) manual page for
details.

TMOUT=n If no command is typed after n seconds, exit
the shell. Also affects the read command
and the select loop.

TMPDIR=directory Place temporary files created and used by the
shell in directory.

auto_resume=list Enable the use of simple strings for resuming
stopped jobs. With a value of exact, the
string must match a command name exactly.
With a value of substring, it can match a
substring of the command name.

Variables | 43

histchars=chars Two or three characters that control Bash’s
csh-style history expansion. The first
character signals a history event, the second is
the “quick substitution” character, and the
third indicates the start of a comment. The
default value is !^#. See the section “C-Shell–
Style History” on page 51.

Arrays
Bash provides two kinds of arrays: indexed arrays, where the
indices are integers zero and above, and associative arrays,
where the indices are strings.

Indexed arrays
Bash supports one-dimensional arrays. The first element is
numbered zero. Bash has no limit on the number of elements.
Arrays are initialized with a special form of assignment:

message=(hi there how are you today)

where the specified values become elements of the array. Indi‐
vidual elements may also be assigned:

message[0]=hi # This is the hard way
message[1]=there
message[2]=how
message[3]=are
message[4]=you
message[5]=today

Declaring indexed arrays is not required. Any valid reference to
a subscripted variable can create an array.

When referencing arrays, use the ${…} syntax. This isn’t
needed when referencing arrays inside ((…)) (the form of let
that does automatic quoting). Note that [and] are typed liter‐
ally (i.e., they don’t stand for optional syntax).

44 | The Bash Shell

Negative subscripts count from the last index plus one:

$ a=(0 1 2 3 4 5 6 7 8) Create an indexed array
$ echo ${a[4]} Use a positive index
4
$ echo ${a[-2]} Use index: 8 + 1 − 2 = 7
7

Array substitutions
The variable substitutions for arrays and array elements are as
follows:

${name[i]} Use element i of array name; i can be any arithmetic
expression as described in the section “Arithmetic
Expressions” on page 47

${name} Use element 0 of array name

${name[*]},
${name[@]}

Use all elements of array name

${#name[*]},
${#name[@]}

Use the number of elements in array name

Associative arrays
Bash provides associative arrays, where the indices are strings
instead of numbers (as in awk). In this case, [and] act like
double quotes. Associative arrays must be declared by using the
-A option to the declare, local, and readonly commands. A
special syntax allows assigning to multiple elements at once:

data=([joe]=30 [mary]=25) Associative array assignment
message=([0]=hi [2]=there) Indexed array assignment

Use ${data[joe]} and ${data[mary]} to retrieve the values.

The special expansions for retrieving all the indices of an asso‐
ciative array work just as they do for indexed arrays.

Variables | 45

Special Prompt Strings
Bash processes the values of PS0, PS1, PS2, and PS4 for the fol‐
lowing special escape sequences:

\a An ASCII BEL character (octal 07).

\A The current time in 24-hour HH:MM format.

\d The date in “weekday month day” format.

\D{format} The date as specified by the strftime(3) format format. The
braces are required.

\e An ASCII Escape character (octal 033).

\h The hostname, up to the first period.

\H The full hostname.

\j The current number of jobs.

\l The basename of the shell’s terminal device.

\n A newline character.

\r A carriage return character.

\s The name of the shell (basename of $0).

\t The current time in 24-hour HH:MM:SS format.

\T The current time in 12-hour HH:MM:SS format.

\u The current user’s username.

\v The version of Bash.

\V The release (version plus patchlevel) of Bash.

\w The current directory, with $HOME abbreviated as ~. See also
the description of the PROMPT_DIRTRIM variable.

\W The basename of the current directory, with $HOME abbreviated
as ~. See also the description of the PROMPT_DIRTRIM
variable.

\! The history number of this command (stored in the history).

46 | The Bash Shell

\# The command number of this command (count of commands
executed by the current shell).

\$ If the effective UID is 0, a #; otherwise, a $.

\@ The current time in 12-hour a.m./p.m. format.

\nnn The character represented by octal value nnn.

\\ A literal backslash.

\[Start a sequence of nonprinting characters, such as for
highlighting or changing colors in a terminal emulator.

\] End a sequence of nonprinting characters.

The PS0, PS1, PS2, and PS4 variables undergo substitution for
escape sequences, variable substitution, command substitution,
and arithmetic substitution. The escape sequences are pro‐
cessed first, and then, if the promptvars shell option is enabled
via the shopt command (the default), the substitutions are
performed.

In POSIX mode, things work differently. The values of PS1 and
PS2 undergo parameter expansion, ! is replaced with the his‐
tory number of the current command, and !! is replaced with a
literal exclamation point.

Arithmetic Expressions
The let command performs integer arithmetic. The shell pro‐
vides a way to substitute arithmetic values (for use as command
arguments or in variables); base conversion is also possible:

$((expr)) Use the value of the enclosed arithmetic expression. Bash
attempts to parse $((…)) as an arithmetic expression before
attempting to parse it as a nested command substitution.

B#n Interpret integer n in numeric base B. For example, 8#100
specifies the octal equivalent of decimal 64.

Arithmetic Expressions | 47

Operators
The shell uses the following arithmetic operators in decreasing
order of precedence (most are from the C programming lan‐
guage):

Operator Description

++ -- Auto-increment and auto-decrement, both prefix and postfix

+ - Unary plus and minus

! ~ Logical negation and binary inversion (one’s complement)

** Exponentiation

* / % Multiplication, division, modulus (remainder)

+ - Addition, subtraction

<< >> Bitwise left shift, bitwise right shift

< <= > >= Less than, less than or equal to, greater than, greater than or
equal to

== != Equality, inequality (both evaluated left to right)

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND (short circuit)

|| Logical OR (short circuit)

?: Inline conditional evaluation

= += -=

*= /= %=

<<= >>= Assignment

&= ^= |=

, Sequential expression evaluation

48 | The Bash Shell

Notes
Because let and ((…)) are built in to the shell, they have
access to variable values. It is not necessary to precede a varia‐
ble’s name with a dollar sign in order to retrieve its value (doing
so does work, of course).

The exit status of let is confusing. It’s zero (success) for a non-
zero mathematical result, and non-zero (failure) for a zero
mathematical result.

Examples
let "count=0" "i = i + 1" Assign values to i and count
let "num % 2" Exit successfully if num is odd
((percent <= 0 && Test the range of a value
 percent <= 100))
a=5 b=2 Set some values
echo $(("a" + "b")) Variables may be double-quoted

See the entry for let on page 104 for more information and
examples.

Command History
The shell lets you display or modify previous commands. Using
the history command, you can manage the list of commands
kept in the shell’s history; see the entry for history on page 100
for more information. All shells for which history is enabled
(with set -o history) save their history, not just interactive
shells.

This section focuses on the facilities for editing stored com‐
mands. Commands in the history list can be modified using:

• Line-edit mode

• The fc command
• C-shell–style history

Command History | 49

Line-Edit Mode
Line-edit mode emulates many features of the vi and Emacs
editors. The history list is treated like a file. When the editor is
invoked, you type editing keystrokes to move to the command
line you want to execute. You can also change the line before
executing it. When you’re ready to issue the command, press
the Enter key.

Emacs editing mode is the default. To control command-line
editing, you must use either set -o vi or set -o emacs; Bash
does not use variables to specify the editor.

Note that the vi editing mode starts in input mode; to type a vi
command, press the Escape key first.

Common editing keystrokes

vi Emacs Result

k CTRL-p Get previous command

j CTRL-n Get next command

/string CTRL-r string Get previous command containing string

h CTRL-b Move back one character

l CTRL-f Move forward one character

b ESC-b Move back one word

w ESC-f Move forward one word

X DEL Delete previous character

x CTRL-d Delete character under cursor

dw ESC-d Delete word forward

db ESC-h Delete word backward

xp CTRL-t Transpose two characters

Both editing modes allow you to use the cursor keys to move
around within the saved history.

50 | The Bash Shell

The fc Command
fc stands for either “find command” or “fix command,”
because it does both jobs. Use fc -l to list history commands
and fc -e to edit them. See the entry for fc on page 93 for
more information.

Examples

$ history List the last 16 commands
$ fc -l 20 30 List commands 20 through 30
$ fc -l -5 List the last 5 commands
$ fc -l cat List all commands since the last cat
$ fc -l 50 List all commands since command 50
$ fc -ln 5 > doit Save command 5 to file doit
$ fc -e vi 5 20 Edit commands 5 through 20 using vi
$ fc -e emacs Edit previous command using Emacs

Tip

Interactive line-editing is easier to use than fc, because you can
move up and down in the saved command history using your
favorite editor commands (as long as your favorite editor is
either vi or Emacs!). You may also use the Up and Down arrow
keys to traverse the command history.

C-Shell–Style History
Besides the interactive editing features and POSIX fc com‐
mand, Bash supports a command-line editing mode similar to
that of the Berkeley C shell (csh). It can be disabled using set
+H. Many users prefer the interactive editing features, but for
those whose “finger habits” are still those of csh, this feature
comes in handy.

In POSIX mode, history expansion does not occur inside dou‐
ble quotes. It is always inhibited inside single quotes.

In Bash 5.0, set +H will become the default.

Command History | 51

Event designators
Event designators mark a command-line word as a history sub‐
stitution:

Command Description

! Begin a history substitution

!! Previous command

!n Command number n in history list

!-n n th command back from current command

!string Most recent command that starts with string

!?string[?] Most recent command that contains string

Current command line up to this point (fairly useless)

^old^new^ Quick substitution; change string old to new in previous
command, and execute modified command

Word substitution
Word specifiers allow you to retrieve individual words from
previous command lines. They follow an initial event specifier,
separated by a colon. The colon is optional if followed by any of
the following: ^, $, *, -, or %.

Specifier Description

:0 Command name

:n Argument number n

^ First argument

$ Last argument

% Argument matched by a !?string? search

:n-m Arguments n through m

-m Words 0 through m; same as :0-m

:n- Arguments n through next-to-last

52 | The Bash Shell

Specifier Description

:n* Arguments n through last; same as n-$

* All arguments; same as ^-$ or 1-$

History modifiers
There are several ways to modify command and word substitu‐
tions. The printing, substitution, and quoting modifiers are
shown in the following table:

Modifier Description

:p Display command, but don’t execute.

:s/old/new Substitute string new for old, first instance only.

:gs/old/new Substitute string new for old, all instances.

:as/old/new Same as :gs.

:Gs/old/new Like :gs, but apply the substitution to all the words in the
command line.

:& Repeat previous substitution (:s or ^ command), first instance
only.

:g& Repeat previous substitution, all instances.

:q Quote a word list.

:x Quote separate words.

The truncation modifiers are shown in the following table:

Modifier Description

:r Extract the first available pathname root (the portion before the last
period).

:e Extract the first available pathname extension (the portion after the
last period).

:h Extract the first available pathname header (the portion before the last
slash).

Command History | 53

Modifier Description

:t Extract the first available pathname tail (the portion after the last
slash).

Programmable Completion
Bash and the readline library provide completion facilities,
whereby you can type part of a command name, hit the Tab
key, and Bash fills in part or all of the rest of the command or
filename. Programmable completion lets you, as a shell pro‐
grammer, write code to customize the list of possible comple‐
tions that Bash will present for a particular partially entered
word. This is accomplished through the combination of several
facilities:

• The complete command allows you to provide a com‐
pletion specification, or compspec, for individual com‐
mands. You specify, via various options, how to tailor the
list of possible completions for the particular command.
This is simple, but adequate for many needs. (See the
entry for complete on page 80.)

• For more flexibility, you can use complete -F funcname
command. This tells Bash to call funcname to provide the
list of completions for command. You write the funcname
function.

• Within the code for a -F function, the COMP* shell vari‐
ables provide information about the current command
line. COMPREPLY is an array into which the function places
the final list of completion results.

• Also within the code for a -F function, you may use the
compgen command to generate a list of results, such as
“usernames that begin with a” or “all set variables.” The
intent is that such results would be used with an array
assignment:

54 | The Bash Shell

…
COMPREPLY=($(compgen options arguments))
…

Compspecs may be associated with either a full pathname for a
command or, more commonly, an unadorned command name
(/usr/bin/man versus plain man). Completions are attempted in
the following order, based on the options provided to the com-
plete command:

1. If completion is attempted on an empty input line, Bash
applies the compspec given with complete -E. Otherwise,
it proceeds to the next step.

2. Bash first identifies the command. If a pathname is used,
Bash looks to see if a compspec exists for the full path‐
name. Otherwise, it sets the command name to the last
component of the pathname, and searches for a compspec
for the command name.

3. If a compspec exists, Bash uses it. If not, Bash uses the
“default” compspec given with complete -D. If there is
none, then Bash falls back to the default built-in
completions.

4. Bash performs the action indicated by the compspec to
generate a list of possible matches. Of this list, only those
that have the word being completed as a prefix are used
for the list of possible completions. For the -d and -f
options, Bash uses the variable FIGNORE to filter out unde‐
sirable matches.

5. Bash generates filenames as specified by the -G option.
GLOBIGNORE is not used to filter the results, but FIGNORE is.

6. Bash processes the argument string provided to -W. The
string is split using the characters in $IFS. The resulting
list provides the candidates for completion. This is often
used to provide a list of options that a command accepts.

Programmable Completion | 55

7. Bash runs functions and commands as specified by the -F
and -C options. For both, Bash sets COMP_LINE and
COMP_POINT as described in the section “Built-In Shell Vari‐
ables” on page 32. For a shell function, COMP_WORDS and
COMP_CWORD are also set.
Also, for both functions and commands, $1 is the name of
the command whose arguments are being completed, $2 is
the word being completed, and $3 is the word in front of
the word being completed. Bash does not filter the results
of the command or function:
a. Functions named with -F are run first. The function

should set the COMPREPLY array to the list of possible
completions. Bash retrieves the list from there.

b. Commands provided with -C are run next, in an envi‐
ronment equivalent to command substitution. The
command should print the list of possible completions,
one per line. An embedded newline should be escaped
with a backslash.

8. Once the list is generated, Bash filters the results accord‐
ing to the -X option. The argument to -X is a pattern speci‐
fying files to exclude. By prefixing the pattern with a !, the
sense is reversed, and the pattern instead specifies that
only matching files should be retained in the list. The
value of the nocasematch shell option is honored.
An & in the pattern is replaced with the text of the word
being completed. Use \& to produce a literal &.

