

DNS and BIND

Other resources from O’Reilly

Related titles DNS and BIND Cookbook™ DNS on Windows Server
2003

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

DNS and BIND
FIFTH EDITION

Cricket Liu and Paul Albitz

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

DNS and BIND, Fifth Edition
by Cricket Liu and Paul Albitz

Copyright © 2006, 2001, 1998, 1997, 1992 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Matt Hutchinson
Copyeditor: Mary Anne Weeks Mayo
Proofreader: Matt Hutchinson
Indexer: Ellen Troutman-Zaig

Cover Designer: Edie Freedman
Interior Designer: David Futato
Cover Illustrator: Karen Montgomery
Illustrators: Robert Romano and Jessamyn Read

Printing History:

October 1992: First Edition.

January 1997: Second Edition.

September 1998: Third Edition.

April 2001: Fourth Edition.

May 2006: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. DNS and BIND, the image of grasshoppers, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-10057-5

[M] [7/09]

v

Table of Contents

Preface . xi

1. Background . 1
A (Very) Brief History of the Internet 1
On the Internet and Internets 2
The Domain Name System, in a Nutshell 4
The History of BIND 9
Must I Use DNS? 9

2. How Does DNS Work? . 11
The Domain Namespace 11
The Internet Domain Namespace 17
Delegation 21
Nameservers and Zones 22
Resolvers 26
Resolution 27
Caching 34

3. Where Do I Start? . 37
Getting BIND 37
Choosing a Domain Name 41

4. Setting Up BIND . 53
Our Zone 53
Setting Up Zone Data 54
Setting Up a BIND Configuration File 65
Abbreviations 68
Hostname Checking 71

vi | Table of Contents

Tools 73
Running a Primary Nameserver 74
Running a Slave Nameserver 81
Adding More Zones 88
What’s Next? 88

5. DNS and Electronic Mail . 89
MX Records 90
Movie.edu’s Mail Server 92
What’s a Mail Exchanger, Again? 92
The MX Algorithm 94
DNS and Email Authentication 96

6. Configuring Hosts . 100
The Resolver 100
Resolver Configuration 101
Sample Resolver Configurations 112
Minimizing Pain and Suffering 114
Additional Configuration Files 119
The Windows XP Resolver 120

7. Maintaining BIND . 127
Controlling the Nameserver 127
Updating Zone Datafiles 136
Organizing Your Files 143
Changing System File Locations 147
Logging 148
Keeping Everything Running Smoothly 158

8. Growing Your Domain . 177
How Many Nameservers? 177
Adding More Nameservers 185
Registering Nameservers 189
Changing TTLs 192
Planning for Disasters 195
Coping with Disaster 198

Table of Contents | vii

9. Parenting . 201
When to Become a Parent 202
How Many Children? 202
What to Name Your Children 203
How to Become a Parent: Creating Subdomains 204
Subdomains of in-addr.arpa Domains 214
Good Parenting 220
Managing the Transition to Subdomains 223
The Life of a Parent 225

10. Advanced Features . 226
Address Match Lists and ACLs 226
DNS Dynamic Update 228
DNS NOTIFY (Zone Change Notification) 235
Incremental Zone Transfer (IXFR) 240
Forwarding 244
Views 247
Round-Robin Load Distribution 250
Nameserver Address Sorting 253
Preferring Nameservers on Certain Networks 255
A Nonrecursive Nameserver 256
Avoiding a Bogus Nameserver 257
System Tuning 258
Compatibility 267
The ABCs of IPv6 Addressing 268
Addresses and Ports 270

11. Security . 282
TSIG 283
Securing Your Nameserver 287
DNS and Internet Firewalls 300
The DNS Security Extensions 322

12. nslookup and dig . 349
Is nslookup a Good Tool? 349
Interactive Versus Noninteractive 351
Option Settings 352
Avoiding the Search List 355
Common Tasks 355

viii | Table of Contents

Less Common Tasks 358
Troubleshooting nslookup Problems 366
Best of the Net 370
Using dig 371

13. Reading BIND Debugging Output . 376
Debugging Levels 376
Turning On Debugging 379
Reading Debugging Output 380
The Resolver Search Algorithm and Negative Caching (BIND 8) 393
The Resolver Search Algorithm and Negative Caching (BIND 9) 394
Tools 395

14. Troubleshooting DNS and BIND . 396
Is NIS Really Your Problem? 396
Troubleshooting Tools and Techniques 397
Potential Problem List 409
Transition Problems 426
Interoperability and Version Problems 427
TSIG Errors 431
Problem Symptoms 432

15. Programming with the Resolver and Nameserver Library Routines 438
Shell Script Programming with nslookup 438
C Programming with the Resolver Library Routines 445
Perl Programming with Net::DNS 470

16. Architecture . 474
External, Authoritative DNS Infrastructure 474
Forwarder Infrastructure 478
Internal DNS Infrastructure 480
Operations 481
Keeping Up with DNS and BIND 482

Table of Contents | ix

17. Miscellaneous . 483
Using CNAME Records 483
Wildcards 488
A Limitation of MX Records 489
Dial-up Connections 489
Network Names and Numbers 494
Additional Resource Records 496
ENUM 501
Internationalized Domain Names 504
DNS and WINS 506
DNS, Windows, and Active Directory 508

A. DNS Message Format and Resource Records . 517

B. BIND Compatibility Matrix . 537

C. Compiling and Installing BIND on Linux . 538

D. Top-Level Domains . 543

E. BIND Nameserver and Resolver Configuration . 548

Index . 589

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface1

You may not know much about the Domain Name System—yet—but whenever you
use the Internet, you use DNS. Every time you send electronic mail or surf the World
Wide Web, you rely on the Domain Name System.

You see, while you, as a human being, prefer to remember the names of computers,
computers like to address each other by number. On an internet, that number is 32
bits long, or between 0 and 4 billion or so.* That’s easy for a computer to remember
because computers have lots of memory ideal for storing numbers, but it isn’t nearly
as easy for us humans. Pick 10 phone numbers out of the phone book at random and
then try to remember them. Not easy? Now flip to the front of the phone book and
attach random area codes to the phone numbers. That’s about how difficult it would
be to remember 10 arbitrary internet addresses.

This is part of the reason we need the Domain Name System. DNS handles mapping
between hostnames, which we humans find convenient, and internet addresses,
which computers deal with. In fact, DNS is the standard mechanism on the Internet
for advertising and accessing all kinds of information about hosts, not just addresses.
And DNS is used by virtually all internetworking software, including electronic mail,
remote terminal programs such as ssh, file transfer programs such as ftp, and web
browsers such as Microsoft’s Internet Explorer.

Another important feature of DNS is that it makes host information available all over
the Internet. Keeping information about hosts in a formatted file on a single com-
puter only helps users on that computer. DNS provides a means of retrieving infor-
mation remotely from anywhere on the network.

More than that, DNS lets you distribute the management of host information among
many sites and organizations. You don’t need to submit your data to some central
site or periodically retrieve copies of the “master” database. You simply make sure

* And, with IP version 6, it’s a whopping 128 bits long, or between 0 and a 39-digit decimal number.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

your section, called a zone, is up to date on your nameservers. Your nameservers
make your zone’s data available to all the other nameservers on the network.

Because the database is distributed, the system also needs to be able to locate the
data you’re looking for by searching a number of possible locations. The Domain
Name System gives nameservers the intelligence to navigate through the database
and find data in any zone.

Of course, DNS does have a few problems. For example, the system allows more
than one nameserver to store data about a zone, for redundancy’s sake, but inconsis-
tencies can crop up between copies of the zone data.

But the worst problem with DNS is that despite its widespread use on the Internet,
there’s really very little documentation about managing and maintaining it. Most
administrators on the Internet make do with the documentation their vendors see fit
to provide and with whatever they can glean from following the Internet mailing lists
and Usenet newsgroups on the subject.

This lack of documentation means that the understanding of an enormously impor-
tant internet service—one of the linchpins of today’s Internet—is either handed
down from administrator to administrator like a closely guarded family recipe, or
relearned repeatedly by isolated programmers and engineers. New zone administra-
tors suffer through the same mistakes made by countless others.

Our aim with this book is to help remedy this situation. We realize that not all of
you have the time or the desire to become DNS experts. Most of you, after all, have
plenty to do besides managing your zones and nameservers: system administration,
network engineering, or software development. It takes an awfully big institution to
devote a whole person to DNS. We’ll try to give you enough information to allow
you to do what you need to do, whether that’s running a small zone or managing a
multinational monstrosity, tending a single nameserver or shepherding a hundred of
them. Read as much as you need to know now, and come back later if you need to
learn more.

DNS is a big topic—big enough to require two authors, anyway—but we’ve tried to
present it as sensibly and understandably as possible. The first two chapters give you
a good theoretical overview and enough practical information to get by, and later
chapters fill in the nitty-gritty details. We provide a roadmap up front to suggest a
path through the book appropriate for your job or interest.

When we talk about actual DNS software, we’ll concentrate almost exclusively on
BIND, the Berkeley Internet Name Domain software, which is the most popular
implementation of the DNS specs (and the one we know best). We’ve tried to distill
our experience in managing and maintaining zones with BIND into this book. (One
of our zones, incidentally, was once one of the largest on the Internet, but that was a
long time ago.) Where possible, we’ve included the real programs we use in adminis-
tration, many of them rewritten into Perl for speed and efficiency.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

We hope that this book will help you get acquainted with DNS and BIND if you’re
just starting out, refine your understanding if you’re already familiar with them, and
provide valuable insight and experience even if you know ’em like the back of your
hand.

Versions
The fifth edition of this book deals with the new 9.3.2 and 8.4.7 versions of BIND as
well as older versions of BIND 8 and 9. While 9.3.2 and 8.4.7 are the most recent ver-
sions as of this writing, they haven’t made their way into many vendors’ versions of
Unix yet, partly because both versions have only recently been released and many ven-
dors are wary of using such new software. We also occasionally mention other versions
of BIND because many vendors continue to ship code based on this older software as
part of their Unix products. Whenever a feature is available only in the 8.4.7, or 9.3.2
version, or when there is a difference in the behavior of the versions, we try to point out
which version does what.

We use nslookup, a nameserver utility program, very frequently in our examples. The
version we use is the one shipped with the 9.3.2 BIND code. Older versions of
nslookup provide much, but not quite all, of the functionality in the 9.3.2 nslookup.
We’ve used commands common to most nslookups in most of our examples; when
this was not possible, we tried to note it.

What’s New in the Fifth Edition?
Besides updating the book to cover the most recent versions of BIND, we’ve added a
fair amount of new material to the fifth edition:

• Coverage of SPF, the Sender Policy Framework, in Chapter 5

• More extensive coverage of dynamic update and NOTIFY, including signed
dynamic updates and BIND 9’s new update-policy mechanism, in Chapter 10

• Incremental zone transfer, also in Chapter 10

• Forward zones, which support conditional forwarding, in Chapter 10

• IPv6 forward and reverse mapping using AAAA records and ip6.arpa, respec-
tively, at the end of Chapter 10

• Transaction signatures, also known as TSIG, a new mechanism for authenticat-
ing transactions, in Chapter 11

• An expanded section on securing nameservers, in Chapter 11

• An expanded section on dealing with Internet firewalls, in Chapter 11

• Coverage of the revised DNS Security Extensions, or DNSSECbis, a mechanism
for digitally signing zone data, also in Chapter 11

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

• A new chapter (Chapter 16) on the design of a complete DNS architecture for an
organization

• ENUM, which maps E.164 telephone numbers to URIs, in Chapter 17

• Internationalized Domain Names, or IDN, a standard for encoding Unicode
characters in the labels of domain names, in Chapter 17

• A revised section on accommodating Active Directory with BIND, in Chapter 17

Organization
This book is organized, more or less, to follow the evolution of a zone and its admin-
istrator. Chapters 1 and 2 discuss Domain Name System theory. Chapters 3 through
6 help you decide whether or not to set up your own zones, then describe how to go
about it, should you choose to. The middle of the book, Chapters 7 through 11,
describe how to maintain your zones, configure hosts to use your nameservers, plan
for the growth of your zones, create subdomains, and secure your nameservers.
Chapters 12 through 16 deal with troubleshooting tools, common problems, and the
lost art of programming with the resolver library routines. Chapter 16 puts it all
together in an end-to-end architecture.

Here’s a more detailed, chapter-by-chapter breakdown:

Chapter 1, Background
Provides a little historical perspective and discusses the problems that motivated
the development of DNS, then presents an overview of DNS theory.

Chapter 2, How Does DNS Work?
Goes over DNS theory in more detail, including the organization of the DNS
namespace, domains, zones, and nameservers. We also introduce important
concepts such as name resolution and caching.

Chapter 3, Where Do I Start?
Covers how to get the BIND software if you don’t already have it, what to do
with it once you’ve got it, how to figure out what your domain name should be,
and how to contact the organization that can delegate your zone to you.

Chapter 4, Setting Up BIND
Details how to set up your first two BIND nameservers, including creating your
nameserver database, starting up your nameservers, and checking their operation.

Chapter 5, DNS and Electronic Mail
Deals with DNS’s MX record, which allows administrators to specify alternate
hosts to handle a given destination’s mail. This chapter covers mail-routing strat-
egies for a variety of networks and hosts, including networks with Internet fire-
walls and hosts without direct Internet connectivity. The chapter also covers the
Sender Policy Framework, which uses DNS to authorize mail servers sending
mail from particular email addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

Chapter 6, Configuring Hosts
Explains how to configure a BIND resolver. We also include notes on the idio-
syncrasies of the Windows resolver.

Chapter 7, Maintaining BIND
Describes the periodic maintenance administrators must perform to keep their
zones running smoothly, such as checking nameserver health and authority.

Chapter 8, Growing Your Domain
Covers how to plan for the growth and evolution of your zones, including how
to get big and how to plan for moves and outages.

Chapter 9, Parenting
Explores the joys of becoming a parent zone. We explain when to become a par-
ent (create subdomains), what to call your children, how to create them (!), and
how to watch over them.

Chapter 10, Advanced Features
Goes over some less common nameserver configuration options that can help
you tune your nameserver’s performance and ease administration.

Chapter 11, Security
Describes how to secure your nameserver and how to configure your nameserv-
ers to deal with Internet firewalls, and describes two new security enhancements
to DNS: the DNS Security Extensions and Transaction Signatures.

Chapter 12, nslookup and dig
Shows the ins and outs of the most popular tools for doing DNS debugging,
including techniques for digging obscure information out of remote nameservers.

Chapter 13, Reading BIND Debugging Output
Is the Rosetta stone of BIND’s debugging information. This chapter will help
you make sense of the cryptic debugging information that BIND emits, which in
turn will help you better understand your nameserver.

Chapter 14, Troubleshooting DNS and BIND
Covers many common DNS and BIND problems and their solutions, and then
describes a number of less common, harder-to-diagnose scenarios.

Chapter 15, Programming with the Resolver and Nameserver Library Routines
Demonstrates how to use BIND’s resolver routines to query nameservers and
retrieve data from within a C program or a Perl script. We include a useful (we
hope!) program to check the health and authority of your nameservers.

Chapter 16, Architecture
Presents an end-to-end design for DNS infrastructure, including external
nameservers, forwarders, and internal nameservers.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

Chapter 17, Miscellaneous
Ties up all the loose ends. We cover DNS wildcards, hosts and networks with
intermittent Internet connectivity via dialup, network name encoding, addi-
tional record types, ENUM, IDN, and Active Directory.

Appendix A, DNS Message Format and Resource Records
Contains a byte-by-byte breakdown of the formats used in DNS queries and
responses, as well as a comprehensive list of the currently defined resource
record types.

Appendix B, BIND Compatibility Matrix
Contains a matrix showing the most important features of the most popular
BIND releases.

Appendix C, Compiling and Installing BIND on Linux
Contains step-by-step instructions on how to compile the 9.3.2 version of BIND
on Linux.

Appendix D, Top-Level Domains
Lists the current top-level domains in the Internet domain namespace.

Appendix E, BIND Nameserver and Resolver Configuration
Summarizes the syntax and semantics of each of the parameters available for
configuring nameservers and resolvers.

Audience
This book is intended primarily for system and network administrators who manage
zones and one or more nameservers, but it also includes material for network engi-
neers, postmasters, and others. Not all of the book’s chapters will be equally interest-
ing to a diverse audience, though, and you don’t want to wade through 17 chapters
to find the information pertinent to your job. We hope the following roadmap will
help you plot your way through the book:

System administrators setting up their first zones
Should read Chapters 1 and 2 for DNS theory, Chapter 3 for information on get-
ting started and selecting a good domain name, then Chapters 4 and 5 to learn
how to set up a zone for the first time. Chapter 6 explains how to configure
hosts to use the new nameservers. Later, they should read Chapter 7, which
explains how to “flesh out” their implementation by setting up additional
nameservers and adding zone data. Chapters 12 through 14 describe trouble-
shooting tools and techniques.

Experienced administrators
May benefit from reading Chapter 6 to learn how to configure DNS resolvers on
different hosts, and Chapter 7 for information on maintaining their zones.
Chapter 8 contains instructions on planning for a zone’s growth and evolution,
which should be especially valuable to administrators of large zones. Chapter 9

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

explains parenting—creating subdomains—which is de rigueur reading for those
considering the big move. Chapter 10 covers many new and advanced features of
the BIND 9.3.2 and 8.4.7 nameservers. Chapter 11 goes over securing nameserv-
ers, which may be of particular interest to experienced administrators. Chapters
12 through 14 describe tools and techniques for troubleshooting, which even
advanced administrators may find worth reading. Chapter 16 may help adminis-
trators get a grasp of the big picture.

System administrators on networks without full Internet connectivity
Should read Chapter 5 to learn how to configure mail on such networks, and
Chapters 11 and 17 to learn how to set up an independent DNS infrastructure.

Programmers
Can read Chapters 1 and 2 for DNS theory, then Chapter 15 for detailed cover-
age of how to program with the BIND resolver library routines.

Network administrators not directly responsible for any zones
Should still read Chapters 1 and 2 for DNS theory, Chapter 12 to learn how to
use nslookup and dig, and Chapter 14 for troubleshooting tactics.

Postmasters
Should read Chapters 1 and 2 for DNS theory, then Chapter 5 to find out how
DNS and electronic mail coexist. Chapter 12, which describes nslookup and dig,
will also help postmasters dig mail-routing information from the domain
namespace.

Interested users
Can read Chapters 1 and 2 for DNS theory, and then whatever else they like!

Note that we assume you’re familiar with basic Unix system administration, TCP/IP
networking, and programming using simple shell scripts and Perl. We don’t assume
you have any other specialized knowledge, though. When we introduce a new term
or concept, we’ll do our best to define or explain it. Whenever possible, we’ll use
analogies from Unix (and from the real world) to help you understand.

Obtaining the Example Programs
The example programs in this book* are available electronically via FTP from the fol-
lowing URLs:

• ftp://ftp.uu.net/published/oreilly/nutshell/dnsbind/dns.tar.Z

• ftp://ftp.oreilly.com/published/oreilly/nutshell/dnsbind/

In either case, extract the files from the archive by typing:

% zcat dns.tar.Z | tar xf -

* Examples are also available online at http://examples.oreilly.com/dns5.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

System V systems require the following tar command instead:

% zcat dns.tar.Z | tar xof -

If zcat is not available on your system, use separate uncompress and tar commands.

If you can’t get the examples directly over the Internet but can send and receive
email, you can use ftpmail to get them. For help using ftpmail, send an email to
ftpmail@online.oreilly.com with no subject and the single word “help” in the body of
the message.

How to Contact Us
You can address comments and questions about this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

O’Reilly has a web page for this book, which lists errata and any additional informa-
tion. You can access this page at:

http://www.oreilly.com/catalog/dns5

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Conventions Used in This Book
We use the following font and format conventions for Unix commands, utilities, and
system calls:

• Excerpts from scripts or configuration files are shown in constant-width font:
if test -x /usr/sbin/named -a -f /etc/named.con
then
 /usr/sbin/named
fi

• Sample interactive sessions, showing command-line input and corresponding
output, are shown in constant-width font, with user-supplied input in bold:

% cat /var/run/named.pid
78

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

• If the command must be typed by the superuser (root), we use the sharp, or
pound sign (#):

/usr/sbin/named

• Replaceable items in code are printed in constant-width italics.

• Domain names, filenames, functions, commands, Unix manpages, Windows fea-
tures, URLs, and programming elements taken from the code snippets are
printed in italics when they appear within a paragraph.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “DNS and BIND, Fifth Edition, by
Cricket Liu and Paul Albitz. Copyright 2006 O’Reilly Media, Inc., 0-596-10057-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Quotations
The Lewis Carroll quotations that begin each chapter are from the Millennium Ful-
crum Edition 2.9 of the Project Gutenberg electronic text of Alice’s Adventures in
Wonderland and Edition 1.7 of Through the Looking-Glass. Quotations in Chapters
1, 2, 5, 6, 8, and 14 come from Alice’s Adventures in Wonderland, and those in Chap-
ters 3, 4, 7, 9–13, and 15–17 come from Through the Looking-Glass.

Acknowledgments
The authors would like to thank Ken Stone, Jerry McCollom, Peter Jeffe, Hal Stern,
Christopher Durham, Bill Wisner, Dave Curry, Jeff Okamoto, Brad Knowles, K.
Robert Elz, and Paul Vixie for their invaluable contributions to this book. We’d also
like to thank our reviewers, Eric Pearce, Jack Repenning, Andrew Cherenson, Dan
Trinkle, Bill LeFebvre, and John Sechrest for their criticism and suggestions. With-
out their help, this book would not be what it is (it’d be much shorter!).

For the second edition, the authors add their thanks to their sterling review team:
Dave Barr, Nigel Campbell, Bill LeFebvre, Mike Milligan, and Dan Trinkle.

For the third edition, the authors salute their technical review Dream Team: Bob
Halley, Barry Margolin, and Paul Vixie.

For the fourth edition, the authors owe a debt of gratitude to Kevin Dunlap, Edward
Lewis, and Brian Wellington, their crack review squad.

For the fifth edition, the authors would like to thank their crack team of technical
reviewers, João Damas, Matt Larson, and Paul Vixie, and Silvia Hagen for her last-
minute help with IPv6.

Cricket would particularly like to thank his former manager, Rick Nordensten, the
very model of a modern HP manager, on whose watch the first version of this book
was written; his neighbors, who bore his occasional crabbiness for many months; and
of course his wife Paige for her unflagging support and for putting up with his tap-tap-
tapping during her nap-nap-napping. For the second edition, Cricket would like to
add a thank you to his former managers, Regina Kershner and Paul Klouda, for their
support of Cricket’s work with the Internet. For the third edition, Cricket acknowl-
edges a debt of gratitude to his partner, Matt Larson, for his co-development of the
Acme Razor. For the fourth edition, Cricket thanks his loyal, furry fans, Dakota and
Annie, for kisses and companionship, and wonderful Walter B. for popping his head
into the office and checking on Dad now and again. For the fifth edition, he must

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

mention the other new addition, the fabulous Baby G. And he sends his thanks to his
friends and colleagues at Infoblox for their hard work, their generous support, and
their company.

Paul would like to thank his wife, Katherine, for her patience, for many review ses-
sions, and for proving that she could make a quilt in her spare time more quickly
than her spouse could write his half of a book.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Background1

The White Rabbit put on his spectacles. “Where shall I
begin, please your Majesty?” he asked.

 “Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

It’s important to know a little ARPAnet history to understand the Domain Name
System (DNS). DNS was developed to address particular problems on the ARPAnet,
and the Internet—a descendant of the ARPAnet—is still its main user.

If you’ve been using the Internet for years, you can probably skip this chapter. If you
haven’t, we hope it’ll give you enough background to understand what motivated
the development of DNS.

A (Very) Brief History of the Internet
In the late 1960s, the U.S. Department of Defense’s Advanced Research Projects
Agency, ARPA (later DARPA), began funding the ARPAnet, an experimental wide
area computer network that connected important research organizations in the
United States. The original goal of the ARPAnet was to allow government contrac-
tors to share expensive or scarce computing resources. From the beginning, how-
ever, users of the ARPAnet also used the network for collaboration. This
collaboration ranged from sharing files and software and exchanging electronic
mail—now commonplace—to joint development and research using shared remote
computers.

The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite was
developed in the early 1980s and quickly became the standard host-networking pro-
tocol on the ARPAnet. The inclusion of the protocol suite in the University of Cali-
fornia at Berkeley’s popular BSD Unix operating system was instrumental in
democratizing internetworking. BSD Unix was virtually free to universities. This
meant that internetworking—and ARPAnet connectivity—were suddenly available
cheaply to many more organizations than were previously attached to the ARPAnet.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Background

Many of the computers being connected to the ARPAnet were being connected to
local area networks (LANs), too, and very shortly the other computers on the LANs
were communicating via the ARPAnet as well.

The network grew from a handful of hosts to tens of thousands of hosts. The origi-
nal ARPAnet became the backbone of a confederation of local and regional net-
works based on TCP/IP, called the Internet.

In 1988, however, DARPA decided the experiment was over. The Department of
Defense began dismantling the ARPAnet. Another network, the NSFNET, funded by
the National Science Foundation, replaced the ARPAnet as the backbone of the
Internet.

In the spring of 1995, the Internet made a transition from using the publicly funded
NSFNET as a backbone to using multiple commercial backbones, run by telecom-
munications companies such as SBC and Sprint, and long-time commercial internet-
working players such as MFS and UUNET.

Today, the Internet connects millions of hosts around the world. In fact, a signifi-
cant proportion of the non-PC computers in the world are connected to the Internet.
Some commercial backbones carry a volume of several gigabits per second, tens of
thousands of times the bandwidth of the original ARPAnet. Tens of millions of peo-
ple use the network for communication and collaboration daily.

On the Internet and Internets
A word on “the Internet,” and on “internets” in general, is in order. In print, the dif-
ference between the two seems slight: one is always capitalized, one isn’t. The dis-
tinction between their meanings, however, is significant. The Internet, with a capital
“I,” refers to the network that began its life as the ARPAnet and continues today as,
roughly, the confederation of all TCP/IP networks directly or indirectly connected to
commercial U.S. backbones. Seen up close, it’s actually quite a few different net-
works—commercial TCP/IP backbones, corporate and U.S. government TCP/IP net-
works, and TCP/IP networks in other countries—interconnected by high-speed
digital circuits. A lowercase internet, on the other hand, is simply any network made
up of multiple smaller networks using the same internetworking protocols. An inter-
net (little “i”) isn’t necessarily connected to the Internet (big “I”), nor does it neces-
sarily use TCP/IP as its internetworking protocol. There are isolated corporate
internets, for example.

An intranet, with a little i, is really just a TCP/IP-based internet, used to emphasize
the use of technologies developed and introduced on the Internet on a company’s
internal corporate network. An extranet, on the other hand, is a TCP/IP-based inter-
net that connects partner companies, or a company to its distributors, suppliers, and
customers.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

On the Internet and Internets | 3

The History of the Domain Name System
Through the 1970s, the ARPAnet was a small, friendly community of a few hundred
hosts. A single file, HOSTS.TXT, contained a name-to-address mapping for every
host connected to the ARPAnet. The familiar Unix host table, /etc/hosts, was com-
piled from HOSTS.TXT (mostly by deleting fields Unix didn’t use).

HOSTS.TXT was maintained by SRI’s Network Information Center (dubbed “the
NIC”) and distributed from a single host, SRI-NIC.* ARPAnet administrators typically
emailed their changes to the NIC, and periodically FTP’ed to SRI-NIC and grabbed the
current HOSTS.TXT file. Their changes were compiled into a new HOSTS.TXT file
once or twice a week. As the ARPAnet grew, however, this scheme became unwork-
able. The size of HOSTS.TXT grew in proportion to the growth in the number of
ARPAnet hosts. Moreover, the traffic generated by the update process increased even
faster: every additional host meant not only another line in HOSTS.TXT, but poten-
tially another host updating from SRI-NIC.

When the ARPAnet moved to TCP/IP, the population of the network exploded.
Now there was a host of problems with HOSTS.TXT (no pun intended):

Traffic and load
The toll on SRI-NIC, in terms of the network traffic and processor load involved
in distributing the file, was becoming unbearable.

Name collisions
No two hosts in HOSTS.TXT could have the same name. However, while the
NIC could assign addresses in a way that guaranteed uniqueness, it had no
authority over hostnames. There was nothing to prevent someone from adding a
host with a conflicting name and breaking the whole scheme. Adding a host with
the same name as a major mail hub, for example, could disrupt mail service to
much of the ARPAnet.

Consistency
Maintaining consistency of the file across an expanding network became harder
and harder. By the time a new HOSTS.TXT file could reach the farthest shores of
the enlarged ARPAnet, a host across the network may have changed addresses or
a new host may have sprung up.

The essential problem was that the HOSTS.TXT mechanism didn’t scale well. Ironi-
cally, the success of the ARPAnet as an experiment led to the failure and obsoles-
cence of HOSTS.TXT.

The ARPAnet’s governing bodies chartered an investigation to develop a successor for
HOSTS.TXT. Their goal was to create a system that solved the problems inherent in a

* SRI is the former Stanford Research Institute in Menlo Park, California. SRI conducts research into many
different areas, including computer networking.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Background

unified host-table system. The new system should allow local administration of data
yet make that data globally available. The decentralization of administration would
eliminate the single-host bottleneck and relieve the traffic problem. And local manage-
ment would make the task of keeping data up-to-date much easier. The new system
should use a hierarchical namespace to name hosts. This would ensure the unique-
ness of names.

Paul Mockapetris, then of USC’s Information Sciences Institute, was responsible for
designing the architecture of the new system. In 1984, he released RFCs 882 and
883, which described the Domain Name System. These RFCs were superseded by
RFCs 1034 and 1035, the current specifications of the Domain Name System.* RFCs
1034 and 1035 have since been augmented by many other RFCs, which describe
potential DNS security problems, implementation problems, administrative gotchas,
mechanisms for dynamically updating nameservers and for securing zone data, and
more.

The Domain Name System, in a Nutshell
The Domain Name System is a distributed database. This structure allows local con-
trol of the segments of the overall database, yet data in each segment is available
across the entire network through a client/server scheme. Robustness and adequate
performance are achieved through replication and caching.

Programs called nameservers constitute the server half of DNS’s client/server mecha-
nism. Nameservers contain information about some segments of the database and
make that information available to clients, called resolvers. Resolvers are often just
library routines that create queries and send them across a network to a nameserver.

The structure of the DNS database, shown in Figure 1-1, is similar to the structure of
the Unix filesystem. The whole database (or filesystem) is pictured as an inverted
tree, with the root node at the top. Each node in the tree has a text label, which iden-
tifies the node relative to its parent. This is roughly analogous to a “relative path-
name” in a filesystem, like bin. One label—the null label, or “ ”—is reserved for the
root node. In text, the root node is written as a single dot (.). In the Unix filesystem,
the root is written as a slash (/).

Each node is also the root of a new subtree of the overall tree. Each of these subtrees
represents a partition of the overall database—a directory in the Unix filesystem, or a
domain in the Domain Name System. Each domain or directory can be further
divided into additional partitions, called subdomains in DNS, like a filesystem’s sub-
directories. Subdomains, like subdirectories, are drawn as children of their parent
domains.

* RFCs are Request for Comments documents, part of the relatively informal procedure for introducing new
technology on the Internet. RFCs are usually freely distributed and contain fairly technical descriptions of
the technology, often intended for implementors.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Domain Name System, in a Nutshell | 5

Every domain has a unique name, like every directory. A domain’s domain name
identifies its position in the database, much as a directory’s absolute pathname speci-
fies its place in the filesystem. In DNS, the domain name is the sequence of labels
from the node at the root of the domain to the root of the whole tree, with dots (.)
separating the labels. In the Unix filesystem, a directory’s absolute pathname is the
list of relative names read from root to leaf (the opposite direction from DNS, as
shown in Figure 1-2), using a slash to separate the names.

In DNS, each domain can be broken into a number of subdomains, and responsibil-
ity for those subdomains can be doled out to different organizations. For example,
an organization called EDUCAUSE manages the edu (educational) domain but dele-
gates responsibility for the berkeley.edu subdomain to U.C. Berkeley (Figure 1-3).
This is similar to remotely mounting a filesystem: certain directories in a filesystem
may actually be filesystems on other hosts, mounted from remote hosts. The admin-
istrator on host winken, for example (again, Figure 1-3), is responsible for the filesys-
tem that appears on the local host as the directory /usr/nfs/winken.

Delegating authority for berkeley.edu to U.C. Berkeley creates a new zone, an autono-
mously administered piece of the namespace. The zone berkeley.edu is now indepen-
dent from edu and contains all domain names that end in berkeley.edu. The zone edu,
on the other hand, contains only domain names that end in edu but aren’t in dele-
gated zones such as berkeley.edu. berkeley.edu may be further divided into subdo-
mains, such as cs.berkeley.edu, and some of these subdomains may themselves be

Figure 1-1. The DNS database versus a Unix filesystem

DNS database

Unix filesystem

etc bin usr system

bin etc local

bin etc

com edu gov

“ ”

mil

/

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Background

separate zones, if the berkeley.edu administrators delegate responsibility for them to
other organizations. If cs.berkeley.edu is a separate zone, the berkeley.edu zone
doesn’t contain domain names that end in cs.berkeley.edu (Figure 1-4).

Domain names are used as indexes into the DNS database. You might think of data
in DNS as “attached” to a domain name. In a filesystem, directories contain files and
subdirectories. Likewise, domains can contain both hosts and subdomains. A
domain contains those hosts and subdomains whose domain names are within the
domain’s subtree of the namespace.

Each host on a network has a domain name, which points to information about the
host (see Figure 1-5). This information may include IP addresses, information about
mail routing, etc. Hosts may also have one or more domain name aliases, which are
simply pointers from one domain name (the alias) to another (the official, or canoni-
cal, domain name). In Figure 1-5, mailhub.nv . . . is an alias for the canonical name
rincon.ba.ca

Figure 1-2. Reading names in a DNS database and in a Unix filesystem

usr

Unix
filesystem

local

bin

imake

/

/usr/local/bin/imake

hp

com

corp

winnie

DNS
database “ ”

winnie.corp.hp.com

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Domain Name System, in a Nutshell | 7

Why all the complicated structure? To solve the problems that HOSTS.TXT had. For
example, making domain names hierarchical eliminates the pitfall of name colli-
sions. Each domain has a unique domain name, so the organization that runs the
domain is free to name hosts and subdomains within its domain. Whatever name
they choose for a host or subdomain won’t conflict with other organizations’ domain
names because it will end in their unique domain name. For example, the organiza-
tion that runs hic.com can name a host puella (as shown in Figure 1-6) because it
knows that the host’s domain name will end in hic.com, a unique domain name.

Figure 1-3. Remote management of subdomains and of filesystems

Unix filesystem

DNS database

usr

/

filesystem on local host

bin etc system

nfs local bin

blinken
nod

winken filesystem on remote host winken

edu

managed by ICANN

berkeley

managed by UC Berkeley

com gov mil

“ ”

managed by NSI

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Background

Figure 1-4. The edu, berkeley.edu, and cs.berkeley.edu zones

Figure 1-5. An alias in DNS pointing to a canonical name

berkeley.edu zone

cs.berkeley.edu zone

edu zone

edu

berkeley

cs co me

stanford cmu

oakland rincon

ba la mailhub

ca
or

nv

IP address 192.2.18.44

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Must I Use DNS? | 9

The History of BIND
The first implementation of the Domain Name System was called JEEVES, written
by Paul Mockapetris himself. A later implementation was BIND, an acronym for Ber-
keley Internet Name Domain, written by Kevin Dunlap for Berkeley’s 4.3 BSD Unix.
BIND is now maintained by the Internet Systems Consortium.*

BIND is the implementation we’ll concentrate on in this book and is by far the most
popular implementation of DNS today. It has been ported to most flavors of Unix
and is shipped as a standard part of most vendors’ Unix offerings. BIND has even
been ported to Microsoft’s Windows NT, Windows 2000, and Windows Server
2003.

Must I Use DNS?
Despite the usefulness of the Domain Name System, there are some situations in
which it doesn’t pay to use it. There are other name-resolution mechanisms besides
DNS, some of which may be a standard part of your operating system. Sometimes
the overhead involved in managing zones and their nameservers outweighs the bene-
fits. On the other hand, there are circumstances in which you have no other choice

Figure 1-6. Solving the name collision problem

* For more information on the Internet Systems Consortium and its work on BIND, see http://www.isc.org/sw/
bind/.

puella.hic.com

puerpuella puella

hic
haec

hoc

“ ”

com

puella.hoc.com

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Background

but to set up and manage nameservers. Here are some guidelines to help you make
that decision:

If you’re connected to the Internet.. .
. . .DNS is a must. Think of DNS as the lingua franca of the Internet: nearly all of
the Internet’s network services use DNS. That includes the Web, electronic mail,
remote terminal access, and file transfer.

On the other hand, this doesn’t necessarily mean that you have to set up and run
zones by yourself for yourself. If you’ve only got a handful of hosts, you may be
able to join an existing zone (see Chapter 3) or find someone else to host your
zones for you. If you pay an Internet service provider for your Internet connectiv-
ity, ask if it’ll host your zone for you, too. Even if you aren’t already a customer,
there are companies that will help out, for a price.

If you have a little more than a handful of hosts, or a lot more, you’ll probably
want your own zone. And if you want direct control over your zone and your
nameservers, you’ll want to manage it yourself. Read on!

If you have your own TCP/IP-based internet...
. . .you probably want DNS. By an internet, we don’t mean just a single Ethernet
of workstations using TCP/IP (see the next section if you thought that was what
we meant); we mean a fairly complex “network of networks.” Maybe you have
several dozen Ethernet segments connected via routers, for example.

If your internet is basically homogeneous and your hosts don’t need DNS (say
they don’t run TCP/IP at all), you may be able to do without it. But if you’ve got
a variety of hosts, especially if some of those run some variety of Unix, you’ll
want DNS. It’ll simplify the distribution of host information and rid you of any
kludgy host-table distribution schemes you may have cooked up.

If you have your own local area network or site network...
. . .and that network isn’t connected to a larger network, you can probably get
away without using DNS. You might consider using Microsoft’s Windows Inter-
net Name Service (WINS), host tables, or Sun’s Network Information Service
(NIS) product.

But if you need distributed administration or have trouble maintaining the con-
sistency of data on your network, DNS may be for you. And if your network is
likely to soon be connected to another network, such as your corporate internet
or the Internet, it’d be wise to set up your zones now.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

11

Chapter 2 CHAPTER 2

How Does DNS Work?2

“...and what is the use of a book,” thought Alice,
“without pictures or conversations?”

The Domain Name System is basically a database of host information. Admittedly,
you get a lot with that: funny dotted names, networked nameservers, a shadowy
“namespace.” But keep in mind that, in the end, the service DNS provides is infor-
mation about internet hosts.

We’ve already covered some important aspects of DNS, including its client/server
architecture and the structure of the DNS database. However, we haven’t gone into
much detail, and we haven’t explained the nuts and bolts of DNS’s operation.

In this chapter, we’ll explain and illustrate the mechanisms that make DNS work.
We’ll also introduce the terms you’ll need to know to read the rest of the book (and
to converse intelligently with your fellow zone administrators).

First, though, let’s take a more detailed look at the concepts introduced in the previ-
ous chapter. We’ll try to add enough detail to spice it up a little.

The Domain Namespace
DNS’s distributed database is indexed by domain names. Each domain name is
essentially just a path in a large inverted tree, called the domain namespace. The
tree’s hierarchical structure, shown in Figure 2-1, is similar to the structure of the
Unix filesystem. The tree has a single root at the top.* In the Unix filesystem, this is
called the root directory and is represented by a slash (/). DNS simply calls it “the
root.” Like a filesystem, DNS’s tree can branch any number of ways at each intersec-
tion point, or node. The depth of the tree is limited to 127 levels (a limit you’re not
likely to reach).

* Clearly this is a computer scientist’s tree, not a botanist’s.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: How Does DNS Work?

Domain Names
Each node in the tree has a text label (without dots) that can be up to 63 characters
long. A null (zero-length) label is reserved for the root. The full domain name of any
node in the tree is the sequence of labels on the path from that node to the root.
Domain names are always read from the node toward the root (“up” the tree), with
dots separating the names in the path.

If the root node’s label actually appears in a node’s domain name, the name looks as
though it ends in a dot, as in “www.oreilly.com.” (It actually ends with a dot—the
separator—and the root’s null label.) When the root node’s label appears by itself, it
is written as a single dot, “.”, for convenience. Consequently, some software inter-
prets a trailing dot in a domain name to indicate that the domain name is absolute.
An absolute domain name is written relative to the root and unambiguously speci-
fies a node’s location in the hierarchy. An absolute domain name is also referred to
as a fully qualified domain name, often abbreviated FQDN. Names without trailing
dots are sometimes interpreted as relative to some domain name other than the root,
just as directory names without a leading slash are often interpreted as relative to the
current directory.

DNS requires that sibling nodes—nodes that are children of the same parent—have
different labels. This restriction guarantees that a domain name uniquely identifies a
single node in the tree. The restriction really isn’t a limitation because the labels need
to be unique only among the children, not among all the nodes in the tree. The same
restriction applies to the Unix filesystem: you can’t give two sibling directories or two

Figure 2-1. The structure of the DNS namespace

“ ”

orgmilgoveducomarpa

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Domain Namespace | 13

files in the same directory the same name. As illustrated in Figure 2-2, just as you
can’t have two hobbes.pa.ca.us nodes in the namespace, you can’t have two /usr/bin
directories. You can, however, have both a hobbes.pa.ca.us node and a hobbes.lg.ca.us
node, as you can have both a /bin directory and a /usr/bin directory.

Domains
A domain is simply a subtree of the domain namespace. The domain name of a
domain is the same as the domain name of the node at the very top of the domain.
So, for example, the top of the purdue.edu domain is a node named purdue.edu, as
shown in Figure 2-3.

Likewise, in a filesystem, at the top of the /usr directory, you’d expect to find a node
called /usr, as shown in Figure 2-4.

Figure 2-2. Ensuring uniqueness in domain names and in Unix pathnames

bin etc system

bin

/

bin

usr

/usr/bin

/usr/bin
no go

/bin

DNS database

Unix filesystem

“ ”

ca

pa mpk lg

hobbes

il

hobbes hobbes

us

hobbes.pa.ca.us
hobbes.pa.ca.us

hobbes.lg.ca.us

verboten

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: How Does DNS Work?

Any domain name in the subtree is considered a part of the domain. Because a
domain name can be in many subtrees, a domain name can also be in many
domains. For example, the domain name pa.ca.us is part of the ca.us domain and
also part of the us domain, as shown in Figure 2-5.

So in the abstract, a domain is just a subtree of the domain namespace. But if a
domain is simply made up of domain names and other domains, where are all the
hosts? Domains are groups of hosts, right?

The hosts are there, represented by domain names. Remember, domain names are just
indexes into the DNS database. The “hosts” are the domain names that point to infor-
mation about individual hosts, and a domain contains all the hosts whose domain
names are within the domain. The hosts are related logically, often by geography or

Figure 2-3. The purdue.edu domain

Figure 2-4. The /usr directory

“ ”

purdue

edu

purdue.edu node

com org

purdue.edu domain

usr

/

/usr node
bin etc

/usr directory

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Domain Namespace | 15

organizational affiliation, and not necessarily by network or address or hardware type.
You might have 10 different hosts, each of them on a different network and perhaps
even in different countries, all in the same domain.

One note of caution: don’t confuse domains in DNS with domains in NIS. Though
an NIS domain also refers to a group of hosts, and both types of domains have simi-
larly structured names, the concepts are quite different. NIS uses hierarchical names,
but the hierarchy ends there: hosts in the same NIS domain share certain data about
hosts and users, but they can’t navigate the NIS namespace to find data in other NIS
domains. NT domains, which provide account-management and security services,
also don’t have any relationship to DNS domains. Active Directory domains, how-
ever, are closely related to DNS domains. We discuss the relationship between DNS
and Active Directory domains in Chapter 17.

Domain names at the leaves of the tree generally represent individual hosts, and they
may point to network addresses, hardware information, and mail-routing informa-
tion. Domain names in the interior of the tree can name a host and point to informa-
tion about the domain; they aren’t restricted to one or the other. Interior domain
names can represent both the domain they correspond to and a particular host on
the network. For example, hp.com is both the name of the Hewlett-Packard Com-
pany’s domain and a domain name that refers to the hosts that run HP’s main web
server.

The type of information retrieved when you use a domain name depends on the con-
text in which you use it. Sending mail to someone at hp.com returns mail-routing
information, while sshing to the domain name looks up the host information (in
Figure 2-6, for example, hp.com’s IP address).

Figure 2-5. A node in multiple domains

“ ”

us

pa.ca.us node

net mil

ca.us domain

ca
il ny

pa mpk

us domain

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: How Does DNS Work?

A domain may have several subtrees of its own, called subdomains.*

A simple way of determining if a domain is a subdomain of another domain is to
compare their domain names. A subdomain’s domain name ends with the domain
name of its parent domain. For example, the domain la.tyrell.com must be a subdo-
main of tyrell.com, because la.tyrell.com ends with tyrell.com. It’s also a subdomain
of com, as is tyrell.com.

Besides being referred to in relative terms, as subdomains of other domains, domains
are often referred to by level. On mailing lists and in Usenet newsgroups, you may
see the terms top-level domain or second-level domain bandied about. These terms
simply refer to a domain’s position in the domain namespace:

• A top-level domain is a child of the root.

• A first-level domain is a child of the root (a top-level domain).

• A second-level domain is a child of a first-level domain, and so on.

Resource Records
The data associated with domain names is contained in resource records, or RRs.
Records are divided into classes, each of which pertains to a type of network or soft-
ware. Currently, there are classes for internets (any TCP/IP-based internet), net-
works based on the Chaosnet protocols, and networks that use Hesiod software.
(Chaosnet is an old network of largely historic significance.) The internet class is by
far the most popular. (We’re not really sure if anyone still uses the Chaosnet class,
and use of the Hesiod class is mostly confined to MIT.) In this book, we concentrate
on the internet class.

Figure 2-6. An interior node with both host and domain data

* The terms “domain” and “subdomain” are often used interchangeably, or nearly so, in DNS documentation.
Here, we use subdomain only as a relative term: a domain is a subdomain of another domain if the root of
the subdomain is within the domain.

com

hp.com IP address
hp

gr sddcorp

“ ”

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Internet Domain Namespace | 17

Within a class, records come in several types, which correspond to the different vari-
eties of data that may be stored in the domain namespace. Different classes may
define different record types, though some types are common to more than one class.
For example, almost every class defines an address type. Each record type in a given
class defines a particular record syntax to which all resource records of that class and
type must adhere.

If this information seems sketchy, don’t worry: we’ll cover the records in the inter-
net class in more detail later. The common records are described in Chapter 4, and a
more comprehensive list is included as part of Appendix A.

The Internet Domain Namespace
So far, we’ve talked about the theoretical structure of the domain namespace and
what sort of data is stored in it, and we’ve even hinted at the types of names you
might find in it with our (sometimes fictional) examples. But this won’t help you
decode the domain names you see on a daily basis on the Internet.

The Domain Name System doesn’t impose many rules on the labels in domain
names, and it doesn’t attach any particular meaning to the labels at a given level of
the namespace. When you manage a part of the domain namespace, you can decide
on your own semantics for your domain names. Heck, you could name your subdo-
mains A through Z, and no one would stop you (though they might strongly recom-
mend against it).

The existing Internet domain namespace, however, has some self-imposed structure
to it. Especially in the upper-level domains, the domain names follow certain tradi-
tions (not rules, really, because they can be and have been broken). These traditions
help to keep domain names from appearing totally chaotic. Understanding these tra-
ditions is an enormous asset if you’re trying to decipher a domain name.

Top-Level Domains
The original top-level domains divided the Internet domain namespace organization-
ally into seven domains:

com
Commercial organizations, such as Hewlett-Packard (hp.com), Sun Microsys-
tems (sun.com), and IBM (ibm.com).

edu
Educational organizations, such as U.C. Berkeley (berkeley.edu) and Purdue Uni-
versity (purdue.edu).

gov
Government organizations, such as NASA (nasa.gov) and the National Science
Foundation (nsf.gov).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: How Does DNS Work?

mil
Military organizations, such as the U.S. Army (army.mil) and Navy (navy.mil).

net
Formerly organizations providing network infrastructure, such as NSFNET (nsf.net)
and UUNET (uu.net). Since 1996, however, net has been open to any commercial
organization, like com is.

org
Formerly noncommercial organizations, such as the Electronic Frontier Founda-
tion (eff.org). Like net, though, restrictions on org were removed in 1996.

int
International organizations, such as NATO (nato.int).

Another top-level domain called arpa was originally used during the ARPAnet’s tran-
sition from host tables to DNS. All ARPAnet hosts originally had hostnames under
arpa, so they were easy to find. Later, they moved into various subdomains of the
organizational top-level domains. However, the arpa domain remains in use in a way
you’ll read about later.

You may notice a certain nationalistic prejudice in our examples: we’ve used prima-
rily U.S.-based organizations. That’s easier to understand—and forgive—when you
remember that the Internet began as the ARPAnet, a U.S.-funded research project.
No one anticipated the success of the ARPAnet, or that it would eventually become
as international as the Internet is today.

Today, these original seven domains are called generic top-level domains, or gTLDs.
The “generic” contrasts them with the country-code top-level domains, which are
specific to a particular country.

Country-code top-level domains

To accommodate the increasing internationalization of the Internet, the implement-
ers of the Internet namespace compromised. Instead of insisting that all top-level
domains describe organizational affiliation, they decided to allow geographical desig-
nations, too. New top-level domains were reserved (but not necessarily created) to
correspond to individual countries. Their domain names followed an existing inter-
national standard called ISO 3166.* ISO 3166 establishes official, two-letter abbrevia-
tions for every country in the world. We’ve included the current list of top-level
domains as Appendix D.

* Except for Great Britain. According to ISO 3166 and Internet tradition, Great Britain’s top-level domain
name should be gb. Instead, most organizations in Great Britain and Northern Ireland (i.e., the United King-
dom) use the top-level domain name uk. They drive on the wrong side of the road, too.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Internet Domain Namespace | 19

New top-level domains

In late 2000, the organization that manages the Domain Name System, the Internet
Corporation for Assigned Names and Numbers, or ICANN, created seven new
generic top-level domains to accommodate the rapid expansion of the Internet and
the need for more domain name “space.” A few of these were truly generic top-level
domains, like com, net, and org, while others were closer in purpose to gov and mil:
reserved for use by a specific (and sometimes surprisingly small) community. ICANN
refers to this latter variety as sponsored TLDs, or sTLDs, and the former as unspon-
sored gTLDs. Sponsored TLDs have a charter, which defines their function, and a
sponsoring organization, which sets policies governing the sTLDs and oversees their
operation on ICANN’s behalf.

Here are the new gTLDs:

aero
Sponsored; for the aeronautical industry

biz
Generic

coop
Sponsored; for cooperatives

info
Generic

museum
Sponsored; for museums

name
Generic; for individuals

pro
Generic; for professionals

More recently, in early 2005, ICANN approved two more sponsored TLDs, jobs, for
the human resources management industry, and travel, for the travel industry. Sev-
eral other sponsored TLDs were also under evaluation, including cat, for the Catalan
linguistic and cultural community, mobi, for mobile devices, and post, for the postal
community. So far, only mobi has been delegated from the root. You can check out
ICANN at http://www.icann.org.

Further Down
Within these top-level domains, the traditions and the extent to which they are fol-
lowed vary. Some of the ISO 3166 top-level domains closely follow the United States’s
original organizational scheme. For example, Australia’s top-level domain, au, has sub-
domains such as edu.au and com.au. Some other ISO 3166 top-level domains follow
the uk domain’s lead and have organizationally oriented subdomains such as co.uk for

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: How Does DNS Work?

corporations and ac.uk for the academic community. In most cases, however, even
these geographically oriented top-level domains are divided up organizationally.

That wasn’t originally true of the us top-level domain, though. In the beginning, the
us domain had 50 subdomains that corresponded to—guess what?—the 50 U.S.
states.* Each was named according to the standard two-letter abbreviation for the
state—the same abbreviation standardized by the U.S. Postal Service. Within each
state’s domain, the organization was still largely geographical: most subdomains cor-
responded to individual cities. Beneath the cities, the subdomains usually corre-
sponded to individual hosts.

As with so many namespace rules, though, this structure was abandoned when a
new company, Neustar, began managing us in 2002. Now us—like com and net—is
open to all comers.

Reading Domain Names
Now that you know what most top-level domains represent and how their
namespaces are structured, you’ll probably find it much easier to make sense of most
domain names. Let’s dissect a few for practice:

lithium.cchem.berkeley.edu
You’ve got a head start on this one, as we’ve already told you that berkeley.edu is
U.C. Berkeley’s domain. (Even if you didn’t already know that, though, you
could have inferred that the name probably belongs to a U.S. university because
it’s in the top-level edu domain.) cchem is the College of Chemistry’s subdomain
of berkeley.edu. Finally, lithium is the name of a particular host in the domain—
and probably one of about a hundred or so, if they have one for every element.

winnie.corp.hp.com
This example is a bit harder, but not much. The hp.com domain in all likelihood
belongs to the Hewlett-Packard Company (in fact, we gave you this earlier, too).
Its corp subdomain is undoubtedly its corporate headquarters. And winnie is
probably just some silly name someone thought up for a host.

fernwood.mpk.ca.us
Here, you’ll need to use your understanding of the us domain. ca.us is obviously
California’s domain, but mpk is anybody’s guess. In this case, it would be hard
to know that it’s Menlo Park’s domain unless you know your San Francisco Bay
Area geography. (And no, it’s not the same Menlo Park that Edison lived in—
that one’s in New Jersey.)

* Actually, there are a few more domains under us: one for Washington, D.C., one for Guam, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Delegation | 21

daphne.ch.apollo.hp.com
We’ve included this example just so you don’t start thinking that all domain
names have only four labels. apollo.hp.com is the former Apollo Computer subdo-
main of the hp.com domain. (When HP acquired Apollo, it also acquired Apollo’s
Internet domain, apollo.com, which became apollo.hp.com.) ch.apollo.hp.com is
Apollo’s Chelmsford, Massachusetts site. daphne is a host at Chelmsford.

Delegation
Remember that one of the main goals of the design of the Domain Name System was
to decentralize administration? This is achieved through delegation. Delegating
domains works a lot like delegating tasks at work. A manager may break up a large
project into smaller tasks and delegate responsibility for each of these tasks to differ-
ent employees.

Likewise, an organization administering a domain can divide it into subdomains.
Each subdomain can be delegated to other organizations, which means that an orga-
nization becomes responsible for maintaining all the data in that subdomain. It can
freely change the data and even divide its subdomain into more subdomains and del-
egate those. The parent domain retains only pointers to sources of the subdomain’s
data, so that it can refer queriers there. The domain stanford.edu, for example, is del-
egated to the folks at Stanford who run the university’s networks (Figure 2-7).

Not all organizations delegate away their whole domain, just as not all managers dele-
gate all their work. A domain may have several delegated subdomains and contain
hosts that don’t belong in the subdomains. For example, the Acme Corporation (it
supplies a certain coyote with most of his gadgets), which has a division in Rockaway
and its headquarters in Kalamazoo, might have a rockaway.acme.com subdomain and

Figure 2-7. stanford.edu is delegated to Stanford University

managed by Stanford University

“ ”

edu org mil

stanford

mit cmu

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: How Does DNS Work?

a kalamazoo.acme.com subdomain. However, the few hosts in the Acme sales offices
scattered throughout the United States would fit better under acme.com than under
either subdomain.

We’ll explain how to create and delegate subdomains later. For now, it’s important
only that you understand that the term delegation refers to assigning responsibility
for a subdomain to another organization.

Nameservers and Zones
The programs that store information about the domain namespace are called
nameservers. Nameservers generally have complete information about some part of
the domain namespace, called a zone, which they load from a file or from another
nameserver. The nameserver is then said to have authority for that zone. Nameserv-
ers can be authoritative for multiple zones, too.

The difference between a zone and a domain is important, but subtle. All top-level
domains and many domains at the second level and lower, such as berkeley.edu and
hp.com, are broken into smaller, more manageable units by delegation. These units
are called zones. The edu domain, shown in Figure 2-8, is divided into many zones,
including the berkeley.edu zone, the purdue.edu zone, and the nwu.edu zone. At the
top of the domain, there’s also an edu zone. It’s natural that the folks who run edu
would break up the edu domain: otherwise, they’d have to manage the berkeley.edu
subdomain themselves. It makes much more sense to delegate berkeley.edu to Berke-
ley. What’s left for the folks who run edu? The edu zone, which contains mostly dele-
gation information for the subdomains of edu.

The berkeley.edu subdomain is, in turn, broken up into multiple zones by delega-
tion, as shown in Figure 2-9. There are delegated subdomains called cc, cs, ce, me,
and more. Each subdomain is delegated to a set of nameservers, some of which are
also authoritative for berkeley.edu. However, the zones are still separate and may
have totally different groups of authoritative nameservers.

A zone contains all the domain names the domain with the same domain name con-
tains, except for domain names in delegated subdomains. For example, the top-level
domain ca (for Canada) has subdomains called ab.ca, on.ca, and qc.ca, for the prov-
inces Alberta, Ontario, and Quebec. Authority for the ab.ca, on.ca, and qc.ca
domains may be delegated to nameservers in each province. The domain ca contains
all the data in ca plus all the data in ab.ca, on.ca, and qc.ca. However, the zone ca
contains only the data in ca (see Figure 2-10), which is probably mostly pointers to
the delegated subdomains. ab.ca, on.ca, and qc.ca are separate zones from the ca
zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Nameservers and Zones | 23

Figure 2-8. The edu domain broken into zones

Figure 2-9. The berkeley.edu domain broken into zones

com edu org

delegation

berkeley
nwu

purdue

“ ”

delegatio
n

berkeley.edu zone purdue.edu zone

edu zone

edu domain

edu

berkeley

“ ”

cc ce cs me

= delegation

berkeley.edu zone

cc.berkeley.edu
zone

ce.berkeley.edu
zone

cs.berkeley.edu
zone

me.berkeley.edu
zone

edu zone

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: How Does DNS Work?

The zone also contains the domain names and data in any subdomains that aren’t del-
egated away. For example, the bc.ca and sk.ca (British Columbia and Saskatchewan)
subdomains of the ca domain may exist but not be delegated. (Perhaps the provincial
authorities in British Columbia and Saskatchewan aren’t yet ready to manage their
subdomains, but the authorities running the top-level ca domain want to preserve the
consistency of the namespace and implement subdomains for all the Canadian prov-
inces right away.) In this case, the zone ca has a ragged bottom edge, containing bc.ca
and sk.ca but not the other ca subdomains, as shown in Figure 2-11.

Figure 2-10. The domain ca...

Figure 2-11. .. .versus the zone ca

“ ”

orgfr

ca zone

ca domain

ab.ca zone

on.ca zone

qc.ca zone

ca

ab on qc

ab on

ca zone

ca domain

qc

ca

skbc

ab.ca zone on.ca zone qc.ca zone

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Nameservers and Zones | 25

Now it’s clear why nameservers load zones instead of domains: a domain may con-
tain more information than the nameserver needs because it can contain data dele-
gated to other nameservers.* Since a zone is bounded by delegation, it will never
include delegated data.

If you’re just starting out, your domain probably won’t have any subdomains. In this
case, since there’s no delegation going on, your domain and your zone will contain
the same data.

Delegating Subdomains
Even though you may not need to delegate parts of your domain just yet, it’s helpful
to understand a little more about how the process of delegating a subdomain works.
Delegation, in the abstract, involves assigning responsibility for some part of your
domain to another organization. What really happens, however, is the assignment of
authority for a subdomain to different nameservers. (Note that we said “nameserv-
ers,” not just “nameserver.”)

Your zone’s data, instead of containing information in the subdomain you’ve dele-
gated, includes pointers to the nameservers that are authoritative for that subdo-
main. Now if one of your nameservers is asked for data in the subdomain, it can
reply with a list of the right nameservers to contact.

Types of Nameservers
The DNS specs define two types of nameservers: primary masters and secondary
masters. A primary master nameserver for a zone reads the data for the zone from a
file on its host. A secondary master nameserver for a zone gets the zone data from
another nameserver authoritative for the zone, called its master server. Quite often,
the master server is the zone’s primary master, but that’s not required: a secondary
master can load zone data from another secondary. When a secondary starts up, it
contacts its master nameserver and, if necessary, pulls the zone data over. This is
referred to as a zone transfer. Nowadays, the preferred term for a secondary master
nameserver is a slave, though many people (and some software, including
Microsoft’s DNS console) still use the old term.

Both the primary master and slave nameservers for a zone are authoritative for that
zone. Despite the somewhat disparaging name, slaves aren’t second-class nameserv-
ers. DNS provides these two types of nameservers to make administration easier.
Once you’ve created the data for your zone and set up a primary master nameserver,
you don’t need to copy that data from host to host to create new nameservers for the

* Imagine if a root nameserver loaded the root domain instead of the root zone: it would be loading the entire
namespace!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: How Does DNS Work?

zone. You simply set up slave nameservers that load their data from the primary mas-
ter for the zone. The slaves you set up will transfer new zone data when necessary.

Slave nameservers are important because it’s a good idea to set up more than one
authoritative nameserver for any given zone. You’ll want more than one for redun-
dancy, to spread the load around and to make sure that all the hosts in the zone have
a nameserver close by. Using slave nameservers makes this administratively workable.

Calling a particular nameserver a primary master nameserver or a slave nameserver is
a little imprecise, though. We mentioned earlier that a nameserver can be authorita-
tive for more than one zone. Similarly, a nameserver can be a primary master for one
zone and a slave for another. Most nameservers, however, are either primary for
most of the zones they load or slave for most of the zones they load. So if we call a
particular nameserver a primary or a slave, we mean that it’s the primary master or a
slave for most of the zones for which it’s authoritative.

Zone Datafiles
The files from which primary master nameservers load their zone data are called,
simply enough, zone datafiles. We often refer to them as datafiles. Slave nameservers
can also load their zone data from datafiles. Slaves are usually configured to back up
the zone data they transfer from a master nameserver to datafiles. If the slave is later
killed and restarted, it reads the backup datafiles first, then checks to see whether its
zone data is current. This both obviates the need to transfer the zone data if it hasn’t
changed and provides a source of the data if the master is down.

The datafiles contain resource records that describe the zone. The resource records
describe all the hosts in the zone and mark any delegation of subdomains. BIND also
allows special directives to include the contents of other datafiles in a zone datafile,
much like the #include statement in C programming.

Resolvers
Resolvers are the clients that access nameservers. Programs running on a host that
need information from the domain namespace use the resolver. The resolver handles:

• Querying a nameserver

• Interpreting responses (which may be resource records or an error)

• Returning the information to the programs that requested it

In BIND, the resolver is a set of library routines that is linked to programs such as ssh
and ftp. It’s not even a separate process. The resolver relies almost entirely on the
nameservers it queries: it has the smarts to put together a query, to send it and wait
for an answer, and to resend the query if it isn’t answered, but that’s about all. Most

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolution | 27

of the burden of finding an answer to the query is placed on the nameserver. The
DNS specs call this kind of resolver a stub resolver.

Other implementations of DNS have had smarter resolvers that could do more
sophisticated things that had more advanced capabilities, such as following referrals
to locate the nameservers authoritative for a particular zone.

Resolution
Nameservers are adept at retrieving data from the domain namespace. They have to
be, given the limited intelligence of most resolvers. Not only can they give you data
about zones for which they’re authoritative, they can also search through the domain
namespace to find data for which they’re not authoritative. This process is called
name resolution, or simply resolution.

Because the namespace is structured as an inverted tree, a nameserver needs only one
piece of information to find its way to any point in the tree: the domain names and
addresses of the root nameservers (is that more than one piece?). A nameserver can
issue a query to a root nameserver for any domain name in the domain namespace,
and the root nameserver will start the nameserver on its way.

Root Nameservers
The root nameservers know where the authoritative nameservers for each of the top-
level zones are. (In fact, some of the root nameservers are authoritative for some of the
generic top-level zones.) Given a query about any domain name, the root nameserv-
ers can at least provide the names and addresses of the nameservers that are authorita-
tive for the top-level zone the domain name ends in. In turn, the top-level nameservers
can provide the list of authoritative nameservers for the second-level zone that the
domain name ends in. Each nameserver queried either gives the querier information
about how to get “closer” to the answer it’s seeking or provides the answer itself. The
root nameservers are clearly important to resolution. Because they’re so important,
DNS provides mechanisms—such as caching, which we’ll discuss a little later—to
help offload the root nameservers. But in the absence of other information, resolution
has to start at the root nameservers. This makes the root nameservers crucial to the
operation of DNS; if all the Internet root nameservers were unreachable for an
extended period, all resolution on the Internet would fail. To protect against this, the
Internet has 13 root nameservers (as of this writing) spread across different parts of
the network.* One is on PSINet, a commercial Internet backbone; one is on the NASA
Science Internet; two are in Europe; and one is in Japan.

* In fact, the 13 “logical” root nameservers comprise many more physical nameservers. Most of the root serv-
ers are either load-balanced behind a single IP address, a “shared unicast” group of distributed nameservers
that use the same IP address, or some combination of the two.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: How Does DNS Work?

Being the focal point for so many queries keeps the roots busy; even with 13, the traf-
fic to each root nameserver is very high. A recent informal poll of root nameserver
administrators showed some roots receiving tens of thousands of queries per second.

Despite the load placed on root nameservers, resolution on the Internet works quite
well. Figure 2-12 shows the resolution process for the address of a real host in a real
domain, including how the process corresponds to traversing the domain namespace
tree.

The local nameserver queries a root nameserver for the address of girigiri.gbrmpa.gov.au
and is referred to the au nameservers. The local nameserver asks an au nameserver the
same question, and is referred to the gov.au nameservers. The gov.au nameserver refers
the local nameserver to the gbrmpa.gov.au nameservers. Finally, the local nameserver
asks a gbrmpa.gov.au nameserver for the address and gets the answer.

Figure 2-12. Resolution of girigiri.gbrmpa.gov.au on the Internet

nzau

gov edu

sa ips

“ ”
nameserver

au
nameserver

gov.au
nameserver

gbrmpa.gov.au
nameserver

query for address of
girigiri.gbrmpa.gov.au

namese
rver

referral to au
nameservers

referral to gov.au
nameservers

address of
girigiri.gbrmpa.gov.au

referral to gbrmpa.gov.au
nameservers

query for address of
girigiri.gbrmpa.gov.au

query for address of
girigiri.gbrmpa.gov.au

query for address of
girigiri.gbrmpa.gov.au

gbrmpa

“ ”

re
so

lve
r q

ue
ry

an
sw

er

sg

resolver

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolution | 29

Recursion
You may have noticed a big difference in the amount of work done by the nameserv-
ers in the previous example. Four nameservers simply returned the best answer they
already had—mostly referrals to other nameservers—to the queries they received.
They didn’t have to send their own queries to find the data requested. But one
nameserver—the one queried by the resolver—had to follow successive referrals
until it received an answer.

Why couldn’t the local nameserver simply have referred the resolver to another
nameserver? Because a stub resolver wouldn’t have had the intelligence to follow a
referral. And how did the nameserver know not to answer with a referral? Because
the resolver issued a recursive query. Queries come in two flavors, recursive and iter-
ative, also called nonrecursive. Recursive queries place most of the burden of resolu-
tion on a single nameserver. Recursion, or recursive resolution, is just a name for the
resolution process used by a nameserver when it receives recursive queries. As with
recursive algorithms in programming, the nameserver repeats the same basic process
(querying a remote nameserver and following any referrals) until it receives an
answer.

Iteration, or iterative resolution, on the other hand, refers to the resolution process
used by a nameserver when it receives iterative queries.

In recursion, a resolver sends a recursive query to a nameserver for information
about a particular domain name. The queried nameserver is then obliged to respond
with the requested data or with an error stating either that data of the requested type
doesn’t exist or that the domain name specified doesn’t exist.* The nameserver can’t
just refer the querier to a different nameserver, because the query was recursive.

If the queried nameserver isn’t authoritative for the data requested, it will have to
query other nameservers to find the answer. It could send recursive queries to those
nameservers, thereby obliging them to find the answer and return it (and passing the
buck), or it could send iterative queries and possibly be referred to other nameserv-
ers “closer” to the domain name it’s seeking. Current implementations are polite and
by default do the latter, following the referrals until an answer is found.†

A nameserver that receives a recursive query that it can’t answer itself will query the
“closest known” nameservers. The closest known nameservers are the servers
authoritative for the zone closest to the domain name being looked up. For exam-
ple, if the nameserver receives a recursive query for the address of the domain name
girigiri.gbrmpa.gov.au, it first checks whether it knows which nameservers are

* Most BIND nameservers can be configured to ignore or refuse recursive queries; see Chapter 11 for how to
do this and why you’d want to.

† The exception is a nameserver configured to forward all unresolved queries to a designated nameserver,
called a forwarder. See Chapter 10 for more information on using forwarders.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: How Does DNS Work?

authoritative for girigiri.gbrmpa.gov.au. If it does, it sends the query to one of them.
If not, it checks whether it knows the nameservers for gbrmpa.gov.au, and after that
gov.au, and then au. The default, where the check is guaranteed to stop, is the root
zone, because every nameserver knows the domain names and addresses of the root
nameservers.

Using the closest known nameservers ensures that the resolution process is as short
as possible. A berkeley.edu nameserver receiving a recursive query for the address of
waxwing.ce.berkeley.edu shouldn’t have to consult the root nameservers; it can sim-
ply follow delegation information directly to the ce.berkeley.edu nameservers. Like-
wise, a nameserver that has just looked up a domain name in ce.berkeley.edu
shouldn’t have to start resolution at the root to look up another ce.berkeley.edu (or
berkeley.edu) domain name; we’ll show how this works in the “Caching” section.

The nameserver that receives the recursive query always sends the same query that
the resolver sent it—for example, for the address of waxwing.ce.berkeley.edu. It never
sends explicit queries for the nameservers for ce.berkeley.edu or berkeley.edu, though
this information is also stored in the namespace. Sending explicit queries could cause
problems—for example, there may be no ce.berkeley.edu nameservers (that is, ce.ber-
keley.edu may be part of the berkeley.edu zone). Also, it’s always possible that an edu
or berkeley.edu nameserver would know waxwing.ce.berkeley.edu’s address. An
explicit query for the berkeley.edu or ce.berkeley.edu nameservers would miss this
information.

Iteration
Iterative resolution doesn’t require nearly as much work on the part of the queried
nameserver. In iterative resolution, a nameserver simply gives the best answer it
already knows back to the querier. No additional querying is required. The queried
nameserver consults its local data (including its cache, which we’ll talk about
shortly), looking for the data requested. If it doesn’t find the answer there, it finds
the names and addresses of the nameservers closest to the domain name in the query
in its local data and returns that as a referral to help the querier continue the resolu-
tion process. Note that the referral includes all nameservers listed in the local data;
it’s up to the querier to choose which one to query next.

Choosing Between Authoritative Nameservers
Some of the card-carrying Mensa members in our reading audience may be wonder-
ing how the nameserver that receives the recursive query chooses among the
nameservers authoritative for the zone. For example, we said that there are 13 root
nameservers on the Internet today. Does the nameserver simply query the one that
appears first in the referral? Does it choose randomly?

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolution | 31

BIND nameservers use a metric called roundtrip time, or RTT, to choose among
nameservers authoritative for the same zone. Roundtrip time is a measurement of
how long a remote nameserver takes to respond to queries. Each time a BIND
nameserver sends a query to a remote nameserver, it starts an internal stopwatch.
When it receives a response, it stops the stopwatch and makes a note of how long
that remote nameserver took to respond. When the nameserver must choose which
of a group of authoritative nameservers to query, it simply chooses the one with the
lowest roundtrip time.

Before a BIND nameserver has queried a nameserver, it gives it a random roundtrip
time value lower than any real-world value. This ensures that the BIND nameserver
queries all nameservers authoritative for a given zone in a random order before play-
ing favorites.

On the whole, this simple but elegant algorithm allows BIND nameservers to “lock
on” to the closest nameservers quickly and without the overhead of an out-of-band
mechanism to measure performance.

The Whole Enchilada
What this amounts to is a resolution process that, taken as a whole, looks like
Figure 2-13.

Figure 2-13. The resolution process

A

B

resolver

query

query

query

answer

C

D

Nameserver A receives a recursive
query from the resolver.

A sends an iterative query to B.

B refers A to other nameservers,
including C.

A sends an iterative query to C.

C refers A to other nameservers,
including D.

A sends an iterative query to D.

D answers.

A returns answer to resolver.

nameservers
1

2

3

4

5

6

7

8

1

2

5

4

3

6

7

8

query

answer

referral

referral

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: How Does DNS Work?

A resolver queries a local nameserver, which then sends iterative queries to a num-
ber of other nameservers in pursuit of an answer for the resolver. Each nameserver it
queries refers it to another nameserver that is authoritative for a zone further down
in the namespace and closer to the domain name sought. Finally, the local
nameserver queries the authoritative nameserver, which returns an answer. All the
while, the local nameserver uses each response it receives—whether a referral or the
answer—to update the RTT of the responding nameserver, which will help it decide
which nameservers to query to resolve domain names in the future.

Mapping Addresses to Names
One major piece of functionality missing from the resolution process as explained so
far is how addresses get mapped back to domain names. Address-to-name mapping
produces output that is easier for humans to read and interpret (in logfiles, for
instance). It’s also used in some authorization checks. Unix hosts map addresses to
domain names to compare against entries in .rhosts and hosts.equiv files, for exam-
ple. When using host tables, address-to-name mapping is trivial. It requires a
straightforward sequential search through the host table for an address. The search
returns the official hostname listed. In DNS, however, address-to-name mapping
isn’t so simple. Data, including addresses, in the domain namespace is indexed by
name. Given a domain name, finding an address is relatively easy. But finding the
domain name that maps to a given address would seem to require an exhaustive
search of the data attached to every domain name in the tree.

Actually, there’s a better solution that’s both clever and effective. Because it’s easy to
find data once you’re given the domain name that indexes that data, why not create a
part of the domain namespace that uses addresses as labels? In the Internet’s domain
namespace, this portion of the namespace is the in-addr.arpa domain.

Nodes in the in-addr.arpa domain are labeled with the numbers in the dotted-octet
representation of IP addresses. (Dotted-octet representation refers to the common
method of expressing 32-bit IP addresses as four numbers in the range 0 to 255, sep-
arated by dots.) The in-addr.arpa domain, for example, can have up to 256 subdo-
mains, one corresponding to each possible value in the first octet of an IP address.
Each subdomain can have up to 256 subdomains of its own, corresponding to the
possible values of the second octet. Finally, at the fourth level down, there are
resource records attached to the final octet giving the full domain name of the host at
that IP address. That makes for an awfully big domain: in-addr.arpa, shown in
Figure 2-14, is roomy enough for every IP address on the Internet.

Note that when read in a domain name, the IP address appears backward because
the name is read from leaf to root. For example, if winnie.corp.hp.com’s IP address is
15.16.192.152, the corresponding node in the in-addr.arpa domain is 152.192.16.15.
in-addr.arpa, which maps back to the domain name winnie.corp.hp.com.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolution | 33

IP addresses could have been represented the opposite way in the namespace, with
the first octet of the IP address at the bottom of the in-addr.arpa domain. That way,
the IP address would have read correctly (forward) in the domain name. IP addresses
are hierarchical, however, just like domain names. Network numbers are doled out
much as domain names are, and administrators can then subnet their address space
and further delegate numbering. The difference is that IP addresses get more specific
from left to right, while domain names get less specific from left to right. Figure 2-15
shows what we mean.

Making the first octets in the IP address appear highest in the tree enables administra-
tors to delegate authority for in-addr.arpa zones along network lines. For example, the
15.in-addr.arpa zone, which contains the reverse-mapping information for all hosts

Figure 2-14. The in-addr.arpa domain

Figure 2-15. Hierarchical names and addresses

IP address 15.16.192.152
arpa

hostname winnie.corp.hp.com

255

in-addr

0

“ ”

16
2550

15

2550

2550

192

152

most specific least specific

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: How Does DNS Work?

whose IP addresses start with 15, can be delegated to the administrators of network
15/8. This would be impossible if the octets appeared in the opposite order. If the IP
addresses were represented the other way around, 15.in-addr.arpa would consist of
every host whose IP address ended with 15—not a practical zone to try to delegate.

Caching
The whole resolution process may seem awfully convoluted and cumbersome to
someone accustomed to simple searches through the host table. Actually, though,
it’s usually quite fast. One of the features that speeds it up considerably is caching.

A nameserver processing a recursive query may have to send out quite a few queries
to find an answer. However, it discovers a lot of information about the domain
namespace as it does so. Each time it’s referred to another list of nameservers, it
learns that those nameservers are authoritative for some zone, and it learns the
addresses of those servers. At the end of the resolution process, when it finally finds
the data the original querier sought, it can store that data for future reference, too.
The BIND nameserver even implements negative caching: if a nameserver responds to
a query with an answer that says the domain name or data type in the query doesn’t
exist, the local nameserver will also temporarily cache that information.

Nameservers cache all this data to help speed up successive queries. The next time a
resolver queries the nameserver for data about a domain name the nameserver knows
something about, the process is shortened quite a bit. The nameserver may have
cached the answer, positive or negative, in which case it simply returns the answer to
the resolver. Even if it doesn’t have the answer cached, it may have learned the iden-
tities of the nameservers that are authoritative for the zone the domain name is in
and be able to query them directly.

For example, say our nameserver has already looked up the address of eecs.berke-
ley.edu. In the process, it cached the names and addresses of the eecs.berkeley.edu
and berkeley.edu nameservers (plus eecs.berkeley.edu’s IP address). Now if a
resolver were to query our nameserver for the address of baobab.cs.berkeley.edu,
our nameserver could skip querying the root nameservers. Recognizing that berke-
ley.edu is the closest ancestor of baobab.cs.berkeley.edu that it knows about, our
nameserver would start by querying a berkeley.edu nameserver, as shown in
Figure 2-16. On the other hand, if our nameserver discovered that there was no
address for eecs.berkeley.edu, the next time it received a query for the address, it
could simply respond appropriately from its cache.

In addition to speeding up resolution, caching obviates a nameserver’s need to query
the root nameservers to answer any queries it can’t answer locally. This means it’s not
as dependent on the roots, and the roots won’t suffer as much from all its queries.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Caching | 35

Time to Live
Nameservers can’t cache data forever, of course. If they did, changes to that data on
the authoritative nameservers would never reach the rest of the network; remote
nameservers would just continue to use cached data. Consequently, the administra-
tor of the zone that contains the data decides on a time to live (TTL) for the data. The
time to live is the amount of time that any nameserver is allowed to cache the data.
After the time to live expires, the nameserver must discard the cached data and get
new data from the authoritative nameservers. This also applies to negatively cached
data: a nameserver must time out a negative answer after a period in case new data
has been added on the authoritative nameservers.

Deciding on a time to live for your data is essentially deciding on a trade-off between
performance and consistency. A small TTL helps ensure that data in your zones is
consistent across the network, because remote nameservers will time it out more
quickly and be forced to query your authoritative nameservers more often for new
data. On the other hand, this increases the load on your nameservers and lengthens
the average resolution time for information in your zones.

Figure 2-16. Resolving baobab.cs.berkeley.edu

3 query

4
answer

1 2

query

referral

root nameservers

berkeley.edu
nameservers

cs.berkeley.edu
nameservers

query for baobab.cs.berkeley.edu’s address

referral to F & G

query for baobab.cs.berkeley.edu’s address

address of baobab.cs.berkeley.edu

F
G

A B
C

D

E
nameserver

1

2

3

4

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: How Does DNS Work?

A large TTL reduces the average time it takes to resolve information in your zones
because the data can be cached longer. The drawback is that your information will
be inconsistent longer if you make changes to the data on your nameservers.

But enough of this theory—you’re probably antsy to get on with things. There’s
some homework to do before you can set up your zones and nameservers, though,
and we’ll assign it in the next chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

37

Chapter 3 CHAPTER 3

Where Do I Start?3

“What do you call yourself?” the Fawn said at last.
Such a soft sweet voice it had!

“I wish I knew!” thought poor Alice. She answered,
rather sadly, “Nothing, just now.”

“Think again,” it said: “that won’t do.”
Alice thought, but nothing came of it. “Please, would
you tell me what you call yourself?” she said timidly.

“I think that might help a little.”
“I’ll tell you, if you come a little further on,” the Fawn

said. “I can’t remember here.”

Now that you understand the theory behind the Domain Name System, we can
attend to more practical matters. Before you set up your zones, you may need to get
the BIND software. Usually, it’s standard in most Unix-based operating systems.
Often, though, you’ll want to seek out a more recent version with all the latest func-
tionality and security enhancements.

Once you have BIND, you need to decide on a domain name for your main zone;
this may not be quite as easy as it sounds because it entails finding an appropriate
place in the Internet namespace. With that decided, you need to contact the adminis-
trators of the parent of the zone whose domain name you’ve chosen.

One thing at a time, though. Let’s talk about where to get BIND.

Getting BIND
If you plan to set up your own zones and run nameservers for them, you first need
the BIND software. Even if you plan to have someone else run the nameservers for
your zones, it’s helpful to have the software around. For example, you can use a local
nameserver to test your zone datafiles before giving them to your remote nameserver
administrator.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 3: Where Do I Start?

Most commercial Unix vendors ship BIND with the rest of their standard TCP/IP
networking software. And the networking software is usually included with the oper-
ating system, so you get BIND free. Even if the networking software is priced sepa-
rately, you’ve probably already bought it, since you clearly do enough networking to
need DNS, right?

If you don’t have a version of BIND for your flavor of Unix, though, or if you want
the latest, greatest version, you can always get the source code. As luck would have
it, it’s freely distributed. The source code for the most up-to-date versions of BIND
as of this writing (the BIND 8.4.7 and 9.3.2 releases) is available via anonymous FTP
from the Internet Software Consortium’s web site, ftp.isc.org, in /isc/bind/src/8.4.7/
bind-src.tar.gz and /isc/bind9/9.3.2/bind-9.3.2.tar.gz, respectively. Compiling these
releases on most common Unix platforms is relatively straightforward.* The ISC
includes a list of Unix-ish operating systems that BIND is known to compile on in
the file src/INSTALL (for BIND 8) and README (for BIND 9), including several ver-
sions of Linux, Unix, and even Windows. There’s also a list of other Unix-ish and
not-so-Unix-ish (MPE, anyone?) operating systems BIND has supported in the past,
most recent versions of BIND will probably compile on these systems without much
effort. Regardless of which category your operating system falls into, we strongly rec-
ommend reading all of the sections of the file that are relevant to your OS. In
Appendix C, we also include instructions for compiling BIND 8.4.7 and 9.3.2 on
Linux; it’s a remarkably short appendix.

Some of you may already have a version of BIND that came with your operating sys-
tem, but you’re wondering whether you need the latest, greatest version of BIND.
What does it have to offer that earlier versions of BIND don’t? Here’s an overview:

Security fixes
Arguably the most important reason to run the newest BIND is that only the
most recent versions are patched against most attacks, some of them widely
known. BIND 8.4.7 and BIND 9.3.2 are resistant to all well-known attacks. Ear-
lier versions of BIND have widely known vulnerabilities. Historically, BIND 9
has a much better security track record than BIND 8 (that is, significantly fewer
vulnerabilities have been found in BIND 9 nameservers).

If you’re running a nameserver on the Internet, we strongly recommend that you
run BIND 9.3.2, or at the very least BIND 8.4.7, or whatever the current released
version is as you read this.

Security features
BIND 8 and BIND 9 support access lists on queries, zone transfers, and dynamic
updates. BIND 9 also supports views, which allow you to run multiple, virtual

* Compiling early versions of BIND 9 (before 9.1.0) can be a little tricky because these versions require
pthreads and many OSes sport broken pthreads implementations. BIND 9.1.0 and later can be built without
pthreads by running configure --disable-threads.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Getting BIND | 39

nameserver configurations on a single nameserver. Certain nameservers, particu-
larly those running on bastion hosts or other security-critical hosts, may require
these features.

We cover these features in Chapter 11.

DNS UPDATE
BIND 8 and BIND 9 support the Dynamic Update standard described in RFC
2136. This allows authorized agents to update zone data by sending special
update messages to add or delete resource records. (Older versions of BIND
don’t support Dynamic Update.) BIND 9 supports finer-grained authorization of
dynamic updaters than BIND 8 does.

We cover Dynamic Update in Chapter 10.

Incremental zone transfer
Current versions of BIND 8 (such as 8.4.7) and BIND 9 support incremental
zone transfer, which allows slave nameservers to request just the changes to a
zone from their master servers. This makes zone transfers faster and more effi-
cient, and is particularly important for large, dynamic zones. In our experience,
BIND 9’s implementation is much more robust than BIND 8’s.

If, after reading through this list and checking the appendix, you’re convinced you
need BIND 8 or BIND 9’s features and neither a BIND 8 nor BIND 9 nameserver
comes with your operating system, download the source code and build your own.

Handy Mailing Lists and Usenet Newsgroups
Instructions on how to port BIND to every possible version of Unix could consume
another book this size, so we’ll have to refer you to the BIND users mailing list (bind-
users@isc.org) or the corresponding Usenet newsgroup (comp.protocols.dns.bind) for
further help.* The folks who read and contribute to the BIND users mailing lists can
be enormously helpful in your porting efforts. Before sending mail to the list asking
whether a particular port is available, be sure to check the searchable archive of the
mailing list at http://www.isc.org/index.pl?/ops/lists. Also, take a look at the ISC’s
BIND web page at http://www.isc.org/sw/bind for notes or links specific to your oper-
ating system.

Another mailing list you might be interested in is the namedroppers list. Folks on
the namedroppers mailing list are involved in the IETF working group that develops
extensions to the DNS specifications, DNSEXT. For example, the discussion of a

* To ask a question on an Internet mailing list, all you need to do is send a message to the mailing list’s address.
If you’d like to join the list, however, you have to send a message to the list’s maintainer first, requesting that
your electronic mail address be added to the list. Don’t send this request to the list itself; that’s considered
rude. The Internet convention is that you can reach the maintainer of a mailing list by sending mail to list-
request@domain, where list@domain is the address of the mailing list. So, for example, you can reach the
BIND users mailing list’s administrator by sending mail to bind-users-request@isc.org.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Where Do I Start?

new, proposed DNS record type would probably take place on namedroppers
instead of the BIND users mailing list. For more information on DNSEXT’s charter,
see http://www.ietf.org/html.charters/dnsext-charter.html.

The address for the namedroppers mailing list is namedroppers@ops.ietf.org. The list
is gatewayed into the Internet newsgroup comp.protocols.dns.std. To join the named-
roppers mailing list, send mail to namedroppers-request@ops.ietf.org with the text
“subscribe namedroppers” as the body of the message.

Finding IP Addresses
You’ll notice that we gave you a number of domain names of hosts that have ftpable
software, and the mailing lists we mentioned include domain names. This should
underscore the importance of DNS: see what valuable software and advice you can
get with the help of DNS? Unfortunately, it’s also something of a chicken-and-egg
problem: you can’t send email to an address with a domain name in it unless you’ve
got DNS set up, so how can you ask someone on the list how to set up DNS?

Well, we could give you the IP addresses for all the hosts we mentioned, but since IP
addresses change often (in publishing timescales, anyway), we’ll show you how you
can temporarily use someone else’s nameserver to find the information instead. As
long as your host has Internet connectivity and the nslookup program, you can
retrieve information from the Internet namespace.

To look up the IP address for ftp.isc.org, for example, you could use:

% nslookup ftp.isc.org. 207.69.188.185

This instructs nslookup to query the nameserver running on the host at the IP address
207.69.188.185 to find the IP address for ftp.isc.org, and should produce output like:

Server: ns1.mindspring.com
Address: 207.69.188.185

Name: ftp.isc.org
Address: 204.152.184.110

Now you can FTP to ftp.isc.org’s IP address, 204.152.184.110.