9. Finally, Bash prepends or appends any prefixes or suffixes
supplied with the -P or -S options.

10. In the case that no matches were generated, if -o dirnames
was used, Bash attempts directory name completion.

11. On the other hand, if -o plusdirs was provided, Bash
adds the result of directory completion to the previously
generated list.

56 | The Bash Shell

12. Normally, when a compspec is provided, Bash’s default
completions are not attempted, nor are the readline
library’s default filename completions. However:
a. If the compspec produces no results and

-o bashdefault was provided, then Bash attempts its
default completions.

b. If neither the compspec nor the Bash default comple‐
tions with -o bashdefault produced any results, and
-o default was provided, then Bash has the readline
library attempt its filename completions.

A compspec may be modified with the compopt command.
When used without command names inside an executing com‐
pletion, it affects the executing completion.

When a shell function used as a completion handler returns
124, Bash retries the completion process from the beginning.
This is most useful with the default completion handler
(complete -D) to dynamically build up a set of completions
instead of loading a large set at startup. The bash(1) manpage
has an example at the end of its Programmable Completion
section.

Tip
Ian Macdonald has collected a large set of useful compspecs,
often distributed as the file /etc/bash_completion. If your system
does not have it, you may be able to install it with your system’s
package manager. In the worst case, you can download it from
http://bash-completion.alioth.debian.org/. It is worth reviewing.

Examples
Restrict files for the C compiler to C, C++, and assembler
source files, and relocatable object files:

complete -f -X '!*.[Ccos]' gcc cc

Programmable Completion | 57

http://bash-completion.alioth.debian.org/

For the man command, restrict expansions to things that have
manpages:

Simple example of programmable completion for manual
pages. A more elaborate example appears in the
bash_completion file.
Assumes man [num] command command syntax.

shopt -s extglob # Enable extended pattern matching

Define completion function
_man () {
 # Local variables
 local dir mandir=/usr/share/man

 # Clear reply list
 COMPREPLY=()

 # If section number ...
 if [[${COMP_WORDS[1]} = +([0-9])]]
 then
 # section provided: man 3 foo
 # look in specified directory
 dir=$mandir/man${COMP_WORDS[COMP_CWORD-1]}
 else
 # no section, default to commands
 # look in command directories
 dir=$mandir/'man[18]'
 fi
 COMPREPLY=($(
 # Generate raw file list
 find $dir -type f |

 # Remove leading directories
 sed 's;..*/;;' |

 # Remove trailing suffixes
 sed 's/\.[0-9].*$//' |

 # Keep those that match given prefix
 grep "^${COMP_WORDS[$COMP_CWORD]}" |

58 | The Bash Shell

bg

fg

 # Sort final list
 sort
))
}

Associate function with command
complete -F _man man

Job Control
Job control lets you place foreground jobs in the background,
bring background jobs to the foreground, or suspend running
jobs. All modern Unix systems—including Mac OS X, GNU/
Linux and BSD systems—support it, so the job control features
are automatically enabled. Many job control commands take a
jobID as an argument, which can be specified as follows:

%n Job number n

%s Job whose command line starts with string s

%?s Job whose command line contains string s

%% Current job

%+ Current job (same as %%)

% Current job (same as %%)

%- Previous job

The shell provides the following job control commands (for
more information on these commands, see the section “Built-
In Commands” on page 70):

Put the current job in the background.

Put the current job in the foreground.

jobs

List active jobs.

Job Control | 59

kill

Terminate a job.

stty tostop

Stop background jobs if they try to send output to the ter‐
minal emulator. (Note that stty is not a built-in com‐
mand.)

suspend

Suspend a job-control shell (such as one created by su).

wait

Wait for background jobs to finish.

CTRL-Z

Suspend a foreground job. Then use bg or fg. (Your ter‐
minal emulator may use something other than CTRL-Z as
the suspend character, but this is unlikely.)

Shell Options
Bash provides a number of shell options, settings that you
can change to modify the shell’s behavior. You control these
options with the shopt command (see the entry for shopt on
page 119).

The compatNN options are all mutually exclusive with each
other. The compatibility level indicates a minimum level. For
example, at compat40, the shell behaves like Bash 4.0 for the fea‐
tures affected by compatibility settings that changed after 4.0.
Use of BASH_COMPAT is preferred.

The following descriptions describe the behavior when set.
Options marked with a dagger (†) are enabled by default:

autocd

When the first word of a simple command cannot be exe‐
cuted, try to cd to it. If there is a function named cd, Bash
will run it instead of calling the built-in cd.

60 | The Bash Shell

cdable_vars

Treat a nondirectory argument to cd as a variable whose
value is the directory to go to.

cdspell

Attempt spelling correction on each directory component
of an argument to cd. Allowed in interactive shells only.

checkhash

Check that commands found in the hash table still exist
before attempting to use them. If not, perform a normal
PATH search.

checkjobs

When an attempt is made to exit a shell and there are
stopped or running background jobs, the shell prints
There are running jobs. and a list of jobs and their sta‐
tuses. A second exit attempt (such as typing EOF again)
causes the shell to exit.

checkwinsize

Check the window size after each command, and update
LINES and COLUMNS if the size has changed. This works in
both interactive and noninteractive shells.

cmdhist †
Save all lines of a multiline command in one history entry.
This permits easy re-editing of multiline commands.

compat31

Restore the behavior of the =~ operator for the [[]] com‐
mand whereby the righthand side is always treated as a
regular expression to be matched. In addition, the < and >
operators ignore the locale when doing string comparison.

compat32

Cause the < and > operators of the [[]] command to
ignore the locale when doing string comparison. In addi‐
tion, interrupting a command in the middle of a com‐
mand list such as cmd1; cmd2; cmd3 does not abort execu‐
tion of the entire list.

Shell Options | 61

compat40

Cause the < and > operators of the [[]] command to
ignore the locale when doing string comparison.

compat41

In POSIX mode, treat single quotes inside a double-
quoted parameter expansion as quoting characters. There
must be an even number of single quotes, and their con‐
tents are treated as quoted.

compat42

Do not process the replacement string in a pattern substi‐
tution word expansion using quote removal.

compat43

Do not print a warning message when using a quoted
compound assignment in an argument to declare; treat
word expansion errors as nonfatal, causing the current
command to fail, even in POSIX mode; and do not reset
the loop state inside a function, causing break and con
tinue in a function to affect loops in the function’s caller.

complete_fullquote †
When performing filename completion, quote all shell
metacharacters with preceding backslashes. If disabled,
dollar signs (and possibly other characters) are not
quoted, so that shell variable expansion occurs as
expected.

direxpand

When performing filename completion, replace directory
names with the results of word expansion, modifying the
readline editing buffer.

dirspell

Attempt spelling correction on directory names during
word completion if the name as given does not exist.

dotglob

Include filenames starting with a period in the results of
filename expansion.

62 | The Bash Shell

execfail

Do not exit a noninteractive shell if the command given to
exec cannot be executed. Interactive shells do not exit in
such a case, no matter the setting of this option.

expand_aliases †
Expand aliases created with alias. Disabled in noninter‐
active shells.

Enable behavior needed for debuggers:

extdebug

• declare -F displays the source filename and line
number for each function name argument.

• When a command run by the DEBUG trap fails, the
next command is skipped.

• When a command run by the DEBUG trap inside a
shell function or script sourced with . (dot) or
source returns with an exit status of 2, the shell
simulates a call to return.

• BASH_ARGC and BASH_ARGV are set as described earlier.
• Function tracing is enabled. Command substitu‐

tions, shell functions, and subshells invoked via (…)

inherit the DEBUG and RETURN traps.
• Error tracing is enabled. Command substitutions,

shell functions, and subshells invoked via (…)

inherit the ERR trap.

extglob

Enable extended pattern-matching facilities such as +(…).
Enabled automatically in POSIX mode. (These were not in
the original Bourne shell; thus Bash requires you to enable
them if you want them.)

extquote †
Allow $'…' and $"…" within ${variable} expansions
inside double quotes.

Shell Options | 63

failglob

Cause patterns that do not match filenames to produce an
error.

force_fignore †
When doing completion, ignore words matching the list
of suffixes in FIGNORE, even if such words are the only pos‐
sible completions.

globasciiranges

Expand ranges used in pattern matching bracket expres‐
sions as if they were in the "C" locale, ignoring the current
locale’s collating sequence. This will be enabled by default
in Bash 5.0.

globstar

Enable extended directory and subdirectory matching
with the special ** pattern.

gnu_errfmt

Print error messages in the standard GNU format.
Enabled automatically when Bash runs in an Emacs termi‐
nal window.

histappend

Append the history list to the file named by $HISTFILE
upon exit, instead of overwriting the file.

histreedit

Allow a user to re-edit a failed csh-style history substitu‐
tion with the readline library.

histverify

Place the results of csh-style history substitution into the
readline library’s editing buffer instead of executing it
directly, in case the user wishes to modify it further.

hostcomplete †
If using readline, attempt hostname completion when a
word containing an @ is being completed.

64 | The Bash Shell

huponexit

Send a SIGHUP to all running jobs upon exiting an interac‐
tive login shell.

inherit_errexit

Cause command substitution to inherit the value of set
-e. Enabled automatically in POSIX mode.

interactive_comments †
Allow words beginning with # to start a comment in an
interactive shell.

lastpipe

In non-job control shells, run the last command of a fore‐
ground pipeline in the current shell environment. All
commands but the last run in subshells.

lithist

If cmdhist is also set, save multiline commands to the his‐
tory file with newlines instead of semicolons.

login_shell

Set by the shell when it is a login shell. This is a read-only
option.

mailwarn

Print the message The mail in mailfile has been read
when a file being checked for mail has been accessed since
the last time Bash checked it.

no_empty_cmd_completion

If using readline, do not search $PATH when a completion is
attempted on an empty line, or a line consisting solely of
whitespace.

nocaseglob

Ignore letter case when doing filename matching.

nocasematch

Ignore letter case when doing pattern matching for case
and [[]].

Shell Options | 65

nullglob

Expand patterns that do not match any files to the null
string, instead of using the literal pattern as an argument.

progcomp †
Enable programmable completion.

promptvars †
Perform variable, command, and arithmetic substitution
on the values of PS0, PS1, PS2, and PS4.

restricted_shell

Set by the shell when it is a restricted shell. This is a read-
only option.

shift_verbose

Cause shift to print an error message when the shift
count is greater than the number of positional parameters.

sourcepath †
Cause the . (dot) and source commands to search $PATH
in order to find the file to read and execute.

xpg_echo

Cause echo to expand escape sequences, even without the
-e or -E options.

Command Execution
When you type a command, Bash looks in the following places
(in this order) until it finds a match:

1. Keywords such as if and for.
2. Aliases. In POSIX mode, you can’t define an alias whose

name is a shell keyword, but you can define an alias that
expands to a keyword (e.g., alias aslongas=while). When
not in POSIX mode, Bash does allow you to define an alias
for a shell keyword.
Normally, alias expansion is enabled only in interactive
shells. POSIX mode shells always enable it.

66 | The Bash Shell

3. POSIX shells only: Special built-ins like break and con-
tinue. The list of POSIX special built-ins is . (dot), :,
break, continue, eval, exec, exit, export, readonly,
return, set, shift, times, trap, and unset. Bash adds
source.
An error from a POSIX special built-in causes noninterac‐
tive shells to exit.

4. Functions. When not in POSIX mode, Bash finds func‐
tions before all built-in commands.

5. Nonspecial built-ins such as cd and test.
6. Scripts and executable programs, for which the shell

searches in the directories listed in the PATH environment
variable. NOTE: In POSIX mode, tildes in $PATH elements
are not expanded. Additionally, if a command in the hash
table no longer exists, Bash re-searches $PATH.

7. When a command is not found, if a function named com
mand_not_found_handle exists, the shell calls it, passing the
command words as the function arguments.

The distinction between “special” built-in commands and non‐
special ones comes from POSIX. This distinction, combined
with the command command, makes it possible to write func‐
tions that override shell built-ins, such as cd. For example:

Shell function; found before built-in cd
cd () {
 command cd "$@" Use real cd to change directory
 echo now in $PWD Other stuff we want to do
}

If Bash exits due to receiving SIGHUP, or if the huponexit shell
option is set, Bash sends a SIGHUP to all running child jobs. Use
disown -h to prevent Bash from sending SIGHUP to a particular
job.

Command Execution | 67

Coprocesses
A coprocess is a process that runs in parallel with the shell and
with which the shell can communicate. The shell starts the pro‐
cess in the background, connecting its standard input and out‐
put to a two-way pipe. (The coprocess’s standard error is not
redirected.)

There are two syntaxes for running a coprocess:

coproc name non-simple command Start a named coprocess

coproc command args Start an unnamed coprocess

The shell creates an array variable named name to hold the file
descriptors for communication with the coprocess. name[0] is
the output of the coprocess (input to the controlling shell) and
name[1] is the input to the coprocess (output from the shell). In
addition, the variable name_PID holds the process-ID of the
coprocess. When no name is supplied, the shell uses COPROC.

NOTE

There can be only one active coprocess at a time.

Example
The following example demonstrates the basic usage of the
coproc keyword and the related variables:

Start a named coprocess in the background
$ coproc testproc (echo 1
> read aline ; echo $aline)
[1] 5090

Show the file descriptors
$ echo ${testproc[@]}
63 60

68 | The Bash Shell

Show the coprocess PID
$ echo $testproc_PID
5090

Read the first line of coprocess output and show it
$ read out <&${testproc[0]}
$ echo $out
1

Send coprocess some input
$ echo foo >&${testproc[1]}

Read second output line
$ read out2 <&${testproc[0]}
[1]+ Done coproc testproc (echo 1; read aline; echo
$aline)

Show the second output line
$ echo $out2
foo

Restricted Shells
A restricted shell is one that disallows certain actions, such as
changing directory, setting PATH, or running commands whose
names contain a / character.

The original V7 Bourne shell had an undocumented restricted
mode. Later versions of the Bourne shell clarified the code and
documented the facility. Bash also supplies a restricted mode.
(See the manual page for the details.)

Shell scripts can still be run, since in that case the restricted
shell calls the unrestricted version of the shell to run the script.
This includes /etc/profile, ~/.profile, and the other startup files.

Tip
Restricted shells are not used much in practice, as they are dif‐
ficult to set up correctly.

Restricted Shells | 69

Invert the sense of the following pipeline.

Introduce a comment that runs to the end of the line.

Built-In Commands
Examples to be entered as a command line are shown with the
$ prompt. Otherwise, examples should be treated as code frag‐
ments that might be included in a shell script. For convenience,
the reserved words used by multiline commands are also
included.