How did we know that the host at IP address 207.69.188.185 runs a nameserver?
Our ISP, Mindspring, told us—it’s one of their nameservers. If your ISP provides
nameservers for its customers’ use (and most do), use one of them. If your ISP
doesn’t provide nameservers (shame on them!), you can temporarily use one of the
nameservers listed in this book. As long as you use it only to look up a few IP
addresses or other data, the administrators probably won’t mind. It’s considered very
rude, however, to point your resolver or query tool at someone else’s nameserver
permanently.

Of course, if you already have access to a host with Internet connectivity and have
DNS configured, you can use it to ftp what you need.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 41

Once you have a working version of BIND, you’re ready to start thinking about your
domain name.

Choosing a Domain Name
Choosing a domain name is more involved than it may sound because it entails both
choosing a name and finding out who runs the parent zone. In other words, you need
to find out where you fit in the Internet domain namespace, then find out who runs
that particular corner of the namespace.

The first step in picking a domain name is finding where in the existing domain
namespace you belong. It’s easiest to start at the top and work your way down:
decide which top-level domain you belong in, then which of that top-level domain’s
subdomains you fit into.

Note that in order to find out what the Internet domain namespace looks like
(beyond what we’ve already told you), you’ll need access to the Internet. You don’t
need access to a host that already has name service configured, but it would help a
little. If you don’t have access to a host with DNS configured, you’ll have to “bor-
row” name service from other nameservers (as in our previous ftp.isc.org example) to
get you going.

On Registrars and Registries
Before we go any further, we need to define a few terms: registry, registrar, and regis-
tration. These terms aren’t defined anywhere in the DNS specs. Instead, they apply
to the way the Internet namespace is managed today.

A registry is an organization responsible for maintaining a top-level domain’s (well,
zone’s, really) datafiles, which contain the delegation to each subdomain of that top-
level domain. Under the current structure of the Internet, a given top-level domain
can have no more than one registry. A registrar acts as an interface between custom-
ers and registries, providing registration and value-added services. Once a customer
has chosen a subdomain of a top-level zone, the customer’s registrar submits to the
appropriate registry the zone data necessary to delegate that subdomain to the
nameservers the customer specified. The registries act, more or less, as wholesalers of
delegation in their top-level zone. The registrars then act as retailers, usually reselling
delegation in more than one registry.

Registration is the process by which a customer tells a registrar which nameservers to
delegate a subdomain to and provides the registrar with contact and billing informa-
tion. To give you some concrete examples of registries and registrars in the real
world, Public Interest Registry runs the org registry. VeriSign currently acts as the
registry for the com and net top-level domains. There are dozens of registrars for com,
net, and org, including GoDaddy.com, Register.com, and Network Solutions. An

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Where Do I Start?

organization called EDUCAUSE runs the registry and is the only registrar for edu.
But before we get too off-track, let’s get back to our story.

Where in the World Do I Fit?
If your organization is attached to the Internet outside of the United States, you first
need to decide whether you’d rather request a subdomain of one of the generic top-
level domains, such as com, net, and org, or a subdomain of your country’s top-level
domain. The generic top-level domains aren’t exclusively for U.S. organizations. If
your company is a multi- or transnational company that doesn’t fit in any one coun-
try’s top-level domain, or if you’d simply prefer a generic top-level to your country’s
top-level domain, you’re welcome to register in one. If you choose this route, skip to
the section “The generic top-level domains” later in this chapter.

If you opt for a subdomain under your country’s top level, you should check whether
your country’s top-level domain is registered and, if it is, what kind of structure it
has. Consult our list of the current top-level domains (Appendix D) if you’re not sure
what the name of your country’s top-level domain would be.

Some countries’ top-level domains, such as New Zealand’s nz, Australia’s au, and
the United Kingdom’s uk, are divided organizationally into second-level domains.
The names of their second-level domains, such as co or com for commercial entities,
reflect organizational affiliation. Others, like France’s fr domain and Denmark’s dk
domain, are divided into a multitude of subdomains managed by individual universi-
ties and companies, such as the University of St. Etienne’s domain, univ-st-etienne.fr,
and the Danish Unix Users Group’s dkuug.dk. Many top-level domains have their
own web sites that describe their structures. If you’re not sure of the URL for your
country’s top-level domain’s web site, start at http://www.allwhois.com, a directory of
links to such web sites.

If your country’s top-level domain doesn’t have a web site explaining how it’s orga-
nized, but you have some idea of which subdomain you belong in, you can use a DNS
query tool such as nslookup to find the email address of the technical contact for the
subdomain. (If you’re uncomfortable with our rushing headlong into nslookup with-
out giving it a proper introduction, you might want to skim Chapter 12.)

To find out whom to ask about a particular subdomain, you’ll have to look up the
corresponding zone’s start of authority (SOA) record. In each zone’s SOA record,
there’s a field that contains the electronic mail address of the zone’s technical con-
tact.* (The other fields in the SOA record provide general information about the
zone—we’ll discuss them in more detail later.)

* The subdomain and the zone have the same domain name, but the SOA record really belongs to the zone,
not the subdomain. The person at the zone’s technical contact email address may not manage the whole sub-
domain (there may be additional delegated subdomains beneath), but he should certainly know the purpose
of the subdomain.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 43

For example, if you’re curious about the purpose of the csiro.au subdomain, you can
find out who runs it by looking up csiro.au’s SOA record:

% nslookup - 207.69.188.185
> set type=soa Look for start of authority data
> csiro.au. for csiro.au
Server: ns1.mindspring.com
Address: 207.69.188.185#53

csiro.au
 origin = zas.csiro.au
 mail addr = hostmaster.csiro.au
 serial = 2005072001
 refresh = 10800
 retry = 3600
 expire = 3600000
 minimum ttl = 3600
> exit

The mail addr field is the Internet address of csiro.au’s contact. To convert the
address into Internet email address format, change the first “.” in the address to an
“@”. So hostmaster.csiro.au becomes hostmaster@csiro.au.*

whois

The whois service can also help you figure out the purpose of a given domain. Unfor-
tunately, there are many whois servers—most good administrators of top-level
domains run one—and they don’t talk to each other like nameservers do. Conse-
quently, the first step to using whois is finding the right whois server.

One of the easiest places to start your search for the right whois server is at http://
www.allwhois.com (Figure 3-1). We mentioned earlier that this site has a list of the
web sites for each country code’s top-level domain; it also sports a unified whois
search facility.

Say you were wondering what a particular subdomain of jp was for. You can click on
“Japan (jp)” in the list of registries at the bottom of http://www.allwhois.com/ and
jump directly to a web page that lets you query the right whois server, as shown in
Figure 3-2.

Obviously, this is a useful web site if you’re looking for information about a domain
outside the United States.

* This form of Internet mail address is a vestige of two former DNS records, MB and MG. MB (mailbox) and
MG (mail group) were supposed to be DNS records specifying Internet mailboxes and mail groups (mailing
lists) as subdomains of the appropriate domain. MB and MG never took off, but the address format they
would have dictated is used in the SOA record, maybe for sentimental reasons.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Where Do I Start?

Once you’ve found the right web site or the right contact, you’ve probably found the
registrar. Outside the United States, most domains have a single registrar. A few,
though, such as Denmark’s dk and Great Britain’s co.uk and org.uk, have multiple
registrars. However, most registries’ web sites contain links to their registrars, so you
can use the registry’s web site as a starting point.

Back in the U.S.A.
In true cosmopolitan spirit, we covered international domains first. But what if
you’re from the good ol’ U.S. of A.?

Figure 3-1. The www.allwhois.com web site

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 45

If you’re in the United States, where you belong depends mainly on what your orga-
nization does and how you’d like your domain names to look. If your organization
falls into one of the following categories, you may want to consider joining us:

• K–12 (kindergarten through 12th grade) schools

• Community colleges and technical vocational schools

• State and local government agencies

That’s because these organizations have historically registered under us, according to
the namespace design documented in RFC 1480. In that design, a high school, for
example, would register under k12.<state>.us, where <state> is the two-letter postal
abbreviation for the state in which the school is located. A city government would
register under ci.<state>.us, and a county government under co.<state>.us.

Figure 3-2. Web interface to the jp whois server

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Where Do I Start?

However, even these organizations don’t need to follow this rigid structure. Many K–12
schools, community colleges, and government agencies register subdomains of org or
even com. The registry that runs us has relaxed the restrictions placed on us registrants,
too: now you can register in either the locality space (<state>.us) or the expanded space.
In the expanded space, you could register (for example) acme.us rather than acme.co.us.

Many people, however, prefer the better-known generic top-level domains. For infor-
mation on registering in one of those, read on.

The generic top-level domains

As we said, there are many reasons why you might want to ask for a subdomain of
one of the generic top-level domains, such as com, net, and org: you work for a multi-
or transnational company, you like the fact that they’re better-known, or you just
prefer the sound of your domain name with “com” on the end. Let’s go through a
short example of choosing a domain name under a generic top-level domain.

Imagine you’re the network administrator for a think tank in Hopkins, Minnesota.
You’ve just gotten a connection to the Internet through a commercial ISP. Your com-
pany has never had so much as a dialup link, so you’re not currently registered in the
Internet namespace.

Since you’re in the United States, you have the choice of joining either us or one of
the generic top-level domains. Your think tank is world-renowned, though, so you
feel us wouldn’t be a good choice. A subdomain of a generic top-level domain would
be best.

But which one? As of this writing, there are five open to anyone:

biz
A new generic top-level domain

com
The original generic top-level domain, and the best known

info
A new generic top-level domain

net
Originally used by networking organizations, but now open to anyone

org
Originally used by nonprofit and other noncommercial organizations, but now
open to anyone

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 47

The think tank is known as The Gizmonic Institute, so you decide gizmonics.com
might be an appropriate domain name. Now you’ve got to check whether the name
gizmonics.com has been taken by anyone, so you use an account you have at UMN:

% nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any Look for any records
> gizmonics.com. for gizmonics.com
Server: ns.unet.umn.edu
Address: 128.101.101.101

gizmonics.com nameserver = ns1.11l.net
gizmonics.com nameserver = ns2.11l.net

Whoops! Look like gizmonics.com is already taken (who would have thought?) Well,
gizmonic-institute.com is a little longer, but still intuitive:*

% nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any Look for any records
> gizmonic-institute.com. for gizmonic-institute.com
Server: ns.unet.umn.edu
Address: 128.101.101.101

*** ns.unet.umn.edu can't find gizmonic-institute.com.: Non-existent host/domain

gizmonic-institute.com is free, so you can go on to the next step: picking a registrar.

Choosing a registrar

Choose a registrar? Welcome to the brave new world of competition! Before the
spring of 1999, a single company, Network Solutions, Inc., was both the registry and
sole registrar for com, net, and org, as well as edu. To register a subdomain of any of
these generic top-level domains, you had to go to Network Solutions.

In June 1999, ICANN, the organization that manages the domain namespace (we
mentioned ICANN in the last chapter) introduced competition to the registrar func-
tion of com, net, and org. There are now dozens of com, net, and org registrars from
which you can choose. For more information, check out the InterNIC site (operated
by ICANN) at http://www.internic.net/regist.html.

* If you’re having a hard time figuring out a good domain name, many registrars’ web sites provide suggestions
for free. For example, www.nameboy.com recommends various combinations of “gizmonic” and “institute,”
even using rhyming words.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Where Do I Start?

We won’t presume to tell you how to pick a registrar, but take a look at the price of
registration, the registrar’s reputation for customer service, and any other services the
registrar provides that interest you. See if you can get a nice package deal on registra-
tion and aluminum siding, for example.

Checking That Your Network Is Registered
Before proceeding, you should check whether your IP network or networks are regis-
tered. Some registrars won’t delegate a subdomain to nameservers on unregistered
networks, and network registries (we’ll talk about them shortly) won’t delegate an
in-addr.arpa zone that corresponds to an unregistered network.

An IP network defines a range of IP addresses. For example, the network 15/8 is
made up of all IP addresses in the range 15.0.0.0 to 15.255.255.255. The network
199.10.25/24 starts at 199.10.25.0 and ends at 199.10.25.255.

The InterNIC, now operated by ICANN, was once the official source of all IP net-
works; they assigned all IP networks to Internet-connected networks and made sure
no two address ranges overlapped. Nowadays, the InterNIC’s old role has been
largely assumed by Internet service providers (ISPs), who allocate space from their
own networks for customers to use. If you know your network came from your ISP,
the larger network from which your network was carved is probably registered (to

What About Non-ASCII Characters?
Some registrars now permit you to register domain names that contain non-ASCII
characters, including accented characters from European languages. These are referred
to as internationalized domain names. This may look like a tempting option, particu-
larly if you work for, say, Nestlé. Is it really worthwhile?

Generally speaking, no. While you can register domain names that include these char-
acters, there’s almost no software out there that will actually look them up. If a user
types an accented character into a web browser, chances are—today, anyway—that he
won’t get to the right place.

There’s a standard for encoding these characters in domain names, which we’ll discuss
in Chapter 17. But as of this writing, the most popular web browser, Internet Explorer,
and most email software don’t support it.a The registrars that permit registration of
internationalized domain names do, and will gratefully accept your money and register
your encoded internationalized domain name, but almost no one will be able to look
it up. Until support for internationalized domain names is widespread, about the only
purpose of registering such names serves is to protect your tradename.

a. Microsoft has said that IE 7.0 will support internationalized domain names.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 49

your ISP). You may still want to double-check that your ISP took care of registering
its network, but you don’t have to (and probably can’t) do anything yourself, except
nag your ISP if it didn’t register their network. Once you’ve verified its registration,
you can skip the rest of this section and move on.

It’s not necessary to register RFC 1918 address space (e.g., the net-
works 10/8, 192.168/16). In fact, you can’t because these networks are
used by so many different organizations.

A Sidebar on CIDR
Once upon a time, when we wrote the first edition of this book, the Internet’s 32-bit
address space was divided into three main classes of networks: Class A, Class B, and
Class C. Class A networks were networks in which the first octet (the first eight bits)
of the IP address identified the network, and the remaining bits were used by the orga-
nization that was assigned the network to differentiate hosts on the network. Most
organizations with Class A networks also subdivided their networks into subnetworks,
or subnets, adding another level of hierarchy to the addressing scheme. Class B net-
works devoted two octets to the network identifier and two to the host; Class C net-
works gave three octets to the network identifier and one to the host.

Unfortunately, this small/medium/large system of networks didn’t work well for
everyone. Many organizations were large enough to require more than a Class C net-
work, which could accommodate at most 254 hosts, but too small to warrant a full
Class B network, which could serve 65,534 hosts. Many of these organizations were
allocated Class B networks anyway. Consequently, Class B networks quickly became
scarce.

To help solve this problem and create networks that were just the right size for all sorts
of organizations, Classless Inter-Domain Routing, or CIDR (pronounced “cider”), was
developed. As the name implies, CIDR does away with the old Class A, Class B, and
Class C network designations. Instead of allocating one, two, or three octets to the net-
work identifier, the allocator could assign any number of contiguous bits of the IP
address to the network identifier. So, for example, if an organization needed an address
space roughly four times as large as a Class B network, the powers-that-be could assign
it a network identifier of 14 bits, leaving 18 bits (four Class Bs’ worth) of space to use.

Naturally, the advent of CIDR made the “classful” terminology outdated—although
it’s still used a good deal in casual conversation. Now, to designate a particular CIDR
network, we specify the particular high-order bit value assigned to an organization,
expressed in dotted octet notation, and how many bits identify the network. The two
terms are separated by a slash. So 15/8 is the old, Class A-sized network that begins
with the eight-bit pattern 00001111. The old, Class B-sized network 128.32.0.0 is now
128.32/16. And the network 192.168.0.128/25 consists of the 128 IP addresses from
192.168.0.128 to 192.168.0.255.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Where Do I Start?

If your network was assigned by the InterNIC, way back when, or you are an ISP, you
should check to see whether your network is registered. Where do you go to check
whether your network is registered? Why, to the same organizations that register net-
works, of course. Each of these organizations, called regional Internet registries, or
RIRs, handle network registration in some part of the world. In North America, the
American Registry of Internet Numbers (ARIN; http://www.arin.net) hands out IP
address space and registers networks. In Asia and the Pacific, the Asia Pacific Net-
work Information Center (APNIC; http://www.apnic.net) serves the same function. In
Europe, it’s the RIPE Network Coordination Centre (http://www.ripe.net). And Latin
America and the Caribbean are served by the Latin America and Caribbean Internet
Addresses Registry (LACNIC; www.lacnic.net). Each RIR may also delegate registra-
tion authority for a region; for example, LACNIC delegates registration authority for
Mexico and Brazil to registries in those countries. Be sure to check for a network reg-
istry local to your country.

If you’re not sure your network is registered, the best way to find out is to use the
whois services provided by the various network registries to look for your network.
Here are the URLs for each registry’s whois web page:

ARIN
http://www.arin.net/whois/index.html

APNIC
http://www.apnic.net/search/index.html

RIPE
http://www.ripe.net/perl/whois/

LACNIC
http://lacnic.net/cgi-bin/lacnic/whois?lg=EN

If you find your network isn’t registered, you need to get it registered before setting up
your in-addr.arpa zones. Each registry has a different process for registering networks,
but most involve money changing hands (from your hands to theirs, unfortunately).

You may find out that your network is already assigned to your ISP. If this is the
case, you don’t need to register independently with the RIR.

Once all your Internet-connected hosts are on registered networks, you can register
your zones.

Registering Your Zones
Different registrars have different registration policies and procedures, but most, at
this point, handle registration online, through their web sites. Since you found or
chose your registrar earlier in the chapter, we’ll assume you know which web site to
use.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Domain Name | 51

The registrar will need to know the domain names and addresses of your nameserv-
ers and enough information about you to send a bill or charge your credit card. If
you’re not connected to the Internet, give the registrar the IP addresses of the Inter-
net hosts that will act as your nameservers. Some registrars require that you already
have operational nameservers for your zone. (Those that don’t may ask for an esti-
mate of when the nameservers will be fully operational.) If that’s the case with your
registrar, skip ahead to Chapter 4 and set up your nameservers. Then contact your
registrar with the requisite information.

Most registrars will also ask for some information about your organization, includ-
ing an administrative contact and a technical contact for your zone (who can be the
same person). If your contacts aren’t already registered in the registrar’s whois data-
base, you’ll also need to provide information to register them in whois. This includes
their names, surface mail addresses, phone numbers, and electronic mail addresses.
If they are already registered in whois, just specify their whois handles (unique alpha-
numeric IDs) in the registration.

There’s one more aspect of registering a new zone that we should mention: cost.
Most registrars are commercial enterprises and charge money for registering domain
names. Network Solutions, the original registrar for com, net, and org, charges $35
per year to register subdomains under the generic top-level domains. (If you already
have a subdomain under com, net, or org and haven’t received a bill from Network
Solutions recently, it’d be a good idea to check your contact information with whois
to make sure they have a current address and phone number for you.)

If you’re directly connected to the Internet, you should also have the in-addr.arpa
zones corresponding to your IP networks delegated to you.* For example, if your com-
pany was allocated the network 192.201.44/24, you should manage the 44.201.192.in-
addr.arpa zone. This will let you control the IP address-to-name mappings for hosts on
your network. Chapter 4 also explains how to set up your in-addr.arpa zones.

In the section “Checking That Your Network Is Registered,” we asked you to find
the answers to several questions: is your network a slice of an ISP’s network? Is your
network, or the ISP’s network that your network is part of, registered? If so, in which
RIR? You’ll need these answers to get your in-addr.arpa zones.

If your network is part of a larger network registered to an ISP, you should contact the
ISP to have the appropriate subdomains of its in-addr.arpa zone delegated to you. Each
ISP uses a different process for setting up in-addr.arpa delegation. Your ISP’s web page
is a good place to research that process. If you can’t find the information there, try
looking up the SOA record for the in-addr.arpa zone that corresponds to your ISP’s
network. For example, if your network is part of UUNET’s 153.35/16 network, you

* For information on IPv6 reverse-mapping, see Chapter 11.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Where Do I Start?

could look up the SOA record of 35.153.in-addr.arpa to find the email address of the
technical contact for the zone.

If your network is registered directly with one of the regional Internet registries, con-
tact it to get your in-addr.arpa zone registered. Each network registry makes informa-
tion on its delegation process available on its web site.

Now that you’ve registered your zones, you’d better take some time to get your
house in order. You have some nameservers to set up, and in the next chapter, we’ll
show you how.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

53

Chapter 4 CHAPTER 4

Setting Up BIND4

“It seems very pretty,” she said when she had finished
it, “but it’s rather hard to understand!” (You see she

didn’t like to confess, even to herself, that she couldn’t
make it out at all.) “Somehow it seems to fill my head

with ideas—only I don’t exactly know what they are!”

If you have been diligently reading each chapter of this book, you’re probably anx-
ious to get a nameserver running. This chapter is for you. Let’s set up a couple of
nameservers. Others of you may have read the table of contents and skipped directly
to this chapter. (Shame on you!) If you are one of those people, be aware that we
may use concepts from earlier chapters and expect you to understand them already.

There are several factors that influence how you should set up your nameservers.
The biggest is what sort of access you have to the Internet: complete access (e.g., you
can FTP to ftp.rs.internic.net), limited access (restricted by a security firewall), or no
access at all. This chapter assumes you have complete access. We’ll discuss the other
cases in Chapter 11.

In this chapter, we set up two nameservers for a few fictitious zones as an example
for you to follow in setting up your own zones. We cover the topics in this chapter in
enough detail to get your first two nameservers running. Subsequent chapters fill in
the holes and go into greater depth. If you already have your nameservers running,
skim through this chapter to familiarize yourself with the terms we use or just to ver-
ify that you didn’t miss something when you set up your servers.

Our Zone
Our fictitious zone serves a college. Movie University studies all aspects of the film
industry and researches novel ways to (legally) distribute films. One of our most
promising projects involves research into using IP as a film distribution medium. After
visiting our registrar’s web site, we have decided on the domain name movie.edu. A
recent grant has enabled us to connect to the Internet.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 4: Setting Up BIND

Movie U. currently has two Ethernets, and we have plans to add another network or
two. The Ethernets have network numbers 192.249.249/24 and 192.253.253/24. A
portion of our host table contains the following entries:

127.0.0.1 localhost

These are our main machines

192.249.249.2 shrek.movie.edu shrek
192.249.249.3 toystory.movie.edu toystory toys
192.249.249.4 monsters-inc.movie.edu monsters-inc mi

These machines are in horror(ible) shape and will be replaced
soon.

192.253.253.2 misery.movie.edu misery
192.253.253.3 shining.movie.edu shining
192.253.253.4 carrie.movie.edu carrie

A wormhole is a fictitious phenomenon that instantly transports
space travelers over long distances and is not known to be
stable. The only difference between wormholes and routers is
that routers don't transport packets as instantly--especially
ours.

192.249.249.1 wormhole.movie.edu wormhole wh wh249
192.253.253.1 wormhole.movie.edu wormhole wh wh253

And the network is pictured in Figure 4-1.

Setting Up Zone Data
Our first step in setting up the Movie U. nameservers is to translate the host table
into equivalent DNS zone data. The DNS version of the data has multiple files. One
file maps all the hostnames to addresses. Other files map the addresses back to host-
names. The name-to-address lookup is sometimes called forward mapping, and the
address-to-name lookup, reverse mapping. Each network has its own file for reverse-
mapping data.

As a convention in this book, a file that maps hostnames to addresses is called db.
DOMAIN. For movie.edu, this file is called db.movie.edu. The files mapping
addresses to hostnames are called db.ADDR, where ADDR is the network number
without trailing zeros or the specification of a netmask. In our example, the files are
called db.192.249.249 and db.192.253.253; there’s one for each network. (The db is
short for database.) We’ll refer to the collection of db.DOMAIN and db.ADDR files
as zone datafiles. There are a few other zone datafiles: db.cache and db.127.0.0. These

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up Zone Data | 55

files are overhead. Each nameserver must have them, and they are more or less the
same for each server.

To tie all the zone datafiles together, a nameserver needs a configuration file; for
BIND versions 8 and 9, it is usually called named.conf. The format of the zone data-
files is common to all DNS implementations: it’s called the master file format. The
format of the configuration files, on the other hand, is specific to the nameserver
implementation—in this case, BIND.

The Zone Datafiles
Most entries in zone datafiles are called DNS resource records. DNS lookups are case-
insensitive, so you can enter names in your zone datafiles in uppercase, lowercase, or
mixed case. We tend to use all lowercase. However, even though lookups are case-
insensitive, case is preserved. That way, if you add records for Titanic.movie.edu to
your zone data, people looking up titanic.movie.edu will find the records, but with a
capital “T” in the domain name.

Resource records must start in the first column of a line. The resource records in the
example files in this book do start in the first column, but they may look indented
because of the way the book is formatted. In the DNS RFCs, the examples present
the resource records in a certain order. Most people have chosen to follow that

Figure 4-1. The Movie University network

carrie

monsters-inc

shining

toystory

wormhole

network 192.253.253

network 192.249.249

misery

shrek

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 4: Setting Up BIND

order, as we have here, but the order is not a requirement. The order of resource
records in the zone datafiles is as follows:

SOA record
Indicates authority for this zone

NS record
Lists a nameserver for this zone

Other records
Data about hosts in this zone

Of the other records, this chapter covers:

A
Name-to-address mapping

PTR
Address-to-name mapping

CNAME
Canonical name (for aliases)

Those of you who have some experience with the master file format will no doubt
look at our data and say to yourselves, “It would have been shorter to specify it this
other way....” We’re not using abbreviations or shortcuts in our zone data, at least
not initially, so that you’ll understand the full syntax of each resource record. Once
you understand the long version, we’ll go back and “tighten up” the files.

Comments
The zone datafiles are easier to read if they contain comments and blank lines. Com-
ments start with a semicolon and finish at the end of the line. As you might guess,
the nameserver ignores comments and blank lines.

Setting the Zone’s Default TTL
Before we start writing our zone datafile, we have to find out what version of BIND
we’re running. (To find out your version, use named –v. If yours doesn’t recognize –v,
it’s probably older than BIND 8.2.) The version makes a difference because how you
set the default time to live for a zone changed in BIND 8.2. Prior to BIND 8.2, the last
field in the SOA record set the default TTL for a zone. But just before BIND 8.2 came
out, RFC 2308 was published, which changed the meaning of the final field in the
SOA record to the negative caching TTL. This is how long a remote nameserver can
cache negative responses about the zone, answers that say that a particular domain
name or the type of data sought for a particular domain name doesn’t exist.

So how do you set a default TTL for a zone in BIND 8.2 and later? With the new
$TTL control statement. $TTL specifies the time to live for all records in the file that

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up Zone Data | 57

follow the statement (but precede any other $TTL statements) and don’t have an
explicit TTL.

The nameserver supplies this TTL in query responses, allowing other servers to
cache the data for the TTL interval. If your data doesn’t change much, you might
consider using a default TTL of several days. One week is about the longest value
that makes sense. You can use a value as short as a few minutes, but we don’t recom-
mend a TTL of zero because of the amount of DNS traffic it causes.

Since we’re running a new version of BIND, we need to set a default TTL for our
zones with a $TTL statement. Three hours seems about right to us, so we start our
zone datafiles with:

$TTL 3h

If you’re running a nameserver older than BIND 8.2, don’t try adding a $TTL state-
ment: the nameserver won’t understand it and will treat it as a syntax error.

SOA Records
The next entry in each of these files is the start of authority resource record. The
SOA record indicates that this nameserver is the best source of information for the
data within this zone. Our nameserver is authoritative for the zone movie.edu because
of the SOA record. An SOA record is required in each db.DOMAIN and db.ADDR
file. There can be one, and only one, SOA record in a zone datafile.

We added the following SOA record to the db.movie.edu file:

movie.edu. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

The name movie.edu. must start in the first column of the file. Make sure the name
ends with a trailing dot, as ours does here, or you’ll be surprised at the result! (We’ll
explain later in this chapter.)

The IN stands for Internet. This is one class of data; other classes exist, but none of
them is currently in widespread use. Our examples use only the IN class. The class
field is optional. If the class is omitted, the nameserver determines the class from the
statement in the configuration file that instructs it to read this file. We’ll cover this
later in the chapter, too.

The first name after SOA (toystory.movie.edu.) is the name of the primary nameserver
for the movie.edu zone. The second name (al.movie.edu.) is the mail address of the
person in charge of the zone if you replace the first “.” with an “@”. Often you’ll see
root, postmaster, or hostmaster as the email address. Nameservers won’t use this
address; it’s meant for human consumption. If you have a problem with a zone, you

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 4: Setting Up BIND

can send a message to the listed email address. BIND provides another resource
record type, RP (responsible person), for this purpose, too. The RP record is dis-
cussed in Chapter 7.

The parentheses allow the SOA record to span more than one line. Most of the fields
within the parentheses of the SOA record are for use by slave nameservers and are
discussed when we introduce slave nameservers later in this chapter. For now,
assume these are reasonable values.

We add similar SOA records to the beginning of the db.192.249.249 and db.192.253.
253 files. In these files, we change the first name in the SOA record from movie.edu.
to the name of the appropriate in-addr.arpa zone: 249.249.192.in-addr.arpa. and
253.253.192.in-addr.arpa., respectively.

NS Records
The next entries we add to each file are NS (nameserver) resource records. We add
one NS record for each nameserver authoritative for our zone. Here are the NS
records from the db.movie.edu file:

movie.edu. IN NS toystory.movie.edu.
movie.edu. IN NS wormhole.movie.edu.

These records indicate that there are two nameservers for the zone movie.edu. The
nameservers are on the hosts toystory.movie.edu and wormhole.movie.edu. Multi-
homed hosts, such as wormhole.movie.edu, are excellent choices for nameservers
because they are well-connected; in other words, they are directly accessible by hosts
on more than one network and are closely monitored. We’ll cover more on where to
place your nameservers in Chapter 8.

As with the SOA record, we add NS records to the db.192.249.249 and db.192.253.253
files, too.

Address and Alias Records
Next, we create the name-to-address mappings. We add the following resource
records to the db.movie.edu file:

;
; Host addresses
;
localhost.movie.edu. IN A 127.0.0.1
shrek.movie.edu. IN A 192.249.249.2
toystory.movie.edu. IN A 192.249.249.3
monsters-inc.movie.edu. IN A 192.249.249.4
misery.movie.edu. IN A 192.253.253.2
shining.movie.edu. IN A 192.253.253.3
carrie.movie.edu. IN A 192.253.253.4
;
; Multi-homed hosts
;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up Zone Data | 59

wormhole.movie.edu. IN A 192.249.249.1
wormhole.movie.edu. IN A 192.253.253.1
;
; Aliases
;
toys.movie.edu. IN CNAME toystory.movie.edu.
mi.movie.edu. IN CNAME monsters-inc.movie.edu.
wh.movie.edu. IN CNAME wormhole.movie.edu.
wh249.movie.edu. IN A 192.249.249.1
wh253.movie.edu. IN A 192.253.253.1

The first two blocks are probably not a surprise. The A stands for address, and each
resource record maps a name to an address. wormhole.movie.edu is a multihomed
host. It has two addresses associated with its name and therefore two address
records. Unlike host-table lookups, a DNS lookup can return more than one address
for a name; a lookup of wormhole.movie.edu returns two. If the requestor and
nameserver are on the same network, some nameservers place the “closest” address
first in the response for better performance. This feature is called address sorting and
is covered in Chapter 10. If address sorting does not apply, the addresses are rotated
between queries so subsequent responses list them in a different order. This feature
is called round robin and is also covered in more detail in Chapter 10.

The third block has the host-table aliases. For the first three aliases, we created
CNAME (canonical name) resource records. However, we created address records
for the other two aliases (more on this in a moment). A CNAME record maps an
alias to its canonical name. The nameserver handles CNAME records differently
from the way aliases are handled in the host table. When a nameserver looks up a
name and finds a CNAME record, it replaces the name with the canonical name and
looks up the new name. For example, when the nameserver looks up wh.movie.edu,
it finds a CNAME record pointing to wormhole.movie.edu. It then looks up worm-
hole.movie.edu and returns both addresses.

There is one thing to remember about aliases like toys.movie.edu: they should never
appear on the right side of a resource record. Stated differently, you should always
use the canonical name (e.g., toystory.movie.edu) in the data portion of the resource
record. Notice that the NS records we just created use the canonical name.

The final two entries solve a special problem. Suppose you have a multihomed host,
such as wormhole.movie.edu, and you want to check one of the interfaces. One com-
mon troubleshooting technique is to ping the interface to verify that it is responding.
If you ping the name wormhole.movie.edu, the nameserver returns both addresses for
the name. ping uses the first address in the list. But which address is first?

With the host table, we choose the address we want by using either wh249.movie.edu or
wh253.movie.edu; each name refers to one of the host’s addresses. To provide an equiva-
lent capability with DNS, we don’t make wh249.movie.edu and wh253.movie.edu into
aliases (CNAME records). That results in both addresses for wormhole.movie.edu being
returned when the alias is looked up. Instead, we use address records. Now, to check

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 4: Setting Up BIND

the operation of the 192.253.253.1 interface on wormhole.movie.edu, we ping wh253.
movie.edu because it refers to only one address. The same applies to wh249.movie.edu.

To state this as a general rule: if a host is multihomed (has more than one network
interface), create an address (A) record for each alias unique to one address and then
create a CNAME record for each alias common to all the addresses.

Now, don’t tell your users about names like wh249.movie.edu and wh253.movie.edu.
Those names are meant for system-administration purposes only. If users learn to use
names such as wh249.movie.edu, they’ll be confused when the name doesn’t work for
them in such places as .rhosts files. That’s because these places need the name that
results from looking up the address: the canonical name, wormhole.movie.edu.

Since we use A (address) records for the wh249.movie.edu and wh253.movie.edu
aliases, you might ask, “Is it okay to use address records instead of CNAME records
in all cases?” Well, using address records instead of CNAME records doesn’t cause
problems with most applications because most applications care only about finding
IP addresses. There is one application—sendmail—whose behavior changes, though.
sendmail usually replaces aliases in mail headers with their canonical names; this
canonicalization happens only if the names in the mail header have CNAME data
associated with them. If you don’t use CNAME records for aliases, your sendmail
will have to understand all the possible aliases your host might be known by, which
will require extra sendmail configuration on your part.

In addition to the problem with sendmail, users might be confused when they try to
figure out the canonical name to enter in their .rhosts file. Looking up a name that has
CNAME data leads them to the canonical name, whereas address data won’t. In this
case, users should instead be looking up the IP address to get the canonical name, as
rlogind does, but users like these never seem to be on systems we administer.

PTR Records
Next, we create the address-to-name mappings. The file db.192.249.249 maps addresses
to hostnames for the 192.249.249/24 network. The DNS resource records used for this
mapping are PTR (pointer) records. There is one record for each network interface on
this network. (Recall that addresses are looked up as names in DNS. The address is
reversed and in-addr.arpa is appended.)

Here are the PTR records we added for network 192.249.249/24:

1.249.249.192.in-addr.arpa. IN PTR wormhole.movie.edu.
2.249.249.192.in-addr.arpa. IN PTR shrek.movie.edu.
3.249.249.192.in-addr.arpa. IN PTR toystory.movie.edu.
4.249.249.192.in-addr.arpa. IN PTR monsters-inc.movie.edu.

There are a couple of things you should notice about this data. First, addresses should
point to only a single name: the canonical name. Thus, 192.249.249.1 maps to worm-
hole.movie.edu, not to wh249.movie.edu. You can create two PTR records, one for

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up Zone Data | 61

wormhole.movie.edu and one for wh249.movie.edu, but most software is not prepared
to see more than one name for an address. Second, even though wormhole.movie.edu
has two addresses, you see only one of them here. That’s because this file shows only
addresses on the network 192.249.249/24, and wormhole.movie.edu has only one
address on that network.

We created similar data for the 192.253.253/24 network.

The Completed Zone Datafiles
Now that we’ve explained the various resource records in the zone datafiles, we’ll
show you what they look like with all the data in one place. Again, the actual order
of these resource records does not matter.

Here are the contents of the file db.movie.edu:

$TTL 3h
movie.edu. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

;
; Name servers
;
movie.edu. IN NS toystory.movie.edu.
movie.edu. IN NS wormhole.movie.edu.

;
; Addresses for the canonical names
;
localhost.movie.edu. IN A 127.0.0.1
shrek.movie.edu. IN A 192.249.249.2
toystory.movie.edu. IN A 192.249.249.3
monsters-inc.movie.edu. IN A 192.249.249.4
misery.movie.edu. IN A 192.253.253.2
shining.movie.edu. IN A 192.253.253.3
carrie.movie.edu. IN A 192.253.253.4
wormhole.movie.edu. IN A 192.249.249.1
wormhole.movie.edu. IN A 192.253.253.1

;
; Aliases
;
toys.movie.edu. IN CNAME toystory.movie.edu.
mi.movie.edu. IN CNAME monsters-inc.movie.edu.
wh.movie.edu. IN CNAME wormhole.movie.edu.

;
; Interface specific names
;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 4: Setting Up BIND

wh249.movie.edu. IN A 192.249.249.1
wh253.movie.edu. IN A 192.253.253.1

Here are the contents of the file db.192.249.249:

$TTL 3h
249.249.192.in-addr.arpa. IN SOA toystory.movie.edu. al.movie.edu.(
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

;
; Name servers
;
249.249.192.in-addr.arpa. IN NS toystory.movie.edu.
249.249.192.in-addr.arpa. IN NS wormhole.movie.edu.

;
; Addresses point to canonical name
;
1.249.249.192.in-addr.arpa. IN PTR wormhole.movie.edu.
2.249.249.192.in-addr.arpa. IN PTR shrek.movie.edu.
3.249.249.192.in-addr.arpa. IN PTR toystory.movie.edu.
4.249.249.192.in-addr.arpa. IN PTR monsters-inc.movie.edu.

And here are the contents of the file db.192.253.253:

$TTL 3h
253.253.192.in-addr.arpa. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour
;
; Name servers
;
253.253.192.in-addr.arpa. IN NS toystory.movie.edu.
253.253.192.in-addr.arpa. IN NS wormhole.movie.edu.

;
; Addresses point to canonical name
;
1.253.253.192.in-addr.arpa. IN PTR wormhole.movie.edu.
2.253.253.192.in-addr.arpa. IN PTR misery.movie.edu.
3.253.253.192.in-addr.arpa. IN PTR shining.movie.edu.
4.253.253.192.in-addr.arpa. IN PTR carrie.movie.edu.

The Loopback Address
A nameserver needs one additional db.ADDR file to cover the loopback network: the
special address that hosts use to direct traffic to themselves. This network is (almost)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up Zone Data | 63

always 127.0.0/24, and the host number is (almost) always 127.0.0.1. Therefore, the
name of this file is db.127.0.0. No surprise here; it looks like the other db.ADDR
files.

Here are the contents of the file db.127.0.0:

$TTL 3h
0.0.127.in-addr.arpa. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

0.0.127.in-addr.arpa. IN NS toystory.movie.edu.
0.0.127.in-addr.arpa. IN NS wormhole.movie.edu.

1.0.0.127.in-addr.arpa. IN PTR localhost.

Why do nameservers need this silly little file? Think about it for a second. No one
was given responsibility for network 127.0.0/24, yet systems use it for a loopback
address. Since no one has direct responsibility, everyone who uses it is responsible
for it individually. You could omit this file, and your nameserver would operate.
However, a lookup of 127.0.0.1 might fail because the root nameserver contacted
wasn’t itself configured to map 127.0.0.1 to a name. To prevent surprises, you
should provide the mapping yourself.

The Root Hints Data
Besides your local information, the nameserver also needs to know where the
nameservers for the root zone are. You must retrieve this information from the Inter-
net host ftp.rs.internic.net (198.41.0.6). Use anonymous FTP to retrieve the file db.
cache from the domain subdirectory.

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/db.cache
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: Jan 29, 2004
; related version of root zone: 2004012900
;
;
; formerly NS.INTERNIC.NET
;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 4: Setting Up BIND

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; operated by VeriSign, Inc.
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
;
; operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up a BIND Configuration File | 65

; operated by ICANN
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; operated by WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
; End of File

The domain name “.” refers to the root zone. Since the root zone’s nameservers change
over time, don’t assume this list is current. Download a new version of db.cache.

How is this file kept up to date? As the network administrator, that’s your responsi-
bility. Some old versions of BIND did update this file periodically. That feature was
disabled, though; apparently, it didn’t work as well as the authors had hoped. Some-
times the changed db.cache file is mailed to the bind-users or namedroppers mailing
list, which we introduced in Chapter 3. If you are on one of these lists, you are likely
to hear about changes.

Can you put data other than root nameserver data in this file? You can, but it won’t
be used. Originally, the nameserver installed this data in its cache. However, the use
of the file has changed (subtly) though the name “cache file” stuck. The nameserver
stores the data it reads from this file in a special place in memory as the root hints. It
does not discard the hints if their TTLs drop to zero, as it would with cached data.
The nameserver uses the hint data to query the root nameservers for the current list
of root nameservers, which it caches. When the cached list of root nameservers times
out, the nameserver again uses the hints to get a new list.

Why does the nameserver bother querying a nameserver in the root hints file—prob-
ably itself a root nameserver—for a list of root nameservers when it already has a list?
Because that nameserver almost certainly knows the current list of root nameservers,
while the file may be out of date.

What are the 3600000s for? That’s an explicit time to live for the records in the file.
In older versions of this file, this number was 99999999. Since the contents of this
file were originally cached, the nameserver needed to know how long to keep those
records active. 99999999 seconds was just a very long time; the root nameserver data
was to be kept in cache for as long as the server ran. Since the nameserver now stores
this data in a special place and doesn’t discard it if it times out, the TTL is unneces-
sary. But it’s not harmful to have the 3600000s, and it makes for interesting BIND
folklore when you pass responsibility to the next nameserver administrator.

Setting Up a BIND Configuration File
Now that we’ve created the zone datafiles, a nameserver must be instructed to read
each file. For BIND, the mechanism for pointing the server to its zone datafiles is the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 4: Setting Up BIND

configuration file. Up to this point, we’ve been discussing files whose data and for-
mat are described in the DNS specifications. The syntax of the configuration file,
though, is specific to BIND and is not defined in the DNS RFCs.

The BIND configuration file syntax changed significantly between version 4 and ver-
sion 8. Mercifully, it didn’t change at all between BIND 8 and BIND 9. BIND 4 came
out so long ago that we are not going to cover its configuration here. You’ll have to
find an earlier edition of our book (you should be able to find a cheap used copy) if
you are still running one of those ancient beasts. In the configuration file, you can
use any of three styles of comments: C-style, C++-style, or shell-style:

/* This is a C-style comment */
// This is a C++-style comment
This is a shell-style comment

Usually, configuration files contain a line indicating the directory in which the zone
datafiles are located. The nameserver changes its directory to this location before
reading the zone datafiles. This allows the filenames to be specified relative to the
current directory instead of as full pathnames. Here’s how a directory line looks in an
options statement:

options {
 directory "/var/named";
 // Place additional options here.
};

Only one options statement is allowed in the configuration file, so any
additional options mentioned later in this book must be added along
with the directory option.

On a primary server, the configuration file contains one zone statement for each zone
datafile to be read. Each line starts with the keyword zone followed by the zone’s
domain name and the class (in stands for Internet). The type master indicates this
server is a primary nameserver. The last line contains the filename:

zone "movie.edu" in {
 type master;
 file "db.movie.edu";
};

Earlier in this chapter, we mentioned that if you omit the class field from a resource
record, the nameserver determines the right class to use from the configuration file.
The in in the zone statement sets that class to the Internet class. The in is the default
class for a zone statement, so you can leave out the field entirely for Internet class
zones.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Setting Up a BIND Configuration File | 67

Here is the configuration file line to read the root hints file:

zone "." in {
 type hint;
 file "db.cache";
};

As mentioned earlier, this file is not for general cache data. It contains only the root
nameserver hints.*

By default, BIND expects the configuration file to be named /etc/named.conf. The
zone datafiles for our example are in the directory /var/named. Which directory you
use doesn’t really matter. Just avoid putting the directory in the root filesystem if the
root filesystem is short on space, and make sure that the filesystem the directory is in
is mounted before the nameserver starts. Here is the complete /etc/named.conf file:

// BIND configuration file

options {
 directory "/var/named";
 // Place additional options here.
};

zone "movie.edu" in {
 type master;
 file "db.movie.edu";
};

zone "249.249.192.in-addr.arpa" in {
 type master;
 file "db.192.249.249";
};

zone "253.253.192.in-addr.arpa" in {
 type master;
 file "db.192.253.253";
};

zone "0.0.127.in-addr.arpa" in {
 type master;
 file "db.127.0.0";
};

zone "." in {
 type hint;
 file "db.cache";

};

* Actually, BIND 9 has a built-in hints zone, so you don’t need to include a zone statement for the hints zone
in named.conf. However, including one doesn’t hurt, and it gives us the willies not to see one in the config-
uration file, so we include one anyway.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 4: Setting Up BIND

Abbreviations
At this point, we have created all the files necessary for a primary nameserver. Let’s
go back and revisit the zone datafiles; there are shortcuts we didn’t use. Unless you
see and understand the long form first, though, the short form can look very cryptic.
Now that you know the long form and have seen the BIND configuration file, we’ll
show you the shortcuts.

Appending Domain Names
The second field of a zone statement specifies a domain name. This domain name is
the key to the most useful shortcut. This domain name is the origin of all the data in
the zone datafile. The origin is appended to all names in the zone datafile that don’t
end in a dot and will be different for each zone datafile because each file describes a
different zone.

Since the origin is appended to names, instead of entering shrek.movie.edu’s address
in db.movie.edu like this:

shrek.movie.edu. IN A 192.249.249.2

we could have entered it like this:

shrek IN A 192.249.249.2

In the db.192.24.249 file, we entered this:

2.249.249.192.in-addr.arpa. IN PTR shrek.movie.edu.

Because 249.249.192.in-addr.arpa is the origin, we could have entered:

2 IN PTR shrek.movie.edu.

Remember our earlier warning not to omit the trailing dot when using the fully quali-
fied domain names? Suppose you forget the trailing dot. An entry like:

shrek.movie.edu IN A 192.249.249.2

turns into an entry for shrek.movie.edu.movie.edu, not what you intended at all.

The @ Notation
If a domain name is the same as the origin, the name can be specified as “@”. This is
most often seen in the SOA record in the zone datafiles. The SOA records could have
been entered this way:

@ IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Abbreviations | 69

Repeat Last Name
If a resource record name (that starts in the first column) is a space or tab, then the
name from the last resource record is used. You use this if there are multiple resource
records for a name. Here’s an example in which there are two address records for
one name:

wormhole IN A 192.249.249.1
 IN A 192.253.253.1

In the second address record, the name wormhole is implied. You can use this short-
cut even if the resource records are of different types.

The Shortened Zone Datafiles
Now that we have shown you the abbreviations, we’ll repeat the zone datafiles, mak-
ing use of these shortcuts.

Here are the contents of the file db.movie.edu:

$TTL 3h
;
; Origin added to names not ending
; in a dot: movie.edu
;

@ IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

;
; Name servers (The name '@' is implied)
;
 IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

;
; Addresses for the canonical names
;
localhost IN A 127.0.0.1
shrek IN A 192.249.249.2
toystory IN A 192.249.249.3
monsters-inc IN A 192.249.249.4
misery IN A 192.253.253.2
shining IN A 192.253.253.3
carrie IN A 192.253.253.4

wormhole IN A 192.249.249.1
 IN A 192.253.253.1

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: Setting Up BIND

;
; Aliases
;
toys IN CNAME toystory
mi IN CNAME monsters-inc
wh IN CNAME wormhole

;
; Interface specific names
;
wh249 IN A 192.249.249.1
wh253 IN A 192.253.253.1

Here are the contents of the file db.192.249.249:

$TTL 3h
;
; Origin added to names not ending
; in a dot: 249.249.192.in-addr.arpa
;

@ IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

;
; Name servers (The name '@' is implied)
;
 IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

;
; Addresses point to canonical names
;
1 IN PTR wormhole.movie.edu.
2 IN PTR shrek.movie.edu.
3 IN PTR toystory.movie.edu.
4 IN PTR monsters-inc.movie.edu.

Here are the contents of the file db.192.253.253:

$TTL 3h
;
; Origin added to names not ending
; in a dot: 253.253.192.in-addr.arpa
;

@ IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Hostname Checking | 71

;
; Name servers (The name '@' is implied)
;
 IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

;
; Addresses point to canonical names
;
1 IN PTR wormhole.movie.edu.
2 IN PTR misery.movie.edu.
3 IN PTR shining.movie.edu.
4 IN PTR carrie.movie.edu.

Here are the contents of the file db.127.0.0:

$TTL 3h
@ IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

 IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

1 IN PTR localhost.

While looking at the new db.movie.edu file, you may notice that we could have
removed movie.edu from the hostnames of the SOA and NS records like this:

@ IN SOA toystory al (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 day

 IN NS toystory
 IN NS wormhole

You can’t do this in the other zone datafiles because their origins are different. In
db.movie.edu, we leave these names as fully qualified domain names so that the NS
and SOA records are exactly the same for all the zone datafiles.

Hostname Checking
If your nameserver is BIND 4.9.4 or newer (and most are), you have to pay extra
attention to how your hosts are named. Starting with Version 4.9.4, BIND checks
hostnames for conformance to RFC 952. If a hostname does not conform, BIND
considers it a syntax error.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: Setting Up BIND

Before you panic, you need to know that this checking applies only to names that are
considered hostnames. Remember, resource records have a name field and a data
field—for example:

<name> <class> <type> <data>
toystory IN A 192.249.249.3

Hostnames are in the name fields of A (address) and MX (covered in Chapter 5)
records. Hostnames are also in the data fields of SOA and NS records. CNAMEs do
not have to conform to the host-naming rules because they can point to names that
are not hostnames.

Let’s look at the host-naming rules. Hostnames are allowed to contain alphabetic
characters and numeric characters in each label. The following are valid hostnames:

ID4 IN A 192.249.249.10
postmanring2x IN A 192.249.249.11

A hyphen is allowed if it is in the middle of a label:

fx-gateway IN A 192.249.249.12

Underscores are not allowed in hostnames.

Names that are not hostnames can consist of any printable ASCII character.

If a resource record data field calls for a mail address (as in SOA records), the first
label, since it is not a hostname, can contain any printable character, but the rest of
the labels must follow the hostname syntax just described. For example, a mail
address has the following syntax:

<ASCII-characters>.<hostname-characters>

For example, if your mail address is key_grip@movie.edu, you can use it in an SOA
record even with the underscore. Remember, in a mail address you replace the “@”
with a “.”, like this:

movie.edu. IN SOA toystory.movie.edu. key_grip.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

This extra level of checking can cause dramatic problems at sites that upgrade from a
liberal version of BIND to a conservative one, especially sites that have standardized on
hostnames containing an underscore. If you need to postpone changing names until
later (you will still change them, right?), this feature can be toned down to produce

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Tools | 73

warning messages instead of errors or to simply ignore that the names are illegal. The
following configuration file statement turns the errors into warning messages:

options {
 check-names master warn;
};

The warning messages are logged with syslog, which we’ll explain shortly. The fol-
lowing configuration file statement ignores the errors entirely:

options {
 check-names master ignore;
};

If the nonconforming names came from a zone that you back up (and have no con-
trol over), then add a similar statement that specifies slave instead of master:

options {
 check-names slave ignore;
};

And if the names come in responses to queries and not in zone transfers, specify
response instead:

options {
 check-names response ignore;
};

Here are BIND’s defaults:

options {
 check-names master fail;
 check-names slave warn;
 check-names response ignore;
};

Name checking can also be specified on a per-zone basis, in which case it overrides
name-checking behavior specified in the options statement for this particular zone:

zone "movie.edu" in {
 type master;
 file "db.movie.edu";
 check-names fail;
};

The options line contains three fields (check-names master fail),
whereas the zone line check contains only two fields (check-names
fail). This is because the zone line already specifies the context (the
zone named in the zone statement).

Tools
Wouldn’t it be handy to have a tool to translate your host table into master file for-
mat? There is such a beast, written in Perl: h2n, a host-table-to-master-file converter.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Setting Up BIND

You can use h2n to create your zone datafiles the first time and then maintain your
data manually. Or you can use h2n over and over again. As you’ve seen, the host
table’s format is much simpler to understand and modify correctly than the master
file format. So, you could maintain /etc/hosts and rerun h2n to update your zone
datafiles after each modification.

If you plan to use h2n, you might as well start with it, because it uses /etc/hosts—not
your hand-crafted zone data—to generate the new zone datafiles. We could have
saved ourselves a lot of work by generating the sample zone datafiles in this chapter
with the following:

% h2n -d movie.edu -s toystory -s shrek \
-n 192.249.249 -n 192.253.253 \
-u al.movie.edu

(To generate a BIND 4 configuration file, add –v 4 to the option list.)

The –d and –n options specify the domain name of your forward-mapping zone and
your network numbers. You’ll notice that the names of the zone datafiles are derived
from these options. The –s options list the authoritative nameservers for the zones to
use in the NS records. The –u (user) is the email address in the SOA record. We
cover h2n in more detail in Chapter 7, after we’ve covered how DNS affects email.

BIND 9 Tools
If you are running BIND 9, you have handy new tools to help maintain your
nameserver files: named-checkconf and named-checkzone. These tools reside in /usr/
local/sbin. As you might guess, named-checkconf checks the configuration file for syn-
tax errors, and named-checkzone checks a zone file for syntax errors.

First, run named-checkconf, which checks /etc/named.conf by default:

% named-checkconf

If you have an error, named-checkconf displays an error message, such as this one:

/etc/named.conf:14: zone '.': missing 'file' entry

If there are no errors, you won’t see any output.

Next, run named-checkzone for each of your zone files:

% named-checkzone movie.edu db.movie.edu
zone movie.edu/IN: loaded serial 4
OK

As you can see, everything is okay, and the current serial number is 4.

Running a Primary Nameserver
Now that you’ve created your zone datafiles, you are ready to start a couple of
nameservers. You’ll need to set up two nameservers: a primary nameserver and a

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Primary Nameserver | 75

slave nameserver. Before you start a nameserver, though, make sure that the syslog
daemon is running. If the nameserver reads the configuration file and zone datafiles
and sees an error, it logs a message to the syslog daemon. If the error is bad enough,
the nameserver exits. If you’ve run the BIND 9 named-checkconf and named-
checkzone, you should be all set, but check for syslog errors anyway, just to be safe.

Starting Up the Nameserver
At this point, we assume the machine you are running on has the BIND nameserver
and the support tool nslookup installed. Check the named manual page to find the
directory the nameserver executable is in and verify that the executable is on your
system. On BSD systems, the nameserver started its life in /etc, but may have
migrated to /usr/sbin. Other places to look for named are /usr/etc/in.named and /usr/
sbin/in.named. The following descriptions assume that the nameserver is in /usr/sbin.

To start up the nameserver, you must become root. The nameserver listens for que-
ries on a reserved port, so it requires root privileges. The first time you run it, start
the nameserver from the command line to test that it is operating correctly. Later,
we’ll show you how to start up the nameserver automatically when your system
boots.

The following command starts the nameserver. We ran it on the host toystory.movie.
edu.

/usr/sbin/named

This command assumes that your configuration file is called /etc/named.conf. You
can put your configuration file elsewhere, but then you have to tell the nameserver
where it is using the –c command-line option:

/usr/sbin/named -c conf-file

Check for Syslog Errors
The first thing to do after starting your nameserver is to check the syslog file for error
messages. If you are not familiar with syslog, look at the syslog.conf manual page for
a description of the syslog configuration file or the syslogd manual page for a descrip-
tion of the syslog daemon. The nameserver logs messages with facility daemon under
the name named. You might be able to find where syslog messages are logged by
looking for the daemon facility in /etc/syslog.conf:

% grep daemon /etc/syslog.conf
*.err;kern.debug;daemon,auth.notice /var/adm/messages

On this host, the nameserver syslog messages are logged to /var/adm/messages, and
syslog saves only those that are at severity LOG_NOTICE or higher. Some useful
messages are sent at severity LOG_INFO; you might like to see some of these. You

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Setting Up BIND

can decide if you want to change the log level after reading Chapter 7, where we
cover syslog messages in more detail.

When the nameserver starts, it logs a starting message:

% grep named /var/adm/messages
Jan 10 20:48:32 toystory named[3221]: starting BIND 9.3.2 –c named.boot

The starting message is not an error message, but there might be other messages with
it that are error messages. The most common errors are syntax errors in the zone
datafiles or configuration file. For example, if you forget the resource record type in
an address record:

shrek IN 192.249.249.2

you’ll see the following syslog error message:

Jan 10 20:48:32 toystory named[3221]: db.movie.edu:24: Unknown RR type:
 192.249.249.2

Or, if you misspell the word “zone” in /etc/named.conf:

zne "movie.edu" in {

you’ll see the following syslog error message:

Mar 22 20:14:21 toystory named[1477]: /etc/named.conf:10:
 unknown option 'zne'

If BIND finds a name that doesn’t conform to RFC 952, you’ll see the following sys-
log error message:

Jul 24 20:56:26 toystory named[1496]: db.movie.edu:33: a_b.movie.edu: bad
 owner name

If you have a syntax error, check the line numbers mentioned in the syslog error mes-
sage to see if you can figure out the problem. You’ve seen what the zone datafiles are
supposed to look like; that should be enough to figure out most simple syntax errors.
Otherwise, you’ll have to go through Appendix A to see the gory syntactic details of
all the resource records. If you can fix the syntax error, do so and then reload the
nameserver with ndc (BIND 8) or rndc (BIND 9), the name daemon controller:

ndc reload

so that it rereads the zone datafiles.* You’ll see more information in Chapter 7 on
using ndc and rndc to control the nameserver.

Testing Your Setup with nslookup
If you have set up your local zones correctly, and your connection to the Internet is
up, you should be able to look up a local and a remote domain name. We’ll now step

* For a BIND 9 nameserver, you’d need to use rndc, but we haven’t shown you how to configure that yet. Skip
ahead to Chapter 7 if you’d like to see how that’s done. ndc works without much configuration, though.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Primary Nameserver | 77

you through the lookups with nslookup. There is a whole chapter in this book on
nslookup (Chapter 12), but we cover it in enough detail here to do basic nameserver
testing.

Set the local domain name

Before running nslookup, you need to set the host’s local domain name. With this
configured, you can look up a name like carrie instead of having to spell out car-
rie.movie.edu; the system adds the domain name movie.edu for you.

There are two ways to set the local domain name: hostname(1) or /etc/resolv.conf.
Some people say that, in practice, more sites set the local domain in /etc/resolv.conf.
You can use either. Throughout the book, we assume the local domain name comes
from hostname(1).

Create a file called /etc/resolv.conf with the following line starting in the first column
(substitute your local domain name for movie.edu):

domain movie.edu

Or, set hostname(1) to a domain name. On the host toystory, we set hostname(1) to
toystory.movie.edu. Don’t add a trailing dot to the name.

Look up a local domain name

nslookup can be used to look up any type of resource record, and it can be directed to
query any nameserver. By default, it looks up A (address) records using the first
nameserver specified in resolv.conf. (Without a nameserver specified in resolv.conf,
the resolver defaults to querying the local nameserver.) To look up a host’s address
with nslookup, run nslookup with the host’s domain name as the only argument. A
lookup of a local domain name should return almost instantly.

We ran nslookup to look up carrie :

% nslookup carrie
Server: toystory.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up a local domain name works, your local nameserver has been config-
ured properly for your forward-mapping zone. If the lookup fails, you’ll see some-
thing like this:

*** toystory.movie.edu can't find carrie: Non-existent domain

This means that carrie is not in your zone data. Check your zone datafile; you didn’t
set your local domain name in hostname(1), or some nameserver error occurred
(though you should have caught the error when you checked the syslog messages).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Setting Up BIND

Look up a local address

When nslookup is given an address to look up, it knows to make a PTR query instead
of an address query. We ran nslookup to look up carrie’s address:

% nslookup 192.253.253.4
Server: toystory.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up an address works, your local nameserver has been configured properly
for your in-addr.arpa (reverse-mapping) zones. If the lookup fails, you’ll see the same
error messages as when you looked up a domain name.

Look up a remote domain name

The next step is to try using the local nameserver to look up a remote domain name,
such as ftp.rs.internic.net or another system you know of on the Internet. This com-
mand may not return as quickly as the last one. If nslookup fails to get a response
from your nameserver, it waits a little longer than a minute before giving up:

% nslookup ftp.rs.internic.net
Server: toystory.movie.edu
Address: 192.249.249.3

Name: ftp.rs.internic.net
Addresses: 198.41.0.6

If this works, your nameserver knows where the root nameservers are and how to
contact them to find information about domain names in zones other than your
own. If it fails, either you forgot to configure the root hints file (and a syslog message
will show up), or the network is broken somewhere and you can’t reach the
nameservers for the remote zone. Try a different remote domain name.

If these first lookups succeeded, congratulations! You have a primary nameserver up
and running. At this point, you are ready to start configuring your slave nameserver.

One more test

While you’re testing, though, run one more test. Check whether your parent zone’s
nameservers have properly delegated to your domain. If your parent required you to
have your two nameservers running before delegating your zones, skip ahead to the
next section.

This test takes two steps. First, you’ll need to find the IP address of one of your par-
ent’s nameservers. Next, you’ll query your parent’s nameserver to check the NS
records (the delegation information) for one of your zones.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Primary Nameserver | 79

Here’s step one: find the IP address of your parent’s nameservers. To do this, ask
your nameserver to find the NS records for your parent’s zone. You will use nslookup
again, but you will add –type=ns to tell nslookup to query for nameserver records.

Here’s an example. Suppose we are setting up the hp.com zone, and we need to find
out the nameservers for com, our parent.

% nslookup -type=ns com.
Server: toystory.movie.edu
Address: 192.249.249.3#53

Non-authoritative answer:
com nameserver = i.gtld-servers.net
com nameserver = j.gtld-servers.net
com nameserver = k.gtld-servers.net
com nameserver = l.gtld-servers.net
com nameserver = m.gtld-servers.net
com nameserver = a.gtld-servers.net
com nameserver = b.gtld-servers.net
com nameserver = c.gtld-servers.net
com nameserver = d.gtld-servers.net
com nameserver = e.gtld-servers.net
com nameserver = f.gtld-servers.net
com nameserver = g.gtld-servers.net
com nameserver = h.gtld-servers.net

a.gtld-servers.net internet address = 192.5.6.30
a.gtld-servers.net AAAA IPv6 address = 2001:503:a83e::2:30
b.gtld-servers.net internet address = 192.33.14.30
b.gtld-servers.net AAAA IPv6 address = 2001:503:231d::2:30
c.gtld-servers.net internet address = 192.26.92.30
d.gtld-servers.net internet address = 192.31.80.30
e.gtld-servers.net internet address = 192.12.94.30
f.gtld-servers.net internet address = 192.35.51.30
g.gtld-servers.net internet address = 192.42.93.30
h.gtld-servers.net internet address = 192.54.112.30
i.gtld-servers.net internet address = 192.43.172.30
j.gtld-servers.net internet address = 192.48.79.30
k.gtld-servers.net internet address = 192.52.178.30
l.gtld-servers.net internet address = 192.41.162.30
m.gtld-servers.net internet address = 192.55.83.30

Next, you need to query one of your parent’s nameservers for the NS records for your
zone. Again, you’ll use nslookup with –type=ns, but this time you’ll also add –nore-
curse to tell nslookup not to ask the nameserver to recursively look up the data for
you. Also, you need to query your parent’s nameserver directly, instead of sending the
query to your own nameserver. (Your nameserver has NS records for your zone, but
that’s not what you need to check.) To query your parent’s nameserver instead of
your own, add the name of one of your parent’s nameservers to the end of the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Setting Up BIND

nslookup statement. Here’s an example where we queried the com nameserver b.gtld-
servers.net for the NS records for hp.com:

% nslookup -type=ns -norecurse hp.com. b.gtld-servers.net.
Server: b.gtld-servers.net
Address: 192.33.14.30#53

Non-authoritative answer:
hp.com nameserver = am1.hp.com
hp.com nameserver = am3.hp.com
hp.com nameserver = ap1.hp.com
hp.com nameserver = eu1.hp.com
hp.com nameserver = eu2.hp.com
hp.com nameserver = eu3.hp.com

am1.hp.com internet address = 15.227.128.
am3.hp.com internet address = 15.243.160.
ap1.hp.com internet address = 15.211.128.
eu1.hp.com internet address = 16.14.64.50
eu2.hp.com internet address = 16.6.64.50
eu3.hp.com internet address = 16.8.64.50

Everything has been set up correctly for hp.com, as you might expect.

If your nameserver successfully looked up ftp.rs.internic.net, and it looked up the
servers for your parent’s domain, your server is set up correctly, and you can contact
the rest of the Internet. If your parent zone’s nameserver does not contain NS records
for your zone, your zone is not registered with your parent nameservers. That’s not a
problem, at first, because systems within your zones can look up the domain names
of other systems both within and outside of your zones. You’ll be able to access the
Web and FTP to local and remote systems. But not being registered will shortly
become a problem. Hosts outside your zones can’t look up domain names in your
zones; you may not be able to send email to friends in remote zones, and you cer-
tainly won’t get any responses. To fix this problem, contact the administrators of
your parent zones, and have them check the delegation of your zones.

Editing the Startup Files
Once you have confirmed that your nameserver is running properly and can be used
from here on, you’ll need to configure it to start automatically and set hostname(1) to
a domain name in your system’s startup files (or set up your domain name in /etc/
resolv.conf). Check to see if your vendor has already set up the nameserver to start on
bootup. You may have to remove comment characters from the startup lines, or the
startup file may test to see if /etc/named.conf exists. To look for automatic startup
lines, use:

% grep named /etc/*rc*

or, if you have System V–style rc files, use:

% grep named /etc/rc.d/*/S*

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Slave Nameserver | 81

If you don’t find anything, add lines like the following to the appropriate startup file
somewhere after your network interfaces are initialized by ifconfig:

if test -x /usr/sbin/named -a -f /etc/named.conf
then
 echo "Starting named"
 /usr/sbin/named
fi

You may want to wait to start the nameserver until after the default route is installed
or your routing daemon (routed or gated) is started, depending on whether these ser-
vices need the nameserver or can get by with /etc/hosts.

Find which startup file initializes the hostname and change hostname(1) to a domain
name. For example, we changed:

hostname toystory

to:

hostname toystory.movie.edu

Running a Slave Nameserver
You need to set up another nameserver for robustness. You can (and probably will
eventually) set up more than two authoritative nameservers for your zones. Two
nameservers are the minimum; if you have only one nameserver, and it goes down,
no one can look up domain names. A second nameserver splits the load with the first
server or handles the whole load if the first server is down. You could set up another
primary nameserver, but we don’t recommend it. Instead, set up a slave nameserver.
You can always change a slave nameserver to a primary nameserver if you decide to
expend the extra effort it takes to run multiple primary nameservers.

How does a server know if it’s the primary or a slave for a zone? The named.conf file
tells the nameserver whether it is the primary or a slave on a per-zone basis. The NS
records don’t tell us which server is the primary for a zone and which servers are
slaves; they only say who the servers are. (Globally, DNS doesn’t care; as far as the
actual name resolution goes, slave servers are as good as primary servers.)

What’s the difference between a primary nameserver and a slave nameserver? The
crucial difference is where the server gets its data. A primary nameserver reads its
data from zone datafiles. A slave nameserver loads its data over the network from
another nameserver. This process is called a zone transfer.

A slave nameserver is not limited to loading zones from a primary nameserver; it can
also load from another slave server.

The big advantage of slave nameservers is that you maintain only one set of zone
datafiles for a zone, the ones on the primary nameserver. You don’t have to worry
about synchronizing the files among nameservers; the slaves do that for you. The

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Setting Up BIND

caveat is that a slave does not resynchronize instantly: it polls to see if its zone data is
current. The polling interval is one of those numbers in the SOA record that we
haven’t explained yet. (BIND versions 8 and 9 support mechanisms to speed up the
distribution of zone data, which we’ll describe later.)

A slave nameserver doesn’t need to retrieve all its zone data over the network; the
overhead files, db.cache and db.127.0.0, are the same as on a primary, so keep a local
copy on the slave. That means that a slave nameserver is a primary for 0.0.127.in-
addr.arpa. Well, you could make it a slave for 0.0.127.in-addr.arpa, but that zone’s
data never changes; it may as well be a primary.

Setup
To set up your slave nameserver, create a directory for the zone datafiles on the slave
nameserver host (e.g., /var/named) and copy over the files /etc/named.conf, db.cache,
and db.127.0.0:

rcp /etc/named.conf host:/etc
rcp db.cache db.127.0.0 host:db-file-directory

You must modify /etc/named.conf on the slave nameserver. Change every occurrence
of master to slave except for the 0.0.127.in-addr.arpa zone, and add a masters line
with the IP address of the primary nameserver, which will act as the slave’s master
for these zones.

If the original configuration file line was:

zone "movie.edu" in {
 type master;
 file "db.movie.edu";
};

then the modified line looks like this:

zone "movie.edu" in {
 type slave;
 file "bak.movie.edu";
 masters { 192.249.249.3; };
};

This tells the nameserver that it is a slave for the zone movie.edu and that it should
track the version of this zone kept on the nameserver at 192.249.249.3. The slave
nameserver keeps a backup copy of this zone in the local file bak.movie.edu.

For Movie U., we set up our slave nameserver on wormhole.movie.edu. Recall that
the configuration file on toystory.movie.edu (the primary) looks like this:

options {
 directory "/var/named";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Slave Nameserver | 83

zone "movie.edu" in {
 type master;
 file "db.movie.edu";
};

zone "249.249.192.in-addr.arpa" in {
 type master;
 file "db.192.249.249";
};

zone "253.253.192.in-addr.arpa" in {
 type master;
 file "db.192.253.253";
};

zone "0.0.127.in-addr.arpa" in {
 type master;
 file "db.127.0.0";
};

zone "." in {
 type hint;
 file "db.cache";

};

We copy /etc/named.conf, db.cache, and db.127.0.0 to wormhole.movie.edu, and edit the
configuration file as previously described. The configuration file on wormhole.movie.edu
now looks like this:

options {
 directory "/var/named";
};

zone "movie.edu" in {
 type slave;
 file "bak.movie.edu";
 masters { 192.249.249.3; };
};

zone "249.249.192.in-addr.arpa" in {
 type slave;
 file "bak.192.249.249";
 masters { 192.249.249.3; };
};

zone "253.253.192.in-addr.arpa" in {
 type slave;
 file "bak.192.253.253";
 masters { 192.249.249.3; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Setting Up BIND

zone "0.0.127.in-addr.arpa" in {
 type master;
 file "db.127.0.0";
};

zone "." in {
 type hint;
 file "db.cache";
};

This causes the nameserver on wormhole.movie.edu to load movie.edu, 249.249.192.
in-addr.arpa, and 253.253.192.in-addr.arpa over the network from the nameserver at
192.249.249.3 (toystory.movie.edu). It also saves a backup copy of these files in /var/
named. You may find it handy to isolate the backup zone datafiles in a subdirectory.
We name them with a unique prefix such as bak, since, on rare occasions, we may
have to delete all the backup files manually. It’s also helpful to be able to tell at a
glance that they’re backup zone datafiles so that we’re not tempted to edit them.
We’ll cover more on backup files later.

Now start up the slave nameserver. Check for error messages in the syslog file as you did
for the primary server. As on the primary, the command to start up a nameserver is:

/usr/sbin/named

One extra check to make on the slave that you didn’t have to make on the primary is
to see that the nameserver created the backup files. Shortly after we started our slave
nameserver on wormhole.movie.edu, we saw bak.movie.edu, bak.192.249.249, and
bak.192.253.253 appear in the /var/named directory. This means the slave has suc-
cessfully loaded these zones from the primary and saved a backup copy.

To complete setting up your slave nameserver, try looking up the same domain
names you looked up after you started the primary server. This time, you must run
nslookup on the host running the slave nameserver so that the slave server is queried.
If your slave is working fine, add the proper lines to your system startup files so that
the slave nameserver is started when your system boots up, and hostname(1) is set to
a domain name.

Backup Files
Slave nameservers are not required to save a backup copy of the zone data. If there is
a backup copy, the slave server reads it on startup and later checks with the master
server to see if the master server has a newer copy instead of loading a new copy of
the zone immediately. If the master server has a newer copy, the slave pulls it over
and saves it in the backup file.

Why save a backup copy? Suppose the master nameserver is down when the slave
starts up. The slave will be unable to transfer the zone and therefore won’t function
as a nameserver for that zone until the master server is up. With a backup copy, the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Slave Nameserver | 85

slave has zone data, although it might be slightly out of date. Since the slave does not
have to rely on the master server always being up, it’s a more robust setup.

To run without a backup copy, remove the file line in the configuration file. How-
ever, we recommend configuring all your slave nameservers to save backup copies.
There is very little extra cost to saving a backup zone datafile, but it will cost you
dearly if you get caught without a backup file when you need it most.

SOA Values
Remember this SOA record?

movie.edu. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Negative caching TTL of 1 hour

We never explained what the values between the parentheses were for.

The serial number applies to all the data within the zone. We chose to start our serial
number at 1, a logical place to start. But many people find it more useful to use the
date in the serial number instead, like 2005012301. This format is YYYYMMDDNN,
where YYYY is the year, MM is the month, DD is the day, and NN is a count of how
many times the zone data was modified that day. These fields won’t work in any other
order because no other order gives a value that always increases as the date changes.
This is critical: whatever format you choose, it’s important that the serial number
always increase when you update your zone data.

When a slave nameserver contacts a master server for zone data, it first asks for the
serial number on the data. If the slave’s serial number for the zone is lower than the
master server’s, the slave’s zone data is out of date. In this case, the slave pulls a new
copy of the zone. If a slave starts up, and there is no backup file to read, it will always
load the zone. As you might guess, when you modify the zone datafiles on the pri-
mary, you must increment the serial number. Updating your zone datafiles is cov-
ered in Chapter 7.

The next four fields specify various time intervals, in seconds by default:

refresh
The refresh interval tells a slave for the zone how often to check that the data for
this zone is up to date. To give you an idea of the system load this feature causes,
a slave makes one SOA query per zone per refresh interval. The value we chose,
three hours, is reasonably aggressive. Most users will tolerate a delay of half a
working day for things like zone data to propagate when they are waiting for
their new workstation to become operational. If you provide one-day service for
your site, you could consider raising this value to eight hours. If your zone data

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Setting Up BIND

doesn’t change very often or if all of your slaves are spread over long distances
(as the root nameservers are), consider a value that is even longer, say 24 hours.

retry
If the slave fails to reach the master nameserver after the refresh interval (the
host could be down), it starts trying to connect every retry seconds. Normally,
the retry interval is shorter than the refresh interval, but it doesn’t have to be.

expire
If the slave fails to contact the master nameserver for expire seconds, the slave
expires the zone. Expiring the zone means that the slave stops giving out answers
about the zone because the zone data is too old to be useful. Essentially, this
field says that at some point, the data is so old that giving out no data is better
than giving out stale data. Expire times on the order of a week are common—
longer (up to a month) if you frequently have problems reaching your updating
source. The expiration time should always be much larger than the retry and
refresh intervals; if the expire time is smaller than the refresh interval, your slaves
will expire the zone before trying to load new data.

negative caching TTL
TTL stands for time to live. This value applies to all negative responses from the
nameservers authoritative for the zone.

On versions of BIND before BIND 8.2, the last field in the SOA record
is both the default time to live and the negative caching time to live for
the zone.

Those of you who have read earlier versions of this book may have noticed the
change in the format we used for the SOA record’s numeric fields. Once upon a time,
BIND understood units of seconds only for the four fields we just described. (Conse-
quently, a whole generation of administrators know that there are 604,800 seconds
in a week.) Now, with all but the oldest BIND nameservers (4.8.3), you can specify
units besides seconds for these fields and as arguments to the TTL control state-
ment, as was shown earlier in this chapter. For example, you can specify a three-hour
refresh interval with 3h, 180m, or even 2h60m. You can also use d for days and w for
weeks.

The right values for your SOA record depend on the needs of your site. In general,
longer times cause less load on your nameservers and can delay the propagation of
changes; shorter times increase the load on your nameservers and speed up the prop-
agation of changes. The values we use in this book should work well for most sites.
RFC 1537 recommends the following values for top-level nameservers:

Refresh 24 hours
Retry 2 hours
Expire 30 days
Default TTL 4 days

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Running a Slave Nameserver | 87

There is one implementation feature you should be aware of. Older versions (pre-4.8.3)
of BIND slaves stop answering queries during a zone load. As a result, BIND was mod-
ified to spread out the zone loads, reducing the periods of unavailability. So, even if
you set a low refresh interval, your slaves may not check as often as you request. BIND
attempts a certain number of zone loads and then waits 15 minutes before trying
another batch.

Now that we’ve told you all about how slave nameservers poll to keep their data up
to date, BIND 8 and 9 change how zone data propagates! The polling feature is still
there, but BIND 8 and 9 add a notification when zone data changes. If both your pri-
mary server and your slaves run BIND 8 or 9, the primary notifies the slave that a
zone has changed within 15 minutes of loading a new copy of that zone. The notifi-
cation causes the slave server to shorten the refresh interval and attempt to load the
zone immediately. We’ll discuss this more in Chapter 10.

Multiple Master Servers
Are there other ways to make your slave nameserver’s configuration more robust?
Yes—you can specify up to 10 IP addresses of master servers. In the configuration
file, add them after the first IP address and separate them with semicolons:

zone "movie.edu" in {
 type slave;
 file "bak.movie.edu";
 masters { 192.249.249.3; 192.249.249.4; };
};

Or with BIND 9.3 and later, you can give a name to the list of IP addresses for your
masters, and then refer to the name. This saves repeating the IP addresses for each
zone. Here’s an example:

masters "movie-masters" {
 192.249.249.3; 192.249.249.4;
};

zone "movie.edu" in {
 type slave;
 file "bak.movie.edu";
 masters { movie-masters; };
};

The slave queries the master server at each IP address in the order listed until it gets a
response. Through BIND 8.1.2, the slave always transferred the zone from the first
master nameserver to respond if that master had a higher serial number. The slave
tried successive master servers only if the previous master didn’t respond. From
BIND 8.2 on, however, the slave actually queries all the master nameservers listed
and transfers the zone from the one with the highest serial number. If multiple mas-
ter servers tie for the highest serial number, the slave transfers the zone from the first
of those masters in the list.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Setting Up BIND

The original intent of this feature was to allow you to list all the IP addresses of the
host running the primary nameserver for the zone if that host were multihomed.
However, since there is no check to determine whether the contacted server is a pri-
mary or a slave, you can list the IP addresses of hosts running slave servers for the
zone if that makes sense for your setup. That way, if the first master server is down
or unreachable, your slave can transfer the zone from another master nameserver.

Adding More Zones
Now that you have your nameservers running, you might want to support more
zones. What needs to be done? Nothing special, really. All you need to do is add
more zone statements to your configuration file. You can even make your primary a
slave server for some zones and make your slave server primary for some zones. (You
may have already noticed that your slave server is primary for 0.0.127.in-addr.arpa.)

At this point, it’s useful to repeat something we said earlier in this book. Calling a
given nameserver a primary nameserver or a slave nameserver is a little silly.
Nameservers can be—and usually are—authoritative for more than one zone. A
nameserver can be a primary for one zone and a slave for another. Most nameserv-
ers, however, are either primary for most of the zones they load or slave for most of
the zones they load. So if we call a particular nameserver a primary or a slave, we
mean that it’s the primary or a slave for most of the zones it loads.

What’s Next?
In this chapter, we showed you how to create nameserver zone datafiles by translat-
ing /etc/hosts to equivalent nameserver data, and how to set up a primary and a slave
nameserver. There is more work to do to complete setting up your local zones, how-
ever: you need to modify your zone data for email and configure the other hosts in
your zone to use your nameservers. You may also need to start up more nameserv-
ers. These topics are covered in the next few chapters.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

89

Chapter 5 CHAPTER 5

 DNS and Electronic Mail5

And here Alice began to get rather sleepy, and went on
saying to herself, in a dreamy sort of way, “Do cats

eat bats? Do cats eat bats?” and sometimes “Do bats
eat cats?” for, you see, as she couldn’t answer either

question, it didn’t much matter which way she put it.

I’ll bet you’re drowsy too, after that looong chapter. Thankfully, this next chapter
discusses a topic that will probably be very interesting to you system administrators
and postmasters: how DNS affects electronic mail. And even if it isn’t interesting to
you, at least it’s shorter than the last chapter.

One of the advantages of the Domain Name System over host tables is its support of
advanced mail routing. When mailers had only the HOSTS.TXT file (and its deriva-
tive, /etc/hosts) to work with, the best they could do was to attempt delivery to a
host’s IP address. If that failed, they could either defer delivery of the message and
try again later or bounce the message back to the sender.

DNS offers a mechanism for specifying backup hosts for mail delivery. The mechanism
also allows hosts to assume mail-handling responsibilities for other hosts. This lets disk-
less hosts that don’t run mailers, for example, have mail addressed to them processed by
their servers.

DNS, unlike host tables, allows arbitrary names to represent electronic mail destina-
tions. You can—and most organizations on the Internet do—use the domain name
of your main forward-mapping zone as an email destination. Or you can add domain
names to your zone that are purely email destinations and don’t represent any partic-
ular host. A single logical email destination may also represent several mail servers.
With host tables, mail destinations were hosts, period.

Together, these features give administrators much more flexibility in configuring
electronic mail on their networks.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: DNS and Electronic Mail

MX Records
DNS uses a single type of resource record to implement enhanced mail routing: the
MX record. Originally, the MX record’s function was split between two records—the
MD (mail destination) and MF (mail forwarder) records. MD specified the final des-
tination to which a message addressed to a given domain name should be delivered.
MF specified a host that would forward mail on to the eventual destination, should
that destination be unreachable.

Early experience with DNS on the ARPAnet showed that separating the functions
didn’t work very well. A mailer needed both the MD and MF records attached to a
domain name (if both existed) to decide where to send mail; one or the other alone
wouldn’t do. But an explicit lookup of one type or another (either MD or MF) would
cause a nameserver to cache just that record type. So mailers either had to do two
queries, one for MD and one for MF records, or they could no longer accept cached
answers. This meant that the overhead of running mail was higher than that of run-
ning other services, which was eventually deemed unacceptable.

The two records were integrated into a single record type, MX, to solve this prob-
lem. Now a mailer just needed all the MX records for a particular domain name des-
tination to make a mail-routing decision. Using cached MX records was fine, as long
as the TTLs matched.

MX records specify a mail exchanger for a domain name: a host that will either pro-
cess or forward mail for the domain name (through a firewall, for example). Process-
ing the mail means either delivering it to the individual to whom it’s addressed or
gatewaying it to another mail transport, such as X.400. Forwarding means sending it
to its final destination or to another mail exchanger closer to the destination via
SMTP, the Internet’s Simple Mail Transfer Protocol. Sometimes forwarding the mail
involves queuing it for some amount of time, too.

In order to prevent mail-routing loops, the MX record has an extra parameter,
besides the domain name of the mail exchanger: a preference value. The preference
value is an unsigned 16-bit number (between 0 and 65535) that indicates the mail
exchanger’s priority. For example, the MX record:

peets.mpk.ca.us. IN MX 10 relay.hp.com.

specifies that relay.hp.com is a mail exchanger for peets.mpk.ca.us at preference value 10.

Taken together, the preference values of a destination’s mail exchangers determine
the order in which a mailer should use them. The preference value itself isn’t impor-
tant, only its relationship to the values of other mail exchangers: is it higher or lower
than the values of this destination’s other mail exchangers? Unless there are other
records involved, this:

plange.puntacana.dr. IN MX 1 listo.puntacana.dr.
plange.puntacana.dr. IN MX 2 hep.puntacana.dr.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

MX Records | 91

does exactly the same thing as:

plange.puntacana.dr. IN MX 50 listo.puntacana.dr.
plange.puntacana.dr. IN MX 100 hep.puntacana.dr.

Mailers should attempt delivery to the mail exchangers with the lowest preference
values first. This may seem a little counterintuitive: the most preferred mail
exchanger has the lowest preference value. But since the preference value is an
unsigned quantity, this lets you specify a “best” mail exchanger at preference value 0.

If delivery to the most-preferred mail exchanger(s) fails, mailers should attempt
delivery to less-preferred mail exchangers (those with higher preference values), in
order of increasing preference value. That is, mailers should try more-preferred mail
exchangers before they try less preferred mail exchangers. More than one mail
exchanger may share the same preference value, too. This gives the mailer its choice
of which to send to first. However, the mailer must try all the mail exchangers at a
given preference value before proceeding to the next higher value.

For example, the MX records for oreilly.com might be:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Interpreted together, these MX records instruct mailers to attempt delivery to
oreilly.com by sending in the following order:

1. ora.oreilly.com

2. Either ruby.oreilly.com or opal.oreilly.com

3. The remaining preference 10 mail exchanger (the one not used in Step 2)

Of course, once the mailer successfully delivers the mail to one of oreilly.com’s
mail exchangers, it can stop. A mailer successfully delivering oreilly.com mail to
ora.oreilly.com doesn’t need to try ruby.oreilly.com or opal.oreilly.com.

Note that oreilly.com isn’t a particular host; it’s the domain name of O’Reilly’s main
forward-mapping zone. O’Reilly uses the domain name as the email destination for
everyone who works there. It’s much easier for correspondents to remember the sin-
gle email destination oreilly.com than to remember which host—ruby.oreilly.com?
amber.oreilly.com?—each employee has an email account on.

This requires, of course, that the administrator of the mailer on ora.oreilly.com main-
tain a file of aliases for all email users at O’Reilly, forwarding their mail to the hosts
on which they read it, or run a server that offers users remote access to their mail
stores, such as a POP or IMAP server. What if a destination doesn’t have any MX
records, but has one or more A records? Will a mailer simply not deliver mail to that
destination? Actually, you can compile recent versions of sendmail to do just that.
Most vendors, however, have compiled their sendmails to be more forgiving: if no
MX records exist but one or more A records do, they’ll at least attempt delivery to

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: DNS and Electronic Mail

the address. Version 8 of sendmail, compiled “out of the box,” will try the address of
a mail destination without MX records. Check your vendor’s documentation if
you’re not sure whether your mail server will send mail to destinations with only
address records.

Even though nearly all mailers will deliver mail to a destination with just an address
record and no MX records, it’s still a good idea to have at least one MX record for
each legitimate mail destination. Most mailers, including sendmail, will always look
up the MX records for a destination first when there is mail to deliver. If the destina-
tion doesn’t have any MX records, a nameserver—usually one of your authoritative
nameservers—still must answer that query, and then sendmail will go on to look up
A records. That takes extra time, slows mail delivery, and adds a little load to your
zone’s authoritative nameservers. If you simply add an MX record for each mail des-
tination pointing to a domain name that maps to the same address an address
lookup would return, the mailer sends only one query, and the mailer’s local
nameserver caches the MX record for future use.

Finally, note that you can’t use an IP address instead of a domain name to identify the
mail exchanger (in the field after the preference value). While some mailers are forgiv-
ing enough to accept an IP address, some aren’t, so your mail will fail unpredictably.

Movie.edu’s Mail Server
At movie.edu, we have a single mail hub, postmanrings2x.movie.edu. postmanrings2x
runs both an SMTP server and an IMAP server with accounts for all movie.edu mail
users.

To direct mail servers on the Internet to send mail addressed to users at movie.edu to
our mail hub, we add this MX record to db.movie.edu:

movie.edu. IN MX 10 postmanrings2x.movie.edu.

Our ISP runs a backup SMTP server as a service for customers; it will queue mail for
us if our mail server or our connection to the Internet fails. To tell Internet mailers to
try it if postmanrings2x isn’t available, we add another MX record to the movie.edu
zone datafile:

movie.edu. IN MX 20 smtp.isp.net.