Almost all built-in commands recognize the --help option and
print a usage summary in response to it.

!
! pipeline

Negate the sense of a pipeline. Returns an exit status of 0 if the
pipeline exited nonzero, and an exit status of 1 if the pipeline
exited zero. Typically used in if and while statements.

Example
This code prints a message if user jane is not logged on:

if ! who | grep jane > /dev/null
then
 echo jane is not currently logged on
fi

#
text …

Ignore all text that follows on the same line. # is used in shell
scripts as the comment character and is not really a command.

70 | The Bash Shell

Invoke the named interpreter to execute the script.

Do-nothing command, used as a syntactic placeholder.

#!shell
#!shell [option]

Used as the first line of a script to invoke the named shell. Any‐
thing given on the rest of the line is passed as a single argument
to the named shell. For example:

#!/bin/sh

Tip
This feature is typically implemented by the kernel, but may
not be supported on some very old systems. Some systems have
a limit of around 32 characters on the maximum length of shell.

:
: [arguments]

Null command. Returns an exit status of 0. See this Example
and the ones under the entry for case on page 77. The line is
still processed for side effects, such as variable and command
substitutions, or I/O redirection.

Example
Check whether someone is logged in:

if who | grep $1 > /dev/null
then : # Do nothing if user is found
else echo "User $1 is not logged in"
fi

Built-In Commands | 71

Read and execute a file within the current shell.

Extended version of the test command.

.
. file [arguments]

Read and execute lines in file. file does not have to be exe‐
cutable but must reside in a directory searched by $PATH. If the
sourcepath option is disabled, Bash does not search $PATH. The
arguments are stored in the positional parameters. If file is not
found in $PATH, Bash looks in the current directory for file.
(Note that POSIX shells do not do so.) Bash removes zero
(ASCII NUL) bytes from the contents of file before attempting
to parse it. Noninteractive POSIX-mode shells exit if file is not
found, unless prefixed with command. See also the entry for
source on page 120.

When the -T option is set, traps on DEBUG are inherited, and any
changes made to the DEBUG trap by file remain in place upon
return to the calling shell. If -T is not set, DEBUG traps are saved
and restored around the call to file, and the DEBUG trap is unset
while file executes.

[[]]
[[expression]]

Same as test expression or [expression], except that [[]]
allows additional operators. Word splitting and filename
expansion are disabled. Note that the brackets ([]) are typed
literally, and that they must be surrounded by whitespace. See
the entry for test on page 120.

72 | The Bash Shell

Define a shell function.

Additional Operators

&& Logical AND of test expressions (short circuit).

|| Logical OR of test expressions (short circuit).

< First string is lexically “less than” the second, based on the locale’s sorting
order. (However, see the description of the compat31, compat32, and
compat40 options in the section “Shell Options” on page 60.)

> First string is lexically “greater than” the second, based on the locale’s sorting
order. (However, see the description of the compat31, compat32, and
compat40 options in the section “Shell Options” on page 60.)

name ()
name () { commands; } [redirections]

Define name as a function. POSIX syntax. The function defini‐
tion can be written on one line or across many. You may also
provide the function keyword, an alternate form that works
similarly. See the section “Functions” on page 23.

Example
$ countfiles () {
> ls | wc -l
> }

When issued at the command line, countfiles displays the
number of files in the current directory.

Built-In Commands | 73

Define and manage shell aliases.

-p

Move a stopped job into the background.

alias
alias [-p] [name[='cmd']]

Assign a shorthand name as a synonym for cmd. If ='cmd' is
omitted, print the alias for name; if name is also omitted, print
all aliases. If the alias value contains a trailing space, the next
word on the command line also becomes a candidate for alias
expansion. The BASH_ALIASES array provides programmatic
access to all defined aliases; see the section “Built-In Shell Vari‐
ables” on page 32. See also the entry for unalias on page 130.

Tip
In general, functions are preferred to aliases; they let you have
local variables and are fully programmable.

Option
Print the word alias before each alias.

Example
alias dir='echo ${PWD##*/}'

bg
bg [jobIDs]

Put current job or jobIDs in the background. See the section
“Job Control” on page 59.

74 | The Bash Shell

Manage key bindings for the readline library.

-l

-p

-P

-s

-S

bind
bind [-m map] [options]
bind [-m map] [-q function] [-r sequence]
 [-u function]
bind [-m map] -f file
bind [-m map] -x sequence:command
bind [-m map] sequence:function
bind readline-command

Manage the readline library. Nonoption arguments have the
same form as in a .inputrc file.

Options
-f file

Read key bindings from file.

List the names of all the readline functions.

-m map
Use map as the keymap. Available keymaps are emacs,
emacs-ctlx, emacs-standard, emacs-meta, vi, vi-command,
vi-insert, and vi-move. vi is the same as vi-command, and
emacs is the same as emacs-standard.

Print the current readline bindings such that they can be
reread from a .inputrc file.

Print the current readline bindings.

-q function
Query which keys invoke the readline function function.

-r sequence
Remove the binding for key sequence sequence.

Print the current readline key sequence and macro bind‐
ings such that they can be reread from a .inputrc file.

Print the current readline key sequence and macro bind‐
ings.

Built-In Commands | 75

-v

-V

-X

Exit from one or more loops.

Execute a built-in command, bypassing functions.

-u function
Unbind all keys that invoke the readline function function.

Print the current readline variables such that they can be
reread from a .inputrc file.

Print the current readline variables.

-x sequence:command
Execute the shell command command whenever sequence
is entered. The command may make use of and modify the
READLINE_LINE and READLINE_POINT variables. Changes to
these variables are reflected in the editing state.

Print the current readline key sequences bound with -x
such that they can be reread from a .inputrc file.

break
break [n]

Exit from a for, while, select, or until loop (or break out of
n nested loops).

builtin
builtin command [arguments …]

Run the shell built-in command command with the given argu‐
ments. This allows you to bypass any functions that redefine a
built-in command’s name. The command command is more
portable.

Example
This function lets you do your own tasks when you change
directory:

76 | The Bash Shell

Print function or dot-file caller, for use with the Bash debugger.

Syntax for a case statement.

cd () {
 builtin cd "$@" # Actually change directory
 pwd # Report location
}

caller
caller [expression]

Print the line number and source filename of the current func‐
tion call or dot file. With nonzero expression, print that element
from the call stack. The most recent is zero. This command is
for use by the Bash debugger.

case
case value in
[(]pattern1) cmds1;; # ;& or ;;& -- see text
[(]pattern2) cmds2;;
 . . .
esac

Execute the first set of commands (cmds1) if value matches pat‐
tern1; execute the second set of commands (cmds2) if value
matches pattern2, and so on. Be sure the last command in each
set ends with ;;. value is typically a positional parameter or
other shell variable. cmds are typically executable commands,
shell programming commands, or variable assignments. Pat‐
terns can use file-generation metacharacters. Multiple patterns
(separated by |) can be specified on the same line; in this case,
the associated cmds are executed whenever value matches any
of these patterns. See the Examples here and under the entry
for eval on page 90.

The shell allows pattern to be preceded by an optional open
parenthesis, as in (pattern). For some shell versions, it’s neces‐
sary for balancing parentheses inside a $() construct. Bash 4.0

Built-In Commands | 77

Change directory.

and later do not require it. See also the nocasematch option in
the section “Shell Options” on page 60.

Bash provides two additional special terminators for the cmds
in a case statement: ;& causes execution to continue into the
next set of cmds, and ;;& causes the next pattern list to be
tested.

Examples
Check first command-line argument and take appropriate
action:

case $1 in # Match the first arg
no|yes) response=1;;
-[tT]) table=TRUE;;
*) echo "unknown option"; exit 1;;
esac

Read user-supplied lines until user exits:

while true
do printf "Type . to finish ==> "
 read line
 case "$line" in
 .) echo "Message done"
 break ;;
 *) echo "$line" >> $message ;;
 esac
done

cd
cd [-L] [-P [-e]] [-@] [dir]
cd [-L] [-P [-e]] [-@] [-]

With no arguments, change to home directory of user. Other‐
wise, change working directory to dir. Bash searches the direc‐
tories given in $CDPATH first, and then looks in the current
directory for dir. If dir is a relative pathname but is not in the

78 | The Bash Shell

-e

-L

-P

-@

Execute or print information about a built-in command.

current directory, then also search $CDPATH. A directory of -
stands for the previous directory. This command exits with a
failure status if PWD is read-only.

Options
With -P, if the current directory cannot be determined,
exit with a failure value.

Use the logical path (what the user typed, including any
symbolic links) for cd .. and the value of PWD. This is the
default.

Use the filesystem physical path for cd .. and the value of
PWD.

On systems supporting extended attributes, treat a file
with extended attributes as a directory containing the file’s
attributes.

Example
$ ls -ld /var/run /var/run is a symbolic link
lrwxrwxrwx 1 root root 4 May 7 19:41 /var/run -> /run
$ cd -L /var/run Logical change directory
$ pwd Show location
/var/run Result is logical location
$ cd -P /var/run Physical change directory
$ pwd Show location
/run Result is physical location

command
command [-pvV] name [arg …]

Without -v or -V, execute name with given arguments. This
command bypasses any aliases or functions that may be
defined for name. When used with a special built-in, it prevents
the built-in from exiting the script if it fails. In POSIX mode,

Built-In Commands | 79

-p

-v

-V

Generate possible completions.

Specify how to do completion for specific commands.

assignments given as arguments to the alias, declare,
export, local, readonly, and typeset commands still take
effect, even when preceded by command.

Options
Use a predefined default search path, not the current value
of PATH.

Print a description of how the shell interprets name.

Print a more verbose description of how the shell inter‐
prets name.

Example

Create an alias for rm that gets the system’s version, and run it
with the -i option:

$ alias 'rm=command -p rm -i'

compgen
compgen [options] [string]

Generate possible completions for string according to the
options. Options are those accepted by complete, except for -p
and -r. For more information, see the entry for complete on
page 80.

complete
complete [-DE] [options] command …

Specify how to complete arguments for each command. This is
discussed in the section “Programmable Completion” on page
54.

80 | The Bash Shell

-a

Options
Same as -A alias.

-A type
Use type to specify a list of possible completions. The type
may be one of the following:

alias Alias names

arrayvar Array variable names

binding Bindings from the readline library

builtin Shell built-in command names

command Command names

directory Directory names

disabled Names of disabled shell built-in commands

enabled Names of enabled shell built-in commands

export Exported variables

file Filenames

function Names of shell functions

group Group names

helptopic Help topics as allowed by the help built-in command

hostname Hostnames, as found in the file named by $HOSTFILE

job Job names

keyword Shell reserved keywords

running Names of running jobs

service Service names (from /etc/services)

setopt Valid arguments for set -o

shopt Valid option names for the shopt built-in command

signal Signal names

stopped Names of stopped jobs

Built-In Commands | 81

-b

-c

-d

-D

-e

-E

-f

-g

-j

-k

user Usernames

variable Shell variable names

Same as -A builtin.

Same as -A command.

-C command
Run command in a subshell and use its output as the list of
completions.

Same as -A directory.

Apply the rest of the options and parameters to the
“default” completion, which is used when no other comp‐
spec can be found.

Same as -A export.

Apply the rest of the options and parameters to the
“empty” completion, which is used when completion is
attempted on an empty input line.

Same as -A file.

-F function
Run shell function function in the current shell. Upon its
return, retrieve the list of completions from the COMPREPLY
array.

Same as -A group.

-G pattern
Expand pattern to generate completions.

Same as -A job.

Same as -A keyword.

-o option
Control the behavior of the completion specification. The
value for option is one of the following:

82 | The Bash Shell

-p

-r

-s

-u

-v

bashdefault Fall back to the normal Bash completions if no matches
are produced.

default Use the default readline completions if no matches are
produced.

dirnames Do directory name completion if no matches are
produced.

filenames Inform the readline library that the intended output is
filenames, so the library can do any filename-specific
processing, such as adding a trailing slash for directories
or removing trailing spaces.

noquote Inform the readline library that it should not quote
completed words that are filenames.

nosort Inform the readline library that it should not sort the list
of completed words.

nospace Inform the readline library that it should not append a
space to words completed at the end of a line.

plusdirs Attempt directory completion and add any results to the
list of completions already generated.

With no commands, print all completion settings in a way
that can be reread.

-P prefix
Prepend prefix to each resulting string after all the other
options have been applied.

Remove the completion settings for the given commands,
or all settings if no commands.

Same as -A service.

-S suffix
Append suffix to each resulting string after all the other
options have been applied.

Same as -A user.

Same as -A variable.

Built-In Commands | 83

Print or change the completion options for a command.

-D

-E

-W wordlist
Split wordlist (a single shell word) using $IFS. The gener‐
ated list contains the members of the split list that
matched the word being completed. Each member is then
expanded using brace expansion, tilde expansion, parame‐
ter and variable expansion, command substitution, and
arithmetic expansion. Shell quoting is respected.

-X pattern
Exclude filenames matching pattern from the filename
completion list. With a leading !, the sense is reversed,
and only filenames matching pattern are retained.

Tip
Courtesy of Chet Ramey. Use:

complete -A helptopic help

to restrict the set of possible completions for the help com‐
mand to the set of help topics. Upon doing so, typing help and
two Tabs causes the shell to display the list of help topics.

compopt
compopt [-DE] [-o options] [+o options]
 [commands …]

With no options, print the completion options for one or more
commands, or for the currently executing completion when
invoked without commands. With options, modify the existing
compspecs for the given commands, or for the currently execut‐
ing completion when invoked without commands.

Options
Apply the options to the “default” completion.

Apply the options to the “empty” completion.

84 | The Bash Shell

Skip the rest of the body of one or more loops.

Declare shell variables and manage their attributes.

-a

-A

-f

-F

-g

-o option
Enable option, which is one of the valid options for the
complete command.

+o option
Disable option, which is one of the valid options for the
complete command.

continue
continue [n]

Skip remaining commands in a for, while, select, or until
loop, resuming with the next iteration of the loop (or skipping
n nested loops).

declare
declare [options] [name[=value]]

Declare variables and manage their attributes. In function bod‐
ies, variables are local, as if declared with the local command.
All options must be given first. See also the entry for typeset
on page 128.

Options
Each name is an indexed array.

Each name is an associative array.

Each name is a function.

For functions, print just the function’s name and
attributes, not the function definition (body).

When used inside a function, declare the variable in the
global scope, instead of at the local scope.