What’s a Mail Exchanger, Again?
The idea of a mail exchanger is probably new to many of you, so let’s go over it in a
little more detail. A simple analogy should help here: imagine that a mail exchanger
is an airport, and instead of setting up MX records to instruct mailers where to send

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

What’s a Mail Exchanger, Again? | 93

messages, you’re advising your in-laws as to which airport to fly into when they
come to visit you.

Say you live in Los Gatos, California. The closest airport for your in-laws to fly into is
San Jose, the second closest is San Francisco, and the third Oakland. (We’ll ignore
other factors such as price of the ticket, Bay Area traffic, etc.) Don’t see the parallel?
Then picture it like this:

los-gatos.ca.us. IN MX 1 san-jose.ca.us.
los-gatos.ca.us. IN MX 2 san-francisco.ca.us.
los-gatos.ca.us. IN MX 3 oakland.ca.us.

The MX list is just an ordered list of destinations that tells mailers (your in-laws)
where to send messages (fly) if they want to reach a given email destination (your
house). The preference value tells them how desirable it is to use that destination;
think of it as a logical “distance” from the eventual destination (in any units you
choose), or simply as a “top 10”–style ranking of the proximity of those mail
exchangers to the final destination.

With this list, you’re saying, “Try to fly into San Jose, and if you can’t get there, try
San Francisco and Oakland, in that order.” It also says that if you reach San Fran-
cisco, you should take a commuter flight to San Jose. If you wind up in Oakland, you
should try to get a commuter to San Jose or at least to San Francisco.

What makes a good mail exchanger, then? The same qualities that make a good airport:

Size
You wouldn’t want to fly into tiny Reid-Hillview Airport to get to Los Gatos,
because the airport’s not equipped to handle large planes or many people.
(You’d probably be better off landing a big jet on Interstate 280 than at Reid-
Hillview.) Likewise, you don’t want to use an emaciated, underpowered host as
a mail exchanger; it won’t be able to handle the load.

Uptime
You know better than to fly through Denver International Airport in the winter,
right? Then you should know better than to use a host that’s rarely up or avail-
able as a mail exchanger.

Connectivity
If your relatives are flying in from far away, you’ve got to make sure they can get
a direct flight to at least one of the airports in the list you give them. You can’t
tell them their only choices are San Jose and Oakland if they’re flying in from
Helsinki. Similarly, you’ve got to make sure that at least one of your hosts’ mail
exchangers is reachable to anyone who might conceivably send you mail.

Management and administration
How well an airport is managed has a bearing on your safety while flying into or
just through the airport and on how easy it is to use. Think of these factors when
choosing a mail exchanger. The privacy of your mail, the speed of its delivery

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: DNS and Electronic Mail

during normal operations, and how well your mail is treated when your hosts go
down all hinge on the quality of the administrators who manage your mail
exchangers.

Keep this example in mind because we’ll refer to it again later.

The MX Algorithm
That’s the basic idea behind MX records and mail exchangers, but there are a few
more wrinkles you should know about. To avoid routing loops, mailers need to use a
slightly more complicated algorithm than what we’ve described when they deter-
mine where to send mail.*

Imagine what would happen if mailers didn’t check for routing loops. Let’s say you
send mail from your workstation to nuts@oreilly.com, raving (or raging) about the
quality of this book. Unfortunately, ora.oreilly.com is down at the moment. No prob-
lem! Recall oreilly.com’s MX records:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Your mailer falls back and sends your message to ruby.oreilly.com, which is up.
ruby.oreilly.com’s mailer then tries to forward the mail on to ora.reilly.com but can’t
because ora.oreilly.com is down. Now what? Unless ruby.oreilly.com checks the san-
ity of what she is doing, she’ll try to forward the message to opal.oreilly.com or
maybe even to herself. That’s certainly not going to help get the mail delivered. If
ruby.oreilly.com sends the message to herself, we have a mail-routing loop. If ruby.
oreilly.com sends the message to opal.oreilly.com, opal.oreilly.com will either send it
back to ruby.oreilly.com or send it to herself, and we again have a mail-routing loop.

To prevent this from happening, mailers discard certain MX records before they
decide where to send a message. A mailer sorts the list of MX records by preference
value and looks in the list for the canonical domain name of the host on which it’s
running. If the local host appears as a mail exchanger, the mailer discards that MX
record and all MX records in which the preference value is equal or higher (that is,
equally or less-preferred mail exchangers). That prevents the mailer from sending
messages to itself or to mailers “farther” from the eventual destination.

Let’s think about this in the context of our airport analogy. This time, imagine you’re
an airline passenger (a message) trying to get to Greeley, Colorado. You can’t get a
direct flight to Greeley, but you can fly to either Fort Collins or Denver (the two
next-highest mail exchangers). Since Fort Collins is closer to Greeley, you opt to fly
to Fort Collins.

* This algorithm is based on RFC 2821, which describes how Internet mail routing works.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The MX Algorithm | 95

Now, once you’ve arrived in Fort Collins, there’s no sense in flying to Denver, away
from your destination (a lower-preference mail exchanger). (And flying from Fort
Collins to Fort Collins would be silly, too.) So the only acceptable flight to get you to
your destination is now a Fort Collins-Greeley flight. You eliminate flights to less-
preferred destinations to prevent frequent-flyer looping and wasteful travel time.

One caveat: most mailers will look only for their local host’s canonical domain name
in the list of MX records. They don’t check for aliases (domain names on the left side
of CNAME records). Unless you always use canonical names in your MX records,
there’s no guarantee that a mailer will be able to find itself in the MX list, and you’ll
run the risk of having your mail loop.

If you do list a mail exchanger by an alias, and it unwittingly tries to deliver mail to
itself, most mailers will detect the loop and bounce the mail with an error. Here’s the
error message from recent versions of sendmail:

554 MX list for movie.edu points back to relay.isp.com
554 <root@movie.edu>... Local configuration error

This replaces the quainter “I refuse to talk to myself” error older versions of send-
mail emitted. The moral: in an MX record, always use the mail exchanger’s canoni-
cal name.

One more caveat: the hosts you list as mail exchangers must have address records. A
mailer needs to find an address for each mail exchanger you name or else it can’t
attempt delivery there.

To go back to our oreilly.com example, when ruby.oreilly.com received the message
from your workstation, her mailer would have checked the list of MX records:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Finding the local host’s domain name in the list at preference value 10, ruby.oreilly.
com’s mailer discards all the records at preference value 10 or higher (the records in
bold):

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

leaving only:

oreilly.com. IN MX 0 ora.oreilly.com.

Since ora.oreilly.com is down, ruby.oreilly.com defers delivery until later and queues
the message.

What happens if a mailer finds itself at the highest preference (lowest preference
value) and has to discard the whole MX list? Some mailers attempt delivery directly
to the destination host’s IP address as a last-ditch effort. In most mailers, however,

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: DNS and Electronic Mail

it’s an error. It may indicate that DNS thinks the mailer should be processing (not
just forwarding) mail for the destination, but the mailer hasn’t been configured to
know that. Or it may indicate that the administrator has ordered the MX records
incorrectly by using the wrong preference values.

Say, for example, the folks who run acme.com add an MX record to direct mail
addressed to acme.com to a mailer at their Internet service provider:

acme.com. IN MX 10 mail.isp.net.

Most mailers need to be configured to identify their aliases and the names of other
hosts for which they process mail. Unless the mailer on mail.isp.net is configured to
recognize email addressed to acme.com as local mail, it assumes it’s being asked to
relay the mail and attempts to forward the mail to a mail exchanger closer to the final
destination.* When it looks up the MX records for acme.com, it finds itself as the
most-preferred mail exchanger and bounces the mail back to the sender with the
familiar error:

554 MX list for acme.com points back to mail.isp.net
554 <root@acme.com>... Local configuration error

Many versions of sendmail use class w or fileclass w as the list of local destinations.
Depending on your sendmail.cf file, adding an alias can be as easy as adding the line:

Cw acme.com

to sendmail.cf.

You may have noticed that we tend to use multiples of 10 for our preference values.
Ten is convenient because it allows you to insert other MX records temporarily at
intermediate values without changing the other weights, but otherwise there’s noth-
ing magical about it. We could just as easily have used increments of 1 or 100; the
effect would have been the same.

DNS and Email Authentication
In addition to using MX records stored in DNS to determine where to send mail,
some modern mail servers can now use other data in DNS to authenticate a mes-
sage’s sender. In particular, several recently proposed email authentication mecha-
nisms use resource records to store critical information. While a complete
description of any of these proposals is beyond the scope of this book, we’d like to
introduce you to the most widely deployed of them, with a particular emphasis on
how it uses DNS.

* Unless, of course, mail.isp.net’s mailer is configured not to relay mail for unknown domains. In this case, it
simply rejects the mail.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Email Authentication | 97

The Sender Policy Framework
We’ll cover SPF, the Sender Policy Framework, both because it’s the most widely
deployed of these authentication mechanisms and because it’s fairly simple to
describe. SPF allows a company’s postmaster—maybe with the cooperation of his
friendly DNS administrator—to specify which mail servers are allowed to send email
addressed from the organization’s domain names. It’s a little like the opposite func-
tion of the MX record: an MX record tells a mailer to send mail addressed to a partic-
ular domain name to particular mail servers, while SPF information tells a mailer
which mail servers can send mail addressed from a particular domain name.*

Here’s a simple example: Say O’Reilly Media’s postmaster knows that all legitimate
oreilly.com email is sent from one of two SMTP servers, smtp1.oreilly.com and
smtp2.oreilly.com. He can advertise this fact in DNS by adding a TXT record to the
domain name oreilly.com (or by asking whomever administers the oreilly.com zone
to do it for him). Here’s one possible TXT record that accomplishes this:

oreilly.com. IN TXT "v=spf1 +a:smtp1.oreilly.com +a:smtp2.oreilly.com –all"

The tag v=spf1 at the beginning of the record-specific data identifies this TXT record
as an SPF record. This is needed because TXT records can be used for many pur-
poses, including human-readable comments, and you wouldn’t want Internet mail
servers trying to interpret your comments as SPF instructions. If SPF takes off, it will
eventually receive its own, dedicated record type, SPF, and the tag will become
unnecessary.

The next two fields specify that mail addressed from oreilly.com can come from any
of the IP addresses of the hosts smtp1.oreilly.com or smtp2.oreilly.com. The leading
plus signs are qualifiers, and indicate that email from these hosts’ IP addresses
should be allowed. There are four possible qualifiers:

+ Pass. A mailer that matches is a valid sender.

– Fail. A mailer that matches is not a valid sender.

~ SoftFail. A mailer that matches probably isn’t a valid sender, so the message
should be carefully scrutinized.

? Neutral. Has no effect.

The default is + (pass), so the plus signs could have been omitted. The final field, –all,
tells mailers to deny (fail) every other sender of oreilly.com email.

There are other ways to specify a domain name’s valid senders. Since oreilly.com’s
two MX records list smtp1.oreilly.com and smtp2.oreilly.com, the postmaster can
instead add this shorter TXT record:

oreilly.com. IN TXT "v=spf1 +mx –all"

* In fact, SPF is descended from a proposal called “Reverse MX,” by Hadmut Danisch.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: DNS and Electronic Mail

Without a colon and a domain name argument, “mechanisms” such as a and mx use
the domain name in the owner field. Just plain +mx, then, is the same as +mx:oreilly.
com in this record.

Here’s a list of common mechanisms used in SPF TXT records:

a Specifies the domain name of a mail server whose address or addresses are
allowed to send email from the owner domain name.

mx Specifies a domain name whose mail exchangers are allowed to send email from
the owner domain name.

ip4 Specifies the IP(v4) address of a mail server that is allowed to send email from
the owner domain name. Can also specify a network in CIDR notation (e.g.,
192.168.0.0/24). Note that all four octets of the network must be specified.

ip6 Specifies the IPv6 address of a mail server that is allowed to send email from the
owner domain name. Can also specify an IPv6 network in RFC 3513 notation.

ptr Requires that a PTR record exist for the sending mail server’s address. The PTR
record must map the address to a domain name that ends in the domain name in
the owner field of the TXT record or the argument specified after the colon. For
example, +ptr:oreilly.com requires that a sending mail server’s address reverse-
map to a domain name ending in oreilly.com.

SPF records also support a redirect modifier, which allows multiple domain names to
share a common set of SPF instructions. For example, say the administrator of
oreilly.com wants the ca.oreilly.com and ma.oreilly.com domain names to use the
same rules he’s established for oreilly.com. Rather than duplicate oreilly.com’s TXT
record, he can add these TXT records:

ca.oreilly.com. IN TXT "v=spf1 redirect=oreilly.com"
ma.oreilly.com. IN TXT "v=spf1 redirect=oreilly.com"

These tell mailers to refer to the SPF records for oreilly.com when determining which
are valid mailers for ca.oreilly.com and ma.oreilly.com. Now if the administrator
needs to modify his SPF instructions, he must only change one TXT record.

The include mechanism is a similar construct, designed to let administrators refer to
SPF instructions configured by someone else. For example, if the oreilly.com admin-
istrator also wants to allow any legitimate senders of isp.net email to send oreilly.com
email, he can amend the oreilly.com TXT record to read:

oreilly.com. IN TXT "v=spf1 +mx include:isp.net –all"

Note that the separator between include and its argument is a colon, while the sepa-
rator between redirect and its argument is an equals sign.

A couple of miscellaneous hints: It’s a good idea to use ?all or ~all in your SPF records
in the beginning because it can be surprisingly difficult to enumerate all the valid
sources of your domain name’s email. You may have remote employees running their

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Email Authentication | 99

own mail servers, mobile workers sending email from PDAs with company email
addresses, and many others. You don’t want to inadvertently cut them off.

If your SPF records are very long and complex, they may exceed the maximum
length of a TXT record’s data, 255 bytes. In that case, you can break the record into
multiple TXT records, each beginning with the v=spf1 tag. They’ll be concatenated
before evaluation.

Two final notes of caution: Remember that, even if you publish SPF information,
only mail servers with SPF support will look it up and use it. Right now, that’s a very
small proportion of the Internet’s mailers. (Still, there’s no harm in publishing SPF
records, so why not?) And be aware that SPF may change, may never become a stan-
dard, and may be superseded by other mechanisms.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

100

Chapter 6CHAPTER 6

Configuring Hosts 6

They were indeed a queer-looking party that
assembled on the bank—the birds with draggled
feathers, the animals with their fur clinging close to
them, and all dripping wet, cross, and uncomfortable.

Now that you or someone else in your organization has set up nameservers for your
zones, you’ll want to configure the hosts on your network to use them. That involves
configuring those hosts’ resolvers, which you can do by telling the resolvers which
nameservers to query and which domain names to search. This chapter covers these
topics and describes configuring the resolver in many common versions of Unix and
in Microsoft’s Windows 2000, 2003, and XP (which are basically the same).

The Resolver
We introduced resolvers way back in Chapter 2, but we didn’t say much more about
them. The resolver, you’ll remember, is the client half of the Domain Name System.
It’s responsible for translating a program’s request for host information into a query
to a nameserver and for translating the response into an answer for the program.

We haven’t done any resolver configuration yet, because the occasion for it hasn’t
arisen. When we set up our nameservers in Chapter 4, the resolver’s default behav-
ior worked just fine for our purposes. But if we’d needed the resolver to do more
than or behave differently from the default, we would have had to configure the
resolver.

There’s one thing we should mention up front: what we’ll be describing in the next
few sections is the behavior of the vanilla BIND 8.4.6 resolver in the absence of other
naming services. Not all resolvers behave quite this way; some vendors still ship
resolvers based on earlier versions of the BIND code, and some have implemented
special resolver functionality that lets you modify the resolver algorithm. Whenever
we think it’s important, we’ll point out differences between the behavior of the 8.4.6
BIND resolver and that of earlier resolvers, particularly the 4.8.3 and 4.9 resolvers,

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 101

which many vendors were shipping when we last updated this book. We’ll cover var-
ious vendors’ extensions later in this chapter.

Resolver Configuration
So what exactly does the resolver allow you to configure? Most resolvers let you con-
figure at least three aspects of the resolver’s behavior: the local domain name, the
search list, and the nameserver(s) that the resolver queries. Many Unix vendors also
allow you to configure other resolver behavior through nonstandard extensions to
DNS. Sometimes these extensions are necessary to cope with other software, such as
Sun’s Network Information Service (NIS); sometimes they’re simply value added by
the vendor.*

Almost all resolver configuration is done in the file /etc/resolv.conf (this might be /usr/
etc/resolv.conf or something similar on your host—check the resolver manual page,
usually in section 4 or 5, to make sure). There are five main configuration directives
you can use in resolv.conf: the domain directive, the search directive, the nameserver
directive, the sortlist directive, and the options directive. These directives control the
behavior of the resolver. There are other, vendor-specific directives available on some
versions of Unix; we’ll discuss them at the end of this chapter.

The Local Domain Name
The local domain name is the domain name in which the resolver resides. In most
situations, it’s the domain name of the zone in which you’d find the host running the
resolver. For example, the resolver on the host toystory.movie.edu would probably
use movie.edu as its local domain name.

The resolver uses the local domain name to interpret domain names that aren’t fully
qualified. For example, when you add an entry such as:

relay bernie

to your .rhosts file, the name relay is assumed to be in your local domain. This makes
a lot more sense than allowing access to a user called bernie on every host on the
Internet whose domain name starts with relay. Other authorization files such as
hosts.equiv and hosts.lpd work the same way.

Normally, the local domain name is determined from the host’s hostname; the local
domain name is everything after the first “.” in the name. If the name doesn’t con-
tain a “.”, the local domain is assumed to be the root domain. So the hostname asy-
lum.sf.ca.us implies a local domain name of sf.ca.us, while the hostname dogbert

* NIS used to be called “Yellow Pages” or “YP,” but its name was changed to NIS because the British phone
company had a copyright on the name Yellow Pages.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 6: Configuring Hosts

implies a root local domain—which probably isn’t correct, given that there are very
few hosts with single-label domain names.*

You can also set the local domain name with the domain directive in resolv.conf. If
you specify the domain directive, it overrides deriving the local domain name from
the hostname.

The domain directive has a very simple syntax, but you must get it right because the
resolver doesn’t report errors. The keyword domain starts the line in column one, fol-
lowed by whitespace (one or more blanks or tabs), then the name of the local
domain. The local domain name should be written without a trailing dot, like this:

domain colospgs.co.us

In older versions of the BIND resolver (those before BIND 4.8.3), trailing spaces are
not allowed on the line and will cause your local domain to be set to a name ending
with one or more spaces, which is almost certainly not what you want. And there’s
yet another way to set the local domain name—via the LOCALDOMAIN environ-
ment variable. LOCALDOMAIN is handy because you can set it on a per-user basis.
For example, you might have a big, massively parallel box in your corporate comput-
ing center that employees from all over the world can access. Each employee may do
most of her work in a different company subdomain. With LOCALDOMAIN, each
employee can set her local domain name appropriately in her shell startup file.

Which method should you use—hostname, the domain directive, or LOCALDO-
MAIN? We prefer using hostname primarily because that’s the way Berkeley does it,
and it seems “cleaner” in that it requires less explicit configuration. Also, some Ber-
keley software, particularly software that uses the ruserok() library call to authenti-
cate users, allows short hostnames in files such as hosts.equiv only if hostname is set
to the full domain name.

If you run software that can’t tolerate long hostnames, though, you can use the
domain directive. The hostname command will continue to return a short name, and
the resolver will fill in the domain from resolv.conf. You may even find occasion to
use LOCALDOMAIN on a host with lots of users.

The Search List
The local domain name, whether derived from hostname or resolv.conf, also deter-
mines the default search list. The search list was designed to make users’ lives a little
easier by saving them some typing. The idea is to search one or more domains for
names typed at the command line that might be incomplete—that is, that might not
be fully qualified domain names.

* There are actually some single-label domain names that point to addresses, such as cc.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 103

Most Unix networking commands that take a domain name as an argument, such as
telnet, ftp, rlogin, and rsh, apply the search list to those arguments.

Both the way the default search list is derived and the way it is applied changed from
BIND 4.8.3 to BIND 4.9. If your resolver is an older make, you’ll still see the 4.8.3
behavior, but if you have a newer model, including BIND 8.4.7,* you’ll see the
improvements in the 4.9 resolver.

With any BIND resolver, a user can indicate that a domain name is fully qualified by
adding a trailing dot to it.† For example, the trailing dot in the command:

% telnet ftp.ora.com.

means “Don’t bother searching any other domains; this domain name is fully quali-
fied.” This is analogous to the leading slash in full pathnames in the Unix and MS-
DOS filesystems. Pathnames without a leading slash are interpreted as relative to the
current working directory, while pathnames with a leading slash are absolute,
anchored at the root.

The BIND 4.9 and later search list

With BIND 4.9 and later resolvers, the default search list includes just the local
domain name. So, if you configure a host with:

domain cv.hp.com

the default search list contains just cv.hp.com. Also, the search list is usually applied
after the name is tried as-is—a change from earlier resolvers. As long as the argu-
ment you type has at least one dot in it, it’s looked up exactly as you typed it before
any element of the search list is appended. If that lookup fails, the search list is
applied. Even if the argument has no dots in it (that is, it’s a single label name), it’s
tried as-is after the resolver appends the elements of the search list.

Why is it better to try the argument literatim first? From experience, BIND’s develop-
ers found that, more often than not, if a user bothered to type in a name with even a
single dot in it, he was probably typing in a fully qualified domain name without the
trailing dot. Better to see right away whether the name was a fully qualified domain
name than to create nonsense domain names unnecessarily by appending the ele-
ments of the search list to it.

Therefore, with a 4.9 or newer resolver, a user typing:

% telnet pronto.cv.hp.com

* Though the ISC added lots of new functionality to the nameservers in BIND 8 and 9, the resolver in these
newer versions of BIND is nearly identical to the BIND 4.9 resolver.

† Note that we said that the resolver can handle a trailing dot. Some programs, particularly some mail user
agents, don’t deal correctly with a trailing dot in email addresses. They choke even before they hand the
domain name in the address to the resolver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 6: Configuring Hosts

causes pronto.cv.hp.com to be looked up first because the name contains three
dots, which is certainly more than one. If the resolver doesn’t find an address for
pronto.cv.hp.com, it then tries pronto.cv.hp.com.cv.hp.com.

A user typing:

% telnet asap

on the same host causes the resolver to look up asap.cv.hp.com first, because the
name doesn’t contain a dot, and then just asap.

Note that application of the search list stops as soon as a prospective domain name
turns up the data being looked up. In the asap example, the search list would never
get around to looking up just plain asap if asap.cv.hp.com resolved to an address.

The BIND 4.8.3 search list

With BIND 4.8.3 resolvers, the default search list includes the local domain name
and the domain names of each of its parent domains with two or more labels. There-
fore, on a host running a 4.8.3 resolver and configured with:

domain cv.hp.com

the default search list contains first cv.hp.com, the local domain name; then hp.com,
the local domain’s parent; but not com because it has only one label.* The name is
looked up as-is, after the resolver appends each element of the search list, and only if
the name typed contains at least one dot. Thus, a user typing:

% telnet pronto.cv.hp.com

causes lookups of pronto.cv.hp.com.cv.hp.com and pronto.cv.hp.com.hp.com before
the resolver looks up pronto.cv.hp.com by itself. A user typing:

% telnet asap

on the same host causes the resolver to look up asap.cv.hp.com and asap.hp.com, but
not just asap because the name typed (“asap”) contains no dots.

The search Directive
What if you don’t like the default search list you get when you set your local domain
name? In all modern resolvers, you can set the search list explicitly, domain name by
domain name, in the order you want the domains searched. You do this with the
search directive.

* One reason older BIND resolvers didn’t append just the top-level domain name is that there were—and still
are—very few hosts at the second level of the Internet’s namespace, so tacking on just com or edu to foo is
unlikely to result in the domain name of a real host. Also, looking up the address of a foo.com or foo.edu
might well require sending a query to a root nameserver, which taxes the roots and can be time-consuming.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 105

The syntax of the search directive is very similar to that of the domain directive,
except that it can take multiple domain names as arguments. The keyword search
starts the line in column one, followed by a space or a tab, followed in turn by one to
six domain names in the order you want them searched.* The first domain name in
the list is interpreted as the local domain name, so the search and domain directives
are mutually exclusive. If you use both in resolv.conf, the one that appears last over-
rides the other.

For example, the directive:

search corp.hp.com paloalto.hp.com hp.com

instructs the resolver to search the corp.hp.com domain first, then paloalto.hp.com,
and then the parent of both domains, hp.com.

This directive might be useful on a host whose users access hosts in both corp.hp.com
and paloalto.hp.com frequently. On the other hand, on a BIND 4.8.3 resolver, the
directive:

search corp.hp.com

causes the resolver to skip searching the local domain’s parent domain when the
search list is applied. (On a 4.9 or later resolver, the parent domain’s name usually
isn’t in the search list, so this is no different from the default behavior.) This might
be useful if the host’s users access hosts only in the local domain, or if connectivity to
the parent nameservers isn’t good (because it minimizes unnecessary queries to the
parent nameservers).

If you use the domain directive with a BIND 4.8.3 resolver and update
the resolver to version 4.9 or later, users who relied on your local
domain’s parent being in the search list may believe the resolver has
suddenly broken. You can restore the old behavior by using the search
directive to configure your resolver to use the same search list that it
would have built before. For example, under BIND 4.9, BIND 8, or
BIND 9, you can replace domain nsr.hp.com with search nsr.hp.com
hp.com and get the same functionality.

The nameserver Directive
Back in Chapter 4, we talked about two types of nameservers: primary nameservers
and slave nameservers. But what if you don’t want to run a nameserver on a host, yet
still want to use DNS? Or, for that matter, what if you can’t run a nameserver on a
host (because the operating system doesn’t support it, for example)? Surely, you
don’t have to run a nameserver on every host, right?

* BIND 9 resolvers actually support eight elements in the search list.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 6: Configuring Hosts

No, of course you don’t. By default, the resolver looks for a nameserver running on
the local host—which is why we could use nslookup on toystory.movie.edu and
wormhole.movie.edu right after we configured their nameservers. You can, however,
instruct the resolver to look to another host for name service. This configuration is
called a DNS client in the BIND Operations Guide.

The nameserver directive (yep, all one word) tells the resolver the IP address of a
nameserver to query. For example, the line:

nameserver 15.32.17.2

instructs the resolver to send queries to the nameserver running at the IP address
15.32.17.2 instead of to the local host. This means that on hosts not running
nameservers, you can use the nameserver directive to point them at a remote
nameserver. Typically, you configure the resolvers on your hosts to query your own
nameservers.

However, since many nameserver administrators don’t restrict queries, you can con-
figure your resolver to query someone else’s nameserver. Of course, configuring your
host to use someone else’s nameserver without first asking permission is presumptu-
ous, if not downright rude, and using one of your own usually gives you better per-
formance, so we’ll consider this only an emergency option.

You can also configure the resolver to query the host’s local nameserver using either
the local host’s IP address or the zero address. The zero address, 0.0.0.0, is inter-
preted by most TCP/IP implementations to mean “this host.” The host’s real IP
address, of course, also means “this host.” On hosts that don’t understand the zero
address, you can use the loopback address, 127.0.0.1.

Now what if the nameserver your resolver queries is down? Isn’t there any way to
specify a backup? Do you just fall back to using the host table?

The resolver allows you to specify up to three (count ’em, three) nameservers by
using multiple nameserver directives. The resolver queries those nameservers, in the
order listed, until it receives an answer or times out. For example, the lines:

nameserver 15.32.17.2
nameserver 15.32.17.4

tell the resolver to first query the nameserver at 15.32.17.2, and if it doesn’t respond,
to query the nameserver at 15.32.17.4. Be aware that the number of nameservers you
configure dictates other aspects of the resolver’s behavior, too.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 107

If you use multiple nameserver directives, don’t use the loopback
address! There’s a bug in some Berkeley-derived TCP/IP implementa-
tions that can cause problems with BIND if the local nameserver is
down. The resolver’s connected datagram socket won’t rebind to a new
local address if the local nameserver isn’t running, and consequently
the resolver sends query packets to the fallback remote nameservers
with a source address of 127.0.0.1. When the remote nameservers try
to reply, they end up sending the reply packets to themselves.

One nameserver configured

If there’s only one nameserver configured,* the resolver queries that nameserver with
a timeout of five seconds. The timeout is the length of time the resolver will wait for
a response from the nameserver before sending another query. If the resolver encoun-
ters an error that indicates the nameserver is really down or unreachable, or if it
times out, it doubles the timeout and queries the nameserver again. The errors that
could cause this include:

• Receipt of an ICMP port unreachable message, which means that no nameserver
is listening on the nameserver port

• Receipt of an ICMP host unreachable or network unreachable message, which
means that queries can’t be sent to the destination IP address

If the domain name or data doesn’t exist, the resolver doesn’t retry the query. Theo-
retically, at least, each nameserver should have an equivalent “view” of the
namespace; there’s no reason to believe one and not another. So if one nameserver
tells you that a given domain name doesn’t exist or that the type of data you’re look-
ing for doesn’t exist for the domain name you specified, any other nameserver should
give you the same answer.† If the resolver receives a network error each time it sends
a query (for a total of four errors‡), it falls back to using the host table. Note that
these are errors, not timeouts. If it times out on even one query, the resolver returns a
null answer and does not fall back to /etc/hosts.

More than one nameserver configured

With more than one nameserver configured, the behavior is a little different. Here’s
what happens: the resolver starts by querying the first nameserver in the list, with a

* When we say “one nameserver configured,” that means either one nameserver directive in resolv.conf or no
nameserver directive and a nameserver running locally.

† Caching and the latency of DNS’s zone transfer mechanism make this a small fib; cached records may differ
temporarily from records in authoritative data, and a primary nameserver can have authority for a zone and
have different data from a slave that also has authority for the zone. (The primary may have just loaded new
zone data from disk, while the slave may not have had time to transfer the new zone data from its master.
Both nameservers return authoritative answers for the zone, but the primary may know about a brand-new
host that the slave doesn’t yet know about.)

‡ Two for BIND 8.2.1 and newer resolvers.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: Configuring Hosts

timeout of five seconds, just as in the single nameserver case. If the resolver times out
or receives a network error, it falls back to the next nameserver, waiting the same five
seconds for that nameserver. Unfortunately, the resolver won’t receive many of the
possible errors; the socket the resolver uses is “unconnected” because it must be able
to receive responses from any of the nameservers it queries, and unconnected sock-
ets don’t receive ICMP error messages. If the resolver queries all the configured
nameservers to no avail, it updates the timeouts and cycles through them again.

The resolver timeout for the next round of queries is based on the number of
nameservers configured in resolv.conf. The timeout for the second round of queries is
10 seconds divided by the number of nameservers configured, rounded down. Each
successive round’s timeout is double the previous timeout. After three sets of retrans-
missions (a total of four timeouts for every nameserver configured), the resolver gives
up trying to query nameservers.

In BIND 8.2.1, the ISC changed the resolver to send only one set of retries, or a total
of two queries to each nameserver in resolv.conf. This was intended to reduce the
amount of time a user would have to wait for the resolver to return if none of the
nameservers was responding.

For you mathophobes, Table 6-1 shows what the timeouts look like when you have
one, two, or three nameservers configured.

For BIND 8.2 and later resolvers, Table 6-2 shows the default timeout behavior.

So if you configure three servers, the resolver queries the first server with a timeout
period of five seconds. If that query times out, the resolver queries the second server

Table 6-1. Resolver timeouts in BIND 4.9 to 8.2

Nameservers configured

Retry 1 2 3

0 5s (2x) 5s (3x) 5s

1 10s (2x) 5s (3x) 3s

2 20s (2x) 10s (3x) 6s

3 40s (2x) 20s (3x) 13s

Total 75s 80s 81s

Table 6-2. Resolver timeouts in BIND 8.2.1 and later

Nameservers configured

Retry 1 2 3

0 5s (2x) 5s (3x) 5s

1 10s (2x) 5s (3x) 3s

Total 15s 20s 24s

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 109

with the same timeout, and similarly for the third. If the resolver cycles through all
three servers, it doubles the timeout period and divides by three (to three seconds,
10/3 rounded down) and queries the first server again.

Do these times seem awfully long? Remember, this describes a worst-case scenario.
With properly functioning nameservers running on tolerably fast hosts, your resolv-
ers should get their answers back in well under a second. Only if all the configured
nameservers are really busy, or if they or your network are down, will the resolver
ever make it all the way through the retransmission cycle and give up.

What does the resolver do after it gives up? It times out and returns an error. Typi-
cally, this results in an error message like:

% telnet tootsie
tootsie: Host name lookup failure

Of course, it may take about 75 seconds before this message appears, so be patient.

The sortlist Directive
The sortlist directive is a mechanism in BIND 4.9 and later resolvers that lets you
specify subnets and networks for the resolver to prefer if it receives multiple
addresses as the result of a query. In some cases, you’ll want your host to use a par-
ticular network to get to certain destinations. For example, say your workstation and
your NFS server have two network interfaces each: one on a standard 100 Mbps
Ethernet segment, subnet 128.32.1/24, and one on a gigabit Ethernet segment, sub-
net 128.32.42/24. If you leave your workstation’s resolver to its own devices, it’s
anybody’s guess which of the NFS server’s IP addresses you’ll use when you mount a
filesystem from the server—presumably, the first one in a reply packet from the
nameserver. To make sure you try the interface on the gigabit Ethernet first, you can
add a sortlist directive to resolv.conf that sorts the address on 128.32.42/24 to the
preferred position in the structure passed back to programs:

sortlist 128.32.42.0/255.255.255.0

The argument after the slash is the subnet mask for the subnet in question. To prefer
an entire network, you can omit the slash and the subnet mask:

sortlist 128.32.0.0

The resolver then assumes you mean the entire network 128.32/16. (The resolver
derives the default unsubnetted net mask for the network from the first two bits of
the IP address.)

And, of course, you can specify several (up to 10) subnets and networks to prefer
over others:

sortlist 128.32.42.0/255.255.255.0 15.0.0.0

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: Configuring Hosts

The resolver sorts any addresses in a reply that match these arguments into the order
in which they appear in the directive, and appends addresses that don’t match to the
end.

The options Directive
The options directive was introduced with BIND 4.9 and lets you tweak several inter-
nal resolver settings. The first is the debug flag, RES_DEBUG. The directive:

options debug

sets RES_DEBUG, producing lots of exciting debugging information on standard
output, assuming your resolver was configured with DEBUG defined. (Actually, that
may not be a good assumption because most vendors compile their stock resolvers
without DEBUG defined.) This is very useful if you’re attempting to diagnose a prob-
lem with your resolver or with name service in general, but very annoying otherwise.

The second setting you can modify is ndots, which sets the minimum number of dots
a domain name argument must have for the resolver to look it up before applying the
search list. By default, one or more dots will do; this is equivalent to ndots:1. The
resolver first tries the domain name as typed as long as the name has any dots in it.
You can raise the threshold if you believe your users are more likely to type partial
domain names that will need the search list applied. For example, if your local
domain name is mit.edu, and your users are accustomed to typing:

% ftp prep.ai

and having mit.edu automatically appended to produce prep.ai.mit.edu, you may
want to raise ndots to 2 so that your users won’t unwittingly cause lookups to the
root nameservers for names in the top-level ai domain. You could do this with:

options ndots:2

BIND 8.2 introduced four new resolver options: attempts, timeout, rotate, and no-
check-names. attempts allows you to specify how many queries the resolver should
send to each nameserver in resolv.conf before giving up. If you think the new default
value, 2, is too low for your nameservers, you can boost it back to 4, the default
value before BIND 8.2.1, with:

options attempts:4

The maximum value is 5.

timeout allows you to specify the initial timeout for a query to a nameserver in resolv.
conf. The default value is five seconds. If you’d like your resolver to retransmit more
quickly, you can lower the timeout to two seconds with:

options timeout:2

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Resolver Configuration | 111

The maximum value is 30 seconds. For the second and successive rounds of queries,
the resolver still doubles the initial timeout and divides by the number of nameserv-
ers in resolv.conf.

rotate lets your resolver use all the nameservers in resolv.conf, not just the first one.
In normal operation, if your resolver’s first nameserver is healthy, it’ll service all your
resolver’s queries. Unless that nameserver gets very busy or goes down, your resolver
will never query the second or third nameservers in resolv.conf. If you’d like to
spread the load around, you can set:

options rotate

to have each instance of the resolver rotate the order in which it uses the nameserv-
ers in resolv.conf. In other words, an instance of the resolver still queries the first
nameserver in resolv.conf first, but for the next domain name it looks up, it queries
the second nameserver first, and so on.

Note that many programs can’t take advantage of this because they initialize the
resolver, look up a name, then exit. Rotation has no effect on repeated ping com-
mands, for example, because each ping process initializes the resolver, queries the
first nameserver in resolv.conf, and then exits before using the resolver again. Each
successive invocation of ping has no idea which nameserver the previous one used—
or even that ping was run earlier. But long-lived processes that send lots of queries,
such as a sendmail daemon, can take advantage of rotation.

Rotation can also make debugging trickier. If you use it, you’ll never be sure which
nameserver in resolv.conf your sendmail daemon queried when it received that funky
response.

no-check-names, finally, allows you to turn off the resolver’s name checking, which is
on by default.* These routines examine domain names in responses to make sure
they adhere to Internet host-naming standards, which allow only alphanumerics and
dashes in hostnames. You’ll need to set this if you want your users to be able to
resolve domain names with underscores or nonalphanumeric characters in them.

If you want to specify multiple options, combine them on a single line in resolv.conf,
like so:

options attempts:4 timeout:2 ndots:2

Comments
Also introduced with BIND 4.9 resolvers (and it’s about time, if you ask us), is the
ability to put comments in the resolv.conf file. Lines that begin with a pound sign or

* In all resolvers that support it, from BIND 4.9.4 on.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: Configuring Hosts

semicolon in the first column are interpreted as comments and ignored by the
resolver.

A Note on the 4.9 Resolver Directives
If you’re just moving to a BIND 4.9 resolver, be careful when using the new direc-
tives. You may still have older resolver code statically linked into programs on your
host. Often, this isn’t a problem because Unix resolvers ignore directives they don’t
understand. However, don’t count on all programs on your host obeying the new
directives.

If you’re running on a host with programs that include really old resolver code that
doesn’t understand the search directive (i.e., older than 4.8.3) but you still want to
use search with programs that can take advantage of it, here’s a trick: use both a
domain directive and a search directive in resolv.conf, with the domain directive first.
Old resolvers will read the domain directive and ignore the search directive because
they won’t recognize it. New resolvers will read the domain directive, but the search
directive will override its behavior.

Sample Resolver Configurations
So much for theory—let’s now go over what resolv.conf files look like on real hosts.
Resolver configuration needs vary depending on whether a host runs a local
nameserver, so we’ll cover both cases: hosts with local nameservers and hosts with
remote nameservers.

Resolver Only
We, as the administrators of movie.edu, have just been asked to configure a profes-
sor’s new standalone workstation, which doesn’t run a nameserver. Deciding which
domain the workstation belongs in is easy: there’s only movie.edu to choose from.
However, she is working with researchers at Pixar on new shading algorithms, so
perhaps it’d be wise to put pixar.com in her workstation’s search list. The search
directive:

search movie.edu pixar.com

makes movie.edu her workstation’s local domain name and searches pixar.com for
names not found in movie.edu.

The new workstation is on the 192.249.249/24 network, so the closest nameservers
are wormhole.movie.edu (192.249.249.1) and toystory.movie.edu (192.249.249.3). As
a rule, you should configure hosts to use the closest nameserver available first. (The
closest possible nameserver is a nameserver on the local host; the next closest is a
nameserver on the same subnet or network.) In this case, both nameservers are

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Sample Resolver Configurations | 113

equally close, but we know that wormhole.movie.edu is bigger (it’s a faster host, with
more capacity). So the first nameserver directive in resolv.conf should be:

nameserver 192.249.249.1

Since this particular professor is known to get awfully vocal when she has problems
with her computer, we’ll also add toystory.movie.edu (192.249.249.3) as a backup
nameserver. That way, if wormhole.movie.edu is down for any reason, the profes-
sor’s workstation can still get name service (assuming toystory.movie.edu and the rest
of the network are up).

The resolv.conf file ends up looking like this:

search movie.edu pixar.com
nameserver 192.249.249.1
nameserver 192.249.249.3

Local Nameserver
Next, we have to configure the university mail hub, postmanrings2x.movie.edu, to use
domain name service. postmanrings2x.movie.edu is shared by all groups in movie.edu.
We’ve recently configured a nameserver on the host to help cut down the load on the
other nameservers, so we should make sure the resolver queries the nameserver on the
local host first.

The simplest resolver configuration for this case is no configuration at all: don’t cre-
ate a resolv.conf file, and let the resolver default to using the local nameserver. The

Hidden Primaries
There’s another good reason to configure the resolver to query wormhole.movie.edu,
the secondary, first. Or rather there’s a good reason to configure the resolver not to
query the primary first. We edit the zone datafile on the primary on a daily basis, and
there’s always the chance that we’ll reload and find that we’ve made some mistake and
introduced a syntax error. If that happens, our primary may begin returning SERVFAIL
answers to queries in movie.edu or its reverse-mapping zones.

To avoid this situation, some organizations run their primary nameservers hidden. No
resolvers are configured to query the primary (in fact, in some cases the primary is con-
figured to reject queries from any IP addresses other than those of its secondaries). The
resolvers query the secondaries or caching-only nameservers. A syntax error in a zone
datafile won’t be transferred to the secondaries because the primary won’t answer
authoritatively until the error is fixed. The primary also isn’t listed in the NS records of
the zones it’s authoritative for. That way, an interruption in service caused by a typo
in named.conf or a zone datafile won’t cause a loss of service to the resolvers.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: Configuring Hosts

hostname should be set to the full domain name of the host so that the resolver can
determine the local domain name.

If we decide we need a backup nameserver—a prudent decision—we can use
resolv.conf. Whether we configure a backup nameserver depends largely on the
reliability of the local nameserver. A good implementation of the BIND nameserver
will keep running for longer than some operating systems, so there may be no need
for a backup. If the local nameserver has a history of problems, though—for exam-
ple, it hangs occasionally and stops responding to queries—it’s a good idea to add
a backup nameserver.

To add a backup nameserver, just list the local nameserver first in resolv.conf (at the
host’s IP address or the zero address, 0.0.0.0—either will do), then one or two
backup nameservers. Remember not to use the loopback address unless you know
your system’s TCP/IP stack doesn’t have the problem we mentioned earlier.

Since we’d rather be safe than sorry, we’re going to add two backup nameservers.
postmanrings2x.movie.edu is on the 192.249.249/24 network, too, so toystory.movie.edu
and wormhole.movie.edu are its closest nameservers (besides its own). We’ll reverse the
order in which they’re queried from the previous resolver-only example to help balance
the load between the two.* And because we’d rather not wait the full five seconds for the
resolver to try the second nameserver, we’ll lower the timeout to two seconds. The
resolv.conf file ends up looking like this:

domain movie.edu
nameserver 0.0.0.0
nameserver 192.249.249.3
nameserver 192.249.249.1
options timeout:2

Minimizing Pain and Suffering
Now that you’ve configured your host to use DNS, what’s going to change? Will
your users be forced to type long domain names? Will they have to change their mail
addresses and mailing lists?

Thanks to the search list, much of this will continue working as before. There are
some exceptions, though, and some notable differences in the way that some pro-
grams behave when they use DNS. We’ll try to cover all the common ones.

* Unless we were running a hidden primary. Of course, with our primary hidden, we’d probably want another
secondary to help answer queries.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Minimizing Pain and Suffering | 115

Differences in Service Behavior
As you’ve seen earlier in this chapter, programs such as telnet, ftp, rlogin, and rsh
apply the search list to domain name arguments that aren’t dot-terminated. That
means that if you’re in movie.edu (i.e., your local domain name is movie.edu, and
your search list includes movie.edu), you can type either:

% telnet misery

or:

% telnet misery.movie.edu

or even:

% telnet misery.movie.edu.

and get to the same place. The same holds true for the other services, too. There’s
one other behavioral difference you may benefit from: because a nameserver may
return more than one IP address when you look up an address, modern versions of
Telnet, FTP, and web browsers try to connect to the first address returned, and if the
connection is refused or times out, for example, they try the next, and so on:

% ftp tootsie
ftp: connect to address 192.249.249.244: Connection timed out
Trying 192.253.253.244...
Connected to tootsie.movie.edu.
220 tootsie.movie.edu FTP server (Version 16.2 Fri Apr 26
 18:20:43 GMT 1991) ready.
Name (tootsie: guest):

And remember that with the resolv.conf sortlist directive, you can even control the
order in which your applications try those IP addresses.

One oddball service is NFS. The mount command can handle domain names just
fine, and you can put domain names into /etc/fstab (your vendor may call it /etc/
checklist), too. But watch out for /etc/exports and /etc/netgroup. /etc/exports controls
which filesystems you allow various clients to NFS-mount. You can also assign a
name to a group of hosts in netgroup and then allow them access via exports using
the name of the group.

Unfortunately, older versions of NFS don’t really use DNS to check exports or
netgroup; the client tells the NFS server its identity in a Remote Procedure Call (RPC)
packet. Consequently, the client’s identity is whatever the client claims it is, and the
identity a host uses in Sun RPC is the local host’s hostname. So the name you use in
either file needs to match the client’s hostname, which isn’t necessarily its domain
name.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: Configuring Hosts

Electronic Mail
Some electronic mail programs, including sendmail, also don’t work as expected;
sendmail doesn’t use the search list quite the same way that other programs do.
Instead, when configured to use a nameserver, it uses a process called canonicaliza-
tion to convert names in electronic mail addresses to fully qualified domain names.

In canonicalization, sendmail applies the search list to a name and looks up data of
type ANY, which matches any type of record. sendmail uses the same rule newer
resolvers do: if the name to canonicalize has at least one dot in it, check the name as-
is first. If the nameserver queried finds a CNAME record (an alias), sendmail replaces
the name looked up with the canonical name the alias points to and canonicalizes
that (in case the target of the alias is itself an alias). If the nameserver queried finds an
A record (an address), sendmail uses the domain name that resolved to the address as
the canonical name. If the nameserver doesn’t find an address but does find one or
more MX records, one of the following actions is performed:

• If the search list has not yet been appended, sendmail uses the domain name that
resolved to the MX record(s) as the canonical name.

• If one or more elements of the search list have been appended, sendmail notes
that the domain name is a potential canonical name and continues appending
elements of the search list. If a subsequent element of the search list turns up an
address, the domain name that turned up the address is the canonical name.
Otherwise, the domain name that found the first MX record is used as the
canonical name.*

sendmail uses canonicalization several times when processing an SMTP message; it
canonicalizes the destination address and several fields in the SMTP headers.†

sendmail also sets macro $w to the canonicalized hostname when the sendmail dae-
mon starts up. So even if you set your hostname to a short, single-part name,
sendmail canonicalizes the hostname using the search list defined in resolv.conf.
sendmail then adds macro $w and all aliases for $w encountered during canonicaliza-
tion to class $=w, the list of the mail server’s other names.

This is important because class $=w names are the only names sendmail recognizes, by
default, as the local host’s name. sendmail will attempt to forward mail that’s
addressed to a domain name it thinks isn’t local. So, for example, unless you configure
sendmail to recognize all of the host’s aliases (by adding them to class w or fileclass w,

* All this complexity is necessary to deal with wildcard MX records, which we’ll discuss in Chapter 17.

† Some older versions of sendmail use a different technique for doing canonicalization: they apply the search
list and query the nameserver for CNAME records for the name in question. CNAME matches only CNAME
records. If a record is found, the name is replaced with the domain name on the right side of the CNAME
record.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Minimizing Pain and Suffering | 117

as we showed in Chapter 5), the host will try to forward messages that arrive addressed
to anything other than the canonical domain name.

There’s another important implication of class $=w, which is that sendmail recog-
nizes only the contents of class $=w as the local host’s name in MX lists. Conse-
quently, if you use anything other than a name you’re sure is in $=w on the right side
of an MX record, you run the risk that the host will not recognize it. This can cause
mail to loop and then be returned to the sender.

One last note on sendmail: when you start running a nameserver, if you’re running
an older version of sendmail (before version 8), you should set the I option in your
sendmail.cf file. Option I determines what sendmail does if a lookup for a destination
host fails. When using /etc/hosts, a failed lookup is fatal. If you search the host table
once for a name and don’t find it, it’s doubtful it’ll miraculously appear later, so the
mailer may as well return the message. When using DNS, however, a lookup failure
may be temporary, because of intermittent networking problems, for example. Set-
ting option I instructs sendmail to queue mail if a lookup fails instead of returning it
to the sender. Just add OI to your sendmail.cf file to set option I.

Updating .rhosts, hosts.equiv, etc.
Once you start using DNS, you may also need to disambiguate hostnames in your host’s
authorization files. Entries that use simple, one-part hostnames will now be assumed to
be in the local domain. For example, the lpd.allow file on wormhole.movie.edu might
include:

wormhole
toystory
monsters-inc
shrek
mash
twins

If we move mash and twins into the comedy.movie.edu zone, though, they won’t
be allowed to access lpd; the entries in lpd.allow allow only mash.movie.edu and
twins.movie.edu. So we have to add the proper domain names to hostnames out-
side the lpd server’s local domain:

wormhole
toystory
monsters-inc
shrek
mash.comedy.movie.edu
twins.comedy.movie.edu

Here are some other files you should check for hostnames in need of domain-ification:

hosts.equiv
.rhosts
X0.hosts
sendmail.cf

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: Configuring Hosts

Sometimes, simply running these files through a canonicalization filter—a program
that translates hostnames to domain names using the search list—is enough to dis-
ambiguate them. Here’s a very short canonicalization filter in Perl to help you out:

#!/usr/bin/perl -ap
Expects one hostname per line, in the first field (a la .rhosts,
X0.hosts)

s/$F[0]/$d/ if ($d)=gethostbyname $F[0];

Providing Aliases
Even if you cover all your bases and convert all your .rhosts, hosts.equiv, and
sendmail.cf files after you configure your host to use DNS, your users will still have to
adjust to using domain names. Hopefully, their confusion will be minimal and more
than offset by the benefits of DNS.

One way to make your users’ lives less confusing after configuring DNS is to provide
aliases for well-known hosts that are no longer reachable using their familiar names.
For example, our users are accustomed to typing telnet doofy or rlogin doofy to get to
the bulletin board system run by the movie studio on the other side of town. Now
they’ll have to start using doofy’s full domain name, doofy.maroon.com. But most of
our users don’t know the full domain name, and it’ll be some time before we can tell
all of them and they get used to it.

Luckily, BIND lets you define aliases for your users. All we need to do is set the envi-
ronment variable HOSTALIASES to the pathname of a file that contains mappings
between aliases and domain names. For example, to set up a system-wide alias for
doofy, we can set HOSTALIASES to /etc/host.aliases in the system’s shell startup files
and add:

doofy doofy.maroon.com

to /etc/host.aliases. The alias file format is simple: the alias starts the line in column
one, followed by whitespace and then the domain name that corresponds to the
alias. The domain name is written without a trailing dot, and the alias can’t contain
any dots.

Now when our users type telnet doofy or rlogin doofy, the resolver transparently sub-
stitutes doofy.maroon.com for doofy in the nameserver query. The message the users
see now looks something like:

Trying...
Connected to doofy.maroon.com.
Escape character is '^]'.
IRIX System V.3 (sgi)
login:

If the resolver falls back to using /etc/hosts, though, our HOSTALIASES won’t have
any effect. So we should also keep a similar alias in /etc/hosts.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Additional Configuration Files | 119

With time, and perhaps a little instruction, the users will start to associate the full
domain name they see in the telnet banner with the bulletin board they use.

With HOSTALIASES, if you know the domain names your users are likely to have
trouble with, you can save them a little frustration. If you don’t know which hosts
they’re trying to get to, you can let your users create their own alias files, and have
each user point the HOSTALIASES variable in his shell startup file to his personal
alias file.

Additional Configuration Files
In addition to configuring the resolver for DNS queries, you may be able to config-
ure which service is used to obtain name and address information. The most com-
mon file used by vendors is nsswitch.conf, which we will cover here. Some vendors
use irs.conf or netsvc.conf. Check your system’s manual pages for details on these
files.

nsswitch.conf
/etc/nsswitch.conf is used to configure the order in which a number of different
sources are checked. You select the database you want to configure by specifying a
keyword. For naming services, the database name is hosts. The possible sources for
the hosts database are dns, nis, nisplus, and files (which refers to /etc/hosts in this
case). Configuring the order in which the sources are consulted is a simple matter of
listing them after the database name in that order. For example:

hosts: dns files

has the resolver try DNS (i.e., query a nameserver) first, then check /etc/hosts. By
default, resolution moves from one source to the next (e.g., falls back to /etc/hosts
from DNS) if the first source isn’t available or the name being looked up isn’t found.
You can modify this behavior by specifying a condition and an action in square brack-
ets between the sources. The possible conditions are:

UNAVAIL
The source hasn’t been configured (in DNS’s case, there is no resolv.conf file,
and there is no nameserver running on the local host).

NOTFOUND
The source can’t find the name in question (for DNS, the name looked up or the
type of data looked up doesn’t exist).

TRYAGAIN
The source is busy, but might respond next time (for example, the resolver has
timed out while trying to look up a name).

SUCCESS
The requested name was found in the specified source.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 6: Configuring Hosts

For each criterion, you can specify that the resolver should either continue and fall
back to the next source or simply return. The default action is return for SUCCESS
and continue for all the other conditions.

For example, if you want your resolver to stop looking up a domain name if it
receives an NXDOMAIN (no such domain name) answer, but to check /etc/hosts if
DNS isn’t available, you can use:

hosts: dns [NOTFOUND=return] files

The Windows XP Resolver
We’ll cover the resolver in Windows XP because most modern Windows resolvers—
Windows 2000, Windows Server 2003—look similar and act similarly. This resolver
can be a little tough to find; its configuration is well hidden. To get to it, click on
Start, then Control Panel, then Network and Internet Connections, then Network Con-
nections. This brings up the window shown in Figure 6-1.

Right-click on Local Area Connection and choose Properties. This brings up a win-
dow like the one shown in Figure 6-2.

Double-click on Internet Protocol (TCP/IP). This posts the basic resolver configura-
tion window shown in Figure 6-3.

If you check the Obtain DNS server address automatically radio button, the resolver
queries the nameservers that the local DHCP server tells it to use. If you check the
Use the following DNS server addresses radio button, the resolver queries the
nameservers you specify in the Preferred DNS server and Alternate DNS server fields.*

Figure 6-1. Windows XP Network Connections

* More kudos to Microsoft for clarifying its labels. In previous versions of Windows, nameservers were some-
times labeled Primary DNS and Secondary DNS. This sometimes misled users into listing the primary and
slave (secondary) nameservers for some zone or another in those fields. Besides, “DNS” is an abbreviation
for “Domain Name System,” not “domain nameserver.”

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Windows XP Resolver | 121

To get at more advanced resolver configuration, click on (what else?) the Advanced...
button. Click on the DNS tab, and you’ll see the window in Figure 6-4.

If you’ve specified the addresses of nameservers to query in the basic resolver config-
uration window, you’ll see them again at the top of this window, under DNS server
addresses, in order of use:. The buttons allow you to add, edit, remove, and reorder
the nameservers listed. There doesn’t seem to be a limit to the number of nameserv-
ers you can list, but it doesn’t make much sense to list more than three.

The Windows XP resolver uses an aggressive retransmission algorithm first introduced
in Windows NT 4.0 SP4: the resolver sends its first query to the first nameserver in the
DNS Server Search Order. However, the resolver waits only one second before retrans-
mitting the query and retransmits simultaneously to the first nameserver configured for
each of the network adapters on the host. If after two more seconds the resolver
doesn’t receive a response, it simultaneously queries all the nameservers configured for
all of the host’s adapters—statically configured, configured via DHCP, whatever. If
none of those nameservers responds in four seconds, the resolver retransmits to all the
nameservers again. It keeps doubling the timeout and retransmitting for a total of 4
retransmissions and 15 seconds. (See the Windows 2000 DNS white paper, at http://
www.microsoft.com/windows2000/docs/w2kdns.doc, for details.)

Figure 6-2. Windows XP Local Area Connection Properties

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 6: Configuring Hosts

Since it’s possible, in these days of split namespaces, to get two different answers
from two different nameservers, the Windows XP resolver temporarily ignores nega-
tive answers (no such domain name and no such data) while querying multiple
nameservers. Only if it receives a negative answer from a nameserver configured for
each interface does it return a negative answer. If the resolver receives even a single
positive answer from a nameserver, it returns that.

Checking the Append primary and connection specific DNS suffixes radio button has
the resolver use the primary DNS suffix and the connection-specific DNS suffixes as
the search list. The DNS suffix specific to this connection is set in this window, in
the field to the right of DNS suffix for this connection, or via a DHCP option sent by
the DHCP server. The primary DNS suffix, on the other hand, is set in the Control
Panel by clicking on System (from the Classic view), choosing the Computer Name
tab, then clicking on Change . . . , then clicking on More This brings up the win-
dow shown in Figure 6-5.

Figure 6-3. Basic Windows XP resolver configuration

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Windows XP Resolver | 123

Figure 6-4. Advanced Windows XP resolver configuration

Figure 6-5. Configuring the primary DNS suffix in Windows XP

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 6: Configuring Hosts

To set the Primary DNS suffix of this computer, enter it in the field below that label.
By default, on computers that are members of an Active Directory domain, the pri-
mary DNS suffix is set to the AD domain’s name.

The checkbox labeled Append parent suffixes of the primary DNS suffix (see
Figure 6-4) configures the resolver to use a BIND 4.8.3–style search list derived from
the primary DNS suffix. So if your primary DNS suffix is fx.movie.edu, the search list
will contain fx.movie.edu and movie.edu. Note that connection-specific DNS suffixes
aren’t “devolved” (in Microsoft’s words) into a search list, but if they’re configured,
connection-specific suffixes are included in the search list.

Checking the Append these DNS suffixes (in order) button configures the resolver to
use the search list specified in the fields below. As with the list of nameservers, you
can add, edit, remove, and reorder these with the buttons and arrows.

Finally, it’s worth mentioning the two checkboxes at the bottom of the window. Reg-
ister this connection’s addresses in DNS determines whether this client will try to use
dynamic update to add an A record mapping its name to the address of this connec-
tion, and a PTR record mapping the address back to a name if it’s a statically config-
ured address. Use this connection’s suffix in DNS registration controls whether that
update will use the domain name associated with this connection or the primary
DNS suffix for this computer.

This feature—automatic registration—is designed to ensure that the domain name of
your Windows client always points to its current IP address, even if that address was
delivered by a DHCP server. (For DHCP clients, the DHCP server actually adds the
PTR record mapping the client’s IP address back to its domain name.) It’s also the
death knell of WINS, the Windows Internet Name Service, the proprietary—and
much maligned—Microsoft NetBIOS naming service. Once all your clients are run-
ning modern versions of Windows, they’ll all use dynamic update to keep their
name-to-address mappings current, and you can drive a wooden stake through the
heart of WINS. We discuss registration in more detail in Chapter 17.

Allowing clients to dynamically update zones presents certain, er, challenges,
though, which we’ll explore in Chapter 17.

Caching
The Windows XP resolver stores every record it receives in a shared cache available
to all programs on the system. The resolver also obeys the TTL field of resource
records it caches, up to a maximum of 24 hours by default. So if a record specifies a

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Windows XP Resolver | 125

TTL longer than that, the resolver rounds down to 24 hours. This maximum TTL is
configurable with a Registry setting:

MaxCacheTtl
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD

Default value: 86,400 seconds (= 24 hours)

The Windows XP resolver also supports negative caching. Windows XP caches nega-
tive responses for 15 minutes by default. This negative caching timeout is also config-
urable with a Registry setting:

MaxNegativeCacheTtl
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD

Default value: 900 seconds (= 15 minutes)

To disable negative caching altogether, set this value to 0.

To view the resolver’s cache, use ipconfig /displaydns. To clear the cache, type ipcon-
fig /flushdns. To disable caching on Windows XP, you can use the command:

C:\> net stop dnscache

However, this lasts only until the next reboot. To disable caching permanently, go to
Services (in the Administrative Tools program group) and set the DNS Client ser-
vice’s Startup type to Disabled.

Subnet Prioritization
This feature is analogous to the BIND resolver’s address-sorting feature. When the
resolver receives multiple address records for the same domain name, it examines the
IP address in each record and adjusts the order of the records before returning the list
to the calling application: any records with IP addresses on the same subnets as the
host on which the resolver is running are moved to the top of the list. Since most
applications use addresses in the order returned by the resolver, this behavior causes
traffic to remain on local networks.

For example, Movie U. has two mirrored web servers on two different subnets:

www.movie.edu. IN A 192.253.253.101
www.movie.edu. IN A 192.249.249.101

Let’s say the resolver on toystory.movie.edu (192.249.249.3) sends a query and
receives these records. It sorts the record with address 192.249.249.101 to the top of
the list because toystory shares a network with that address.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 6: Configuring Hosts

Note that this behavior defeats the round-robin feature implemented by most
nameservers. Round robin refers to the nameserver behavior of rotating the order of
multiple address records in successive responses to distribute the load among the
servers (again taking advantage of the behavior of most applications to use the first
address in the list returned by the resolver). With subnet prioritization enabled, the
order of the records is subject to shuffling by the resolver. You can disable subnet
prioritization with a Registry setting:

PrioritizeRecordData
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD
Range: 0 - 1
Default value: 1 (Subnet prioritization enabled)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

127

Chapter 7 CHAPTER 7

Maintaining BIND7

“Well, in our country,” said Alice, still panting a little,
“you’d generally get to somewhere else—if you ran

very fast for a long time as we’ve been doing.”
“A slow sort of country!” said the Queen. “Now, here,
you see, it takes all the running you can do, to keep in

the same place. If you want to get somewhere else, you
must run at least twice as fast as that!”

This chapter discusses a number of related topics pertaining to nameserver mainte-
nance. We’ll talk about controlling nameservers, modifying zone datafiles, and keep-
ing the root hints file up to date. We’ll list common syslog error messages and
explain the statistics BIND keeps.

This chapter doesn’t cover troubleshooting problems. Maintenance involves keeping
your data current and watching over your nameservers as they operate. Trouble-
shooting involves putting out fires—those little DNS emergencies that flare up peri-
odically. Firefighting is covered in Chapter 14.

Controlling the Nameserver
Traditionally, administrators have controlled the BIND nameserver, named, with
Unix signals. The nameserver interprets the receipt of certain signals as instructions
to take particular actions, such as reloading all the primary zones that have changed.
However, there are a limited number of signals available, and signals offer no means
of passing along additional information such as the domain name of a particular
zone to reload.

In BIND 8.2, the ISC introduced a method of controlling the nameserver by sending
messages to it on a special control channel. The control channel can be either a Unix
domain socket or a TCP port that the nameserver listens on for messages. Because the
control channel isn’t limited to a finite number of discrete signals, it’s more flexible

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 7: Maintaining BIND

and powerful. The ISC says that the control channel is the way of the future and that
administrators should use it, rather than signals, for all nameserver management.

You send messages to a nameserver via the control channel using a program called
ndc (in BIND 8) or rndc (in BIND 9). Prior to BIND 8.2, ndc was simply a shell script
that allowed you to substitute convenient arguments (such as reload) for signals
(such as HUP). We’ll talk about that version of ndc later in this chapter.

ndc and controls (BIND 8)
Executed without arguments, ndc will try to communicate with a nameserver run-
ning on the local host by sending messages through a Unix domain socket. The
socket is usually called /var/run/ndc, though some operating systems use a different
pathname. The socket is normally owned by root and is readable and writable only
by the owner. BIND 8.2 and later nameservers create the Unix domain socket when
they start up. You can specify an alternate pathname or permissions for the socket
using the controls statement. For example, to change the socket’s path to /etc/ndc and
group ownership to named, and to make the socket readable and writable by both
owner and group, you can use:

controls {
 unix "/etc/ndc" perm 0660 owner 0 group 53; // group 53 is "named"
};

The permission value must be specified as an octal quantity (with a leading zero to
indicate its octalness). If you’re not familiar with this format, see the chmod(1) man-
ual page. The owner and group values must also be numeric.

The ISC recommends, and we agree, that you restrict access to the Unix domain
socket to administrative personnel authorized to control the nameserver.

You can also use ndc to send messages across a TCP socket to a nameserver, possi-
bly remote from the host that you’re running ndc on. To use this mode of operation,
run ndc with the –c command-line option, specifying the name or address of the
nameserver, a slash, and the port on which it’s listening for control messages. For
example:

ndc -c 127.0.0.1/953

To configure your nameserver to listen on a particular TCP port for control mes-
sages, use the controls statement:

controls {
 inet 127.0.0.1 port 953 allow { localhost; };
};

By default, BIND 8 nameservers don’t listen on any TCP ports. BIND 9 nameservers
listen on port 953 by default, so we’re using that port here. We’re configuring the
nameserver to listen only on the local loopback address for messages, and to allow
only messages from the local host. Even this isn’t especially prudent because anyone

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Controlling the Nameserver | 129

with a login on the local host can control the nameserver. If we felt even more impru-
dent (and we don’t advise this), we could widen the allow-access list and let the
nameserver listen on all local network interfaces by specifying:

controls {
 inet * port 953 allow { localnets; };
};

ndc supports two modes of operation, interactive and noninteractive. In noninterac-
tive mode, you specify the command to the nameserver on the command line. For
example:

ndc reload

If you don’t specify a command on the command line, you enter interactive mode:

ndc
Type help -or- /h if you need help.
ndc>

/h gives you a list of commands that ndc (not the nameserver) understands. These
apply to ndc’s operation, not the nameserver’s:

ndc> /h
 /h(elp) this text
 /e(xit) leave this program
 /t(race) toggle tracing (protocol and system events)
 /d(ebug) toggle debugging (internal program events)
 /q(uiet) toggle quietude (prompts and results)
 /s(ilent) toggle silence (suppresses nonfatal errors)
ndc>

For example, the /d command induces ndc to produce debugging output (e.g., what
it’s sending to the nameserver and what it’s getting in response). It has no effect on
the nameserver’s debugging level. For that, see the debug command, described later.

Note that /e, not /x or /q, exits ndc. That’s a little counterintuitive.

help tells you the commands at your disposal. These control the nameserver:

ndc> help
getpid
status
stop
exec
reload [zone] ...
reconfig [-noexpired] (just sees new/gone zones)
dumpdb
stats
trace [level]
notrace
querylog
qrylog
help
quit
ndc>

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 7: Maintaining BIND

There are two commands that aren’t listed here, though you can still use them: start
and restart. They’re not listed because ndc is telling you what commands the
nameserver—as opposed to ndc—understands. The nameserver can’t perform a start
command because to do so it would need to be running (and if it’s running, it
doesn’t need to be started). It can’t perform a restart command either, because if it
exited, it would have no way to start a new instance of itself (it wouldn’t be around
to do it). None of this prevents ndc from doing a start or restart, though.

Here’s what those commands do:

getpid
Prints the nameserver’s current process ID.

status
Prints lots of useful status information about the nameserver, including its ver-
sion, its debug level, the number of zone transfers running, and whether query
logging is on.

start
Starts the nameserver. If you need to start named with any command-line argu-
ments, you can specify these after start. For example, start –c /usr/local/etc/
named.conf.

stop
Causes the nameserver to exit, writing dynamic zones to their zone datafiles.

restart
Stops and then starts the nameserver. As with start, you can specify command-
line arguments for named after the command.

exec
Stops and then starts the nameserver. Unlike restart, however, you can’t specify
command-line options for named; the nameserver just starts a new copy of itself
with the same command-line arguments.

reload
Reloads the nameserver. Send this command to a primary nameserver after mod-
ifying its configuration file or one or more of its zone datafiles. You can also
specify one or more domain names of zones as arguments to reload; if you do,
the nameserver will reload only these zones.

reconfig [–noexpired]
Tells the nameserver to check its configuration file for new or deleted zones.
Send this command to a nameserver if you’ve added or deleted zones but haven’t
changed any existing zones’ data. Specifying the –noexpired flag tells the
nameserver not to bother you with error messages about zones that have
expired. This can come in handy if your nameserver is authoritative for thou-
sands of zones and you want to avoid seeing a flurry of expiration messages you
already know about.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Controlling the Nameserver | 131

dumpdb
Dumps a copy of the nameserver’s internal database to named_dump.db in the
nameserver’s current directory.

stats
Appends the nameserver’s statistics to named.stats in the nameserver’s current
directory.

trace [level]
Appends debugging information to named.run in the nameserver’s current direc-
tory. Specifying higher debug levels increases the amount of detail in the debug-
ging information. For information on what is logged at each level, see
Chapter 13.

notrace
Turns off debugging.

querylog (or qrylog)
Toggles logging all queries with syslog. Logging takes place at priority LOG_INFO.
named must be compiled with QRYLOG defined (it’s defined by default).

quit
Ends the control session.

rndc and controls (BIND 9)
BIND 9, like BIND 8, uses the controls statement to determine how the nameserver
listens for control messages. The syntax is the same, except that only the inet sub-
statement is allowed. (BIND 9.3.2 doesn’t support Unix domain sockets for the con-
trol channel yet, and the ISC suggests BIND 9 probably never will.)

With BIND 9, you can leave out the port specification, and the nameserver will
default to listening on port 953. You must also add a keys specification:

controls {
 inet * allow { any; } keys { "rndc-key"; };
};

This determines which cryptographic key rndc users must authenticate themselves
with to send control messages to the nameserver. If you leave the keys specification
out, you’ll see this message after the nameserver starts:

Jan 13 18:22:03 terminator named[13964]: type 'inet' control channel
has no 'keys' clause; control channel will be disabled

The key or keys specified in the keys substatement must be defined in a key statement:

key "rndc-key" {
 algorithm hmac-md5;
 secret "Zm9vCg==";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 7: Maintaining BIND

The key statement can go directly in named.conf, but if your named.conf file is world-
readable, it’s safer to put it in a different file that’s not world-readable and include
that file in named.conf:

include "/etc/rndc.key";

The only algorithm currently supported is HMAC-MD5, a technique for using the
fast MD5 secure hash algorithm to do authentication.* The secret is simply the base-
64 encoding of a password that named and authorized rndc users will share. You can
generate the secret using programs such as mmencode or dnssec-keygen from the
BIND distribution, as described in Chapter 11.

For example, you can use mmencode to generate the base-64 encoding of foobarbaz:

% mmencode
foobarbaz
CmZvb2JhcmJh

To use rndc, you need to create an rndc.conf file to tell rndc which authentication
keys to use and which nameservers to use them with. rndc.conf usually lives in /etc.
Here’s a simple rndc.conf file:

options {
 default-server localhost;
 default-key "rndc-key";
};

key "rndc-key" {
 algorithm hmac-md5;
 secret "Zm9vCg==";
};

The syntax of the file is very similar to the syntax of named.conf. In the options state-
ment, you define the default nameserver to send control messages to (which you can
override on the command line) and the name of the default key to present to remote
nameservers (which you can also override on the command line).

The syntax of the key statement is the same as that used in named.conf, described
earlier. The name of the key in rndc.conf, as well as the secret, must match the key
definition in named.conf.

Remember that since you’re storing keys (which are essentially pass-
words) in rndc.conf and named.conf, you should make sure that nei-
ther file is readable by users who aren’t authorized to control the
nameserver.

* See RFCs 2085 and 2104 for more information on HMAC-MD5.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Controlling the Nameserver | 133

If your version of BIND comes with rndc-confgen, you can let the tool do most of the
work for you. Simply run:

rndc-confgen > /etc/rndc.conf

Here is what you’ll see in /etc/rndc.conf:

Start of rndc.conf
key "rndc-key" {
 algorithm hmac-md5;
 secret "4XErjUEy/qgnDuBvHohPtQ==";
};

options {
 default-key "rndc-key";
 default-server 127.0.0.1;
 default-port 953;
};
End of rndc.conf

Use with the following in named.conf,
adjusting the allow list as needed:
#
key "rndc-key" {
algorithm hmac-md5;
secret "4XErjUEy/qgnDuBvHohPtQ==";
};
#
controls {
inet 127.0.0.1 port 953
allow { 127.0.0.1; } keys { "rndc-key"; };
};
End of named.conf

As indicated by the comment, the second half of this file belongs in /etc/named.conf.
Move those lines to /etc/named.conf and remove the comment character at the begin-
ning of the line. As mentioned earlier, you may want to keep the key in a file outside
of /etc/named.conf for security reasons. Also, notice that the controls substatement
allows access only to 127.0.0.1. You may need to adjust this list.

Using rndc to control multiple servers

If you’re using rndc to control only a single nameserver, its configuration is straightfor-
ward. You define an authentication key using identical key statements in named.conf
and rndc.conf. Then you define your nameserver as the default server to control with
the default-server substatement in the rndc.conf options statement, and define the key
as the default key using the default-key substatement. Then run rndc as:

rndc reload

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 7: Maintaining BIND

If you have multiple nameservers to control, you can associate each with a different
key. Define the keys in separate key statements, and then associate each key with a
different server in a server statement:

server localhost {
 key "rndc-key";
};

server wormhole.movie.edu {
 key "wormhole-key";
};

Then run rndc with the –s option to specify the server to control:

rndc -s wormhole.movie.edu reload

If you haven’t associated a key with a particular nameserver, you can still specify
which key to use on the command line with the –y option:

rndc -s wormhole.movie.edu -y rndc-wormhole reload

Finally, if your nameserver is listening on a nonstandard port for control messages (i.e.,
a port other than 953), you must use the –p option to tell rndc which port to connect to:

rndc -s toystory.movie.edu -p 54 reload

New rndc commands

In BIND 9.0.0, rndc supported only the reload command. BIND 9.3.2 supports most
of the ndc commands, plus many new ones. Here’s a list and brief descriptions of
each:

reload
Same as the ndc command.

refresh zone
Schedules an immediate refresh for the specified zone (i.e., an SOA query to the
zone’s master).

retransfer zone
Immediately retransfers the specified zone without checking the serial number.

freeze zone
Suspends dynamic updates to the specified zone. Covered in Chapter 10.

thaw zone
Resumes dynamic updates to the specified zone. Covered in Chapter 10.

reconfig
Same as the ndc command.

stats
Same as the ndc command.

querylog
Same as the ndc command.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Controlling the Nameserver | 135

dumpdb
Same as the ndc command. Also allows you to specify whether to dump just
cache with the –cache option, authoritative zones with the –zones option, or
both with the –all option.

stop
Same as the ndc command.

halt
Same as stop, but doesn’t save pending dynamic updates.

trace
Same as the ndc command.

notrace
Same as the ndc command.

flush
Flushes (empties) the nameserver’s cache.

flushname name
Flushes all records attached to the specified domain name from the nameserver’s
cache.

status
Same as the ndc command.

recursing
Dump information about the recursive queries currently being processed to the
file named.recursing in the current working directory.

Using Signals
Now, back in the old days, all we had to control the nameserver with were signals. If
you’re stuck in the past (with a version of BIND older than 8.2), you need to use sig-
nals to manage your nameserver. The following table is a list of the signals you can
send to a nameserver; it includes which ndc command each is equivalent to. If you
have the shell script version of ndc (from BIND 4.9 to 8.1.2), you don’t have to pay
attention to the signal names because ndc will translate the commands into the
appropriate signals. With BIND 9, you must use rndc for all activities (except reload-
ing and stopping the server) because the signal mechanism for other features is no
longer supported.

Signal BIND 8 signals ndc equivalent BIND 9 signals rndc equivalent

HUP Reloads the server ndc reload Reloads the server rndc reload

INT Dumps the database ndc dumpdb Stops the server rndc dumpdb

ILL Dumps the statistics ndc stats Not supported rndc stats

USR1 Increments the trace level ndc trace Not supported rndc trace

USR2 Turns off tracing ndc notrace Not supported rndc notrace

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 7: Maintaining BIND

So, to toggle query logging with an older version of ndc, you can use:

ndc querylog

just as you would with the newer version of ndc. Under the hood, though, this ndc is
tracking down named’s PID and sending it the WINCH signal.

If you don’t have ndc, you’ll have to do what ndc does by hand: find named’s process
ID and send it the appropriate signal. The BIND nameserver leaves its process ID in
a disk file called the PID file, making it easier to chase the critter down; you don’t
have to use ps. The most common path for the PID file is /var/run/named.pid. On
some systems, the PID file is /etc/named.pid. Check the named manual page to see
which directory named.pid is in on your system. Since the nameserver’s process ID is
the only thing in the PID file, sending a HUP signal can be as simple as:

kill -HUP `cat /var/run/named.pid`

If you can’t find the PID file, you can always find the process ID with ps. On a BSD-
based system, use:

% ps -ax | grep named

On a SYS V–based system, use:

% ps -ef | grep named

However, you may find more than one named process running if you use ps on some
platforms. For example, multithreaded builds of named running on Linux show up
as multiple processes. If the ps output shows multiple nameservers, you can use the
pstree program to determine which is the parent. This may seem like stating the obvi-
ous, but you should send signals only to the parent nameserver process.

Updating Zone Datafiles
Something is always changing on your network—new workstations arrive, you
finally retire or sell the relic, or you move a host to a different network. Each change
means that zone datafiles must be modified. Should you make the changes manu-
ally? Or should you wimp out and use a tool to help you?

First, we’ll discuss how to make the changes manually. Then, we’ll talk about a tool
to help out: h2n. Actually, we recommend that you use a tool to create the zone
datafiles; we were kidding about that wimp stuff, okay? Or at least use a tool to
increment the serial number for you. The syntax of zone datafiles lends itself to mak-
ing mistakes. It doesn’t help that the address and pointer records are in different
files, which must agree with each other. However, even when you use a tool, it is

WINCH Toggles query logging ndc querylog Not supported rndc querylog

TERM Stops the server ndc stop Stops the server rndc stop

Signal BIND 8 signals ndc equivalent BIND 9 signals rndc equivalent

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Updating Zone Datafiles | 137

critical to know what goes on when the files are updated, so we’ll start with the man-
ual method.

Adding and Deleting Hosts
After creating your zone datafiles initially, it should be fairly apparent what you need
to change when you add a new host. We’ll go through the steps here in case you
weren’t the one to set up those files or if you’d just like a checklist to follow. Make
these changes to your primary nameserver’s zone datafiles. If you make the changes
to your slave nameserver’s backup zone datafiles, the slave’s data will change, but the
next zone transfer will overwrite it.

• Update the serial number in db.DOMAIN. The serial number is likely to be at the
top of the file, so it’s easy to do first and reduces the chance that you’ll forget.

• Add any A (address), CNAME (alias), and MX (mail exchanger) records for the
host to the db.DOMAIN file. We added the following resource records to the
db.movie.edu file when a new host (cujo) was added to our network:

cujo IN A 192.253.253.5 ; cujo's internet address
 IN MX 10 cujo ; if possible, mail directly to cujo
 IN MX 20 toystory ; otherwise, deliver to our mail hub

• Update the serial number and add PTR records to each db.ADDR file for which
the host has an address. cujo only has one address, on network 192.253.253/24;
therefore, we added the following PTR record to the db.192.253.253 file:

5 IN PTR cujo.movie.edu.

• Reload the primary nameserver; this forces it to load the new information:
rndc reload

• If you have a snazzy BIND 9.1 or newer nameserver, you can reload just the zone
you changed:

rndc reload movie.edu

The primary nameserver will load the new zone data. Slave nameservers will load this
new data sometime within the time interval defined in the SOA record for refreshing
their data. With version 8 or 9 masters and slaves, the slaves pick up the new data
quickly because the primary notifies the slaves of changes within 15 minutes of the
change. To delete a host, remove the resource records from db.DOMAIN and from
each db.ADDR file pertaining to that host. Increment the serial number in each zone
datafile you changed and reload your primary nameserver.

SOA Serial Numbers
Each zone datafile has a serial number. Every time you change the data in a zone
datafile, you must increment the serial number. If you don’t increment the serial
number, slave nameservers for the zone won’t pick up the updated data.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 7: Maintaining BIND

Incrementing the serial number is simple. If the original zone datafile had this SOA
record:

movie.edu. IN SOA toystory.movie.edu. al.movie.edu. (
 100 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative caching TTL

the updated zone datafile would have this SOA record:

movie.edu. IN SOA toystory.movie.edu. al.movie.edu. (
 101 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative caching TTL

This simple change is the key to distributing the zone data to all your slaves. Failing
to increment the serial number is the most common mistake made when updating a
zone. The first few times you make a change to a zone datafile, you’ll remember to
update the serial number because the process is new, and you’re paying close atten-
tion. After modifying the zone datafile becomes second nature, you’ll make some
“quickie” little change, forget to update the serial number...and none of the slaves
will pick up the new zone data. That’s why you should use a tool that updates the
serial number for you! It could be h2n or something you write yourself, but it’s a
good idea to use a tool.

There are several good ways to manage serial numbers. The most obvious is just to
use a counter: increment the serial number by one each time you modify the file.
Another method is to derive the serial number from the date. For example, you can
use the eight-digit number formed by YYYYMMDD. Suppose today is January 15,
2005. In this form, your serial number would be 20050115. This scheme allows only
one update per day, though, and that may not be enough. Add another two digits to
this number to indicate how many times the file has been updated that day. The first
number for January 15, 2005 is then 2005011500. The next modification that day
changes the serial number to 2005011501. This scheme allows 100 updates per day.
It also lets you know when you last incremented the serial number in the zone data-
file. h2n generates the serial number from the date if you use the –y option. What-
ever scheme you choose, the serial number must fit in a 32-bit, unsigned integer.

Starting Over with a New Serial Number
What do you do if the serial number on one of your zones accidentally becomes very
large and you want to change it back to a more reasonable value? There is a way that
works with all versions of BIND, a way that works with version 4.8.1 and later, and
another that works with 4.9 and later.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Updating Zone Datafiles | 139

The way that always works with all versions is to purge your slaves of any knowl-
edge of the old serial number. Then you can start numbering from one (or any con-
venient point). Here’s how. First, change the serial number on your primary server
and restart it; now the primary server has the new integer serial number. Log onto
one of your slave nameserver hosts and kill the named process with the command
rndc stop. Remove its backup zone datafiles (e.g., rm bak.movie.edu bak.192.249.249
bak.192.253.253) and start up your slave nameserver. Since the backup copies were
removed, the slave must load a new version of the zone datafiles—picking up the
new serial numbers. Repeat this process for each slave server. If any of your slave
nameservers aren’t under your control, you’ll have to contact their administrators to
get them to do the same.

If all your slaves run a version of BIND newer than 4.8.1 (and we pray you’re not
using 4.8.1) but older than BIND 8.2, you can take advantage of the special serial
number 0. If you set a zone’s serial number to 0, each slave will transfer the zone the
next time it checks. In fact, the zone will be transferred every time the slave checks,
so don’t forget to increment the serial number once all the slaves have synchronized
on serial number 0. But there is a limit to how far you can increment the serial num-
ber. Read on.

The other method of fixing the serial number (with 4.9 and later slaves) is easier to
understand if we first cover some background material. The DNS serial number is a
32-bit unsigned integer whose value ranges from 0 to 4,294,967,295. The serial num-
ber uses sequence space arithmetic, which means that for any serial number, half the
numbers in the number space (2,147,483,647 numbers) are less than the serial num-
ber, and half the numbers are larger.

Let’s go over an example of sequence space numbers. Suppose the serial number is 5.
Serial numbers 6 through (5 + 2,147,483,647) are larger than serial number 5, and
serial numbers (5 + 2,147,483,649) through 4 are smaller. Notice that the serial
number wrapped around to 4 after reaching 4,294,967,295. Also notice that we
didn’t include the number (5 + 2,147,483,648), because this is exactly halfway
around the number space and can be larger or smaller than 5, depending on the
implementation. To be safe, don’t use it.

Now back to the original problem. If your zone serial number is 25,000, and you
want to start numbering at 1 again, you can speed through the serial number space
in two steps. First, add the largest increment possible to your serial number (25,000
+ 2,147,483,647 = 2,147,508,647). If the number you come up with is larger than
4,294,967,295 (the largest 32-bit value), you’ll have wrap around to the beginning of
the number space by subtracting 4,294,967,296 from it. After changing the serial
number, you must wait for all your slaves to pick up a new copy of the zone. Sec-
ond, change the zone serial number to its target value (1), which is now larger than
the current serial number (2,147,508,647). After the slaves pick up a new copy of the
zone, you’re done!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 7: Maintaining BIND

Additional Zone Datafile Entries
After you’ve been running a nameserver for a while, you may want to add data to
your nameserver to help you manage your zone. Have you ever been stumped when
someone asked you where one of your hosts is? Maybe you don’t even remember
what kind of host it is. Administrators have to manage larger and larger populations
of hosts these days, making it easy to lose track of this information. The nameserver
can help you out. And if one of your hosts is acting up, and someone notices
remotely, the nameserver can help that person get in touch with you.

So far in the book, we’ve covered SOA, NS, A, CNAME, PTR, and MX records. These
records are critical to everyday operation: nameservers need them to operate, and
applications look up data of these types. DNS defines many more record types,
though. The next most useful resource record types are TXT and RP; these can tell you
a host’s location and responsible person. For a list of common (and not-so-common)
resource records, see Appendix A.

General text information

TXT stands for TeXT. These records are simply a list of strings, each less than 256
characters in length.

TXT records can be used for anything you want; one use lists a host’s location:

cujo IN TXT "Location: machine room dog house"

BIND TXT records have a 2 KB limit. You can specify the TXT record as a single
string or as multiple strings:

cujo IN TXT "Location:" "machine room dog house"

Responsible Person

Domain administrators will undoubtedly develop a love/hate relationship with the
Responsible Person, or RP, record. The RP record can be attached to any domain
name, internal or leaf, and indicates who is responsible for that host or zone. This
enables you to locate the miscreant responsible for the host peppering you with DNS
queries, for example. But it also leads people to you when one of your hosts acts up.

The record takes two arguments as its record-specific data: an electronic mail address
in domain name format and a domain name pointing to additional data about the
contact. The electronic mail address is in the same format the SOA record uses: it sub-
stitutes a “.” for the “@”. The next argument is a domain name, which must have a
TXT record associated with it. The TXT record then contains free-format informa-
tion about the contact, such as full name and phone number. If you omit either field,
you must specify the root domain (“.”) as a placeholder instead.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Updating Zone Datafiles | 141

Here are some example RP (and associated) records:

shrek IN RP root.movie.edu. hotline.movie.edu.
 IN RP snewman.movie.edu. sn.movie.edu.
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"
sn IN TXT "Sommer Newman, (415) 555-9612"

Note that TXT records for root.movie.edu and snewman.movie.edu aren’t necessary
because they’re only the domain name encoding of electronic mail addresses, not real
domain names.

Generating Zone Datafiles from the Host Table
As you saw in Chapter 4, we defined a process for converting host-table information
into zone data. We’ve written a tool in Perl to automate this process, called h2n.*

Using a tool to generate your data has one big advantage: there will be no syntax
errors or inconsistencies in your zone datafiles—assuming h2n is written correctly!
One common inconsistency is to have an A (address) record for a host but no corre-
sponding PTR (pointer) record, or the other way around. Because this data is in sep-
arate zone datafiles, it is easy to err.

What does h2n do? Given the /etc/hosts file and some command-line options, h2n
creates the datafiles for your zones. As a system administrator, you keep the host
table current. Each time you modify the host table, you run h2n again. h2n rebuilds
each zone datafile from scratch, assigning each new file the next higher serial num-
ber. It can be run manually or from cron each night. If you use h2n, you’ll never
again have to worry about forgetting to increment the serial number.

First, h2n needs to know the domain name of your forward-mapping zone and your
network numbers. (h2n can figure out the names of your reverse-mapping zones
from your network numbers.) These map conveniently into the zone datafile names:
movie.edu zone data goes in db.movie, and network 192.249.249/24 data goes into
db.192.249.249. The domain name of your forward-mapping zone and your net-
work number are specified with the –d and –n options, as follows:

–d domain name
The domain name of your forward-mapping zone.

–n network number
The network number of your network. If you are generating files for several net-
works, use several –n options on the command line. Omit trailing zeros and net-
mask specifications from the network numbers.

* In case you’ve forgotten how to get h2n, see the Preface.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 7: Maintaining BIND

The h2n command requires the –d flag and at least one –n option; they have no
default values. For example, to create the datafile for the zone movie.edu, which con-
sists of two networks, give the command:

% h2n -d movie.edu -n 192.249.249 -n 192.253.253

For greater control over the data, you can use other options:

–s server
The nameservers for the NS records. As with –n, use several –s options if you
have multiple primary or slave nameservers. A version 8 or 9 server will NOTIFY
this list of servers when a zone changes. The default is the host that runs h2n.

–h host
The host for the MNAME field of the SOA record. host must be the primary
nameserver to ensure proper operation of the NOTIFY feature. The default is the
host that runs h2n.

–u user
The mail address of the person in charge of the zone data. This defaults to root
on the host that runs h2n.

–o other
Other SOA values, not including the serial number, as a colon-separated list.
These default to 10800:3600:604800:86400.

–f file
Reads the h2n options from the named file rather than from the command line.
If you have lots of options, keep them in a file.

–v 4|8
Generates configuration files for BIND 4 or 8; version 8 is the default. Since
BIND 9’s configuration file format is basically the same as BIND 8’s, you can use
–v 8 for a BIND 9 nameserver.

–y
Generates the serial number from the date.

Here is an example that uses all the options mentioned so far:

% h2n -f opts

Here are the contents of file opts:

-d movie.edu
-n 192.249.249
-n 192.253.253
-s toystory.movie.edu
-s wormhole
-u al
-h toystory
-o 10800:3600:604800:86400
-v 8
-y

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Organizing Your Files | 143

If an option requires a hostname, you can provide either a full domain name (e.g.,
toystory.movie.edu) or just the host’s name (e.g., toystory). If you give the hostname
only, h2n forms a complete domain name by adding the domain name given with the
–d option. (If a trailing dot is necessary, h2n adds it too.)

There are more options to h2n than we’ve shown here. For the complete list of
options, you’ll have to look at the manual page.

Of course, some kinds of resource records aren’t easy to generate from /etc/hosts; the
necessary data simply isn’t there. You may need to add these records manually. But
since h2n always rewrites zone datafiles, won’t your changes be overwritten?

Well, h2n provides a “back door” for inserting this kind of data. Put these special
records in a file named spcl.DOMAIN, where DOMAIN is the first label of the
domain name of your zone. When h2n finds this file, it “includes” it by adding the
line:

$INCLUDE spcl.DOMAIN

to the end of the db.DOMAIN file. (The $INCLUDE control statement is described
later in this chapter.) For example, the administrator of movie.edu may add extra MX
records into the file spcl.movie so that users can mail to movie.edu directly instead of
sending mail to hosts within movie.edu. Upon finding this file, h2n puts the line:

$INCLUDE spcl.movie

at the end of the zone datafile db.movie.

Keeping the Root Hints Current
As we explained in Chapter 4, the root hints file tells your nameserver where the
servers for the root zone are. It must be updated periodically. The root nameservers
don’t change very often, but they do change. A good practice is to check your root
hints file every month or two. In Chapter 4, we told you to get the file by FTP’ing to
ftp.rs.internic.net. And that’s probably the best way to keep current.

If you have a copy of dig, a query tool included in the BIND distribution (and cov-
ered in Chapter 12), you can retrieve the current list of root nameservers by running:

% dig @a.root-servers.net . ns > db.cache

Organizing Your Files
Back when you first set up your zones, organizing your files was simple: you put them
all in a single directory. There was one configuration file and a handful of zone data-
files. Over time, though, your responsibilities grew. More networks were added and
hence more in-addr.arpa zones. Maybe you delegated a few subdomains. You started
backing up zones for other sites. After a while, an ls of your nameserver directory no

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 7: Maintaining BIND

longer fit on a single screen. It’s time to reorganize. BIND has a few features that will
help with this reorganization.

BIND nameservers support a configuration file statement, called include, which
allows you to insert the contents of a file into the current configuration file. This lets
you take a very large configuration file and break it into smaller pieces.

Zone datafiles (for all BIND versions) support two* control statements: $ORIGIN
and $INCLUDE. The $ORIGIN statement changes a zone datafile’s origin, and
$INCLUDE inserts a new file into the current zone datafile. These control state-
ments are not resource records; they facilitate the maintenance of DNS data. In par-
ticular, they make it easier for you to divide your zone into subdomains by allowing
you to store the data for each subdomain in a separate file.

Using Several Directories
One way to organize your zone datafiles is to store them in separate directories. If
your nameserver is a primary for several sites’ zones (both forward- and reverse-map-
ping), you can store each site’s zone datafiles in its own directory. Another arrange-
ment might be to store all the primary zones’ datafiles in one directory and all the
backup zone datafiles in another. Let’s look at what the configuration file might look
like if you chose to split up your primary and slave zones:

options { directory "/var/named"; };
//
// These files are not specific to any zone
//
zone "." {
 type hint;
 file "db.cache";
};
zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};
//
// These are our primary zone files
//
zone "movie.edu" {
 type master;
 file "primary/db.movie.edu";
};
zone "249.249.192.in-addr.arpa" {
 type master;
 file "primary/db.192.249.249";
};
zone "253.253.192.in-addr.arpa" {

* Three if you count $TTL, which BIND 8.2 and later nameservers support.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Organizing Your Files | 145

 type master;
 file "primary/db.192.253.253";
};
//
// These are our slave zone files
//
zone "ora.com" {
 type slave;
 file "slave/bak.ora.com";
 masters { 198.112.208.25; };
};
zone "208.112.192.in-addr.arpa" {
 type slave;
 file "slave/bak.198.112.208";
 masters { 198.112.208.25; };
};

Another variation on this division is to break the configuration file into three files:
the main file, a file that contains all the primary entries, and a file that contains all
the secondary entries. Here’s what the main configuration file might look like:

options { directory "/var/named"; };
//
// These files are not specific to any zone
//
zone "." {
 type hint;
 file "db.cache";
};
zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

include "named.conf.primary";
include "named.conf.slave";

Here is named.conf.primary:

//
// These are our primary zone files
//
zone "movie.edu" {
 type master;
 file "primary/db.movie.edu";
};
zone "249.249.192.in-addr.arpa" {
 type master;
 file "primary/db.192.249.249";
};
zone "253.253.192.in-addr.arpa" {
 type master;
 file "primary/db.192.253.253";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 7: Maintaining BIND

Here is named.conf.slave:

//
// These are our slave zone files
//
zone "ora.com" {
 type slave;
 file "slave/bak.ora.com";
 masters { 198.112.208.25; };
};
zone "208.112.192.in-addr.arpa" {
 type slave;
 file "slave/bak.198.112.208";
 masters { 198.112.208.25; };
};

You might think the organization would be better if you put the configuration file
with the primary directives into the primary subdirectory by adding a new directory
directive to change to this directory, and remove the primary/ from each filename
because the nameserver is now running in that directory. Then you could make com-
parable changes in the configuration file with the secondary lines. Unfortunately, that
doesn’t work. BIND allows you to define only a single working directory. Things get
rather confusing when the nameserver keeps switching around to different directo-
ries: backup zone datafiles end up in the last directory the nameserver changed to,
for example.

Changing the Origin in a Zone Datafile
With BIND, the default origin for the zone datafiles is the second field of the zone
statement in the named.conf file. The origin is a domain name that is automatically
appended to all names in the file that don’t end in a dot. This origin can be changed
in the zone datafile with the $ORIGIN control statement. In the zone datafile, $ORI-
GIN is followed by a domain name. (Don’t forget the trailing dot if you use the full
domain name!) From this point on, all names that don’t end in a dot have the new
origin appended. If your zone (e.g., movie.edu) has a number of subdomains, you can
use the $ORIGIN statement to reset the origin and simplify the zone datafile. For
example:

$ORIGIN classics.movie.edu.
maltese IN A 192.253.253.100
casablanca IN A 192.253.253.101

$ORIGIN comedy.movie.edu.
mash IN A 192.253.253.200
twins IN A 192.253.253.201

We cover creating subdomains in more depth in Chapter 9.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changing System File Locations | 147

Including Other Zone Datafiles
Once you’ve subdivided your zone like this, you might find it more convenient to
keep each subdomain’s records in separate files. The $INCLUDE control statement
lets you do this:

$ORIGIN classics.movie.edu.
$INCLUDE db.classics.movie.edu

$ORIGIN comedy.movie.edu.
$INCLUDE db.comedy.movie.edu

To simplify the file even further, you can specify the included file and the new origin
on a single line:

$INCLUDE db.classics.movie.edu classics.movie.edu.
$INCLUDE db.comedy.movie.edu comedy.movie.edu.

When you specify the origin and the included file on a single line, the origin
change applies only to the particular file that you’re including. For example, the
comedy.movie.edu origin applies only to the names in db.comedy.movie.edu. After
db.comedy.movie.edu has been included, the origin returns to what it was before
$INCLUDE, even if there was an $ORIGIN control statement within db.comedy.
movie.edu.

Changing System File Locations
BIND allows you to change the name and location of the following system files:
named.pid, named-xfer, named_dump.db, and named.stats. Most of you will not need
to use this feature; don’t feel obligated to change the names or locations of these files
just because you can.

If you do change the location of the files written by the nameserver (named.pid,
named_dump.db, or named.stats), for security reasons you should choose a directory
that is not world-writable. While we don’t know of any break-ins caused by writing
these files, you should follow this guideline just to be safe.

named.pid’s full path is usually /var/run/named.pid or /etc/named.pid. One reason you
might change the default location of this file is if you find yourself running more than
one nameserver on a single host. Yikes! Why would someone do that? Well,
Chapter 10 gives an example of running two nameservers on one host (and explains
the rationale behind it). You can specify a different named.pid file in the configura-
tion file for each server:

options { pid-file "server1.pid"; };

named-xfer’s path is usually /usr/sbin/named-xfer or /etc/named-xfer. You’ll remem-
ber that named-xfer is used by a slave nameserver for inbound zone transfers. One
reason you might change the default location is to build and test a new version of

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 7: Maintaining BIND

BIND in a local directory; your test version of named can be configured to use the
local version of named-xfer:

options { named-xfer "/home/rudy/named/named-xfer"; };

Since BIND 9 doesn’t use named-xfer, of course, there’s not much call for this sub-
statement with BIND 9.

The nameserver writes named_dump.db into its current directory when you tell it to
dump its database. Here’s an example of how to change the location of the dump
file:

options { dump-file "/home/rudy/named/named_dump.db"; };

The nameserver writes named.stats into its current directory when you tell it to dump
statistics. Here’s an example of how to change its location:

options { statistics-file "/home/rudy/named/named.stats"; };

Logging
BIND supports extensive logging, which consists of writing information to a debug
file and sending information to syslog. Extensive logging has its costs, though; there’s
a lot to learn before you can effectively configure this subsystem. If you don’t have
time to experiment with logging, use the defaults and come back to this topic later.
Most of you won’t need to change the default logging behavior.

There are two main concepts in logging: channels and categories. A channel specifies
where logged data goes: to syslog, to a file, to named’s standard error output, or to the
bit bucket. A category specifies what data is logged. In the BIND source code, most
messages the nameserver logs are categorized according to the function of the code
they relate to. For example, a message produced by the part of BIND that handles
dynamic updates is probably in the update category. We’ll give you a list of the cate-
gories shortly.

Each category of data can be sent to a single channel or to multiple channels. In
Figure 7-1, queries are logged to a file while zone transfer data is both logged to a file
and to syslog.

Figure 7-1. Logging categories to channels

zone transfers

queries category

syslog channel

log_file channel

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Logging | 149

Channels allow you to filter by message severity. Here’s the list of severities, from
most severe to least:

critical
error
warning
notice
info
debug [level]
dynamic

The top five severities (critical, error, warning, notice, and info) are the familiar sever-
ity levels used by syslog. The other two (debug and dynamic) are unique to BIND.

debug is nameserver debugging for which you can specify a debug level. If you omit
the debug level, the level is assumed to be 1. If you specify a debug level, you will see
messages of that level when nameserver debugging is turned on (e.g., if you specify
“debug 3,” you will see level 3 debugging messages even when you send only one
trace command to the nameserver). If you specify dynamic severity, the nameserver
will log messages that match its debug level. (For example, if you send one trace
command to the nameserver, it logs messages from level 1. If you send three trace
commands to the nameserver, it logs messages from levels 1 through 3.) The default
severity is info, which means that you won’t see debug messages unless you specify
the severity.

You can configure a channel to log both debug messages and syslog
messages to a file. However, the converse is not true: you cannot con-
figure a channel to log both debug messages and syslog messages with
syslog; debug messages can’t be sent to syslog.

Let’s configure a couple of channels to show you how this works. The first channel
will go to syslog and log with facility daemon, sending those messages of severity info
and above. The second channel will go to a file, logging debug messages at any level
as well as syslog messages. Here is the logging statement:

logging {
 channel my_syslog {
 syslog daemon;
 // Debug messages will not be sent to syslog, so
 // there is no point to setting the severity to
 // debug or dynamic; use the lowest syslog level: info.
 severity info;
 };
 channel my_file {
 file "/tmp/log.msgs";
 // Set the severity to dynamic to see all the debug messages.
 severity dynamic;
 };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 7: Maintaining BIND

Now that we’ve configured a couple of channels, we have to tell the nameserver
exactly what to send to those channels. Let’s implement what was pictured in
Figure 7-1, with zone transfers going to syslog and to the file, and queries going to
the file. The category specification is part of the logging statement, so we’ll build on
the previous logging statement:

logging {
 channel my_syslog {
 syslog daemon;
 severity info;
 };
 channel my_file {
 file "/tmp/log.msgs";
 severity dynamic;
 };

 category xfer-out { my_syslog; my_file; };
 category queries { my_file; };
};

With this logging statement in your configuration file, start your nameserver and
send it a few queries. If nothing is written to log.msgs, you may have to turn on
nameserver debugging to get queries logged:

rndc trace

Now if you send your nameserver some queries, they’re logged to log.msgs. But look
around the nameserver’s working directory: there’s a new file called named.run. It
has all the other debugging information written to it. You didn’t want all this other
debugging, though; you just wanted the transfers and queries. How do you get rid of
named.run?

There’s a special category we haven’t told you about: default. If you don’t specify any
channels for a category, BIND sends those messages to whichever channel the default
category is assigned to. Let’s change the default category to discard all logging mes-
sages (there’s a channel called null for this purpose):

logging {
 channel my_syslog {
 syslog daemon;
 severity info;
 };
 channel my_file {
 file "/tmp/log.msgs";
 severity dynamic;
 };

 category default { null; };
 category xfer-out { my_syslog; my_file; };
 category queries { my_file; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Logging | 151

Now start your server, turn on debugging to level 1 (if necessary), and send some
queries. The queries end up in log.msgs, and named.run is created but stays empty.
Great! We’re getting the hang of this after all.

A few days pass. One of your coworkers notices that the nameserver is sending much
fewer messages to syslog than it used to. What happened?

Well, the default category is set up, by default, to send messages to both syslog and
to the debug file (named.run). When you assigned the default category to the null
channel, you turned off the other syslog messages, too. Here’s what we should have
used:

category default { my_syslog; };

This sends the syslog messages to syslog but does not write debug or syslog messages
to a file.

Remember, we said you’d have to experiment for a while with logging to get exactly
what you want. We hope this example gives you a hint of what you might run into.
Now, let’s go over the details of logging.

The logging Statement
Here’s the syntax of the logging statement. It’s rather intimidating. We’ll go over
some more examples as we explain what each substatement means:

logging {
 [channel channel_name {
 (file path_name
 [versions (number | unlimited)]
 [size size_spec]
 | syslog (kern | user | mail | daemon | auth | syslog | lpr |
 news | uucp | cron | authpriv | ftp |
 local0 | local1 | local2 | local3 |
 local4 | local5 | local6 | local7)
 | stderr
 | null);

 [severity (critical | error | warning | notice |
 info | debug [level] | dynamic);]
 [print-category yes_or_no;]
 [print-severity yes_or_no;]
 [print-time yes_or_no;]
 };]

 [category category_name {
 channel_name; [channel_name; ...]
 };]
 ...
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 7: Maintaining BIND

Here are the default channels. The nameserver creates these channels even if you
don’t want them. You can’t redefine these channels; you can only add more of them.

channel default_syslog {
 syslog daemon; // send to syslog's daemon facility
 severity info; // only send severity info and higher
};

channel default_debug {
 file "named.run"; // write to named.run in the
 // working directory
 severity dynamic; // log at the server's current debug level
};

channel default_stderr { // writes to stderr
 stderr; // only BIND 9 lets you define your own stderr
 // channel, though BIND 8 has the built-in
 // default_stderr channel.
 severity info; // only send severity info and higher
};

channel null {
 null; // toss anything sent to this channel
};

If you don’t assign channels to the categories default, panic, packet, and eventlib, a
BIND 8 nameserver assigns them these channels by default:

logging {
 category default { default_syslog; default_debug; };
 category panic { default_syslog; default_stderr; };
 category packet { default_debug; };
 category eventlib { default_debug; };
};

A BIND 9 nameserver uses this as the default logging statement:

logging {
 category default {
 default_syslog;
 default_debug;
 };
};

As we mentioned earlier, the default category logs to both syslog and to the debug file
(which by default is named.run). This means that all syslog messages of severity info
and above are sent to syslog, and when debugging is turned on, the syslog messages
and debug messages are written to named.run.

Channel Details
A channel may be defined to go to a file, to syslog, or to null.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Logging | 153

File channels

If a channel goes to a file, you must specify the file’s pathname. Optionally, you can
specify how many versions of the file can exist at one time and how big the file may
grow.

If you specify that there can be three versions, BIND will retain file, file.0, file.1, and
file.2. After the nameserver starts or after it is reloaded, it moves file.1 to file.2, file.0
to file.1, file to file.0, and starts writing to a new copy of file. If you specify unlimited
versions, BIND will keep 99 versions.

If you specify a maximum file size, the nameserver stops writing to the file after it
reaches the specified size. Unlike the versions substatement (mentioned in the last
paragraph), the file is not rolled over and a new file opened when the specified size is
reached. The nameserver just stops writing to the file. If you do not specify a file size,
the file grows indefinitely.

Here is an example file channel using the versions and size substatements:

logging{
 channel my_file {
 file "log.msgs" versions 3 size 10k;
 severity dynamic;
 };
};

The size can include a scaling factor, as in the example. K or k is kilobytes; M or m is
megabytes; G or g is gigabytes.

It’s important to specify the severity as either debug or dynamic if you want to see
debug messages. The default severity is info, which shows you only syslog messages.

syslog channels

If a channel goes to syslog, you can specify the facility to be any of the following:
kern, user, mail, daemon, auth, syslog, lpr, news, uucp, cron, authpriv, ftp, local0,
local1, local2, local3, local4, local5, local6, or local7. The default is daemon, and we
recommend that you either use that or one of the local facilities.

Here’s an example syslog channel that uses the facility local0 instead of daemon:

logging {
 channel my_syslog {
 syslog local0; // send to syslog's local0 facility
 severity info; // only send severity info and higher
 };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 7: Maintaining BIND

stderr channel

There is a predefined channel called default_stderr for any messages you’d like writ-
ten to the stderr file descriptor of the nameserver. With BIND 8, you cannot config-
ure any other file descriptors to use stderr. With BIND 9, you can.

null channel

There is a predefined channel called null for messages you want to throw away.

Data formatting for all channels

The BIND logging facility also allows you some control over the formatting of mes-
sages. You can add a timestamp, a category, and a severity level to the messages.

Here’s an example debug message that has all the extra goodies:

01-Feb-1998 13:19:18.889 config: debug 1: source = db.127.0.0

The category for this message is config, and the severity is debug level 1.

Here’s an example channel configuration that includes all three additions:

logging {
 channel my_file {
 file "log.msgs";
 severity debug;
 print-category yes;
 print-severity yes;
 print-time yes;
 };
};

There isn’t much point in adding a timestamp for messages to a syslog channel
because syslog adds the time and date itself.

Category Details
Both BIND 8 and BIND 9 have lots of categories—lots! Unfortunately, they’re differ-
ent categories. We’ll list them here so you can see them all. Rather than trying to fig-
ure out which you want to see, we recommend that you configure your nameserver to
print out all its log messages with their category and severity, and then pick out the
ones you want to see. We’ll show you how to do this after describing the categories.

BIND 8 categories

default
If you don’t specify any channels for a category, the default category is used. In
that sense, default is synonymous with all categories. However, there are some
messages that didn’t end up in a category. So, even if you specify channels for

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Logging | 155

each category individually, you’ll still want to specify a channel for the default
category for all the uncategorized messages.

If you do not specify a channel for the default category, one will be specified for
you:

category default { default_syslog; default_debug; };

cname
CNAME errors (e.g., “...has CNAME and other data”).

config
High-level configuration file processing.

db
Database operations.

eventlib
System events; must point to a single file channel. The default is:

category eventlib { default_debug; };

insist
Internal consistency check failures.

lame-servers
Detection of bad delegation.

load
Zone loading messages.

maintenance
Periodic maintenance events (e.g., system queries).

ncache
Negative caching events.

notify
Asynchronous zone change notifications.

os
Problems with the operating system.

packet
Decodes of packets received and sent; must point to a single file channel. The
default is:

category packet { default_debug; };

panic
Problems that cause the shutdown of the server. These problems are logged both
in the panic category and in their native category. The default is:

category panic { default_syslog; default_stderr; };

parser
Low-level configuration file processing.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 7: Maintaining BIND

queries
Query logging.

response-checks
Malformed responses, unrelated additional information, etc.

security
Approved/unapproved requests.

statistics
Periodic reports of activities.

update
Dynamic update events.

update-security
Unapproved dynamic updates. (In 8.4.0, these were moved into their own cate-
gory so that administrators could more easily filter them out.)

xfer-in
Zone transfers from remote nameservers to the local nameserver.

xfer-out
Zone transfers from the local nameserver to remote nameservers.

BIND 9 categories

default
As with BIND 8, BIND 9’s default category matches all categories not specifi-
cally assigned to channels. However, BIND 9’s default category, unlike BIND
8’s, doesn’t match BIND’s messages that aren’t categorized. Those are part of
the category listed next.

general
The general category contains all BIND messages that aren’t explicitly classified.

client
Processing client requests.

config
Configuration file parsing and processing.

database
Messages relating to BIND’s internal database; used to store zone data and cache
records.

dnssec
Processing DNSSEC-signed responses.

lame-servers
Detection of bad delegation (re-added in BIND 9.1.0; before that, lame server
messages were logged to resolver).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Logging | 157

network
Network operations.

notify
Asynchronous zone change notifications.

queries
Query logging (added in BIND 9.1.0).

resolver
Name resolution, including the processing of recursive queries from resolvers.

security
Approved/unapproved requests.

update
Dynamic update events.

update-security
Unapproved dynamic updates. See note under the like-named BIND 8 category
(added in 9.3.0).

xfer-in
Zone transfers from remote nameservers to the local nameserver.

xfer-out
Zone transfers from the local nameserver to remote nameservers.

Viewing all category messages

A good way to start your foray into logging is to configure your nameserver to log all
its messages to a file, including the category and severity, and then pick out which
messages you are interested in.

Earlier, we listed the categories that are configured by default. Here they are for
BIND 8:

logging {
 category default { default_syslog; default_debug; };
 category panic { default_syslog; default_stderr; };
 category packet { default_debug; };
 category eventlib { default_debug; };
};

And here’s the category for BIND 9:

logging {
 category default { default_syslog; default_debug; };
};

By default, the category and severity are not included with messages written to the
default_debug channel. In order to see all the log messages, with their category and
severity, you’ll have to configure each category yourself.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 7: Maintaining BIND

Here’s a BIND 8 logging statement that does just that:

logging {
 channel my_file {
 file "log.msgs";
 severity dynamic;
 print-category yes;
 print-severity yes;
 };

 category default { default_syslog; my_file; };
 category panic { default_syslog; my_file; };
 category packet { my_file; };
 category eventlib { my_file; };
 category queries { my_file; };
};

(A BIND 9 logging statement wouldn’t have panic, packet, or eventlib categories.)

Notice that we’ve defined each category to include the channel my_file. We also
added one category that wasn’t in the previous default logging statement: queries.
Queries aren’t printed unless you configure the queries category.

Start your server, and turn on debugging to level 1. You’ll then see messages in log.msgs
that look like the following. (BIND 9 shows only the query message because it doesn’t
generate these debug messages anymore.)

queries: info: XX /192.253.253.4/foo.movie.edu/A
default: debug 1: req: nlookup(foo.movie.edu) id 4 type=1 class=1
default: debug 1: req: found 'foo.movie.edu' as 'foo.movie.edu' (cname=0)
default: debug 1: ns_req: answer -> [192.253.253.4].2338 fd=20 id=4 size=87

Once you’ve determined the messages that interest you, configure your server to log
only those messages.

Keeping Everything Running Smoothly
A significant part of maintenance is being aware that something is wrong before it
becomes a real problem. If you catch a problem early, chances are it’ll be that much
easier to fix. As the old adage says, an ounce of prevention is worth a pound of cure.

This isn’t quite troubleshooting—we’ll devote an entire chapter to troubleshooting
later—think of it more as “pre-troubleshooting.” Troubleshooting (the pound of
cure) is what you have to do after your problem has developed complications and
you need to identify the problem by its symptoms.

The next two sections deal with preventative maintenance: looking periodically at
the syslog file and at the BIND nameserver statistics to see whether any problems are
developing. Consider this a nameserver’s medical checkup.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 159

Common Syslog Messages
There are a large number of syslog messages that named can emit. In practice, you’ll
see only a few of them. We’ll cover the most common syslog messages here, exclud-
ing reports of syntax errors in zone datafiles.

Every time you start named, it sends out a message at priority LOG_NOTICE. For a
BIND 8 nameserver, it looks like this:

Jan 10 20:48:32 toystory named[3221]: starting. named 8.2.3 Tue May 16 09:39:40
MDT 2000 cricket@huskymo.boulder.acmebw.com:/usr/local/src/bind-8.2.3/src/bin/
named

For BIND 9, it’s significantly abridged:

Jul 27 16:18:41 toystory named[7045]: starting BIND 9.3.2

This message logs the fact that named started at this time and tells you the version of
BIND you’re running as well as who built it and where (for BIND 8). Of course, this
is nothing to be concerned about. It is a good place to look if you’re not sure what
version of BIND your operating system supports.

Every time you send the nameserver a reload command, a BIND 8 nameserver sends
out this message at priority LOG_NOTICE:

Jan 10 20:50:16 toystory named[3221]: reloading nameserver

Here’s the BIND 9 nameservers log:

Jul 27 16:27:45 toystory named[7047]: loading configuration from
 '/etc/named.conf'

These messages simply tell you that named reloaded its database (as a result of a
reload command) at this time. Again, this is nothing to be concerned about. This
message will most likely be of interest when you are tracking down how long a bad
resource record has been in your zone data or how long a whole zone has been miss-
ing because of a mistake during an update.

Here’s another message you may see shortly after your nameserver starts:

Jan 10 20:50:20 toystory named[3221]: cannot set resource limits on
 this system

This means that your nameserver thinks your operating system does not support the
getrlimit() and setrlimit() system calls, which are used when you try to define core-
size, datasize, stacksize, or files. It doesn’t matter whether you’re actually using any of
these substatements in your configuration file; BIND will print the message anyway.
If you are not using these substatements, ignore the message. If you are, and you
think your operating system actually does support getrlimit() and setrlimit(), you’ll
have to recompile BIND with HAVE_GETRUSAGE defined. This message is logged
at priority LOG_INFO.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 7: Maintaining BIND

If you run your nameserver on a host with many network interfaces (especially vir-
tual network interfaces), you may see this message soon after startup or even after
your nameserver has run well for a while:

Jan 10 20:50:31 toystory named[3221]: fcntl(dfd, F_DUPFD, 20): Too
 many open files
Jan 10 20:50:31 toystory named[3221]: fcntl(sfd, F_DUPFD, 20): Too
 many open files

This means that BIND has run out of file descriptors. BIND uses a fair number of file
descriptors: two for each network interface it’s listening on (one for UDP and one for
TCP), and one for opening zone datafiles. If that’s more than the limit your operat-
ing system places on processes, BIND won’t be able to get any more file descriptors,
and you’ll see this message. The priority depends on which part of BIND fails to get
the file descriptor: the more critical the subsystem, the higher the priority.

The next step is either to get BIND to use fewer file descriptors, or to raise the limit
the operating system places on the number of file descriptors BIND can use:

• If you don’t need BIND listening on all your network interfaces (particularly the
virtual ones), use the listen-on substatement to configure BIND to listen only on
those interfaces it needs to. See Chapter 10 for details on the syntax of listen-on.

• If your operating system supports getrlimit() and setrlimit() (as just described),
configure your nameserver to use a larger number of files with the files substate-
ment. See Chapter 10 for details on using the files substatement.

• If your operating system places too restrictive a limit on open files, raise that
limit before you start named with the ulimit command.

Every time a nameserver loads a zone, it sends out a message at priority LOG_INFO:

Jan 10 21:49:50 toystory named[3221]: zone movie.edu/IN
 loaded serial 2005011000

This tells you when the nameserver loaded the zone, the class of the zone (in this
case, IN), and the serial number in the zone’s SOA record.

About every hour, a BIND 8 nameserver sends a snapshot of the current statistics at
priority LOG_INFO:

Feb 18 14:09:02 toystory named[3565]: USAGE 824681342 824600158
 CPU=13.01u/3.26s CHILDCPU=9.99u/12.71s
Feb 18 14:09:02 toystory named[3565]: NSTATS 824681342 824600158
 A=4 PTR=2
Feb 18 14:09:02 toystory named[3565]: XSTATS 824681342 824600158
 RQ=6 RR=2 RIQ=0 RNXD=0 RFwdQ=0 RFwdR=0 RDupQ=0 RDupR=0
 RFail=0 RFErr=0 RErr=0 RTCP=0 RAXFR=0 RLame=0 Ropts=0
 SSysQ=2 SAns=6 SFwdQ=0 SFwdR=0 SDupQ=5 SFail=0 SFErr=0
 SErr=0 RNotNsQ=6 SNaAns=2 SNXD=1

(BIND 9 doesn’t send out the statistics as a log message.) The first two numbers for
each message are times. If you subtract the second number from the first number,

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 161

you’ll find out how many seconds your server has been running. (You’d think the
nameserver could do that for you.) The CPU entry tells you how much time your
server has spent in user mode (13.01 seconds) and system mode (3.26 seconds).
Then it tells you the same statistic for child processes. The NSTATS message lists the
types of queries your server has received and the counts for each. The XSTATS mes-
sage lists additional statistics. The statistics under NSTATS and XSTATS are
explained in more detail later in this chapter.

If BIND finds a name that doesn’t conform to RFC 952, it logs a syslog error:

Jul 24 20:56:26 toystory named[1496]: ID_4.movie.edu IN:
 bad owner name (check-names)

This message is logged at level LOG_ERROR. See Chapter 4 for the host-naming
rules.

Another syslog message, sent at priority LOG_ERROR, is a message about the zone
data:

Jan 10 20:48:38 toystory2 named[3221]: ts2 has CNAME
 and other data (invalid)

This message means that there’s a problem with your zone data. For example, you
may have entries like these:

ts2 IN CNAME toystory2
ts2 IN MX 10 toystory2
toystory2 IN A 192.249.249.10
toystory2 IN MX 10 toystory2

The MX record for ts2 is incorrect and triggers the message just listed. ts2 is an alias
for toystory2, which is the canonical name. As described earlier, when a nameserver
looks up a name and finds a CNAME, it replaces the original name with the canoni-
cal name and then tries looking up the canonical name. Thus, when the server looks
up the MX data for ts2, it finds a CNAME record and then looks up the MX record
for toystory2. Since the server follows the CNAME record for ts2, it never uses the
MX record for ts2; in fact, this record is illegal. In other words, all resource records
for a host have to use the canonical name; it’s an error to use an alias in place of the
canonical name.

The following message indicates that a BIND 8 slave was unable to reach any master
server when it tried to do a zone transfer:

Jan 10 20:52:42 wormhole named[2813]: zoneref: Masters for
 secondary zone "movie.edu" unreachable

BIND 9 slaves say:

Jul 27 16:50:55 toystory named[7174]: transfer of 'movie.edu/IN'
 from 192.249.249.3#53: failed to connect: timed out

This message is sent at priority LOG_NOTICE on BIND 8, and LOG_ERROR on
BIND 9, and is sent only the first time the zone transfer fails. When the zone transfer

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 7: Maintaining BIND

finally succeeds, BIND tells you that the zone transferred by issuing another syslog
message. When this message first appears, you don’t need to take any immediate
action. The nameserver will continue attempting to transfer the zone according to
the retry period in the SOA record. After a few days (or half the expire time), you
might check that the server was able to transfer the zone. Or, you can verify that the
zone transferred by checking the timestamp on the backup zone datafile. When a
zone transfer succeeds, a new backup file is created. When a nameserver finds a zone
is up to date, it “touches” the backup file (à la the Unix touch command). In both
cases, the timestamp on the backup file is updated, so go to the slave and give the
command ls –l /usr/local/named/db*. This tells you when the slave last synchronized
each zone with the master server. We’ll cover how to troubleshoot slaves failing to
transfer zones in Chapter 14.

If you are watching the syslog messages, you’ll see a LOG_INFO syslog message
when the slave picks up the new zone data or when a tool such as nslookup transfers
a zone:

Mar 7 07:30:04 toystory named[3977]: client 192.249.249.1#1076:
 transfer of 'movie.edu/IN':AXFR started

If you’re using the allow-transfer substatement (explained in Chapter 11) to limit
which servers can load zones, you may see this message saying denied instead of
started:

Jul 27 16:59:26 toystory named[7174]: client 192.249.249.1#1386:
 zone transfer 'movie.edu/AXFR/IN' denied

You’d see this syslog message only if you capture LOG_INFO syslog messages:

Jan 10 20:52:42 wormhole named[2813]: Malformed response
 from 192.1.1.1

Most often, this message means that some bug in a nameserver caused it to send an
erroneous response packet. The error probably occurred on the remote nameserver
(192.1.1.1) rather than the local server (wormhole). Diagnosing this kind of error
involves capturing the response packet in a network trace and decoding it. Decoding
DNS packets manually is beyond the scope of this book, so we won’t go into much
detail. You’d see this type of error if the response packet said it contained several
answers in the answer section (such as four address resource records), yet the answer
section contained only a single answer. The only course of action is to notify the
administrator of the offending host via email (assuming you can get the name of the
host by looking up the address). You would also see this message if the underlying
network altered (damaged) the UDP response packets in some way. Checksumming
UDP packets is optional, so this error might not be caught at a lower level.

A BIND 8 named logs this message when you try to sneak records into your zone
datafile that belong in another zone:

Jun 13 08:02:03 toystory named[2657]: db.movie.edu:28: data "foo.bar.edu"
 outside zone "movie.edu" (ignored)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 163

A BIND 9 named logs:

Jul 27 17:07:01 toystory named[7174]: dns_master_load:
 db.movie.edu:28: ignoring out-of-zone data

For instance, if we tried to use this zone data:

shrek IN A 192.249.249.2
toystory IN A 192.249.249.3

; Add this entry to the nameserver's cache
foo.bar.edu. IN A 10.0.7.13

we’d be adding data for the bar.edu zone into our movie.edu zone datafile. This sys-
log message is logged at priority LOG_WARNING.

Earlier in the book, we said that you couldn’t use a CNAME in the data portion of a
resource record. BIND 8 will catch this misuse:

Jun 13 08:21:04 toystory named[2699]: "movie.edu IN NS" points to a
 CNAME (mi.movie.edu)

BIND 9 doesn’t catch it as of 9.3.0.

Here is an example of the offending resource records:

@ IN NS toystory.movie.edu.
 IN NS mi.movie.edu.
toystory.movie.edu. IN A 192.249.249.3
monsters-inc.movie.edu. IN A 192.249.249.4
mi.movie.edu. IN CNAME monsters-inc.movie.edu.

The second NS record should have listed monsters-inc.movie.edu instead of mi.movie.
edu. This syslog message won’t show up immediately when you start your
nameserver.

You’ll only see the syslog message when the offending data is looked up.
This syslog message is logged by a BIND 8 server at priority LOG_INFO.

The following message indicates that your nameserver may be guarding itself against
one type of network attack:

Jun 11 11:40:54 toystory named[131]: Response from unexpected source
 ([204.138.114.3].53)

Your nameserver sent a query to a remote nameserver, but the response that came
wasn’t returned from any of the addresses your nameserver had listed for the remote
nameserver. The potential security breach is this: an intruder causes your nameserver
to query a remote nameserver, and at the same time the intruder sends responses
(pretending the responses are from the remote nameserver) that the intruder hopes
your nameserver will add to its cache. Perhaps he sends along a false PTR record,
pointing the IP address of one of his hosts to the domain name of a host you trust.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 7: Maintaining BIND

Once the false PTR record is in your cache, the intruder uses one of the BSD “r”
commands (e.g., rlogin) to gain access to your system.

Less paranoid admins will realize that this situation can also happen if a parent
zone’s nameserver knows about only one of the IP addresses of a multihomed
nameserver for a child zone. The parent tells your nameserver the one IP address it
knows, and when your server queries the remote nameserver, the remote nameserver
responds from the other IP address. This shouldn’t happen if BIND is running on the
remote nameserver host, because BIND makes every effort to use the same IP address
in the response as the query was sent to. This syslog message is logged at priority
LOG_INFO.

Here’s an interesting syslog message:

Jun 10 07:57:28 toystory named[131]: No root name servers for
 class 226

The only classes defined to date are: class 1, Internet (IN); class 3, Chaos (CH); and
class 4, Hesiod (HS). What’s class 226? That’s exactly what your nameserver is say-
ing with this syslog message: something is wrong because there’s no class 226. What
can you do about it? Nothing, really. This message doesn’t give you enough informa-
tion; you don’t know who the query is from or what the query was for. Then again, if
the class field is corrupted, the domain name in the query may be garbage too. The
actual cause of the problem could be a broken remote nameserver or resolver, or a
corrupted UDP datagram. This syslog message is logged at priority LOG_INFO.

This message might appear if you are backing up some other zone:

Jun 7 20:14:26 wormhole named[29618]: Zone "253.253.192.in-addr.arpa"
 (class 1) SOA serial# (3345) rcvd from [192.249.249.10]
 is < ours (563319491)

Ah, the pesky admin for 253.253.192.in-addr.arpa changed the serial number format
and neglected to tell you about it. Some thanks you get for running a slave for this
zone, huh? Drop the admin a note to see if this change was intentional or just a typo.
If the change was intentional, or if you don’t want to contact the admin, then you
have to deal with it locally—kill your slave, remove the backup copy of this zone,
and restart your server. This procedure removes all knowledge your slave had of the
old serial number, at which point it’s quite happy with the new serial number. This
syslog message is logged at priority LOG_NOTICE.

By the way, if that pesky admin was running a BIND 8 or 9 nameserver, then he
must have missed (or ignored) a message his server logged, telling him that he’d
rolled the zone’s serial number back. On a BIND 8 nameserver, the message looks
like:

Jun 7 19:35:14 toystory named[3221]: WARNING: new serial number < old
 (zp->z_serial < serial)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 165

On a BIND 9 nameserver, it looks like:

Jun 7 19:36:41 toystory named[9832]: dns_zone_load: zone movie.edu/IN: zone
serial has gone backwards

This message is logged at LOG_NOTICE.

You might want to remind him of the wisdom of checking syslog after making any
changes to the nameserver.

This BIND 8 message will undoubtedly become familiar to you:

Aug 21 00:59:06 toystory named[12620]: Lame server on 'foo.movie.edu'
 (in 'MOVIE.EDU'?): [10.0.7.125].53 'NS.HOLLYWOOD.LA.CA.US':
 learnt (A=10.47.3.62,NS=10.47.3.62)

Under BIND 9, it looks like this:

Jan 15 10:20:16 toystory named[14205]: lame server on 'foo.movie.edu' (in
 'movie.EDU'?): 10.0.7.125#53

“Aye, Captain, she’s sucking mud!” There’s some mud out there in the Internet
waters in the form of bad delegations. A parent nameserver is delegating a subdo-
main to a child nameserver, and the child nameserver is not authoritative for the sub-
domain. In this case, the edu nameserver is delegating movie.edu to 10.0.7.125, and
the nameserver on this host is not authoritative for movie.edu. Unless you know the
admin for movie.edu, there’s probably nothing you can do about this. The syslog
message is logged at LOG_INFO.

If your configuration file has:

logging { category queries { default_syslog; }; };

you will get a LOG_INFO syslog message for every query your nameserver receives:

Feb 20 21:43:25 toystory named[3830]:
 XX /192.253.253.2/carrie.movie.edu/A
Feb 20 21:43:32 toystory named[3830]:
 XX /192.253.253.2/4.253.253.192.in-addr.arpa/PTR

The format has changed slightly in BIND 9, though:

Jan 13 18:32:25 toystory named[13976]: client 192.253.253.2#1702:
 query: carrie.movie.edu IN A +
Jan 13 18:32:42 toystory named[13976]: client 192.253.253.2#1702:
 query: 4.253.253.192.in-addr.arpa IN PTR +

These messages include the IP address of the host that made the query as well as the
query itself. On a BIND 8.2.1 or later nameserver, recursive queries are marked with
XX+ instead of XX. A BIND 9 nameserver marks recursive queries with a + and non-
recursive queries with a – character. BIND 8.4.3 and later and 9.3.0 and later even
mark EDNS0 queries and TSIG-signed queries with E and S, respectively. (We’ll talk
about EDNS0 in Chapter 10 and TSIG in Chapter 11.)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 7: Maintaining BIND

Make sure you have lots of disk space if you log all the queries to a busy nameserver.
(On a running server, you can toggle query logging on and off with the querylog
command.)

Starting with BIND 8.1.2, you might see this set of syslog messages:

May 19 11:06:08 named[21160]: bind(dfd=20, [10.0.0.1].53):
 Address already in use
May 19 11:06:08 named[21160]: deleting interface [10.0.0.1].53
May 19 11:06:08 named[21160]: bind(dfd=20, [127.0.0.1].53):
 Address already in use
May 19 11:06:08 named[21160]: deleting interface [127.0.0.1].53
May 19 11:06:08 named[21160]: not listening on any interfaces
May 19 11:06:08 named[21160]: Forwarding source address
 is [0.0.0.0].1835
May 19 11:06:08 named[21161]: Ready to answer queries.

On BIND 9 nameservers, that looks like:

Jul 27 17:15:58 toystory named[7357]: listening on IPv4 interface lo, 127.0.0.1#53
Jul 27 17:15:58 toystory named[7357]: binding TCP socket: address in use
Jul 27 17:15:58 toystory named[7357]: listening on IPv4 interface eth0,
 206.168.194.122#53
Jul 27 17:15:58 toystory named[7357]: binding TCP socket: address in use
Jul 27 17:15:58 toystory named[7357]: listening on IPv4 interface eth1,
 206.168.194.123#53
Jul 27 17:15:58 toystory named[7357]: binding TCP socket: address in use
Jul 27 17:15:58 toystory named[7357]: couldn't add command channel 0.0.0.0#953:
address in use

What has happened is that you had a nameserver running, and you started up a sec-
ond nameserver without killing the first one. Unlike what you might expect, the sec-
ond nameserver continues to run; it just isn’t listening on any interfaces.

Understanding the BIND Statistics
Periodically, you should look over the statistics on some of your nameservers, if only
to see how busy they are. We’ll now show you an example of the nameserver statis-
tics and discuss what each line means. Nameservers handle many queries and
responses during normal operation, so first we need to show you what a typical
exchange might look like.

Reading the explanations for the statistics is hard without a mental picture of what
goes on during a lookup. To help you understand the nameserver’s statistics,
Figure 7-2 shows what might happen when an application tries to look up a domain
name. The application, FTP, queries a local nameserver. The local nameserver had
previously looked up data in this zone and knows where the remote nameservers are.
It queries each of the remote nameservers—one of them twice—trying to find the
answer. In the meantime, the application times out and sends yet another query, ask-
ing for the same information.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 167

Keep in mind that even though a nameserver has sent a query to a remote
nameserver, the remote nameserver may not receive the query right away. The query
might be delayed or lost by the underlying network, or perhaps the remote
nameserver host might be busy with another application.

Notice that a BIND nameserver is able to detect duplicate queries only while it is still
trying to answer the original query. The local nameserver detects the duplicate query
from the application because the local nameserver is still working on it. But remote
nameserver 1 does not detect the duplicate query from the local nameserver because
it answered the previous query. After the local nameserver receives the first response

Figure 7-2. Example query/response exchange

appl query 1 local nameserver
receives appl query 1 nameserver query 1

to nameserver 1

query 1 received

remote
nameservers

local
nameserver

nameserver query 2
to nameserver 2

appl query 2 local nameserver
receives appl query 2

sends response to
nameserver query 1

nameserver query 3
to nameserver 3

query 2 received

sends response to
nameserver query 2

nameserver query 4
to nameserver 1

receives response
to query 1sends response

to appl query 1appl receives
response and

proceeds

query 4 received

sends response to
nameserver query 4

receives response
to query 2

receives response
to query 4

query 3 dropped

(host is down)

ftp

time

timeout

timeout

timeout

disca
rd

duplica
te 1

2

1

3
disca

rd

duplica
te

disca
rd

duplica
te

timeout

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 7: Maintaining BIND

from remote nameserver 1, all other responses are discarded as duplicates. This dia-
log required the following exchanges:

These exchanges would make the following contributions to the local nameserver’s
statistics:

In our example, the local nameserver received queries only from an application, yet it
sent queries to remote nameservers. Normally, the local nameserver would also
receive queries from remote nameservers (that is, in addition to asking remote serv-
ers for information it needs to know, the local server would also be asked by remote
servers for information they need to know), but we didn’t show any remote queries
for the sake of simplicity.

BIND 8 statistics

Now that you’ve seen a typical exchange between applications and nameservers, as
well as the statistics it generated, let’s go over a more extensive example of the statis-
tics. To get the statistics from your BIND 8 nameserver, use ndc:

ndc stats

Wait a few seconds, look at the file named.stats in the nameserver’s working direc-
tory. If the statistics are not dumped to this file, your server may not have been com-
piled with STATS defined and, thus, may not be collecting statistics. Following are
the statistics from one of Paul Vixie’s BIND 4.9.3 nameservers. BIND 8 nameservers

Exchange Number

Application to local nameserver 2 queries

Local nameserver to application 1 response

Local nameserver to remote nameserver 1 2 queries

Remote nameserver 1 to local nameserver 2 responses

Local nameserver to remote nameserver 2 1 query

Remote nameserver 2 to local nameserver 1 response

Local nameserver to remote nameserver 3 1 query

Remote nameserver 3 to local nameserver 0 responses

Statistic Cause

2 queries received From the application on the local host

1 duplicate query From the application on the local host

1 answer sent To the application on the local host

3 responses received From remote nameservers

2 duplicate responses From remote nameservers

2 A queries Queries for address information

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 169

have all of the same items listed here except for RnotNsQ, and the items are arranged
in a different order. BIND 9 nameservers, as of 9.1.0, keep an entirely different set of
statistics, which we’ll show you in the next section.

+++ Statistics Dump +++ (800708260) Wed May 17 03:57:40 1995
746683 time since boot (secs)
392768 time since reset (secs)
14 Unknown query types
268459 A queries
3044 NS queries
5680 CNAME queries
11364 SOA queries
1008934 PTR queries
44 HINFO queries
680367 MX queries
2369 TXT queries
40 NSAP queries
27 AXFR queries
8336 ANY queries
++ Name Server Statistics ++
(Legend)
 RQ RR RIQ RNXD RFwdQ
 RFwdR RDupQ RDupR RFail RFErr
 RErr RTCP RAXFR RLame ROpts
 SSysQ SAns SFwdQ SFwdR SDupQ
 SFail SFErr SErr RNotNsQ SNaAns
 SNXD
(Global)
 1992938 112600 0 19144 63462 60527 194 347 3420 0 5 2235 27 35289 0
 14886 1927930 63462 60527 107169 10025 119 0 1785426 805592 35863
[15.255.72.20]
 485 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 485 0 0 0 0 0 0 0 485 0
[15.255.152.2]
 441 137 0 1 2 108 0 0 0 0 0 0 0 0 0 13 439 85 7 84 0 0 0 0 431 0
[15.255.152.4]
 770 89 0 1 4 69 0 0 0 0 0 0 0 0 0 14 766 68 5 7 0 0 0 0 755 0
... <lots of entries deleted>

If your BIND 8 nameserver doesn’t include any per–IP address sections after “(Glo-
bal),” you need to set host-statistics to yes in your options statement if you want to
track per-host statistics:

options {
 host-statistics yes;
};

However, keeping host statistics requires a fair amount of memory, so you may not
want to do it routinely unless you’re trying to build a profile of your nameserver’s
activity.

Let’s look at these statistics one line at a time.

+++ Statistics Dump +++ (800708260) Wed May 17 03:57:40 1995

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 7: Maintaining BIND

This is when this section of the statistics was dumped. The number in parentheses
(800708260) is the number of seconds since the Unix epoch, which was January 1,
1970. Mercifully, BIND converts that into a real date and time for you: May 17,
1995, 3:57:40 a.m.

746683 time since boot (secs)

This is how long the local nameserver has been running. To convert to days, divide
by 86,400 (60 × 60 × 24, the number of seconds in a day). This server has been run-
ning for about 8.5 days.

392768 time since reset (secs)

This is how long the local nameserver has run since the last reload. You’ll probably
see this number differ from the time since boot only if the server is a primary
nameserver for one or more zones. Nameservers that are slaves for a zone automati-
cally pick up new data with zone transfers and are not usually reloaded. Since this
server has been reset, it is probably the primary nameserver for some zone.

14 Unknown query types

This nameserver received 14 queries for data of a type it didn’t recognize. Either
someone is experimenting with new types, there is a defective implementation some-
where, or Paul needs to upgrade his nameserver.

268459 A queries

There have been 268,459 address lookups. Address queries are normally the most
common type of query.

3044 NS queries

There have been 3,044 nameserver queries. Internally, nameservers generate NS que-
ries when they are trying to look up servers for the root zone. Externally, applica-
tions such as dig and nslookup can also be used to look up NS records.

5680 CNAME queries

Some versions of sendmail make CNAME queries in order to canonicalize a mail
address (replace an alias with the canonical name). Other versions of sendmail use
ANY queries instead (we’ll get to those shortly). Otherwise, the CNAME lookups are
most likely from dig or nslookup.

11364 SOA queries

SOA queries are made by slave nameservers to check if their zone data is current. If
the data is not current, an AXFR query follows to cause the zone transfer. Since this
set of statistics does show AXFR queries, we can conclude that slave nameservers
load zone data from this server.

1008934 PTR queries

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 171

The pointer queries map addresses to names. Many kinds of software look up IP
addresses: inetd, rlogind, rshd, network management software, and network-tracing
software.

44 HINFO queries

The host-information queries are most likely from someone interactively looking up
HINFO records.

680367 MX queries

Mailers such as sendmail make mail exchanger queries as part of the normal elec-
tronic mail delivery process.

2369 TXT queries

Some application must be making text queries for this number to be this large. It
might be a tool like Harvest, which is an information search-and-retrieval technol-
ogy developed at the University of Colorado.

40 NSAP queries

This is a relatively new record type used to map domain names to OSI Network Ser-
vice Access Point addresses.

27 AXFR queries

Slave nameservers make AXFR queries to initiate zone transfers.

8336 ANY queries

ANY queries request records of any type for a name. sendmail is the most common
program to use this query type. Since sendmail looks up CNAME, MX, and address
records for a mail destination, it will make a query for ANY record type so that all
the resource records are cached right away at the local nameserver.

The rest of the statistics are kept on a per-host basis. If you look over the list of hosts
your nameserver has exchanged packets with, you’ll find out just how garrulous your
nameserver is: you’ll see hundreds or even thousands of hosts in the list. While the
size of the list is impressive, the statistics themselves are only somewhat interesting.
We’ll explain all the statistics, even the ones with zero counts, although you’ll proba-
bly find only a handful of the statistics useful. To make the statistics easier to read,
you’ll need a tool to expand the statistics because the output format is rather com-
pact. We wrote a tool called bstat to do just this. Here’s what its output looks like:

hpcvsop.cv.hp.com
 485 queries received
 485 responses sent to this name server
 485 queries answered from our cache
relay.hp.com
 441 queries received
 137 responses received
 1 negative response received
 2 queries for data not in our cache or authoritative data

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 7: Maintaining BIND

 108 responses from this name server passed to the querier
 13 system queries sent to this name server
 439 responses sent to this name server
 85 queries sent to this name server
 7 responses from other name servers sent to this name server
 84 duplicate queries sent to this name server
 431 queries answered from our cache
hp.com
 770 queries received
 89 responses received
 1 negative response received
 4 queries for data not in our cache or authoritative data
 69 responses from this name server passed to the querier
 14 system queries sent to this name server
 766 responses sent to this name server
 68 queries sent to this name server
 5 responses from other name servers sent to this name server
 7 duplicate queries sent to this name server
 755 queries answered from our cache

In the raw statistics (not the bstat output), each host’s IP address is followed by a table
of counts. The column heading for this table is the cryptic legend at the beginning. The
legend is broken into several lines, but the host statistics are all on a single line. In the
following section, we’ll explain briefly what each column means as we look at the statis-
tics for one of the hosts this nameserver conversed with—15.255.152.2 (relay.hp.com).
For the sake of our explanation, we’ll first show you the column heading from the leg-
end (e.g., RQ) followed by the count for this column for relay.

RQ 441
RQ is the count of queries received from relay. These queries were made because
relay needed information about a zone served by this nameserver.

RR 137
RR is the count of responses received from relay. These are responses to queries
made from this nameserver. Don’t try to correlate this number to RQ, because
they are not related. RQ counts questions asked by relay; RR counts answers
that relay gave to this nameserver (because this nameserver asked relay for infor-
mation).

RIQ 0
RIQ is the count of inverse queries received from relay. Inverse queries were origi-
nally intended to map addresses to names, but that function is now handled by
PTR records. Older versions of nslookup use an inverse query on startup, so you
may see a nonzero RIQ count.

RNXD 1
RNXD is the count of “no such domain” answers received from relay.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 173

RFwdQ 2
RFwdQ is the count of queries received (RQ) from relay that need further pro-
cessing before they can be answered. This count is much higher for hosts that
configure their resolver (with resolv.conf) to send all queries to your nameserver.

RFwdR 108
RFwdR is the count of responses received (RR) from relay that answer the origi-
nal query and are passed back to the application that made the query.

RDupQ 0
RDupQ is the count of duplicate queries from relay. You’ll see duplicates only
when the resolver is configured (with resolv.conf) to query this nameserver.

RDupR 0
RDupR is the count of duplicate responses from relay. A response is a duplicate
when the nameserver can no longer find the original query in its list of pending
queries that caused the response.

RFail 0
RFail is the count of SERVFAIL responses from relay. A SERVFAIL response
indicates some sort of server failure. Server failure responses often occur because
the remote server reads a zone datafile and finds a syntax error. Any queries for
data in the zone with the erroneous zone datafile results in a server failure
answer from the remote nameserver. This is probably the most common cause of
SERVFAIL responses. Server failure responses also occur when the remote
nameserver tries to allocate more memory and can’t, or when the remote slave
nameserver’s zone data expires.

RFErr 0
RFErr is the count of FORMERR responses from relay. FORMERR means that
the remote nameserver said the local nameserver’s query had a format error.

RErr 0
RErr is the count of errors that aren’t either SERVFAIL or FORMERR.

RTCP 0
RTCP is the count of queries received on TCP connections from relay. (Most
queries use UDP.)

RAXFR 0
RAXFR is the count of zone transfers initiated. The count indicates that relay is
not a slave for any zones served by this nameserver.

RLame 0
RLame is the count of lame delegations received. If this count is not 0, it means
that some zone is delegated to the nameserver at this IP address, and the
nameserver is not authoritative for the zone.

ROpts 0
ROpts is the count of packets received with IP options set.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 7: Maintaining BIND

SSysQ 13
SSysQ is the count of system queries sent to relay. System queries are queries
that are initiated by the local nameserver. Most system queries will go to root
nameservers because system queries are used to keep the list of root nameserv-
ers up to date. But system queries are also used to find the address of a
nameserver if the address record timed out before the nameserver record did.
Since relay is not a root nameserver, these queries must have been sent for the
latter reason.

SAns 439
SAns is the count of answers sent to relay. This nameserver answered 439 out of
the 441 (RQ) queries relay sent to it. I wonder what happened to the two que-
ries it didn’t answer...

SFwdQ 85
SFwdQ is the count of queries that are sent (forwarded) to relay when the
answer is not in this nameserver’s zone data or cache.

SFwdR 7
SFwdR is the count of responses from a nameserver that are sent (forwarded) to
relay.

SDupQ 84
SDupQ is the count of duplicate queries sent to relay. It’s not as bad as it looks,
though. The duplicate count is incremented if the query is sent to any other
nameserver first. So relay might have answered all the queries it received the first
time it received them, and the query still counted as a duplicate because it was
sent to some other nameserver before relay.

SFail 0
SFail is the count of SERVFAIL responses sent to relay.

SFErr 0
SFErr is the count of FORMERR responses sent to relay.

SErr 0
SErr is the count of sendto() system calls that failed when the destination was
relay.

RNotNsQ 0
RNotNsQ is the count of queries received that are not from port 53, the
nameserver port. Prior to BIND 8, all nameserver queries came from port 53.
Any queries from ports other than 53 came from a resolver. BIND 8 nameserv-
ers query from ports other than 53, however, which makes this statistic useless
since you can no longer distinguish resolver queries from nameserver queries.
Hence, BIND 8 dropped RNotNsQ from its statistics.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Keeping Everything Running Smoothly | 175

SNaAns 431
SNaAns is the count of nonauthoritative answers sent to relay. Out of the 439
answers (SAns) sent to relay, 431 are from cached data.

SNXD 0
SNXD is the count of “no such domain” answers sent to relay.

BIND 9 statistics

BIND 9.1.0 is the first version of BIND 9 to keep statistics. You use rndc to induce
BIND 9 to dump its statistics:

% rndc stats

The nameserver dumps statistics, as a BIND 8 nameserver would, to a file called
named.stats in its working directory. However, those statistics look completely differ-
ent from BIND 8’s. Here are the contents of the stats file from one of our BIND 9
nameservers:

+++ Statistics Dump +++ (979436130)
success 9
referral 0
nxrrset 0
nxdomain 1
recursion 1
failure 1
--- Statistics Dump --- (979436130)
+++ Statistics Dump +++ (979584113)
success 651
referral 10
nxrrset 11
nxdomain 17
recursion 296
failure 217
--- Statistics Dump --- (979584113)

The nameserver appends a new statistics block (the section between “+++ Statistics
Dump +++” and “--- Statistics Dump ---”) each time it receives a stats command.
The number in parentheses (979436130) is, as in earlier stats files, the number of sec-
onds since the Unix epoch. Unfortunately, BIND doesn’t convert the value for you,
but you can use the date command to convert it to something more readable. For
example, to convert 979584113 seconds since the Unix epoch (January 1, 1970), you
can use:

% date -d '1970-01-01 979584113 sec'
Mon Jan 15 18:41:53 MST 2001

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 7: Maintaining BIND

Let’s now go through these statistics one line at a time:

success 651
This is the number of successful queries the nameserver handled. Successful que-
ries are those that didn’t result in referrals or errors.

referral 10
This is the number of queries the nameserver handled that resulted in referrals.

nxrrset 11
This is the number of queries the nameserver handled that resulted in responses
saying that the type of record the querier requested didn’t exist for the domain
name it specified.

nxdomain 17
This is the number of queries the nameserver handled that resulted in responses
saying that the domain name the querier specified didn’t exist.

recursion 296
This is the number of queries the nameserver received that required recursive
processing to answer.

failure 217
This is the number of queries the nameserver received that resulted in errors
other than those covered by nxrrset and nxdomain.

These are obviously not nearly as many statistics as a BIND 8 nameserver keeps, but
future versions of BIND 9 will probably record more.

Using the BIND statistics

Is your nameserver “healthy”? How do you know what a “healthy” operation looks
like? From a single snapshot, you can’t really say whether a nameserver is healthy.
You have to watch the statistics generated by your server over a period of time to get
a feel for what sorts of numbers are normal for your configuration. These numbers
will vary markedly among nameservers depending on the mix of applications gener-
ating lookups, the type of server (primary, slave, caching-only), and the level of the
zones in the namespace it is serving.

One thing to watch for in the statistics is how many queries per second your
nameserver receives. Take the number of queries received and divide by the number
of seconds the nameserver has been running. Paul’s BIND 4.9.3 nameserver received
1,992,938 queries in 746,683 seconds, or approximately 2.7 queries per second—not
a very busy server.* If the number you come up with for your nameserver seems out
of line, look at which hosts are making all the queries and decide if it makes sense for
them to be making all those queries. At some point, you may decide that you need
more nameservers to handle the load. We’ll cover that situation in the next chapter.

* Recall that the root nameservers, which run plain vanilla BIND, can handle thousands of queries per second.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

177

Chapter 8 CHAPTER 8

Growing Your Domain8

“What size do you want to be?” it asked.
“Oh, I’m not particular as to size,” Alice hastily

replied; “only one doesn’t like changing so often, you
know...”

“Are you content now?” said the Caterpillar.
“Well, I should like to be a little larger, sir, if you

wouldn’t mind...”

How Many Nameservers?
We set up two nameservers in Chapter 4. Two servers are as few as you’ll ever want
to run and, depending on the size of your network, you may need to run many more.
It is not uncommon to run four or more nameservers, with one of them off-site. How
many nameservers are enough? You’ll have to decide that based on your network.
Here are some guidelines to help out:

• Run at least one nameserver on each network or subnet you have. This removes
routers as a point of failure. Make the most of any multihomed hosts you may
have because they are (by definition) attached to more than one network.

• If you have a file server and some diskless nodes, run a nameserver on the file
server to serve this group of machines.

• Run nameservers near, but not necessarily on, large multiuser computers. The
users and their processes probably generate a lot of queries, and, as an adminis-
trator, you will work harder to keep a multiuser host up. But balance their needs
against the risk of running a nameserver—a security-critical server—on a system
to which lots of people have access.

• Run at least one nameserver off-site. This makes your data available when your
network isn’t. You might argue that it’s useless to look up an address when you
can’t reach the host. Then again, the off-site nameserver may be available if your
network is reachable, but your other nameservers are down. If you have a close

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 8: Growing Your Domain

relationship with an organization on the Internet—say another university, your
ISP, or a business partner—they may be willing to run a slave for you.

Figure 8-1 presents a sample topology to show you how this might work.

Notice that if you follow our guidelines, there are still a number of places you can
choose to run a nameserver. Host d, the file server for hosts a, b, c, and e, could run a
nameserver. Host g, a big, multiuser host, is another good candidate. But probably
the best choice is host f, the smaller host with interfaces on both networks. You’ll
need to run only one nameserver, instead of two, and it will run on a closely watched
host. If you want more than one nameserver on either network, you can also run one
on d or g.

Where Do I Put My Nameservers?
In addition to giving you a rough idea of how many nameservers you’ll need, these
criteria should help you decide where to run nameservers (e.g., on file servers and
multihomed hosts). But there are other important considerations when choosing the
right host.

Figure 8-1. Sample network topology

g

f

j

a b

i h

c ed

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How Many Nameservers? | 179

Other factors to keep in mind are the host’s connectivity, the host’s security, the soft-
ware it runs (BIND and otherwise), and maintaining the homogeneity of your
nameservers:

Connectivity
It’s important that nameservers be well connected. Running a nameserver on the
fastest, most reliable host on your network won’t do you any good if the host is
mired in some backwater subnet of your network behind a slow, flaky serial line.
Try to find a host close to your link to the Internet (if you have one), or find a
well-connected Internet host to act as a slave for your zone. On your own net-
work, try to run nameservers near the network’s topological hubs.

It’s doubly important that your primary nameserver be well connected. The pri-
mary needs good connectivity to all the slaves that update from it, for reliable zone
transfers. And, like any nameserver, it will benefit from fast, reliable networking.

Security
Since you would undoubtedly prefer that hackers not commandeer your
nameserver to assist them in attacking your own hosts or other networks across
the Internet, it’s important to run your nameserver on a secure host. Don’t run a
nameserver on a big, multiuser system if you can’t trust its users. If you have cer-
tain computers that are dedicated to hosting network services but don’t permit
general logins, those are good candidates for running nameservers. If you have
only one or a few really secure hosts, consider running the primary nameserver
on one of those because its compromise would be more significant than the
compromise of the slaves.

Software
Another factor to consider in choosing a host for a nameserver is the software
the host runs. Software-wise, the best candidate for a nameserver is a host run-
ning a vendor-supported version of BIND 9.2 or 9.3 and a robust implementa-
tion of TCP/IP (preferably based on 4.3 or 4.4 BSD Unix’s networking—we’re
Berkeley snobs). You can compile your own 9.2 or 9.3 BIND from the sources—
it’s not hard, and the latest versions are very reliable—but you’ll probably have a
tough time getting your vendor to support it. If you absolutely can’t run BIND 9,
you may be able to get away with running your vendor’s port of older BIND
code, such as 8.2 or 8.3, which gives you the benefit of your vendor’s support,
for what that’s worth.

Homogeneity
One last thing to take into account is the homogeneity of your nameservers. As
much as you might believe in operating system “standards,” hopping between
different versions of Unix can be frustrating and confusing. Avoid running
nameservers on lots of different platforms if you can. You can waste a lot of time
porting your scripts (or ours!) from one operating system to another or looking

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 8: Growing Your Domain

for the location of nslookup or named.conf on three different Unixes. Moreover,
different vendors’ versions of Unix tend to support different versions of BIND,
which can cause all sorts of frustration. If you need the security features of BIND
9 on all your nameservers, for example, choose a platform that supports BIND 9
for all your nameservers.

Though these are really secondary considerations—it’s more important to have a
nameserver on a given subnet than to have it running on the perfect host—do keep
these criteria in mind when making a choice.

Capacity Planning
If you have heavily populated networks or users who do a lot of nameserver-intensive
work, you may find you need more nameservers than we’ve recommended to handle
the load. Likewise, our recommendations may be fine for a little while, but as people
add hosts to your networks or install new nameserver-intensive programs, you may
find your nameservers bogged down by queries.

Just which tasks are “nameserver-intensive”? Surfing the Web can be, as can sending
electronic mail, especially to large mailing lists. Programs that make lots of remote
procedure calls to different hosts can also be nameserver-intensive. Even running cer-
tain graphical user environments can tax your nameserver. X Windows-based user
environments, for example, query the nameserver to check access lists (among other
things).

The astute (and precocious) among you may be asking, “But how do I know when
my nameservers are overloaded? What do I look for?” An excellent question!

Memory utilization is probably the most important aspect of a nameserver’s opera-
tion to monitor. named can get very large on a nameserver that is authoritative for
many zones. If named’s size, plus the size of the other processes you run, exceeds the
size of your host’s real memory, your host may swap furiously (“thrash”) and not get
anything done. Even if your host has more than enough memory to run all its pro-
cesses, large nameservers are slow to start and reload.

Another criterion you can use to measure the load on your nameserver is the load the
named process places on the host’s CPU. Correctly configured nameservers don’t use
much CPU time, so high CPU usage is often symptomatic of a configuration error. Pro-
grams such as top can help you characterize your nameserver’s average CPU utilization.*

Unfortunately, there are no universal rules when it comes to acceptable CPU utiliza-
tion. We offer a rough rule of thumb, though: 5 percent average CPU utilization is

* top is a very handy program, written by Bill LeFebvre, that gives you a continuous report of which processes
are sucking up the most CPU time on your host. It’s included with many versions of Unix and Linux. If your
operating system doesn’t include top, you can find the most recent version at http://www.unixtop.org/.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How Many Nameservers? | 181

probably acceptable; 10 percent is a bit high, unless the host is dedicated to provid-
ing name service.

To get an idea of what normal figures are, here’s what top might show for a rela-
tively quiet nameserver:

last pid: 14299; load averages: 0.11, 0.12, 0.12 18:19:08
68 processes: 64 sleeping, 3 running, 1 stopped
Cpu states: 11.3% usr, 0.0% nice, 15.3% sys, 73.4% idle, 0.0% intr, 0.0% ker
Memory: Real: 8208K/13168K act/tot Virtual: 16432K/30736K act/tot Free: 4224K

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 89 root 1 0 2968K 2652K sleep 5:01 0.00% 0.00% named

Okay, that’s really quiet. Here’s what top shows on a busy (though not overloaded)
nameserver:

load averages: 0.30, 0.46, 0.44 system: relay 16:12:20
39 processes: 38 sleeping, 1 waiting
Cpu states: 4.4% user, 0.0% nice, 5.4% system, 90.2% idle, 0.0% unk5, 0.0% unk6,
0.0% unk7, 0.0% unk8
Memory: 31126K (28606K) real, 33090K (28812K) virtual, 54344K free Screen #1/ 3

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 21910 root 1 0 2624K 2616K sleep 146:21 0.00% 1.42% /etc/named

Another statistic to look at is the number of queries the nameserver receives per
minute (or second, if you have a busy nameserver). Again, there are no absolutes
here: a fast processor running FreeBSD can probably handle thousands of queries per
second without breaking a sweat, while an older box running an outdated version of
Unix might have problems with more than a few queries a second.

To check the volume of queries your nameserver is receiving, it’s easiest to look at
the nameserver’s internal statistics. You can configure the server to write the statis-
tics at regular intervals. For example, you can configure your nameserver to dump
statistics every hour (actually, that’s the default for BIND 8 servers), and compare
the number of queries received between hours:

options {
 statistics-interval 60;
};

BIND 9 nameservers don’t support the statistics-interval substatement, but you can
use rndc to tell a BIND 9 nameserver to dump statistics on the hour—for example, in
crontab:

0 * * * * /usr/local/sbin/rndc stats

You should pay special attention to peak periods. For example, Monday morning is
often busy because many people like to respond to mail they’ve received over the
weekend first thing on Mondays.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 8: Growing Your Domain

You might also want to take a sample starting just after lunch, when people are
returning to their desks and getting back to work—all at about the same time. Of
course, if your organization is spread across several time zones, you’ll have to use
your best judgment to determine a busy time.

Here’s a snippet from the syslog file on a BIND 8 nameserver:

Aug 1 11:00:49 toystory named[103]: NSTATS 965152849 959476930 A=8 NS=1
SOA=356966 PTR=2 TXT=32 IXFR=9 AXFR=204
Aug 1 11:00:49 toystory named[103]: XSTATS 965152849 959476930 RR=3243 RNXD=0
RFwdR=0 RDupR=0 RFail=20 RFErr=0 RErr=11 RAXFR=204 RLame=0 ROpts=0 SSysQ=3356

SAns=391191 SFwdQ=0 SDupQ=1236 SErr=0
RQ=458031
 RIQ=25 RFwdQ=0 RDupQ=0 RTCP=101316
SFwdR=0 SFail=0 SFErr=0 SNaAns=34482 SNXD=0 RUQ=0 RURQ=0 RUXFR=10 RUUpd=34451
Aug 1 12:00:49 toystory named[103]: NSTATS 965156449 959476930 A=8 NS=1
SOA=357195 PTR=2 TXT=32 IXFR=9 AXFR=204
Aug 1 12:00:49 toystory named[103]: XSTATS 965156449 959476930 RR=3253 RNXD=0
RFwdR=0 RDupR=0 RFail=20 RFErr=0 RErr=11 RAXFR=204 RLame=0 ROpts=0 SSysQ=3360

SAns=391444 SFwdQ=0 SDupQ=1244 SErr=0
RQ=458332
RIQ=25 RFwdQ=0 RDupQ=0 RTCP=101388
SFwdR=0 SFail=0 SFErr=0 SNaAns=34506 SNXD=0 RUQ=0 RURQ=0 RUXFR=10 RUUpd=34475

The number of queries received is dumped in the RQ field (in bold). To calculate the
number of queries received in the hour, just subtract the first RQ value from the sec-
ond one: 458332 – 458031 = 301.

Even if your host is fast enough to handle the volume of queries it receives, you
should make sure the DNS traffic isn’t placing undue load on your network. On
most LANs, DNS traffic will be too small a proportion of the network’s bandwidth
to worry about. Over slow leased lines or dial-up connections, though, DNS traffic
could consume enough bandwidth to merit concern.

To get a rough estimate of the volume of DNS traffic on your LAN, multiply the
number of queries received (RQ) plus the number of answers sent (SAns) in an hour
by 800 bits (100 bytes, a rough average size for a DNS message), and divide by 3,600
(seconds per hour) to find the bandwidth utilized. This should give you a feeling for
how much of your network’s bandwidth is being consumed by DNS traffic.*

To give you an idea of what’s normal, the last NSFNET traffic report (in April 1995)
showed that DNS traffic constituted just over five percent of the total traffic volume (in
bytes) on its backbone. The NSFNET’s figures were based on actual traffic sampling,

* For a nice package that automates the analysis of BIND’s statistics, look for Marco d’Itri’s bindgraph in the
DNS Resources Directory’s tools page, http://www.dns.net/dnsrd/tools.html.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How Many Nameservers? | 183

not calculations like ours using the nameserver’s statistics.* If you want to get a more
accurate idea of the traffic your nameserver is receiving, you can always do your own
traffic sampling with a LAN protocol analyzer.

If you find that your nameservers are overworked, what then? First, it’s a good idea
to make sure that your nameservers aren’t being bombarded with queries by a misbe-
having program. To do that, you’ll need to find the sources of all the queries.

If you’re running a BIND 8 nameserver, you can find out which resolvers and
nameservers are querying your nameserver just by dumping the server’s statistics.
BIND 8 nameservers keep statistics on a host-by-host basis, which is really useful in
tracking down heavy users of your nameserver. BIND 8.2 or newer nameservers
don’t keep these statistics by default; to induce them to keep host-by-host statistics,
use the host-statistics substatement in your options statement, like this:†

options {
 host-statistics yes;
};

For example, take these statistics:

+++ Statistics Dump +++ (829373099) Fri Apr 12 23:24:59 1996
970779 time since boot (secs)
471621 time since reset (secs)
0 Unknown query types
185108 A queries
6 NS queries
69213 PTR queries
669 MX queries
2361 ANY queries
++ Name Server Statistics ++
(Legend)
 RQ RR RIQ RNXD RFwdQ
 RFwdR RDupQ RDupR RFail RFErr
 RErr RTCP RAXFR RLame ROpts
 SSysQ SAns SFwdQ SFwdR SDupQ
 SFail SFErr SErr RNotNsQ SNaAns
 SNXD
(Global)
 257357 20718 0 8509 19677 19939 1494 21 0 0 0 7 0 1 0
 824 236196 19677 19939 7643 33 0 0 256064 49269 155030
 [15.17.232.4]
 8736 0 0 0 717 24 0 0 0 0 0 0 0 0 0 0 8019 0 717 0
 0 0 0 8736 2141 5722
[15.17.232.5]
 115 0 0 0 8 0 21 0 0 0 0 0 0 0 0 0 86 0 1 0 0 0 0 115 0 7

* We’re not sure how representative of the current state of the Internet these numbers are, because it’s
extremely difficult to wheedle equivalent numbers out of the commercial backbone providers that succeeded
the NSFNET.

† BIND 9 doesn’t support the host-statistics substatement—or keeping per-host statistics, for that matter.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 8: Growing Your Domain

[15.17.232.8]
 66215 0 0 0 6910 148 633 0 0 0 0 5 0 0 0 0 58671 0 6695 0
 15 0 0 66215 33697 6541
[15.17.232.16]
 31848 0 0 0 3593 209 74 0 0 0 0 0 0 0 0 0 28185 0 3563 0
 0 0 0 31848 8695 15359
[15.17.232.20]
 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 272 7 0
[15.17.232.21]
 316 0 0 0 52 14 3 0 0 0 0 0 0 0 0 0 261 0 51 0 0 0 0 316 30 30
[15.17.232.24]
 853 0 0 0 65 1 3 0 0 0 0 2 0 0 0 0 783 0 64 0 0 0 0 853 125 337
[15.17.232.33]
 624 0 0 0 47 1 0 0 0 0 0 0 0 0 0 0 577 0 47 0 0 0 0 624 2 217
[15.17.232.94]
 127640 0 0 0 1751 14 449 0 0 0 0 0 0 0 0 0 125440 0 1602 0
 0 0 0 127640 106 124661
[15.17.232.95]
 846 0 0 0 38 1 0 0 0 0 0 0 0 0 0 0 809 0 37 0 0 0 0 846 79 81
-- Name Server Statistics --
--- Statistics Dump --- (829373099) Fri Apr 12 23:24:59 1996

After the Global entry, each host is broken out by IP address in brackets. Looking at the
legend, you can see that the first field in each record is RQ, or queries received. That
gives us a good reason to look at hosts 15.17.232.8, 15.17.232.16, and 15.17.232.94,
which appear to be responsible for about 88 percent of our queries.

If you’re running a BIND 9 nameserver, the only way to find out which resolvers and
nameservers are sending all those darned queries is to turn on nameserver debug-
ging. (We’ll cover this in depth in Chapter 13.) All you’re really interested in is the
source IP addresses of the queries your nameserver is receiving. When poring over
the debugging output, look for hosts sending repeated queries, especially for the
same or similar information. That may indicate a misconfigured or buggy program
running on the host or a foreign nameserver pelting your nameserver with queries.

If all the queries appear to be legitimate, add a new nameserver. Don’t put the
nameserver just anywhere, though; use the information from the debugging output
to help you decide where it’s best to run one. If DNS traffic is gobbling up your
bandwidth, it won’t help to choose a host at random and create a nameserver there.
You need to consider which hosts are sending most of the queries, then figure out
how to best provide them name service. Here are some hints to help you decide:

• Look for queries from resolvers on hosts that share the same file server. You
could run a nameserver on that file server.

• Look for queries from resolvers on large, multiuser hosts. You could run a
nameserver there.

• Look for queries from resolvers on another subnet. Those resolvers should be
configured to query a nameserver on their local subnet. If there isn’t one on that
subnet, create one.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding More Nameservers | 185

• Look for queries from resolvers on the same switch. If you connect a nameserver
to the switch, the traffic won’t need to traverse the rest of the network.

• Look for queries from hosts connected to each other via another, lightly loaded
network. You could run a nameserver on the other network.

Adding More Nameservers
When you need to create new nameservers for your zones, the simplest recourse is to
add slaves. You already know how—we went over it in Chapter 4—and once you’ve
set up one slave, cloning it is a piece of cake. However, you can run into trouble by
adding slaves indiscriminately.

If you run a large number of slave servers for a zone, the primary nameserver can
take quite a beating serving all of the slaves’ zone transfers. There are a number of
remedies for this problem, as described in the sections that follow:

• Make more primary master nameservers.

• Direct some of the slave nameservers to load from other slave nameservers.

• Create caching-only nameservers.

• Create “partial-slave” nameservers.

Primary Master and Slave Servers
Creating more primaries means extra work for you because you have to keep /etc/
named.conf and the zone datafiles synchronized manually. Whether this is preferable
to your other alternatives is your call. You can use tools such as rdist or rsync* to sim-
plify the process of distributing the files. A distfile† to synchronize files between pri-
maries might be as simple as the following:

dup-primary:

copy named.conf file to dup'd primary

/etc/named.conf -> wormhole
 install ;

copy contents of /var/named (zone data files, etc.) to dup'd primary

/var/named -> wormhole
 install ;

* rsync is a remote file synchronization program that transmits only the differences between files. You can find
out more about it at http://rsync.samba.org.

† The file rdist reads to find out which files to update.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 8: Growing Your Domain

or for multiple primaries:

dup-primary:

primaries = (wormhole carrie)
/etc/named.conf -> {$primaries}
 install ;

/var/named -> {$primaries}
 install ;

You can even have rdist trigger your nameserver’s reload using the special option by
adding lines such as:

special /var/named/* "rndc reload" ;
special /etc/named.conf "rndc reload" ;

These tell rdist to execute the quoted command if any of the files change.

You can also have some of your slaves load from other slaves. Slave nameservers can
load zone data from other slave nameservers instead of loading from a primary mas-
ter nameserver. The slave nameserver can’t tell if it is loading from a primary or from
another slave. The only requirement is that the nameserver serving the zone transfer
is authoritative for the zone. There’s no trick to configuring this. Instead of specify-
ing the IP address of the primary in the slave’s configuration file, you simply specify
the IP address of another slave.

Here are the contents of the file named.conf:

// this slave updates from wormhole, another
// slave
zone "movie.edu" {
 type slave;
 masters { 192.249.249.1; };
 file "bak.movie.edu";
};

When you go to this second level of distribution, though, keep in mind that it can
take up to twice as long for the data to percolate from the primary nameserver to all
the slaves. Remember that the refresh interval is the period after which the slave
nameservers will check to make sure that their zone data is still current. Therefore, it
can take the first-level slave servers the entire length of the refresh interval before
they get a new copy of the zone from the primary master server. Similarly, it can take
the second-level slave servers the entire refresh interval to get a new copy of the zone
from the first-level slave servers. The propagation time from the primary master
server to all of the slave servers can therefore be twice the refresh interval.

One way to avoid this is to use the NOTIFY mechanism. This feature is on by
default, and will trigger zone transfers soon after the zone is updated on the primary
master. We’ll discuss NOTIFY in more detail in Chapter 10.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding More Nameservers | 187

If you decide to configure your network with two (or more) tiers of slave nameserv-
ers, be careful to avoid updating loops. If we configured wormhole to update from
monsters-inc and then accidentally configured monsters-inc to update from worm-
hole, neither would ever get data from the primary. They would merely check their
out-of-date serial numbers against each other and perpetually decide that they were
both up to date.

Caching-Only Servers
Creating caching-only nameservers is another alternative when you need more serv-
ers. Caching-only nameservers are nameservers not authoritative for any zones
(except 0.0.127.in-addr.arpa). The name doesn’t imply that primary and slave
nameservers don’t cache—they do—but rather that the only function this server per-
forms is looking up data and caching it. As with primary and slave nameservers, a
caching-only nameserver needs a root hints file and a db.127.0.0 file. The named.conf
file for a caching-only server contains these lines:

options {
 directory "/var/named"; // or your data directory
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

zone "." {
 type hint;
 file "db.cache";
};

A caching-only nameserver can look up domain names inside and outside your zone,
as can primary and slave nameservers. The difference is that when a caching-only
nameserver initially looks up a name within your zone, it ends up asking one of your
zone’s primary master or slave nameservers for the answer. A primary or slave
answers the same question out of its authoritative data. Which primary or slave does
the caching-only server ask? As with nameservers outside of your zone, it finds out
which nameservers serve your zone from one of the nameservers for your parent
zone. Is there any way to prime a caching-only nameserver’s cache so it knows which
hosts run primary and slave nameservers for your zone? No, there isn’t. You can’t
use db.cache: the db.cache file is only for root nameserver hints. And actually, it’s bet-
ter that your caching-only nameservers find out about your authoritative nameserv-
ers from your parent zone’s nameservers: you keep your zone’s delegation
information up to date. If you hard-wired a list of authoritative nameservers on your
caching-only nameservers, you might forget to update it.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 8: Growing Your Domain

A caching-only nameserver’s real value comes after it builds up its cache. Each time it
queries an authoritative nameserver and receives an answer, it caches the records in
the answer. Over time, the cache will grow to include the information most often
requested by the resolvers querying the caching-only nameserver. And you avoid the
overhead of zone transfers: a caching-only nameserver doesn’t need to do them.

Partial-Slave Servers
In between a caching-only nameserver and a slave nameserver is another variation:
a nameserver that is a slave for only a few of the local zones. We call this a partial-
secondary nameserver (although probably nobody else does). Suppose movie.edu
had 20 /24-sized (the old Class C) networks (and a corresponding 20 in-addr.arpa
zones). Instead of creating a slave server for all 21 zones (all the in-addr.arpa sub-
domains plus movie.edu), we can create a partial-slave server for movie.edu and
only those in-addr.arpa zones the host itself is in. If the host had two network
interfaces, its nameserver would be a slave for three zones: movie.edu and the two
in-addr.arpa zones.

Let’s say we scare up the hardware for another nameserver. We’ll call the new host
zardoz.movie.edu, with IP addresses 192.249.249.9 and 192.253.253.9. We’ll create a
partial-slave nameserver on zardoz with this named.conf file:

options {
 directory "/var/named";
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

zone "249.249.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.249.249";
};

zone "253.253.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.253.253";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Registering Nameservers | 189

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

zone "." {
 type hint;
 file "db.cache";
};

This server is a slave for movie.edu and only two of the 20 in-addr.arpa zones. A
“full” slave would have 21 different zone statements in named.conf.

What’s so useful about a partial-slave nameserver? They’re not much work to admin-
ister because their named.conf files don’t change much. On a nameserver authorita-
tive for all the in-addr.arpa zones, we’d need to add and delete in-addr.arpa zones as
our network changed. That can be a surprising amount of work on a large network.

A partial slave can still answer most of the queries it receives, though. Most of these
queries will be for data in movie.edu and the two in-addr.arpa zones. Why? Because
most of the hosts querying the nameserver are on the two networks to which it’s con-
nected, 192.249.249/24 and 192.253.253/24. And those hosts probably communi-
cate primarily with other hosts on their own network. This generates queries for data
within the in-addr.arpa zone that corresponds to the local network.

Registering Nameservers
When you get around to setting up more and more nameservers, a question may
strike you—do I need to register all of my primary and slave nameservers with my
parent zone? The answer is no. Only those servers you want to make available to
nameservers outside your zone need to be registered with your parent. For example,
if you run nine nameservers for your zone, you may choose to tell the parent zone
about only four of them. Within your network, you use all nine servers. Five of those
nine servers, however, are queried only by resolvers on hosts that are configured to
query them (in resolv.conf, for example). Their parent zone’s nameservers don’t dele-
gate to them, so they’ll never be queried by remote nameservers. Only the four serv-
ers registered with your parent zone are queried by other nameservers, including
caching-only and partial-slave nameservers on your network. This setup is shown in
Figure 8-2.

Besides being able to pick and choose which of your nameservers are hammered by
outside queries, there’s a technical motivation for registering only some of your
zone’s nameservers: there is a limit to how many servers will fit in a UDP-based
response message. In practice, around 10 nameserver records should fit. Depending
on the data (how many servers’ names are in the same domain), you can get more or

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 8: Growing Your Domain

fewer.* There’s not much point in registering more than 10 nameservers, anyway; if
none of those 10 servers can be reached, it’s unlikely the destination host can be
reached.

If you’ve set up a new authoritative nameserver, and you decide it should be regis-
tered, make a list of the parents of the zones for which it’s authoritative. You’ll need
to contact the administrators for each parent zone. For example, let’s say we want to
register the nameserver we just set up on zardoz. To get this slave registered in all the
right zones, we’ll need to contact the administrators of edu and in-addr.arpa. (For
help determining who runs your parent zones, turn back to Chapter 3.)

When you contact the administrators of a parent zone, be sure to follow the process
they specify (if any) on their web site. If there’s no standard modification process,
you’ll have to send them the domain name of the zone (or zones) for which the new
nameserver is authoritative. If the new nameserver is in the new zone, you’ll also
need to give them the IP address(es) of the new nameserver. In fact, if there’s no offi-
cial format for submitting the information, it’s often best just to send your parent the

Figure 8-2. Registering only some of your nameservers

* The domain names of the Internet’s root nameservers were changed because of this. All the roots were
moved into the same domain, root-servers.net, to take maximum advantage of domain-name compression
and to allow information about as many roots as possible to be stored in a single UDP packet.

NameServers

Hosts

resolver queries
nameserver queries

registered

nonregistered

authoritative
nameserver

caching-only
nameserver

nameserver queries

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Registering Nameservers | 191

complete list of registered nameservers for the zone, plus any addresses necessary, in
zone datafile format. This avoids any potential confusion.