Built-In Commands | 85

-i

-l

-n

-p

-r

-t

-u

-x

Each variable is an integer; in an assignment, the value is
evaluated as an arithmetic expression.

Mark names to have their values converted to lowercase
upon assignment.

Each name is a nameref. See the section “Indirect Vari‐
ables (namerefs)” on page 31.

With no names, print all variables, their values, and
attributes. With names, print the names, attributes, and
values (if set) of the given variables. With -f, print func‐
tion definitions.

Mark names as read-only. Subsequent assignments will
fail, and read-only variables cannot be unset.

Apply the trace attribute to each name. Traced functions
inherit the DEBUG trap. This attribute has no meaning for
variables.

Mark names to have their values converted to uppercase
upon assignment.

Mark names for export into the environment of child
processes.

With a + instead of a -, the given attribute is disabled.

With no variable names, all variables having the given
attribute(s) are printed in a form that can be reread as input to
the shell.

Examples
$ declare -i val Make val an integer
$ val=4+7 Evaluate value
$ echo $val Show result
11

$ declare -r z=42 Make z read-only
$ z=31 Try to assign to it
bash: z: readonly variable Assignment fails

86 | The Bash Shell

Print or manage the directory stack.

+n

-n

-c

-l

-p

-v

Stop managing one or more jobs.

$ echo $z
42

$ declare -p val z Show attributes and values
declare -i val="11"
declare -r z="42"

dirs
dirs [-clpv] [+n] [-n]

Print the directory stack, which is managed with pushd and
popd.

Options
Print the nth entry from the left; first entry is zero.

Print the nth entry from the right; first entry is zero.

Clear (remove all entries from) the directory stack.

Produce a longer listing, one that does not replace $HOME
with ~.

Print the directory stack, one entry per line.

Print the directory stack, one entry per line, with each
entry preceded by its index in the stack.

disown
disown [-ahr] [job …]

Remove one or more jobs from the list of jobs managed by
Bash. A job is either a job specification or a process-ID.

Built-In Commands | 87

-a

-h

-r

Reserved word that starts the body of a loop.

Reserved word that ends the body of a loop.

Print command-line arguments to standard output.

Options
Remove all jobs. With -h, mark all jobs.

Instead of removing jobs from the list of known jobs,
mark them to not receive SIGHUP as described in the sec‐
tion “Command Execution” on page 66.

With no jobs, remove (or mark) only running jobs.

do
do

Reserved word that precedes the command sequence in a for,
while, until, or select statement.

done
done

Reserved word that ends a for, while, until, or select
statement.

echo
echo [-eEn] [string]

Write string to standard output. This is the built-in version of
the command. (It is likely that you also have a standalone exe‐
cutable program named echo for which you should see your
local echo(1) man page.)

88 | The Bash Shell

-e

-E

-n

Enable or disable shell built-in commands.

-a

-d

-n

Options
If the xpg_echo shell option is set, along with POSIX mode (set
-o posix), echo does not interpret any options.

Enable interpretation of the escape sequences as described
in the section “Escape Sequences” on page 12. They must
be quoted (or escaped with a \) to prevent interpretation
by the shell.

Do not interpret escape sequences, even on systems where
the default behavior of the built-in echo is to interpret
them.

Do not print the terminating newline.

Examples
$ echo "testing printer" | lpr
$ echo -e "Warning: ringing bell \a"

enable
enable [-adnps] [-f file] [command …]

Enable or disable shell built-in commands. Disabling a built-in
lets you use an external version of a command that would
otherwise use a built-in version, such as echo or test.

Options
For use with -p; print information about all built-in com‐
mands, disabled and enabled.

Remove (delete) a built-in previously loaded with -f.

-f file
Load a new built-in command command from the shared
library file file. The shell searches for file in the directories
named in $BASH_LOADABLES_PATH.

Disable the named built-in commands.

Built-In Commands | 89

-p

-s

Reserved word that ends a case statement.

Rescan and execute an already-processed input line.

Print a list of enabled built-in commands.

Print only the POSIX special built-in commands. When
combined with -f, the new built-in command becomes a
POSIX special built-in.

esac
esac

Reserved word that ends a case statement.

eval
eval args

Typically, eval is used in shell scripts, and args is a line of code
that contains shell variables. eval forces variable expansion to
happen first and then runs the resulting command. This
“double-scanning” is useful any time shell variables contain
input/output redirection symbols, aliases, or other shell vari‐
ables. (For example, redirection normally happens before vari‐
able expansion, so a variable containing redirection symbols
must be expanded first using eval; otherwise, the redirection
symbols remain uninterpreted.)

Example

This fragment of a shell script shows how eval constructs a
command that is interpreted in the correct order:

90 | The Bash Shell

Replace the current script or manage shell file descriptors.

-a

-c

-l

for option
do
 # Define where output goes
 case "$option" in
 save) out=' > $newfile' ;;
 show) out=' | more' ;;
 esac
done

eval sort $file $out

exec
exec [command args …]
exec [-a name] [-cl] [command args …]
exec redirections …

Execute command in place of the current process (instead of
creating a new process). With only redirections (see the section
“Redirection using file descriptors” on page 19), exec is also
useful for opening, closing, copying, or moving file descriptors.
In this case, the script continues to run.

Options
Use name for the value of command’s argv[0].

Clear the environment before executing the program.

Place a minus sign at the front of command’s argv[0], just
as login(1) does.

Examples
trap 'exec 2>&-' 0 Close stderr when script exits (signal 0)

$ exec /bin/csh Replace shell with C shell (bad idea)
$ exec < infile Reassign standard input to infile

Built-In Commands | 91

Exit the shell script.

Export items or print information about exported items.

exit
exit [n]

Exit a shell script with status n (e.g., exit 1). n can be 0 (suc‐
cess) or nonzero (failure). If n is not given, the shell’s exit status
is that of the most recent command. exit can be issued at the
command line to close a window (log out). Exit statuses can
range in value from 0 to 255. Any trap on EXIT executes before
the shell exits. Noninteractive login shells execute ~/.bash_log‐
out if it exists. See also the section “Command Exit Status” on
page 6.

Example
if [$# -eq 0]
then
 echo "Usage: $0 [-c] [-d] file(s)" 1>&2
 exit 1 # Error status
fi

export
export [variables]
export [name=[value] …]
export -p
export [-fn] [name=[value] …]

Pass (export) the value of one or more shell variables, giving
global meaning to the variables (which are local by default). For
example, a variable defined in one shell script must be exported
if its value is used in other programs called by the script. If no
variables are given, export lists the variables exported by the
current shell. The second form is the POSIX version, which is
similar to the first form, except that you can set a variable name
to a value before exporting it. export can also export func‐
tions.

92 | The Bash Shell

-f

-n

-p

Exit with a false (failure) return value.

Manage command-line history.

Options
Names refer to functions; the functions are exported into
the environment.

Remove the named variables or functions from the
environment.

Print declare -x before printing the names and values of
exported variables. This allows saving a list of exported
variables for rereading later. Print only the names of
exported functions, not their bodies.

Examples
In the original Bourne shell, you would type:

TERM=vt100
export TERM

In Bash, you type this instead:

export TERM=vt100

false
false

Built-in command that exits with a false return value.

fc
fc [options] [first [last]]
fc -e - [old=new] [command]
fc -s [old=new] [command]

Display or edit commands in the history list. (Use only one of
-e, -l, or -s.)

Built-In Commands | 93

-l

-n

-r

-s

first and last are numbers or strings specifying the range of
commands to display or edit. If last is omitted, fc applies to a
single command (specified by first). If both first and last are
omitted, fc edits the previous command or lists the last 16. If
first is -0, it relates to the current command.

The second form of fc takes a history command, replaces old
with new, and executes the modified command. If no strings
are specified, command is just re-executed. If no command is
given either, the previous command is re-executed. command is
a number or string like first. See the Examples in the section
“Command History” on page 49. The third form is equivalent
to the second form.

Options
-e editor

Invoke editor to edit the specified history commands. You
must supply an editor name with -e. Without -e, fc
invokes the default editor, which is set by the shell variable
FCEDIT. If that variable is not set, Bash tries $EDITOR. If nei‐
ther is set, the default editor is vi. Versions 3.1 and newer
default to ed when in POSIX mode.

-e -
Execute (or redo) a history command; refer to the second
syntax line above.

List the specified command or range of commands, or list
the last 16.

Suppress command numbering from the -l listing.

Reverse the order of the -l listing.

Equivalent to -e -.

94 | The Bash Shell

Move a running or suspended background job into the foreground.

Reserved word that ends an if statement.

Start a loop over a list of values.

fg
fg [jobIDs]

Bring current job or jobIDs to the foreground. See the section
“Job Control” on page 59.

fi
fi

Reserved word that ends an if statement.

for
for x [in [list]]
do
 commands
done

For variable x (in optional list of values), do commands. If in
list is omitted, "$@" (the positional parameters) is assumed. If
the expansion of list is empty, no commands execute.

Examples
Paginate files specified on the command line, and save each
result:

for file
do
 pr $file > $file.tmp
done

Built-In Commands | 95

Start an arithmetic loop.

Same, but put entire loop into the background:

for file
do
 pr $file > $file.tmp
done &

Search chapters for a list of words (like fgrep -f):

for item in $(cat program_list)
do
 echo "Checking chapters for"
 echo "references to program $item…"
 grep -c "$item.[co]" chap*
done

Extract a one-word title from each file named on the command
line and use it as the new filename:

for file
do
 name=$(sed -n 's/NAME: //p' $file)
 mv $file $name
done

for
for ((init; cond; incr))
do
 commands
done

Arithmetic for loop, similar to C’s. Evaluate init. While cond is
true, execute the body of the loop. Evaluate incr before retesting
cond. Any one of the expressions may be omitted; a missing
cond is treated as being true.

Example
Search for a phrase in each odd chapter:

96 | The Bash Shell

Define a shell function.

Process command-line options and arguments.

for ((x=1; x <= 20; x += 2))
do
 grep $1 chap$x
done

function
function name { commands; } [redirections]
function name () { commands; } [redirections]

Define name as a shell function. See the description of function
semantics in the section “Functions” on page 23.

Example
Define a function to count files.

$ function countfiles {
> ls | wc -l
> }

getopts
getopts string name [args]

Process command-line arguments (or args, if specified) and
check for legal options. getopts is used in shell script loops
and is intended to ensure standard syntax for command-line
options.

Standard syntax dictates that command-line options begin with
a -. Options can be stacked (i.e., consecutive letters can follow a
single -). You end processing of options by specifying -- on the
command line. string contains the option letters to be recog‐
nized by getopts when running the shell script. Valid options
are processed in turn and stored in the shell variable name. If
name is read-only, the command exits with a return value of 2.

Built-In Commands | 97

Manage the table of previously found commands.

-d

If an option character in the options string is followed by a
colon, the actual option must be followed by one or more argu‐
ments. (Multiple arguments must be given to the command as
one shell word. This is done by quoting the arguments or sepa‐
rating them with commas. The script must be written to expect
multiple arguments in this format.)

getopts uses the shell variables OPTARG, OPTIND, and OPTERR
(see the section “Built-In Shell Variables” on page 32).

hash
hash [-dlrt] [commands]
hash [-p file] [command]

As the shell finds commands along the search path ($PATH), it
remembers the found locations in an internal hash table. The
next time you enter a command, the shell uses the value stored
in its hash table.

With no arguments, hash lists the current set of hashed com‐
mands. The display shows hits (the number of times the com‐
mand has been called by the shell) and the command name. If
the table is empty, then if Bash is in POSIX mode, hash prints
nothing. Otherwise, it prints hash: hash table empty on stan‐
dard output.

With commands, the shell adds those commands to the hash
table. With no options and just commands, the shell resets the
“hit count” associated with each command to zero.

The BASH_CMDS array provides programmatic access to all
entries in the hash table; see the section “Built-In Shell Vari‐
ables” on page 32.

Options
Delete (remove) just the specified commands from the
hash table.

98 | The Bash Shell

-l

-r

-t

Print command usage information.

-d

-m

-s

Produce output in a format that can be reread to rebuild
the hash table.

-p file
Associate file with command in the hash table.

Remove all commands from the hash table.

With one name, print the full pathname of the command.
With more than one name, print the name and the full
path, in two columns.

Tip
Besides the -r option, the hash table is also cleared when PATH
is assigned. Use PATH=$PATH to clear the hash table without
affecting your search path. This is most useful if you have
installed a new version of a command in a directory that is ear‐
lier in $PATH than the current version of the command.

help
help [-dms] [pattern]

Print usage information on standard output for each command
that matches pattern. The information includes descriptions of
each command’s options.

Options
Print a brief description of what the command does.

Print the full description of the command in a format sim‐
ilar to that of a Unix manual page.

Print short (brief) usage information.

Built-In Commands | 99

Print command-line history.

-a

-c

-n

Examples
$ help -s cd Short help
cd: cd [-L|[-P [-e]] [-@]] [dir]

$ help true Full help
true: true
 Return a successful result.

 Exit Status:
 Always succeeds.

history
history [count]
history [options]

Print commands in the history list or manage the history file.
With no options or arguments, display the history list with
command numbers. With a count argument, print only that
many of the most recent commands.

Bash stores the command history for any shell where history is
enabled (with set -o history) and HISTFILE is set, not just
interactive shells.

Options
Append new history lines (those executed since the his‐
tory file was last written) to the history file. The write hap‐
pens immediately.

Clear the history list (remove all entries).

-d position
Delete the history item at position position.

Read unread history lines from the history file and append
them to the history list.

100 | The Bash Shell

-r

-w

Syntax for an if-then-else statement.

-p argument …
Perform csh-style history expansion on each argument,
printing the results to standard output. The results are not
saved in the history list.

Read the history file and replace the history list with its
contents.

-s argument …
Store the arguments in the history list, as a single entry.

Write the current history list to the history file, overwrit‐
ing it entirely. The write happens immediately.

Tip
Courtesy of Eli Zaretskii. You can use

export PROMPT_COMMAND='history -a'

to ensure that the history file is always up to date, even if the
user did not log out gracefully and even if the session is still
alive.

if
if condition1
then commands1
[elif condition2
 then commands2]
 .
 .
 .
[else commands3]
fi

If condition1 is met, do commands1; otherwise, if condition2 is
met, do commands2; if neither is met, do commands3. Condi‐
tions are often specified with the test and [[]] commands.
See the entries for test on page 120, and [[]] on page 72, for

Built-In Commands | 101

List running or stopped jobs.