Since our networks were originally assigned by the InterNIC, we used the Network
Modification form at http://www.arin.net/library/templates/netmod.txt to change our
registration. If they hadn’t had a template for us to use, our message to the adminis-
trator of in-addr.arpa might have read something like this:

Howdy!

I've just set up a new slave name server on zardoz.movie.edu for the
249.249.192.in-addr.arpa and 253.253.192.in-addr.arpa zones. Would you
please add NS records for this name server to the in-addr.arpa zone?
That would make our delegation information look like:

253.253.192.in-addr.arpa. 86400 IN NS toystory.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

249.249.192.in-addr.arpa. 86400 IN NS toystory.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

Thanks!

Albert LeDomaine
al@movie.edu

Notice that we specified explicit TTLs on the NS records. That’s because our parent
nameservers aren’t authoritative for those records; our nameservers are. By including
them, we’re indicating our choice of a TTL for our zone’s delegation. Of course, our
parent may have other ideas about what the TTL should be.

In this case, glue data—A records for each of the nameservers—isn’t necessary
because the domain names of the nameservers aren’t within the in-addr.arpa zones.
They’re within movie.edu, so a nameserver that was referred to toystory.movie.edu or
wormhole.movie.edu can still find their addresses by following delegation to the
movie.edu nameservers.

Is a partial-slave nameserver a good nameserver to register with your parent zone?
Actually, it’s not ideal because it’s authoritative for only some of your in-addr.arpa
zones. Administratively, it may be easier to register only servers that slave all the
local zones; that way, you don’t need to keep track of which nameservers are author-
itative for which zones. All your parent zones can delegate to the same set of
nameservers: your primary master and your “full” slaves.

If you don’t have many nameservers, though, or if you’re good at remembering
which nameservers are authoritative for which zones, go ahead and register a partial-
slave.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 8: Growing Your Domain

Caching-only nameservers, on the other hand, must never be registered. A caching-
only nameserver rarely has complete information for any given zone; it just has the
bits and pieces of the zone that it has looked up recently. If a parent nameserver mis-
takenly refers a foreign nameserver to a caching-only nameserver, the foreign
nameserver sends the caching-only nameserver a nonrecursive query. The caching-
only nameserver might have the data cached, but then again, it might not.* If it
doesn’t have the data, it refers the querier to the best nameservers it knows (those
closest to the domain name in the query)—which may include the caching-only
nameserver itself! The poor foreign nameserver may never get an answer. This kind
of misconfiguration—actually, delegating a zone to any nameserver not authorita-
tive for that zone—is known as lame delegation.

Changing TTLs
An experienced zone administrator needs to know how to set the time to live on his
zone’s data to his best advantage. The TTL on a resource record, remember, is the
length of time for which any nameserver can cache that record. So if the TTL for a
particular resource record is 3,600 seconds and a server outside your network caches
that record, it will have to remove the entry from its cache after an hour. If it needs
the same data after the hour is up, it’ll have to query one of your nameservers again.

When we introduced TTLs, we emphasized that your choice of a TTL would dictate
how current you would keep copies of your data, at the cost of increased load on
your nameservers. A low TTL would mean that nameservers outside your network
would have to get data from your nameservers often and that the data would there-
fore be kept current. On the other hand, your nameservers would be peppered by the
nameservers’ queries.

You don’t have to choose a TTL once and for all, though. You can—and experi-
enced administrators do—change TTLs periodically to suit your needs.

Suppose we know that one of our hosts is about to be moved to another network.
This host houses the movie.edu film library, a large collection of files our site makes
available to hosts on the Internet. During normal operation, outside nameservers
cache the address of our host according to the default TTL set in the $TTL control
statement, or for pre–BIND 8.2 nameservers, in the SOA record. (We set the default
TTL for movie.edu to three hours in our sample zone datafiles.) A nameserver cach-
ing the old address record just before the change could have the wrong address for as
long as three hours. A loss of connectivity for three hours is unacceptable, though.
What can we do to minimize the loss of connectivity? We can lower the TTL so that

* More importantly, even if the caching-only nameserver had the answer cached, it would respond non-
authoritatively. The nameserver that was referred to it, expecting an authoritative answer, would ignore the
response.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changing TTLs | 193

outside servers cache the address record for a shorter period. By reducing the TTL,
we force the outside servers to update their data more frequently, which means that
any changes we make when we actually move the system will be propagated to the
outside world quickly. How short can we make the TTL? Unfortunately, we can’t
safely use a TTL of 0, which should mean “don’t cache this record at all.” Some
older BIND version 4 nameservers can’t cope with a TTL of 0. Small TTLs, like 30
seconds, are okay, though. The easiest change is to lower the TTL in the $TTL con-
trol statement in the db.movie.edu file. If you don’t place an explicit TTL on resource
records in the zone datafiles, the nameserver applies this to each resource record. If
you lower the default TTL, though, the new, lower default applies to all zone data,
not just the address of the host being moved. The drawback to this approach is that
your nameserver will be answering a lot more queries because the querying servers
will cache all the data in your zone for a shorter period. A better alternative is to put
a different TTL only on the affected address record.

To add an explicit TTL on an individual resource record, place it before the IN in the
class field. The TTL value is in seconds by default, but you can also specify units of
m (minutes), h (hours), d (days), and w (weeks), just as you could in the $TTL con-
trol statement. Here’s an example of an explicit TTL from db.movie.edu:

cujo 1h IN A 192.253.253.5 ; explicit TTL of 1 hour

When giving out answers, a slave supplies the same TTL a primary master does; that
is, if a primary gives out a TTL of one hour for a particular record, a slave will, too.
The slave doesn’t decrement the TTL according to how long it has been since it
loaded the zone. So, if the TTL of a single resource record is set smaller than the
default, both the primary and slave nameservers give out the resource record with the
same, smaller TTL. If the slave nameserver has reached the expiration time for the
zone, it expires the whole zone. It will never expire an individual resource record
within a zone.

So BIND allows you to put a small TTL on an individual resource record if you know
that the data is going to change shortly. Thus, any nameserver caching that data
caches it only for a brief time. Unfortunately, while the nameserver makes tagging
records with a small TTL possible, most administrators don’t take the time to do it.
When a host changes addresses, you often lose connectivity to it for a while.

More often than not, the host having its address changed is not one of the main hubs
on the site, so the outage affects few people. If one of the mail hubs or a major web
server or ftp archive—like the film library—is moving, though, a day’s loss of con-
nectivity may be unacceptable. In cases like this, the administrator should plan
ahead and reduce the TTL on the data to be changed.

Remember that the TTL on the affected data will need to be lowered before the
change takes place. Reducing the TTL on a workstation’s address record and chang-
ing the workstation’s address simultaneously may do you little or no good; the
address record may have been cached seconds before you made the change and may

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 8: Growing Your Domain

linger until the old TTL times out. You must also be sure to factor in the time it’ll
take your slaves to load from your primary. For example, if your default TTL is 12
hours and your refresh interval is 3 hours, be sure to lower the TTLs at least 15 hours
ahead of time, so that by the time you move the host, all the old, longer TTL records
will have timed out. Of course, if all your slaves are using NOTIFY, the slaves
shouldn’t take the full refresh interval to synch up.

Changing Other SOA Values
We briefly mentioned increasing the refresh interval as a way to offload your pri-
mary nameserver. Let’s discuss refresh in a little more detail and go over the remain-
ing SOA values, too.

The refresh value, you’ll remember, controls how often a slave checks whether its
zone data is up to date. The retry value then becomes the refresh time after the first
failure to reach a master nameserver. The expire value determines how long zone
data can be held before it’s discarded, when a master is unreachable. Finally, on pre–
BIND 8.2 nameservers, the minimum TTL sets how long zone information may be
cached. On newer nameservers, the last SOA field is the negative caching TTL.

Suppose we decide we want the slaves to pick up new information every hour instead
of every three hours. We change the refresh value to one hour in each of the zone
datafiles (or with the –o option to h2n). Since retry is related to refresh, we should
probably reduce retry, too—to every 15 minutes or so. Typically, retry is less than
refresh, but that’s not required.* Although lowering the refresh value speeds up the
distribution of zone data, it also increases the load on the nameserver from which
data is being transferred because the slaves will check more often. The added load
isn’t much, though; each slave makes a single SOA query during each zone’s refresh
interval to check its master’s copy of the zone. So with two slave nameservers, chang-
ing the refresh time from three hours to one hour generates only four more queries
(per zone) to the master in any three-hour span.

If all your slaves run BIND 8 or 9, and you use NOTIFY, of course, refresh doesn’t
mean as much. But if you have even one BIND version 4 slave, your zone data may
take up to the full refresh interval to reach it.

Some versions of BIND may refresh more often than the refresh interval. All modern
versions of BIND (from version 4.9 on) will wait a random number of seconds
between one-half (for BIND 8) or three-quarters (BIND 9) of the refresh interval and
the full refresh interval to check serial numbers.

Expiration times on the order of a week—longer if you frequently have problems
reaching your updating source—are common. The expiration time should always be

* Actually, BIND 8 servers will warn you if refresh is set to less than 10 times the retry interval.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters | 195

much larger than the retry and refresh intervals; if the expiration time is smaller than
the refresh interval, your slaves will expire their data before trying to load new data.
BIND 8 complains if you set an expiration time less than refresh plus retry, less than
twice retry, less than seven days, or greater than six months. (BIND 9 doesn’t com-
plain—yet.) Choosing an expiration time that meets all BIND 8’s criteria is a good
idea in most situations.

If your zone’s data doesn’t change much, you might consider raising its default TTL.
Default TTLs are commonly a few hours to one day. One day is about the longest
value that makes sense for a TTL. If it’s longer than that, you may find yourself
unable to change bad, cached data in a reasonable amount of time.

Planning for Disasters
It’s a fact of life on a network that things go wrong. Hardware fails, software has
bugs, and people occasionally make mistakes. Sometimes this results in minor incon-
veniences, like having a few users lose connections. Sometimes the results are cata-
strophic and involve the loss of important data and gainful employment.

Because the Domain Name System relies so heavily on the network, it is vulnerable
to network outages. Thankfully, the design of DNS takes into account the imperfec-
tion of networks: it allows for multiple, redundant nameservers; retransmission of
queries; retrying zone transfers; and so on.

DNS doesn’t protect itself from every conceivable calamity, though. There are types
of network failures—some of them quite common—that DNS doesn’t or can’t pro-
tect against. But with a small investment of time and money, you can minimize the
threat of these problems.

Outages
Power outages, for example, are relatively common in many parts of the world. In
some parts of the United States, thunderstorms or tornadoes may cause a site to lose
power, or to have only intermittent power, for an extended period. Elsewhere,
typhoons, volcanoes, or construction work may interrupt your electrical service. And
you never know when those of you in California might lose power in a rolling black-
out from a lack of electrical capacity.

If all your hosts are down, of course, you don’t need name service. Quite often, how-
ever, sites have problems when power is restored. Following our recommendations,
they run their nameservers on file servers and big, multiuser machines. And when the
power comes up, those machines are naturally the last to boot because all those disks
need to be checked and fixed first! Which means that all the on-site hosts that are
quick to boot do so without the benefit of name service.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 8: Growing Your Domain

This can cause all sorts of wonderful problems, depending on how your hosts’ star-
tup files are written. Unix hosts often execute some variant of:

/usr/sbin/ifconfig lan0 inet `hostname` netmask 255.255.128.0 up
/usr/sbin/route add default site-router 1

to bring up their network interface and add a default route. Using hostnames in com-
mands (`hostname` expands to the local hostname, and site-router is the name of the
local router) is admirable because it allows administrators to change devices’ IP
addresses without changing all the startup files on-site.

Unfortunately, the route command fails without name service. The ifconfig com-
mand fails only if the local host’s name and IP address don’t appear in the host’s /etc/
hosts file, so it’s a good idea to leave at least that data in each host’s /etc/hosts.

By the time the startup sequence reaches the route command, the network interface
will be up, and the host will try to use name service to map the name of the router to
an IP address. And since the host has no default route until the route command is
executed, the only nameservers it can reach are those on the local subnet.

If the booting host can reach a working nameserver on its local subnet, it can exe-
cute the route command successfully. Quite often, however, one or more of the
nameservers it can reach aren’t yet running. What happens then depends on the con-
tents of resolv.conf.

BIND resolvers fall back to the host table only if there is just one nameserver listed in
resolv.conf (or if no nameserver is listed, and the resolver defaults to using a
nameserver on the local host). If only one nameserver is configured, the resolver que-
ries it, and if the network returns an error each time the resolver sends a query, the
resolver falls back to searching the host table. The errors that cause the resolver to
fall back include:

• Receipt of an ICMP port unreachable message

• Receipt of an ICMP network unreachable message

• Inability to send the UDP packet (e.g., because networking is not yet running on
the local host)*

If the host running the one configured nameserver isn’t running at all, though, the
resolver doesn’t receive any errors. The nameserver is effectively a black hole. After
about 75 seconds of trying, the resolver just times out and returns a null answer to
the application that called it. Only if the nameserver host has actually started net-
working—but not yet started the nameserver—does the resolver get an error: an
ICMP port unreachable message.

* Check Chapter 6 for vendor-specific enhancements to and variants of this resolver algorithm.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters | 197

Overall, the single-nameserver configuration does work if you have nameservers
available on each network, but not as elegantly as we might like. If the local
nameserver hasn’t come up when a host on its network reboots, the route command
fails.

This may seem awkward, but it’s not nearly as bad as what happens with multiple
nameservers. With multiple servers listed in resolv.conf, BIND never falls back to the
host table after the primary network interface has been ifconfig’ed. The resolver sim-
ply loops through the nameservers, querying them until one answers, or the 75-plus-
second timeout is reached.

This is especially problematic during bootup. If none of the configured nameservers
is available, the resolver times out without returning an IP address, and adding the
default route fails.

Recommendations
Our recommendation, as primitive as it sounds, is to hardcode the IP address of the
default router into the startup file or an external file (many systems use /etc/
defaultrouter). This ensures that your host’s networking starts correctly.

An alternative is to list just a single, reliable nameserver on your host’s local network
in resolv.conf. This allows you to use the name of the default router in the startup
file, as long as you make sure that the router’s name appears in /etc/hosts (in case
your reliable nameserver isn’t running when the host reboots). Of course, if the host
running the reliable nameserver isn’t running when your host reboots, all bets are
off. You won’t fall back to /etc/hosts because there won’t be any networking running
to return an error to your host.

If your vendor’s version of BIND allows configuration of the order in which services
are queried or falls back from DNS to /etc/hosts if DNS doesn’t find an answer, take
advantage of it! In the former case, you can configure the resolver to check /etc/hosts
first, and then keep a “stub” /etc/hosts file on each host, including the default router
and the local host’s name. In the latter situation, just make sure such a “stub” /etc/
hosts exists; no other configuration should be necessary.

However, there’s some danger in using /etc/hosts files: unless you take care to keep
the files up to date, the information in them may become stale. Maintaining stub /etc/
hosts files on many hosts is a great application for rsync.

And what if your default route is added correctly but the nameservers still haven’t
come up? This can affect sendmail, NFS, and a slew of other services. sendmail won’t
canonicalize hostnames correctly without DNS, and your NFS mounts may fail.

The best solution to this problem is to run a nameserver on a host with uninterrupt-
ible power. If you rarely experience extended power loss, battery backup might be

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 8: Growing Your Domain

enough. If your outages are longer, and name service is critical to you, you should
consider an uninterruptible power system (UPS) with a generator of some kind.

If you can’t afford luxuries like these, you might just try to track down the fastest-
booting host around and run a nameserver on it. Hosts with filesystem journaling
should boot especially quickly because they usually don’t need to check and repair
their disks. Hosts with small filesystems should also boot quickly because they don’t
have many disks to check.

Once you’ve located the right host, you’ll need to make sure the host’s IP address
appears in the resolver configurations of all of your hosts that need full-time name
service. You’ll probably want to list the backed-up host last because during normal
operation, hosts should use the nameserver closest to them. Then, after a power fail-
ure, your critical applications will still have name service, albeit with a small sacrifice
in performance.

Coping with Disaster
When disaster strikes, it really helps to know what to do. Knowing to duck under a
sturdy table or desk during an earthquake can save you from being pinned under a
toppling monitor. Knowing how to turn off your gas can save your house from con-
flagration.

Likewise, knowing what to do in a network disaster (or even just a minor mishap)
can help you keep your network running. Living out in California, as we do, we have
some first-hand experience with disaster, and some suggestions.

Long Outages (Days)
If you lose network connectivity for a long time, your nameservers may begin to have
problems. If they lose connectivity to the root nameservers for an extended period,
they’ll stop resolving queries outside their authoritative zone data. If the slaves can’t
reach their master, sooner or later they’ll expire the zone.

In case your name service really goes haywire because of the connectivity loss, it’s a
good idea to keep a site-wide or workgroup /etc/hosts around. In times of dire need,
you can move resolv.conf to resolv.bak, kill the local nameserver (if there is one), and
just use /etc/hosts. It’s not flashy, but it’ll get you by.

As for slaves, you can reconfigure a slave that can’t reach its master to temporarily
run as a primary. Just edit named.conf and change the type substatement in the zone
statement from slave to master, then delete the masters substatement. If more than
one slave for the same zone is cut off, you can configure one as a primary tempo-
rarily and reconfigure the others to load from the temporary primary.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Coping with Disaster | 199

Really Long Outages (Weeks)
If an extended outage cuts you off from the Internet—say for a week or more—you
may need to restore connectivity to root nameservers artificially to get things work-
ing again. Every nameserver needs to talk to a root nameserver occasionally. It’s a bit
like therapy: the nameserver needs to contact a root periodically to regain its per-
spective on the world.

To provide root name service during a long outage, you can set up your own root
nameservers, but only temporarily. Once you’re reconnected to the Internet, you
must shut off your temporary root servers. The most obnoxious vermin on the Inter-
net are nameservers that believe they’re root nameservers but don’t know anything
about most top-level domains. A close second is the Internet nameserver configured
to query—and report—a false set of root nameservers.

That said, and with our alibis in place, here’s what you have to do to configure your
own root nameserver. First, you need to create db.root, the root zone datafile. The
root zone will delegate to the highest-level zones in your isolated network. For exam-
ple, if movie.edu were to be isolated from the Internet, we might create a db.root file
for toystory that looks like this:

$TTL 1d
. IN SOA toystory.movie.edu. al.movie.edu. (
 1 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative TTL

 IN NS toystory.movie.edu. ; toystory is the temp. root

; Our root only knows about movie.edu and our two
; in-addr.arpa domains

movie.edu. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

249.249.192.in-addr.arpa. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

253.253.192.in-addr.arpa. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

toystory.movie.edu. IN A 192.249.249.3
wormhole.movie.edu. IN A 192.249.249.1
 IN A 192.253.253.1

Then, we need to add the appropriate line to toystory’s named.conf file:

// Comment out hints zone
// zone . {
// type hint;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 8: Growing Your Domain

// file "db.cache";
// };

zone "." {
 type master;
 file "db.root";
};

We then update all of our nameservers (except the new, temporary root) with a db.cache
file that includes just the temporary root nameserver (it’s best to move the old root hints
file aside; we’ll need it later, once connectivity is restored).

Here are the contents of the file db.cache:

. 99999999 IN NS toystory.movie.edu.

toystory.movie.edu. 99999999 IN A 192.249.249.3

This process keeps movie.edu name resolution going during the outage. Once Inter-
net connectivity is restored, we can delete the root zone statement from named.conf,
uncomment the hint zone statement on toystory, then restore the original root hints
files on all other nameservers.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

201

Chapter 9 CHAPTER 9

Parenting9

The way Dinah washed her children’s faces was this:
first she held the poor thing down by its ear with one
paw, and then with the other paw she rubbed its face

all over, the wrong way, beginning at the nose: and
just now, as I said, she was hard at work on the white
kitten, which was lying quite still and trying to purr—

no doubt feeling that it was all meant for its good.

Once your domain reaches a certain size, or you decide you need to distribute the
management of parts of your domain to various entities within your organization,
you’ll want to divide the domain into subdomains. These subdomains will be the
children of your current domain in the namespace; your domain will be the parent. If
you delegate responsibility for your subdomains to another organization, each
becomes its own zone, separate from its parent zone. We like to call the manage-
ment of your subdomains—your children—parenting.

Good parenting starts with carving up your domain sensibly, choosing appropriate
names for your subdomains, and delegating the subdomains to create new zones. A
responsible parent also works hard at maintaining the relationship between his zone
and its children; he ensures that delegation from parent to child is current and correct.

Good parenting is vital to the success of your network, especially as name service
becomes critical to navigating between sites. Incorrect delegation to a child zone’s
nameservers can render a site effectively unreachable, while the loss of connectivity
to the parent zone’s nameservers can leave a site unable to reach any hosts outside
the local zone.

In this chapter, we present our views on when to create subdomains, and we go over
how to create and delegate them in some detail. We also discuss management of the
parent/child relationship and, finally, how to manage the process of carving up a
large domain into smaller subdomains with minimal disruption and inconvenience.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 9: Parenting

When to Become a Parent
Far be it from us to tell you when you should become a parent, but we will be so
bold as to offer you some guidelines. You may find some compelling reason to imple-
ment subdomains that isn’t on our list, but here are some common reasons:

• A need to delegate or distribute management of your domain to a number of
organizations

• The large size of your domain: dividing it would make it easier to manage and
reduce the load on your authoritative nameservers

• A need to distinguish hosts’ organizational affiliations by including them in par-
ticular subdomains

Once you’ve decided to have children, the next question to ask yourself is, naturally,
how many children to have.

How Many Children?
Of course, you won’t simply say, “I want to create four subdomains.” Deciding how
many subdomains to implement is really choosing the organizational affiliations of
those subdomains. For example, if your company has four branch offices, you might
decide to create four subdomains, each of which corresponds to a branch office.

Should you create subdomains for each site, for each division, or even for each
department? You have a lot of latitude in your choice because of DNS’s scalability.
You can create a few large subdomains or many small subdomains. There are trade-
offs whichever you choose, though.

Delegating to a few large subdomains isn’t much work for the parent, because there’s
not much delegation to keep track of. However, you wind up with larger subdo-
mains, which require more memory to load and faster nameservers, and administra-
tion isn’t as distributed. If you implement site-level subdomains, for example, you
may force autonomous or unrelated groups at a site to share a single zone and a sin-
gle point of administration.

Delegating to many smaller subdomains can be a headache for the parent’s adminis-
trator. Keeping delegation data current involves keeping track of which hosts run
nameservers and which zones they’re authoritative for. The data changes each time a
subdomain adds a new nameserver or the address of a nameserver for the subdo-
main changes. If the subdomains are all administered by different people, that means
more administrators to train, more relationships for the parent’s administrator to
maintain, and more overhead for the organization overall. On the other hand, the
subdomains are smaller and easier to manage, and the administration is more widely
distributed, allowing closer management of zone data.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

What to Name Your Children | 203

Given the advantages and disadvantages of either alternative, it may seem difficult to
make a choice. Actually, there’s probably a natural division in your organization.
Some companies manage computers and networks at the site level; others have
decentralized, relatively autonomous workgroups that manage everything them-
selves. Here are a few basic rules to help you find the right way to carve up your
namespace:

• Don’t shoehorn your organization into a weird or uncomfortable structure. Try-
ing to fit 50 independent, unrelated U.S. divisions into four regional subdo-
mains may save you work (as the administrator of the parent zone), but it won’t
help your reputation. Decentralized, autonomous operations demand different
zones: that’s the raison d’être of the Domain Name System.

• The structure of your domain should mirror the structure of your organization,
especially your organization’s support structure. If departments run networks,
assign IP addresses, and manage hosts, they should also manage the subdomains.

• If you’re not sure or can’t agree about how the namespace should be organized,
try to come up with guidelines for when a group within your organization can
carve off its own subdomain (for example, how many hosts are needed to create
a new subdomain and what level of support the group must provide) and grow
the namespace organically, but only as needed.

What to Name Your Children
Once you’ve decided how many subdomains you’d like to create and what they cor-
respond to, you must choose names for them. Rather than unilaterally deciding on
your subdomains’ names, it’s considered polite to involve your future subdomain
administrators and their constituencies in the decision. In fact, you can leave the
decision entirely to them if you like.

This can lead to problems, though. It’s preferable to use a relatively consistent nam-
ing scheme across your subdomains. This practice makes it easier for users in one
subdomain, or outside your domain entirely, to guess or remember your subdomain
names and to figure out in which domain a particular host or user lives.

Leaving the decision to the locals can result in naming chaos. Some will want to use
geographical names; others will insist on organizational names. Some will want to
abbreviate; others will want to use full names.

Therefore, it’s often best to establish a naming convention before choosing subdo-
main names. Here are some suggestions from our experience:

• In a dynamic company, the names of organizations can change frequently.
Naming subdomains organizationally in a climate like this can be disastrous.
One month the Relatively Advanced Technology group seems stable enough,
the next month they’ve been merged into the Questionable Computer Systems

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 9: Parenting

organization, and the following quarter they’re all sold to a German conglomer-
ate. Meanwhile, you’re stuck with well-known hosts in a subdomain whose
name no longer has any meaning.

• Geographical names are more stable than organizational names but sometimes
aren’t as well known. You may know that your famous Software Evangelism
Business Unit is in Poughkeepsie or Waukegan, but people outside your com-
pany may have no idea where it is (and might have trouble spelling either name).

• Don’t sacrifice readability for convenience. Two-letter subdomain names may be
easy to type, but impossible to recognize. Why abbreviate “Italy” to “it” and
have it confused with your Information Technology organization when for a pal-
try three more letters you can use the full name and eliminate any ambiguity?

• Too many companies use cryptic, inconvenient domain names. The general rule
seems to be the larger the company, the more indecipherable the domain names.
Buck the trend: make the names of your subdomains obvious!

• Don’t use existing or reserved top-level domain names as subdomain names. It
might seem sensible to use two-letter country abbreviations for your interna-
tional subdomains or to use organizational top-level domain names like net for
your networking organization, but doing so can cause nasty problems. For
example, naming your Communications Department’s subdomain com might
impede your ability to communicate with hosts under the top-level com domain.
Imagine the administrators of your com subdomain naming their new Sun work-
station sun and their new HP 9000 hp (they aren’t the most imaginative folks):
users anywhere within your domain sending mail to friends at sun.com or hp.com
could have their letters end up in your com subdomain because the name of your
parent zone may be in some of your hosts’ search lists.*

How to Become a Parent: Creating Subdomains
Once you’ve decided on names, creating the child domains is easy. But first, you
must decide how much autonomy you’re going to give your subdomains. Odd that
you have to decide that before you actually create them....

Thus far, we’ve assumed that if you create a subdomain, you’ll want to delegate it to
another organization, thereby making it a separate zone from the parent. Is this
always true, though? Not necessarily.

Think carefully about how the computers and networks within a subdomain are man-
aged when choosing whether to delegate it. It doesn’t make sense to delegate a subdo-
main to an entity that doesn’t manage its own hosts or networks. For example, in a

* Actually, not all mailers have this problem, but some popular versions of sendmail do. It all depends on
which form of canonicalization they do, as we discussed in the section “Local Nameserver” in Chapter 6.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How to Become a Parent: Creating Subdomains | 205

large corporation, the Personnel Department probably doesn’t run its own comput-
ers: the MIS (Management Information Systems) or IT (Information Technology—
same animal as MIS) Department manages them. So while you may want to create a
subdomain for personnel, delegating management for that subdomain to it is proba-
bly wasted effort.

Creating a Subdomain in the Parent’s Zone
You can create a subdomain without delegating it, however. How? By creating
resource records that refer to the subdomain within the parent’s zone. For example,
movie.edu has a host that stores its complete database of employee and student
records, called brazil. To put brazil in the personnel.movie.edu domain, we can add
records to db.movie.edu.

Partial contents of file db.movie.edu:

brazil.personnel IN A 192.253.253.10
 IN MX 10 brazil.personnel.movie.edu.
 IN MX 100 postmanrings2x.movie.edu.
employeedb.personnel IN CNAME brazil.personnel.movie.edu.
db.personnel IN CNAME brazil.personnel.movie.edu.

Now users can log into db.personnel.movie.edu to get to the employee database. We
can make this setup especially convenient for Personnel Department employees by
adding personnel.movie.edu to their PCs’ or workstations’ search lists; they’d need to
type only telnet db to get to the right host.

We can make this more convenient for ourselves by using the $ORIGIN control
statement to change the origin to personnel.movie.edu so that we can use shorter
names.

Partial contents of file db.movie.edu:

$ORIGIN personnel.movie.edu.
brazil IN A 192.253.253.10
 IN MX 10 brazil.personnel.movie.edu.
 IN MX 100 postmanrings2x.movie.edu.
employeedb IN CNAME brazil.personnel.movie.edu.
db IN CNAME brazil.personnel.movie.edu.

If we had a few more records, we could create a separate file for them and use
$INCLUDE to include it in db.movie.edu and change the origin at the same time.

Notice there’s no SOA record for personnel.movie.edu? There’s no need for one
because the movie.edu SOA record indicates the start of authority for the entire
movie.edu zone. Since there’s no delegation to personnel.movie.edu, it’s part of the
movie.edu zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 9: Parenting

Creating and Delegating a Subdomain
If you decide to delegate your subdomains—to send your children out into the
world, as it were—you’ll need to do things a little differently. We’re in the process of
doing it now, so you can follow along with us.

We need to create a new subdomain of movie.edu for our special-effects lab. We’ve
chosen the name fx.movie.edu—short, recognizable, unambiguous. Because we’re
delegating fx.movie.edu to administrators in the lab, it’ll be a separate zone. The
hosts bladerunner and outland, both within the special-effects lab, will serve as the
zone’s nameservers (bladerunner will serve as the primary). We’ve chosen to run two
nameservers for the zone for redundancy; a single fx.movie.edu nameserver would be
a single point of failure that could effectively isolate the entire special-effects lab.
Since there aren’t many hosts in the lab, though, two nameservers should be enough.

The special-effects lab is on movie.edu’s new 192.253.254/24 network.

Partial contents of /etc/hosts:

192.253.254.1 movie-gw.movie.edu movie-gw
fx primary
192.253.254.2 bladerunner.fx.movie.edu bladerunner br
fx slave
192.253.254.3 outland.fx.movie.edu outland
192.253.254.4 starwars.fx.movie.edu starwars
192.253.254.5 empire.fx.movie.edu empire
192.253.254.6 jedi.fx.movie.edu jedi

First, we create a zone datafile that includes records for all the hosts that will live in
fx.movie.edu.

Contents of file db.fx.movie.edu:

$TTL 1d
@ IN SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. (
 1 ; serial
 3h ; refresh
 1h ; retry
 1w ; expire
 1h) ; negative caching TTL

 IN NS bladerunner
 IN NS outland

; MX records for fx.movie.edu
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

; starwars handles bladerunner's mail
; wormhole is the movie.edu mail hub

bladerunner IN A 192.253.254.2
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How to Become a Parent: Creating Subdomains | 207

br IN CNAME bladerunner

outland IN A 192.253.254.3
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

starwars IN A 192.253.254.4
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

empire IN A 192.253.254.5
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

jedi IN A 192.253.254.6
 IN MX 10 starwars
 IN MX 100 wormhole.movie.edu.

Then, we create the db.192.253.254 file:

$TTL 1d
@ IN SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. (
 1 ; serial
 3h ; refresh
 1h ; retry
 1w ; expire
 1h) ; negative caching TTL

 IN NS bladerunner.fx.movie.edu.
 IN NS outland.fx.movie.edu.

1 IN PTR movie-gw.movie.edu.
2 IN PTR bladerunner.fx.movie.edu.
3 IN PTR outland.fx.movie.edu.
4 IN PTR starwars.fx.movie.edu.
5 IN PTR empire.fx.movie.edu.
6 IN PTR jedi.fx.movie.edu.

Notice that the PTR record for 1.254.253.192.in-addr.arpa points to movie-gw.
movie.edu. That’s intentional. The router connects to the other movie.edu networks,
so it really doesn’t belong in fx.movie.edu, and there’s no requirement that all the
PTR records in 254.253.192.in-addr.arpa map into a single zone—though they
should correspond to the canonical names for those hosts.

Next, we create an appropriate named.conf file for the primary nameserver:

options {
 directory "/var/named";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 9: Parenting

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
};

zone "254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254";
};

zone "." {
 type hint;
 file "db.cache";
};

Of course, if we use h2n, we can just run:

% h2n –v 8 -d fx.movie.edu -n 192.253.254 -s bladerunner -s outland \
-u hostmaster.fx.movie.edu -m 10:starwars -m 100:wormhole.movie.edu

and save ourselves some typing. h2n creates essentially the same db.fx.movie.edu,
db.192.253.254, and named.conf files.

Now we need to configure bladerunner’s resolver. Actually, this may not require cre-
ating resolv.conf. If we set bladerunner’s hostname to its new domain name, bladerun-
ner.fx.movie.edu, the resolver can derive the local domain name from the fully
qualified domain name. By default, of course, the resolver will configure the local
nameserver.

Next, we start up the named process on bladerunner and check for syslog errors. If
named starts okay, and there are no syslog errors that need tending to, we’ll use
nslookup to look up a few hosts in fx.movie.edu and in 254.253.192.in-addr.arpa:

Default Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

> jedi
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

Name: jedi.fx.movie.edu
Address: 192.253.254.6

> set type=mx
> empire
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

empire.fx.movie.edu preference = 10,
 mail exchanger = starwars.fx.movie.edu
empire.fx.movie.edu preference = 100,
 mail exchanger = wormhole.movie.edu
fx.movie.edu nameserver = outland.fx.movie.edu
fx.movie.edu nameserver = bladerunner.fx.movie.edu

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How to Become a Parent: Creating Subdomains | 209

starwars.fx.movie.edu internet address = 192.253.254.4
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1
bladerunner.fx.movie.edu internet address = 192.253.254.2
outland.fx.movie.edu internet address = 192.253.254.3

> ls -d fx.movie.edu
[bladerunner.fx.movie.edu]
$ORIGIN fx.movie.edu.
@ 1D IN SOA bladerunner hostmaster (
 1 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

 1D IN NS bladerunner
 1D IN NS outland
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
bladerunner 1D IN A 192.253.254.2
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
br 1D IN CNAME bladerunner
empire 1D IN A 192.253.254.5
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
jedi 1D IN A 192.253.254.6
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
outland 1D IN A 192.253.254.3
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
starwars 1D IN A 192.253.254.4
 1D IN MX 10 starwars
 1D IN MX 100 wormhole.movie.edu.
@ 1D IN SOA bladerunner hostmaster (
 1 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

> set type=ptr
> 192.253.254.3
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

3.254.253.192.in-addr.arpa name = outland.fx.movie.edu

> ls -d 254.253.192.in-addr.arpa.
[bladerunner.fx.movie.edu]
$ORIGIN 254.253.192.in-addr.arpa.
@ 1D IN SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. (

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 9: Parenting

 1 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

 1D IN NS bladerunner.fx.movie.edu.
 1D IN NS outland.fx.movie.edu.
1 1D IN PTR movie-gw.movie.edu.
2 1D IN PTR bladerunner.fx.movie.edu.
3 1D IN PTR outland.fx.movie.edu.
4 1D IN PTR starwars.fx.movie.edu.
5 1D IN PTR empire.fx.movie.edu.
6 1D IN PTR jedi.fx.movie.edu.
@ 1D IN SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. (
 1 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum
 > exit

The output looks reasonable, so it’s now safe to set up a slave nameserver for fx.
movie.edu and then delegate fx.movie.edu from movie.edu.

An fx.movie.edu Slave
Setting up the slave nameserver for fx.movie.edu is simple: copy named.conf, db.127.0.0,
and db.cache over from bladerunner, and edit named.conf and db.127.0.0 according to
the instructions in Chapter 4.

Contents of file named.conf:

options {
 directory "/var/named";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

zone "fx.movie.edu" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.fx.movie.edu";
};

zone "254.253.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.253.254";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How to Become a Parent: Creating Subdomains | 211

zone "." {
 type hint;
 file "db.cache";
};

Like bladerunner, outland really doesn’t need a resolv.conf file, as long as its hostname
is set to outland.fx.movie.edu.

Again, we start named and check for errors in the syslog output. If the syslog output
is clean, we’ll look up a few records in fx.movie.edu.

On the movie.edu Primary Nameserver
All that’s left now is to delegate the fx.movie.edu subdomain to the new fx.movie.edu
nameservers on bladerunner and outland. We add the appropriate NS records to db.
movie.edu.

Partial contents of file db.movie.edu:

fx 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.

According to RFC 1034, the domain names in the resource record–specific por-
tion of NS records (the right side, containing bladerunner.fx.movie.edu and out-
land.fx.movie.edu) must be the canonical domain names for the nameservers. A
remote nameserver following delegation expects to find one or more address
records attached to that domain name, not an alias (CNAME) record. Actually,
the RFC extends this restriction to any type of resource record that includes a
domain name as its value; all must specify the canonical domain name.

These two records alone aren’t enough, though. Do you see the problem? How can
a nameserver outside of fx.movie.edu look up information within fx.movie.edu?
Well, a movie.edu nameserver would refer it to the nameservers authoritative for fx.
movie.edu, right? That’s true, but the NS records in db.movie.edu give only the
names of the fx.movie.edu nameservers. The foreign nameserver needs the IP
addresses of the fx.movie.edu nameservers in order to send queries to them. Who
can give it those addresses? Only the fx.movie.edu nameservers. A real chicken-and-
egg problem!

The solution is to include the addresses of the fx.movie.edu nameservers in the
movie.edu zone datafile. While these aren’t strictly part of the movie.edu zone, dele-
gation to fx.movie.edu won’t work without them. Of course, if the nameservers for
fx.movie.edu weren’t within fx.movie.edu, these addresses—called glue records—
wouldn’t be necessary. A foreign nameserver would be able to find the address it
needed by querying other nameservers.

So, with the glue records, the added records look like the following.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 9: Parenting

Partial contents of file db.movie.edu:

fx 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
bladerunner.fx.movie.edu. 86400 IN A 192.253.254.2
outland.fx.movie.edu. 86400 IN A 192.253.254.3

Don’t include unnecessary glue records in the file. BIND 8 and 9 nameservers auto-
matically ignore any glue you include that isn’t strictly necessary and log the fact that
they’ve ignored the record(s) to syslog. For example, if we had an NS record for
movie.edu that pointed to an off-site nameserver, ns-1.isp.net, and we made the mis-
take of including its address in db.movie.edu on the movie.edu primary nameserver,
we’d see a message like this in named’s syslog output:

Aug 9 14:23:41 toystory named[19626]: dns_master_load:
db.movie.edu:55: ignoring out-of-zone data

Also, remember to keep the glue up to date. If bladerunner gets a new network inter-
face, and hence another IP address, you should add another A record to the glue
data.

We might also want to include aliases for any hosts moving into fx.movie.edu from
movie.edu. For example, if we move plan9.movie.edu, a server with an important
library of public-domain special-effects algorithms, into fx.movie.edu, we should cre-
ate an alias in movie.edu pointing the old domain name to the new one. In the zone
datafile, the record looks like this:

plan9 IN CNAME plan9.fx.movie.edu.

This allows people outside movie.edu to reach plan9 even though they’re using its old
domain name, plan9.movie.edu.

Don’t get confused about the zone in which this alias belongs. The plan9 alias record
is actually in the movie.edu zone, so it belongs in the file db.movie.edu. An alias point-
ing p9.fx.movie.edu to plan9.fx.movie.edu, on the other hand, is in the fx.movie.edu
zone and belongs in db.fx.movie.edu. If you put a record in the zone datafile that’s
outside the zone the file describes, the nameserver will ignore it, as shown earlier in
the unnecessary glue example.

Delegating an in-addr.arpa Zone
We almost forgot to delegate the 254.253.192.in-addr.arpa zone! This is a little trick-
ier than delegating fx.movie.edu because we don’t manage the parent zone.

First, we need to figure out what 254.253.192.in-addr.arpa’s parent zone is and who
runs it. Figuring this out may take some sleuthing; we covered how to do this in
Chapter 3.

As it turns out, the 192.in-addr.arpa zone is 254.253.192.in-addr.arpa’s parent.
And, if you think about it, that makes some sense. There’s no reason for the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

How to Become a Parent: Creating Subdomains | 213

administrators of in-addr.arpa to delegate 253.192.in-addr.arpa to a separate
authority, because unless 192.253/16 is all one big CIDR block, networks like
192.253.253/24 and 192.253.254/24 don’t have anything in common with each
other. They may be managed by totally unrelated organizations.

To find out who runs 192.in-addr.arpa, we can use nslookup or whois, as we demon-
strated in Chapter 3. Here’s how to use nslookup to find the administrator:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> set type=soa
> 192.in-addr.arpa.
Server: toystory.movie.edu
Address: 0.0.0.0#53

Non-authoritative answer:
192.in-addr.arpa
 origin = chia.arin.net
 mail addr = bind.arin.net
 serial = 2005112714
 refresh = 1800
 retry = 900
 expire = 691200
 minimum = 10800

Authoritative answers can be found from:
192.in-addr.arpa nameserver = chia.arin.net.
192.in-addr.arpa nameserver = dill.arin.net.
192.in-addr.arpa nameserver = basil.arin.net.
192.in-addr.arpa nameserver = henna.arin.net.
192.in-addr.arpa nameserver = indigo.arin.net.
192.in-addr.arpa nameserver = epazote.arin.net.
192.in-addr.arpa nameserver = figwort.arin.net.
chia.arin.net has AAAA address 2001:440:2000:1::21
basil.arin.net internet address = 192.55.83.32
henna.arin.net internet address = 192.26.92.32
indigo.arin.net internet address = 192.31.80.32

So ARIN is responsible for 192.in-addr.arpa (remember them from Chapter 3?). All
that’s left is for us to submit the form at http://www.arin.net/library/templates/net-
end-user.txt to request registration of our reverse-mapping zone.

Adding a movie.edu Slave
If the special-effects lab gets big enough, it may make sense to put a movie.edu slave
somewhere on the 192.253.254/24 network. That way, a larger proportion of DNS
queries from fx.movie.edu hosts can be answered locally. It seems logical to make one
of the existing fx.movie.edu nameservers into a movie.edu slave, too—that way, we
can better use an existing nameserver instead of setting up a brand-new nameserver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 9: Parenting

We’ve decided to make bladerunner a slave for movie.edu. This won’t interfere with
bladerunner’s primary mission as the primary nameserver for fx.movie.edu. A single
nameserver, given enough memory, can be authoritative for literally thousands of
zones. One nameserver can load some zones as a primary and others as a slave.*

The configuration change is simple: we add one statement to bladerunner’s named.conf
file to tell named to load the movie.edu zone from the IP address of the movie.edu pri-
mary nameserver, toystory.movie.edu.

Contents of file named.conf:

options {
 directory "/var/named";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.127.0.0";
};

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
};

zone "254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254";
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

zone "." {
 type hint;
 file "db.cache";
};

Subdomains of in-addr.arpa Domains
Forward-mapping domains aren’t the only domains you can divide into subdomains
and delegate. If your in-addr.arpa namespace is large enough, you may need to divide
it, too. Typically, you divide the domain that corresponds to your network number

* Clearly, though, a nameserver can’t be both the primary and a slave for a single zone. Either the nameserver
gets the data for a given zone from a local zone datafile (and is a primary for the zone) or from another
nameserver (and is a slave for the zone).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Subdomains of in-addr.arpa Domains | 215

into subdomains that correspond to your subnets. How that works depends on the
type of network you have and on your network’s subnet mask.

Subnetting on an Octet Boundary
Since Movie U. has just three /24 (Class C–sized) networks, one per segment, there’s no
particular need to subnet those networks. However, our sister university, Altered State,
has a Class B–sized network, 172.20/16. Its network is subnetted between the third and
fourth octet of the IP address; that is, its subnet mask is 255.255.255.0. It’s already cre-
ated a number of subdomains of its domain: altered.edu, including fx.altered.edu (okay,
we copied them); makeup.altered.edu; and foley.altered.edu. Since each department also
runs its own subnet (its Special Effects department runs subnet 172.20.2/24, Makeup
runs 172.20.15/24, and Foley runs 172.20.25/24), it’d like to divvy up its in-addr.arpa
namespace appropriately, too.

Delegating in-addr.arpa subdomains is no different from delegating subdomains of
forward-mapping domains. Within its db.172.20 zone datafile, it needs to add NS
records like these:

2 86400 IN NS gump.fx.altered.edu.
2 86400 IN NS toystory.fx.altered.edu.
15 86400 IN NS prettywoman.makeup.altered.edu.
15 86400 IN NS priscilla.makeup.altered.edu.
25 86400 IN NS blowup.foley.altered.edu.
25 86400 IN NS muppetmovie.foley.altered.edu.

These records delegate the subdomain that corresponds to each subnet to the cor-
rect nameserver in each subdomain.

A few important notes: the Altered States administrators can use only the third octet of
the subnet in the owner name field because the default origin in this file is 20.172.in-
addr.arpa. They need to use the fully qualified domain names of the nameservers in the
right side of the NS records, though, to avoid having the origin appended. And they
don’t need glue address records because the names of the nameservers they delegated
the zone to don’t end in the domain name of the zone.

Subnetting on a Nonoctet Boundary
What do you do about networks that aren’t subnetted neatly on octet boundaries,
like subnetted /24 (Class C–sized) networks? In these cases, you can’t delegate along
lines that match the subnets. This forces you into one of two situations: you have
multiple subnets per in-addr.arpa zone, or you have multiple in-addr.arpa zones per
subnet. Neither is particularly pleasing.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 9: Parenting

/8 (Class A–sized) and /16 (Class B–sized) networks

Let’s take the case of the /8 (Class A–sized) network 15/8, subnetted with the subnet
mask 255.255.248.0 (a 13-bit subnet field and an 11-bit host field, or 8,192 subnets of
2,048 hosts). In this case, the subnet 15.1.200.0, for example, extends from 15.1.200.0
to 15.1.207.255. Therefore, the delegation for that single subdomain in db.15, the zone
datafile for 15.in-addr.arpa, might look like this:

200.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
200.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
201.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
201.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
202.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
202.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
203.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
203.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
204.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
204.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
205.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
205.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
206.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
206.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
207.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
207.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.

That’s a lot of delegation for one subnet!

Luckily, BIND 8.2 and later, as well as BIND 9.1.0 and later, nameservers support a
control statement called $GENERATE, which lets you create a group of resource
records that differ only by a numerical iterator. For example, you can create the 16
NS records just listed using these two $GENERATE control statements:*

$GENERATE 200-207 $.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
$GENERATE 200-207 $.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.

The syntax is fairly simple: when the nameserver reads the control statement, it iter-
ates over the range specified as the first argument, replacing any dollar signs ($) in
the template that follows the first argument with the current iterator.

/24 (Class C–sized) networks

In the case of a subnetted /24 (Class C–sized) network, say 192.253.254/24, subnet-
ted with the mask 255.255.255.192, you have a single in-addr.arpa zone, 254.253.
192.in-addr.arpa, that corresponds to subnets 192.253.254.0/26, 192.253.254.64/26,
192.253.254.128/26, and 192.253.254.192/26. This can be a problem if you want to
let different organizations manage the reverse-mapping information that corre-
sponds to each subnet. You can solve this in one of three ways, none of which is
pretty.

* Older BIND 8 nameservers are syntactically challenged and require that you omit the class (“IN”) field.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Subdomains of in-addr.arpa Domains | 217

Solution 1. The first solution is to administer the 254.253.192.in-addr.arpa zone as a
single entity and not even try to delegate. This requires either cooperation between
the administrators of the four subnets involved or the use of a tool such as Webmin
(http://www.webmin.com/) to allow each of the four administrators to take care of his
own data.

Solution 2. The second is to delegate at the fourth octet. That’s even nastier than the /8
delegation we just showed you. You’ll need at least a couple of NS records per IP
address in the file db.192.253.254, like this:

1.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
1.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

2.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
2.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

...

65.254.253.192.in-addr.arpa. 86400 IN NS relay.bar.com.
65.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

66.254.253.192.in-addr.arpa. 86400 IN NS relay.bar.com.
66.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

...

129.254.253.192.in-addr.arpa. 86400 IN NS mail.baz.com.
129.254.253.192.in-addr.arpa. 86400 IN NS www.baz.com.

130.254.253.192.in-addr.arpa. 86400 IN NS mail.baz.com.
130.254.253.192.in-addr.arpa. 86400 IN NS www.baz.com.

and so on, all the way down to 254.254.253.192.in-addr.arpa.

You can pare that down substantially using $GENERATE:

$GENERATE 0-63 $.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
$GENERATE 0-63 $.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

$GENERATE 64-127 $.254.253.192.in-addr.arpa. 86400 IN NS relay.bar.com.
$GENERATE 64-127 $.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

$GENERATE 128-191 $.254.253.192.in-addr.arpa. 86400 IN NS mail.baz.com.
$GENERATE 128-191 $.254.253.192.in-addr.arpa. 86400 IN NS www.baz.com.

Of course, in ns1.foo.com’s named.conf, you’d also expect to see:

zone "1.254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254.1";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 9: Parenting

zone "2.254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254.2";
};

and in db.192.253.254.1, just the one PTR record:

$TTL 1d
@ IN SOA ns1.foo.com. root.ns1.foo.com. (
 1 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h ; Negative caching TTL

 IN NS ns1.foo.com.
 IN NS ns2.foo.com.

 IN PTR thereitis.foo.com.

Note that the PTR record is attached to the zone’s domain name because the zone’s
domain name corresponds to just one IP address. Now, when a 254.253.192.in-
addr.arpa nameserver receives a query for the PTR record for 1.254.253.192.in-
addr.arpa, it refers the querier to ns1.foo.com and ns2.foo.com, which respond with
the one PTR record in the zone.

Solution 3. Finally, there’s a clever technique that obviates the need to maintain a sepa-
rate zone datafile for each IP address.* The organization responsible for the overall /24
network creates CNAME records for each domain name in the zone, pointing to
domain names in new subdomains, which are then delegated to the proper nameserv-
ers. These new subdomains can be called just about anything, but names such as 0-63,
64-127, 128-191, and 192-255 clearly indicate the range of addresses each subdomain
will reverse-map. Each subdomain then contains only the PTR records in the range for
which the subdomain is named.

Partial contents of file db.192.253.254:

1.254.253.192.in-addr.arpa. IN CNAME 1.0-63.254.253.192.in-addr.arpa.
2.254.253.192.in-addr.arpa. IN CNAME 2.0-63.254.253.192.in-addr.arpa.

...

0-63.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
0-63.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

65.254.253.192.in-addr.arpa. IN CNAME 65.64-127.254.253.192.in-addr.arpa.
66.254.253.192.in-addr.arpa. IN CNAME 66.64-127.254.253.192.in-addr.arpa.

* We first saw this explained by Glen Herrmansfeldt of CalTech in the newsgroup comp.protocols.tcp-ip.domains.
It’s now codified as RFC 2317.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Subdomains of in-addr.arpa Domains | 219

...

64-127.254.253.192.in-addr.arpa. 86400 IN NS relay.bar.com.
64-127.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

129.254.253.192.in-addr.arpa. IN CNAME 129.128-191.254.253.192.in-addr.arpa.
130.254.253.192.in-addr.arpa. IN CNAME 130.128-191.254.253.192.in-addr.arpa.

...

128-191.254.253.192.in-addr.arpa. 86400 IN NS mail.baz.com.
128-191.254.253.192.in-addr.arpa. 86400 IN NS www.baz.com.

Again, you can abbreviate this with $GENERATE:

$GENERATE 1-63 $ IN CNAME $.0-63.254.253.192.in-addr.arpa.

0-63.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
0-63.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

$GENERATE 65-127 $ IN CNAME $.64-127.254.253.192.in-addr.arpa.

64-127.254.253.192.in-addr.arpa. 86400 IN NS relay.bar.com.
64-127.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

The zone datafile for 0-63.254.253.192.in-addr.arpa, db.192.253.254.0-63, can con-
tain just PTR records for IP addresses 192.253.254.1 through 192.253.254.63.

Partial contents of file db.192.253.254.0-63:

$TTL 1d
@ IN SOA ns1.foo.com. root.ns1.foo.com. (
 1 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative caching TTL

 IN NS ns1.foo.com.
 IN NS ns2.foo.com.

1 IN PTR thereitis.foo.com.
2 IN PTR setter.foo.com.
3 IN PTR mouse.foo.com.
...

The way this setup works is a little tricky, so let’s go over it. A resolver requests the PTR
record for 1.254.253.192.in-addr.arpa, causing its local nameserver to go look up that
record. The local nameserver ends up asking a 254.253.192.in-addr.arpa nameserver,
which responds with the CNAME record indicating that 1.254.253.192.in-addr.arpa is
actually an alias for 1.0-63.254.253.192.in-addr.arpa and that the PTR record is
attached to that name. The response also includes NS records telling the local
nameserver that the authoritative nameservers for 0-63.254.253.192.in-addr.arpa are
ns1.foo.com and ns2.foo.com. The local nameserver then queries either ns1.foo.com or

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 9: Parenting

ns2.foo.com for the PTR record for 1.0-63.254.253.192.in-addr.arpa, and receives the
PTR record.

Good Parenting
Now that the delegation to the fx.movie.edu nameservers is in place, we—responsi-
ble parents that we are—should check that delegation using host. What? We haven’t
given you host yet? A version of host for many Unix variants is available from http://
www.weird.com/~woods/projects/host.html.

To build host, first extract it:

% zcat host.tar.Z | tar -xvf -

Then build it on your system:

% make

host makes it easy to check delegation. With host, you can look up the NS records for
your zone on your parent zone’s nameservers. If those look good, you can use host to
query each nameserver listed for the zone’s SOA record. The query is nonrecursive,
so the nameserver queried doesn’t query other nameservers to find the SOA record.
If the nameserver replies, host checks the reply to see whether the aa—authoritative
answer—bit in the reply message is set. If it is, the nameserver checks to make sure
that the message contains an answer. If both these criteria are met, the nameserver is
flagged as authoritative for the zone. Otherwise, the nameserver is not authoritative,
and host reports an error.

Why all the fuss over bad delegation? Incorrect delegation slows name resolution
and causes the propagation of old and erroneous nameserver information. Remote
nameservers will waste time following your bad NS records, only to receive
responses from your nameservers indicating that they aren’t, in fact, authoritative for
the zone. The remote nameservers will be forced to query a nameserver listed in
another NS record, which means resolving names will take longer. Worse, those
remote nameservers will cache those bogus NS records and return them in responses
to other nameservers, compounding the problem.

Using host
If our little lecture has convinced you of the importance of maintaining correct dele-
gation, you’ll be eager to learn how to use host to ensure that you don’t join the
ranks of the miscreants.

The first step is to use host to look up your zone’s NS records on a nameserver for your
parent zone and make sure they’re correct. Here’s how we’d check the fx.movie.edu NS
records on one of the movie.edu nameservers:

% host -t ns fx.movie.edu. toystory.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Good Parenting | 221

If everything’s okay with the NS records, we’ll simply see the NS records in the output:

fx.movie.edu name server bladerunner.fx.movie.edu
fx.movie.edu name server outland.fx.movie.edu

(The format of the output may vary with the version of host you use, but the gist
is the same.) This tells us that all the NS records delegating fx.movie.edu from
toystory.movie.edu are correct.

Next, we’ll use host’s “SOA check” mode to query each nameserver in the NS
records for the fx.movie.edu zone’s SOA record. This also checks whether the
response was authoritative.

% host -C fx.movie.edu.

Normally, this produces a list of the nameservers for fx.movie.edu, along with the
contents of the fx.movie.edu zone’s SOA record on each nameserver:

Nameserver bladerunner.fx.movie.edu:
 fx.movie.edu SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. 1 10800 3600
608400 3600
Nameserver outland.fx.movie.edu:
 fx.movie.edu SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. 1 10800 3600
608400 3600

If one of the fx.movie.edu nameservers—say outland—is misconfigured, we might see
this:

Nameserver bladerunner.fx.movie.edu:
 fx.movie.edu SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. 1 10800 3600
608400 3600
nxdomain.com has no SOA record

This (subtly) indicates that the nameserver on outland is running, but isn’t authorita-
tive for fx.movie.edu.

If one of the fx.movie.edu nameservers weren’t running at all, we’d see:

Nameserver bladerunner.fx.movie.edu:
 fx.movie.edu SOA bladerunner.fx.movie.edu. hostmaster.fx.movie.edu. 1 10800 3600
608400 3600
;; connection timed out; no servers could be reached

In this case, the connection timed out message indicates that host sent outland a query
and didn’t get a response back in an acceptable amount of time.

While we could have checked the fx.movie.edu delegation using nslookup or dig,
host’s powerful command-line options make the task especially easy.

Managing Delegation
If the special-effects lab gets bigger, we may find that we need additional nameserv-
ers. We dealt with setting up new nameservers in Chapter 8 and even went over what

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 9: Parenting

information to send to the parent zone’s administrator. But we never explained what
the parent needs to do.

It turns out that the parent’s job is relatively easy, especially if the administrators of
the subdomain send complete information. Imagine that the special-effects lab
expands to a new network, 192.254.20/24. It has a passel of new, high-powered
graphics workstations. One of them, alien.fx.movie.edu, will act as the new net-
work’s nameserver.

The administrators of fx.movie.edu (we delegated it to the folks in the lab) send their
parent zone’s administrators (that’s us) a short note:

Hi!

We've just set up alien.fx.movie.edu (192.254.20.3) as a name
server for fx.movie.edu. Would you please update your
delegation information? I've attached the NS records you'll
need to add.

Thanks,

Arty Segue
ajs@fx.movie.edu

----- cut here -----

fx.movie.edu. 86400 IN NS bladerunner.fx.movie.edu.
fx.movie.edu. 86400 IN NS outland.fx.movie.edu.
fx.movie.edu. 86400 IN NS alien.fx.movie.edu.

bladerunner.fx.movie.edu. 86400 IN A 192.253.254.2
outland.fx.movie.edu. 86400 IN A 192.253.254.3
alien.fx.movie.edu. 86400 IN A 192.254.20.3

Our job as the movie.edu administrator is straightforward: add the NS and A records
to db.movie.edu.

What if we’re using h2n to create our nameserver data? We can stick the delegation
information into the spcl.movie file, which h2n $INCLUDEs at the end of the db.movie
file it creates.

The final step for the fx.movie.edu administrator is to send a similar message to
hostmaster@arin.net (the administrator of the 192.in-addr.arpa zone), requesting
that the 20.254.192.in-addr.arpa subdomain be delegated to alien.fx.movie.edu,
bladerunner.fx.movie.edu, and outland.fx.movie.edu.

Managing delegation with stubs

If you’re running a recent BIND nameserver, you don’t have to manage delegation
information manually. BIND 8 and 9 nameservers support an experimental feature

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Managing the Transition to Subdomains | 223

called stub zones, which enable a nameserver to pick up changes to delegation infor-
mation automatically.

A nameserver that’s configured as a stub for a zone periodically sends discrete que-
ries for the zone’s SOA and NS records, as well as any necessary glue A records. The
nameserver then uses the NS records to delegate the zone from its parent, and the
SOA record governs how often the nameserver does these queries. Now, when the
administrators of a subdomain make changes to the subdomain’s nameservers, they
simply update their NS records (and increment the serial number in the SOA record,
of course). The parent zone’s authoritative nameservers, configured as stub for the
child zone, pick up the updated records within the refresh interval.

On the movie.edu nameservers, here’s what we’d add to named.conf:

zone "fx.movie.edu" {
 type stub;
 masters { 192.253.254.2; };
 file "stub.fx.movie.edu";
};

Note that, if we’re running BIND 9 nameservers, we must configure all movie.edu
nameservers—including slaves—as stubs for fx.movie.edu. BIND 9 nameservers don’t
“promote” the fx.movie.edu delegation information into the parent zone, so the fx.
movie.edu zone’s delegation isn’t included in zone transfers. Making all the movie.edu
nameservers stubs for the subdomain keeps them synchronized.

Managing the Transition to Subdomains
We won’t lie to you: the fx.movie.edu example we showed you was unrealistic for
several reasons. The main one is the magical appearance of the special-effects lab’s
hosts. In the real world, the lab would have started out with a few hosts, probably in
the movie.edu zone. After a generous endowment, an NSF grant, or a corporate gift,
the lab might expand a little and a few more computers might be purchased. Sooner
or later, the lab would have enough hosts to warrant the creation of a new subdo-
main. By that point, however, many of the original hosts would be well known by
their names in movie.edu.

We briefly touched on using CNAME records in the parent zone (in our plan9.movie.
edu example) to help people adjust to a host’s change of domain. But what happens
when you move a whole network or subnet into a new subdomain?

The strategy we recommend uses CNAME records in much the same way but on a
larger scale. Using a tool such as h2n, you can create CNAMEs for hosts en masse.
This allows users to continue using the old domain names for any of the hosts that
have moved. When they telnet or ftp (or whatever) to those hosts, however, the com-
mand reports that they’re connected to a host in fx.movie.edu:

% telnet plan9
Trying...

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 9: Parenting

Connected to plan9.fx.movie.edu.
Escape character is '^]'.

HP-UX plan9.fx.movie.edu A.09.05 C 9000/735 (ttyu1)

login:

Some users, of course, don’t notice subtle changes like this, so you should also do
some public relations work and notify folks of the change.

On fx.movie.edu hosts running old versions of sendmail, we may also need to con-
figure sendmail to accept mail addressed to the new domain names. Modern ver-
sions of sendmail canonicalize the hostnames in message headers using a
nameserver before sending the messages. This turns a movie.edu alias into a canon-
ical name in fx.movie.edu. If, however, the sendmail on the receiving end is older
and hardcodes the local host’s domain name, we have to change the name to the
new domain name by hand. This usually requires a simple change to class w or file-
class w in sendmail.cf; see the section “What’s a Mail Exchanger, Again?” in
Chapter 5.

How do you create all these aliases? You simply tell h2n to create the aliases for
hosts on the fx.movie.edu networks (192.253.254/24 and 192.254.20/24) and indi-
cate (in the /etc/hosts file) the new domain names of the hosts. For example, using
the fx.movie.edu host table, we can easily generate the aliases in movie.edu for all the
hosts in fx.movie.edu.

Partial contents of file /etc/hosts:

192.253.254.1 movie-gw.movie.edu movie-gw
fx primary
192.253.254.2 bladerunner.fx.movie.edu bladerunner br
fx slave
192.253.254.3 outland.fx.movie.edu outland
192.253.254.4 starwars.fx.movie.edu starwars
192.253.254.5 empire.fx.movie.edu empire
192.253.254.6 jedi.fx.movie.edu jedi
192.254.20.3 alien.fx.movie.edu alien

h2n’s –c option takes a zone’s domain name as an argument. When h2n finds any
hosts in that zone on networks it’s building data for, it creates aliases for them in the
current zone (specified with –d). So by running:

% h2n -d movie.edu -n 192.253.254 -n 192.254.20 \
-c fx.movie.edu -f options

(where options contains other command-line options for building data from other
movie.edu networks), we can create aliases in movie.edu for all fx.movie.edu hosts.

Removing Parent Aliases
Although parent-level aliases are useful for minimizing the impact of moving your
hosts, they’re also a crutch of sorts. Like a crutch, they’ll restrict your freedom.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Life of a Parent | 225

They’ll clutter up your parent namespace even though one of your motivations for
implementing a subdomain was to make the parent zone smaller. And they’ll pre-
vent you from using the names of hosts in the subdomain as names for hosts in the
parent zone.

After a grace period—which should be well advertised to users—you should remove
all the aliases, with the possible exception of aliases for extremely well-known Inter-
net hosts. During the grace period, users can adjust to the new domain names and
modify scripts, .rhosts files, and the like. But don’t get suckered into leaving all those
aliases in the parent zone; they defeat part of the purpose of DNS because they pre-
vent you and your subdomain administrator from naming hosts autonomously.

You might want to leave CNAME records for well-known Internet hosts or central
network resources intact because of the potential impact of a loss of connectivity. On
the other hand, rather than moving the well-known host or central resource into a
subdomain at all, it might be better to leave it in the parent zone.

h2n gives you an easy way to delete the aliases you created so simply with the –c
option, even if the records for the subdomain’s hosts are mixed in the host table or
on the same network as hosts in other zones. The –e option takes a zone’s domain
name as an argument and tells h2n to exclude (hence e) all records containing that
domain name on networks it would otherwise create data for. This command, for
example, deletes all the CNAME records for fx.movie.edu hosts created earlier while
still creating an A record for movie-gw.movie.edu (which is on the 192.253.254/24
network):

% h2n -d movie.edu -n 192.253.254 -n 192.254.20 \
-e fx.movie.edu -f options

The Life of a Parent
That’s a lot of parental advice to digest in one sitting, so let’s recap the highlights of
what we’ve talked about. The lifecycle of a typical parent goes something like this:

• You have a single zone, with all your hosts in that zone.

• You break your zone into a number of subdomains, some of them in the same
zone as the parent, if necessary. You provide CNAME records in the parent zone
for well-known hosts that have moved into subdomains.

• After a grace period, you delete any remaining CNAME records.

• You handle subdomain delegation updates, either manually or by using stub
zones, and periodically check delegation.

Okay, now that you know all there is to parenting, let’s go on to talk about more
advanced nameserver features. You may need some of these tools to keep those kids
in line.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

226

Chapter 10CHAPTER 10

Advanced Features 10

“What’s the use of their having names,” the Gnat said,
“if they won’t answer to them?”

The latest BIND nameservers, versions 8.4.7 and 9.3.2, have lots of new features.
Some of the most prominent introductions are support for dynamic updates, asyn-
chronous zone change notification (called “NOTIFY” for short), and incremental
zone transfer. Of the rest, the most important are related to security: they let you tell
your nameserver whom to answer queries from, whom to serve zone transfers to, and
whom to permit dynamic updates from. Many of the security features aren’t neces-
sary inside a corporate network, but the other mechanisms will help out administra-
tors of any nameservers.

In this chapter, we’ll cover these features and suggest how they might come in handy
in your DNS infrastructure. (We do save some of the hardcore firewall material ’til
the next chapter, though.)

Address Match Lists and ACLs
Before we introduce the new features, however, we’d better cover address match
lists. BIND 8 and 9 use address match lists for nearly every security feature and for
some features that aren’t security-related at all.

An address match list is a list (what else?) of terms that specifies one or more IP
addresses. The elements in the list can be individual IP addresses, IP prefixes, or a
named address match list (more on those shortly).* An IP prefix has the format:

network in dotted-octet format/bits in netmask

For example, the network 15.0.0.0 with the network mask 255.0.0.0 (eight contigu-
ous ones) is written 15/8. Traditionally, this would have been thought of as the

* And if you’re running a BIND 9 nameserver or BIND 8 from version 8.3.0 on, address match lists can include
IPv6 addresses and IPv6 prefixes. These are described later in the chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Address Match Lists and ACLs | 227

“class A” network 15. The network consisting of IP addresses 192.168.1.192 through
192.168.1.255, on the other hand, would be written 192.168.1.192/26 (network 192.
168.1.192 with the netmask 255.255.255.192, which has 26 contiguous ones).
Here’s an address match list comprising those two networks:

15/8; 192.168.1.192/26;

A named address match list is just that: an address match list with a name. To be
used within another address match list, a named address match list must have been
previously defined in named.conf with an acl statement. The acl statement has a sim-
ple syntax:

acl name { address_match_list; };

This just makes the name equivalent to that address match list from now on.
Although the name of the statement, acl, suggests “access control list,” you can use
the named address match list anywhere an address match list is accepted, including
some places that don’t have anything to do with access control.

Whenever you use one or more of the same terms in a few access control lists, it’s a
good idea to use an acl statement to associate them with a name. You can then refer
to the name in the address match list. For example, let’s call 15/8 what it is: “HP-
NET.” And we’ll call 192.168.1.192/26 “internal”:

acl "HP-NET" { 15/8; };

acl "internal" { 192.168.1.192/26; };

Now we can refer to these address match lists by name in other address match lists.
This not only cuts down on typing and simplifies managing your address match lists,
it makes the resulting named.conf file more readable.

We prudently enclosed the names of our ACLs in quotes to avoid collisions with
words BIND reserves for its own use. If you’re sure your ACL names don’t conflict
with reserved words, you don’t need the quotes.

There are four predefined named address match lists:

none
No IP addresses

any
All IP addresses

localhost
Any of the IP addresses of the local host (i.e., the one running the nameserver)

localnets
Any of the networks the local host has a network interface on (found by using
each network interface’s IP address and using the netmask to mask off the host
bits in the address)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 10: Advanced Features

DNS Dynamic Update
The world of the Internet—and of TCP/IP networking in general—has become a
much more dynamic place. Most large corporations use DHCP to control IP address
assignment. Nearly all ISPs assign addresses to dial-up and cable modem customers
using DHCP. To keep up, DNS needed to support the dynamic addition and dele-
tion of records. RFC 2136 introduced this mechanism, called DNS Dynamic Update.

BIND 8 and 9 support the dynamic update facility described in RFC 2136. This per-
mits authorized updaters to add and delete resource records from a zone for which a
nameserver is authoritative. An updater can find the authoritative nameservers for a
zone by retrieving the zone’s NS records. If the nameserver receiving an authorized
update message is not the primary master for the zone, it forwards the update
“upstream” to its master server, a process referred to as update forwarding. If this
next server, in turn, is a slave for the zone, it also forwards the update upstream.
Only the primary nameserver for a zone, after all, has a writable copy of the zone
data; all the slaves get their copies of the zone data from the primary, either directly
or indirectly (through other slaves). Once the primary has processed the dynamic
update and modified the zone, the slaves can get a new copy of it via zone transfers.

Dynamic update permits more than the simple addition and deletion of records.
Updaters can add or delete individual resource records, delete RRsets (a set of
resource records with the same domain name, class, and type, such as all the
addresses of www.movie.edu), or even delete all records associated with a given
domain name. An update can also stipulate that certain records exist or not exist in
the zone as a prerequisite to the update’s taking effect. For example, an update can
add the address record:

armageddon.fx.movie.edu. 300 IN A 192.253.253.15

only if the domain name armageddon.fx.movie.edu isn’t currently being used or only
if armageddon.fx.movie.edu currently has no address records.

A note on update forwarding: BIND nameservers didn’t implement
update forwarding before 9.1.0, so it’s particularly important when
using BIND nameservers older than 9.1.0 that you make sure the
update is sent directly to the primary nameserver for the zone you’re
trying to update. You can do this by ensuring that the primary
nameserver for the zone is listed in the MNAME field of the zone’s
SOA record. Most dynamic update routines use the MNAME field as a
hint to tell them which authoritative nameserver to send the update to.

For the most part, dynamic update functionality is used by programs such as DHCP
servers that assign IP addresses automatically to computers and then need to register the
resulting name-to-address and address-to-name mappings. Some of these programs use

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS Dynamic Update | 229

the new ns_update() resolver routine to create update messages and send them to an
authoritative server for the zone that contains the domain name.

It’s also possible to create updates manually with the command-line program nsup-
date, which is part of the standard BIND distribution. nsupdate reads one-line com-
mands and translates them into an update message. Commands can be specified on
standard input (the default) or in a file, whose name must be given as an argument to
nsupdate. Commands not separated by a blank line are incorporated into the same
update message, as long as there’s room.

nsupdate understands the following commands:

prereq yxrrset domain name type [rdata]
Makes the existence of an RRset of type type owned by domain name a prerequi-
site for performing the update specified in successive update commands. If rdata
is specified, it must also match.

prereq nxrrset domain name type
Makes the nonexistence of an RRset of type type owned by domain name a pre-
requisite for performing the update specified.

prereq yxdomain domain name
Makes the existence of the specified domain name a prerequisite for performing
the update.

prereq nxdomain domain name
Makes the nonexistence of the specified domain name a prerequisite for per-
forming the update.

update delete domain name [type] [rdata]
Deletes the domain name specified or, if type is also specified, deletes the RRset
specified or, if rdata is also specified, deletes the record matching domainname,
type, and rdata.

update add domain name ttl [class] type rdata
Adds the record specified to the zone. Note that the TTL, in addition to the type
and resource record–specific data, must be included, but the class is optional
and defaults to IN.

So, for example, the command:

% nsupdate
> prereq nxdomain mib.fx.movie.edu.
> update add mib.fx.movie.edu. 300 A 192.253.253.16
> send

tells the server to add an address for mib.fx.movie.edu only if the domain name does
not already exist. Note that BIND 8 versions of nsupdate before 8.4.5 use a blank line
as a cue to send the update instead of the send command. Subtle, eh?

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 10: Advanced Features

The following command checks to see whether mib.fx.movie.edu already has MX
records and, if it does, deletes them and adds two in their place:

% nsupdate
> prereq yxrrset mib.fx.movie.edu. MX
> update delete mib.fx.movie.edu. MX
> update add mib.fx.movie.edu. 600 MX 10 mib.fx.movie.edu.
> update add mib.fx.movie.edu. 600 MX 50 postmanrings2x.movie.edu.
> send

As with queries, the nameservers that process dynamic updates answer them with
DNS messages that indicate whether the update was successful and, if not, what
went wrong. Updates may fail for many reasons: for example, because the
nameserver wasn’t actually authoritative for the zone being updated, because a pre-
requisite wasn’t satisfied, or because the updater wasn’t allowed.

There are some limitations to what you can do with dynamic update: you can’t
delete a zone entirely (though you can delete everything in it except the SOA record
and one NS record), and you can’t add new zones.

Dynamic Update and Serial Numbers
When a nameserver processes a dynamic update, it’s changing a zone and must
increment that zone’s serial number to signal the change to the zone’s slaves. This is
done automatically. However, the nameserver doesn’t necessarily increment the
serial number for each dynamic update.

BIND 8 nameservers defer updating a zone’s serial number for as long as 5 minutes
or 100 updates, whichever comes first. The deferral is intended to deal with a mis-
match between a nameserver’s ability to process dynamic updates and its ability to
transfer zones: the latter may take significantly longer for large zones. When the
nameserver does finally increment the zone’s serial number, it sends a NOTIFY
announcement (described later in this chapter) to tell the zone’s slaves that the serial
number has changed.

BIND 9 nameservers update the serial number once for each dynamic update that is
processed.

Dynamic Update and Zone Datafiles
Since a dynamic update makes a permanent change to a zone, a record of it needs to
be kept on disk. But rewriting a zone datafile each time a record is added to or
deleted from the zone can be prohibitively onerous for a nameserver. Writing a zone
datafile takes time, and the nameserver could conceivably receive tens or hundreds of
dynamic updates each second.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS Dynamic Update | 231

Instead, when they receive dynamic updates, both BIND 8 and 9 nameservers sim-
ply append a short record of the update to a logfile.* The change takes effect immedi-
ately in the copy of the zone the nameservers maintain in memory, of course. But the
nameservers can wait and write the entire zone to disk only at a designated interval
(hourly, usually). BIND 8 nameservers then delete the logfile because it’s no longer
needed. (At that point, the copy of the zone in memory is the same as that on disk.)
BIND 9 nameservers, however, leave the logfile because they also use it for incremen-
tal zone transfers, which we’ll cover later in this chapter. (BIND 8 nameservers keep
incremental zone transfer information in another file.)

On BIND 8 nameservers, the name of the logfile is constructed by appending .log to
the name of the zone datafile. On BIND 9 nameservers, the name of the logfile—also
called a journal file—is the name of the zone datafile concatenated with .jnl. So when
you start using dynamic update, don’t be surprised to see these files appear along-
side your zone datafiles: it’s totally normal.

On a BIND 8 nameserver, the logfiles should disappear hourly (though they may
reappear very quickly if your nameserver receives lots of updates) as well as when the
nameserver exits gracefully. On a BIND 9 nameserver, the logfiles won’t disappear at
all. Both nameservers incorporate the record of the changes in the logfile into the
zone if the logfile exists when the nameserver starts.

In case you’re interested, BIND 8’s logfiles are human-readable and contain entries
like this:

;BIND LOG V8
[DYNAMIC_UPDATE] id 8761 from [192.249.249.3].1148 at 971389102 (named pid 17602):
zone: origin movie.edu class IN serial 2000010957
update: {add} almostfamous.movie.edu. 600 IN A 192.249.249.215

BIND 9’s logfiles, unfortunately, aren’t human-readable. Well, not to these humans,
anyway.

Update Access Control Lists
Given the fearsome control that dynamic updates obviously give an updater over a
zone, you clearly need to restrict them, if you use them at all. By default, neither
BIND 8 nor BIND 9 nameservers allow dynamic updates to authoritative zones. In
order to use dynamic updates, you add an allow-update or update-policy substate-
ment to the zone statement of the zone that you’d like to allow updates to.

* This idea will seem familiar to anyone who’s ever used a journaling filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 10: Advanced Features

allow-update takes an address match list as an argument. The address or addresses
matched by the list are the only addresses allowed to update the zone. It’s prudent to
make this access control list as restrictive as possible:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 allow-update { 192.253.253.100; }; // just our DHCP server
};

An updater authorized using allow-update can make any change to the zone: delete
any record (except the SOA record) or add any records.

TSIG-Signed Updates
Given that BIND 9.1.0 and later slave nameservers can forward updates, what’s the
use of an IP address–based access control list? If the primary nameserver allows
updates from its slaves’ addresses, then any forwarded update is allowed, regardless
of the original sender. That’s not good.*

Well, first, you can control which updates are forwarded. The allow-update-forward-
ing substatement takes an address match list as an argument. Only updates from IP
addresses that match the address match list will be forwarded. So the following zone
statement forwards only those updates from the Special Effects Department’s subnet:

zone "fx.movie.edu" {
 type slave;
 file "bak.fx.movie.edu";
 allow-update-forwarding { 192.253.254/24; };
};

Still, when you use update forwarding, you should also use transaction signatures
(TSIG)–signed dynamic updates. We won’t cover TSIG in depth until Chapter 11,
but all you need to know for now is that TSIG-signed dynamic updates bear the
cryptographic signature of the signer. If they’re forwarded, the signature is for-
warded with them. The signature, when verified, tells you the name of the key used
to sign the update. The name of the key looks like a domain name, and it’s often just
the domain name of the host the key is installed on.

With BIND 8.2 and later nameservers, an address match list can include the name of
one or more TSIG keys:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";

* BIND 9.1.0 and later nameservers go so far as to warn you that IP address–based access control lists are inse-
cure if you try to use them.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS Dynamic Update | 233

 allow-update { key dhcp-server.fx.movie.edu.; }; // allow only updates
 // signed by the DHCP
 // server's TSIG key
};

This allows an updater who signs an update with the TSIG key dhcp-server.fx.movie.edu
to make any change to the fx.movie.edu zone. Unfortunately, there’s no way to further
restrict the updater with that TSIG key to a list of source IP addresses.

BIND 9 supports a finer-grained access control mechanism than allow-update, also
based on TSIG signatures. This mechanism uses the new update-policy zone substate-
ment. update-policy lets you specify which keys are allowed to update which records
in the zone. It’s meaningful only for primary nameservers because the slaves are
expected to forward the updates.

The update is specified by the name of the key used to sign it and by the domain
name and type of records it attempts to update. update-policy’s syntax looks like the
following:

(grant | deny) identity nametype string [types]

grant and deny have the obvious meanings: allow or disallow the specified dynamic
update. identity refers to the name of the TSIG key used to sign the update. name-
type is one of:

name
Matches when the domain name being updated is the same as the string speci-
fied in the string field.

subdomain
Matches when the domain name being updated is a subdomain of (i.e., ends in)
the string specified in the string field. (The domain name must still be in the
zone, of course.)

wildcard
Matches when the domain name being updated matches the wildcard expres-
sion specified in the string field.

self
Matches when the domain name being updated is the same as the name in the
identity (not string!) field—that is, when the domain name being updated is the
same as the name of the key used to sign the update. If nametype is self, the
string field is ignored. And even though it looks redundant (as we’ll see in the
example in a moment), you still have to include the string field when using a
nametype of self.

string, naturally, is a domain name appropriate to the nametype specified. For exam-
ple, if you specify wildcard as the nametype, the string field should contain a wild-
card label.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 10: Advanced Features

The types field is optional and can contain any valid record type (or multiple types,
separated by spaces) except NSEC. (ANY is a convenient shorthand for “all types but
NSEC.”) If you leave types out, it matches all record types except SOA, NS, RRSIG,
and NSEC.

A note on the precedence of update-policy rules: the first match (not
the closest match) in an update-policy substatement is the one that
applies to a dynamic update.

So, if the host mummy.fx.movie.edu uses a key called mummy.fx.movie.edu to sign its
dynamic updates, we can restrict mummy.fx.movie.edu to updating its own records
with the following:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy { grant mummy.fx.movie.edu. self mummy.fx.movie.edu.; };
};

or just its own address records with this:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy { grant mummy.fx.movie.edu. self mummy.fx.movie.edu. A; };
};

More generally, we can restrict all our clients to updating only their own address
records using:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy { grant *.fx.movie.edu. self fx.movie.edu. A; };
};

We can allow our DHCP server to use the key dhcp-server.fx.movie.edu to update
any A, TXT, and PTR records attached to domain names in fx.movie.edu with:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy {
 grant dhcp-server.fx.movie.edu. wildcard *.fx.movie.edu. A TXT PTR;
 };
};

In case you’re wondering, the difference between:

grant dhcp-server.fx.movie.edu. subdomain fx.movie.edu.

and:

grant dhcp-server.fx.movie.edu. wildcard *.fx.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS NOTIFY (Zone Change Notification) | 235

is that the former allows the key dhcp-server.fx.movie.edu to modify records attached
to fx.movie.edu (for example, the zone’s NS records) while the latter doesn’t. Since
the DHCP server has no business modifying any records attached to the domain
name of the zone, the second is the more secure option.

Here’s a more complicated example: to enable all clients to change any records,
except SRV records, that are owned by the same domain name as their key name, but
to allow matrix.fx.movie.edu to update SRV, A, and CNAME records associated with
Active Directory (in the _udp.fx.movie.edu, _tcp.fx.movie.edu, _sites.fx.movie.edu,
and _msdcs.fx.movie.edu subdomains), you can use:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy {
 grant matrix.fx.movie.edu. subdomain _udp.fx.movie.edu. SRV CNAME A;
 grant matrix.fx.movie.edu. subdomain _tcp.fx.movie.edu. SRV CNAME A;
 grant matrix.fx.movie.edu. subdomain _sites.fx.movie.edu. SRV CNAME A;
 grant matrix.fx.movie.edu. subdomain _msdcs.fx.movie.edu. SRV CNAME A;
 deny *.fx.movie.edu. self *.fx.movie.edu. SRV;
 grant *.fx.movie.edu. self *.fx.movie.edu. ANY;
 };
};

Since the rules in the update-policy substatement are evaluated in the order in which
they appear, clients can’t update their SRV records, though they can update any
other record types they own.

If you’d like to take advantage of TSIG-signed dynamic updates but don’t have any
software that can send them, you can use newer versions of nsupdate; see Chapter 11
for that.

DNS NOTIFY (Zone Change Notification)
Traditionally, BIND slaves have used a polling scheme to determine when they need
a zone transfer. The polling interval is called the refresh interval. Other parameters in
the zone’s SOA record govern other aspects of the polling mechanism.

But with this polling scheme, it can take up to the refresh interval before a slave
detects and transfers new zone data from its master nameserver. That kind of latency
can wreak havoc in a dynamically updated environment. Wouldn’t it be nice if the
primary nameserver could tell its slave servers when the information in the zone
changed? After all, the primary nameserver knows the data has changed; someone
reloaded the data or it received and processed a dynamic update. The primary could

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 10: Advanced Features

send notification right after processing the reload or update instead of waiting for the
refresh interval to pass.*

RFC 1996 proposed a mechanism that would allow primary nameservers to notify
their slaves of changes to a zone’s data. BIND 8 and 9 implement this scheme, which
is called DNS NOTIFY.

DNS NOTIFY works like this: when a primary nameserver notices that the serial
number of a zone has changed, it sends a special announcement to all the slave
nameservers for that zone. The primary nameserver determines which servers are the
slaves for the zone by looking at the list of NS records in the zone and taking out the
record that points to the nameserver listed in the MNAME field of the zone’s SOA
record as well as the domain name of the local host.

When does the nameserver notice a change? Restarting a primary nameserver causes
it to notify all its slaves as to the current serial number of all of its zones because the
primary has no way of knowing whether its zone datafiles were edited before it
started. Reloading one or more zones with new serial numbers causes a nameserver
to notify the slaves of those zones. And a dynamic update that causes a zone’s serial
number to increment also causes notification.

The special NOTIFY announcement is identified by its opcode in the DNS header.
The opcode for most queries is QUERY. NOTIFY messages, including announce-
ments and responses, have a special opcode, NOTIFY (duh). Other than that,
NOTIFY messages look very much like a response to a query for a zone’s SOA
record: they include the SOA record of the zone whose serial number has changed,
and the authoritative answer bit is set.

When a slave receives a NOTIFY announcement for a zone from one of its config-
ured master nameservers, it responds with a NOTIFY response. The response tells
the master that the slave received the NOTIFY announcement so that the master can
stop sending it NOTIFY announcements for the zone. The slave then proceeds just
as if the refresh timer for that zone had expired: it queries the master nameserver for
the SOA record for the zone that the master claims has changed. If the serial number
is higher, the slave transfers the zone.

Why doesn’t the slave simply take the master’s word that the zone has changed? It’s
possible that a miscreant could forge NOTIFY announcements to slaves, causing lots
of unnecessary zone transfers and amounting to a denial-of-service attack against a
master nameserver.

If the slave actually transfers the zone, RFC 1996 says that it should issue its own
NOTIFY announcements to the other authoritative nameservers for the zone. The

* Actually, in the case of reloading a zone, the nameserver may not send the NOTIFY messages right away. To
avoid causing a flurry of refresh queries from slaves, BIND nameservers reloading zones wait a fraction of
each zone’s refresh interval before sending NOTIFY messages for that zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS NOTIFY (Zone Change Notification) | 237

idea is that the primary master may not be able to notify all the slave nameservers for
the zone itself because it’s possible some slaves can’t communicate directly with the
primary (they use another slave as their master). However, while BIND 8.2.3 and later
and all BIND 9 nameservers implement this, earlier versions of BIND 8 don’t. Older
BIND 8 slaves don’t send NOTIFY messages unless explicitly configured to do so.

Here’s how that works in practice. On our network, toystory.movie.edu is the pri-
mary nameserver for movie.edu, and wormhole.movie.edu and zardoz.movie.edu are
slaves, as shown in Figure 10-1.

When we edit and reload or dynamically update movie.edu on toystory.movie.edu,
toystory.movie.edu sends NOTIFY announcements to wormhole.movie.edu and
zardoz.movie.edu. Both slaves respond to toystory.movie.edu, telling it that they’ve
received the notification. They then check to see whether movie.edu’s serial num-
ber has incremented and, when they find it has, perform a zone transfer. If worm-
hole.movie.edu and zardoz.movie.edu are running BIND 8.2.3 or later or BIND 9,
after they transfer the new version of the zone, they also send NOTIFY announce-
ments to tell each other about the change. But since wormhole.movie.edu isn’t
zardoz.movie.edu’s master nameserver for movie.edu, and the converse isn’t true
either, both slaves just ignore each other’s NOTIFY announcements.

BIND nameservers log information about NOTIFY messages to syslog. Here’s what
BIND 8 running on toystory.movie.edu logged after we reloaded movie.edu:

Oct 14 22:56:34 toystory named[18764]: Sent NOTIFY for "movie.edu IN SOA 2000010958"
(movie.edu); 2 NS, 2 A
Oct 14 22:56:34 toystory named[18764]: Received NOTIFY answer (AA) from 192.249.249.1
for "movie.edu IN SOA"
Oct 14 22:56:34 toystory named[18764]: Received NOTIFY answer (AA) from 192.249.249.9
for “movie.edu IN SOA"

Figure 10-1. movie.edu zone transfers

toystory.movie.edu

movie.edu
primary

zone transfers

wormhole.movie.edu zardoz.movie.edu

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 10: Advanced Features

The first message shows us the NOTIFY announcement that toystory.movie.edu sent,
informing the two slaves (2 NS) that the serial number of movie.edu is now
2000010958. The next two lines show the slave nameservers confirming their receipt
of the notification.

A BIND 9 nameserver would have logged just:

Oct 14 22:56:34 toystory named[18764]: zone movie.edu/IN: sending notifies (serial
2000010958)

Let’s also look at a more complicated zone transfer scheme. In Figure 10-2, a is the
primary nameserver for the zone and b’s master server, but b is c’s master server.
Moreover, b has two network interfaces.

In this scenario, a notifies both b and c after the zone is updated. Then b checks to
see whether the zone’s serial number has incremented and initiates a zone transfer.
However, c ignores a’s NOTIFY announcement because a is not c’s configured mas-
ter nameserver (b is). If b is running BIND 8.2.3 or later, or BIND 9, or is explicitly
configured to notify c, then after b’s zone transfer completes, it sends a NOTIFY
announcement to c, which prompts c to check the serial number b holds for the
zone. If c is also running BIND 8.2.3 or later or BIND 9, it sends b a NOTIFY
announcement after its zone transfer finishes, which b, naturally, ignores.

Note also that if there’s any possibility that c will receive a NOTIFY announcement
from b’s other network interface, c must be configured with both network interfaces’
addresses in the zone’s masters substatement, or else c will ignore NOTIFY announce-
ments from the unknown interface.

Figure 10-2. Complex zone transfer example

zone
transfers

master and slave

zone
transfers

primary master

slave

a

b

c

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS NOTIFY (Zone Change Notification) | 239

BIND 4 slave nameservers and other nameservers that don’t support NOTIFY will
respond with a Not Implemented (NOTIMP) error. Note that the Microsoft DNS
Server does support DNS NOTIFY.

In both BIND 8 and 9, DNS NOTIFY is on by default, but you can turn off NOTIFY
globally with the substatement:

options {
 notify no;
};

You can also turn on or off NOTIFY for a particular zone. For example, say we know
that all the slave nameservers for our fx.movie.edu zone are running BIND 4 and
therefore don’t understand NOTIFY announcements. The zone statement:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 notify no;
};

avoids sending useless NOTIFY announcements to the slaves for fx.movie.edu. A
zone-specific NOTIFY setting overrides any global setting for that zone. Unfortu-
nately, neither BIND 8 nor BIND 9 allows you to turn off NOTIFY announcements
on a server-by-server basis.

BIND 8 and 9 even have a provision for adding servers besides those in your zone’s
NS records to your “NOTIFY list.” For example, you may have one or more unregis-
tered slave nameservers (described in Chapter 8), and you’d like them to pick up
changes to the zone quickly. Or you may have an older BIND 8 slave for the zone
that is the master server for another slave and needs to send NOTIFY messages to
the slave.

To add a server to your NOTIFY list, use the also-notify substatement of the zone
statement:

zone "fx.movie.edu" {
 type slave;
 file "bak.fx.movie.edu";
 notify yes;
 also-notify { 15.255.152.4; }; // This is a BIND 8 slave, which
 // must be explicitly configured
 // to notify its slave
};

In BIND 8.2.2 and later nameservers, you can specify also-notify as an options sub-
statement as well. This applies to all zones for which NOTIFY is on (and which
don’t have their own also-notify substatements).

Beginning in BIND 8.3.2 and 9.1.0, you can specify explicit as an argument to the
notify substatement; this suppresses NOTIFY messages to all nameservers except

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 10: Advanced Features

those in the also-notify list. For example, these two substatements tell the nameserver
to send NOTIFY messages only to the slave at 192.249.249.20:

options {
 also-notify { 192.249.249.20; };
 notify explicit;
};

You can also use the allow-notify substatement to tell your nameserver to accept
NOTIFY messages from nameservers other than just the configured master nameserv-
ers for a zone:

options {
 allow-notify { 192.249.249.17; }; // let 192.249.249.17 send NOTIFY msgs
};

As an options substatement, allow-notify affects all slave zones. When specified as a
zone substatement, allow-notify overrides any global allow-notify for just that zone.

Incremental Zone Transfer (IXFR)
With dynamic update and NOTIFY, our zones are updated according to the chang-
ing state of the network, and those changes quickly propagate to all the authoritative
nameservers for those zones. The picture’s complete, right?

Not quite. Imagine you run a large zone that’s dynamically updated with frightening
frequency. That’s easy to envision: you might have a big zone to begin with, includ-
ing thousands of clients, when all of a sudden management decides to implement
Active Directory and DHCP. Now each of your clients updates its own address
record in the zone, and the Domain Controllers update the records that tell clients
which services they run. (There’s much more to come on Active Directory in
Chapter 17.)

Each time your primary nameserver receives an update that increments the zone’s
serial number, it sends a NOTIFY announcement to its slaves. And each time they
receive NOTIFY announcements, the slaves check the serial number of the zone on
their master server and, possibly, transfer the zone. If that zone is large, the transfer
will take some time; another update could arrive in the interim. Your slaves could be
transferring zones in perpetuity! At the very least, your nameservers will spend a lot
of time transferring the whole zone when the change to the zone is probably very
small (e.g., the addition of a client’s address record).

Incremental zone transfer, or IXFR for short, solves this problem by allowing slave
nameservers to tell their master servers which version of a zone they currently hold
and to request just the changes to the zone between that version and the current one.
This can dramatically reduce the size and duration of a zone transfer.

An incremental zone transfer request has a query type of IXFR instead of AXFR (the
type of query that initiates a full zone transfer), and it contains the slave’s current

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Incremental Zone Transfer (IXFR) | 241

SOA record from the zone in the authority section of the message. When the master
nameserver receives an incremental zone transfer request, it looks for the record of
the changes to the zone between the slave’s version of the zone and the version the
master holds. If that record is missing, the master sends a full zone transfer. Other-
wise, it sends just the differences between the versions of the zone.

IXFR Limitations
Sound good? It is! But IXFR has a few limitations that you should know about. First,
IXFR didn’t work well until BIND 8.2.3. All BIND 9 nameservers have IXFR imple-
mentations that work well and interoperate with BIND 8.2.3.

Next, IXFR traditionally has worked only when you’re modifying your zone data
with dynamic updates, not by making manual changes. Dynamic updates leave a
record of the changes made to the zone and the serial number changes they corre-
spond to—exactly what a master nameserver needs to send to a slave that requests
IXFR. But a nameserver that reloads an entire zone datafile would have to compute
the differences between that zone and the previous zone, like doing a diff between
the versions. This meant that, to take maximum advantage of IXFR, you needed to
modify your zone only by using dynamic update, and never edit the zone datafile by
hand.

IXFR from Differences
BIND 9.3.0 introduced support for calculating IXFR responses by comparing a zone
datafile with the version of the zone it has in memory. This means that you can now
(or again) edit zone datafiles manually. You do have to take precautions, however, to
make sure the file you’re editing contains the latest version of the zone and dynamic
updates are refused while you’re working on the file. (Dynamic updates could change
the in-memory version of the zone so that the file no longer reflected its state.)

To turn on this feature, use the ixfr-from-differences substatement. You can use it
within an options or zone statement. Here’s how you would turn on the feature for all
zones:

options {
 directory "/var/named";
 ixfr-from-differences yes;
};

To force the nameserver to write a new version of a zone’s datafile and suspend pro-
cessing of dynamic updates to the zone, use rndc’s new freeze command:

% rndc freeze zone [class [view]]

To tell the nameserver to reread the zone datafile and resume processing of dynamic
updates for the zone, use rndc thaw:

% rndc thaw zone [class [view]]

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 10: Advanced Features

You probably shouldn’t keep a zone frozen for too long, especially if you might be
missing important updates.

IXFR Files
BIND 8 nameservers maintain an IXFR log of changes to the zone separate from the
dynamic update logfile. Like the dynamic update logfile, the IXFR logfile is updated
every time the nameserver receives an update. Unlike the dynamic update logfile, the
IXFR logfile is never deleted, though the nameserver can be configured to trim it
when it exceeds a particular size. The name of the BIND 8 IXFR logfile, by default, is
the name of the zone datafile with .ixfr appended to it.

BIND 9 nameservers use the dynamic update logfile, or journal file, to assemble IXFR
responses and to maintain the integrity of the zone. Since a primary nameserver
never knows when it may need the record of a particular change to the zone, it
doesn’t delete the journal file. A BIND 9 slave saves the journal file even if it receives
an AXFR of the zone because it may serve as a master nameserver to one or more
slaves, too.

BIND 8 IXFR Configuration
Configuring IXFR in BIND 8 is fairly straightforward. First, you need an options sub-
statement called maintain-ixfr-base on your master nameserver that tells it to main-
tain IXFR logfiles for all zones—even those the nameserver is a slave for because
those in turn may have slaves that want IXFRs:

options {
 directory "/var/named";
 maintain-ixfr-base yes;
};

You then need to tell your slaves to request IXFRs from that master nameserver. You
do that with a new server substatement, support-ixfr:

server 192.249.249.3 {
 support-ixfr yes;
};

That’s about it, unless you want to rename the IXFR logfile on the master. That’s
done with a new zone statement, ixfr-base:

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 ixfr-base "ixfr.movie.edu";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Incremental Zone Transfer (IXFR) | 243

Oh, and you can configure the nameserver to trim the IXFR logfile after it exceeds a
particular size:*

options {
 directory "/var/named";
 maintain-ixfr-base yes;
 max-ixfr-log-size 1M; // trim IXFR log to 1 megabyte
};

Once the IXFR logfile exceeds the specified limit by 100 KB, the nameserver trims it
back to that size. The 100 KB of “slush” prevents the logfile from reaching the limit
and then being trimmed back after each successive update.

Using the many-answers zone transfer format can make zone transfers even more effi-
cient. We’ll cover many-answers zone transfers later in this chapter.

BIND 9 IXFR Configuration
It’s even easier to configure IXFR in a BIND 9 master nameserver because you don’t
have to do a thing: it’s on by default. If you need to turn it off for a particular slave
server (and you probably won’t because a slave must request an incremental zone
transfer), use the provide-ixfr server substatement, which defaults to yes:

server 192.249.249.1 {
 provide-ixfr no;
};

You can also use provide-ixfr as an options substatement, in which case it applies to
all slaves that don’t have an explicit provide-ixfr substatement of their own in a
server statement.

Since BIND 9 master nameservers send many-answers zone transfers by default, you
don’t need any special transfer-format configuration.

More useful is the request-ixfr substatement, which can be used in either an options
or a server statement. If you have a mix of IXFR-capable and IXFR-impaired mas-
ters, you can tailor your slave’s zone transfer requests to match the capabilities of its
masters:

options {
 directory "/var/named";
 request-ixfr no;
};

server 192.249.249.3 {
 request-ixfr yes; // of our masters, only toystory supports IXFR
};

* Before BIND 8.2.3, you need to specify the number of bytes, rather than just “1M,” because of a bug.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 10: Advanced Features

From BIND 9.3.0 on, BIND 9 nameservers support configuring the maximum size of
a journal file with the max-journal-size options substatement.

Forwarding
Certain network connections discourage sending large volumes of traffic off-site, per-
haps because it’s a slow link with high delay; a remote office’s satellite connection to
the company’s network is an example. In these situations, you’ll want to limit the
off-site DNS traffic to the bare minimum. BIND provides a mechanism to do this:
forwarders.

Forwarders are also useful if you need to shunt name resolution to a particular
nameserver. For example, if only one of the hosts on your network has Internet con-
nectivity, and you run a nameserver on that host, you can configure your other
nameservers to use it as a forwarder so that they can look up Internet domain names.
(More on this use of forwarders when we discuss firewalls in Chapter 11.)

If you designate one or more servers at your site as forwarders, your nameservers will
send all their off-site queries to the forwarders first. The idea is that the forwarders
handle all the off-site queries generated at the site, building up a rich cache of infor-
mation. For any given query in a remote zone, there is a high probability that the for-
warder can answer the query from its cache, avoiding the need for the other servers
to send queries off-site. You don’t do anything to a nameserver to make it a for-
warder; you modify all the other servers at your site to direct their queries through
the forwarders.

A primary or slave nameserver’s mode of operation changes slightly when it is config-
ured to use a forwarder. If a resolver requests records that are already in the
nameserver’s authoritative data or cached data, the nameserver answers with that
information; this part of its operation hasn’t changed. However, if the records aren’t
in its database, the nameserver sends the query to a forwarder and waits a short
period for an answer before resuming normal operation and starting the iterative
name resolution process. This mode of operation is called forward first. What the
nameserver is doing differently here is sending a recursive query to the forwarder,
expecting it to find the answer. At all other times, the nameserver sends out only
nonrecursive queries to other nameservers.

For example, here is the BIND 8 and 9 forwarders substatement for nameservers in
movie.edu. Both wormhole.movie.edu and toystory.movie.edu are the site’s forward-
ers. We add this forwarders substatement to every nameserver’s configuration file
except the ones for the forwarders themselves:

options {
 forwarders { 192.249.249.1; 192.249.249.3; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Forwarding | 245

When you use forwarders, try to keep your site configuration simple. You could end
up with configurations that are really twisted.

Avoid chaining your forwarders. Don’t configure nameserver A to for-
ward to server B, and server B to forward to server C (or, worse yet,
back to server A). This can cause long resolution delays and creates a
brittle configuration, in which the failure of any forwarder in the chain
impairs or breaks name resolution.

A More Restricted Nameserver
You may want to restrict your nameservers even further—stopping them from even
trying to contact an off-site server if their forwarder is down or doesn’t respond. You
can do this by configuring your nameservers to use forward-only mode. A
nameserver in forward-only mode is a variation on a nameserver that uses forward-
ers. It still answers queries from its authoritative data and cached data. However, it
relies completely on its forwarders; it doesn’t try to contact other nameservers to find
information if the forwarders don’t give it an answer. Here is an example of what the
configuration file of a nameserver in forward-only mode would contain:

options {
 forwarders { 192.249.249.1; 192.249.249.3; };
 forward only;
};

If you use forward-only mode, you must have forwarders configured. Otherwise, it
doesn’t make sense to have forward-only mode set. If you configure a nameserver in
forward-only mode and run a version of BIND older than 8.2.3, you might want to
consider including the forwarders’ IP addresses more than once. That would look
like:

options {
 forwarders { 192.249.249.1; 192.249.249.3;
 192.249.249.1; 192.249.249.3; };
 forward only;
};

This nameserver contacts each forwarder only once, and it waits a short time for the
forwarder to respond. Listing the forwarders multiple times directs the nameserver to
retransmit queries to the forwarders and increases the overall length of time that the
forward-only nameserver will wait for an answer from forwarders.

In our experience, forward-only mode actually provides more predict-
able name resolution than forward-first mode (which is the default). It
takes so long for the queries to forwarders to time out that by the time
the nameserver starts iterative name resolution, the resolver that sent
the original query has often given up already or is on the verge of giv-
ing up. The result is that resolvers get inconsistent resolution results:
Some queries, which resolve quickly, are answered, but others time
out.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 10: Advanced Features

Forward Zones
Traditionally, using forwarders has been an all-or-nothing proposition: either you
use forwarders to resolve every query your nameserver can’t answer itself, or you
don’t use forwarders at all. However, there are some situations in which it would be
nice to have more control over forwarding. For example, maybe you’d like to resolve
certain domain names using a particular forwarder but resolve other domain names
iteratively.

BIND 8.2 introduced a new feature, forward zones, that allows you to configure your
nameserver to use forwarders only when looking up certain domain names. (BIND
9’s support for forward zones was added in 9.1.0.) For example, you can configure
your nameserver to shunt all queries for domain names ending in pixar.com to a pair
of Pixar’s nameservers:

zone "pixar.com" {
 type forward;
 forwarders { 138.72.10.20; 138.72.30.28; };
};

Why would you ever configure this explicitly rather than letting your nameserver fol-
low delegation from the com nameservers to the pixar.com nameservers? Well, imag-
ine that you have a private connection to Pixar, and you’re told to use a special set of
nameservers, reachable only from your network, to resolve all pixar.com domain
names.

Even though forwarding rules are specified in the zone statement, they apply to all
domain names that end in the domain name specified. That is, regardless of whether
the domain name you’re looking up, foo.bar.pixar.com, is in the pixar.com zone, the
rule applies to it because it ends in pixar.com (or is in the pixar.com domain, if you
prefer).

There’s another variety of forward zone, in a way the opposite of the kind we just
showed you. These allow you to specify which queries don’t get forwarded. There-
fore, it applies only to nameservers with forwarders specified in the options state-
ment, which would normally apply to all queries.

These forward zones are configured using a zone statement, but not of type forward.
Instead, these are normal zones—master, slave, or stub—with a forwarders substate-
ment. To “undo” the forwarding configured in the options statement, we specify an
empty list of forwarders:

options {
 directory "/var/named";
 forwarders { 192.249.249.3; 192.249.249.1; };
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Views | 247

 file "bak.movie.edu";
 forwarders {};
};

Wait a minute—why would you need to disable forwarding in a zone you’re authori-
tative for? Wouldn’t you just answer the query and not use a forwarder?

Remember, the forwarding rules apply to queries for all domain names that end in
the domain name of the zone. So this forwarding rule really applies only to queries
for domain names in delegated subdomains of movie.edu, such as fx.movie.edu.
Without the forwarding rule, this nameserver would have forwarded a query for
matrix.fx.movie.edu to the nameservers at 192.249.249.3 and 192.249.249.1. With
the forwarding rule, it instead uses the subdomain’s NS records from the movie.edu
zone and queries the fx.movie.edu nameservers directly.

Forward zones are enormously helpful in dealing with Internet firewalls, as we’ll see
in Chapter 11.

Views
BIND 9 introduced views, another mechanism that’s very useful in firewalled envi-
ronments. Views allow you to present one nameserver configuration to one commu-
nity of hosts and a different configuration to another community. This is particularly
handy if you’re running a nameserver on a host that receives queries from both your
internal hosts and hosts on the Internet (we’ll cover this in the next chapter).

If you don’t configure any views, BIND 9 automatically creates a single, implicit view
that it shows to all hosts that query it. To explicitly create a view, you use the view
statement, which takes the name of the view as an argument:

view "internal" {
};

Forwarder Selection
On BIND 8 nameservers from 8.2.3 on, and BIND 9 nameservers from 9.3.0 on, you
don’t need to list forwarders more than once. These nameservers don’t necessarily
query the forwarders in the order listed; they interpret the nameservers in the list as
“candidate” forwarders and choose which one to query first based on roundtrip time,
the time it took to respond to previous queries.

This is a real benefit if a forwarder fails, especially the first one in the list. Older ver-
sions of BIND would keep blindly querying the failed forwarder and waiting before
querying the next in the list. These newer versions of BIND quickly realize that the for-
warder isn’t responding and will try another.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 10: Advanced Features

Although the name of the view can be just about anything, using a descriptive name
is always a good idea. And while quoting the name of the view isn’t necessary, it’s
helpful to do so to avoid conflict with words BIND reserves for its own use (“inter-
nal,” for example). The view statement must come after any options statement,
though not necessarily right after it.

You can select which hosts “see” a particular view using the match-clients view sub-
statement, which takes an address match list as an argument. If you don’t specify a
community of hosts with match-clients, the view applies to all hosts.

Let’s say we’re setting up a special view of the fx.movie.edu zone on our nameservers
that we want only the Special Effects department to see. We could create a view visi-
ble only to hosts on our subnet:

view "internal" {
 match-clients { 192.253.254/24; };
};

If you want to make that a little more readable, you can use an acl statement:

acl "fx-subnet" { 192.253.254/24; };

view "internal" {
 match-clients { "fx-subnet"; };
};

Just be sure you define the ACL outside the view because you can’t use acl state-
ments inside views.

You can also specify who sees a view using the match-destinations view substate-
ment, which, like match-clients, takes an address match list as an argument. match-
destinations applies to nameservers with multiple IP addresses: clients querying one
of a server’s IP address, might see one view, while those querying another address see
a different view. match-clients and match-destinations can be used in combination,
too, to select queries from a particular client and those sent to a particular address.
There’s even a match-recursive-only Boolean substatement that will let you select
only recursive or nonrecursive queries.

What can you put inside a view statement? Almost anything (well, except for acl
statements). You can define zones with zone statements, describe remote nameserv-
ers with server statements, and configure TSIG keys with key statements. You can
use most options substatements within a view, but if you do, don’t enclose them in
an options statement; just use them “raw” in the view statement:

acl "fx-subnet" { 192.253.254/24; };

view "internal" {
 match-clients { "fx-subnet"; };
 recursion yes; // turn recursion on for this view
 // (it's off globally, in the options statement)
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Views | 249

Any configuration option you specify within a view overrides the like-named global
option (e.g., one in the options statement) for hosts that match match-clients.

For a complete list of what’s supported inside the view statement on the version of
BIND 9 you run (because it changes from release to release), see the file doc/misc/
options in the BIND distribution.

To give you an idea of the power of views, here’s the Special Effects lab’s full named.conf
file:

options {
 directory "/var/named";
};

acl "fx-subnet" { 192.253.254/24; };

view "internal" { // internal view of our zones

 match-clients { "fx-subnet"; };

 zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 };

 zone "254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254";
 };
};

view "external" { // view of our zones for the rest of the world

 match-clients { any; }; // implicit
 recursion no; // outside of our subnet, they shouldn't be
 // requesting recursion
 zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu.external"; // external zone datafile
 };

 zone "254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254.external"; // external zone datafile
 };
};

Notice that each view has an fx.movie.edu and a 254.253.192.in-addr.arpa zone, but
the zone datafiles are different in the internal and external views. This allows us to
show the outside world a different “face” than we see internally.

The order of the view statements is important because the first view that a host’s IP
address matches is the one that dictates what it sees. If the external view were listed

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 10: Advanced Features

first in the configuration file, it would occlude the internal view because the external
view matches all addresses.

One last note on views (before we use them in the next chapter, anyway): if you con-
figure even one view statement, all your zone statements must appear within explicit
views.

Round-Robin Load Distribution
Nameservers released since BIND 4.9 have formalized some load distribution func-
tionality that has existed in patches to BIND for some time. Bryan Beecher wrote
patches to BIND 4.8.3 to implement what he called “shuffle address records.” These
were address records of a special type that the nameserver rotated between
responses. For example, if the domain name foo.bar.baz had three “shuffled” IP
addresses, 192.168.1.1, 192.168.1.2, and 192.168.1.3, an appropriately patched
nameserver would give them out first in the order:

192.168.1.1 192.168.1.2 192.168.1.3

then in the order:

192.168.1.2 192.168.1.3 192.168.1.1

and then in the order:

192.168.1.3 192.168.1.1 192.168.1.2

before starting all over with the first order and repeating the rotation ad infinitum.

This functionality is enormously useful if you have a number of equivalent network
resources, such as mirrored FTP servers, web servers, or terminal servers, and you’d
like to spread the load among them. You establish one domain name that refers to
the group of resources and configure clients to access that domain name, and the
nameserver distributes requests among the IP addresses you list.

BIND 8 and 9 do away with the shuffle address record as a separate record type, sub-
ject to special handling. Instead, a modern nameserver rotates addresses for any
domain name that has more than one A record. (In fact, the nameserver will rotate
any type of record as long as a given domain name has more than one of them.)* So
the records:

foo.bar.baz. 60 IN A 192.168.1.1
foo.bar.baz. 60 IN A 192.168.1.2
foo.bar.baz. 60 IN A 192.168.1.3

accomplish on a BIND 8 or 9 nameserver just what the shuffle address records did
on a patched 4.8.3 server. The BIND documentation calls this process round-robin.

* Actually, until BIND 9, PTR records weren’t rotated. BIND 9 rotates all record types.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Round-Robin Load Distribution | 251

It’s a good idea to reduce the records’ time to live, too, as we did in this example.
This ensures that if the addresses are cached on an intermediate nameserver that
doesn’t support round-robin, they’ll time out of the cache quickly. If the intermedi-
ate nameserver looks up the name again, your authoritative nameserver can round-
robin the addresses again.

Note that this is really load distribution, not load balancing, because the nameserver
gives out the addresses in a completely deterministic way without regard to the
actual load or capacity of the servers servicing the requests. In our example, the
server at address 192.168.1.3 could be a 486DX33 running Linux and the other two
servers HP9000 Superdomes, and the Linux box would still get a third of the que-
ries. Listing a higher-capacity server’s address multiple times won’t help because
BIND eliminates duplicate records.

Multiple CNAMEs
Back in the heyday of BIND 4 nameservers, some folks set up round-robin using
multiple CNAME records instead of multiple address records:

foo1.bar.baz. 60 IN A 192.168.1.1
foo2.bar.baz. 60 IN A 192.168.1.2
foo3.bar.baz. 60 IN A 192.168.1.3
foo.bar.baz. 60 IN CNAME foo1.bar.baz.
foo.bar.baz. 60 IN CNAME foo2.bar.baz.
foo.bar.baz. 60 IN CNAME foo3.bar.baz.

This probably looks odd to those of you who are used to our harping on the evils of
mixing anything with a CNAME record. But BIND 4 nameservers didn’t recognize this
as the configuration error it is and simply returned the CNAME records for foo.bar.baz
in round-robin order.*

BIND 8 nameservers, on the other hand, are more vigilant and catch this error. You
can, however, explicitly configure them to allow multiple CNAME records for a sin-
gle domain name with:

options {
 multiple-cnames yes;
};

Not that we think you should, however.

BIND 9 nameservers don’t notice the multiple CNAME problem until version 9.1.0.
BIND versions from 9.1.0 on detect the problem but don’t give you the option of
allowing multiple CNAME records with the multiple-cnames statement. We think

* The right way to do this, in case you’re wondering, is to attach the addresses of foo1.bar.baz, foo2.bar.baz,
and foo3.bar.baz directly to the domain name foo.bar.baz.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 10: Advanced Features

that’s the right approach: attaching multiple CNAME records to a single domain
name is a violation of the DNS standards (in particular RFC 2181). Don’t do it.

The rrset-order Substatement
There are certain times when you’d rather the nameserver didn’t use round-robin.
For example, maybe you’d like to designate one web server as a backup to another.
To do this, the nameserver should always return the backup’s address after the pri-
mary web server’s address. But you can’t do that with round-robin; it’ll just rotate
the order of the addresses in successive responses.

BIND 8.2 and later nameservers and BIND 9.3.0 and later nameservers allow you to
turn off round-robin for certain domain names and types of records. For example, if
we want to ensure that the address records for www.movie.edu are always returned in
the same order, we’d use this rrset-order substatement:

options {
 rrset-order {
 class IN type A name "www.movie.edu" order fixed;
 };
};

We should probably lower the TTL on www.movie.edu’s address records, too, so a
nameserver that cached the records wouldn’t round-robin them for long.

The class, type, and name settings determine which records the specified order
applies to. The class defaults to IN, type to ANY, and name to *—in other words,
any records. So the statement:

options {
 rrset-order {
 order random;
 };
};

applies a random order to all records returned by the nameserver. The name setting
may contain a wildcard as its leftmost label, as in:

options {
 rrset-order {
 type A name "*.movie.edu" order cyclic;
 };
};

Only one rrset-order substatement is permitted, but it can contain multiple order
specifications. The first order specification to match a set of records in a response
applies.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Nameserver Address Sorting | 253

rrset-order supports three (count ’em, three!) different orders:

fixed
Always returns matching records in the same order

random
Returns matching records in random order

cyclic
Returns matching records in cyclic (round-robin) order

Unfortunately, BIND 9.3.2 doesn’t yet support the fixed order completely.*

The default behavior is:

options {
 rrset-order {
 class IN type ANY name "*" order cyclic;
 };
};

Configuring rrset-order is far from a complete solution, unfortunately, because
resolver and nameserver caching can interfere with its operation. A better long-term
solution is the SRV record, which we’ll discuss in Chapter 17.

Nameserver Address Sorting
Sometimes, neither round-robin nor any other configurable order is what you want.
When you are contacting a host that has multiple network interfaces and hence mul-
tiple IP addresses, choosing a particular interface based on your host’s address may
give you better performance. No rrset-order substatement can do that for you.

If the multihomed host is local and shares a network or subnet with your host, one of
the multihomed host’s addresses is “closer.” If the multihomed host is remote, you
may see better performance using one interface instead of another, but often it
doesn’t matter much which address is used. In days long past, net 10 (the former
ARPAnet “backbone”) was always closer than any other remote address. The Inter-
net has improved drastically since those days, so you won’t often see a marked per-
formance improvement when using one network over another for remote
multihomed hosts, but we’ll cover that case anyway.

Before we get into address sorting by a nameserver, you should first look at whether
address sorting by the resolver better suits your needs. (See the section “The sortlist
Directive” in Chapter 6.) Since your resolver and nameserver may be on different net-
works, it often makes more sense for the resolver to sort addresses optimally for its

* Fixed order works only if you happen to have your records in DNSSEC’s sorted order. See Chapter 11 for
details on DNSSEC’s sorting.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 10: Advanced Features

host. Address sorting at the nameserver works fairly well, but it can be hard to opti-
mize for every resolver it services.

In an uncommon turn of events, the nameserver’s address-sorting feature was
removed in early versions of BIND 8, primarily because of the developers’ insistence
that it had no place in the nameserver. The feature was restored—and in fact
enhanced—in BIND 8.2. BIND 9.1.0 was the first BIND 9 release to support address
sorting.

The key to address sorting is an options substatement called sortlist. The sortlist sub-
statement takes an address match list as an argument. Unlike address match lists
used as access control lists, though, sortlist’s has a very specialized interpretation.
Each entry in the address match list is itself an address match list with either one or
two elements.

If an entry has only one element, it’s used to check the IP address of a querier. If the
querier’s address matches, then the nameserver sorts addresses in a response to that
querier so that any addresses that match the element are first. Confusing? Here’s an
example:

options {
 sortlist {
 { 192.249.249/24; };
 };
};

The only entry in this sort list has just one element. This sort list sorts addresses on
the network 192.249.249/24 to the beginning of responses to queriers that are also
on that network. So if the client at 192.249.249.101 looks up a domain name that
owns two addresses, 192.249.249.87 and 192.253.253.87, the nameserver will sort
192.249.249.87 to the beginning of the response.

If an entry has two elements, the first element is used to match the IP address of a
querier. If the querier’s address matches, the nameserver sorts addresses in a
response to that querier so that any addresses that match the second element come
first. The second element can actually be a whole address match list of several ele-
ments, in which case the first address added to the response is the one that matches
first in the list. Here’s a simple example:

options {
 sortlist {
 { 192.249.249/24; { 192.249.249/24; 192.253.253/24; }; };
 };
};

This sort list applies to queriers on 192.249.249/24 and sends them addresses on
their own network first, followed by addresses on 192.253.253/24.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preferring Nameservers on Certain Networks | 255

The elements in the sort list specification can just as easily be subnets or even indi-
vidual hosts:

options {
 sortlist {
 { 15.1.200/21; // if the querier is on 15.1.200/21
 { 15.1.200/21; // then prefer addresses on that subnet
 15/8; }; // or at least on 15/8
 };
 };
};

Preferring Nameservers on Certain Networks
BIND 8’s topology feature is somewhat similar to sortlist, but it applies only to the
process of choosing nameservers. (BIND 9 doesn’t support topology as of 9.3.2.)
Earlier in the book, we described how BIND chooses between a number of
nameservers that are authoritative for the same zone by selecting the nameserver
with the lowest round-trip time. But we lied—a little. BIND 8 actually places remote
nameservers in 64-millisecond bands when comparing RTT. The first band is actu-
ally only 32 milliseconds wide (there! we did it again), from 0 to 32 milliseconds. The
next extends from 33 to 96 milliseconds, and so on. The bands are designed so that
nameservers on different continents are always in different bands.

The idea is to favor nameservers in lower bands but to treat servers in the same band
as equivalent. If a nameserver compares two remote servers’ RTTs, and one is in a
lower band, the nameserver chooses to query the nameserver in the lower band. But
if the remote servers are in the same band, the nameserver checks to see whether one
of the remote servers is topologically closer.

So topology lets you introduce an element of fudge into the process of choosing a
nameserver to query. It lets you favor nameservers on certain networks over others.
Topology takes as an argument an address match list, where the entries are net-
works, listed in the order in which the local nameserver should prefer them (highest
to lowest). Therefore:

topology {
 15/8;
 172.88/16;
};

tells the local nameserver to prefer nameservers on the network 15/8 over other
nameservers, and nameservers on the network 172.88/16 over nameservers on net-
works other than 15/8. So if the nameserver has a choice between a nameserver on
network 15/8, a nameserver on 172.88/16, and a nameserver on 192.168.1/24,
assuming all three have RTT values in the same band, it will choose to query the
nameserver on 15/8.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 10: Advanced Features

You can also negate entries in the topology address match list to penalize nameserv-
ers on certain networks. The earlier in the address match list the negated entry
matches, the greater the penalty. You might use this to keep your nameserver from
querying remote nameservers on a network that’s particularly flaky, for example.

A Nonrecursive Nameserver
By default, BIND resolvers send recursive queries, and, by default, BIND nameserv-
ers do the work required to answer them. (If you don’t remember how recursion
works, see Chapter 2.) In the process of finding the answers to recursive queries, the
nameserver builds up a cache of nonauthoritative information from other zones.

In some situations, it’s undesirable for nameservers to do the extra work required to
answer a recursive query or to build up a cache of data. The root nameservers are an
example of one of these situations. The root nameservers are so busy that they can’t
expend the extra effort necessary to find the answers to recursive queries. Instead,
they send a response based only on the authoritative data they have. The response
may contain the answer, but it more likely contains a referral to other nameservers.
And since the root servers do not support recursive queries, they don’t build up a
cache of nonauthoritative data, which is good because their caches would be huge.*

You can induce a BIND nameserver to run in nonrecursive mode with the following
configuration (config) file statement:

options {
 recursion no;
};

Now the server will respond to recursive queries as if they were nonrecursive.

In conjunction with recursion no, there is one more configuration option necessary if
you want to prevent your nameserver from building a cache:

options {
 fetch-glue no;
};

This stops the server from fetching missing glue when constructing the additional
data section of a response. BIND 9 nameservers don’t fetch glue, so the fetch-glue
substatement is obsolete in BIND 9.

If you choose to make one of your servers nonrecursive, don’t list that nameserver in
any host’s resolv.conf file. While you can make your nameserver nonrecursive, there
is no corresponding option to make your resolver work with a nonrecursive

* Note that a root nameserver doesn’t normally receive recursive queries unless a nameserver’s administrator
configured it to use the root server as a forwarder, a host’s administrator configured its resolver to use the
root server as a nameserver, or a user pointed nslookup or dig at the root server. All of these happen more
often than you’d expect, though.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Avoiding a Bogus Nameserver | 257

nameserver.* If your nameserver needs to continue to serve one or more resolvers,
you can use the allow-recursion substatement, available in BIND 8.2.1 and later
(including BIND 9). allow-recursion takes an address match list as an argument; any
queriers that match can send recursive queries, but everyone else is treated as if
recursion were off:

options {
 allow-recursion { 192.253.254/24; }; // Only resolvers on the FX
 // subnet should be sending
 // recursive queries
};

allow-recursion’s default is to provide recursion to any IP address.

Also, don’t list a nonrecursive nameserver as a forwarder. When a nameserver is
using another server as a forwarder, it forwards recursive queries to the forwarder.
Use allow-recursion to permit just authorized nameservers to use your forwarder
instead.

You can list a nonrecursive nameserver as one of the servers authoritative for your
zone data (i.e., you can tell a parent nameserver to refer queries about your zone to
this server). This works because nameservers send nonrecursive queries between
themselves.

Avoiding a Bogus Nameserver
In your term as nameserver administrator, you might find some remote nameserver
that responds with bad information—old, incorrect, badly formatted, or even delib-
erately deceptive. You can attempt to find an administrator to fix the problem. Or
you can save yourself some grief and configure your nameserver not to ask questions
of this server, which is possible with BIND 8, and BIND 9.1.0 and later. Here is the
configuration file statement:

server 10.0.0.2 {
 bogus yes;
};

Of course, you fill in the correct IP address.

If you tell your nameserver to stop talking to a server that is the only server for a
zone, don’t expect to be able to look up names in that zone. Hopefully, there are
other servers for that zone that can provide good information.

An even more potent way of shutting out a remote nameserver is to put it on your
blackhole list. Your nameserver won’t query nameservers on the list, and it won’t

* In general. Of course, programs designed to send nonrecursive queries, or programs that can be configured
to send nonrecursive queries, such as nslookup or dig, will still work.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 10: Advanced Features

respond to their queries.* blackhole is an options substatement that takes an address
match list as an argument:

options {

 /* Don't waste your time trying to respond to queries from RFC 1918
 private addresses */

 blackhole {
 10/8;
 172.16/12;
 192.168/16;
 };
};

This prevents your nameserver from trying to respond to any queries it might receive
from RFC 1918 private addresses. There are no routes on the Internet to these
addresses, so trying to reply to them is a waste of CPU cycles and bandwidth.

The blackhole substatement is supported on BIND 8 versions after 8.2 and on BIND
9 after 9.1.0.

System Tuning
While for many nameservers BIND’s default configuration values work just fine,
yours may be one of those that need some further tuning. In this section, we discuss
all the various dials and switches available to you to tune your nameserver.

Zone Transfers
Zone transfers can place a heavy load on a nameserver. Consequently, BIND has
mechanisms for limiting the zone transfer load that your slave nameservers place on
their master servers.

Limiting transfers requested per nameserver

On a slave nameserver, you can limit the number of zones the server requests from a
single master nameserver. This will make the administrator of your master
nameserver happy because his host won’t be pounded for zone transfers if all the
zones change—important if hundreds of zones are involved.

The config file statement is:

options {
 transfers-per-ns 2;
};

* And we really mean won’t respond. Whereas queriers disallowed by an allow-query access control list get a
response back indicating that their query was refused, queries on the blackhole list get nothing back. Nada.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

System Tuning | 259

In BIND 9, you can also set the limit on a server-by-server basis instead of globally.
To do this, use the transfers substatement inside a server statement, where the server
is the nameserver you’d like to specify the limit for:

server 192.168.1.2 {
 transfers 2;
};

This overrides any global limit set in the options statement. The default limit is two
active zone transfers per master nameserver. That limit may seem small, but it works.
Here’s what happens: suppose your nameserver needs to load four zones from a mas-
ter nameserver. Your nameserver starts transferring the first two zones and waits to
transfer the third and fourth zones. After one of the first two zone transfers com-
pletes, the nameserver begins transferring the third zone. After another transfer com-
pletes, the nameserver starts transferring the fourth zone. The net result is the same
as before when there were limits—all the zones are transferred—but the work is
spread out.

When may you need to increase this limit? You might notice that it is taking too long
to synch up with the master nameserver, and you know that the reason is the serializ-
ing of transfers—not just that the network between the hosts is slow. This probably
matters only if you’re maintaining hundreds or thousands of zones. You also need to
make sure that the master nameserver and the networks in between can handle the
additional workload of more simultaneous zone transfers.

Limiting the total number of zone transfers requested

The last limit dealt with the zone transfers requested from a single master
nameserver. This limit deals with multiple master nameservers. BIND lets you limit
the total number of zones your nameserver can request at any one time. The default
limit is 10. As we explained previously, your nameserver pulls only two zones from
any single master server by default. If your nameserver is transferring two zones from
each of five master servers, your server has hit the limit and will postpone any fur-
ther transfers until one of the current transfers finishes.

The BIND 8 and 9 named.conf file statement is:

options {
 transfers-in 10;
};

If your host or network cannot handle 10 active zone transfers, you should decrease
this number. If you run a server that supports hundreds or thousands of zones, and
your host and network can support the load, you might want to raise this limit. If
you raise this limit, you may also need to raise the limit for the number of transfers
per nameserver. (For example, if your nameserver loads from only four remote
nameservers, and your nameserver will start only two transfers per remote
nameserver, your server will have at most eight active zone transfers. Increasing the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 10: Advanced Features

limit for the total number of zone transfers won’t have any effect unless you also
increase the per-nameserver limit.)

Limiting the total number of zone transfers served

BIND 9 nameservers can also limit the number of zone transfers they’ll serve simulta-
neously. This is arguably more useful than limiting the number you’ll request because
without it you’d have to rely on the kindness of the administrators who run your slave
nameservers not to overload your master server. Here’s the BIND 9 statement:

options {
 transfers-out 10;
};

The default limit is 10.

Limiting the duration of a zone transfer

BIND also lets you limit the duration of an inbound zone transfer. By default, zone
transfers are limited to 120 minutes, or 2 hours. The idea is that a zone transfer tak-
ing longer than 120 minutes is probably hung and won’t complete, and the process is
taking up resources unnecessarily. If you’d like a smaller or larger limit, perhaps
because you know that your nameserver is a slave for a zone that normally takes
more than 120 minutes to transfer, you can use this statement:

options {
 max-transfer-time-in 180;
};

You can even place a limit on transfers of a particular zone by using the max-trans-
fer-time-in substatement inside a zone statement. For example, if you know that the
rinkydink.com zone always takes a long time (say three hours) to transfer, either
because of its size or because the links to the master nameserver are so slow, but
you’d still like a shorter time limit (maybe an hour) on other zone transfers, you
could use:

options {
 max-transfer-time-in 60;
};

zone "rinkydink.com" {
 type slave;
 file "bak.rinkydink.com";
 masters { 192.168.1.2; };
 max-transfer-time-in 180;
};

In BIND 9, there’s also a max-transfer-time-out substatement that can be used the
same way (either within an options statement or a zone statement). It controls how
long an outbound zone transfer (i.e., a transfer to a slave) can run and has the same
default value (120 minutes) as max-transfer-time-in.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

System Tuning | 261

BIND 9 nameservers even let you limit zone transfer idle time, the length of time
since the zone transfer made any progress. The two configuration substatements,
max-transfer-idle-in and max-transfer-idle-out, control how long an inbound and an
outbound zone transfer can be idle, respectively. Like the transfer time limits, both
can be used as either an options substatement or a zone substatement. The default
limit on idle time is 60 minutes.

Limiting the frequency of zone transfers

It’s possible to set a zone’s refresh interval so low as to cause undue work for that
zone’s slave nameservers. For example, if your nameserver is a slave for thousands of
zones, and the administrators of some of those zones set their refresh intervals to
very small values, your nameserver may not be able to keep up with all the refresh-
ing it needs to do. (If you run a nameserver that’s a slave for that many zones, be sure
to read the later section “Limiting SOA queries”; you may also need to tune the num-
ber of SOA queries allowed.) On the other hand, it’s possible for an inexperienced
administrator to set her zone’s refresh interval so high as to cause prolonged incon-
sistencies between the zone’s primary and slave nameservers.

BIND versions 9.1.0 and later let you limit the refresh interval with max-refresh-time
and min-refresh-time. These substatements bracket the refresh value for all master,
slave, and stub zones if used as an options substatement, or just for a particular zone
if used as a zone substatement. Both take a number of seconds as an argument:

options {
 max-refresh-time 86400; // refresh should never be more than a day
 min-refresh-time 1800; // or less than 30 minutes
};

BIND 9.1.0 and later nameservers also let you limit the retry interval with the max-
retry-time and min-retry-time substatements, which use the same syntax.

More efficient zone transfers

A zone transfer, as we said earlier, comprises many DNS messages sent end-to-end
over a TCP connection. Traditional zone transfers put only a single resource record
in each DNS message. That’s a waste of space: you need a full header on each DNS
message, even though you’re carrying only a single record. It’s like being the only
person in a Chevy Suburban. A TCP-based DNS message can carry many more
records: its maximum size is a whopping 64 KB!

BIND 8 and 9 nameservers understand a new zone transfer format, called many-
answers. The many-answers format puts as many records as possible into a single
DNS message. The result is that a many-answers zone transfer takes less bandwidth
because there’s less overhead and less CPU time because less time is spent unmar-
shaling DNS messages.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 10: Advanced Features

The transfer-format substatement controls which zone transfer format the nameserver
uses for zones for which it is a master. That is, it determines the format of the zones
that your nameserver transfers to its slaves. transfer-format is both an options sub-
statement and a server substatement; as an options substatement, transfer-format con-
trols the nameserver’s global zone transfer format. BIND 8’s default is to use the old
one-answer zone transfer format for interoperability with BIND 4 nameservers. BIND
9’s default is to use the many-answers format. The statement:

options {
 transfer-format many-answers;
};

configures the nameserver to use the many-answers format for zone transfers to all
slave servers, unless a server statement such as the following explicitly says otherwise:

server 192.168.1.2 {
 transfer-format one-answer;
};

If you’d like to take advantage of the new, more efficient zone transfers, do one of
the following:

• Set your nameserver’s global zone transfer format to many-answers (or don’t add
one at all if you’re running BIND 9) if most of your slaves run BIND 8, BIND 9,
or the Microsoft DNS Server, which also understands the format.*

• Set your nameserver’s global zone transfer format to one-answer if most of your
slaves run BIND 4. Then use the transfer-format server substatement to adjust
the global setting for exceptional servers.

Remember that if you run BIND 9, you’ll need to add an explicit server statement for
all BIND 4 slaves to change their transfer formats to one-answer.

Resource Limits
Sometimes you just want to tell the nameserver to stop being so greedy: don’t use
more than this much memory, don’t open more than this many files. With BIND 8
and 9, you can impose many such limits.

Changing the data segment size limit

Some operating systems place a default limit on the amount of memory a process can
use. If your OS ever prevents your nameserver from allocating additional memory,
the server will panic or exit. Unless your nameserver handles an extremely large
amount of data or the limit is very small, you won’t run into this limit. But if you do,

* Beware older versions of the Microsoft DNS Server, which can’t handle many-answers zone transfers that
include DNS messages over 16 KB. If some of your slaves run this version, upgrade them or stick with the
one-answer format until they’re upgraded.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

System Tuning | 263

BIND 8 as well as BIND 9.1.0 and later nameservers have configuration options to
change the system’s default limit on data segment size. You might use these options
to set a higher limit for named than the default system limit.

For both BIND 8 and 9, the statement is:

options {
 datasize size
};

size is an integer value, specified in bytes by default. You can specify a unit other
than bytes by appending a character: k (kilobyte), m (megabyte), or g (gigabyte). For
example, “64m” is 64 megabytes.

Not all systems support increasing the data segment size for individ-
ual processes. If your system doesn’t, the nameserver issues a syslog
message at level LOG_WARNING to tell you that this feature is not
implemented.

Changing the stack size limit

In addition to allowing you to change the limit on the size of the nameserver’s data
segment, BIND 8 and BIND 9.1.0 and later nameservers let you adjust the limit the
system places on the amount of memory the named process’s stack can use. Here’s
the syntax:

options {
 stacksize size;
};

where size is specified as in datasize. Like datasize, this feature works only on sys-
tems that permit a process to modify the stack size limit.

Changing the core size limit

If you don’t appreciate named’s leaving huge core files lying around on your filesys-
tem, you can at least make them smaller using coresize. Conversely, if named hasn’t
been able to dump an entire core file because of a tight operating system limit, you
may be able to raise that limit with coresize.

coresize’s syntax is:

options {
 coresize size;
};

Again, as with datasize, this feature works only on operating systems that let pro-
cesses modify the limit on core file size and doesn’t work on versions of BIND 9
before 9.1.0.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 10: Advanced Features

Changing the open files limit

If your nameserver is authoritative for a lot of zones, the named process opens lots of
files when it starts up—one per authoritative zone, assuming you use backup zone
datafiles with the zones you’re a slave for. Likewise, if the host running your
nameserver has lots of virtual network interfaces,* named requires one file descriptor
per interface. Most Unix operating systems place a limit on the number of files any
process can open concurrently. If your nameserver tries to open more files than this
limit permits, you’ll see this message in your syslog output:

named[pid]: socket(SOCK_RAW): Too many open files

If your operating system also permits changing that limit on a per-process basis, you
can increase it using BIND’s files substatement:

options {
 files number;
};

The default is unlimited (which is also a valid value), although this just means that
the nameserver doesn’t place a limit on the number of concurrently open files; the
operating system may, however. And though we know you’re sick of our saying it,
BIND 9 doesn’t support this until 9.1.0.

Limiting the number of clients

BIND 9 lets you restrict the number of clients your nameserver can serve concurrently.
You can apply a limit to the number of recursive clients (resolvers plus nameservers
using your nameserver as a forwarder) with the recursive-clients substatement:

options {
 recursive-clients 5000;
};

The default limit is 1000. If you find your nameserver refusing recursive queries and
logging, as shown by an error message like this one:

Sep 22 02:26:11 toystory named[13979]: client 192.249.249.151#1677: no more
recursive clients: quota reached

you may want to increase the limit. Conversely, if you find your nameserver strug-
gling to keep up with the deluge of recursive queries it receives, you can lower the
limit.

You can also apply a limit to the number of concurrent TCP connections your
nameserver will process (for zone transfers and TCP-based queries) with the tcp-clients
substatement. TCP connections consume considerably more resources than UDP

* Chapter 14 describes better solutions to the “too many open files” problem than bumping up the limit on
files.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

System Tuning | 265

because the host needs to track the state of the TCP connection. The default limit is
100.

Limiting SOA queries

BIND 8.2.2 and later nameservers let you limit the number of outstanding SOA que-
ries your nameserver allows. If your nameserver is a slave for thousands of zones, it
may have many queries for the SOA records of those zones pending at any one time.
Tracking each query requires a small but finite amount of memory, so, by default,
BIND 8 nameservers limit outstanding SOA queries to four. If you find that your
nameserver can’t keep up with its duties as a slave, you may need to raise the limit
with the serial-queries substatement:

options {
 serial-queries 1000;
};

serial-queries is obsolete in BIND 9. BIND 9 limits the rate at which serial queries are
sent (to 20 per second), not the number of outstanding queries. This limit can be
adjusted with the serial-query-rate options substatement, which takes an integer
(number of queries per second) as an argument.

Maintenance Intervals
BIND nameservers have always done periodic housekeeping, such as refreshing
zones for which the server is a slave. With BIND 8 and 9, you can control how often
these chores happen or whether they happen at all.

Cleaning interval

All nameservers passively remove stale entries from the cache. Before a nameserver
returns a record to a querier, it checks to see whether the TTL on that record has
expired. If it has, the nameserver starts the resolution process to find more current
data. However, relying entirely on this mechanism can result in an unnecessarily
large cache. A nameserver may cache a lot of records in a flurry of name resolution
and then just let those records spoil in the cache, taking up valuable memory even
though the records are stale.

To deal with this, BIND nameservers actively walk through the cache and remove
stale records once per cleaning interval. This helps minimize the amount of memory
used by the cache. On the other hand, the cleaning process takes CPU time, and on
very slow or very busy nameservers, you may not want it running often.

By default, the cleaning interval is 60 minutes. You can tune the interval with the
cleaning-interval substatement to the options statement. For example:

options {
 cleaning-interval 120;
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 10: Advanced Features

sets the cleaning interval to 120 minutes. To turn off cache cleaning entirely, set the
cleaning interval to 0.

Interface interval

We’ve said already that BIND, by default, listens on all of a host’s network inter-
faces. BIND 8 and 9 nameservers are actually smart enough to notice when a net-
work interface on the host they’re running on comes up or goes down. To do this,
they periodically scan the host’s network interfaces. This happens once each inter-
face interval, which is 60 minutes by default. If you know that the host your
nameserver runs on has no dynamic network interfaces, you can disable scanning for
new interfaces to avoid the unnecessary hourly overhead by setting the interface
interval to 0:

options {
 interface-interval 0;
};

On the other hand, if your host brings up or tears down network interfaces more
often than every hour, you may want to reduce the interval.

Statistics interval

Okay, adjusting the statistics interval—the frequency with which the BIND 8
nameserver dumps statistics to the statistics file—won’t have much effect on perfor-
mance. But it fits better here, with the other maintenance intervals, than anywhere
else in the book.

The syntax of the statistics-interval substatement is exactly analogous to the other
maintenance intervals:

options {
 statistics-interval 60;
};

And as with the other maintenance intervals, the default is 60 minutes, and a setting
of 0 disables the periodic dumping of statistics. Because BIND 9 doesn’t write statis-
tics to syslog, it doesn’t have a configurable statistics interval.

TTLs
Internally, BIND trims TTL values on cached records to reasonable values. BIND 8
and 9 nameservers make the limits configurable.

In BIND 8.2 or later and all BIND 9 nameservers, you can limit the TTL on cached
negative information with the max-ncache-ttl options substatement. This was
designed as a safety net for people who upgraded to 8.2 and its new negative caching
scheme (RFC 2308 and all that, described in Chapter 4). This new nameserver
caches negative information according to the last field of the zone’s SOA record, and

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Compatibility | 267

many zone admins still use that field for the default TTL for the zone—probably
much too long for negative information. So a prudent nameserver administrator can
use a substatement such as:

options {
 max-ncache-ttl 3600; // 3600 seconds is one hour
};

to trim larger negative caching TTLs to one hour. The default is 10,800 seconds (3
hours). Without this precaution, it’s possible that someone looking up a brand-new
record could get a negative answer (maybe because the new record hadn’t yet
reached the zone’s slaves), and her nameserver would cache that answer for an inor-
dinately long time, rendering the record unresolvable.

BIND 9 nameservers also let you configure the upper limit of the TTL on cached
records with the max-cache-ttl substatement. The default is one week. BIND 8
nameservers trim TTLs to one week, too, but they don’t let you configure the limit.

Finally, there’s what’s referred to as the lame TTL, which isn’t really a TTL at all.
Instead, it’s the amount of time your nameserver remembers that a given remote
nameserver isn’t authoritative for a zone that’s delegated to it. This prevents your
nameserver from wasting valuable time and resources asking that nameserver for
information about a domain name it knows nothing about. BIND 8 nameservers
after 8.2 and BIND 9 nameservers newer than 9.1.0 let you tune the lame TTL with
the lame-ttl options substatement. The default lame TTL is 600 seconds (10 min-
utes), with a maximum of 30 minutes. You can even turn off the caching of lame
nameservers with a value of 0, though that strikes us as a Very Bad Thing.

Compatibility
Now, to wrap things up, we’ll cover some configuration substatements related to
your nameserver’s compatibility with resolvers and other nameservers.

The rfc2308-type1 substatement controls the format of the negative answers your
nameserver sends. By default, BIND 8 and 9 nameservers include only the SOA
record in a negative response from a zone. Another legitimate format for that
response includes the zone’s NS records, too, but some older nameservers misinter-
pret such a response as a referral. If for some odd reason (odd because we can’t think
of one) you want to send those NS records as well, use:

options {
 rfc2308-type1 yes;
};

rfc2308-type1 is first supported in BIND 8.2; BIND 9 doesn’t support it.

Older nameservers can also cause problems when you send them cached negative
responses. Before the days of negative caching, all negative responses were, naturally,
authoritative. But some nameserver implementers added a check to their servers:

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 10: Advanced Features

they’d accept only authoritative negative responses. Then, with the advent of negative
caching, negative responses could be nonauthoritative. Oops!

The auth-nxdomain options substatement lets your nameserver falsely claim that a
negative answer from its cache is actually authoritative, just so one of these older
nameservers will believe it. By default, BIND 8 nameservers have auth-nxdomain on
(set to yes); BIND 9 nameservers turn it off by default.

When some adventurous souls ported BIND 8.2.2 to Windows NT, they found they
needed the nameserver to treat a carriage return and a newline at the end of a line
(Windows’ end-of-line sequence) the same way it treated just a newline (Unix’s end-
of-line). For that behavior, use:

options {
 treat-cr-as-space yes;
};

BIND 9 ignores this option because it always treats a carriage return and a newline
the same way as a newline by itself.

Finally, if you run a BIND nameserver that’s configured as a slave to Microsoft DNS
Servers with Active Directory–integrated zones, you may see an error message in
syslog informing you that the zones’ serial numbers have decreased. This is a side
effect of the replication mechanism Active Directory uses and isn’t cause for alarm. If
you want to squelch the message, you can use BIND 9.3.0’s new multi-master zone
substatement to tell your slave that the IP addresses in the masters substatement
actually belong to multiple nameservers, not to multiple interfaces on a single
nameserver:

zone "_msdcs.domain.com" {
 type slave;
 masters { 10.0.0.2; 10.0.0.3; };
 file "bak._msdcs.domain.com";
 multi-master yes;
};

The ABCs of IPv6 Addressing
Before we cover the next two topics, which include how domain names map to IPv6
addresses and vice versa, we’d better describe the representation and structure of
IPv6 addresses. As you probably know, IPv6 addresses are 128 bits long. The pre-
ferred representation of an IPv6 address is eight groups of as many as four hexadeci-
mal digits, separated by colons; for example:

2001:db80:0123:4567:89ab:cdef:0123:4567

The first group of hex digits (2001, in this example) represents the most significant
(or highest-order) 16 bits of the address.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The ABCs of IPv6 Addressing | 269

Groups of digits that begin with one or more zeros don’t need to be padded to four
places, so you can also write the previous address as:

2001:db80:123:4567:89ab:cdef:123:4567

Each group must contain at least one digit, though, unless you’re using the :: nota-
tion. The :: notation allows you to compress sequential groups of zeros. This comes
in handy when you’re specifying just an IPv6 prefix. For example:

2001:db80:dead:beef::

specifies the first 64 bits of an IPv6 address as 2001:db80:dead:beef and the remain-
ing 64 as zeros.

You can also use :: at the beginning of an IPv6 address to specify a suffix. For exam-
ple, the IPv6 loopback address is commonly written as:

::1

or 127 zeros followed by a single one. You can even use :: in the middle of an address
as a shorthand for contiguous groups of zeros:

2001:db80:dead:beef::1

You can use the :: shorthand only once in an address, since more than one could be
ambiguous.

IPv6 prefixes are specified in a format similar to IPv4’s CIDR notation. As many bits
of the prefix as are significant are expressed in the standard IPv6 notation, followed
by a slash and a decimal count of exactly how many significant bits there are. So the
following three prefix specifications are equivalent (though obviously not equiva-
lently terse):

2001:db80:dead:beef:0000:00f1:0000:0000/96
2001:db80:dead:beef:0:f1:0:0/96
2001:db80:dead:beef:0:f1::/96

The IPv6 equivalent of an IPv4 network number is called a global routing prefix.
These are a variable number of high-order bits of the IPv6 address used to identify a
particular network. All global unicast addresses have global routing prefixes that
begin with the binary value 001. These are assigned by address registries or Internet
service providers. The global routing prefix itself may be hierarchical, with an
address registry responsible for allocating lower-order bits to various ISPs, and ISPs
responsible for allocating the lowest-order bits of the prefix to its customers.

After the global routing prefix, IPv6 addresses may contain another variable number
of bits that identify the particular subnet within a network, called the subnet ID. The
remaining bits of the address identify a particular network interface and are referred
to as the interface ID.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 10: Advanced Features

Here’s a diagram from RFC 3513 that shows how these parts fit together:

| n bits | m bits | 128-n-m bits |
+------------------------+-----------+----------------------------+
| global routing prefix | subnet ID | interface ID |
+------------------------+-----------+----------------------------+

According to RFC 3177, which recommends how IPv6 addresses should be allo-
cated to sites:

• Home network subscribers should receive a /48 prefix.

• Small and large enterprises should receive a /48 prefix.

• Very large subscribers could receive a /47 or slightly shorter prefix.

Addresses and Ports
Since IPv4 is relatively simple compared to IPv6, let’s cover the nameserver’s IPv4 con-
figuration together with IPv6. BIND 8.4.0 and later and all BIND 9 nameservers can
use both IPv4 and IPv6 as a transport; that is, they can send and receive queries and
responses over IPv4 and IPv6. Both nameservers also support similar substatements to
configure which network interfaces and ports they listen on and send queries from.

Configuring the IPv4 Transport
You can specify which network interface your BIND 8 or BIND 9 nameserver listens
on for queries using the listen-on substatement. In its simplest form, listen-on takes
an address match list as an argument:

options {
 listen-on { 192.249.249/24; };
};

The nameserver listens on any of the local host’s network interfaces whose addresses
match the address match list. To specify an alternate port (one other than 53) to lis-
ten on, use the port modifier:

options {
 listen-on port 5353 { 192.249.249/24; };
};

In BIND 9, you can even specify a different port for each network interface:

options {
 listen-on { 192.249.249.1 port 5353; 192.253.253.1 port 1053; };
};

Note that there’s no way to configure most resolvers to query a nameserver on an alter-
nate port, so this nameserver might not be as useful as you’d think. Still, it can serve
zone transfers because you can specify an alternate port in a masters substatement:

zone "movie.edu" {
 type slave;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 271

 masters port 5353 { 192.249.249.1; };
 file "bak.movie.edu";
};

Or, if your BIND 9 nameserver has multiple master nameservers, each listening on a
different port, you can use something like:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.1 port 5353; 192.253.253.1 port 1053; };
 file "bak.movie.edu";
};

BIND 9 even allows you to send your NOTIFY messages to alternate ports. To tell
your master nameserver to notify all its slave nameservers on the same oddball port,
use:

also-notify port 5353 { 192.249.249.9; 192.253.253.9; }; // zardoz's two addresses

To notify each on a different port, use:

also-notify { 192.249.249.9 port 5353; 192.249.249.1 port 1053; };

If your slave nameserver needs to use a particular local network interface to send
queries—perhaps because one of its master nameservers recognizes it by only one of
its many addresses—use the query-source substatement:

options {
 query-source address 192.249.249.1;
};

Note that the argument isn’t an address match list; it’s a single IP address. You can
also specify a particular source port to use for queries:

options {
 query-source address 192.249.249.1 port 53;
};

BIND’s default behavior is to use whichever network interface the route to the desti-
nation points out and a random, unprivileged port, i.e.:

options {
 query-source address * port *;
};

Note that query-source applies only to UDP-based queries; TCP-based queries always
choose the source address according to the routing table and use a random source
port.

There’s an analogous transfer-source substatement that controls the source address
to use for zone transfers. In BIND 9, it also applies to a slave nameserver’s SOA que-
ries and to forwarded dynamic updates:

options {
 transfer-source 192.249.249.1;
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 10: Advanced Features

As with query-source, the argument is just a single IP address, but with no address
keyword. With BIND 8, there’s no port modifier. With BIND 9, you can specify a
source port:

options {
 transfer-source 192.249.249.1 port 1053;
};

However, that source port applies only to UDP-based traffic (i.e., SOA queries and
forwarded dynamic updates).

transfer-source can also be used as a zone substatement, in which case it applies only
to transfers (and, for BIND 9, SOA queries and dynamic updates) of that zone:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
 transfer-source 192.249.249.1; // always use IP address on same network
 // for transfers of movie.edu
};

Finally, as of BIND 9.1.0, there’s even a substatement that lets you control which
address you send NOTIFY messages from, called notify-source. This comes in handy
with multihomed nameservers because, by default, slaves accept only NOTIFY mes-
sages for a zone from IP addresses in that zone’s masters substatement. notify-source’s
syntax is similar to the syntax of the other -source substatements; for example:

options {
 notify-source 192.249.249.1;
};

As with transfer-source, notify-source can specify a source port and can be used as a
zone statement to apply only to that zone:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
 notify-source 192.249.249.1 port 5353;
};

If you can’t control the IP address from which NOTIFY messages are sent (because
you don’t administer the master server, for example), you can either include all the
master’s IP addresses in your zone’s masters substatement, or you can use the allow-
notify substatement to explicitly permit NOTIFY messages from addresses not listed
in masters.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 273

Configuring the IPv6 Transport
By default, a BIND 9 nameserver won’t listen for IPv6-based queries. To configure it
to listen on the local host’s IPv6 network interfaces, use the listen-on-v6 substatement:

options {
 listen-on-v6 { any; };
};

Before BIND 9.3.0, the listen-on-v6 substatement accepted only any and none as
arguments. You can also configure a BIND nameserver to listen on an alternate
port—or even multiple ports—with the port modifier:

options {
 listen-on-v6 port 1053 { any; };
};

To listen on more than one IPv6 interface or port, use multiple listen-on-v6 substate-
ments. The default port is, of course, 53.

You can also determine which IPv6 address your nameserver uses as the source
address for outgoing queries with the transfer-source-v6 substatement, as in:

options {
 transfer-source-v6 222:10:2521:1:210:4bff:fe10:d24;
};

or, also specifying a source port:

options {
 transfer-source-v6 222:10:2521:1:210:4bff:fe10:d24 port 53;
};

Only BIND 9 supports setting the source port, as in the second example. The default
is to use the source address corresponding to whichever network interface the route
points out and a random, unprivileged source port. As with transfer-source, you can
use transfer-source-v6 as a zone substatement. And the source port applies only to
SOA queries and forwarded dynamic updates.

Finally, BIND 9.1.0 and later let you determine which IPv6 address to use in
NOTIFY messages, à la the notify-source substatement. The IPv6 substatement is
called, not surprisingly, notify-source-v6:

options {
 notify-source-v6 222:10:2521:1:210:4bff:fe10:d24;
};

As with transfer-source-v6, you can specify a source port and use the substatement in
a zone statement.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 10: Advanced Features

EDNS0
UDP-based DNS messages have traditionally been limited to 512 bytes. This limit
was instituted to prevent fragmentation, which in the early days of the Internet was
costly and unreliable. Times have changed, though, and most paths on the Internet
can accommodate much larger UDP datagrams.

Thanks to new developments in DNS, such as DNSSEC and IPv6 support, the aver-
age response is getting larger. Responses from signed zones, in particular, can easily
exceed the 512-byte limit, which can cause costly retries over TCP.

The Extension Mechanisms for DNS, version 0, referred to as EDNS0, introduces a
simple signaling system to DNS. Using this system, a resolver or nameserver can tell
another nameserver that it can handle a DNS message larger than 512 bytes. (In fact,
the sender can signal other capabilities, too, as we’ll see in the next chapter.)

BIND nameservers have supported EDNS0 since versions 9.0.0 and 8.3.0. These
nameservers send EDNS0 signaling information by default, and try to negotiate a
UDP-based DNS message size of 4,096 bytes. If they receive a response that indi-
cates that the nameserver they’re talking to doesn’t understand EDNS0, they’ll fall
back to using messages that adhere to the old 512-byte limit.

This technique generally works well, but occasionally you’ll run across a nameserver
that reacts badly to EDNS0 probes. To cope with these nameservers, you can use the
new edns server substatement to turn off EDNS0 for that nameserver:

server 10.0.0.1 {
 edns no;
};

This is supported in BIND 9.2.0 and later and BIND 8.3.2 and later nameservers.

BIND 9.3.0 and later and 8.4.0 and later also allow you to configure the size of the
UDP-based DNS messages your nameserver will negotiate with the edns-udp-size
options substatment:

options {
 directory "/var/named";
 edns-udp-size 512;
};

This can be useful if your firewall doesn’t understand that DNS messages can exceed
512 bytes in size and keeps dropping legitimate messages. (Of course, we think you
should upgrade your firewall, but you may need to resort to this in the interim.) The
maximum value for edns-udp-size is 4096; the minimum is 512.

IPv6 Forward and Reverse Mapping
Clearly, the existing A record won’t accommodate IPv6’s 128-bit addresses; BIND
expects an A record’s record-specific data to be a 32-bit address in dotted-octet format.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 275

The IETF came up with a simple solution to this problem, described in RFC 1886. A
new address record, AAAA, was used to store a 128-bit IPv6 address, and a new IPv6
reverse-mapping domain, ip6.int, was introduced. This solution was straightforward
enough to implement in BIND 4. Unfortunately, not everyone liked the simple solu-
tion, so it came up with a much more complicated one. This solution, which we’ll
describe shortly, involved the new A6 and DNAME records and required a complete
overhaul of the BIND nameserver to implement. Then, after much acrimonious
debate, the IETF decided that the new A6/DNAME scheme required too much over-
head, was prone to failure, and was of unproven usefulness. At least temporarily, it
moved the RFC that describes A6 records off the IETF standards track to experimen-
tal status, deprecated the use of DNAME records in reverse-mapping zones, and trot-
ted old RFC 1886 back out. Everything old is new again.

For now, the AAAA record is the way to handle IPv6 forward mapping. The use of
ip6.int is deprecated, however, mostly for political reasons; it’s been replaced by
ip6.arpa. In the interest of preparing you for all possible futures, including one in
which A6 and DNAME make a dramatic comeback, we’ll cover both methods.

AAAA and ip6.arpa
The easy way to handle IPv6 forward mapping, described in RFC 1886, is with an
address record that’s four times as long as an A record. That’s the AAAA (pro-
nounced “quad A”) record. The AAAA record takes as its record-specific data the
textual format of an IPv6 address, as described earlier. So, for example, you’d see
AAAA records like this one:

ipv6-host IN AAAA 2001:db80:1:2:3:4:567:89ab

RFC 1886 also established ip6.int, now replaced by ip6.arpa, a new reverse-mapping
namespace for IPv6 addresses. Each level of subdomain under ip6.arpa represents
four bits of the 128-bit address, encoded as a hexadecimal digit just like in the
record-specific data of the AAAA record. The least significant (lowest-order) bits
appear at the far left of the domain name. Unlike the format of addresses in AAAA
records, omitting leading zeros is not allowed, so there are always 32 hexadecimal
digits and 32 levels of subdomain below ip6.arpa in a domain name corresponding to
a full IPv6 address. The domain name that corresponds to the address in the previ-
ous example is:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.8.b.d.1.0.0.2.ip6.arpa.

These domain names have PTR records attached, just as the domain names under in-
addr.arpa do:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.8.b.d.1.0.0.2.ip6.arpa. IN PTR
mash.ip6.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 10: Advanced Features

A6, DNAMEs, Bitstring Labels, and ip6.arpa
That’s the easy way. The more difficult—and now only experimental—way of
handling IPv6 forward and reverse mapping uses two new record types, A6 and
DNAME records. A6 and DNAME records are described in RFCs 2874 and 2672,
respectively. Version 9.0.0 was the first version of BIND to support these records.

There’s no guarantee that this method of doing IPv6 forward and
reverse mapping will ever reemerge as the standard, and the latest ver-
sions of BIND don’t even support it fully. You may be wasting your
time in reading this section, just as we may have wasted our time in
writing it. We’re leaving it here because fashion is cyclical, and A6 and
friends may yet make a comeback.

If you want to experiment with A6 and bitstring labels, dig out a BIND
9.2.x nameserver. The ISC removed support for bitstring labels in 9.3.0,
and advises that A6 is “no longer fully supported.” Also, note that bit-
string labels can also cause interoperability problems with some DNS
software.

The main reason a replacement for the AAAA record and ip6.int reverse-mapping
scheme was sought was because they make network renumbering difficult. For
example, if an organization were to change ISPs, it would have to change all the
AAAA records in its zone datafiles because some of the bits of an IPv6 address are an
identifier for the ISP.* Or imagine an ISP changing address registries: this would
wreak havoc with its customers’ zone data.

A6 records and forward mapping

To make renumbering easier, A6 records can specify only a part of an IPv6 address,
such as the last 64 bits (maybe the interface ID) assigned to a host’s network inter-
face, and then refer to the remainder of the address by a symbolic domain name.
This allows zone administrators to specify only the part of the address under their
control. To build an entire address, a resolver or nameserver must follow the chain of
A6 records from a host’s domain name to the address registry’s ID. And that chain
may branch if a site network is connected to multiple ISPs or if an ISP is connected to
multiple address registries.

For example, the A6 record:

$ORIGIN movie.edu.
drunkenmaster IN A6 64 ::0210:4bff:fe10:0d24 subnet1.v6.movie.edu.

* And, of course, the new ISP might use a different address registry, which would mean more bits to change.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 277

specifies the final 64 bits of drunkenmaster.movie.edu’s IPv6 address (64 is the num-
ber of bits of the prefix not specified in this A6 record) and that the remaining 64 bits
can be found by looking up an A6 record at subnet1.v6.movie.edu.

subnet1.v6.movie.edu, in turn, specifies the last 16 bits of the 64-bit prefix (the sub-
net ID) that we didn’t specify in drunkenmaster.movie.edu’s A6 address, as well as
the domain name of the next A6 record to look up:

$ORIGIN v6.movie.edu.
subnet1 IN A6 48 0:0:0:1:: movie-u.isp-a.net.
subnet1 IN A6 48 0:0:0:1:: movie.isp-b.net.

The first 48 bits of the prefix in subnet1.v6.movie.edu’s record-specific data are set to
0 because they’re not significant here.

In fact, these records tell us to look up two A6 records next, one at movie-u.isp-a.net
and one at movie.isp-b.net. That’s because Movie U. has connections to two ISPs, ISP
A and ISP B. In ISP A’s zone, we might find:

$ORIGIN isp-a.net.
movie-u IN A6 40 0:0:21:: isp-a.rir-1.net.

indicating an eight-bit pattern within the global routing prefix field set by ISP A for
the Movie U. network. (Remember, the global routing prefix field can be hierarchi-
cal, too, comprising both an identifier for our ISP assigned to it by its address regis-
try and our ISP’s identifier for our network.) Since the ISP assigns some bits of the
global routing prefix to us but has the rest of the prefix assigned by its address regis-
try, we’d expect to see only our bits in our ISP’s zone data. The remainder of the pre-
fix appears in an A6 record in its address registry’s zone.

In ISP B’s zone, we might find the following record showing us the bits that ISP
assigns for our network:

$ORIGIN isp-b.net.
movie IN A6 40 0:0:42:: isp-b.rir-2.net.

In the address registries’ zones, we might find the next four bits of the IPv6 address:

$ORIGIN rir-1.net.
isp-a IN A6 36 0:0:0500:: rir-2.top-level-v6.net.

and:

$ORIGIN rir-2.net.
isp-b IN A6 36 0:0:0600:: rir-1.top-level-v6.net.

Finally, in the top-level IPv6 address registry’s zone, we might find these records
showing us the bits of the prefix assigned to RIR 1 and RIR 2:

$ORIGIN top-level-v6.net.
rir-1 IN A6 0 2001:db80::2
rir-2 IN A6 0 2001:db80::6

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 10: Advanced Features

By following this chain of A6 records, a nameserver can assemble all 128 bits of
drunkenmaster.movie.edu’s two IPv6 addresses. These turn out to be:

2001:db80:2521:1:210:4bff:fe10:d24
2001:db80:6642:1:210:4bff:fe10:d24

The first of these uses a route through RIR 1 and ISP A to the Movie U. network, and
the second uses a route through RIR 2 and ISP B. (We’re connected to two ISPs for
redundancy.) Note that if RIR 1 changes its prefix assignment for ISP A, it needs to
change only the A6 record for isp-a.rir-1.net in its zone data; the change “cascades”
into all A6 chains that go through ISP A. This makes the management of addressing
on IPv6 networks very convenient and makes changing ISPs easy, too.

You can probably already see some of the potential problems with A6 records.
Resolving a domain name to a single IPv6 address may require several independent
queries (to look up A6 records for an RIR’s domain name, an ISP’s domain name,
and so on). Completing all of those queries may take many times longer than resolv-
ing a domain name’s single AAAA record, and if any one of the “subresolutions”
fails, the overall resolution process fails.

If a nameserver appears in an NS record and owns one or more A6
records, those A6 records should specify all 128 bits of the IPv6
address. This helps avoid deadlock problems, in which a resolver or
nameserver needs to talk to a remote nameserver to resolve part of that
nameserver’s IPv6 address.

DNAME records and reverse mapping

Now that you’ve seen how forward mapping works with A6 records, let’s look at
how reverse-mapping IPv6 addresses works. As with A6 records, unfortunately, this
isn’t nearly as simple as ip6.arpa.

Reverse-mapping IPv6 addresses involves DNAME records, described in RFC 2672,
and bitstring labels, introduced in RFC 2673. DNAME records are a little like wild-
card CNAME records. They’re used to substitute one suffix of a domain name with
another. For example, if we previously used the domain name movieu.edu at Movie
U. but have since changed to movie.edu, we can replace the old movieu.edu zone with
this one:

$TTL 1d
@ IN SOA toystory.movie.edu. root.movie.edu. (
 2000102300
 3h
 30m
 30d
 1h)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 279

 IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.

 IN MX 10 postmanrings2x.movie.edu.

 IN DNAME movie.edu.

The DNAME record in the movieu.edu zone applies to any domain name that ends in
movieu.edu except movieu.edu itself. Unlike the CNAME record, the DNAME record
can coexist with other record types owned by the same domain name as long as they
aren’t CNAME or other DNAME records. The owner of the DNAME record may
not have any subdomains, though.

When the movieu.edu nameserver receives a query for any domain name that ends in
movieu.edu, say cuckoosnest.movieu.edu, the DNAME record tells it to “synthesize”
an alias from cuckoosnest.movieu.edu to cuckoosnest.movie.edu, replacing movieu.edu
with movie.edu:

cuckoosnest.movieu.edu. IN CNAME cuckoosnest.movie.edu.

It’s a little like sed’s “s” (substitute) command. The movieu.edu nameserver replies
with this CNAME record. If it’s responding to a newer nameserver, it also sends the
DNAME record in the response, and the recipient nameserver can then synthesize its
own CNAME records from the cached DNAME.

Bitstring labels are the other half of the magic involved in IPv6 reverse mapping. Bit-
string labels are simply a compact way to represent a long sequence of binary (i.e.,
one-bit) labels in a domain name. Say you want to permit delegation between any
two bits of an IP address. This might compel you to represent each bit of the address
as a label in a domain name. But that would require over 128 labels for a domain
name that represented an IPv6 address! Oy! That exceeds the limit on the number of
labels in a normal domain name!

Bitstring labels concatenate the bits in successive labels into a shorter hexadecimal,
octal, binary, or dotted-octet string. The string is encapsulated between the tokens “\[”
and “]” to distinguish it from a traditional label, and begins with one letter that deter-
mines the base of the string: b for binary, o for octal, and x for hexadecimal.

Here are the bitstring labels that correspond to drunkenmaster.movie.edu’s two IPv6
addresses:

\[x2001db802521000102104bfffe100d24]
\[x2001db806642000102104bfffe100d24]

Notice that the most significant bit begins the string, as in the text representation of
an IPv6 address, but in the opposite order of the labels in the in-addr.arpa domain.
Despite this, these two bitstring labels are simply a different encoding of traditional
domain names that begin:

0.0.1.0.0.1.0.0.1.0.1.1.0.0.0.0.0.0.0.0.1.0.0.0.0.1.1.1.1.1.1.1...

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 10: Advanced Features

Also note that all 32 hex digits in the address are present; you can’t drop leading
zeros, because there are no colons to separate groups of four digits.

Bitstring labels can also represent parts of IPv6 addresses, in which case you need to
specify the number of significant bits in the string, separated from the string by a
slash. So RIR 1’s portion of the global routing prefix is \[x2001db802/36].

Together, DNAMEs and bitstring labels are used to match portions of a long domain
name that encode an IPv6 address and to iteratively change the domain name looked
up to a domain name in a zone under the control of the organization that manages
the host with that IPv6 address.

Imagine we’re reverse-mapping \[x2001db806642000102104bfffe100d24].ip6.arpa,
the domain name that corresponds to drunkenmaster.movie.edu’s network interface
(when reached through RIR 2 and ISP B). The root nameservers would probably
refer our nameserver to the ip6.arpa nameservers, which contain these records:

$ORIGIN ip6.arpa.
\[x2001db802/36] IN DNAME ip6.rir-1.net.
\[x2001db806/36] IN DNAME ip6.rir-2.net.

The second of these matches the beginning of the domain name we’re looking up, so
the ip6.arpa nameservers reply to our nameserver with an alias that says:

\[x2001db806642000102104bfffe100d24].ip6.arpa. IN CNAME
\[x642000102104bfffe100d24].ip6.rir-2.net.

Notice that the first nine hex digits (the most significant 36 bits) of the address are
stripped off, and the end of the target of the alias is now ip6.rir-2.net, since we know
this address belongs to RIR 2. In ip6.rir-2.net, we find:

$ORIGIN ip6.rir-2.net.
\[x6/4] IN DNAME ip6.isp-b.net.

This turns the domain name in our new query:

\[x642000102104bfffe100d24].ip6.rir-2.net

into:

\[x42000102104bfffe100d24].ip6.isp-b.net

Next, our nameserver queries the ip6.isp-b.net nameservers for the new domain
name. This record in the ip6.isp-b.net zone:

$ORIGIN ip6.isp-b.net.
\[x42/8] IN DNAME ip6.movie.edu.

turns the domain name we’re looking up into:

\[x000102104bfffe100d24].ip6.movie.edu

The ip6.movie.edu zone, finally, contains the PTR record that gives us the domain
name of the host we’re after:

$ORIGIN ip6.movie.edu.
\[x000102104bfffe100d24/80] IN PTR drunkenmaster.ip6.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Addresses and Ports | 281

(Though we could have used another DNAME just for subnet1, we didn’t.)

Mercifully, as a zone administrator you’ll probably only be responsible for maintain-
ing PTR records like the ones in ip6.movie.edu. Even if you work for an RIR or ISP,
creating DNAME records that extract the appropriate bits of the global routing pre-
fix from your customers’ addresses isn’t too tough. And you gain the convenience of
using a single zone datafile for your reverse-mapping information, even though each
of your hosts has multiple addresses and can switch ISPs without changing all of
your zone datafiles.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

282

Chapter 11CHAPTER 11

Security 11

“I hope you’ve got your hair well fastened on?” he
continued, as they set off.
“Only in the usual way,” Alice said, smiling.
“That’s hardly enough,” he said, anxiously. “You see
the wind is so very strong here. It’s as strong as soup.”
“Have you invented a plan for keeping the hair from
being blown off?” Alice enquired.
“Not yet,” said the Knight. “But I’ve got a plan for
keeping it from falling off.”

Why should you care about DNS security? Why go to the trouble of securing a ser-
vice that mostly maps names to addresses? Let us tell you a story.

In July 1997, during two periods of several days, users around the Internet who
typed www.internic.net into their web browsers thinking they were going to the Inter-
NIC’s web site instead ended up at a web site belonging to the AlterNIC. (The Alter-
NIC runs an alternate set of root nameservers that delegate to additional top-level
domains with names like med and porn.) How’d it happen? Eugene Kashpureff, then
affiliated with the AlterNIC, had run a program to “poison” the caches of major
nameservers around the world, making them believe that www.internic.net’s address
was actually the address of the AlterNIC web server.

Kashpureff hadn’t made any attempt to disguise what he had done; the web site that
users reached was plainly the AlterNIC’s, not the InterNIC’s. But imagine someone
poisoning your nameserver’s cache to direct www.amazon.com or www.wellsfargo.com
to his own web server, conveniently located well outside local law enforcement juris-
diction. Further, imagine your users typing in their credit card numbers and expiration
dates. Now you get the idea.

Protecting your users against these kinds of attacks requires DNS security. DNS
security comes in several flavors. You can secure transactions—the queries,
responses, and other messages your nameserver sends and receives. You can secure
your nameserver, refusing queries, zone transfer requests, and dynamic updates from

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

TSIG | 283

unauthorized addresses, for example. You can even secure zone data by digitally
signing it.

Since DNS security is one of the most complicated topics in DNS, we’ll start you off
easy and build up to the hard stuff.

TSIG
BIND 8.2 introduced a new mechanism for securing DNS messages called transac-
tion signatures, or TSIG for short. TSIG uses shared secrets and a one-way hash func-
tion to authenticate DNS messages, particularly responses and updates.

TSIG, now codified in RFC 2845, is relatively simple to configure, light-weight for
resolvers and nameservers to use, and flexible enough to secure DNS messages
(including zone transfers) and dynamic updates. (Contrast this with the DNS Secu-
rity Extensions, which we’ll discuss at the end of this chapter.)

With TSIG configured, a nameserver or updater adds a TSIG record to the addi-
tional data section of a DNS message. The TSIG record “signs” the DNS message,
proving that the message’s sender had a cryptographic key shared with the receiver
and that the message wasn’t modified after it left the sender.*

One-Way Hash Functions
TSIG provides authentication and data integrity through the use of a special type of
mathematical formula called a one-way hash function. A one-way hash function, also
known as a cryptographic checksum or message digest, computes a fixed-size hash
value based on arbitrarily large input. The magic of a one-way hash function is that
each bit of the hash value depends on each and every bit of the input. Change a sin-
gle bit of the input, and the hash value changes dramatically and unpredictably—so
unpredictably that it’s “computationally infeasible” to reverse the function and find
an input that produces a given hash value.

TSIG uses a one-way hash function called MD5. In particular, it uses a variant of
MD5 called HMAC-MD5. HMAC-MD5 works in a keyed mode in which the 128-bit
hash value depends not only on the input, but also on a key.

* Cryptography wonks may argue that TSIG “signatures” aren’t really signatures in a cryptographic sense
because they don’t provide nonrepudiation. Since either holder of the shared key can create a signed mes-
sage, the recipient of a signed message can’t claim that only the sender could have sent it (the recipient could
have forged it himself).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 11: Security

The TSIG Record
We won’t cover the TSIG record’s syntax in detail because you don’t need to know
it: TSIG is a “meta-record” that never appears in zone data and is never cached by a
resolver or nameserver. A signer adds the TSIG record to a DNS message, and the
recipient removes and verifies the record before doing anything further, such as cach-
ing the data in the message.

You should know, however, that the TSIG record includes a hash value computed
over the entire DNS message as well as some additional fields. (When we say “com-
puted over,” we mean that the raw, binary DNS message and the additional fields are
fed through the HMAC-MD5 algorithm to produce the hash value.) The hash value
is keyed with a secret shared between the signer and the verifier. Verifying the hash
value proves both that the DNS message was signed by a holder of the shared secret
and that it wasn’t modified after it was signed.

The additional fields in the TSIG record include the time the DNS message was
signed. This helps combat replay attacks, in which a hacker captures a signed, autho-
rized transaction (say a dynamic update deleting an important resource record) and
replays it later. The recipient of a signed DNS message checks the time signed to
make sure it’s within the allowable “fudge” (another field in the TSIG record).

Configuring TSIG
Before using TSIG for authentication, we need to configure one or more TSIG keys
on either end of the transaction. For example, if we want to use TSIG to secure zone
transfers between the master and slave nameservers for movie.edu, we need to config-
ure both nameservers with a common key:

key toystory-wormhole.movie.edu. {
 algorithm hmac-md5;
 secret "skrKc4Twy/cIgIykQu7JZA==";
};

The argument to the key statement in this example, toystory-wormhole.movie.edu, is
actually the name of the key, though it looks like a domain name. (It’s encoded in
the DNS message in the same format as a domain name.) The TSIG RFC suggests
you name the key after the two hosts that use it. The RFC also suggests that you use
different keys for each pair of hosts. This prevents the disclosure of one key from
compromising all of your communications, and limits the use of each key.

It’s important that the name of the key—not just the binary data the key points to—
be identical on both ends of the transaction. If it’s not, the recipient tries to verify the
TSIG record and finds it doesn’t know the key that the TSIG record says was used to
compute the hash value. That causes errors such as the following:

Jan 4 16:05:35 wormhole named[86705]: client 192.249.249.1#4666: request has invalid
signature: TSIG tsig-key.movie.edu: tsig verify failure (BADKEY)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

TSIG | 285

The algorithm, for now, is always hmac-md5. The secret is the base 64 encoding of
the binary key. You can create a base-64-encoded key using the dnssec-keygen pro-
gram included in BIND 9 or the dnskeygen program included in BIND 8. Here’s how
you’d create a key using dnssec-keygen, the easier of the two to use:

dnssec-keygen -a HMAC-MD5 -b 128 -n HOST toystory-wormhole.movie.edu.
Ktoystory-wormhole.movie.edu.+157+28446

The –a option takes as an argument the name of the algorithm the key will be used
with. (That’s necessary because dnssec-keygen can generate other kinds of keys, as
you’ll see in the section “The DNS Security Extensions.”) The –b option takes the
length of the key as its argument; the RFC recommends using keys 128 bits long.
The –n option takes as an argument HOST, the type of key to generate. (DNSSEC
uses ZONE keys.) The final argument is the name of the key.

dnssec-keygen and dnskeygen both create files in their working directories that con-
tain the keys generated. dnssec-keygen prints the base name of the files to its stan-
dard output. In this case, dnssec-keygen created the files Ktoystory-wormhole.movie.
edu.+157+28446.key and Ktoystory-wormhole.movie.edu.+157+28446.private. You
can extract the key from either file. The funny numbers (157 and 28446), in case
you’re wondering, are the key’s DNSSEC algorithm number (157 is HMAC-MD5)
and the key’s fingerprint (28446), a hash value computed over the key to identify it.
The fingerprint isn’t particularly useful in TSIG, but DNSSEC supports multiple keys
per zone, so identifying which key you mean by its fingerprint is important.