-l

-n

-p

-r

-s

a full list of conditions, and see additional Examples under the
entries for : on page 71, and exit on page 92.

Examples
Insert a 0 before numbers less than 10:

if [$counter -lt 10]
then number=0$counter
else number=$counter
fi

Make a directory if it doesn’t exist:

if ! [-d $dir]
then
 mkdir -m 775 $dir
fi

jobs
jobs [options] [jobIDs]

List all running or stopped jobs, or list those specified by
jobIDs. For example, you can check whether a long compilation
or text formatting job is still running. Also useful before log‐
ging out. See the section “Job Control” on page 59.

Options
List job IDs and process group IDs.

List only jobs whose status changed since last notification.

List process group IDs only.

List running jobs only.

List stopped jobs only.

102 | The Bash Shell

Send a signal to one or more jobs.

-x cmd
Replace each job ID found in cmd with the associated pro‐
cess ID and then execute cmd.

kill
kill [options] IDs

Terminate each specified process ID or job ID. You must own
the process or be a privileged user. This built-in is similar to the
external kill command, but also allows symbolic job names.
Stubborn processes can (usually) be killed using signal 9. See
the section “Job Control” on page 59.

The command kill -l prints a list of the available signal
names. The list varies by system architecture.

The signals and their numbers are defined in the C <signal.h>
header file. This file may include others, thus the actual loca‐
tion of the signal definitions varies across systems.

Options
-l [n]

With no n, list the signal names. A numeric value n is
interpreted as either a signal number, or as an exit status
for a process terminated by a signal (128 + n). In both
cases, kill prints the corresponding signal name.

-L [n]
Same as -l.

-n num
Send the given signal number.

-s name
Send the given signal name.

Built-In Commands | 103

Perform arithmetic.

-signal

Send the given signal number (from <signal.h>) or signal
name (from kill -l). With a signal number of 9, the kill is
absolute.

In POSIX mode, you must leave off the SIG prefix for signal
names, and kill -l prints all the signal names on a single line.

let
let expressions
((expressions))

Perform arithmetic as specified by one or more expressions.
expressions consist of numbers, operators, and shell variables
(which don’t need a preceding $). Expressions must be quoted
if they contain spaces or other special characters. The ((…))

form does the quoting for you. For more information and
examples, see the section “Arithmetic Expressions” on page 47.
See also expr(1). If the final expression evaluates to zero, let
returns 1 (failure); otherwise it returns zero (success).

Examples
Each of these examples adds 1 to variable i:

i=`expr $i + 1` All Bourne shells
let i=i+1 Bash
let "i = i + 1"
((i = i + 1))
((i += 1))
((i++))
if ((i % 2 == 0)) …

104 | The Bash Shell

Declare local variables inside shell functions.

Exit the shell.

Read a file into a shell array.

local
local [options] [name[=value]]

Declare local variables for use inside functions. The options are
the same as those accepted by declare; see the entry for
declare on page 85 for the full list. It is an error to use local
outside a function body.

If name is -, the shell saves the values of the single letter
options and restores them upon function exit.

logout
logout

Exit a login shell. Execute ~/.bash_logout if it exists. The com‐
mand fails if the current shell is not a login shell.

mapfile
mapfile [options] [array]

Read standard input into array, one line per element. If no
array, use MAPFILE. An alternate file descriptor may be given
with the -u option.

Options
-c count

Specifies the “quantum” for the -C option. The default
value is 5,000.

-C command
Every “quantum” lines, evaluate command, passing it the
index in array that is about to be assigned, and the line

Built-In Commands | 105

-t

Pop a directory off of the directory stack.

that is to be assigned. The quantum is set with the -c
option. (This option is mainly used by the Bash debugger.)

-d delim
Use delim’s first character to terminate input lines instead
of newline. If delim is the null string, use the zero byte
(ASCII NUL) as the delimiter.

-n count
Read at most count lines. If count is zero, read all the lines.

-O index
Fill array starting at origin index. The default origin is
zero.

-s count
Skip (ignore) the first count lines.

Remove the trailing delimiter (usually a newline) from
each line read.

-u n
Read from file descriptor n instead of from standard
input.

popd
popd [-n] [+count] [-count]

Pop the top directory off the directory stack (as shown by the
dirs command), and change to the new top directory, or man‐
age the directory stack.

Options
+count

Remove the item count entries from the left, as shown by
dirs. Counting starts at zero. No directory change occurs.

106 | The Bash Shell

-n

Do formatted printing of command-line arguments.

%b

%q

-count

Remove the item count entries from the right, as shown by
dirs. Counting starts at zero. No directory change occurs.

Don’t change to the new top directory; just manipulate the
stack.

printf
printf [-v var] format [val …]

Formatted printing, like the ANSI C printf() function (see
printf(3)). Escape sequences in format are expanded as
described in the section “Escape Sequences” on page 12. The
format string is reused from the beginning if there are more
values than format specifiers.

Option
-v var

Save the result in var instead of printing it to standard out‐
put, even if the result is empty. var may be an array
element.

Additional Format Letters
Bash accepts these additional format letters:

Expand escape sequences in argument strings. The set of
escape sequences is those accepted by echo -e. (See the
section “Escape Sequences” on page 12.)

Print a quoted string that can be reread later on.

%(datefmt)T

Print time values using datefmt as the format control
string for strftime(3). Use the current time if no argument
is supplied.

Built-In Commands | 107

Push a directory onto the directory stack.

-n

Print working directory.

pushd
pushd [-n] [directory]
pushd [-n] [+count] [-count]

Add directory to the directory stack, or rotate the directory
stack. With no arguments, swap the top two entries on the
stack, and change to the new top entry.

Options
+count

Rotate the stack so that the count’th item from the left, as
shown by dirs, is the new top of the stack. Counting
starts at zero. The new top becomes the current directory.

-count

Rotate the stack so that the count’th item from the right, as
shown by dirs, is the new top of the stack. Counting
starts at zero. The new top becomes the current directory.

Don’t change to the new top directory; just manipulate the
stack.

pwd
pwd [-LP]

Print the current working directory on standard output. Exit
with a failure status if PWD is read-only.

Options
Options give control over the use of logical versus physical
treatment of the printed path. See also the entry for cd on page
78.

108 | The Bash Shell

-L

-P

Read data into one or more shell variables.

-e

Use the logical path (what the user typed, including any
symbolic links) and the value of PWD for the current direc‐
tory. This is the default.

Use the filesystem physical path for the current directory.

read
read [options] [variable1 [variable2 …]]

Read one line of standard input and assign each word to the
corresponding variable, with all leftover words assigned to the
last variable. If only one variable is specified, the entire line is
assigned to that variable. Bash removes zero (ASCII NUL)
bytes from the input. See the Examples here and under the
entry for case on page 77. The return status is 0 unless EOF is
reached. If no variables are given, input is stored in the REPLY
variable. In a POSIX mode shell, trapped signals can interrupt
read, in which case it returns 128 + the signal number and dis‐
cards partially read input.

Options
-a array

Read into indexed array array. Report an error if array is a
preexisting associative array.

-d delim
Read up to the first occurrence of delim, instead of new‐
line. If delim is the null string, use the zero byte (ASCII
NUL) as the delimiter.

Use the readline library if reading from a terminal.

-i text
When using the readline library, put text into the initial
editing buffer.

Built-In Commands | 109

-r

-s

-n count
Read at most count bytes. If a delimiter character is seen
before reading count bytes, stop reading further input.

-N count
Read at most count bytes. Delimiter characters in the data
do not cause Bash to stop reading; instead they are
included in the data that is read.

-p prompt
Print prompt before reading input.

Raw mode; ignore \ as a line-continuation character.

Read silently; characters are not echoed.

-t timeout
When reading from a terminal or pipe, if no data is
entered after timeout seconds, return 1. This prevents an
application from hanging forever, waiting for user input.
Values for timeout may be fractional. If timeout is zero but
data is available to be read, read returns successfully. Par‐
tial input read when the timeout expires is saved in vari‐
able1; the other variables are cleared. read returns greater
than 128 if no data were read and the timeout expires.

-u [n]
Read input from file descriptor n (default is 0).

Examples
Read three variables:

$ read first last address
Sarah Caldwell 123 Main Street

$ echo -e "$last, $first\n$address"
Caldwell, Sarah
123 Main Street

110 | The Bash Shell

Read a file into a shell array.

Mark variables as read only.

-a

-A

-f

-p

Prompt yourself to enter two temperatures:

$ read -p "High low: " n1 n2
High low: 65 33

readarray
readarray [options] [array]

Identical to the mapfile command. See the entry for mapfile
on page 105 for more information.

readonly
readonly [-aAfp] [variable[=value] …]

Prevent the specified shell variables from being assigned new
values. An initial value may be supplied using the assignment
syntax, but that value may not be changed subsequently. Read-
only variables may not be unset.

Options
Each variable must refer to an indexed array.

Each variable must refer to an associative array.

Each variable must refer to a function.

Print readonly before printing the names and values of
read-only variables. This allows saving a list of read-only
variables for rereading later.

Built-In Commands | 111

Return an exit status from a shell function.

Present a menu of items for use in executing a block of code.

return
return [n]

Use inside a function definition. Exit the function with status n
or with the exit status of the previously executed command. If
n is negative, precede it with --.

select
select x [in list]
do
 commands
done

Display a list of menu items on standard error, numbered in
the order they are specified in list. If no in list is given, items
are taken from the command line (via "$@"). Following the
menu is a prompt string (the value of PS3). At the $PS3 prompt,
users select a menu item by typing its number, or they redisplay
the menu by pressing the Enter key. User input is stored in the
shell variable REPLY. If a valid item number is typed, the shell
sets x to the chosen value and executes commands. Typing EOF
terminates the loop.

Example
PS3="Select the item number: "
select event in Format Page View Exit
do
 case "$event" in
 Format) nroff $file | lpr;;
 Page) pr $file | lpr;;
 View) more $file;;
 Exit) exit 0;;
 *) echo "Invalid selection";;
 esac
done

112 | The Bash Shell

Manage shell options and the script’s command-line parameters.

-a

-b

-B

-C

-e

-E

-f

The output of this script looks like this:

1. Format
2. Page
3. View
4. Exit
Select the item number:

set
set [options arg1 arg2 …]

With no arguments, set prints the values of all variables
known to the current shell. Options can be enabled (-option) or
disabled (+option). Options can also be set when the shell is
invoked. (See the section “Invoking the Shell” on page 4.) Non‐
option arguments are assigned in order ($1, $2, etc.).

Options
From now on, automatically mark variables for export
after defining or changing them.

Print job completion messages as soon as jobs terminate;
don’t wait until the next prompt.

Enable brace expansion. On by default.

Prevent overwriting via > redirection; use >| to overwrite
files.

Exit if a command yields a nonzero exit status. The ERR
trap executes before the shell exits. The exact behavior is
complicated; see “set -e Details” on page 118, later in this
entry.

Cause shell functions, command substitutions, and sub‐
shells to inherit the ERR trap.

Ignore filename metacharacters (e.g., * ? []).

Built-In Commands | 113

-h

-H

-k

-m

-n

Locate commands as they are defined. On by default. See
the entry for hash on page 98.

Enable csh-style history substitution. On by default. (Bash
5.0 will change this to be off by default.) See the section
“C-Shell–Style History” on page 51.

Assignment of environment variables (var=value) takes
effect regardless of where they appear on the command
line. Normally, assignments must precede the command
name.

Enable job control; background jobs execute in a separate
process group. -m is usually set automatically; interactive
shells enable it, scripts do not.

Read commands but don’t execute them; useful for check‐
ing syntax. Interactive shells ignore this option.

+o [mode]
With mode, disable the given shell mode. Plain set +o
prints the settings of all the current modes in a form that
can be reread by the shell later.

-o [mode]
List shell modes, or turn on mode mode. Many modes can
be set by other options. Modes are:

allexport Same as -a.

braceexpand Same as -B.

emacs Set command-line editor to emacs.

errexit Same as -e.

errtrace Same as -E.

functrace Same as -T.

hashall Same as -h.

histexpand Same as -H.

history Enable command history. On by default.

114 | The Bash Shell

+p

-p

-P

-t

-T

ignoreeof Don’t process EOF signals. To exit the shell, type exit.

keyword Same as -k.

monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Omit function definitions from the history file. Accepted
but ignored by Bash.

notify Same as -b.

nounset Same as -u.

onecmd Same as -t.

physical Same as -P.

pipefail Change pipeline exit status to be that of the rightmost
command that failed, or zero if all exited successfully.

posix Change to POSIX mode.

privileged Same as -p.

verbose Same as -v.

vi Set command-line editor to vi.

xtrace Same as -x.

Reset effective UID to real UID.

Start up as a privileged user. Don’t read $ENV or $BASH_ENV,
don’t import functions from the environment, and ignore
the values of the BASHOPTS, CDPATH, GLOBIGNORE, and
SHELLOPTS variables.

Always use physical paths for cd and pwd.

Exit after executing one command.

Cause shell functions, command substitutions, and sub‐
shells to inherit the DEBUG and RETURN traps.

Built-In Commands | 115

-u

-v

-x

-

--

In substitutions, treat unset variables as errors. However,
references to $@ and $* are not errors when there are no
positional parameters.

Show each shell command line when read.

Show commands and arguments when executed, preceded
by the value of PS4. This provides step-by-step tracing of
shell scripts.

Turn off -v and -x, and turn off option processing.
Included for compatibility with older versions of the
Bourne shell.

Used as the last option; -- turns off option processing so
that arguments beginning with - are not misinterpreted as
options. (For example, you can set $1 to -1.) If no argu‐
ments are given after --, unset the positional parameters.

Option Summary

Option Same as

-a -o allexport

-b -o notify

-B -o braceexpand

-C -o noclobber

-e -o errexit

-E -o errtrace

-f -o noglob

-h -o hashall

-H -o histexpand

-k -o keyword

-m -o monitor

-n -o noexec

116 | The Bash Shell

Option Same as

-o allexport -a

-o braceexpand -B

-o emacs

-o errexit -e

-o errtrace -E

-o functrace -T

-o hashall -h

-o history

-o histexpand -H

-o ignoreeof

-o keyword -k

-o monitor -m

-o noclobber -C

-o noexec -n

-o noglob -f

-o nolog

-o notify -b

-o nounset -u

-o onecmd -t

-o physical -P

-o pipefail

-o posix

-o privileged -p

-o verbose -v

-o vi

-o xtrace -x

Built-In Commands | 117

Option Same as

-p -o privileged

-P -o physical

-t -o onecmd

-T -o functrace

-u -o nounset

-v -o verbose

-x -o xtrace

set -e Details
When set -e is enabled, the shell exits if one of the following
fails: a pipeline (which can be just a single command); a sub‐
shell command in parentheses; or any of the commands in a
group enclosed in braces.