Ktoystory-wormhole.movie.edu.+157+28446.key contains:

toystory-wormhole.movie.edu. IN KEY 512 3 157 skrKc4Twy/cIgIykQu7JZA==

and Ktoystory-wormhole.movie.edu.+157+28446.private contains:

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: skrKc4Twy/cIgIykQu7JZA==

If you prefer, you can choose your own key and encode it in base 64 using
mmencode:

% mmencode
foobarbaz
Zm9vYmFyYmF6

Since the actual binary key is, as the substatement implies, a secret, we should take
care in transferring it to our nameservers (e.g., by using ssh) and make sure that not
just anyone can read it. We can do that by making sure our named.conf file isn’t
world-readable or by using the include statement to read the key statement from
another file, which isn’t world-readable:

include "/etc/dns.keys.conf";

There’s one last problem that we see cropping up frequently with TSIG: time syn-
chronization. The timestamp in the TSIG record is useful for preventing replay

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 11: Security

attacks, but it tripped us up initially because the clocks on our nameservers weren’t
synchronized. (They need to be synchronized to within five minutes, the default
value for “fudge.”) That produced error messages like the following:

wormhole named[86705]: client 192.249.249.1#54331: request has invalid signature:
TSIG toystory-wormhole.movie.edu.: tsig verify failure (BADTIME)

We quickly remedied the problem using NTP, the network time protocol.*

Using TSIG
Now that we’ve gone to the trouble of configuring our nameservers with TSIG keys,
we should probably configure them to use those keys for something. In BIND 8.2
and later and all BIND 9 nameservers, we can secure queries, responses, zone trans-
fers, and dynamic updates with TSIG.

The key to configuring this is the server statement’s keys substatement, which tells a
nameserver to sign queries and zone transfer requests sent to a particular remote
nameserver. This server substatement, for example, tells the local nameserver, worm-
hole.movie.edu, to sign all such requests sent to 192.249.249.1 (toystory.movie.edu)
with the key toystory-wormhole.movie.edu:

server 192.249.249.1 {
 keys { toystory-wormhole.movie.edu.; };
};

If you’re only concerned about zone transfers (and not about general query traffic,
for example), you can specify the key in the masters substatement for any slave
zones:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.1 key toystory-wormhole.movie.edu.; };
 file "bak.movie.edu";
};

Now, on toystory.movie.edu, we can restrict zone transfers to those signed with the
toystory-wormhole.movie.edu key:

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-transfer { key toystory-wormhole.movie.edu.; };
};

toystory.movie.edu also signs the zone transfer, which allows wormhole.movie.edu to
verify it.

* See the Network Time Protocol web site at http://www.ntp.org/ for information on NTP.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 287

You can also restrict dynamic updates with TSIG using the allow-update and update-
policy substatements, as we showed you in the last chapter.

The nsupdate programs shipped with BIND 8.2 and later and BIND 9 support, send-
ing TSIG-signed dynamic updates. If you have the key files created by dnssec-keygen
lying around, you can specify either of those as an argument to nsupdate’s –k option.
Here’s how you’d do that with BIND 9’s version of nsupdate:

% nsupdate -k Ktoystory-wormhole.movie.edu.+157+28446.key

or:

% nsupdate -k Ktoystory-wormhole.movie.edu.+157+28446.private

With the BIND 8.2 or later nsupdate, the syntax is a little different: –k takes a direc-
tory and a key name as an argument, separated by a colon:

% nsupdate -k /var/named:toystory-wormhole.movie.edu.

If you don’t have the files around (maybe you’re running nsupdate from another
host), you can still specify the key name and the secret on the command line with the
BIND 9 nsupdate:

% nsupdate -y toystory-wormhole.movie.edu.:skrKc4Twy/cIgIykQu7JZA==

The name of the key is the first argument to the –y option, followed by a colon and
the base-64-encoded secret. You don’t need to quote the secret because base-64 val-
ues can’t contain shell metacharacters, but you can if you like.

Michael Fuhr’s Net::DNS Perl module also lets you send TSIG-signed dynamic
updates and zone transfer requests. For more information on Net::DNS, see
Chapter 15.

Now that we have a handy mechanism for securing DNS transactions, let’s talk
about securing our whole nameserver.

Securing Your Nameserver
BIND 8 and 9 support a wide variety of security mechanisms. These features are par-
ticularly important if your nameserver is running on the Internet, but they’re also
useful on purely internal nameservers.

We’ll start by discussing measures you should take on all nameservers for which
security is important. Then we’ll describe a model in which your nameservers are
split into two communities, one for serving only resolvers and one for answering
other nameservers’ queries.

BIND Version
One of the most important ways you can enhance the security of your nameserver is
to run a recent version of BIND. All versions of BIND 8 before 8.4.7 and all versions

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 11: Security

of BIND 9 older than 9.3.2 are susceptible to at least a few known attacks. Check the
ISC’s list of vulnerabilities in various BIND versions at http://www.isc.org/sw/bind/
bind-security.php for updates.

But don’t stop there: new attacks are being thought up all the time, so you’ll have to
do your best to keep abreast of BIND’s vulnerabilities and the latest “safe” version of
BIND. One good way to do that is to read the comp.protocols.dns.bind newsgroup or
its mailing list equivalent, bind-users, regularly. If you’d prefer less noise, there’s
always the bind-announce mailing list, which carries only announcements of patches
and new releases of BIND.*

There’s another aspect of BIND’s version relevant to security: if a hacker can easily
find out which version of BIND you’re running, he may be able to tailor his attacks
to that version of BIND. And, wouldn’t you know it, since about BIND 4.9, BIND
nameservers have replied to a certain query with their version. If you look up TXT
records in the CHAOSNET class attached to the domain name version.bind, BIND
graciously returns something like this:

% dig txt chaos version.bind.

; <<>> DiG 9.3.2 <<>> txt chaos version.bind.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 14286
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;version.bind. CH TXT

;; ANSWER SECTION:
version.bind. 0 CH TXT "9.3.2"

;; AUTHORITY SECTION:
version.bind. 0 CH NS version.bind.

;; Query time: 17 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Sat Jan 7 16:14:39 2006
;; MSG SIZE rcvd: 62

To address this, BIND versions 8.2 and later let you tailor your nameserver’s
response to the version.bind query:

options {
 version "None of your business";
};

* We described how to subscribe to bind-users back in Chapter 3. To subscribe to bind-announce, the instruc-
tions are the same.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 289

Of course, receiving a response like “None of your business” will tip off the alert
hacker to the fact that you’re likely running BIND 8.2 or better, but that still leaves a
number of possibilities. If you’d rather the reply was less obvious, you can use “ver-
sion none” with BIND 9.3.0 and later:

options {
 directory "/var/named";
 version none;
};

Now your nameserver will respond to version queries like this:

; <<>> DiG 9.3.2 <<>> txt chaos version.bind.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21957
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;version.bind. CH TXT

;; AUTHORITY SECTION:
version.bind. 86400 CH SOA version.bind. hostmaster.version.
bind. 0 28800 7200 604800 86400

;; Query time: 2 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Sat Jan 7 16:16:43 2006
;; MSG SIZE rcvd: 77

Restricting Queries
Back in the old days of BIND 4, administrators had no way to control who could
look up names on their nameservers. That makes a certain amount of sense; the orig-
inal idea behind DNS was to make information easily available all over the Internet.

The neighborhood is not such a friendly place anymore, though. In particular, people
who run Internet firewalls may have a legitimate need to hide certain parts of their
namespace from most of the world while making it available to a limited audience.

The BIND 8 and 9 allow-query substatement lets you apply an IP address-based
access control list to queries. The ACL can apply to queries for data in a particular
zone or to any queries received by the nameserver. In particular, the ACL specifies
which IP addresses are allowed to send queries to the server.

Restricting all queries

The global form of the allow-query substatement looks like this:

options {
 allow-query { address_match_list; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 11: Security

So to restrict our nameserver to answering queries from the three main Movie U. net-
works, we’d use:

options {
 allow-query { 192.249.249/24; 192.253.253/24; 192.253.254/24; };
};

Restricting queries in a particular zone

BIND 8 and 9 also allow you to apply an ACL to a particular zone. In this case, just
use allow-query as a substatement to the zone statement for the zone you want to
protect:

acl "HP-NET" { 15/8; };

zone "hp.com" {
 type slave;
 file "bak.hp.com";
 masters { 15.255.152.2; };
 allow-query { "HP-NET"; };
};

Any kind of authoritative nameserver, master or slave, can apply an ACL to the zone.*

Zone-specific ACLs take precedence over a global ACL for queries in that zone. The
zone-specific ACL may even be more permissive than the global ACL. If there’s no
zone-specific ACL defined, any global ACL will apply.

Preventing Unauthorized Zone Transfers
Arguably even more important than controlling who can query your nameserver is
ensuring that only your real slave nameservers can transfer zones from your
nameserver. Users on remote hosts that can query your nameserver’s zone data can
only look up records (e.g., addresses) for domain names they already know, one at a
time. Users who can start zone transfers from your server can list all the records in
your zones. It’s the difference between letting random folks call your company’s
switchboard and ask for John Q. Cubicle’s phone number and sending them a copy
of your corporate phone directory.

BIND 8 and 9’s allow-transfer substatement lets administrators apply an ACL to
zone transfers. allow-transfer restricts transfers of a particular zone when used as a
zone substatement and restricts all zone transfers when used as an options substate-
ment. It takes an address match list as an argument.

* In fact, you can even use an allow-query substatement with a stub zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 291

The slave servers for our movie.edu zone have the IP addresses 192.249.249.1 and
192.253.253.1 (wormhole.movie.edu) and 192.249.249.9 and 192.253.253.9
(zardoz.movie.edu). The following zone statement:

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-transfer { 192.249.249.1; 192.253.253.1; 192.249.249.9; 192.253.253.9; };
};

allows only those slaves to transfer movie.edu from the primary master nameserver.
Note that because the default for BIND 8 or 9 is to allow zone transfer requests from
any IP address, and because hackers can just as easily transfer the zone from your
slaves, you should probably also have a zone statement like this on your slaves:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
 allow-transfer { none; };
};

BIND 8 and 9 also let you apply a global ACL to zone transfers. This applies to any
zones that don’t have their own explicit ACLs defined as zone substatements. For
example, we might want to limit all zone transfers to our internal IP addresses:

options {
 allow-transfer { 192.249.249/24; 192.253.253/24; 192.253.254/24; };
};

Finally, as we mentioned earlier in the chapter, those newfangled BIND 8.2 and later
and BIND 9 nameservers let you restrict zone transfers to slave nameservers that
include a correct transaction signature with their request. On the master nameserver,
you need to define the key in a key statement and then specify the key in the address
match list:

key toystory-wormhole. {
 algorithm hmac-md5;
 secret "UNd5xYLjz0FPkoqWRymtgI+paxW927LU/gTrDyulJRI=";
};

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-transfer { key toystory-wormhole.; };
};

On the slave’s end, you need to configure the slave to sign zone transfer requests
with the same key:

key toystory-wormhole. {
 algorithm hmac-md5;
 secret "UNd5xYLjz0FPkoqWRymtgI+paxW927LU/gTrDyulJRI=";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 11: Security

server 192.249.249.3 {
 keys { toystory-wormhole.; }; // sign all requests to 192.249.249.3
 // with this key
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

For a primary nameserver accessible from the Internet, you probably want to limit
zone transfers to just your slave nameservers. You probably don’t need to worry
about securing zone transfers from nameservers inside your firewall, unless you’re
worried about your own employees listing your zone data.

Running BIND with Least Privilege
Running a network server like BIND as the root user can be dangerous, and BIND
normally runs as root. If a hacker finds a vulnerability in the nameserver through
which he can read or write files, he’ll have unfettered access to the filesystem. If he
can exploit a flaw that allows him to execute commands, he’ll execute them as root.

BIND 8.1.2 and later and all BIND 9 nameservers include code that allows you to
change the user and group the nameserver runs as. This allows you to run the
nameserver with what’s known as least privilege: the minimal set of rights it needs to
do its job. That way, if someone breaks into your host through the nameserver, at
least that person won’t have root privileges.

These nameservers also include an option that allows you to chroot() the
nameserver: to change its view of the filesystem so that its root directory is actually a
particular directory on your host’s filesystem. This effectively traps your nameserver
in this directory, along with any attackers who successfully compromise your
nameserver’s security.

Here are the command-line options that implement these features:

–u Specifies the username or user ID the nameserver changes to after starting, e.g.,
named –u bind.

–g Specifies the group or group ID the nameserver changes to after starting, e.g.,
named –g other. If you specify –u without –g, the nameserver uses the user’s pri-
mary group. BIND 9 nameservers always change to the user’s primary group, so
they don’t support –g.

–t Specifies the directory for the nameserver to chroot() to.

If you opt to use the –u and –g options, you’ll have to decide what user and group to
use. Your best bet is to create a new user and group for the nameserver to run as,
such as bind or named. Since the nameserver reads named.conf before giving up root

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 293

privileges, you don’t have to change that file’s permissions. However, you may have
to change the permissions and ownership of your zone datafiles so that the user the
nameserver runs as can read them. If you use dynamic update, you’ll have to make
the zone datafiles for dynamically updated zones writable by the nameserver.

If your nameserver is configured to log to files (instead of to syslog), make sure that
those files exist and are writable by the nameserver before starting the server.

The –t option takes a little more specialized configuration. In particular, you need to
make sure that all the files named uses are present in the directory you’re restricting
the server to. Here’s a procedure to set up your chrooted environment, which we’ll
assume lives under /var/named:*

1. Create the /var/named directory, if it doesn’t exist. Create dev, etc, lib, usr, and
var subdirectories. Within usr, create an sbin subdirectory. Within var, create
subdirectories named named and run:

mkdir /var/named
cd /var/named
mkdir -p dev etc lib usr/sbin var/named var/run

2. Copy named.conf to /var/named/etc/named.conf:
cp /etc/named.conf etc

3. If you’re running BIND 8, copy the named-xfer binary to the usr/sbin/ or etc sub-
directory (depending on whether you found it in /usr/sbin or /etc):

cp /usr/sbin/named-xfer usr/sbin

Alternatively, you can put it wherever you like under /var/named and use the
named-xfer substatement to tell named where to find it. Just remember to strip /var/
named off of the pathname because when named reads named.conf, /var/named will
look like the root of the filesystem. (If you’re running BIND 9, skip this step
because BIND 9 doesn’t use named-xfer.)

4. Create dev/null in the chrooted environment:†

mknod dev/null c 2 2

5. If you’re running BIND 8, copy the standard shared C library and the loader to
the lib subdirectory:

cp /lib/libc.so.6 /lib/ld-2.1.3.so lib

The pathnames may vary on your operating system. BIND 9 nameservers are
self-contained, so you don’t need to copy libraries.

6. Edit your startup files to start syslogd with an additional option and option argu-
ment: –a /var/named/dev/log. On many modern versions of Unix, syslogd is

* This procedure is based on FreeBSD, so if you use a different operating system, your mileage may vary.

† The arguments to mknod needed to create dev/null will vary depending on the operating system.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 11: Security

started from /etc/rc or /etc/rc.d/init.d/syslog. When syslogd restarts next, it creates
/var/named/dev/log, and named logs to it.

If your syslogd doesn’t support the –a option, use the logging statement
described in Chapter 7 to log to files in the chrooted directory.

7. If you’re running BIND 8 and use the –u or –g options, create passwd and group
files in the etc subdirectory to map the arguments of –u and –g to their numeric
values (or just use numeric values as arguments):

echo "named:x:42:42:named:/:" > etc/passwd
echo "named::42" > etc/group

Then add the entries to the system’s /etc/passwd and /etc/group files. If you’re run-
ning BIND 9, you can just add the entries to the system’s /etc/passwd and /etc/
group files because BIND 9 nameservers read the information they need before
calling chroot().

8. Finally, edit your startup files to start named with the –t option and option argu-
ment: –t /var/named. Similar to syslogd, many modern versions of Unix start
named from /etc/rc or /etc/rc.d/init.d/named.

If you’re hooked on using ndc to control your BIND 8 nameserver, you can continue
to do so as long as you specify the pathname to the Unix domain socket as the argu-
ment to ndc’s –c option:

ndc -c /var/named/var/run/ndc reload

rndc will continue to work as before with your BIND 9 nameserver because it just
talks to the server via port 953.

Split-Function Nameservers
Nameservers really have two major roles: answering iterative queries from remote
nameservers and answering recursive queries from local resolvers. If we separate
these roles, dedicating one set of nameservers to answering iterative queries and
another to answering recursive queries, we can more effectively secure those
nameservers.

“Advertising” nameserver configuration

Some of your nameservers answer nonrecursive queries from other nameservers on
the Internet because these nameservers appear in NS records delegating your zones
to them. We’ll call these nameservers advertising nameservers, because their role is to
advertise your zones to the Internet.

There are special measures you can take to secure your advertising nameservers. But
first, you should make sure that these nameservers don’t receive any recursive queries
(that is, you don’t have any resolvers configured to use these servers and no nameserv-
ers use them as forwarders). Some of the precautions we’ll take—like making the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 295

server respond nonrecursively even to recursive queries—preclude your resolvers from
using these servers. If you do have resolvers using your advertising nameservers, con-
sider establishing another class of nameservers to serve just your resolvers or using the
two nameservers in one configuration, both described later in this chapter.

Once you know your nameserver answers queries only from other nameservers, you
can turn off recursion. This eliminates a major vector of attack: the most common
spoofing attacks involve inducing the target nameserver to query nameservers under
the hacker’s control by sending the target a recursive query for a domain name in a
zone served by the hacker’s servers. To turn off recursion, use the following state-
ment on a BIND 8 or 9 nameserver:

options {
 recursion no;
};

You should also restrict zone transfers of your zones to known slave servers, as
described in the earlier section “Preventing Unauthorized Zone Transfers.” Finally,
you might also want to turn off glue fetching. Some nameservers will automatically
try to resolve the domain names of any nameservers in NS records; to prevent this
from happening and keep your nameserver from sending any queries of its own, use
this on a BIND 8 nameserver (BIND 9 nameservers don’t support glue fetching):

options {
 fetch-glue no;
};

“Resolving” nameserver configuration

We’ll call a nameserver that serves one or more resolvers or that is configured as
another nameserver’s forwarder a resolving nameserver. Unlike an advertising
nameserver, a resolving nameserver can’t refuse recursive queries. Consequently, we
have to configure it a little differently to secure it. Since we know our nameserver
should receive queries only from our own resolvers, we can configure it to deny que-
ries from any but our resolvers’ IP addresses.

This allow-query substatement restricts queries to just our internal network:

options {
 allow-query { 192.249.249/24; 192.253.253/24; 192.253.254/24; };
};

With this configuration, the only resolvers that can send our nameserver recursive
queries and induce them to query other nameservers are our own internal resolvers,
which are presumably relatively benign.

There’s one other option we can use to make our resolving nameserver a little more
secure: use-id-pool:

options {
 use-id-pool yes;
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 11: Security

use-id-pool was introduced in BIND 8.2. It tells our nameserver to take special care
to use random message IDs in queries. Normally, the message IDs aren’t random
enough to prevent brute-force attacks that try to guess the IDs our nameserver has
outstanding in order to spoof a response.

The ID pool code became a standard part of BIND 9, so you don’t need to specify it
on a BIND 9 nameserver.

Two Nameservers in One
What if you have only one nameserver to advertise your zones and serve your resolv-
ers, and you can’t afford the additional expense of buying another computer to run a
second nameserver on? There are still a few options open to you. Two are single-
server solutions that take advantage of the flexibility of BIND 8 and 9. One of these
configurations allows anyone to query the nameserver for information in zones it’s
authoritative for, but only our internal resolvers can query the nameserver for other
information. While this doesn’t prevent remote resolvers from sending our
nameserver recursive queries, those queries have to be in its authoritative zones so
they won’t induce our nameserver to send additional queries.

Here’s a named.conf file to do that:

acl "internal" {
 192.249.249/24; 192.253.253/24; 192.253.254/24; localhost;
};

acl "slaves" {
 192.249.249.1; 192.253.253.1; 192.249.249.9; 192.253.253.9;
};

options {
 directory "/var/named";
 allow-query { "internal"; };
 use-id-pool yes;
};

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-query { any; };
 allow-transfer { "slaves"; };
};

zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 allow-query { any; };
 allow-transfer { "slaves"; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 297

zone "." {
 type hint;
 file "db.cache";
};

Here, the more permissive zone-specific ACLs apply to queries in the nameserver’s
authoritative zones, but the more restrictive global ACL applies to all other queries.

If we were running BIND 8.2.1 or newer, or any version of BIND 9, we could sim-
plify this configuration somewhat using the allow-recursion substatement:

acl "internal" {
 192.249.249/24; 192.253.253/24; 192.253.254/24; localhost;
};

acl "slaves" {
 192.249.249.1; 192.253.253.1; 192.249.249.9; 192.253.253.9;
};

options {
 directory "/var/named";
 allow-recursion { "internal"; };
 use-id-pool yes;
};

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-transfer { "slaves"; };
};

zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 allow-transfer { "slaves"; };
};

zone "." {
 type hint;
 file "db.cache";
};

We don’t need the allow-query substatements anymore: although the nameserver
may receive queries from outside our internal network, it’ll treat those queries as
nonrecursive, regardless of whether they are or not. Consequently, external queries
won’t induce our nameserver to send any queries. This configuration also doesn’t
suffer from a gotcha the previous setup is susceptible to: if your nameserver is
authoritative for a parent zone, it may receive queries from remote nameservers
resolving domain names in a delegated subdomain of the zone. The allow-query solu-
tion will refuse those legitimate queries, but the allow-recursion solution won’t.

Another option is to run two named processes on a single host. One is configured as
an advertising nameserver, another as a resolving nameserver. Since we have no way

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 11: Security

of telling remote servers or configuring resolvers to query one of our nameservers on
a port other than 53, the default DNS port, we have to run these servers on different
IP addresses.

Of course, if your host already has more than one network interface, that’s no prob-
lem. Even if it has only one, the operating system may support IP address aliases.
These allow you to attach more than one IP address to a single network interface.
One named process can listen on each. Finally, if the operating system doesn’t sup-
port IP aliases, you can still bind one named against the network interface’s IP
address and one against the loopback address. Only the local host will be able to
send queries to the instance of named listening on the loopback address, but that’s
fine if the local host’s resolver is the only one you need to serve.

First, here’s the named.conf file for the advertising nameserver, listening on the net-
work interface’s IP address:

acl "slaves" {
 192.249.249.1; 192.253.253.1; 192.249.249.9; 192;253.253.9;
};

options {
 directory "/var/named-advertising";
 recursion no;
 fetch-glue no;
 listen-on { 192.249.249.3; };
 pid-file "/var/run/named.advertising.pid";
};

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 allow-transfer { "slaves"; };
};

zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 allow-transfer { "slaves"; };
};

Next, here’s the named.conf file for the resolving nameserver, listening on the loop-
back address:

options {
 directory "/var/named-resolving";
 listen-on { 127.0.0.1; };
 pid-file "/var/run/named.resolving.pid";
 use-id-pool yes;
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Securing Your Nameserver | 299

zone "." {
 type hint;
 file "db.cache";
};

Note that we didn’t need an ACL for the resolving nameserver because it’s only lis-
tening on the loopback address and can’t receive queries from other hosts. (If our
resolving nameserver were listening on an IP alias or a second network interface, we
could use allow-query to prevent others from using our nameserver.) We turn off
recursion on the advertising nameserver, but we must leave it on on the resolving
nameserver. We also give each nameserver its own PID file so that the servers don’t
try to use the same default filename for their PID files, and we give each nameserver
its own directory so debug files and statistics files are saved in separate locations.

To use the resolving nameserver listening on the loopback address, the local host’s
resolv.conf file must include the following:

nameserver 127.0.0.1

as the first nameserver directive.

If you’re running BIND 9, you can even consolidate the two nameserver configura-
tions into one using views:

options {
 directory "/var/named";
};

acl "internal" {
 192.249.249/24; 192.253.253/24; 192.253.254/24; localhost;
};

view "internal" {
 match-clients { "internal"; };
 recursion yes;

 zone "movie.edu" {
 type master;
 file "db.movie.edu";
 };

 zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 };

 zone "." {
 type hint;
 file "db.cache";
 };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 11: Security

view "external" {
 match-clients { any; };
 recursion no;

 zone "movie.edu" {
 type master;
 file "db.movie.edu";
 };

 zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 };

 zone "." {
 type hint;
 file "db.cache";
 };
};

It’s a fairly simple configuration: two views, internal and external. The internal view,
which applies only to our internal network, has recursion on. The external view, which
applies to everyone else, has recursion off. The zones movie.edu and 249.249.192.in-
addr.arpa are defined identically in both views. You could do a lot more with it—
define different versions of the zones internally and externally, for example—but we’ll
hold off on that until the next section.

DNS and Internet Firewalls
The Domain Name System wasn’t designed to work with Internet firewalls. It’s a tes-
timony to the flexibility of DNS and of its BIND implementation that you can config-
ure DNS to work with, or even through, an Internet firewall.

That said, configuring BIND to work in a firewalled environment, although not diffi-
cult, takes a good, complete understanding of DNS and a few of BIND’s more
obscure features. Describing it also requires a large portion of this chapter, so here’s
a roadmap.

We’ll start by describing the two major families of Internet firewall software: packet
filters and proxies. The capabilities of each family have a bearing on how you’ll need
to configure BIND to work through the firewall. Next, we’ll detail the two most
common DNS architectures used with firewalls, forwarders and internal roots, and
describe the advantages and disadvantages of each. We’ll then introduce a solution
using a new feature, forward zones, which combines the best of internal roots and
forwarders. Finally, we’ll discuss split namespaces and the configuration of the bas-
tion host, the host at the core of your firewall system.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 301

Types of Firewall Software
Before you start configuring BIND to work with your firewall, it’s important to under-
stand what your firewall is capable of. Your firewall’s capabilities will influence your
choice of DNS architecture and determine how you implement it. If you don’t know
the answers to the questions in this section, track down someone in your organiza-
tion who does know and ask. Better yet, work with your firewall’s administrator when
designing your DNS architecture to ensure it will coexist with the firewall.

Note that this is far from a complete explanation of Internet firewalls. These few
paragraphs describe only the two most common types of Internet firewalls and only
in enough detail to show how the differences in their capabilities affect nameservers.
For a comprehensive treatment of Internet firewalls, see Building Internet Firewalls by
Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman (O’Reilly).

Packet filters

The first type of firewall we’ll cover is the packet-filtering firewall. Packet-filtering
firewalls operate largely at the transport and network levels of the TCP/IP stack (lay-
ers three and four of the OSI reference model, if you dig that). They decide whether
to route a packet based on packet-level criteria such as the transport protocol (e.g.,
whether it’s TCP or UDP), the source and destination IP address, and the source and
destination port (see Figure 11-1).

What’s most important to us about packet-filtering firewalls is that you can typically
configure them to allow DNS traffic selectively between hosts on the Internet and
your internal hosts. That is, you can let an arbitrary set of internal hosts communi-
cate with Internet nameservers. Some packet-filtering firewalls can even permit your
nameservers to query nameservers on the Internet, but not vice versa. All router-based

Figure 11-1. Packet filters operate at the network and transport layers of the stack

application

presentation

session

transport
(source and destination port)

network
(source and destination IP address)

data link

physical

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 11: Security

Internet firewalls are packet-filtering firewalls. Checkpoint’s FireWall-1, Cisco’s PIX,
and Juniper’s NetScreen are popular commercial packet-filtering firewalls.

Proxies

Proxies operate at the application protocol level, several layers higher in the OSI ref-
erence model than most packet filters (see Figure 11-2). In a sense, they “under-
stand” the application protocol in the same way that a server for that particular

A Gotcha with BIND 8 or 9 and Packet-Filtering Firewalls
BIND 4 nameservers always sent queries from port 53, the well-known port for DNS serv-
ers, to port 53. Resolvers, on the other hand, usually send queries from high-numbered
ports (above 1023) to port 53. Though nameservers clearly have to send their queries to
the DNS port on a remote host, there’s no reason they have to send the queries from the
DNS port. And, wouldn’t you know it, BIND 8 and 9 nameservers don’t send queries
from port 53 by default. Instead, they send queries from high-numbered ports, the same
as resolvers do.

This can cause problems with packet-filtering firewalls that are configured to allow
nameserver-to-nameserver traffic but not resolver-to-nameserver traffic, because they
typically expect nameserver-to-nameserver traffic to originate from port 53 and termi-
nate at port 53.

There are two solutions to this problem:

• Reconfigure the firewall to allow your nameserver to send and receive queries
from ports other than 53 (assuming this doesn’t compromise the security of the
firewall by allowing packets from Internet hosts to high-numbered ports on
internal nameservers).

• Configure BIND to revert to its old behavior with the query-source substatement.

query-source takes as arguments an address specification and an optional port number.
For example, the statement:

options { query-source address * port 53; };

tells BIND to use port 53 as the source port for queries sent from all local network
interfaces. You can use a nonwildcard address specification to limit the addresses that
BIND will send queries from. For example, on wormhole.movie.edu, the statement:

options { query-source address 192.249.249.1 port *; };

tells BIND to send all queries from the 192.249.249.1 address (i.e., not from 192.253.
253.1) and to use a dynamic, high-numbered port.

The use of query-source with a wildcard address is broken in BIND 9 before 9.1.0,
though you can tell an early BIND 9 nameserver to send all queries from a particular
address’s port 53.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 303

application does. An FTP proxy, for example, can make the decision to allow or deny
a particular FTP operation, such as a RETR (a get) or a STOR (a put).

The bad news, and what’s important for our purposes, is that most proxy-based fire-
walls handle only TCP-based application protocols. DNS, of course, is largely UDP-
based. This implies that if you run a proxy-based firewall, your internal hosts will
likely not be able to communicate directly with nameservers on the Internet.

The original Firewall Toolkit from Trusted Information Systems (now part of McAfee)
was a suite of proxies for common Internet protocols such as Telnet, FTP, and HTTP.
Secure Computing’s Sidewinder firewall products are also based on proxies, as are
Symantec’s firewalls.

Note that these two categories of firewall are really just generalizations. The state of
the art in firewalls changes very quickly. New packet filter–based firewalls can
inspect application protocol-layer data, while some proxy-based firewalls include
DNS proxies. Which family your firewall falls into is important only because it sug-
gests what that firewall is capable of; what’s more important is whether your particu-
lar firewall will let you permit DNS traffic between arbitrary internal hosts and the
Internet.

A Bad Example
The simplest configuration is to allow DNS traffic to pass freely through your firewall
(assuming you can configure your firewall to do that). That way, any internal
nameserver can query any nameserver on the Internet, and any Internet nameserver
can query any of your internal nameservers. You don’t need any special configuration.

Figure 11-2. Proxies operate at the application layer of the stack

application
(application protocol operation: STOR, RETR)

presentation

session

transport

network

data link

physical

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 11: Security

Unfortunately, this is a really bad idea, for two main reasons:

Version control
The developers of BIND are constantly finding and fixing security-related bugs
in the BIND code. Consequently, it’s important to run a recent version of BIND,
especially on nameservers directly exposed to the Internet. If one or just a few of
your nameservers communicate directly with nameservers on the Internet,
upgrading them to a new version is easy. If any of the nameservers on your net-
work can communicate directly with nameservers on the Internet, upgrading all
of them is vastly more difficult.

Possible vector for attack
Even if you’re not running a nameserver on a particular host, a hacker might be
able to take advantage of your allowing DNS traffic through your firewall to
attack that host. For example, a co-conspirator working on the inside could set
up a Telnet daemon listening on the host’s DNS port, allowing the hacker to tel-
net right in.

For the rest of this chapter, we’ll try to set a good example.

Internet Forwarders
Given the dangers of allowing bidirectional DNS traffic through the firewall unre-
stricted, most organizations limit the internal hosts that can “talk DNS” to the Inter-
net. In a proxy-based firewall, or any firewall without the ability to pass DNS traffic,
the only hosts that can communicate with Internet nameservers are the bastion hosts
(see Figure 11-3).

In a packet-filtering firewall, the firewall’s administrator can configure the firewall to
let any set of internal nameservers communicate with Internet nameservers. Often,
this is a small set of hosts that run nameservers under the direct control of the net-
work administrator (see Figure 11-4).

Figure 11-3. A small network, showing the bastion host

Internal
Network

In
te

rn
et

Router Router

Bastion
Host

DNS queries and responses

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 305

Internal nameservers that can directly query nameservers on the Internet don’t
require any special configuration. Their root hints files contain the Internet’s root
nameservers, which enables them to resolve Internet domain names. Internal
nameservers that can’t query nameservers on the Internet, however, need to know to
forward queries they can’t resolve to one of the nameservers that can. This is done
with the forwarders substatement, introduced in Chapter 10.

Figure 11-5 illustrates a common forwarding setup, with internal nameservers for-
warding queries to a nameserver running on a bastion host.

At Movie U., we put in a firewall to protect ourselves from the Big Bad Internet sev-
eral years ago. Ours is a packet-filtering firewall, and we negotiated with our firewall
administrator to allow DNS traffic between Internet nameservers and two of our
nameservers, toystory.movie.edu and wormhole.movie.edu. Here’s how we config-
ured the other internal nameservers at the university. For our BIND 8 and 9
nameservers, we used the following:

options {
 forwarders { 192.249.249.1; 192.249.249.3; };
 forward only;
};

We vary the order in which the forwarders appear to help spread the load between
them, though that’s not necessary with BIND 8.2.3 and later or 9.3.0 and later
nameservers, which choose a forwarder to query according to roundtrip time.

When an internal nameserver receives a query for a name it can’t resolve locally,
such as an Internet domain name, it forwards that query to one of our forwarders,
which can resolve the name using nameservers on the Internet. Simple!

Figure 11-4. A small network, showing select internal nameservers

Nameserver

Internal
Network

In
te

rn
et

Router Router

Bastion
Host

DNS queries and responses

DNS queries and responses

Nameserver

Nameserver

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 11: Security

The trouble with forwarding

Unfortunately, it’s a little too simple. Forwarding starts to get in the way once you
delegate subdomains or build an extensive network. To explain what we mean, take
a look at part of the configuration file on zardoz.movie.edu:

options {
 directory "/var/named";
 forwarders { 192.249.249.1; 192.253.253.3; };
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

zardoz.movie.edu is a slave for movie.edu and uses our two forwarders. What happens
when zardoz.movie.edu receives a query for a name in fx.movie.edu? As an authoritative
movie.edu nameserver, zardoz.movie.edu has the NS records that delegate fx.movie.edu

Figure 11-5. Using forwarders

Interior Router

Internet

Exterior Router

Internal
Network

Internal Client

DNS Client

Perimeter
Network

Internal Server

DNS Server

DNS Server

Bastion Host

1 2

3

5

4

Internal server responds to client.5

Bastion host’s server responds to internal
server.

4

Bastion host’s server queries and
receives response from the Internet.

3

Internal server queries forwarder on
bastion host.

2

Client queries internal server.1

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 307

to its authoritative nameservers. But it’s also been configured to forward queries it can’t
resolve locally to toystory.movie.edu and wormhole.movie.edu. Which will it do?

It turns out that zardoz.movie.edu ignores the delegation information and forwards
the query to toystory.movie.edu. That works because toystory.movie.edu receives the
recursive query and asks an fx.movie.edu nameserver on zardoz.movie.edu’s behalf.
But it’s not particularly efficient because zardoz.movie.edu could easily have sent the
query directly.

Now imagine that the scale of the network is much larger: a corporate network that
spans continents, with tens of thousands of hosts and hundreds or thousands of
nameservers. All the internal nameservers that don’t have direct Internet connectiv-
ity—the vast majority of them—use a small set of forwarders. What’s wrong with
this picture?

Single point of failure
If the forwarders fail, your nameservers lose the ability to resolve both Internet
domain names and internal domain names that they don’t have cached or stored
as authoritative data.

Concentration of load
The forwarders have an enormous query load placed on them. This is both
because of the large number of internal nameservers that use them, and because
the queries are recursive and require a good deal of work to answer.

Inefficient resolution
Imagine two internal nameservers, authoritative for west.acmebw.com and east.
acmebw.com, respectively, both on the same network segment in Boulder, Colo-
rado. Both are configured to use the company’s forwarder in Bethesda, Maryland.
For the west.acmebw.com nameserver to resolve a name in east.acmebw.com, it
sends a query to the forwarder in Bethesda. The forwarder in Bethesda then sends
a query back to Boulder to the east.acmebw.com nameserver, the original querier’s
neighbor. The east.acmebw.com nameserver replies by sending a response back to
Bethesda, which the forwarder sends back to Boulder.

In a traditional configuration with root nameservers, the west.acmebw.com
nameserver would have quickly learned that an east.acmebw.com nameserver
was next door and would favor it (because of its low roundtrip time). Using for-
warders short-circuits the normally efficient resolution process.

The upshot is that forwarding is fine for small networks and simple namespaces,
but probably inadequate for large networks and complex namespaces. We found
this out the hard way at Movie U., as our network grew, and we were forced to find
an alternative.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 11: Security

Using forward zones

We can solve the previous problem using the forward zones introduced in BIND 8.2
and 9.1.0.* We change zardoz.movie.edu’s configuration to this:

options {
 directory "/var/named";
 forwarders { 192.249.249.1; 192.253.253.3; };
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
 forwarders {};
};

Notice the forwarders substatement with the null list of forwarders. Now, if
zardoz.movie.edu receives a query for a domain name ending in movie.edu but out-
side the movie.edu zone (e.g., in fx.movie.edu), it ignores the forwarders config-
ured in the options statement and sends iterative queries.

With this configuration, zardoz.movie.edu still sends queries for domain names in
our reverse-mapping zones to our forwarders. To relieve that load, we can add a few
zone statements to named.conf:

zone "249.249.192.in-addr.arpa" {
 type stub;
 masters { 192.249.249.3; };
 file "stub.192.249.249";
 forwarders {};
};

zone "253.253.192.in-addr.arpa" {
 type stub;
 masters { 192.249.249.3; };
 file "stub.192.253.253";
 forwarders {};
};

zone "254.253.192.in-addr.arpa" {
 type stub;
 masters { 192.253.254.2; };
 file "stub.192.253.254";
 forwarders {};
};

zone "20.254.192.in-addr.arpa" {
 type stub;

* This particular variation of conditional forwarding, however, didn’t work in BIND 9 until 9.2.0 because of
a bug.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 309

 masters { 192.253.254.2; };
 file "stub.192.254.20";
 forwarders {};
};

These new zone statements bear some explaining. First of all, they configure Movie
U.’s reverse-mapping zones as stubs. That makes our nameserver track the NS
records for those zones by periodically querying the master nameservers for those
zones. The forwarders substatement then turns off forwarding for domain names in
the reverse-mapping domains. Now, instead of querying the forwarders for, say, the
PTR record for 2.254.253.192.in-addr.arpa, zardoz.movie.edu will query one of the
254.253.192.in-addr.arpa nameservers directly.

We’ll need zone statements like these on all our internal nameservers, which implies
that we’ll need all our nameservers to run some version of BIND 8 after 8.2 or 9.2.0.

This gives us a fairly robust resolution architecture that minimizes our exposure to
the Internet: it uses efficient, robust iterative name resolution to resolve internal
domain names, and forwarders only when necessary to resolve Internet domain
names. If our forwarders fail, or we lose our connection to the Internet, we only lose
our ability to resolve Internet domain names.

Internal Roots
If you want to avoid the scalability problems of forwarding, you can set up your own
root nameservers. These internal roots will serve only the nameservers in your orga-
nization. They’ll know only about the portions of the namespace relevant to your
organization.

What good are they? By using an architecture based on root nameservers, you gain
the scalability of the Internet’s namespace (which should be good enough for most
companies), plus redundancy, distributed load, and efficient resolution. You can
have as many internal roots as the Internet has roots—13 or so—whereas having that
many forwarders may be an undue security exposure and a configuration burden.
Most of all, the internal roots don’t get used frivolously. Nameservers need to con-
sult an internal root only when they time out the NS records for your top-level zones.
Using forwarders, nameservers may have to query a forwarder once per resolution.

The moral of our story is that if you have, or intend to have, a large namespace and
lots of internal nameservers, internal root nameservers will scale better than any
other solution.

Where to put internal root nameservers

Since nameservers “lock on” to the closest root nameserver by favoring the one with
the lowest roundtrip time, it pays to pepper your network with internal root
nameservers. If your organization’s network spans the United States, Europe, and the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 11: Security

Pacific Rim, consider locating at least one internal root nameserver on each conti-
nent. If you have three major sites in Europe, give each of them an internal root.

Forward-mapping delegation

Here’s how an internal root nameserver is configured. An internal root delegates
directly to any zones you administer. For example, on the movie.edu network, the
root zone’s datafile contains:

movie.edu. 86400 IN NS toystory.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
toystory.movie.edu. 86400 IN A 192.249.249.3
wormhole.movie.edu. 86400 IN A 192.249.249.1
 86400 IN A 192.253.253.1
zardoz.movie.edu. 86400 IN A 192.249.249.9
 86400 IN A 192.253.253.9

On the Internet, this information appears in the edu nameservers’ zone datafiles. On
the movie.edu network, of course, there aren’t any edu nameservers, so you delegate
directly to movie.edu from the root.

Notice that this doesn’t contain delegation to fx.movie.edu or to any other subdo-
main of movie.edu. The movie.edu nameservers know which nameservers are authori-
tative for all movie.edu subdomains, and all queries for information in those
subdomains pass through the movie.edu nameservers, so there’s no need to delegate
them here.

in-addr.arpa delegation

We also need to delegate from the internal roots to the in-addr.arpa zones that corre-
spond to the networks at the university:

249.249.192.in-addr.arpa. 86400 IN NS toystory.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS toystory.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
254.253.192.in-addr.arpa. 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
 86400 IN NS alien.fx.movie.edu.
20.254.192.in-addr.arpa. 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
 86400 IN NS alien.fx.movie.edu.

Notice that we did include delegation for the 254.253.192.in-addr.arpa and the 20.254.
192.in-addr.arpa zones, even though they correspond to the fx.movie.edu zone. We
don’t need to delegate to fx.movie.edu because we already delegated to its parent,
movie.edu. The movie.edu nameservers delegate to fx.movie.edu, so, by transitivity, the
roots delegate to fx.movie.edu. Since neither of the other in-addr.arpa zones is a parent

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 311

of 254.253.192.in-addr.arpa or 20.254.192.in-addr.arpa, we need to delegate both
zones from the root. As we explained earlier, we don’t need to add address records for
the three Special Effects nameservers, bladerunner.fx.movie.edu, outland.fx.movie.edu,
and alien.fx.movie.edu, because a remote nameserver can already find their addresses
by following delegation from movie.edu.

The db.root file

All that’s left is to add an SOA record for the root zone and NS records for this inter-
nal root nameserver and any others:

$TTL 1d
. IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial
 3h ; refresh
 1h ; retry
 1w ; expire
 1h) ; negative caching TTL

 IN NS rainman.movie.edu.
 IN NS awakenings.movie.edu.

rainman.movie.edu. IN A 192.249.249.254
awakenings.movie.edu. IN A 192.253.253.254

rainman.movie.edu and awakenings.movie.edu are the hosts running the internal root
nameservers. We shouldn’t run an internal root on a bastion host, because of the
danger of the root becoming corrupt by caching external data.

So the whole db.root file (by convention, we call the root zone’s datafile db.root)
looks like this:

$TTL 1d
. IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial
 3h ; refresh
 1h ; retry
 1w ; expire
 1h) ; negative caching TTL

 IN NS rainman.movie.edu.
 IN NS awakenings.movie.edu.

rainman.movie.edu. IN A 192.249.249.254
awakenings.movie.edu. IN A 192.253.253.254

movie.edu. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.

toystory.movie.edu. IN A 192.249.249.3
wormhole.movie.edu. IN A 192.249.249.1
 IN A 192.253.253.1

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 11: Security

zardoz.movie.edu. IN A 192.249.249.9
 IN A 192.253.253.9

249.249.192.in-addr.arpa. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.
253.253.192.in-addr.arpa. IN NS toystory.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.
254.253.192.in-addr.arpa. IN NS bladerunner.fx.movie.edu.
 IN NS outland.fx.movie.edu.
 IN NS alien.fx.movie.edu.
20.254.192.in-addr.arpa. IN NS bladerunner.fx.movie.edu.
 IN NS outland.fx.movie.edu.
 IN NS alien.fx.movie.edu.

The named.conf file on both the internal root nameservers, rainman.movie.edu and
awakenings.movie.edu, contains the lines:

zone "." {
 type master;
 file "db.root";
};

This replaces a zone statement of type hint—a root nameserver doesn’t need a root
hints file to tell it where the other roots are; it can find that in db.root. Did we really
mean that each root nameserver is a primary for the root zone? No, the root zone is
just like any zone, so you’ll probably have one primary nameserver and the rest
slaves.

If you don’t have a lot of idle hosts sitting around that you can turn into internal
roots, don’t despair! Any internal nameserver (i.e., one that’s not running on a bas-
tion host or outside your firewall) can serve double duty as an internal root and as an
authoritative nameserver for whatever other zones you need it to load. Remember, a
single nameserver can be authoritative for many, many zones, including the root
zone.

Configuring other internal nameservers

Once you’ve set up internal root nameservers, configure all your nameservers on
hosts anywhere on your internal network to use them. Any nameserver running on a
host without direct Internet connectivity (i.e., behind the firewall) should list the
internal roots in its root hints file:

; Internal root hints file, for Movie U. hosts without direct
; Internet connectivity
;
; Don't use this file on a host with Internet connectivity!
;

. 99999999 IN NS rainman.movie.edu.
 99999999 IN NS awakenings.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 313

rainman.movie.edu. 99999999 IN A 192.249.249.254
awakenings.movie.edu. 99999999 IN A 192.253.253.254

Nameservers running on hosts using this root hints file can resolve domain names in
movie.edu and in Movie U.’s in-addr.arpa domains, but not outside those domains.

How internal nameservers use internal roots

To tie together how this whole scheme works, let’s go through an example of
name resolution on an internal caching-only nameserver using these internal root
nameservers. First, the internal nameserver receives a query for a domain name in
movie.edu, say the address of gump.fx.movie.edu. If the internal nameserver
doesn’t have any “better” information cached, it starts by querying an internal
root nameserver. If it has communicated with the internal roots before, it has a
round-trip time associated with each, telling it which of the internal roots
responded to it most quickly. It then sends a nonrecursive query to that internal
root for gump.fx.movie.edu’s address. The internal root answers with a referral to
the movie.edu nameservers on toystory.movie.edu, wormhole.movie.edu, and
zardoz.movie.edu. The caching-only nameserver follows up by sending another
nonrecursive query to one of the movie.edu nameservers for gump.fx.movie.edu’s
address. The movie.edu nameserver responds with a referral to the fx.movie.edu
nameservers. The caching-only nameserver sends the same nonrecursive query for
gump.fx.movie.edu’s address to one of the fx.movie.edu nameservers and finally
receives a response.

Contrast this with the way a forwarding setup works. Let’s imagine that instead of
using internal root nameservers, our caching-only nameserver is configured to for-
ward queries first to toystory.movie.edu and then to wormhole.movie.edu. In that case,
the caching-only nameserver checks its cache for the address of gump.fx.movie.edu
and, not finding it, forwards the query to toystory.movie.edu. Then toystory.movie.edu
queries an fx.movie.edu nameserver on the caching-only nameserver’s behalf and
returns the answer. Should the caching-only nameserver need to look up another
name in fx.movie.edu, it still asks the forwarder, even though the forwarder’s response
to the query for gump.fx.movie.edu’s address probably contains the names and
addresses of the fx.movie.edu nameservers.

Mail from internal hosts to the Internet

But wait! That’s not all internal roots will do for you. We talked about getting mail
to the Internet without changing sendmail’s configuration all over the network.

Wildcard records are the key to getting mail to work—specifically, wildcard MX
records. Let’s say that we want mail to the Internet to be forwarded through
postmanrings2x.movie.edu, the Movie U. bastion host, which has direct Internet con-
nectivity. Adding the following records to db.root gets the job done:

* IN MX 5 postmanrings2x.movie.edu.
*.edu. IN MX 10 postmanrings2x.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 11: Security

We need the *.edu MX record in addition to the * record because of wildcard produc-
tion rules, which you can read more about in the section “Wildcards” in Chapter 16.
Basically, since there is explicit data for movie.edu in the zone, the first wildcard
won’t match movie.edu or any other subdomains of edu. We need another, explicit
wildcard record in edu to match subdomains of edu besides movie.edu.

Now mailers on our internal movie.edu hosts will send mail addressed to Internet
domain names to postmanrings2x.movie.edu for forwarding. For example, mail
addressed to nic.ddn.mil matches the first wildcard MX record:

% nslookup -type=mx nic.ddn.mil. Matches the MX record for *
Server: rainman.movie.edu
Address: 192.249.249.19

nic.ddn.mil
 preference = 5, mail exchanger = postmanrings2x.movie.edu
postmanrings2x.movie.edu internet address = 192.249.249.20

Mail addressed to vangogh.cs.berkeley.edu matches the second MX record:

% nslookup -type=mx vangogh.cs.berkeley.edu. Matches the MX record for *.edu
Server: rainman.movie.edu
Address: 192.249.249.19

vangogh.cs.berkeley.edu
 preference = 10, mail exchanger = postmanrings2x.movie.edu
postmanrings2x.movie.edu internet address = 192.249.249.20

Once the mail has reached postmanrings2x.movie.edu, our bastion host,
postmanrings2x.movie.edu’s mailer looks up the MX records for these addresses
itself. Since postmanrings2x.movie.edu resolves the destination’s domain name in the
Internet’s namespace instead of the internal namespace, it will find the real MX
records for the domain name and deliver the mail. No changes to sendmail’s configu-
ration are necessary.

Mail to specific Internet domain names

Another nice perk of this internal root scheme is that it enables you to forward mail
addressed to certain Internet domain names through particular bastion hosts, if you
have more than one. We can choose, for example, to send all mail addressed to
recipients in the uk domain to our bastion host in London first and then out onto the
Internet. This can be very useful if we want our mail to travel across our own net-
work as far as possible or if we’re billed for our usage of some network in the United
Kingdom.

Movie U. has a private network connection to our sister university in London near Pine-
wood Studios. For security reasons, we’d like to send mail addressed to correspondents

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 315

in the United Kingdom. across our private link and then through the Pinewood host. So
we add the following wildcard records to db.root:

; holygrail.movie.ac.uk is at the other end of our U.K. Internet link
*.uk. IN MX 10 holygrail.movie.ac.uk.
holygrail.movie.ac.uk. IN A 192.168.76.4

Now mail addressed to users in subdomains of uk will be forwarded to the host
holygrail.movie.ac.uk at our sister university, which presumably has facilities to for-
ward that mail to other points in the United Kingdom.

The trouble with internal roots

Unfortunately, just as forwarding has its problems, internal root architectures have
their limitations. Chief among these is the fact that your internal hosts can’t see the
Internet namespace. On some networks, this isn’t an issue because most internal
hosts don’t have any direct Internet connectivity. The few that do can have their
resolvers configured to use a nameserver on a bastion host. Some of these hosts will
probably need to run proxy servers to allow other internal hosts access to services on
the Internet.

On other networks, however, the Internet firewall or other software may require that
all internal hosts be able to resolve names in the Internet’s namespace. For these net-
works, an internal root architecture won’t work.

A Split Namespace
Many organizations would like to advertise different zone data to the Internet than
they advertise internally. In most cases, much of the internal zone data is irrelevant
to the Internet because of the organization’s Internet firewall. The firewall may not
allow direct access to most internal hosts and may also translate internal, unregis-
tered IP addresses into a range of IP addresses registered to the organization. There-
fore, the organization might need to trim out irrelevant information from the
external view of the zone or change internal addresses to their external equivalents.

Unfortunately, BIND doesn’t support automatic filtering and translation of zone
data. Consequently, many organizations manually create what have become known
as split namespaces. In a split namespace, the real namespace is available only inter-
nally, while a pared-down, translated version of it called the shadow namespace is
visible to the Internet.

The shadow namespace contains the name-to-address and address-to-name map-
pings of only those hosts on your perimeter network (i.e., outside your firewall) or
accessible from the Internet through the firewall. The addresses advertised may be
the translated equivalents of internal addresses. The shadow namespace may also
contain one or more MX records to direct mail from the Internet through the fire-
wall to a mail server.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 11: Security

Since Movie U. has an Internet firewall that greatly limits access from the Internet to the
internal network, we elected to create a shadow namespace. For the zone movie.edu, the
only information we need to give out is about the domain name movie.edu (an SOA
record and a few NS records); the bastion host (postmanrings2x.movie.edu); our new
external nameserver, ns.movie.edu; and our external web server, www.movie.edu. The
address of the external interface on the bastion host is 200.1.4.2, the address of the
nameserver is 200.1.4.3, and the address of the web server is 200.1.4.4. The shadow
movie.edu zone datafile looks like this:

$TTL 1d
@ IN SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative caching TTL

 IN NS ns.movie.edu.
 IN NS ns1.isp.net. ; our ISP's name server is a movie.edu slave

 IN A 200.1.4.4 ; for people who try to access http://movie.edu
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

www IN A 200.1.4.4

postmanrings2x IN A 200.1.4.2
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

;postmanrings2x.movie.edu handles mail addressed to ns.movie.edu
ns IN A 200.1.4.3
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

* IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

Note that there’s no mention of any of the subdomains of movie.edu, including any
delegation to the nameservers for those subdomains. The information simply isn’t
necessary because there’s nothing in any of the subdomains that you can get to from
the Internet, and inbound mail addressed to hosts in the subdomains is caught by the
wildcard.

The db.200.1.4 file, which we need in order to reverse-map the two Movie U. IP
addresses that hosts on the Internet might see, looks like this:

$TTL 1d
@ IN SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; Serial
 3h ; Refresh

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 317

 1h ; Retry
 1w ; Expire
 1h) ; Negative caching TTL

 IN NS ns.movie.edu.
 IN NS ns1.isp.net.

2 IN PTR postmanrings2x.movie.edu.
3 IN PTR ns.movie.edu.
4 IN PTR www.movie.edu.

One precaution we have to take is to make sure that the resolvers on our bastion
host, on our mail server, and on our web server aren’t configured to use the server on
ns.movie.edu. Since that server can’t see the real, internal movie.edu, using it renders
these hosts unable to map internal domain names to addresses or internal addresses
to names.

Configuring the bastion host

The bastion host is a special case in a split namespace configuration. It has a foot in
each environment: one network interface connects it to the Internet and another con-
nects it to the internal network. Now that we have split our namespace in two, how
can our bastion host see both the Internet namespace and our real internal
namespace? If we configure it with the Internet’s root nameservers in its root hints
file, it will follow delegation from the Internet’s edu nameservers to an external
movie.edu nameserver with shadow zone data. It would be blind to our internal
namespace, which it needs to see to log connections, deliver inbound mail, and
more. On the other hand, if we configure it with our internal roots, it won’t see the
Internet’s namespace, which it clearly needs to do in order to function as a bastion
host. What to do?

If we have internal nameservers that can resolve both internal and Internet domain
names—using forward zones per the configuration earlier in this chapter, for exam-
ple—we can simply configure the bastion host’s resolver to query those nameserv-
ers. But if we use forwarding internally, depending on the type of firewall we’re
running, we may also need to run a forwarder on the bastion host itself. If the fire-
wall won’t pass DNS traffic, we’ll need to run at least a caching-only nameserver,
configured with the Internet roots, on the bastion host so that our internal nameserv-
ers will have somewhere to forward their unresolved queries.

If our internal nameservers don’t support forward zones, the nameserver on our bastion
host must be configured as a slave or stub for movie.edu and any in-addr.arpa zones in
which it needs to resolve addresses. This way, if it receives a query for a domain name in
movie.edu, it uses its local authoritative data to resolve the name (in the case of a slave
zone) or follows internal NS records to the authoritative nameservers (for a stub zone).
(If our internal nameservers support forward zones and are configured correctly, the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 11: Security

nameserver on our bastion host will never receive queries for names in movie.edu.) If the
domain name is in a delegated subdomain of movie.edu, it follows NS records that are in
the movie.edu zone data or received from a movie.edu nameserver to query an internal
nameserver for the name. Therefore, it doesn’t need to be configured as a slave or stub
for any movie.edu subdomains, such as fx.movie.edu, just the “topmost” zone (see
Figure 11-6).

The named.conf file on our bastion host looks like this:

options {
 directory "/var/named";
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

zone "249.249.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.249.249";
};

Figure 11-6. A split DNS solution

Internal Host

DNS Client

movie.edu
Slave

Server

Bastion
Host

movie.edu
Primary
Server

Router

Firewall

External
Host

shadow
movie.edu

Primary
Server

shadow
movie.edu

Slave Server

ISP
Host

Internet

zone transfer
request

queries
(responses return
via reverse path)

KEY

Perimeter Network

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 319

zone "253.253.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.253.253";
};

zone "254.253.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.253.254";
};

zone "20.254.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.254.20";
};

zone "." {
 type hint;
 file "db.cache";
};

Protecting zone data on the bastion host

Unfortunately, loading these zones on the bastion host also exposes them to the possi-
bility of disclosure on the Internet, which we were trying to avoid by splitting the
namespace in the first place. But we can protect the zone data using the allow-query
substatement, discussed earlier in the chapter. With allow-query, we can place a global
access list on our zone data. Here’s the new options statement from our named.conf file:

options {
 directory "/var/named";
 allow-query { 127/8; 192.249.249/24; 192.253.253/24;
 192.253.254/24; 192.254.20/24; };
};

Don’t forget to include the loopback address in the list, or the bastion host’s resolver
may not get answers from its own nameserver!

The final configuration

Finally, we need to apply the other security precautions we discussed earlier to our
bastion host’s nameserver. In particular, we should:

• Restrict zone transfers

• Use the ID pool feature (on BIND 8.2 or newer nameservers but not BIND 9)

• (Optionally) Run BIND chrooted and with least privilege

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 11: Security

In the end, our named.conf file ends up looking like this:

acl "internal" {
 127/8; 192.249.249/24; 192.253.253/24;
 192.253.254/24; 192.254.20/24;
};

options {
 directory "/var/named";
 allow-query { "internal"; };
 allow-transfer { none; };
};

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

zone "249.249.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.249.249";
};

zone "253.253.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.253.253";
};

zone "254.253.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.253.254";
};

zone "20.254.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.254.20";
};

zone "." {
 type hint;
 file "db.cache";
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and Internet Firewalls | 321

Using views on the bastion host

If we’re running BIND 9 on our bastion host, we can use views to safely present
the shadow movie.edu to the outside world on the same nameserver that resolves
Internet domain names. That may obviate the need to run an external nameserver
on ns.movie.edu. If not, it’ll give us an additional nameserver to advertise the exter-
nal movie.edu.

This configuration is very similar to one shown in the “Views” section in Chapter 10:

options {
 directory "/var/named";
};

acl "internal" {
 127/8; 192.249.249/24; 192.253.253/24; 192.253.254/24; 192.254.20/24;
};

view "internal" {
 match-clients { "internal"; };
 recursion yes;

 zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
 };

 zone "249.249.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.249.249";
 };

 zone "253.253.192.in-addr.arpa" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.192.253.253";
 };

 zone "254.253.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.253.254";
 };

 zone "20.254.192.in-addr.arpa" {
 type slave;
 masters { 192.253.254.2; };
 file "bak.192.254.20";
 };

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 11: Security

 zone "." {
 type hint;
 file "db.cache";
 };
};

acl "ns1.isp.net" { 199.11.28.12; };

view "external" {
 match-clients { any; };
 recursion no;

 zone "movie.edu" {
 type master;
 file "db.movie.edu.external";
 allow-transfer { "ns1.isp.net"; };
 };

 zone "4.1.200.in-addr.arpa" {
 type master;
 file "db.200.1.4";
 allow-transfer { "ns1.isp.net"; };
 };

 zone "." {
 type hint;
 file "db.cache";
 };
};

Notice that the internal and external views present different versions of movie.edu:
one loaded from the primary nameserver for the internal movie.edu and one loaded
from the zone datafile db.movie.edu.external. If there were more than a few zones in
our external view, we probably would have used a different subdirectory for our
external zone datafiles than we used for the internal zone datafiles.

The DNS Security Extensions
TSIG, which we described earlier in this chapter, is well suited to securing the com-
munications between two nameservers or between an updater and a nameserver.
However, it won’t protect you if one of your nameservers is compromised: if some-
one breaks into the host that runs one of your nameservers, he may also gain access
to its TSIG keys. Moreover, because TSIG uses shared secrets, it isn’t practical to
configure TSIG among many nameservers. You couldn’t use TSIG to secure your
nameservers’ communications with arbitrary nameservers on the Internet because
you can’t distribute and manage that many keys.

The most common way to deal with key management problems like these is to use
public-key cryptography. The DNS Security Extensions (DNSSEC), described in

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 323

RFCs 4033, 4034, and 4035, use public-key cryptography to enable zone administra-
tors to digitally sign their zone data, thereby proving its authenticity.

We’ll describe the DNS Security Extensions in their current form as
described by RFCs 4033 through 4035. These RFCs reflect substantial
changes in DNSSEC since its original version, described in RFC 2065
(and in the previous edition of this book). However, the IETF’s
DNSEXT working group is still working on DNSSEC and may change
aspects of it before it becomes a standard.

Also know that though BIND 8 provided preliminary support of DNS-
SEC as early as BIND 8.2,* DNSSEC wasn’t really usable before BIND
9, and it isn’t implemented as described in this section (and in the lat-
est RFCs) until 9.3.0. Consequently, we’ll use BIND 9.3.2 in our
examples. If you want to use DNSSEC, you really shouldn’t use any-
thing older.

Public-Key Cryptography and Digital Signatures
Public-key cryptography solves the key distribution problem by using asymmetric
cryptographic algorithms. In an asymmetric cryptographic algorithm, one key is used
to decrypt data that another has encrypted. These two keys—a key pair—are gener-
ated at the same time using a mathematical formula. That’s the only easy way to find
two keys that have this special asymmetry (one decrypts what the other encrypts):
it’s very difficult to determine one key given the other. (In the most popular asym-
metric cryptographic algorithm, RSA, that determination involves factoring very
large numbers, a notoriously hard problem.)

In public-key cryptography, an individual first generates a key pair. Then, one key of
the key pair is made public (e.g., published in a directory), while the other is kept
private. Someone who wants to communicate securely with that individual can
encrypt a message with the individual’s public key and then send the encrypted mes-
sage to the individual. (Or he could even post the message to a newsgroup or on a
web site.) If the recipient has kept his private key private, only he can decrypt the
message.

Conversely, the individual can encrypt a message with his private key and send it to
someone. The recipient can verify that it came from that individual by attempting to
decrypt it with the individual’s public key. If the message decrypts to something rea-
sonable (i.e., not gibberish), and the sender kept his private key to himself, the indi-
vidual must have encrypted it. Successful decryption also proves that the message
wasn’t modified in transit (e.g., while passing through a mail server), because if it

* In particular, BIND 8 can’t follow a chain of trust. It can verify SIG records only in zones it has trusted-keys
statements for.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 11: Security

had been, it wouldn’t have decrypted correctly. So the recipient has authenticated
the message.

Unfortunately, encrypting large amounts of data with asymmetric encryption algo-
rithms tends to be slow—much slower than encryption using symmetric encryption
algorithms. But when using public-key encryption for authentication (and not for
privacy), we don’t have to encrypt the whole message. Instead, we run the message
through a one-way hash function first. Then we can encrypt just the hash value,
which represents the original data. We attach the encrypted hash value, now called a
digital signature, to the message we want to authenticate. The recipient can still
authenticate the message by decrypting the digital signature and running the mes-
sage through his own copy of the one-way hash function. If the hash values match,
the message is authentic. We call the process of computing the hash value and
encrypting it signing, and the process of validating the digital signature verifying. The
process of signing and verifying a message is shown in Figure 11-7.

The DNSKEY Record
In the DNS Security Extensions, each signed zone has a key pair associated with it.
The zone’s private key is stored somewhere safe, often in a file on the primary
nameserver’s filesystem. The zone’s public key is advertised as a new type of record
attached to the domain name of the zone, the DNSKEY record.

The previous version included a general-purpose KEY record: you could use the
record to store different kinds of cryptographic keys, not just zones’ public keys for
use with DNSSEC. However, the revised DNSSEC uses the DNSKEY record only to
store a zone’s public key.

A DNSKEY record looks like this:

movie.edu. IN DNSKEY 257 3 5 AQPWA4BRyjB3eqYNy/oykeGcSXjl+HQK9CciAxJfMcS1vEuwz9c
+QG7s EJnQuH5B9i5o/ja+DVitY3jpXNa12mEn

The owner is the domain name of the zone that owns this public key. The first field
after the type, 257, is the flags field. The flags field is two bytes long and encodes a
set of two one-bit values:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| |ZK | |SEP|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

The first seven bits (0 through 6) and bits 8 through 14 are reserved and must have a
value of 0.

The eighth bit encodes the type of key:

0 This is not a DNS zone key and can’t be used to verify signed zone data.

1 This is a DNS zone key. The DNSKEY record’s owner name is the domain name
of the zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 325

The last bit (15) is the Secure Entry Point (SEP) flag, which has an experimental use
documented in RFC 3757. We’ll discuss it in more detail later in the chapter.

In the DNSKEY record shown earlier, the flags field (the first field in the record after
the type) says that this DNSKEY is movie.edu’s zone key.

The next field in the record, which in the example has the value 3, is called the
protocol field. This is a holdover from the older version of DNSSEC, when you could
use KEY records for different purposes. In the current version of DNSSEC, however,

Figure 11-7. Signing and verifying a message

message

hash function

hash value

encrypt with
private key

digital signature
signed

message

Signing

Verifying

signed
message

decrypt with
public key

hash value 1digital signature

message

hash function

hash value 2

hash value 1 hash value 2

compare

?

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 11: Security

you can use DNSKEY records only with DNSSEC, so this field is always set to 3,
which historically indicated a DNSSEC key.

The next (third) field in the DNSKEY record, which here has the value 5, is the
algorithm field. DNSSEC can work with a number of public-key encryption algo-
rithms, so you need to identify which algorithm a zone uses and which algorithm this
key is used with here. The following values are defined:

0
Reserved.

1
RSA/MD5. The use of RSA/MD5 is no longer recommended, mostly due to
recently discovered shortcomings in the MD5 one-way hash algorithm.

2
Diffie-Hellman. Diffie-Hellman can’t be used to sign zones, but it can be used for
other DNSSEC-related purposes.

3
DSA/SHA-1. The use of DSA/SHA-1 (in addition to any mandatory algorithm) is
optional.

4
Reserved for an elliptic curve-based public-key algorithm.

5
RSA/SHA-1. The use of RSA/SHA-1 is mandatory.

253–254
Private. These algorithm numbers are reserved for private use per RFC 4034.

255
Reserved.

We’ll use RSA/SHA-1 keys in our examples, naturally.

The final field in the DNSKEY record is the public key itself, encoded in base 64.
DNSSEC supports keys of many lengths, as we’ll see shortly when we generate the
movie.edu public key. The longer the key, the more secure (because it’s harder to find
the corresponding private key), but the longer it takes to sign zone data with the pri-
vate key and verify it with the public key, and the longer the DNSKEY record and
signatures created.

The RRSIG Record
If the DNSKEY record stores a zone’s public key, then there must be a new record to
store the corresponding private key’s signature, right? Sure enough, that’s the RRSIG
record. The RRSIG record stores the private key’s digital signature on an RRset. An
RRset is a group of resource records with the same owner, class, and type; for example,

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 327

all of wormhole.movie.edu’s address records make up an RRset. Likewise, all of movie.
edu’s MX records are another RRset.

Why sign RRsets rather than individual records? It saves time. There’s no way to
look up just one of wormhole.movie.edu’s address records; a nameserver will always
return them as a group. So why go to the trouble of signing each one individually
when you can sign them together?

Here’s the RRSIG record that “covers” wormhole.movie.edu’s address records:

wormhole.movie.edu. 86400 RRSIG A 5 3 86400 20060219233605 (
 20060120233605 3674 movie.edu.
 ZZP9AV28r824SZJqyIT+3WKkMQgcu1YTuFzp
 LgU3EN4USgpJhLZbYBqTHL77mipET5aJr8Od
 RxZvfFHHYV6UGw==)

The owner name is wormhole.movie.edu, the same as the owner of the records
signed. The first field after the type, which holds the value A, is called the type
covered. That tells us which of wormhole.movie.edu’s records were signed—in this
case, its address records. There would be a separate RRSIG record for each type of
record wormhole.movie.edu might own.

The second field, which has the value 5, is the algorithm field. This is one of the same
values used in the DNSKEY record’s algorithm field, so 5 means RSA/SHA-1. If you
generate an RSA/SHA-1 key and use it to sign your zone, you’ll get RSA/SHA-1 signa-
tures, naturally. If you sign your zone with multiple types of keys, say an RSA/SHA-1
key and a DSA key, you’ll end up with two RRSIG records for each RRset, one with
an algorithm number of 5 (RSA/SHA-1) and one with an algorithm number of 3
(DSA).*

The third field is called the labels field. It indicates how many labels there are in the
owner name of the records signed. wormhole.movie.edu obviously has three labels, so
the labels field contains 3. When would the labels field ever differ from the number
of labels in the RRSIG’s owner? When the RRSIG record covered a wildcard record
of some type. We won’t cover the nuances of wildcards in signed zones in this book.

The fourth field is the original TTL on the records in the RRset that was signed. (All
the records in an RRset are supposed to have the same TTL.) The TTL needs to be
stored here because a nameserver caching the RRset that this RRSIG record covers
will decrement the TTLs on the cached records. Without the original TTL, it’s
impossible to reconstruct the original address records to feed them through the one-
way hash function to verify the digital signature.

The next two fields are the signature expiration and inception fields, respectively.
They’re both stored as an unsigned integer number of seconds since the Unix epoch,

* You might sign your zone with two different algorithms’ keys so that people whose software preferred DSA
could verify your data while people who supported only RSA/SHA-1 could use RSA/SHA-1.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 11: Security

January 1, 1970, but in the RRSIG record’s text representation, they’re presented in
the format YYYYMMDDHHMMSS for convenience. (The signature expiration time
for the RRSIG record we showed you earlier is just after 11:36 p.m. on February 19,
2006.) The signature inception time is usually the time you ran the program to sign
your zone. You choose the signature expiration time when you run that program,
too. After the signature’s expiration, the RRSIG record is no longer valid and can’t be
used to verify the RRset. Bummer. This means you have to re-sign your zone data
periodically to keep the signatures valid. Fun. Thankfully, re-signing takes much less
work than signing it for the first time.

The next (seventh) field in the RRSIG record, which in this record contains 3674, is
the key tag field. The key tag is a fingerprint derived from the public key that corre-
sponds to the private key that signed the zone. If the zone has more than one public
key (and yours probably will), DNSSEC verification software uses the key tag to
determine which key to use to verify this signature.

The eighth field, which contains movie.edu, is the signer’s name field. As you’d
expect, it’s the domain name of the public key that a verifier should use to check the
signature. It, together with the key tag, identifies the DNSKEY record to use. The
signer’s name field is always the domain name of the zone the signed records are in.

The final field is the signature field. This is the digital signature of the zone’s private
key on the signed records and the right side of the RRSIG record itself, minus this
field. Like the key in the DNSKEY record, this signature is encoded in base 64.

The NSEC Record
DNSSEC introduces another new record type: the NSEC record. We’ll explain what
it’s for.

What happens if you look up a domain name that doesn’t exist in a signed zone? If
the zone weren’t signed, the nameserver would simply respond with the “no such
domain name” response code. But how do you sign a response code? If you signed
the whole response message, it would be difficult to cache. You need something
unique to sign, something that proves that the domain name you looked up doesn’t
exist.

The NSEC record solves the problem of signing negative responses. It spans a gap
between two consecutive domain names in a zone, telling you which domain name
comes next after a given domain name—hence the name of the record: “Next
SECure.”

But doesn’t the notion of “consecutive domain names” imply a canonical order to
the domain names in a zone? Why, yes, it does.

To order the domain names in a zone, you begin by sorting by the rightmost label in
those domain names, then by the next label to the left, and so on. Labels are sorted

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 329

case-insensitively and lexicographically (by dictionary order), with numbers coming
before letters and nonexistent labels before numbers (in other words, movie.edu would
come before 0.movie.edu). So the domain names in movie.edu sort to the following:

movie.edu
carrie.movie.edu
cujo.movie.edu
fx.movie.edu
bladerunner.fx.movie.edu
outland.fx.movie.edu
horror.movie.edu
localhost.movie.edu
mi.movie.edu
misery.movie.edu
monsters-inc.movie.edu
shining.movie.edu
shrek.movie.edu
toys.movie.edu
toystory.movie.edu
wh.movie.edu
wh249.movie.edu
wh253.movie.edu
wormhole.movie.edu

Notice that just as movie.edu comes before carrie.movie.edu, fx.movie.edu precedes
bladerunner.fx.movie.edu.

Once the zone is in canonical order, the NSEC records make sense. Here’s one NSEC
record (the first, in fact) from movie.edu:

movie.edu. NSEC carrie.movie.edu. NS SOA MX RRSIG NSEC DNSKEY

This record says that the next domain name in the zone after movie.edu is carrie.
movie.edu, which we can see from our sorted list of domain names. It also says that
movie.edu has NS records, an SOA record, MX records, RRSIG records, an NSEC
record, and a DNSKEY record.

The last NSEC record in a zone is special. Since there’s really no next domain name
after the last one, the last NSEC record wraps around to the first record in the zone:

wormhole.movie.edu. NSEC movie.edu. A RRSIG NSEC

In other words, to indicate that wormhole.movie.edu is the last domain name in the
zone, we say that the next domain name is movie.edu, the first domain name in the
zone. Call it circular logic.

So how do NSEC records provide authenticated negative responses? Well, if you
look up www.movie.edu internally, you get back the wormhole.movie.edu NSEC
record, telling you that there’s no www.movie.edu because there are no domain
names in the zone after wormhole.movie.edu. Similarly, if you try to look up TXT
records for movie.edu, you get the first NSEC record we showed you, which tells you

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 11: Security

there are no TXT records for movie.edu, just NS, SOA, MX, RRSIG, NSEC, and
DNSKEY records.

An RRSIG record covering the NSEC record accompanies it in the response, authen-
ticating the nonexistence of the domain name or type of data you asked for.

It’s important that the NSEC records, in toto, identify specifically what doesn’t exist
in the zone. A single catch-all record that simply says “That doesn’t exist” could be
sniffed off the wire and replayed to claim falsely that existing domain names or
records don’t actually exist.

For those of you worried about the prospects of adding these new records to your
zone and keeping them up to date manually—“Uh-oh, now that I’ve added a host,
I’ve got to adjust my NSEC records”—take heart: BIND provides a tool to add NSEC
and RRSIG records for you automatically.

Some of you may also worry about the information NSEC records reveal about your
zone. A hacker could, for example, look up the NSEC record attached to the domain
name of your zone to find the record types attached to that domain name and the
lexicographically next domain name, then repeat the process to learn all the domain
names and RRsets in the zone. That, unfortunately, is an unavoidable side effect of
signing your zone. Just repeat this mantra: “My zone data is secure, but public.”

The DS Record and the Chain of Trust
There’s one more aspect of DNSSEC theory that we should discuss: the chain of
trust. (No, this isn’t some touchy-feely team-building exercise.) So far, each RRset in
our signed zone has an RRSIG record associated with it. To let others verify those
RRSIG records, our zone advertises its public key to the world in a DNSKEY record.
But imagine if someone breaks into our primary nameserver. What’s to keep her
from generating her own key pair? Then she could modify our zone data, resign our
zone with her newly generated private key, and advertise her newly generated public
key in a DNSKEY record.

To combat this problem, our public key is “certified” by a higher authority. This
higher authority attests to the fact that the movie.edu public key in our DNSKEY
record really belongs to the organization that owns and runs the zone, and not to
some random yahoo. Before certifying us, this higher authority demanded some sort
of proof that we were who we said we were and that we were the duly authorized
administrators of movie.edu.

This higher authority is our parent zone, edu. When we generated our key pair and
signed our zone, we also sent our public key to the administrators of edu, along with
proof of our identity and of our positions as the Two True Administrators of movie.edu.*

* In fact, only the Swedish top-level zone, se, currently signs its zone and can sign DNSKEY records.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 331

They indicated their approval of our credentials and of our public key by inserting a DS
record to the edu zone, then signing the record with their private key. Here are the
resulting records:

movie.edu. 86400 DS 15480 5 1 (
 F340F3A05DB4D081B6D3D749F300636DCE3D
 6C17)
 86400 RRSIG DS 5 2 86400 20060219234934 (
 20060120234934 23912 edu.
 Nw4xLOhtFoP0cE6ECIC8GgpJKtGWstzk0uH6
 nd2cz28/24j4kz1Ahznr/+g5oU3AADyv86EK
 CnWZtyOeqnfhMZ3UW0yyPcF3wy73tYLQ/KjN
 gPm1VPQA/Sl3smauJsFW7/YPaoQuxcnREPWf
 YWInWvWx12IiPKfkVU3F0EbosBA=)

DS stands for delegation signer. The DS record identifies the public key authorized to
sign the movie.edu zone’s data. The first field after the type is a key tag, as in the
RRSIG record, that helps identify the DNSKEY record authorized to do the signing.
The second field is another algorithm field, as in both the DNSKEY and RRSIG
records, also used to help identify the relevant DNSKEY record in case we used mul-
tiple cryptographic algorithms. The third field is the digest type field, which tells a
verifier which digest mechanism to use to verify the digest, the final field. The only
currently supported digest type is 1, for an SHA-1 digest. The digest is a 20-byte,
hexadecimal-encoded, one-way hash of the movie.edu DNSKEY record.*

Accompanying the DS record is an RRSIG record, showing that the administrators of
the edu zone signed the movie.edu DS record, thereby vouching for it.

When following a referral from the edu nameservers to the movie.edu servers and ver-
ifying the movie.edu DNSKEY record, a nameserver first verifies the RRSIG record
covering the DS record. Assuming the RRSIG verified, the nameserver looks up DNS-
KEY records attached to movie.edu and looks for one matching the key tag and algo-
rithm listed in the DS record. Once the correct DNSKEY record was identified, the
nameserver runs the record through the one-way hash algorithm and checks whether
the digest matches the digest from the DS record. If it does, the DNSKEY record is
authentic, and the nameserver can use it to verify the RRSIG record covering the
DNSKEY RRset or other RRsets signed by the corresponding private key.

What if someone breaks into the edu zone’s primary nameserver? The edu zone’s
DNSKEY record is certified by a DS record in the root zone, so they can’t simply
replace it or any data signed by it. And the root zone? Well, the root zone’s public key
is very widely known and configured on every nameserver that supports DNSSEC.†

* Our sources tell us (OK, one of our technical reviewers, but didn’t “sources” sound cool?) that an upcoming
version of BIND will move to SHA-256 to address weaknesses in SHA-1.

† This reminds us of the tale of the man who asks the priest what holds the Earth up. The priest tells him that
the Earth rests on the back of a turtle, which holds it up. The man then asks what the turtle rests on. “On
the back of an elephant,” replies the priest. “But what,” the man asks, “does the elephant rest on?” The frus-
trated priest snaps back, “It’s elephants all the way down!”

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 11: Security

That is, the root zone’s public key will be configured on every nameserver once DNS-
SEC is widely implemented. Right now, neither the root zone nor the edu zone is
signed, and neither has a key pair. Until DNSSEC is widely implemented, though,
it’s possible to use DNSSEC piecemeal.

Islands of security

Let’s say we want to begin using DNSSEC at Movie U. to improve the security of our
zone data. We’ve signed the movie.edu zone but can’t have edu certify our DNSKEY
record because they haven’t signed their zone yet and don’t have a key pair. How can
other nameservers on the Internet verify our zone data? How can our own nameserv-
ers verify our zone data, for that matter?

BIND 9 nameservers provide a mechanism for specifying the public key that corre-
sponds to a particular zone in the named.conf file: the trusted-keys statement. Here’s
the trusted-keys statement for movie.edu:

trusted-keys {
 movie.edu. 257 3 5 "AQPWA4BRyjB3eqYNy/oykeGcSXjl+HQK9CciAxJfMcS1vEuwz9c
+QG7s EJnQuH5B9i5o/ja+DVitY3jpXNa12mEn";
};

It’s basically the DNSKEY record without the class and type fields and with the key
itself quoted. The domain name of the zone may be quoted, but it’s not necessary. If
movie.edu had more than one public key—say a DSA key—we could include it, too:

trusted-keys {
 movie.edu. 257 3 5 "AQPWA4BRyjB3eqYNy/oykeGcSXjl+HQK9CciAxJfMcS1vEuwz9c
+QG7s EJnQuH5B9i5o/ja+DVitY3jpXNa12mEn";
 movie.edu. 257 3 3 "AMnD8GXACuJ5GVnfCJWmRydg2A6JptSm6tjH7QoL81SfBY/kcz1Nbe
 Hh z4l9AT1GG2kAZjGLjH07BZHY+joz6iYMPRCDaPOIt9LO+SRfBNZg62P4 aSPT5zVQPahDIMZmTIvv
 O7FV6IaTV+cQiKQl6noro8uTk4asCADrAHw0 iVjzjaYpoFF5AsB0cJU18fzDiCNBUb0VqE1mKFuRA/K
 1KyxM2vJ3U7IS to0IgACiCfHkYK5r3qFbMvF1GrjyVwfwCC4NcMsqEXIT8IEI/YYIgFt4 Ennh";
};

This trusted-keys statement enables a BIND 9 nameserver to verify any records in
the movie.edu zone. The nameserver can also verify any records in child zones such
as fx.movie.edu, assuming their DNSKEY records are certified by a DS record and
accompanying RRSIG record in movie.edu. In other words, movie.edu becomes a
trust anchor, below which our nameserver can verify any signed zone data.

Delegating to unsigned zones

A DS record indicates that a particular delegated subdomain is signed and autho-
rizes a particular DNSKEY record to verify signed data. But what if a subdomain isn’t
signed?

Unsigned subdomains won’t have DS records in the parent zone. They also won’t have
RRSIG records covering their DS records, of course. The NS records that implement

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 333

the delegation will have one or more associated NSEC records, though, and the NSEC
records will be covered with RRSIG records.

If there are any glue address records, they won’t have NSEC records or RRSIG
records because these records really belong to the subdomain.

What happens to name resolution when a nameserver follows delegation from a
signed zone to an unsigned zone depends on the security policy of the querying
nameserver. The nameserver might accept responses from the unsigned zone or insist
that those responses be signed.

DO, AD, and CD
You’ve now seen examples of the four new DNSSEC record types, so you know how
long they can be. But the classical limit on the length of a UDP-based DNS message
is just 512 bytes. Including all those RRSIGs would cause a lot of truncated
responses.

To cope with this, DNSSEC requires support for EDNS0, which we introduced in
Chapter 10. EDNS0 allows the use of UDP-based DNS messages as long as 4,096
bytes. DNSSEC also uses a new EDNS0 flag, called the DO flag, for DNSSEC OK, as
an indication that a querier supports DNSSEC and wants DNSSEC-related records in
the response. Through this use of the DO flag, nameservers don’t needlessly include
a bunch of useless records in responses to queriers that don’t support DNSSEC.

DNSSEC uses two other flags in queries: AD and CD. Both are part of the standard
DNS query header; they were allocated from previously unused space.*

AD stands for Authenticated Data. It’s set by DNSSEC-capable nameservers in
responses only if they’ve verified all the DNSSEC-related records included in the
message. A nameserver returning any records that failed to verify, or simply weren’t
from a signed zone, would clear the AD bit.

The AD bit is designed to allow resolvers that query a nameserver that supports
DNSSEC but can’t themselves verify DNSSEC records to determine whether a
response has been validated. However, these resolvers should only trust the setting of
the AD bit if their communications channel to the nameserver is secure—using
IPSEC or TSIG, for example.

The CD bit, on the other hand, is meant for use by resolvers that can verify DNSSEC
records. CD, which is an abbreviation for Checking Disabled, tells the nameserver not
to bother verifying DNSSEC records on the resolver’s behalf because it can handle the
job itself.

* Previously unused but precious: there were only three unused bits in the header; AD and CD use two of
them.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 11: Security

How the Records Are Used
Let’s go through what a DNSSEC-capable nameserver does to verify a record in
movie.edu. In particular, let’s see what happens when it looks up the address of
wormhole.movie.edu. We’ll use dig, since we can’t set the DO bit with nslookup.

First, of course, the nameserver sends a query for the address:

% dig +dnssec +norec wormhole.movie.edu.

; <<>> DiG 9.3.2 <<>> +dnssec +norec wormhole.movie.edu.
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32579
;; flags: qr aa ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 3

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;wormhole.movie.edu. IN A

;; ANSWER SECTION:
wormhole.movie.edu. 86400 IN A 192.253.253.1
wormhole.movie.edu. 86400 IN A 192.249.249.1
wormhole.movie.edu. 86400 IN RRSIG A 5 3 86400 20060219233605
20060120233605 3674 movie.edu.
ZZP9AV28r824SZJqyIT+3WKkMQgcu1YTuFzpLgU3EN4USgpJhLZbYBqT
HL77mipET5aJr8OdRxZvfFHHYV6UGw==

;; AUTHORITY SECTION:
movie.edu. 86400 IN NS outland.fx.movie.edu.
movie.edu. 86400 IN NS wormhole.movie.edu.
movie.edu. 86400 IN NS toystory.movie.edu.
movie.edu. 86400 IN RRSIG NS 5 2 86400 20060219233605
20060120233605 3674 movie.edu. bwiM/R56VVV0pHrzIERVADLat7BoTR+eeFuCfgYc/
GMXecdTxnUahLig RKsbNSsY+Uz8RVkcewFSiExExFoqwA==

;; ADDITIONAL SECTION:
toystory.movie.edu. 86400 IN A 192.249.249.3
toystory.movie.edu. 86400 IN RRSIG A 5 3 86400 20060219233605
20060120233605 3674 movie.edu. hlz+W41UlcfIaCMdzoKVAuTPjnyqZhxY3TKOOm/
2i7FPAkfnVyWMyTwG iBns7Z1ws6QVj7+ZedDFx7xs+V0Iyw==

;; Query time: 13 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jan 20 16:52:54 2006
;; MSG SIZE rcvd: 474

Notice that we had to specify +dnssec on the command line. That sets the DO flag we
just described, telling the nameserver to include DNSSEC records in the response. You
can see that the DO flag is set in dig’s output: look for the line that begins with ; EDNS:.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 335

The flags show that DO was set, and that the maximum UDP message size was negoti-
ated to a full 4,096 bytes.

Also notice that the response includes three RRSIG records: one covering the records
in the answer section, one covering the records in the authority section, and one cov-
ering toystory.movie.edu’s address record in the additional section.

To verify the RRSIG records, the nameserver must look up movie.edu’s DNSKEY
record. But before using the key, it must verify the key—unless, of course, the
nameserver has previously verified it or knows the movie.edu public key from a
trusted-keys statement. Verifying the key may require additional queries: one to an
edu nameserver for the movie.edu DS record and the RRSIG records covering it, and
possibly a query to a root nameserver for the edu DS record and its associated RRSIG
records.

DNSSEC and Performance
It should be evident from this dig output that DNSSEC increases the average size of a
DNS message; that it requires substantially more computational horsepower from
nameservers verifying zone data; that verification can entail several successive que-
ries, each of which may result in additional data that requires verifying; and that
signing a zone increases its size substantially—current estimates are that signing mul-
tiplies the size of a zone by a factor of three to four. Each effect has its consequences:

• Verifying zone data involves decryption and consumes computational resources.