In POSIX mode, shells created to run command substitutions
inherit the setting of set -e; otherwise such shells inherit the
setting of set -e based on the setting of the inherit_errexit
shell option.

Failure of a command (non-zero exit status) does not cause an
exit in the following cases: Any command in a list following
while or until; the pipeline following if or elif; any com‐
mand in an && or || list except the last; any command in a
pipeline but the last; or if the sense of the command’s value is
being inverted with !.

In general, shell programming experts consider set -e to be of
little or no use in practical shell programming. It exists mostly
for historical compatibility, and should not be used instead of
careful programming to catch any and all errors that may
occur.

118 | The Bash Shell

Shift the command-line arguments left.

Manage shell options.

-o

-p

Examples
set -- "$num" -20 -30 Set $1 to $num, $2 to -20, $3 to -30
set -vx Show each command twice; once when
 read, and once when executed
set +x Stop command tracing
set -o noclobber Prevent file overwriting
set +o noclobber Allow file overwriting again

shift
shift [n]

Shift positional arguments (e.g., $2 becomes $1). If n is given,
shift to the left n places. Often used in while loops to iterate
through the command-line arguments.

Example
shift $(($1 + $6)) Use expression result as shift count

shopt
shopt [-opqsu] [option]

Set or unset shell options. With no options or just -p, print the
names and settings of the options. See the section “Shell
Options” on page 60 for a description of the various options.

Options
Each option must be one of the shell option names for set
-o, instead of the options listed in the section “Shell
Options” on page 60.

Print the option settings as shopt commands that can be
reread later.

Built-In Commands | 119

-q

-s

-u

Read and execute a file within the current shell.

Suspend the current shell.

-f

Evaluate conditions, for use in loops and conditionals.

Quiet mode. The exit status is zero if the given option is
set, nonzero otherwise. With multiple options, all of them
must be set for a zero exit status.

Set the given options. With no options, print only those
that are set.

Unset the given options. With no options, print only those
that are unset.

source
source file [arguments]

Identical to the . (dot) command; see the entry for . on page 72
for more information.

suspend
suspend [-f]

Suspend the current shell. Often used to stop an su command.

Option
Force the suspension, even if the shell is a login shell.

test
test condition
[condition]
[[condition]]

Evaluate a condition and, if its value is true, return a zero exit
status; otherwise, return a nonzero exit status. An alternate
form of the command uses [] rather than the word test. An

120 | The Bash Shell

additional alternate form uses [[]], in which case word split‐
ting and pathname expansion are not done (see the entry for
[[]] on page 72). condition is constructed using the following
expressions. Conditions are true if the description holds true.

File Conditions

-a file file exists. (Deprecated; use -e instead.)

-b file file exists and is a block special file.

-c file file exists and is a character special file.

-d file file exists and is a directory.

-e file file exists. (Same as -a, for POSIX compatibility.)

-f file file exists and is a regular file.

-g file file exists, and its set-group-id bit is set.

-G file file exists, and its group is the effective group ID.

-h file file exists and is a symbolic link. (Same as -L.)

-k file file exists, and its sticky bit is set.

-L file file exists and is a symbolic link. (Same as -h.)

-N file file exists and was modified after it was last read.

-O file file exists, and its owner is the effective user ID.

-p file file exists and is a named pipe (FIFO).

-r file file exists and is readable.

-s file file exists and has a size greater than zero.

-S file file exists and is a socket.

-t [n] The open file descriptor n is associated with a terminal device;
default n is 1.

-u file file exists, and its set-user-id bit is set.

-w file file exists and is writable.

-x file file exists and is executable.

Built-In Commands | 121

f1 -ef f2 Files f1 and f2 are linked (refer to same file).

f1 -nt f2 File f1 is newer than f2.

f1 -ot f2 File f1 is older than f2.

String Conditions

string string is not null.

-n s1 String s1 has nonzero length.

-z s1 String s1 has zero length.

s1 == s2 Strings s1 and s2 are identical. Inside [[]], s2 can be a wildcard
pattern. Quote s2 to treat it literally. (See the section “Filename
Metacharacters” on page 8. See also the nocasematch option in
the section “Shell Options” on page 60.)

s1 = s2 Same as the == operator. Should be used with test and [] for
compatibility with POSIX and other shells.

s1 != s2 Strings s1 and s2 are not identical. Inside [[]], s2 can be a wildcard
pattern. Quote s2 to treat it literally.

s1 =~ s2 String s1 matches extended regular expression s2. Only available
inside [[]]. Quote s2 to force string matching, instead of regular
expression matching. Strings matched by parenthesized
subexpressions are placed into elements of the BASH_REMATCH
array. See the description of BASH_REMATCH in the section “Built-In
Shell Variables” on page 32. See also the compat31, compat32,
and compat40 options in the section “Shell Options” on page 60.

s1 < s2 String value of s1 precedes that of s2. With test and [], you must
quote the < and Bash uses the machine’s sorting order (usually ASCII).
With [[]], you don’t have to quote the < and Bash uses the locale’s
sorting order.

s1 > s2 String value of s1 follows that of s2. With test and [], you must
quote the > and Bash uses the machine’s sorting order (usually ASCII).
With [[]], you don’t have to quote the > and Bash uses the locale’s
sorting order.

122 | The Bash Shell

Internal Shell Conditions

-o opt Option opt for set -o is on.

-R var Variable var has been assigned a value and is a nameref.

-v var Variable var has been assigned a value. var may name an array element.

Integer Comparisons

n1 -eq n2 n1 equals n2.

n1 -ge n2 n1 is greater than or equal to n2.

n1 -gt n2 n1 is greater than n2.

n1 -le n2 n1 is less than or equal to n2.

n1 -lt n2 n1 is less than n2.

n1 -ne n2 n1 does not equal n2.

Combined Forms
(condition)

True if condition is true (used for grouping). For test and
[], the parentheses should be quoted by a \. The [[]]
form doesn’t require quoting the parentheses.

! condition
True if condition is false.

condition1 -a condition2
True if both conditions are true.

condition1 && condition2
True if both conditions are true. Short-circuit form. (Use
only within [[]].)

condition1 -o condition2
True if either condition is true.

condition1 || condition2
True if either condition is true. Short-circuit form. (Use
only within [[]].)

Built-In Commands | 123

Time a command.

-p

Examples
The following examples show the first line of various state‐
ments that might use a test condition:

while test $# -gt 0 While there are arguments

if [$count -lt 10] If $count is less than 10
if [-d .git] If the .git directory exists
if ["$answer" != "y"] If the answer is not y
if [! -r "$1" -o ! -f "$1"] If the first argument is not
 readable or a regular file
if ! [-r "$1"] || ! [-f "$1"] Same as previous

time
time [-p] [command]

Execute command and print the total elapsed time, user time,
and system time (in seconds). Same as the external command
time, except that the built-in version can also time other built-
in commands as well as all commands in a pipeline. The cur‐
rent locale’s decimal point is used in the output.

With no command, print the elapsed user, system and real
times for the shell and its children.

The value of the TIMEFORMAT variable controls the format of the
output. See the bash(1) manual page for the details.

In POSIX mode, if the first argument begins with a minus sign,
Bash treats time as a command, not as a keyword.

Option
Print the timing summary in the format specified by
POSIX.

124 | The Bash Shell

Print accumulated CPU times.

Manage the disposition of signals within a shell script.

times
times

Print accumulated user and system process times for the shell
and the processes it has run.

trap
trap [[commands] signals]
trap -l
trap -p

Execute commands if any signals are received. The second form
lists all signals and their numbers, like kill -l. The third form
prints the current trap settings in a form suitable for rereading
later. Signals ignored at shell startup are included, but cannot
be changed.

Common signals include EXIT (0), HUP (1), INT (2), and TERM
(15). Multiple commands must be quoted as a group and sepa‐
rated by semicolons internally. If commands is the null string
(i.e., trap "" signals), cause the shell to ignore signals. If com‐
mands are omitted entirely, reset processing of specified signals
to the default action. If commands is “-”, reset signals to their
initial defaults.

If both commands and signals are omitted, list the current trap
assignments. See the Examples here and in the entry for exec
on page 91.

Normally, trap prints signal names with a leading SIG prefix.
In POSIX mode, it leaves off the prefix.

Built-In Commands | 125

NOTE

The shell does not block additional occurrences of signals
for traps that are running, allowing recursive trap invoca‐
tions. Use with care!

Tip
In general, commands should be quoted using single quotes, so
that any variable or other substitutions are delayed until the
signal is handled. Otherwise, with double quotes, the expan‐
sions are evaluated earlier, when the trap command itself
executes.

Signals
For standard signals, the shell allows you to use either the sig‐
nal number or the signal name (with or without the SIG prefix).
In addition, the shell supports “pseudo-signals,” signal names
or numbers that aren’t real operating system signals but which
direct the shell to perform a specific action. These signals and
when they execute are:

DEBUG Execution of any command.

ERR Nonzero exit status.

EXIT Exit from shell (usually when shell script finishes). Also for shells
started for process substitution.

RETURN A return is executed, or a script run with . (dot) or source
finishes.

0 Same as EXIT, for historical compatibility with the Bourne shell.

Examples
trap "" INT Ignore interrupts (signal 2)
trap INT Obey interrupts again

126 | The Bash Shell

Exit with a true (success) return value.

Print the type of a command.

-a

-f

-p

-P

Remove a $tmp file when the shell program exits, or if the user
logs out, presses CTRL-C, or does a kill:

trap "rm -f $tmp; exit" EXIT HUP INT TERM POSIX style
trap "rm -f $tmp; exit" 0 1 2 15 Original shell

Print a “clean up” message when the shell program receives sig‐
nals SIGHUP, SIGINT, or SIGTERM:

trap 'echo Interrupt! Cleaning up…' HUP INT TERM

true
true

Built-in command that exits with a true return value.

type
type [-afpPt] commands

Show whether each command name is an external command, a
built-in command, an alias, a shell keyword, or a defined shell
function.

Options
Print all locations in $PATH that include command, includ‐
ing aliases and functions. Use -p together with -a to sup‐
press aliases and functions.

Suppress function lookup, as with command.

If type -t would print file for a given command, print
the full pathname for the corresponding executable file.
Otherwise, print nothing.

Like -p, but force a search of $PATH, even if type -t would
not print file.

Built-In Commands | 127

-t

Declare shell variables and manage their attributes.

Manage various process limits.

-H

-S

-a

-b

Print a word describing each command. The word is one
of alias, builtin, file, function, or keyword, depending
upon the type of each command.

Example
$ type mv read if
mv is /bin/mv
read is a shell builtin
if is a shell keyword

typeset
typeset [options] [variable[=value …]]

Identical to declare. See the entry for declare on page 85.

ulimit
ulimit [options] [n]

Print the value of one or more resource limits, or, if n is speci‐
fied, set a resource limit to n. Resource limits can be either hard
(-H) or soft (-S). By default, ulimit sets both limits or prints
the soft limit. The options determine which resource is acted
upon.

Options
Hard limit. Anyone can lower a hard limit; only privileged
users can raise it.

Soft limit. Must be less than or equal to the hard limit.

Print all limits.

Maximum size of a socket buffer.

128 | The Bash Shell

-c

-d

-e

-f

-i

-k

-l

-m

-n

-p

-P

-q

-r

-s

-t

-T

-u

-v

-x

Maximum size of core files. Default units are 1K-byte
blocks. In POSIX mode, units are 512-byte blocks.

Maximum kilobytes of data segment or heap.

Maximum scheduling priority (nice value).

Maximum size of files (the default option). Default units
are 1K-byte blocks. In POSIX mode, units are 512-byte
blocks.

Maximum number of pending signals.

Maximum number of kqueues. (Not effective on all sys‐
tems.)

Maximum size of address space that can be locked in
memory.

Maximum kilobytes of physical memory. (Not effective on
all systems.)

Maximum number of file descriptors.

Size of pipe buffers. (Not effective on all systems.)

Maximum number of pseudoterminals. (Not effective on
all systems.)

Maximum number of bytes in POSIX message queues.

Maximum real-time scheduling priority.

Maximum kilobytes of stack segment.

Maximum CPU seconds.

Maximum number of threads.

Maximum number of processes a single user can have.

Maximum kilobytes of virtual memory. (Not effective on
all systems.)

Maximum number of file locks.

Built-In Commands | 129

Display or set the process’s file creation mask.

-p

-S

Remove previously defined aliases.

-a

Remove variables or functions.

umask
umask [nnn]
umask [-pS] [mask]

Display the file creation mask or set the file creation mask to
octal value nnn. The file creation mask determines which per‐
mission bits are turned off (e.g., umask 002 produces rw-rw-
r--). For the second form, a symbolic mask represents permis‐
sions to keep.

Options
Output is in a form that can be reread later by the shell.

Print the current mask using symbolic notation.

unalias
unalias names
unalias -a

Remove names from the alias list. See also the entry for alias
on page 74.

Option
Remove all aliases.

unset
unset [options] names

Erase definitions of functions or variables listed in names. A
name subscripted with an index (unset foo[2]) unsets the cor‐
responding array element. An index of 0 unsets the related
scalar variable.

130 | The Bash Shell

-f

-n

-v

Syntax for a loop that runs until a condition becomes true.

Wait for a process or job to complete.

Options
Unset functions names.

Unset nameref variables names. See the section “Indirect
Variables (namerefs)” on page 31.

Unset variables names (default).

until
until condition
do
 commands
done

Until condition is met, do commands. condition is often speci‐
fied with the test command. See the Examples under the
entries for case on page 77, and test on page 120.

wait
wait [-n] [ID]

With no option or arguments, pause in execution until all back‐
ground jobs complete and then return an exit status of zero.
With ID, pause until the specified background process ID or
job ID completes and then return its exit status. Note that the
shell variable $! contains the process ID of the most recent
background process.

With no arguments, wait’s behavior depends upon the setting
of POSIX mode. Normally, wait waits for all backgrounded
processes to finish, and then runs the SIGCHLD trap as many
times as there were exited processes. In POSIX mode, an exit‐
ing child interrupts wait, causing it to exit with 128 + SIGCHLD.
Bash attempts to run the SIGCHLD trap handler once for each
exiting child, but it does not guarantee that it will do so.

Built-In Commands | 131

-n

Syntax for a loop that runs while a condition remains true.

Run an external command.

Option
Wait for any job to terminate and return its exit status.

Example
wait $! Wait for most recent background process to finish

while
while condition
do
 commands
done

While condition is met, do commands. condition is often speci‐
fied with the test command. See the Examples under the
entries for case on page 77, and test on page 120.

filename
filename [arguments]

Read and execute commands from executable file filename, or
execute a binary object file. If filename does not contain any
slash characters, the shell searches for the file to execute in the
directories listed in $PATH.

132 | The Bash Shell

Resources
This section briefly describes other sources of information
about or related to Bash.

Online Resources
http://ftp.gnu.org/gnu/bash

The top-level directory for Bash source code releases.
Source code is usually made available as .tar.gz files, such
as bash-4.4.tar.gz.

ftp://ftp.gnu.org/pub/gnu/bash/bash-4.4-patches
Patches for Bash 4.4 are in this directory.

http://www.gnu.org/software/bash/bash.html
http://tiswww.tis.cwru.edu/~chet/bash/bashtop.html

The two “home pages” for the Bash shell.

http://bashdb.sourceforge.net
The Bash debugger.

http://bash-completion.alioth.debian.org/
Ian Macdonald’s collected set of completion specifications.

http://www.gnu.org/software/bash/manual/html_node/Bash-
POSIX-Mode.html

Full documentation on the effects of POSIX mode. Many
of the differences are subtle and don’t affect most day-to-
day uses of the shell.

http://www.opengroup.org/onlinepubs/9699919799
The online version of the POSIX standard.

http://tobold.org/article/rc
The rc shell for Unix systems.

Resources | 133

http://ftp.gnu.org/gnu/bash
ftp://ftp.gnu.org/pub/gnu/bash/bash-4.4-patches
http://www.gnu.org/software/bash/bash.html
http://tiswww.tis.cwru.edu/~chet/bash/bashtop.html
http://bashdb.sourceforge.net
http://bash-completion.alioth.debian.org/
http://www.gnu.org/software/bash/manual/html_node/Bash-POSIX-Mode.html
http://www.gnu.org/software/bash/manual/html_node/Bash-POSIX-Mode.html
http://www.opengroup.org/onlinepubs/9699919799
http://tobold.org/article/rc

Books
Newham, Cameron. Learning the bash Shell, Third Edition.
Sebastopol: O’Reilly Media, 2005.

Robbins, Arnold, and Nelson H.F. Beebe. Classic Shell Scripting.
Sebastopol: O’Reilly Media, 2005.

Acknowledgments
Thanks to Chet Ramey, the Bash maintainer, for providing
access to early releases of Bash 4.4, for answering questions,
and for yet again reviewing this reference. Thanks to Robert P.J.
Day for again reviewing this work. Thanks to Eli Zaretskii for
comments on the previous edition and for reviewing this edi‐
tion. Thanks to Andy Oram at O’Reilly Media for his support
of this update.

Acknowledgments from the First Edition
Thanks to Chet Ramey, the Bash maintainer, for providing
access to early releases of Bash 4.1, and for once again review‐
ing this reference. Thanks to Robert P.J. Day for reviewing this
edition. Thanks again to Mike Loukides at O’Reilly Media for
his continued support of this project.

134 | The Bash Shell

http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/9780596005955.do

Index

Symbols
! (exclamation mark)

!= inequality operator, 48
event designators, 52
filename metacharacter, 9
logical negation operator, 48

" (quotation marks, double)
" " quoting, 14
$" " quoting, 15
escape sequence, 13

(hash mark), comments, 14, 70
#!shell command, 71
$ (dollar sign)

$() command substitution,
16

$(()) arithmetic substitution,
16

${ } variable substitution, 27
last argument, 52
shell variables, 32
variable substitution, 14

% (percent)
argument matched by, 52
job control, 59
modulus operator, 48

& (ampersand)
&& logical AND operator, 48,

73

background execution, 14
bitwise AND operator, 48

' (quotation marks, single)
$' ' quoting, 13
' ' quoting, 14
escape sequence, 13

() (parentheses), command
grouping, 14

* (asterisk)
** exponentiation operator,

48
** filename metacharacters, 9
all arguments, 53
filename metacharacter, 8
multiplication operator, 48

+ (plus sign)
++ auto-increment operator,

48
+= operator, 26
addition operator, 48
filename metacharacter, 9
unary operator, 48

, (comma), sequential expression
evaluation operator, 48

- (hyphen)
-- auto-decrement operator,

48
filename metacharacter, 8

135

subtraction operator, 48
unary operator, 48

. (dot), read and execute files, 72

.bashrc file, 8

.bash_history file, 40

.bash_login file, 8

.bash_logout file, 8, 92, 105

.bash_profile file, 8
shell variables, 38

.inputrc file, 41, 75, 76

.profile file, 4, 8, 69
shell variables, 38

/ (slash), division operator, 48
/etc/bash_completion file, 57
/etc/passwd file, 8, 40
/etc/profile file, 4, 6, 8, 69
: (colon)

:0 command name, 52
:n argument number, 52
:… history and truncation

modifiers, 53
do-nothing command, 71

; (semicolon)
;& case terminator, 78
;;& case terminator, 78
command separator, 14

< (left angle bracket)
<< bitwise shift left operator,

48
<<= assignment operator, 48
<= less than or equal to oper‐

ator, 48
less than operator, 48, 73

<, > (angle brackets), redirection
symbols, 14

= (equals sign)
== equality operator, 48
assignment operator, 26

> (right angle bracket)
>= greater than or equal to

operator, 48
>> bitwise shift right opera‐

tor, 48

>>= assignment operator, 48
greater than operator, 48, 73

? (question mark)
?: inline conditional evalua‐

tion operator, 48
escape sequence, 13
filename metacharacter, 8

@ (at sign), filename metachar‐
acter, 9

[] (brackets)
filename metacharacters, 8
[[]] test command, 72

\ (backslash)
escape sequence, 13
prompt strings, 46
quoting, 14, 15

\! prompt string, 46
\" escape sequence, 13
\# prompt string, 47
\$ prompt string, 47
\& in completion patterns, 56
\0 escape sequence, 13
\? escape sequence, 13
\@ prompt string, 47
\a escape sequence, 13
\a prompt string, 46
\A prompt string, 46
\b escape sequence, 13
\c escape sequence, 13
\cX escape sequence, 13
\d prompt string, 46
\D prompt string, 46
\e escape sequence, 13
\E escape sequence, 13
\e prompt string, 46
\f escape sequence, 13
\h prompt string, 46
\H prompt string, 46
\J prompt string, 46
\l prompt string, 46
\n escape sequence, 13
\n prompt string, 46
\nnn escape sequence, 13

136 | Index

\nnn prompt string, 47
\r escape sequence, 13
\r prompt string, 46
\s prompt string, 46
\t escape sequence, 13
\t prompt string, 46
\T prompt string, 46
\u escape sequence, 13
\U escape sequence, 13
\u prompt string, 46
\v escape sequence, 13
\v prompt string, 46
\V prompt string, 46
\w prompt string, 42, 46
\W prompt string, 42, 46
\x escape sequence, 13
\[prompt string, 47
\\ escape sequence, 13
\\ prompt string, 47
\] prompt string, 47
\’ escape sequence, 13
^ (caret)

bitwise exclusive OR opera‐
tor, 48

first argument, 52
` (backquote), command substi‐

tution, 14
| (pipe character)

bitwise OR operator, 48
pipe command, 70
quoting, 14
|| logical OR operator, 48, 73

~ (tilde), filename metacharacter,
8

A
addition operator, 48
alert escape sequence, 13
alias command, 74
aliases, removing, 130
alnum class, 9
alpha class, 9

alphabetic characters, filename
metacharacter, 9

alphanumeric characters, file‐
name metacharacter, 9

ampersand (&)
&& logical AND operator, 48,

73
background execution, 14
bitwise AND operator, 48

AND operators, 48
angle brackets (<, >), redirection

symbols, 14
arguments

Bash shell, 6
job control commands, 59
printing, 88, 107
shifting command-line argu‐

ments left, 119
arithmetic operations, let com‐

mand, 47, 104
arithmetic operators, 47
arrays

associative arrays, 45
indexed arrays, 44
reading files into, 105, 111

ASCII characters, filename meta‐
character, 9

ascii class, 9
associative arrays, 45
asterisk (*)

** exponentiation operator,
48

** filename metacharacters, 9
all arguments, 53
filename metacharacter, 8
multiplication operator, 48

at sign (@), filename metachar‐
acter, 9

attributes, shell variables, 85
auto-decrement operator, 48
autocd shell option, 60
auto_resume shell variable, 43

Index | 137

B
background jobs

putting current job into back‐
ground, 74

running or suspending, 95
backquote (`), command substi‐

tution, 14
backslash (\)

escape sequence, 13
prompt strings, 46
quoting, 14, 15

Bash (Bourne-Again shell)
arithmetic expressions, 47
built-in commands, 70-132
command execution, 66
command exit status, 6-7
command history, 49-54
coprocesses, 68
features, 3
functions, 23
history of, 3
invoking Bash shell, 4
job control, 59
options, 60-66
programmable completion,

54-58
restricted shells, 69
syntax, 7-23
variables, 25-47

BASH shell variable, 33
BASHOPTS shell variable, 33
BASHPID shell variable, 33
.bashrc file, 8
BASH_ALIASES shell variable, 33
BASH_ARGC shell variable, 33
BASH_ARGV shell variable, 34
BASH_CMDS shell variable, 34
BASH_COMMAND shell vari‐

able, 34
BASH_COMPAT shell variable,

38
BASH_ENV shell variable, 38

BASH_EXECUTION_STRING
shell variable, 34

.bash_history file, 40
BASH_LINENO shell variable, 34
BASH_LOADABLES_PATH shell

variable, 38
.bash_login file, 8
.bash_logout file, 8, 92, 105
.bash_profile file, 8

shell variables, 38
BASH_REMATCH shell variable,

34
BASH_SOURCE shell variable, 34
BASH_SUBSHELL shell variable,

35
BASH_VERSINFO shell variable,

35
BASH_VERSION shell variable,

35
BASH_XTRACEFD shell vari‐

able, 38
Berkeley C shell, history of, 2
bg command, 59, 74
bind command, 75
bitwise AND operator, 48
bitwise exclusive OR operator, 48
bitwise OR operator, 48
bitwise shift left operator, 48
bitwise shift right operator, 48
blank class, 9
Bourne shell, history of, 2
brace expansion, syntax, 11
brackets []

filename metacharacters, 8
[[]] test command, 72

break command, 76
built-in shell variables, 32
builtin command, 76

C
caller command, 77
caret (^)

138 | Index

bitwise exclusive OR opera‐
tor, 48

first argument, 52
carriage return escape sequence,

13
case command, 77
case statements, esac command,

90
cd command, 78
cdable_vars shell option, 61
CDPATH shell variable, 39
cdspell shell option, 61
checkhash shell option, 61
checkjobs shell option, 61
checkwinsize shell option, 61
CHILD_MAX shell variable, 39
cmdhist shell option, 61
cntrl class, 9
colon (:)

:0 command name, 52
:n argument number, 52
:… history and truncation

modifiers, 53
do-nothing command, 71

COLUMNS shell variable, 39
comma (,), sequential expression

evaluation operator, 48
command command, 79
command exit status, 6-7
command forms, syntax, 16
command history, 49-54

C-shell–style history, 51
fc command, 51
line-edit mode, 50

command line
editor, 50
history, 93, 100
manipulation in Bash, 50
options, 97
printing arguments, 107
script parameters, 113

commands, 70-132
#!shell command, 71

: do-nothing command, 71
bg command, 59, 74
bind command, 75
break command, 76
builtin command, 76
caller command, 77
case command, 77
cd command, 78
command command, 79
compgen command, 54, 80
complete command, 54, 80
compopt command, 57, 84
continue command, 85
declare command, 85
dirs command, 87
disown command, 87
do command, 88
done command, 88
echo command, 88
enable command, 89
enabling and disabling, 89
esac command, 90
eval command, 90
exec command, 91
executing, 66
exit command, 92
export command, 92
external commands, 132
false command, 93
fc command, 51, 93
fg command, 59, 95
fi command, 95
filename command, 132
for command, 95
function command, 97
getopts command, 97
hash command, 98
help command, 99
history command, 49, 100
if command, 101
job control, 59
jobs command, 59, 102
kill command, 60, 103

Index | 139

let command, 104
local command, 105
logout command, 105
man command, 58
mapfile command, 105
name () command, 74
popd command, 106
printf command, 107
pushd command, 108
pwd command, 108
read command, 109, 111
readonly command, 111
return command, 24, 112
select command, 112
set command, 113-118
shift command, 119
shopt command, 60, 119
source command, 120
stty command, 60
suspend command, 60, 120
test command, 120-124
time command, 124
times command, 125
trap command, 125
true command, 127
type command, 127
typeset command, 128
ulimit command, 128
umask command, 130
unalias command, 130
unset command, 130
until command, 131
wait command, 60, 131
while command, 132
[[]] test command, 72

comments, # (hash mark), 14, 70
comparisons, integers, 123
compat31 shell option, 61
compat32 shell option, 61
compat40 shell option, 62
compat41 shell option, 62
compat42 shell option, 62
compat43 shell option, 62

compgen command, 54, 80
complete command, 54, 80
complete_fullquote shell option,

62
completion facilities, 51, 54, 80
completion, programmable,

54-58
compopt command, 57, 84
COMPREPLY shell variable, 39
compspecs, programmable com‐

pletion, 55
COMP_CWORD shell variable,

35
COMP_KEY shell variable, 35
COMP_LINE shell variable, 35
COMP_POINT shell variable, 35
COMP_TYPE shell variable, 35
COMP_WORDBREAKS shell

variable, 35
COMP_WORDS shell variable,

36
conditions, evaluating, 120
continue command, 85
control characters, filename met‐

acharacter, 9
COPROC shell variable, 36
coprocesses, 68
CPU times, 125
csh (Berkeley C shell), history, 2
CTRL-Z job control command,

59, 60

D
DEBUG trap, 24
decimal digits, filename meta‐

character, 9
declare command, 85
declaring

variables, 85, 128
digit class, 9
directories

changing, 78

140 | Index

popping directories off direc‐
tory stack, 106

pushing directories onto
directory stack, 108

search path for changing, 39
working directories, 108

directory stack
popping directories off direc‐

tory stack, 106
printing or managing, 87
pushing directories onto

directory stack, 108
direxpand shell option, 62
dirs command, 87
dirspell shell option, 62
DIRSTACK shell variable, 36
disabling commands, 89
disown command, 87
division operator, 48
do command, 88
do-nothing command (:), 71
dollar sign ($)

$() command substitution,
16

$(()) arithmetic substitution,
16

${ } variable substitution, 27
last argument, 52
shell variables, 32
variable substitution, 14

done command, 88
dot (.), read and execute files, 72
dotglob shell option, 62
dynamic scoping, 25

E
echo command, 88
editing, keyboard shortcuts for,

50
Emacs editor, Bash command-

line editing mode, 50
EMACS shell variable, 39
enable command, 89

$ENV file (read by Bash shell at
startup), 8

ENV shell variable, 39
equals sign (=)

== equality operator, 48
assignment operator, 26

ERR trap, 25
esac command, 90
escape sequences, quoted text

($' '), 15
EUID shell variable, 36
eval command, 90
evaluating conditions, 120
event designators, 52
exclamation mark (!)

!= inequality operator, 48
event designators, 52
filename metacharacter, 9
logical negation operator, 48

exec command, 91
execfail shell option, 63
EXECIGNORE shell variable, 39
executing

commands, 66
files, 72, 120
input lines, 90

exit command, 92
exit status, 6

$? variable, 6
nonzero, 6
of shell functions, 112
success and failure, 6
true and false, 6
zero, 6

EXIT trap, 25
exiting

kill command, 103
shell, 105
shell scripts, 92
with a false return value, 93
with a true return value, 127

expand_aliases shell option, 63
exponentiation operator, 48

Index | 141

export command, 92
expressions, arithmetic, 47
extdebug shell option, 63
extglob shell option, 39, 40, 63
extquote shell option, 63

F
failglob shell option, 64
false command, 93
fc command, 51, 93
FCEDIT shell variable, 39, 94
fg command, 59, 95
fi command, 95
FIGNORE shell variable, 39
filename command, 132
filenames

metacharacters, 8
redirection forms, 22

files
creation mask, 130
evaluating conditions, 121
reading and executing, 72,

120
reading into arrays, 105, 111

for command, 95
force_fignore shell option, 64
formfeed escape sequence, 13
forms, combined forms, 123

(see also redirection forms)
FUNCNAME shell variable, 36
FUNCNEST shell variable, 36
function command, 97
functions

about, 23
defining, 73
exit status of, 112
getpwnam() C function, 8
getpwuid() C function, 8
parsing, 10
removing, 130
traps, 24
variable scoping, 25

G
getconf command, 96
getopts command, 97
getpwnam() C function, 8
getpwuid() C function, 8
globasciiranges shell option, 64
GLOBIGNORE shell variable, 40
globstar shell option, 64
gnu_errfmt shell option, 64
graph class, 9
greater than operator, 48
greater than or equal to operator,

48
GROUPS shell variable, 36

H
hash command, 98
hash mark (#), comments, 14, 70
help command, 99
here document, 18
here string, 18
hexadecimal escape sequence, 13
histappend shell option, 64
histchars shell variable, 44
HISTCMD shell variable, 36
HISTCONTROL shell variable,

40
HISTFILE shell variable, 40
HISTFILESIZE shell variable, 40
HISTIGNORE shell variable, 40
history

command history, 49-54, 93,
100

history modifiers, 53
history command, 49, 100
histreedit shell option, 64
HISTSIZE shell variable, 40
HISTTIMEFORMAT shell vari‐

able, 40
histverify shell option, 64
HOME shell variable, 40
hostcomplete shell option, 64
HOSTFILE shell variable, 41

142 | Index

HOSTNAME shell variable, 36
HOSTTYPE shell variable, 36
huponexit shell option, 65
hyphen (-)

-- auto-decrement operator,
48

option terminator, 6
subtraction operator, 48
unary operator, 48

I
if statement, 95, 101
IFS shell variable, 41
IGNOREEOF shell variable, 41
indexed arrays, 44
indirect variables, 31
inequality operator, 48
inherit_errexit shell option, 65,

118
inline conditional evaluation

operator, 48
input lines, rescan or execute, 90
.inputrc file, 41, 75, 76
INPUTRC shell variable, 41
integers, comparisons, 123
interactive_comments shell

option, 65
interpreters, invoking, 71
invoking

Bash shell, 4
interpreters, 71

J
job control, 59
jobID argument, 59
jobs

background jobs, 74, 95
list running or stopped jobs,

102
stop managing, 87
stopping, 103
wait command, 131

jobs command, 59, 102

K
keyboard shortcuts for editing, 50
kill command, 60, 103

L
LANG shell variable, 41
lastpipe shell option, 65
LC_ALL shell variable, 41
LC_COLLATE shell variable, 41
LC_CTYPE shell variable, 41
LC_MESSAGES shell variable, 41
LC_NUMERIC shell variable, 41
LC_TIME shell variable, 41
left angle bracket (<)

<< bitwise shift left operator,
48

<<= assignment operator, 48
<= less than or equal to oper‐

ator, 48
less than operator, 48, 73

less than operator, 48
less than or equal to operator, 48
let command, 47, 104
line-edit mode (command his‐

tory), 50
LINENO shell variable, 36
LINES shell variable, 41
/bin/sh, link to Bash, 4
lithist shell option, 65
local command (local variables),

105
logical AND operator, 48, 73
logical negation operator, 48
logical OR operator, 48
login_shell shell option, 65
logout command, 105
loops

breaking out, 76
continuing, 85
do command, 88

Index | 143

done command, 88
for command, 95
select command, 112
until command, 131
while command, 132

lower class, 10
lowercase characters, filename

metacharacter, 10

M
MACHTYPE shell variable, 36
MAIL shell variable, 41
MAILCHECK shell variable, 41
MAILPATH shell variable, 42
mailwarn shell option, 65
man command, 58
mapfile command, 105
MAPFILE shell variable, 36
masks, file creation mask, 130
metacharacters, Bash shell file‐

names, 8
modulus operator, 48
multiple redirection, 19
multiplication operator, 48

N
nameref variables, 31
newline

escape sequence, 13
word separator, 14

nocaseglob shell option, 65
nocasematch shell option, 27, 40,

56, 65, 78
nonspace characters, filename

metacharacter, 9
nonzero exit status, 6
no_empty_cmd_completion shell

option, 65
nullglob shell option, 66

O
octal value escape sequence, 13

OLDPWD shell variable, 37
OpenVMS, 1
operators

+= operator, 26
arithmetic operators, 47

OPTARG shell variable, 37
OPTERR shell variable, 42
OPTIND shell variable, 37
OR operators, 48
OSTYPE shell variable, 37

P
parentheses (), command group‐

ing, 14
parsing

of functions, 10
of scripts, 10

PATH shell variable, 42
percent (%)

argument matched by, 52
job control, 59
modulus operator, 48

pipe character (|)
bitwise OR operator, 48
pipe command, 70
|| logical OR operator, 48, 73

PIPESTATUS shell variable, 37
plus sign (+)

++ auto-increment operator,
48

+= operator, 26
addition operator, 48
filename metacharacter, 9
unary operator, 48

popd command, 106
POSIX differences

aliases for keywords, 66
command execution order, 67
command line assignments,

80
echo command, 89
extglob shell option, 63
fc command, 39, 94

144 | Index

function naming, 25
hash command, 98
history expansion, 51
inherit_errexit shell option,

65
kill command, 104
process substitution, 21
prompting, 47
read command, 109
searching $PATH, 72
set -e inheritance, 118
startup file, 8
tilde in $PATH, 67
time command, 124
trap command, 125
ulimit command, 129
variable substitution and nes‐

ted quotes, 27
wait command, 131

POSIXLY_CORRECT shell vari‐
able, 42

postfix texts (brace expansion), 11
PPID shell variable, 37
prefix texts (brace expansion), 11
printable characters, filename

metacharacter, 10
printf command, 107
printing

command usage information,
99

command-line history, 100
working directories, 108

process substitution, 20
.profile file, 4, 8, 69

shell variables, 38
progcomp shell option, 66
programmable completion, 54-58
prompt strings, 46
promptvars shell option, 66
PROMPT_COMMAND shell

variable, 42
PROMPT_DIRTRIM shell vari‐

able, 42

PS0-PS4 shell variables, 42
punctuation characters, filename

metacharacter, 10
pushd command, 108
pwd command, 108
PWD shell variable, 37

Q
question mark (?)

?: inline conditional evalua‐
tion operator, 48

escape sequence, 13
filename metacharacter, 8

quotation marks, double (")
" " quoting, 14
$" " quoting, 15
escape sequence, 13

quotation marks, single (')
$' ' quoting, 13
' ' quoting, 14
escape sequence, 13

quoting, syntax, 14

R
RANDOM shell variable, 37
read command, 109
readarray command, 111
reading, files, 72, 105, 111, 120
readline library, bindings, 75
READLINE_LINE shell variable,

37
READLINE_POINT shell vari‐

able, 37
readonly command, 111
redirection forms, 17-23

multiple redirection, 19
process substitution, 20
redirection using file descrip‐

tors, 19
simple redirection, 17
special filenames, 22
standard error, 17

Index | 145

standard input, 17
standard output, 17

referencing arrays, 44
removing

aliases, 130
functions, 130
variables, 130

REPLY shell variable, 37, 109
rescanning input lines, 90
resources, 133
restricted shells, 69
restricted_shell shell option, 66
return command, 24, 112
RETURN trap, 25
return values

exiting with a false return
value, 93

exiting with a true return
value, 127

right angle bracket (>)
>= greater than or equal to

operator, 48
>> bitwise shift right opera‐

tor, 48
>>= assignment operator, 48
greater than operator, 48, 73

S
scoping

dynamic, 25
variables, 25

scripts
command-line parameters,

113
exiting, 92
parsing, 10
replacing, 91
signals, 125

select command, 112
semicolon (;)

;& case terminator, 78
;;& case terminator, 78
command separator, 14

set command, 113-118
sh, invoking Bash as, 4
SHELL shell variable, 43
SHELLOPTS shell variable, 37
shells, 3

(see also Bash)
Bourne shell, 2
declaring variables, 85
evaluating conditions, 123
invoking Bash shell, 4
managing options, 119
options, 60-66, 113
restricted shells, 69
suspending, 120

shift command, 119
shift_verbose shell option, 66
SHLVL shell variable, 37
shopt command, 60, 119
signal-based traps, 24
signals, shell scripts, 125
slash (/), division operator, 48
source command, 120
sourcepath shell option, 66, 72
space character

filename metacharacter, 9
word separator, 14

stacks, directory stack, 87, 106,
108

standard error, redirection forms,
17

standard input, redirection forms,
17

standard output, redirection
forms, 17

status, exit, 6
stopping jobs, 103

(see also exiting)
strings

completions, 80
default variable value, 26
evaluating conditions, 122
prompt strings, 46

stty command, 60

146 | Index

substitution
arithmetic, 16, 47
command, 16
PS0-PS4 shell variables, 47
variables, 27
word substitution, 52

subtraction operator, 48
suspend command, 60, 120
syntax, 7-23

Bash arguments, 6
brace expansion, 11
command forms, 16
filename metacharacters, 8
quoting, 14
redirection forms, 17-23
special files, 8

System V, Bourne shell, 2

T
tab character, filename metachar‐

acter, 9
tab escape sequence, 13
tab word separator, 14
TERM shell variable, 43
test command, 72, 120-124
tilde (~), filename metacharacter,

8
time command, 124
TIMEFORMAT shell variable, 43
times command, 125
tip

#! line length limit, 71
/etc/bash_completion file, 57
avoid restricted shells, 69
changing script parsing, 10
clearing the hash table, 99
exit within functions, 25
interactive editing vs. fc com‐

mand, 51
keeping the history file up-to-

date, 101
prefer functions to aliases, 74

quoting with the trap com‐
mand, 126

restricting completion to help
topics, 84

TMOUT shell variable, 43
TMPDIR shell variable, 43
trap command, 125
traps, list of, 24
true command, 127
truncation modifiers, 53
type command, 127
typeset command, 128

U
UID shell variable, 37
ulimit command, 128
umask command, 130
unalias command, 130
unary operators, 48
unset command, 130
until command, 131
upper class, 10
uppercase characters, filename

metacharacter, 10

V
variable scoping, 25
variables, 25-47

arrays, 44
assignment, 26
built-in shell variables, 32
declaring, 85, 128
exporting or printing info

about, 92
local variables, 105
other shell variables, 38
prompt strings, 46
read-only, 111
reading, 109
removing, 130
substitution, 27

vertical tab escape sequence, 13

Index | 147

vi editor, Bash command-line
editing mode, 50

VMS, 1

W
wait command, 60, 131
while command, 132
whitespace characters, filename

metacharacter, 10

word substitution, 52
working directories, printing, 108

X
xpg_echo shell option, 66

Z
zero exit status, 6

148 | Index

About the Author
Arnold Robbins is a professional programmer and technical
author who has worked with Unix systems since 1980 and has
been using Awk since 1987. As a member of the POSIX 1003.2
balloting group, he helped shape the POSIX standard for Awk.
Arnold is the maintainer of GNU Awk (gawk) and its documen‐
tation. He is the author of the fourth edition of Effective awk
Programming and the coauthor of Classic Shell Scripting (both
published by O’Reilly).

	Copyright
	Table of Contents
	The Bash Shell
	Conventions
	History
	Overview of Features
	Invoking the Shell
	Command-Line Options
	Arguments

	Command Exit Status
	Syntax
	Special Files
	Filename Metacharacters
	Brace Expansion
	Escape Sequences
	Quoting
	Command Forms
	Redirection Forms

	Functions
	Tip

	Variables
	Variable Assignment
	Variable Substitution
	Indirect Variables (namerefs)
	Built-In Shell Variables
	Other Shell Variables
	Arrays
	Special Prompt Strings

	Arithmetic Expressions
	Operators
	Notes
	Examples

	Command History
	Line-Edit Mode
	The fc Command
	C-Shell–Style History

	Programmable Completion
	Tip
	Examples

	Job Control
	Shell Options
	Command Execution
	Coprocesses
	Example

	Restricted Shells
	Tip

	Built-In Commands
	Resources
	Online Resources
	Books

	Acknowledgments
	Acknowledgments from the First Edition

	Index