• The longer the chain of trust, the longer verification takes.

• The longer the chain of trust, the greater the chance of misconfiguration.

• Larger, signed zones mean larger named processes, which consume more mem-
ory and take longer to start.

In fact, DNSSEC’s complexity meant that BIND 8’s architecture couldn’t support
DNSSEC completely. DNSSEC also provided part of the impetus for developing
BIND 9 and for ensuring it supported multiprocessor hosts. If you’re planning on
signing your zones, make sure your authoritative nameservers have enough memory
to load the new, larger zones. If your nameservers are resolving more records in
signed zones, make sure they have enough processor power to verify all those digital
signatures.

Zone-Signing Keys and Key-Signing Keys
In practice, administrators are expected to use two types of keys per zone: zone-
signing keys (ZSKs) and key-signing keys (KSKs). An administrator signs his zone data
with the zone-signing key (duh) and publishes the corresponding public key in a
DNSKEY record. The key-signing key also appears in the DNSKEY records, and the
administrator uses the private key-signing key to sign just the DNSKEY records.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 11: Security

The SEP flag in the DNSKEY record serves as a hint to software to determine which of
a zone’s DNSKEY records corresponds to the key-signing key (the one with the SEP
flag set). When we generate our key pair, we’ll specify which one is the key-signing
key.

Why bother with two keys for a zone? Cryptography wonks know that the more data
encrypted using a cryptographic key, the greater the danger that someone will crack
it. In the case of public-key cryptography, that means determining the correspond-
ing private key. Zone-signing keys are used all the time: every time you modify your
zone, you re-sign it. With a large zone, there’s lots of available encrypted data sub-
ject to cryptanalysis. Consequently, you must generate new zone-signing keys fre-
quently. If that entails resubmitting your DNSKEY record to your parent zone’s
administrators, having them replace your zone’s DS record and re-signing it, that’ll
take a lot of time and effort. Using separate zone-signing and key-signing keys allows
you to re-sign your zone data without involving your parent zone’s administrators.
You’ll only need to contact them if you rotate your key-signing key, which doesn’t
need to be done as often because it isn’t used to encrypt much data (just enough to
produce an RRSIG for the DNSSEC RRset).

Signing a Zone
Okay, now you have the theoretical background you need to actually sign your zone.
We’ll show you how we signed movie.edu. Remember, we used the BIND 9.3.2 tools,
which support the newest version of DNSSEC.

Generating your key pairs

First, we generated a KSK key pair for movie.edu:*

cd /var/named
dnssec-keygen –f KSK –a RSASHA1 –b 512 –n ZONE movie.edu.
Kmovie.edu.+005+15480

Next, we generated a ZSK key pair (we don’t need to specify a –f option because this
is the default):

dnssec-keygen -a RSASHA1 -b 512 -n ZONE movie.edu.
Kmovie.edu.+005+03674

We ran dnssec-keygen in our nameserver’s working directory. That’s mostly for con-
venience: the zone datafiles are in this directory, so we won’t need to use full path-
names as arguments. If we want to use dynamic update with DNSSEC, however, the
keys must be in the nameserver’s working directory.

* We’re using relatively short key lengths in these examples to keep the DNSKEY and RRSIG records short.
You should use longer keys, at least 1,024 bits.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 337

The –f KSK option sets the SEP flag in the DNSKEY record. To leave the flag clear,
omit the option.

Recall dnssec-keygen’s other options from the TSIG section of this chapter (oh, so
long ago):

–a The cryptographic algorithm to use, in this case RSA/SHA-1. We could also have
used DSA, but RSA/SHA-1 is mandatory.

–b The length of the keys to generate, in bits. RSA/SHA-1 keys can be anywhere
from 512 to 4,096 bits long. DSA keys can be 512 to 1,024 bits long, as long as
the length is divisible by 64.

–n The type of key. DNSSEC keys are always zone keys.

The only nonoption argument is the domain name of the zone, movie.edu. The
dnssec-keygen program prints the basename of the files it’s written the keys to. The
numbers at the end of the basename (005 and 15494), as we explained in the “TSIG”
section, are the key’s DNSSEC algorithm number as used in the DNSKEY record
(005 is RSA/SHA-1), and the key’s fingerprint, used to distinguish one key from
another when multiple keys are associated with the same zone.

The public key is written to the file basename.key (e.g., Kmovie.edu.+005+15480.key).
The private key is written to the file basename.private (e.g., Kmovie.edu.+005+15480.
private). Remember to protect the private key; anyone who knows the private key can
forge signed zone data. dnssec-keygen does what it can to help you: it makes the .private
file readable and writable only by the user who ran the program.

Signing your zone

Before signing our zone, we had to add the DNSKEY records to our plain-Jane zone
datafile:

echo '$INCLUDE Kmovie.edu.+005+15480.key' >> db.movie.edu
echo '$INCLUDE Kmovie.edu.+005+03674.key' >> db.movie.edu

Then, we signed the zone with dnssec-signzone:

dnssec-signzone -o movie.edu. db.movie.edu
db.movie.edu.signed

We used the –o option to specify the origin in the zone datafile, because dnssec-
signzone doesn’t read named.conf to determine which zone the file describes. The
only nonoption argument is the name of the zone datafile. If the name of our zone
datafile had been the same as the domain name of the zone, we could have omitted
the –o option.

dnssec-signzone is smart enough to look at the SEP field in the DNSKEY records to
determine which key to sign which records with. It’ll sign the whole zone with the
ZSK and just the DNSKEY records with both the ZSK and the KSK.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 11: Security

This produces a new zone datafile, db.movie.edu.signed, which begins like this:

; File written on Fri Jan 20 16:36:05 2006
; dnssec_signzone version 9.3.2
movie.edu. 86400 IN SOA toystory.movie.edu. al.movie.edu. (
 2006011700 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 3600 ; minimum (1 hour)
)
 86400 RRSIG SOA 5 2 86400 20060219233605 (
 20060120233605 3674 movie.edu.
 joujDnvBovW1h+GJ2ZEhvmXQTGqVL4cZBCHM
 ByFitPRLINe/dKj8VCZg87ZUHQ/eAZSSGDuw
 XVIlT46ByG5AOg==)
 86400 NS outland.fx.movie.edu.
 86400 NS wormhole.movie.edu.
 86400 NS toystory.movie.edu.
 86400 RRSIG NS 5 2 86400 20060219233605 (
 20060120233605 3674 movie.edu.
 bwiM/R56VVV0pHrzIERVADLat7BoTR+eeFuC
 fgYc/GMXecdTxnUahLigRKsbNSsY+Uz8RVkc
 ewFSiExExFoqwA==)
 86400 MX 10 postmanrings2x.movie.edu.
 86400 RRSIG MX 5 2 86400 20060219233605 (
 20060120233605 3674 movie.edu.
 rm7R0Ib451iK49+bRhch4pIP11F4xZMWtqll
 8rQ9tKIOg+jTunNXxix5XnyVKoMQwoa8C5Tu
 ZFeDcbHN0UB5ow==)
 3600 NSEC misery.movie.edu. NS SOA MX RRSIG NSEC DNSKEY
 3600 RRSIG NSEC 5 2 3600 20060219233605 (
 20060120233605 3674 movie.edu.
 V4ipZI5SHGdFNOVEFn43gsRdYffUH6COrPxn
 RNfUMv6gfgwkythXXr5rx0NTOSfa+Dp4CZrC
 qwn+CLryUN8vZg==)
 86400 DNSKEY 256 3 5 (
 AQO/T4DRCAbi1diCB+UT4fDOeCvsa+1NKkO8
 UJMF5TlfRvokChybhHaDG5U98xw4XgA01/4R
 gSlAcSDvhQeKu9n9
) ; key id = 3674
 86400 DNSKEY 257 3 5 (
 AQPWA4BRyjB3eqYNy/oykeGcSXjl+HQK9Cci
 AxJfMcS1vEuwz9c+QG7sEJnQuH5B9i5o/ja+
 DVitY3jpXNa12mEn
) ; key id = 15480
 86400 RRSIG DNSKEY 5 2 86400 20060219233605 (
 20060120233605 3674 movie.edu.
 b35F2azzAY6QDghak0RqJzPacmAhcsw3lDoA
 zKCFPQRnqVpwl4l7tAgKw2T1Cy9GPmdHMTBx
 fo0DB2smQQJjog==)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 339

 86400 RRSIG DNSKEY 5 2 86400 20060219233605 (
 20060120233605 15480 movie.edu.
 J267HbxKdzGq6iIKywZT6xOFQY7Ev1JWYWEc
 PKRyZLY2WQ9S3ro0rIUGJRIhHS5oBtzN1g0K
 3DL2edi1Hgy+0A==)

Believe it or not, those are just the records attached to the domain name movie.edu.
The zone datafile as a whole more than quintupled in length and quadrupled in size.
Oy!

Finally, we turned on DNSSEC support on our nameserver* and changed the zone
statement in named.conf so that named would load the new zone datafile:

options {
 directory "/var/named";
 dnssec-enable yes;
};

zone "movie.edu" {
 type master;
 file "db.movie.edu.signed";
};

Then we reloaded the zone and checked syslog.

dnssec-signzone does take some options that we didn’t use:

–s, –e
These options specify the signature inception and expiration times to use in
RRSIG records. The signature inception and expiration fields default to “now”
and “30 days from now,” respectively. Both options accept either an absolute
time as an argument, in the form YYYYMMDDHHMMSS, or an offset. For –s,
the offset is calculated from the current time. For –e, the offset is calculated from
the start time.

–i
Specifies as an option argument the cycle period for resigning records (which
we’ll cover in a minute). This was the –c option before BIND 9.1.0.

–f
Specifies as an option argument the name of the file to write the signed zone to.
The default is the name of the zone datafile with .signed concatenated.

–k
Specifies the key to be used as the key-signing key. The default is to use any pri-
vate keys corresponding to DNSKEY records with the SEP flag set.

You can also specify, as a second nonoption argument, which private key to use to sign
the zone. By default, dnssec-signzone signs the zone with each of the zone’s private keys

* This assumes our nameserver was compiled with the –with-openssl=yes option. If not, we’d need to rerun
configure with that option (see Appendix C) and recompile.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 11: Security

in the directory. If you specify the name of one or more files that contain the zone’s pri-
vate keys as arguments, it will sign using only those keys.

Remember, you’ll need to re-sign the zone each time you change the zone data,
though you certainly don’t need to generate a new key pair each time. You can re-
sign the zone by running dnssec-signzone on the signed zone data:

dnssec-signzone -o movie.edu -f db.movie.edu.signed.new db.movie.edu.signed
mv db.movie.edu.signed db.movie.edu.signed.bak
mv db.movie.edu.signed.new db.movie.edu.signed
rndc reload movie.edu

The program is smart enough to recalculate NSEC records, sign new records, and re-
sign records whose signature expiration times are approaching. By default, dnssec-
signzone resigns records whose signatures expire within 7.5 days (a quarter of the dif-
ference between the default signature inception and expiration times). If you specify
different inception and expiration times, dnssec-signzone adjusts the re-signing cycle
time accordingly. Or you can simply specify a cycle time with the –i (formerly the –c)
option.

Sending your keys to be signed

Next, we sent our KSK to the administrator of our parent zone to sign. Conven-
tiently, dnssec-signzone created a keyset file for us when we ran it. This is a small file,
called keyset-movie.edu, which contains all of the DNSKEY records in our zone. The
contents look like this:

$ORIGIN .
movie.edu 3600 IN DNSKEY 257 3 5 (
 AQPWA4BRyjB3eqYNy/oykeGcSXjl+HQK9Cci
 AxJfMcS1vEuwz9c+QG7sEJnQuH5B9i5o/ja+
 DVitY3jpXNa12mEn
) ; key id = 15480

dnssec-signzone even creates a DS record for the edu administrators to insert into the
edu zone and writes it to the file dsset-movie.edu.* The dsset file contains:

movie.edu. IN DS 15480 5 1 F340F3A05DB4D081B6D3D749F300636DCE3D6C17

Then, we sent our keyset file off to our parent zone’s administrators to sign. Since the
message included proof of our identity,† they added it to the edu zone and re-signed
the zone. The resulting records in the edu zone datafile look like this:

movie.edu. 86400 IN NS outland.fx.movie.edu.
 86400 IN NS wormhole.movie.edu.

* At this point, it’s unclear whether the administrator of a signed zone should submit a keyset file or a dsset file
to his parent zone’s administrator. Either will do: the parent zone’s administrator can generate a DS record
from a DNSKEY record. For now, we’ll guess that we’d submit a keyset file.

† Since top-level zones haven’t started signing zones yet, there’s still some question as to how they’ll require
us to authenticate ourselves. The use of cryptographically signed email messages is a possibility.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 341

 86400 IN NS toystory.movie.edu.
 86400 DS 15480 5 1 (
 F340F3A05DB4D081B6D3D749F300636DCE3D
 6C17)
 86400 RRSIG DS 5 2 86400 20060219234934 (
 20060120234934 23912 edu.
 Nw4xLOhtFoP0cE6ECIC8GgpJKtGWstzk0uH6
 nd2cz28/24j4kz1Ahznr/+g5oU3AADyv86EK
 CnWZtyOeqnfhMZ3UW0yyPcF3wy73tYLQ/KjN
 gPm1VPQA/Sl3smauJsFW7/YPaoQuxcnREPWf
 YWInWvWx12IiPKfkVU3F0EbosBA=)
 86400 NSEC edu. NS DS RRSIG NSEC
 86400 RRSIG NSEC 5 2 86400 20060219234934 (
 20060120234934 23912 edu.
 LpOmh/SZMonQUBUil5MYfIrxld5g6pVeyTxl
 deDvJ7OIMdI+X0vXmRI3RgmKaRJKYBr4BcNO
 jrNU8fQo5Ox5WvEeKn1St1NvdB62/Nqjfz6F
 I+LNXe6diq1uDZZUB3hx5PF+Flp28D75KHnZ
 5YE9+vVJryOHHsGawklSrUAJAUg=)

Note the RRSIG record covering the DS record. This indicates the edu zone’s certifi-
cation of our DS record, and thus our KSK’s DNSKEY record.

If we didn’t care about getting our DNSKEY record signed, we could have skipped
this step. However, then only nameservers with a trusted-keys entry for movie.edu
could verify our data.

Signing a parent zone

Signing a zone that’s a parent to one or more subzones is straightforward. If the sub-
zones aren’t signed, there’s really nothing different to do: run dnssec-signzone to sign
the parent zone, just as you normally would. The records that make up delegation to
unsigned subzones won’t be changed. For example, here’s what the delegation to the
unsigned fx.movie.edu looked like after we signed movie.edu:

fx.movie.edu. 86400 IN NS alien.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
 86400 IN NS bladerunner.fx.movie.edu.
 3600 NSEC misery.movie.edu. NS RRSIG NSEC
 3600 RRSIG NSEC 5 3 3600 20060220215231 (
 20060121215231 3674 movie.edu.
 maFMyIVEdjg5BUTKMUyCZvBu6ZrtrQwJyJRo
 9A9PDO3bTpWcpCAp4Q0cQ5FwQcveIq15LMit
 CWyOwN745dJ86Q==)
alien.fx.movie.edu. 86400 IN A 192.254.20.3
bladerunner.fx.movie.edu. 86400 IN A 192.253.254.2
outland.fx.movie.edu. 86400 IN A 192.253.254.3

Note the NSEC record attached to fx.movie.edu: the domain name “counts” as far as
NSEC records are concerned, but neither the NS records nor the glue A records are
signed. Only the NSEC record itself is signed.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 11: Security

If the fx.movie.edu administrators sign their zone, they need to submit only their keyset
or dsset file to us (in some sufficiently secure fashion), just as we submitted ours to the
edu administrators. If the keyset file is present in the working directory when we sign
movie.edu, we can use the –g option to tell dnssec-signzone to create an fx.movie.edu DS
record automatically. Otherwise, we can add the DS record from the dsset file manu-
ally and re-sign movie.edu. Here’s how the signed delegation ends up looking:

fx.movie.edu. 86400 IN NS alien.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
 86400 IN NS bladerunner.fx.movie.edu.
 86400 DS 2847 5 1 (
 F495606120C4927FB4BEB04D0C354BBE5ED8
 CA31)
 86400 RRSIG DS 5 3 86400 20060220230640 (
 20060121230640 3674 movie.edu.
 OuZCLrqLZlaEgePAxzhUCneV6FyOq6hQwRWF
 4bsHPrvIrLMIuftxfB8M3mmgkKlpOlJIJFvH
 Qc4RUfYOGkMkdg==)
 3600 NSEC misery.movie.edu. NS DS RRSIG NSEC
 3600 RRSIG NSEC 5 3 3600 20060220230640 (
 20060121230640 3674 movie.edu.
 TUTCnZFvr0YqCD7H0OMTxRs3kAb5OkR74YP3
 ZxaBN9S0XxokkeUwHIlWq4JxFJrlZJjMaamp
 uKf+WSgdF+v3iA==)

Notice that the NS records still aren’t signed (because technically they belong to the
child zone), but the DS record is.

DNSSEC and Dynamic Update
dnssec-signzone isn’t the only way to sign zone data. The BIND 9 nameserver is capa-
ble of signing dynamically updated records on the fly.* Color us impressed!

As long as the private key for a secure zone is available in the nameserver’s working
directory (in the correctly named .private file), a BIND 9 nameserver signs any
records that are added via dynamic update. If any records are added to or deleted
from the zone, the nameserver adjusts (and re-signs) the neighboring NSEC records,
too.

Let’s show you this in action. First, we’ll look up a domain name that doesn’t yet
exist in movie.edu:

% dig +dnssec perfectstorm.movie.edu.

; <<>> DiG 9.3.2 <<>> +dnssec perfectstorm.movie.edu.
; (1 server found)
;; global options: printcmd
;; Got answer:

* Yet another DNSSEC capability BIND 8 doesn’t have.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 343

;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 47491
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;perfectstorm.movie.edu. IN A

;; AUTHORITY SECTION:
movie.edu. 3600 IN SOA toystory.movie.edu. al.movie.edu.
2006011700 10800 3600 604800 3600
movie.edu. 3600 IN RRSIG SOA 5 2 86400 20060219233605
20060120233605 3674 movie.edu. joujDnvBovW1h+GJ2ZEhvmXQTGqVL4cZBCHMByFitPRLINe/
dKj8VCZg 87ZUHQ/eAZSSGDuwXVIlT46ByG5AOg==
movie.edu. 3600 IN NSEC misery.movie.edu. NS SOA MX RRSIG
NSEC DNSKEY
movie.edu. 3600 IN RRSIG NSEC 5 2 3600 20060219233605
20060120233605 3674 movie.edu.
V4ipZI5SHGdFNOVEFn43gsRdYffUH6COrPxnRNfUMv6gfgwkythXXr5r
x0NTOSfa+Dp4CZrCqwn+CLryUN8vZg==
misery.movie.edu. 3600 IN NSEC monsters-inc.movie.edu. A RRSIG NSEC
misery.movie.edu. 3600 IN RRSIG NSEC 5 3 3600 20060219233605
20060120233605 3674 movie.edu. AFTF8DBjDtIzM/QkEajY4lUkbuEyDM5yt/
Kpe++Jrp1K1kArUSdGPuxj xDZUXujbRzPY6JoAOgBO4bU8UDx2tA==

;; Query time: 16 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jan 20 17:02:51 2006
;; MSG SIZE rcvd: 502

Notice misery.movie.edu’s NSEC record, indicating that the domain name doesn’t
exist. Now we’ll use nsupdate to add an address record for perfectstorm.movie.edu:

% nsupdate
> update add perfectstorm.movie.edu. 3600 IN A 192.249.249.91
> send

Now let’s look up perfectstorm.movie.edu again:

% dig +dnssec perfectstorm.movie.edu.

; <<>> DiG 9.3.2 <<>> +dnssec perfectstorm.movie.edu.
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52846
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 6

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;perfectstorm.movie.edu. IN A

;; ANSWER SECTION:
perfectstorm.movie.edu. 3600 IN A 192.249.249.91

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 11: Security

perfectstorm.movie.edu. 3600 IN RRSIG A 5 3 3600 20060220010558
20060121000558 3674 movie.edu.
Fdp9EwdP6ze2siolli7wtYRgZdts+A+HTt5g8uqsgBavMml3TKFe+ba3
ppXvFosGHD7j3i6r1rfYUBF+aupEnQ==
perfectstorm.movie.edu. 3600 IN RRSIG A 5 3 3600 20060220010558
20060121000558 15480 movie.edu. o46m/V762W90HqZ1R5mCTFSBYagjCqgpuIwflg/
06QvX9Ce67WSoHD3/ YjSh5oag5eSmAAn2iozZYVCLSoIzjA==

;; AUTHORITY SECTION:
movie.edu. 86400 IN NS outland.fx.movie.edu.
movie.edu. 86400 IN NS wormhole.movie.edu.
movie.edu. 86400 IN NS toystory.movie.edu.
movie.edu. 86400 IN RRSIG NS 5 2 86400 20060219233605
20060120233605 3674 movie.edu. bwiM/R56VVV0pHrzIERVADLat7BoTR+eeFuCfgYc/
GMXecdTxnUahLig RKsbNSsY+Uz8RVkcewFSiExExFoqwA==

;; ADDITIONAL SECTION:
wormhole.movie.edu. 86400 IN A 192.253.253.1
wormhole.movie.edu. 86400 IN A 192.249.249.1
toystory.movie.edu. 86400 IN A 192.249.249.3
wormhole.movie.edu. 86400 IN RRSIG A 5 3 86400 20060219233605
20060120233605 3674 movie.edu.
ZZP9AV28r824SZJqyIT+3WKkMQgcu1YTuFzpLgU3EN4USgpJhLZbYBqT
HL77mipET5aJr8OdRxZvfFHHYV6UGw==
toystory.movie.edu. 86400 IN RRSIG A 5 3 86400 20060219233605
20060120233605 3674 movie.edu. hlz+W41UlcfIaCMdzoKVAuTPjnyqZhxY3TKOOm/
2i7FPAkfnVyWMyTwG iBns7Z1ws6QVj7+ZedDFx7xs+V0Iyw==

;; Query time: 18 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jan 20 17:06:22 2006
;; MSG SIZE rcvd: 713

Not only was an address record added, but there is also an RRSIG record generated
from movie.edu’s ZSK.* The signature expiration is set to 30 days from the update by
default, but you can change it with the sig-validity-interval substatement, which
takes a number of days as an argument:†

options {
 sig-validity-interval 7; // We want RRSIGs on updated records to last a week
};

The signature inception is always set to one hour before the update to allow for veri-
fiers with clocks that may be slightly skewed from ours.

* As well as one from the KSK. That’s a bug.

† Before BIND 9.1.0, sig-validity-interval interpreted its argument as seconds, not days.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 345

If we look up perfectstorm2.movie.edu (though how there’d be a sequel to that movie
I don’t know), we find the following:

% dig +dnssec perfectstorm2.movie.edu.

; <<>> DiG 9.3.2 <<>> +dnssec perfectstorm2.movie.edu.
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 8402
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 8, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;perfectstorm2.movie.edu. IN A

;; AUTHORITY SECTION:
movie.edu. 3600 IN SOA toystory.movie.edu. al.movie.edu.
2006011701 10800 3600 604800 3600
movie.edu. 3600 IN RRSIG SOA 5 2 86400 20060220010558
20060121000558 3674 movie.edu.
vwiC+zBzw8VFmrmFnARkNPLLmYEbSJRCiCsqjnvwVc5CMSzXu6kBkatN bWE9Iqd//
brLiOA3E9G02BM3j+5Wkg==
movie.edu. 3600 IN RRSIG SOA 5 2 86400 20060220010558
20060121000558 15480 movie.edu.
HVlniwE8N8Fy+IdRSmTLw3XTVyLae0eOr26C5MAkzNoMr3OzRrDfbZUm
4+N1a6gC9P+EMzUYM1yflVQFs3Cehg==
movie.edu. 3600 IN NSEC misery.movie.edu. NS SOA MX RRSIG
NSEC DNSKEY
movie.edu. 3600 IN RRSIG NSEC 5 2 3600 20060219233605
20060120233605 3674 movie.edu.
V4ipZI5SHGdFNOVEFn43gsRdYffUH6COrPxnRNfUMv6gfgwkythXXr5r
x0NTOSfa+Dp4CZrCqwn+CLryUN8vZg==
perfectstorm.movie.edu. 3600 IN NSEC shining.movie.edu. A RRSIG NSEC
perfectstorm.movie.edu. 3600 IN RRSIG NSEC 5 3 3600 20060220010558
20060121000558 3674 movie.edu. EC/HwFtyrDtcf27QYvnSrJTypnAg3LsimFH+lTO/VbB/
dD7Wzj0am1Yy +/SF3u6nrJ1nV2hZBgSqmYB9plpM3Q==
perfectstorm.movie.edu. 3600 IN RRSIG NSEC 5 3 3600 20060220010558
20060121000558 15480 movie.edu.
H2XwAMRYkxsv721q0fOQk7g7j1SPPurKNGBDqlEDpeLnRkde8NHtlFOx
VbqWDsWzq15sxoV4NRZyK14cQcbG7Q==

;; Query time: 14 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jan 20 17:15:58 2006
;; MSG SIZE rcvd: 726

Notice the second NSEC record: it was added automatically when we added perfect-
storm.movie.edu’s address record because perfectstorm.movie.edu was a new domain
name in the zone. Sweet!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 11: Security

As impressive as this is, you should be careful when allowing dynamic updates to
signed zones. You should make sure that you use strong authentication (e.g., TSIG)
to authenticate the updates, or you’ll give a hacker an easy backdoor to use to mod-
ify your “secure” zone. And you should ensure you have enough horsepower for the
task: normally, dynamic updates don’t take much to process. But dynamic updates
to a secure zone require the recalculation of NSEC records and, more significantly,
asymmetric encryption (to calculate new RRSIG records), so you should expect your
nameserver to take longer and need more resources to process them.

Changing Keys
Though we said you don’t need to generate a new key each time you sign your zone,
there are occasions when you’ll need to create a new key, either because you’ve
“used up” a private key or, worse, because one of your private keys has been
cracked.

After a certain amount of use, it becomes dangerous to continue signing records with
a private key. While there’s no simple rule to tell you when a private key’s time is up,
here are some guidelines:

• The longer your key, the harder it is to crack. Long keys don’t need to be
changed as often as short keys.

• The more valuable it would be for a hacker to spoof your zone data, the more
time and money he will spend trying to crack one of your private keys. If the
integrity of your zone data is particularly crucial, change keys frequently.

Since movie.edu isn’t a high-value target, we change our zone-signing key pair every
six months. We’re only a university, after all. If we were more concerned about our
zone data, we would use longer keys or change keys more frequently.

Unfortunately, rolling over to a new key isn’t as easy as just generating a new key
and replacing the old one with it. If you did that, you’d leave nameservers that had
cached your zone’s data with no way to retrieve your zone-signing DNSKEY record
and verify that data. So rolling over to a new key is a multistep process:

1. At least one TTL before the set of RRSIG records signed with your old ZSK
expire, generate a new ZSK pair.

2. Add the new DNSKEY record to your zone data.

3. Sign your zone data with the new private key and without the old private key,
but leave the old DNSKEY record in the zone.

4. After all records signed with the old private key have expired, remove the old
DNSKEY record from the zone and re-sign it with the new private key.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The DNS Security Extensions | 347

Let’s go through the process. First, we generated a new key pair:

dnssec-keygen -a RSA -b 512 -n ZONE movie.edu.
Kmovie.edu.+005+15494

Next, we added the new DNSKEY record to the zone data:

cat Kmovie.edu.+005+15494.key >> db.movie.edu.signed

We had to tell dnssec-signzone the keys to sign to zone with, and specify the KSK:

dnssec-signzone –o movie.edu –k Kmovie.edu.+005+15480 db.movie.edu.signed
Kmovie.edu.+005.15494

This will sign the zone with the new ZSK and leave the set of RRSIG records signed
with the old ZSK in the zone, but won’t regenerate RRSIGs with the old ZSK. Here’s
how the resulting file began:

; File written on Tue Feb 21 02:41:09 2006
; dnssec_signzone version 9.3.2
movie.edu. 86400 IN SOA toystory.movie.edu. al.movie.edu. (
 2006022100 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 3600 ; minimum (1 hour)
)
 86400 RRSIG SOA 5 2 86400 20060220210704 (
 20060121210704 3674 movie.edu.
 otYTiIHqJ4K0c6M5JZ9uC8q7AvXO1Gjp5FXJ
 5SRO+UL/ilAZXGSfJSCJrUDetb7R0H27NqHe
 yKujxcec69FoLw==)
 86400 RRSIG SOA 5 2 86400 20060320094111 (
 20060221094111 15494 movie.edu.
 zD/IGbzgO3sB5sPvYbb3vLmvULRQ05fV21Yz
 DO8gq2E+v575ag469h+J2Dzs6XheMxShmIpk
 YwjYxgMLcc1SjA==)

Although the zone includes two DNSKEY records, the other records in the zone
(such as the SOA record, shown here) were signed only by the new private key, with
key tag 15494. The old RRSIG records, generated from the private key with key tag
3674, were still included because they were still valid—but not for much longer.
Note the expirations of the two RRSIG records covering the SOA record: key tag
3674’s RRSIG record expires a month earlier because it wasn’t regenerated.

After the old RRSIG records expired, we deleted the old DNSKEY record and the key
files (so the signer wouldn’t use them) and re-signed the zone with just the new ZSK
and the KSK:

dnssec-signzone –o movie.edu db.movie.edu.signed
mv db.movie.edu.signed.signed db.movie.edu.signed

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 11: Security

That removed the old, invalid RRSIGs and re-signed the DNSKEY RRset with the
KSK.

Changing KSKs is similar, and doesn’t need to be done as often:

1. At least one TTL before its RRSIG covering the DNSKEY RRset expires, gener-
ate a new KSK pair.

2. Add the new KSK’s DNSKEY record to the zone.

3. Re-sign the DNSKEY RRset with both KSKs (specifying multiple –k options to
dnssec-signzone).

4. Submit your new KSK to your parent zone’s administrators to certify.

5. After the TTL of the DS RRset in your parent zone has passed, you can remove
the old KSK from your zone and re-sign the zone without it.

We’re guessing that after reading this, you’ll probably decide to use the longest keys
available just to avoid ever needing to roll your keys over.

What Was That All About?
We realize that DNSSEC is a bit, er, daunting. (We nearly fainted the first time we
saw it.) But it’s designed to do something very important: make DNS spoofing much,
much harder. And as people do more and more business over the Internet, knowing
you’re really getting where you thought you were going becomes crucial.

That said, we realize that DNSSEC and the other security measures we’ve described
in this chapter aren’t for all of you. (Certainly they’re not all for all of you.) You
should balance your need for security against the cost of implementing it, in terms of
the burden it places both on your infrastructure and on your productivity.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

349

Chapter 12 CHAPTER 12

nslookup and dig12

“Don’t stand chattering to yourself like that,” Humpty
Dumpty said, looking at her for the first time, “but tell

me your name and your business.”
“My name is Alice, but—”

“It’s a stupid name enough!” Humpty Dumpty
interrupted impatiently. “What does it mean?”

“Must a name mean something?” Alice asked
doubtfully.

“Of course it must,” Humpty Dumpty said with a
short laugh...

To be proficient at troubleshooting nameserver problems, you’ll need a trouble-
shooting tool to send DNS queries, one that gives you complete control. We’ll cover
nslookup in this chapter because it’s distributed with BIND and with many vendors’
operating systems. That doesn’t mean it’s the best DNS troubleshooting tool avail-
able, though. nslookup has its faults—so many, in fact, that it’s now deprecated
(geekish for “officially out of favor”) in the BIND 9 distribution. We’ll cover it any-
way because it’s pervasive. We’ll also cover dig, which provides similar functionality
and doesn’t suffer from nslookup’s deficiencies.

Note that this chapter isn’t comprehensive; there are aspects of nslookup and dig
(mostly obscure and seldom used) that we won’t cover. You can always consult the
manual pages for those.

Is nslookup a Good Tool?
Much of the time, you’ll use nslookup to send queries in the same way the resolver
sends them. Sometimes, though, you’ll use nslookup to query other nameservers as a
nameserver would instead. The way you use it will depend on the problem you’re try-
ing to debug. You might wonder, “How accurately does nslookup emulate a resolver
or a nameserver? Does nslookup actually use the BIND resolver library routines?” No,
nslookup uses its own routines for querying nameservers, but those routines are based

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 12: nslookup and dig

on the resolver routines. Consequently, nslookup’s behavior is very similar to the
resolver’s behavior, but it does differ slightly. We’ll point out some of those differ-
ences. As for emulating nameserver behavior, nslookup allows us to query another
server with the same query message that a nameserver would use, but the retransmis-
sion scheme is quite different. Like a nameserver, though, nslookup can transfer a
copy of the zone data. So nslookup doesn’t emulate either the resolver or the
nameserver exactly, but it does emulate them well enough to make a decent trouble-
shooting tool. Let’s delve into those differences we alluded to.

Multiple Servers
nslookup talks to only one nameserver at a time. This is the biggest difference between
nslookup’s behavior and the resolver’s behavior. The resolver uses each nameserver
directive in resolv.conf. If there are two nameserver directives in resolv.conf, the
resolver tries the first nameserver, then the second, then the first, then the second,
until it receives a response or gives up. The resolver does this for every query. On the
other hand, nslookup tries the first nameserver in resolv.conf and keeps retrying until it
finally gives up on the first nameserver and tries the second. Once it gets a response, it
locks onto that server and doesn’t try the next. However, you want your troubleshoot-
ing tool to talk to only one nameserver so you can reduce the number of variables
when analyzing a problem. If nslookup used more than one nameserver, you wouldn’t
have as much control over your troubleshooting session. So talking to only one server
is the right thing for a troubleshooting tool to do.

Timeouts
The nslookup timeouts match the resolver timeouts when the resolver is querying
only one nameserver. A nameserver’s timeouts, however, are based on how quickly
the remote server answered the last query, a dynamic measure. nslookup’s timeouts
will never match a nameserver’s timeouts, but that’s not a problem either. When
you’re querying remote nameservers with nslookup, you probably care only what the
response was, not how long it took.

The Search List
nslookup implements a search list just as the resolver code does. nslookup, however,
uses either the abridged BIND search list that includes just the local domain name or
the one specified in the last search entry in /etc/resolv.conf. Nameservers don’t imple-
ment search lists, so, to act like a nameserver, the nslookup search function must be
turned off—more on that later.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Interactive Versus Noninteractive | 351

Zone Transfers
nslookup does zone transfers just like a nameserver. Unlike a nameserver, however,
nslookup does not check SOA serial numbers before pulling the zone data; if you
want to do that, you’ll have to do it manually.

Using NIS and /etc/hosts
This last point doesn’t compare nslookup to the resolver or nameserver but to ways
of looking up names in general. As distributed from the Internet Software Consor-
tium, nslookup uses only DNS; it won’t use NIS or /etc/hosts. Most applications can
use DNS, NIS, or /etc/hosts, depending on how the system is configured. Don’t count
on nslookup to help you find your lookup problem unless your host is really config-
ured to use nameservers.*

Interactive Versus Noninteractive
Let’s start our tutorial on nslookup by looking at how to start it and how to exit from
it. You can run nslookup either interactively or noninteractively. If you only want to
look up one record for one domain name, use the noninteractive form. If you plan on
doing something more extensive, such as changing nameservers or options, use an
interactive session.

To start an interactive session, just type nslookup:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> ^D

If you need help, type ? or help.† When you want to exit, type ^D (Ctrl-D) or exit. If
you try to exit from nslookup by interrupting it with ^C (or whatever your interrupt
character is), you won’t get very far. nslookup catches the interrupt, stops whatever it
is doing (like a zone transfer), and gives you the > prompt.

For a noninteractive lookup, include the name you are looking up on the command
line:

% nslookup carrie
Server: toystory.movie.edu
Address: 0.0.0.0#53

Name: carrie.movie.edu
Address: 192.253.253.4

* Or your vendor’s nslookup has been enhanced to query NIS servers and check /etc/hosts, like the one in HP-UX.

† The help function isn’t implemented in BIND 9’s nslookup as of 9.3.2.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 12: nslookup and dig

Option Settings
nslookup has its own set of dials and knobs, called options. All of the option settings
can be changed. We’ll discuss here what each of the options means, and we’ll use the
rest of the chapter to show you how to use them.

% nslookup
Default Server: bladerunner.fx.movie.edu
Address: 0.0.0.0#53

> set all
Default Server: bladerunner.fx.movie.edu
Address: 0.0.0.0

Set options:
 nodebug defname search recurse
 nod2 novc noignoretc port=53
 querytype=A class=IN timeout=5 retry=4
 root=a.root-servers.net.
 domain=fx.movie.edu
 srchlist=fx.movie.edu

> ^D

For BIND 9.3.2, a few of the options have been removed or changed:

 novc nodebug nod2
 search recurse
 timeout = 0 retry = 3 port = 53
 querytype = A class = IN
 srchlist = fx.movie.edu

Before we get into the options, we need to cover the introductory lines. The default
nameserver is bladerunner.fx.movie.edu. This means that nslookup will query bladerun-
ner unless we specify another nameserver. The address 0.0.0.0 means “this host.”
When nslookup is using address 0.0.0.0 or 127.0.0.1 as its nameserver, it is using the
server running on the local system—in this case, bladerunner.

The options come in two flavors: Boolean and value. The options that do not have
an equals sign after them are Boolean options. They have the interesting property of
being either “on” or “off.” The value options can take on different, well, values. How
can we tell which Boolean options are on and which are off? The option is off when a
“no” precedes the option’s name. nodebug means that debugging is off. As you might
guess, the search option is on.

How you change Boolean or value options depends on whether you are using
nslookup interactively. In an interactive session, you change an option with the set
command, as in set debug or set domain=classics.movie.edu. From the command line,
you omit the word set and precede the option with a hyphen, as in nslookup –debug
or nslookup –domain=classics.movie.edu. An option can be abbreviated to its shortest

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Option Settings | 353

unique prefix, e.g., nodeb for nodebug. In addition to its abbreviation, the querytype
option can also be called simply type.

Let’s go through each option:

[no]debug
Debugging is turned off by default. If it is turned on, the nameserver shows time-
outs and displays the response messages. See [no]d2 for a discussion of debug
level 2.

[no]defname
(This option is no longer supported as of 9.3.2.) Before search lists existed, the
BIND resolver code added only the local domain name to names without any
dots in them; this option selects that behavior. nslookup can implement the pre-
search list behavior (with search off and defname on) or the search list behavior
(with search on).

[no]search
The search option supersedes the local domain name (defname) option. That is,
defname applies only if search is turned off. By default, nslookup appends the
domain names in the search list (srchlist) to names that don’t end in a dot.

[no]recurse
nslookup sends recursive queries by default. This turns on the recursion-desired
bit in query messages. The BIND resolver sends recursive queries in the same
way. Nameservers, however, send out nonrecursive queries to other nameservers.

[no]d2
Debugging at level 2 is turned off by default. If it is turned on, you see the query
messages sent out in addition to the regular debugging output. Turning on d2
also turns on debug. Turning off d2 turns off d2 only; debug is left on. Turning
off debug turns off both debug and d2.

[no]vc
By default, nslookup sends queries using UDP datagrams instead of over a vir-
tual circuit (TCP). Most BIND resolvers send queries over UDP, so the default
nslookup behavior matches the resolver. As some resolvers can be instructed to
use TCP, so can nslookup.

[no]ignoretc
(This option is no longer supported as of 9.3.2.) By default, nslookup doesn’t
ignore truncated messages. If a message is received that has the “truncated” bit
set—indicating that the nameserver couldn’t fit all the important information in
the UDP response datagram—nslookup doesn’t ignore it; it retries the query
using a TCP connection instead of UDP. Again, this matches the BIND resolver’s
behavior. The reason for retrying the query using a TCP connection is that TCP
responses can be many times larger than UDP responses.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 12: nslookup and dig

port=53
Nameservers listen on port 53. You can start a nameserver on another port—for
debugging purposes, for example—and nslookup can be directed to use that
port.

querytype=A
By default, nslookup looks up A (address) resource record types. In addition, if
you type in an IP address (and the nslookup query type is A or PTR), nslookup
inverts the address, appends in-addr.arpa, and looks up PTR records instead.

class=IN
The only class that matters is Internet (IN). Well, there is the Hesiod (HS) class,
too, if you are an MITer or run Ultrix.

timeout=5
If the nameserver doesn’t respond within 5 seconds, nslookup resends the query
and doubles the timeout (to 10, 20, and then 40 seconds). Most BIND resolvers
use the same timeouts when querying a single nameserver.

retry=4
Send the query four times before giving up. After each retry, the timeout value is
doubled. Again, this matches most BIND resolvers’ behavior.

root=a.root-servers.net
(This option is no longer supported as of 9.3.2.) There is a convenience com-
mand called root that switches your default nameserver to the server named
here. Executing the root command from a modern nslookup’s prompt is equiva-
lent to executing server a.root-servers.net. Older versions use nic.ddn.mil (old) or
even sri-nic.arpa (ancient) as the default root nameserver. You can change the
default root server with set root=server.

domain=fx.movie.edu
(This option is no longer supported as of 9.3.2.) This is the default domain name
to append if the defname option is on.

srchlist=fx.movie.edu
If search is on, these are the domain names appended to names that do not end
in a dot. The domain names are listed in the order in which they are tried, sepa-
rated by a slash.

The .nslookuprc File

.nslookuprc is no longer supported as of 9.3.2.

You can set up new default nslookup options in an .nslookuprc file. nslookup looks
for an .nslookuprc file in your home directory when it starts up, in both interactive

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Common Tasks | 355

and noninteractive modes. The .nslookuprc file can contain any legal set commands,
one per line. This is useful, for example, if your old nslookup still thinks sri-nic.arpa
is a root nameserver. You can set the default root nameserver to a real, current root
with a line like this in your .nslookuprc file:

set root=a.root-servers.net.

You might also use .nslookuprc to set your search list to something other than your
host’s default search list or to change the timeouts nslookup uses.

Avoiding the Search List
nslookup implements the same search list as the resolver. When you’re debugging,
though, the search list can get in your way. You may need to turn off the search list
completely (set nosearch) or add a trailing dot to the fully qualified domain name you
are looking up. We prefer the latter, as you’ll see in our examples.

Common Tasks
There are little chores you’ll come to use nslookup for almost every day: finding the
IP address or MX records for a given domain name, or querying a particular
nameserver for data. We’ll cover these first, before moving on to the more occa-
sional stuff.

Looking Up Different Record Types
By default, nslookup looks up the address for a domain name, or the domain name
for an address. You can look up any record type by changing the querytype, as we
show in this example:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> misery Look up address
Server: toystory.movie.edu
Address: 0.0.0.0#53

Name: misery.movie.edu
Address: 192.253.253.2

> 192.253.253.2 Look up domain name
Server: toystory.movie.edu
Address: 0.0.0.0#53

Name: misery.movie.edu
Address: 192.253.253.2

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 12: nslookup and dig

> set q=mx Look up MX records
> wormhole
Server: toystory.movie.edu
Address: 0.0.0.0#53

wormhole.movie.edu preference = 10, mail exchanger = wormhole.movie.edu
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1

> set q=any Look up records of any type
> monsters-inc
Server: toystory.movie.edu
Address: 0.0.0.0#53

monsters-inc.movie.edu internet address = 192.249.249.4
monsters-inc.movie.edu preference = 10, mail exchanger = monsters-inc.movie.edu
monsters-inc.movie.edu internet address = 192.249.249.4

These are only a few of the valid DNS record types, of course. For a more complete
list, see Appendix A.

Authoritative Versus Nonauthoritative Answers
If you’ve used nslookup before, you might have noticed something peculiar: the first
time you look up a remote domain name, the answer is authoritative, but the second
time you look up the same name, it is nonauthoritative. Here’s an example:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> slate.mines.colorado.edu.
Server: toystory.movie.edu
Address: 0.0.0.0#53

Name: slate.mines.colorado.edu
Address: 138.67.1.3

> slate.mines.colorado.edu.
Server: toystory.movie.edu
Address: 0.0.0.0#53

Non-authoritative answer:
Name: slate.mines.colorado.edu
Address: 138.67.1.3

While this looks odd, it really isn’t. What’s happening here is that the first time the
local nameserver looks up slate.mines.colorado.edu, it contacts the nameserver for
mines.colorado.edu, and the mines.colorado.edu server then responds with an authori-
tative answer. The local nameserver, in effect, passes the authoritative response

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Common Tasks | 357

directly back to nslookup. It also caches the response. The second time you look up
slate.mines.colorado.edu, the nameserver answers out of its cache, which results in
the answer “non-authoritative.”*

Notice that we terminated the domain name with a trailing dot each time we looked
it up. The response would have been the same if we’d left off the trailing dot. There
are times when it’s critical that you use the trailing dot while debugging, and times
when it’s not. Rather than stopping to decide if this name needs a trailing dot, we
always add one if we know the name is fully qualified, except, of course, if we’ve
turned off the search list.

Switching Nameservers
Sometimes you want to query another nameserver directly: you may think it is mis-
behaving, for example. You can switch servers with nslookup using the server or
lserver command. The difference between server and lserver is that lserver queries
your local nameserver—the one you started out with—to get the address of the
server you want to switch to; server uses the default nameserver instead of the local
server. This difference is important because the server you just switched to may not
be responding, as we’ll show in this example:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

When we start up, our first nameserver, toystory.movie.edu, becomes our lserver.
This will matter later on in this session.

> server galt.cs.purdue.edu.
Default Server: galt.cs.purdue.edu
Address: 128.10.2.39#53

> cs.purdue.edu.
Server: galt.cs.purdue.edu
Address: 128.10.2.39#53

*** galt.cs.purdue.edu can't find cs.purdue.edu.: Query refused

At this point, we try to switch back to our original nameserver. But the nameserver
running on galt.cs.purdue.edu refuses to look up toystory.movie.edu’s address:

> server toystory.movie.edu.
*** Can't find address for server toystory.movie.edu.: Query refused

* BIND 9 nameservers, interestingly, show even the first responses as nonauthoritative.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 12: nslookup and dig

Instead of being stuck, though, we use the lserver command to have our local
nameserver look up toystory.movie.edu’s address:

> lserver toystory.movie.edu.
Default Server: toystory.movie.edu
Address: 192.249.249.3#53

> ^D

Since the nameserver on galt.cs.purdue.edu refused to respond, it wasn’t possible to
look up the address of toystory.movie.edu to switch back to using toystory’s
nameserver. Here’s where lserver comes to the rescue: the local nameserver, toystory,
was still responding, so we used it. Instead of using lserver, we also could have recov-
ered using toystory’s IP address directly: server 192.249.249.3.

You can even change servers on a per-query basis. To specify that you’d like
nslookup to query a particular nameserver for information about a given domain
name, you can specify the server as the second argument on the line, after the
domain name to look up, like so:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3#53

> saturn.sun.com. ns.sun.com.
Name Server: ns.sun.com
Address: 192.9.9.3#53

Name: saturn.sun.com
Addresses: 192.9.25.2

> ^D

And, of course, you can change servers from the command line. You can specify the
server to query as the argument after the domain name to look up, like this:

% nslookup -type=mx fisherking.movie.edu. toystory.movie.edu.

This instructs nslookup to query toystory.movie.edu for MX records for fisherking.
movie.edu.

Finally, to specify an alternate default nameserver and enter interactive mode, you
can use a hyphen in place of the domain name to look up:

% nslookup - toystory.movie.edu.

Less Common Tasks
Let’s move on to some tricks you’ll probably use less often but are still handy to have
in your repertoire. Most of these will be helpful when you are trying to troubleshoot
a DNS or BIND problem; they’ll enable you to grub around in the messages the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Less Common Tasks | 359

resolver sees and mimic a BIND nameserver querying another nameserver or trans-
ferring zone data.

Showing the Query and Response Messages
If you need to, you can direct nslookup to show you the queries it sends out and the
responses it receives. Turning on debug shows the responses. Turning on d2 shows
the queries as well. When you want to turn off debugging completely, you have to
use set nodebug because set nod2 turns off only level 2 debugging. After the follow-
ing trace, we’ll explain some parts of the output. If you want, pull out your copy of
RFC 1035, turn to page 25, and read along with our explanation.

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> set debug
> wormhole
Server: toystory.movie.edu
Address: 0.0.0.0#53

Got answer:
 HEADER:
 opcode = QUERY, id = 6813, rcode = NOERROR
 header flags: response, auth. answer, want recursion,
 recursion avail. questions = 1, answers = 2,
 authority records = 2, additional = 3

 QUESTIONS:
 wormhole.movie.edu, type = A, class = IN
 ANSWERS:
 -> wormhole.movie.edu
 internet address = 192.253.253.1
 ttl = 86400 (1D)
 -> wormhole.movie.edu
 internet address = 192.249.249.1
 ttl = 86400 (1D)
 AUTHORITY RECORDS:
 -> movie.edu
 nameserver = toystory.movie.edu
 ttl = 86400 (1D)
 -> movie.edu
 nameserver = wormhole.movie.edu
 ttl = 86400 (1D)
 ADDITIONAL RECORDS:
 -> toystory.movie.edu
 internet address = 192.249.249.3
 ttl = 86400 (1D)
 -> wormhole.movie.edu
 internet address = 192.253.253.1
 ttl = 86400 (1D)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 12: nslookup and dig

 -> wormhole.movie.edu
 internet address = 192.249.249.1
 ttl = 86400 (1D)

Name: wormhole.movie.edu
Addresses: 192.253.253.1, 192.249.249.1

> set d2
> wormhole
Server: toystory.movie.edu
Address: 0.0.0.0#53

This time the query is also shown.

SendRequest(), len 36
 HEADER:
 opcode = QUERY, id = 6814, rcode = NOERROR
 header flags: query, want recursion
 questions = 1, answers = 0, authority records = 0,
 additional = 0

 QUESTIONS:
 wormhole.movie.edu, type = A, class = IN

Got answer (164 bytes):

The answer is the same as above.

The lines between the dashes are the query and response messages. As promised,
we’ll go through the contents of the messages. DNS packets comprise five sections:
header, question, answer, authority, and additional.

Header section
The header section is present in every query and response message. The opera-
tion code nslookup reports is always QUERY. There are other opcodes for asyn-
chronous notification of zone changes (NOTIFY) and for dynamic updates
(UPDATE), but nslookup doesn’t see those because it just sends regular queries
and receives responses.

The ID in the header associates a response with a query and detects duplicate
queries or responses. You have to look in the header flags to see which messages
are queries and which are responses. The string want recursion means that this is
a recursive query. The string auth. answer means that this response is authorita-
tive. In other words, the response is from the nameserver’s authoritative data,
not from its cache. The response code, rcode, can be one of no error, server fail-
ure, name error (also known as nxdomain or nonexistent domain), not imple-
mented, or refused. The server failure, name error, not implemented, and refused

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Less Common Tasks | 361

response codes cause the nslookup “Server failed,” “Nonexistent domain,” “Not
implemented,” and “Query refused” errors, respectively. The last four entries in
the header section are counters: they indicate how many resource records there
are in each of the next four sections.

Question section
There is always one question in a DNS message; it includes the domain name
and the requested record type and class. There is never more than one question
in a DNS message; the capability of handling more than one would require a
redesign of the message format. For one thing, the single authority bit would
have to be changed because the answer section could contain a mix of authorita-
tive and nonauthoritative answers. In the present design, setting the authorita-
tive answer bit means that the nameserver is authoritative for the zone that
contains the domain name in the question section.

Answer section
This section contains the resource records that answer the question. There can
be more than one resource record in the response. For example, if the host is
multihomed, there will be more than one address resource record.

Authority section
The authority section is where nameserver records are returned. When a
response refers the querier to some other nameservers, those nameservers are
listed here.

Additional section
The additional records section adds information that may complete the informa-
tion included in other sections. For instance, if a nameserver is listed in the
authority section, the nameserver’s address may be included in the additional
records section. After all, to contact the nameserver, you need to have its
address.

Querying Like a BIND Nameserver
You can make nslookup send out the same query message a nameserver would.
Nameservers’ query messages aren’t that much different from resolvers’ query mes-
sages in the first place. The primary difference in the query messages is that resolvers
request recursive resolution and nameservers seldom do. Requesting recursion is the
default with nslookup, so you have to explicitly turn it off. Another difference in
operation between a resolver and a nameserver is that the resolver applies the search
list, and the nameserver doesn’t. By default, nslookup applies the search list, so that
must be explicitly turned off as well. Of course, judicious use of the trailing dot will
have the same effect.

In raw nslookup terms, this means that to query like a resolver, you use nslookup’s
default settings. To query like a nameserver, use set norecurse and set nosearch. On
the command line, that’s nslookup –norecurse –nosearch.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 12: nslookup and dig

When a BIND nameserver receives a query, it looks for the answer in its authorita-
tive data and in its cache. If it doesn’t have the answer, and it is authoritative for the
zone, the nameserver responds that the name doesn’t exist or that there are no
records of the type sought. If the nameserver doesn’t have the answer and it is not
authoritative for the zone, it starts walking up the namespace looking for NS records.
There are always NS records somewhere higher in the namespace. As a last resort, it
uses the NS records for the root zone, the highest level.

If the nameserver has received a nonrecursive query, it responds to the querier by
returning the NS records that it found. On the other hand, if the original query was a
recursive query, the nameserver queries the remote nameservers in the NS records
that it found. When the nameserver receives a response from one of the remote
nameservers, it caches the response and, if necessary, repeats this process. The
remote server’s response either has the answer to the question or contains a list of
nameservers lower in the namespace and closer to the answer.

Let’s assume for our example that we are trying to satisfy a recursive query. When we
ask the nameserver on toystory.movie.edu about www.usps.gov (the United States Postal
Service), it doesn’t find any NS records until the gov zone. From there, we switch serv-
ers to a gov nameserver and ask the same question. It directs us to the usps.gov servers.
We then switch to a usps.gov nameserver and ask the same question:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> set norec Query like a nameserver: turn off recursion
> set nosearch Turn off the search list
> set nodefname Turn off appending the local domain (only for older nslookups)
> www.usps.gov We don't need to dot-terminate since we've turned off search
Server: toystory.movie.edu
Address: 0.0.0.0#53

Name: www.usps.gov
Served by:
- G.GOV.ZONEEDIT.COM
 66.135.32.100
 gov
- F.GOV.ZONEEDIT.COM
 66.197.185.229
 gov
- E.GOV.ZONEEDIT.COM
 82.165.40.134
 gov
- D.GOV.ZONEEDIT.COM
 209.97.207.48
 gov

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Less Common Tasks | 363

- C.GOV.ZONEEDIT.COM
 69.72.142.35
 gov
- B.GOV.ZONEEDIT.COM
 206.51.224.229
 gov
- A.GOV.ZONEEDIT.COM
 216.55.155.29
 gov

Switch to a gov nameserver (you may have to turn on recursion again temporarily if
your nameserver doesn’t have the address of the gov nameserver already cached):

> server g.gov.zoneedit.com
Default Server: g.gov.zoneedit.com
Address: 66.135.32.100#53

Ask the same question of the gov nameserver. It will refer us to nameservers closer to
our desired answer:

> www.usps.gov
Server: g.gov.zoneedit.com
Address: 66.135.32.100#53

Name: www.usps.gov
Served by:
- DNS072.usps.gov
 56.0.72.25
 usps.gov
- DNS096.usps.gov
 56.0.96.25
 usps.gov
- DNS141.usps.gov
 56.0.141.25
 usps.gov

Switch to a usps.gov nameserver—any of them will do:

> server dns096.usps.gov
Default Server: dns096.usps.gov
Address: 56.0.96.25#53

> www.usps.gov
Server: dns096.usps.gov
Address: 56.0.96.25#53

Name: www.usps.gov
Address: 56.0.134.23

Hopefully, this example gives you a feeling for how nameservers look up domain
names. If you need to refresh your understanding of what this looks like graphically,
flip back to Figures 2-12 and 2-13.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 12: nslookup and dig

Before we move on, notice that we asked each of the servers the very same question:
“What’s the address of www.usps.gov?” What do you think would happen if the gov
nameserver had already cached www.usps.gov’s address itself? The gov nameserver
would have answered the question out of its cache instead of referring you to the
usps.gov nameservers. Why is this significant? Suppose you messed up a particular
host’s address in your zone. Someone points it out to you, and you clean up the
problem. Even though your nameserver now has the correct data, some remote sites
find the old, messed-up data when they look up the domain name of the host. One
of the nameservers that serves a zone higher up in the namespace, such as a
nameserver for a top-level zone, has cached the incorrect data; when it receives a
query for that host’s address, it returns the incorrect data instead of referring the
querier to your nameservers. What makes this problem hard to track down is that
only one of the higher-up nameservers has cached the incorrect data, so only some of
the remote lookups get the wrong answer—the ones that use this server. Fun, huh?
Eventually, though, the higher-up nameserver will time out the old record. Thank-
fully, most TLD nameservers have recursion turned off and consequently don’t cache
data. A few, unfortunately, still do.

Zone Transfers
nslookup can be used to transfer a whole zone using the ls command. This feature is
useful for troubleshooting, for figuring out how to spell a remote host’s domain
name, or for just counting how many hosts are in some remote zone. Since the out-
put can be substantial, nslookup allows you to redirect the output to a file. If you
want to bail out in the middle of a transfer, you can interrupt it by typing your inter-
rupt character.

Beware: some nameservers won’t let you pull a copy of their zones, either for secu-
rity reasons or to limit the load placed on them. On today’s Internet, administrators
must defend their turf.

Let’s look at the movie.edu zone. As you can see in the following output, all the zone
data is listed; the SOA record is listed twice, which is an artifact of how the data is
exchanged during the zone transfer. Since some nslookups show you only address
and nameserver records by default, we specify the –d option to retrieve the whole
zone:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> ls -d movie.edu.
[toystory.movie.edu]
$ORIGIN movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Less Common Tasks | 365

@ 1D IN SOA toystory al (
 2000091400 ; serial
 3H ; refresh
 1H ; retry
 4W2D ; expiry
 1H) ; minimum

 1D IN NS toystory
 1D IN NS wormhole
wormhole 1D IN A 192.249.249.1
 1D IN A 192.253.253.1
wh249 1D IN A 192.249.249.1
shrek 1D IN A 192.249.249.2
toys 1D IN CNAME toystory
cujo 1D IN TXT "Location:" "machine" "room" "dog" "house"
wh253 1D IN A 192.253.253.1
wh 1D IN CNAME wormhole
shining 1D IN A 192.253.253.3
toystory 1D IN A 192.249.249.3
localhost 1D IN A 127.0.0.1
fx 1D IN NS bladerunner.fx
bladerunner.fx 1D IN A 192.253.254.2
fx 1D IN NS outland.fx
outland.fx 1D IN A 192.253.254.3
fx 1D IN NS huskymo.boulder.acmebw.com.
 1D IN NS tornado.acmebw.com.
me 1D IN CNAME monsters-inc
carrie 1D IN A 192.253.253.4
monsters-inc 1D IN A 192.249.249.4
misery 1D IN A 192.253.253.2
@ 1D IN SOA toystory al (
 2000091400 ; serial
 3H ; refresh
 1H ; retry
 4W2D ; expiry
 1H) ; minimum

Now let’s say you missed a record in the beginning of the zone data, one that flew off
the top of your screen. nslookup lets you save the listing of a zone to a file:

> ls -d movie.edu > /tmp/movie.edu List all data into /tmp/movie.edu
[toystory.movie.edu]
Received 25 answers (25 records).

Some versions of nslookup even support a built-in view command that sorts and dis-
plays the contents of a zone listing from interactive mode. In the latest BIND 8 releases,
though, view is broken, and it isn’t supported by BIND 9’s nslookup as of 9.3.2.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 12: nslookup and dig

Troubleshooting nslookup Problems
The last thing you want is to have problems with your troubleshooting tool. Unfor-
tunately, some types of failures render nslookup nearly useless. Other types of
nslookup failures are (at best) confusing, because they don’t give you any clear infor-
mation to work with. While there may be a few problems with nslookup itself, most
of the problems you encounter will be caused by nameserver configuration and oper-
ation. We’ll cover these problems here.

Looking Up the Right Data
This isn’t really a problem per se, but it can be awfully confusing. If you use nslookup
to look up a type of record for a domain name, and the domain name exists but
records of the type you’re looking for don’t, you’ll get an error like this:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> movie.edu.
Server: toystory.movie.edu
Address: 0.0.0.0#53

*** No address (A) records available for movie.edu.

So what types of records do exist? Just type set type=any to find out:

> set type=any
> movie.edu.
Server: toystory.movie.edu
Address: 0.0.0.0#53

movie.edu
 origin = toystory.movie.edu
 mail addr = al.shrek.movie.edu
 serial = 42
 refresh = 10800 (3H)
 retry = 3600 (1H)
 expire = 604800 (7D)
 minimum ttl = 86400 (1D)
movie.edu nameserver = toystory.movie.edu
movie.edu nameserver = wormhole.movie.edu
movie.edu nameserver = zardoz.movie.edu
movie.edu preference = 10, mail exchanger = postmanrings2x.movie.edu
postmanrings2x.movie.edu internet address = 192.249.249.66

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting nslookup Problems | 367

No Response from Server
What could have gone wrong if your nameserver can’t look up its own name?

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> toystory
Server: toystory.movie.edu
Address: 0.0.0.0#53

*** toystory.movie.edu can't find toystory: No response from server

The “no response from server” error message means exactly that: the resolver didn’t
get back a response. nslookup doesn’t necessarily look up anything when it starts up.
If you see that the address of your nameserver is 0.0.0.0, then nslookup grabbed the
system’s hostname (what the hostname command returns) for the Default Server field
and gave you its prompt. It’s only when you try to look up something that you find
there is no nameserver responding. In this case, it’s pretty obvious there’s no server
running: a nameserver ought to be able to look up its own name. If you are looking
up some remote information, though, the nameserver could fail to respond because
it’s still trying to look up the data, and nslookup gave up waiting. How can you tell
the difference between a nameserver that isn’t running and a nameserver that is run-
ning but didn’t respond? You can use the ls command to figure it out:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> ls foo. Try to list a nonexistent zone
*** Can't list domain foo.: No response from server

In this case, no nameserver is running. If the host couldn’t be reached, the error
would be timed out. If a nameserver is running, you’ll see this error message:

% nslookup
Default Server: toystory.movie.edu
Address: 0.0.0.0#53

> ls foo.
[toystory.movie.edu]
*** Can't list domain foo.: No information

That is, unless there’s a top-level foo zone in your world.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 12: nslookup and dig

No PTR Record for Nameserver’s Address
Here’s one of nslookup’s most annoying problems: something went wrong, and
nslookup exited on startup:

% nslookup
*** Can't find server name for address 192.249.249.3: Non-existent host/domain
*** Default servers are not available

The “nonexistent domain” message means that the name 3.249.249.192.in-addr.arpa
doesn’t exist. In other words, nslookup couldn’t map 192.249.249.3, the address of
its nameserver, to a domain name. But didn’t we just say that nslookup doesn’t look
up anything when it starts up? In the configuration we showed you before, nslookup
didn’t look up anything, but that’s not a rule. If you create a resolv.conf that includes
one or more nameserver directives, nslookup tries to reverse-map the address to get
the nameserver’s domain name. In the preceding example, there is a nameserver run-
ning on 192.249.249.3, but it said there are no PTR records for the address 192.249.
249.3. Obviously, the reverse-mapping zone is messed up, at least for the domain
name 3.249.249.192.in-addr.arp.

The “default servers are not available” message in the example is misleading. After
all, there is a nameserver available to say the address doesn’t exist. More often, you’ll
see the error “no response from server” if the nameserver isn’t running on the host or
the host can’t be reached. Only then does the “default servers are not available” mes-
sage make sense.

Query Refused
Refused queries can cause problems at startup, and they can cause lookup failures
during a session. Here’s what it looks like when nslookup exits on startup because of
a refused query:

% nslookup
*** Can't find server name for address 192.249.249.3: Query refused
*** Default servers are not available
%

Access lists can cause nslookup startup problems. When nslookup attempts to find
the domain name of its nameserver using a PTR query, the query can be refused. If
you think the problem is an access list, make sure you allow the host you’re running
on to query the nameserver. Check any allow-query substatements for the IP address
of the local host or the loopback address, if you’re running nslookup on the same
host as the nameserver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting nslookup Problems | 369

First resolv.conf Nameserver Not Responding
Here is another twist on the last problem:

% nslookup
*** Can't find server name for address 192.249.249.3: No response from server
Default Server: wormhole.movie.edu
Address: 192.249.249.1

This time, the first nameserver listed in resolv.conf did not respond. We had a sec-
ond nameserver directive in resolv.conf, though, and the second server did respond.
From now on, nslookup will send queries only to wormhole.movie.edu; it won’t try
the nameserver at 192.249.249.3 again.

Finding Out What Is Being Looked Up
We’ve been waving our hands in the last examples, claiming that nslookup was look-
ing up the nameserver’s address, but we didn’t prove it. Here is our proof. This time,
when we started up nslookup, we turned on d2 debugging from the command line.
This causes nslookup to print out the query messages it sent, as well as when the
query timed out and was retransmitted:

% nslookup -d2

SendRequest(), len 44
 HEADER:
 opcode = QUERY, id = 1, rcode = NOERROR
 header flags: query, want recursion
 questions = 1, answers = 0, authority records = 0,
 additional = 0

 QUESTIONS:
 3.249.249.192.in-addr.arpa, type = PTR, class = IN

timeout (5 secs)
timeout (10 secs)
timeout (20 secs)
timeout (40 secs)
SendRequest failed

*** Can't find server name for address 192.249.249.3: No response from server
*** Default servers are not available

As you can see by the timeouts, it took 75 seconds for nslookup to give up. Without
the debugging output, you wouldn’t have seen anything printed to the screen for 75
seconds; it’d look as if nslookup had hung.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 12: nslookup and dig

Unspecified Error
You can run into a rather unsettling problem called an “unspecified error.” We have
an example of this error here. We’ve included only the tail end of the output because
we just want to talk about the error at this point (you’ll find the whole nslookup ses-
sion that produced this segment in Chapter 14):

Authoritative answers can be found from:
(root) nameserver = NS.NIC.DDN.MIL
(root) nameserver = B.ROOT-SERVERS.NET
(root) nameserver = E.ROOT-SERVERS.NET
(root) nameserver = D.ROOT-SERVERS.NET
(root) nameserver = F.ROOT-SERVERS.NET
(root) nameserver = C.ROOT-SERVERS.NET
(root) nameserver =
*** Error: record size incorrect (1050690 != 65519)

*** relay.hp.com can't find .: Unspecified error

What happened here is that there was too much data to fit into a UDP datagram.
The nameserver stopped filling in the response when it ran out of room. The
nameserver didn’t set the truncation bit in the response packet, or nslookup would
have retried the query over a TCP connection; the nameserver must have decided
that enough of the “important” information fit. You won’t see this kind of error very
often. You’ll see it if you create too many NS records for a zone, so don’t create too
many. (Advice like this makes you wonder why you bought this book, right?) How
many is “too many” depends on how well the domain names in the packet can be
“compressed,” which, in turn, depends on how many nameservers’ names end in the
same domain name. The root nameservers were renamed to end in root-servers.net
for this very reason: to allow more root nameservers (13) on the Internet. As a rule of
thumb, don’t go over 10 NS records. As for what caused this error, you’ll have to
read Chapter 14. Those of you who just read Chapter 9 may know already.

Best of the Net
System administrators have a thankless job. There are certain questions, usually
quite simple ones, that users ask over and over again. And sometimes, when in a cre-
ative mood, sysadmins come up with clever ways to help their users. When the rest
of us discover their ingenuity, we can only sit back, smile admiringly, and wish we
had thought of it ourselves. Here is one such case, where a system administrator
found a way to communicate the solution to the sometimes vexing puzzle of how to
end an nslookup session:

% nslookup
Default Server: envy.ugcs.caltech.edu
Address: 131.215.134.135

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using dig | 371

> quit
Server: envy.ugcs.caltech.edu
Addresses: 131.215.134.135, 131.215.128.135

Name: ugcs.caltech.edu
Addresses: 131.215.128.135, 131.215.134.135
Aliases: quit.ugcs.caltech.edu
 use.exit.to.leave.nslookup.-.-.-.ugcs.caltech.edu

> exit

Using dig
That’s one way to deal with what’s arguably a shortcoming in nslookup. Another is just
to chuck nslookup and use dig, the Domain Information Groper (a reverse-engineered
acronym if we’ve ever heard one).

We said earlier that dig isn’t as pervasive as nslookup, so we’d better begin by telling
you where to get it. You can pick up source for dig from the src/bin/dig directory
(BIND 8), or the bin/dig directory (BIND 9) of the BIND distribution. If you build the
whole distribution, you’ll build a nice, new copy of dig, too.

With dig, you specify all aspects of the query you’d like to send on the command
line; there’s no interactive mode. You specify the domain name you want to look up
as an argument, and the type of query you want to send (e.g., a for address records,
mx for MX records) as another argument; the default is to look up address records.
You specify the nameserver you’d like to query after an “@.” You can use either a
domain name or an IP address to designate a nameserver. The default is to query the
nameservers in resolv.conf.

dig is smart about arguments, too. You can specify the arguments in any order you
like, and dig will figure out that mx is probably the type of records, not the domain
name, you want to look up.*

One major difference between nslookup and dig is that dig doesn’t apply the search
list, so always use fully qualified domain names as arguments to dig. The following:

% dig plan9.fx.movie.edu

looks up address records for plan9.fx.movie.edu using the first nameserver in resolv.conf,
while:

% dig acmebw.com mx

looks up MX records for acmebw.com on the same nameserver, and:

% dig @wormhole.movie.edu. movie.edu. soa

queries wormhole.movie.edu for the SOA record of movie.edu.

* Actually, early BIND 9 versions of dig (before 9.1.0) are order-impaired and require that you specify the
domain name argument before the type. You can specify the server to query anywhere, though.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 12: nslookup and dig

dig’s Output Format
dig shows you the complete DNS response message in all its glory, with the various
sections (header, question, answer, authority, and additional) clearly called out, and
with resource records in those sections printed in master file format. This can come
in handy if you need to use some of your troubleshooting tool’s output in a zone
datafile or in your root hints file. For example, the output produced by:

% dig @a.root-servers.net ns .

looks like this:

; <<>> DiG 8.3 <<>> @a.root-servers.net . ns
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUERY SECTION:
;; ., type = NS, class = IN

;; ANSWER SECTION:
. 6D IN NS A.ROOT-SERVERS.NET.
. 6D IN NS H.ROOT-SERVERS.NET.
. 6D IN NS C.ROOT-SERVERS.NET.
. 6D IN NS G.ROOT-SERVERS.NET.
. 6D IN NS F.ROOT-SERVERS.NET.
. 6D IN NS B.ROOT-SERVERS.NET.
. 6D IN NS J.ROOT-SERVERS.NET.
. 6D IN NS K.ROOT-SERVERS.NET.
. 6D IN NS L.ROOT-SERVERS.NET.
. 6D IN NS M.ROOT-SERVERS.NET.
. 6D IN NS I.ROOT-SERVERS.NET.
. 6D IN NS E.ROOT-SERVERS.NET.
. 6D IN NS D.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 6D IN A 198.41.0.4
H.ROOT-SERVERS.NET. 6D IN A 128.63.2.53
C.ROOT-SERVERS.NET. 6D IN A 192.33.4.12
G.ROOT-SERVERS.NET. 6D IN A 192.112.36.4
F.ROOT-SERVERS.NET. 6D IN A 192.5.5.241
B.ROOT-SERVERS.NET. 6D IN A 128.9.0.107
J.ROOT-SERVERS.NET. 5w6d16h IN A 198.41.0.10
K.ROOT-SERVERS.NET. 5w6d16h IN A 193.0.14.129
L.ROOT-SERVERS.NET. 5w6d16h IN A 198.32.64.12
M.ROOT-SERVERS.NET. 5w6d16h IN A 202.12.27.33
I.ROOT-SERVERS.NET. 6D IN A 192.36.148.17
E.ROOT-SERVERS.NET. 6D IN A 192.203.230.10
D.ROOT-SERVERS.NET. 6D IN A 128.8.10.90

;; Total query time: 116 msec
;; FROM: toystory.movie.edu to SERVER: a.root-servers.net 198.41.0.4
;; WHEN: Fri Sep 15 09:47:26 2000
;; MSG SIZE sent: 17 rcvd: 436

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using dig | 373

Let’s examine this output section by section.

The first line, beginning with the master file comment character (;) and <<>> DiG 8.3
<<>>, simply parrots the options we specified in the command line, namely, that we
were interested in the NS records that a.root-servers.net had for the root zone.

The next line, (1 server found), tells us that when dig looked up the addresses associ-
ated with the domain name we specified after the @, a.root-servers.net, it found one.
(If dig finds more than three, the maximum number of nameservers most resolvers
can query, it’ll report three.)

The line beginning with ->> HEADER <<- is the first part of the header of the reply mes-
sage that dig received from the remote nameserver. The opcode in the header is
always QUERY, just as it is with nslookup. The status is NOERROR; it can be any of
the statuses (stati?) mentioned in the earlier section “Showing the Query and
Response Messages.” The ID is the message ID, a 16-bit number used to match
responses to queries.

The flags tell us a bit more about the response. qr indicates that the message was a
response, not a query. dig decodes responses, not queries, so qr will always be
present. Not so with aa or rd, though. aa indicates that the response was authorita-
tive, and rd indicates that the recursion-desired bit was set in the query (because the
responding nameserver just copies the bit from the query to the response). Most of
the time rd is set in the query, you’ll also see ra set in the response, indicating that
recursion was available from the remote nameserver. However, a.root-servers.net is a
root nameserver and has recursion disabled, like we showed you in Chapter 11, so it
handles recursive queries the same as it does iterative queries. So it ignores the rd bit
and correctly indicates that recursion wasn’t available by leaving ra unset.

The last fields in the header indicate that dig asked 1 question and received 13
records in the answer section, 0 records in the authority section, and 13 records in
the additional data section.

The line after the line that contains QUERY SECTION: shows us the query dig sent: for
the NS records in the IN class for the root zone. After ANSWER SECTION:, we see the 13
NS records for the root nameservers, and after ADDITIONAL SECTION:, we have the 13
A records that correspond to those 13 root nameservers. If the response had included
an authority section, we’d have seen that, too, after AUTHORITY SECTION:.

At the very end, dig includes summary information about the query and response.
The first line shows how long it took the remote nameserver to return the response
after dig sent the query. The second line shows from which host you sent the query
and to which nameserver you sent it. The third line is a timestamp showing when the
response was received. And the fourth line shows the size of the query and the
response, in bytes.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 12: nslookup and dig

Zone Transfers with dig
As with nslookup, you can use dig to initiate zone transfers. Unlike nslookup, though,
dig has no special command to request a zone transfer. Instead, you simply specify
axfr (as the query type) and the domain name of the zone as arguments. Remember
that you can transfer a zone only from a nameserver that’s authoritative for the zone.

So to transfer the movie.edu zone from wormhole.movie.edu, you can use:

% dig @wormhole.movie.edu movie.edu axfr

; <<>> DiG 8.3 <<>> @wormhole.movie.edu movie.edu axfr
; (1 server found)
$ORIGIN movie.edu.
@ 1D IN SOA toystory al (
 2000091402 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

 1D IN NS toystory
 1D IN NS wormhole
 1D IN NS outland.fx
outland.fx 1D IN A 192.253.254.3
wormhole 1D IN A 192.249.249.1
 1D IN A 192.253.253.1
wh249 1D IN A 192.249.249.1
shrek 1D IN A 192.249.249.2
toys 1D IN CNAME toystory
cujo 1D IN TXT "Location:" "machine" "room" "dog" "house"
wh253 1D IN A 192.253.253.1
wh 1D IN CNAME wormhole
shining 1D IN A 192.253.253.3
toystory 1D IN A 192.249.249.3
localhost 1D IN A 127.0.0.1
fx 1D IN NS bladerunner.fx
bladerunner.fx 1D IN A 192.253.254.2
fx 1D IN NS outland.fx
outland.fx 1D IN A 192.253.254.3
me 1D IN CNAME monsters-inc
carrie 1D IN A 192.253.253.4
monsters-inc 1D IN A 192.249.249.4
misery 1D IN A 192.253.253.2
@ 1D IN SOA toystory al (
 2000091402 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using dig | 375

;; Received 25 answers (25 records).
;; FROM: toystory.movie.edu to SERVER: wormhole.movie.edu
;; WHEN: Fri Sep 22 11:02:45 2000

Note that as with nslookup, the SOA record appears twice, at the beginning and the
end of the zone. And as with all dig output, the results of the zone transfer are printed
in master file format, so you can use the output as a zone datafile if you need to.*

dig Options
There are too many command-line options to dig to show here, so look at dig’s man-
ual page for an exhaustive list. Here’s a list of the most important ones, though, and
what they do:

–x address
nslookup is smart enough to recognize an IP address and look up the appropri-
ate domain name in in-addr.arpa, so why not dig? If you use the –x option, dig
assumes that the domain name argument you’ve specified is really an IP address,
so it inverts the octets and tacks on in-addr.arpa. Using –x also changes the
default record type looked up to ANY, so you can reverse-map an IP address
with dig –x 10.0.0.1.

–p port
Sends queries to the specified port instead of port 53, the default.

+norec[urse]
Turns off recursion (recursion is on by default).

+vc
Sends TCP-based queries (queries are UDP by default).

* Though you’d need to delete the extra SOA record first.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

376

Chapter 13CHAPTER 13

Reading BIND Debugging Output 13

“O Tiger-lily!” said Alice, addressing herself to one
that was waving gracefully about in the wind, “I wish
you could talk!”
“We can talk,” said the Tiger-lily, “when there’s
anybody worth talking to.”

One of the tools in your troubleshooting toolbox is the nameserver’s debugging out-
put. As long as your nameserver has been compiled with DEBUG defined, you can
get query-by-query reports of its internal operation. The messages you get are often
quite cryptic; they were meant for someone who has the source code to follow. We’ll
explain some of the debugging output in this chapter. Our goal is to cover just
enough for you to follow what the nameserver is doing; we aren’t trying to supply an
exhaustive compilation of debugging messages.

As you read through the explanations here, think back to material covered in earlier
chapters. Seeing this information again, in another context, should help you under-
stand more fully how a nameserver works.

Debugging Levels
The amount of information the nameserver provides depends on the debugging level.
The lower the debugging level, the less information you get. Higher debugging levels
give you more information, but they also fill up your disk faster. After you’ve read a
lot of debugging output, you’ll develop a feel for how much information you’ll need
to solve any particular problem. Of course, if you can easily recreate the problem,
you can start at level 1 and increase the debugging level until you have enough infor-
mation. For the most basic problem—why a name can’t be looked up—level 1 will
often suffice, so you should start there.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging Levels | 377

What Information Is at Each Level?
Here’s a list of the information that each debugging level produces for BIND 8 and
BIND 9 nameservers. The debugging information is cumulative; for example, level 2
includes all of level 1’s debugging information. The data is divided into the follow-
ing basic areas: starting up, updating the database, processing queries, and maintain-
ing zones. We won’t cover updating the nameserver’s internal database; problems
almost always occur elsewhere. However, what the nameserver adds or deletes from
its internal database can be a problem, as you’ll see in Chapter 14.

BIND 8 and 9 have a whopping 99 debug levels, but most of the debugging mes-
sages are logged at just a few of those levels. We’ll look at those now.

BIND 8 debugging levels

Level 1
The information at this level is necessarily brief. Nameservers can process lots of
queries, which can create lots of debugging output. Since the output is con-
densed, you can collect data over long periods. Use this debugging level for basic
startup information and for watching query transactions. You’ll see some errors
logged at this level, including syntax errors and DNS packet-formatting errors.
This level also shows referrals.

Level 2
Level 2 provides lots of useful stuff: it lists the IP addresses of remote nameserv-
ers used during a lookup, along with their round-trip time values; it calls out bad
responses; and it tags a response as to which type of query it is answering—a
SYSTEM (sysquery) or a USER query. When you are tracking down a problem
with a slave server loading a zone, this level shows you the zone values—serial
number, refresh time, retry time, expire time, and time left—as the slave checks
if it is up to date with its master.

Level 3
Level 3 debugging becomes much more verbose because it generates lots of mes-
sages about updating the nameserver database. Make sure you have enough disk
space if you are going to collect debugging output at level 3 or above. At level 3,
you also see duplicate queries called out, system queries generated (sysquery),
the names of the remote nameservers used during a lookup, and the number of
addresses found for each server.

Level 4
Use level 4 debugging when you want to see the query and response packets
received by the nameserver. This level also shows the credibility level for cached
data.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 13: Reading BIND Debugging Output

Level 5
There are a variety of messages at level 5, but none of them is particularly useful
for general debugging. This level includes some error messages—for example,
when a malloc() fails or when the nameserver gives up on a query.

Level 6
Level 6 shows the response sent to the original query.

Level 7
Level 7 shows a few configuration and parsing messages.

Level 8
There is no significant debugging information at this level.

Level 9
There is no significant debugging information at this level.

Level 10
Use level 10 debugging when you want to see the query and response packets
sent by the nameserver. The format of these packets is the same format used in
level 4. You won’t use this level very often because you can see the nameserver
response packet with nslookup or dig.

Level 11
There are only a couple of debugging messages at and above this level, and they
are in seldom-traversed code.

BIND 9 debugging levels

Level 1
Level 1 shows you basic nameserver operation: zone loading, maintenance
(including SOA queries, zone transfers and zone expiration, and cache clean-
ing), NOTIFY messages, and high-level tasks dispatched (such as looking up
addresses for a nameserver).

Level 2
Level 2 logs multicast requests.

Level 3
Level 3 shows you low-level task creation and operation. Unfortunately, most of
these tasks don’t have particularly descriptive names (requestmgr_detach?), and
the arguments they report are awfully cryptic. Level 3 also shows you journal
activity, such as when the nameserver writes a record of a zone change to the
zone’s journal or when the nameserver applies a journal to a zone at startup.
Operation of the DNSSEC validator and checking of TSIG signatures also come
in at debug level 3.

Level 4
Level 4 logs when a master nameserver falls back to using AXFR because the
transferred zone’s journal isn’t available.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Turning On Debugging | 379

Level 5
Level 5 logs which view was used while satisfying a particular request.

Level 6
A handful of outbound zone transfer messages are logged at level 6, including
checks of the query that initiated the transfer.

Level 7
There are only a couple of new debugging messages at this level: logging of jour-
nal adds and deletes, and a count of how many bytes were returned by a zone
transfer.

Level 8
Many dynamic update messages are logged at level 8: prerequisite checks, writ-
ing journal entries, and rollbacks. Several low-level zone transfer messages also
appear here, including a log of resource records sent in a zone transfer.

Level 10
Level 10 reports a couple of messages about zone timer activity.

Level 20
Level 20 reports an update to a zone’s refresh timer.

Level 90
Low-level operation of the BIND 9 task dispatcher is logged at level 90.

With BIND 8 and BIND 9, you can configure the nameserver to print out the debug
level with the debug message. Just turn on the logging option print-severity, as
explained in the section “Logging” in Chapter 7.

Keep in mind that this is debugging information; it was used by the authors of BIND
to debug the code, so it is not as readable as you might like. You can use it to figure
out why the nameserver isn’t doing what you think it should be or just to learn how
the nameserver operates. However, don’t expect nicely designed, carefully formatted
output.

Turning On Debugging
Nameserver debugging can be started either from the command line or with control
messages. If you need to see the startup information to diagnose your current prob-
lem, you’ll have to use the command-line option. If you want to start debugging on a
nameserver that is already running, or if you want to turn off debugging, you’ll have
to use controls. The nameserver writes its debugging output to named.run in the
nameserver’s working directory.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 13: Reading BIND Debugging Output

Debugging Command-Line Option
When troubleshooting, you sometimes need to see the sortlist, know which interface a
file descriptor is bound to, or find out where in the initialization stage the nameserver
was when it exited (if the syslog error message wasn’t clear enough). To see this kind of
debugging information, you’ll have to start debugging with a command-line option; by
the time you send a control message, it will be too late. The command-line option for
debugging is –d level.

Changing the Debugging Level with Control Messages
If you don’t need to see the nameserver’s initialization, start your nameserver with-
out the debugging command-line option. You can later turn debugging on and off
using rndc (or, with BIND 8, ndc) to send the appropriate control message to the
nameserver process. Here, we set debugging to level 3, then turn off debugging:

rndc trace 3
rndc notrace

And, as you might expect, if you turn on debugging from the command line, you can
still use rndc to change the nameserver’s debug level.

Reading Debugging Output
We’ll cover five examples of debugging output. The first example shows the
nameserver starting up. The next two examples show successful name lookups. The
fourth example shows a slave nameserver keeping its zone up to date. And in the last
example, we switch from showing you nameserver behavior to showing you resolver
behavior: the resolver search algorithm. After each trace (except the last one), we
killed the nameserver and started it again so that each trace started with a fresh,
nearly empty cache.

You might wonder why we’ve chosen to show normal nameserver behavior for all
our examples; after all, this chapter is about debugging. We’re showing you normal
behavior because you have to know what normal operation is before you can track
down abnormal operation. Another reason is to help you understand the concepts
(retransmissions, roundtrip times, etc.) we described in earlier chapters.

Nameserver Startup (BIND 8, Debug Level 1)
We’ll start the debugging examples by watching the nameserver initialize. This first
nameserver is a BIND 8 nameserver. We used –d 1 on the command line, and this is
the named.run output that resulted:

1 Debug level 1
2 Version = named 8.2.3-T7B Mon Aug 21 19:21:21 MDT 2000
3 cricket@abugslife.movie.edu:/usr/local/src/bind-8.2.3-T7B/src/bin/named

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 381

4 conffile = ./named.conf
5 starting. named 8.2.3-T7B Mon Aug 21 19:21:21 MDT 2000
6 cricket@abugslife.movie.edu:/usr/local/src/bind-8.2.3-T7B/src/bin/named
7 ns_init(./named.conf)
8 Adding 64 template zones
9 update_zone_info('0.0.127.in-addr.arpa', 1)

10 source = db.127.0.0
11 purge_zone(0.0.127.in-addr.arpa,1)
12 reloading zone
13 db_load(db.127.0.0, 0.0.127.in-addr.arpa, 1, Nil, Normal)
14 purge_zone(0.0.127.in-addr.arpa,1)
15 master zone "0.0.127.in-addr.arpa" (IN) loaded (serial 2000091500)
16 zone[1] type 1: '0.0.127.in-addr.arpa' z_time 0, z_refresh 0
17 update_zone_info('.', 3)
18 source = db.cache
19 reloading hint zone
20 db_load(db.cache, , 2, Nil, Normal)
21 purge_zone(,1)
22 hint zone "" (IN) loaded (serial 0)
23 zone[2] type 3: '.' z_time 0, z_refresh 0
24 update_pid_file()
25 getnetconf(generation 969052965)
26 getnetconf: considering lo [127.0.0.1]
27 ifp->addr [127.0.0.1].53 d_dfd 20
28 evSelectFD(ctx 0x80d8148, fd 20, mask 0x1, func 0x805e710, uap 0x40114344)
29 evSelectFD(ctx 0x80d8148, fd 21, mask 0x1, func 0x8089540, uap 0x4011b0e8)
30 listening on [127.0.0.1].53 (lo)
31 getnetconf: considering eth0 [192.249.249.3]
32 ifp->addr [192.249.249.3].53 d_dfd 22
33 evSelectFD(ctx 0x80d8148, fd 22, mask 0x1, func 0x805e710, uap 0x401143b0)
34 evSelectFD(ctx 0x80d8148, fd 23, mask 0x1, func 0x8089540, uap 0x4011b104)
35 listening on [206.168.194.122].53 (eth0)
36 fwd ds 5 addr [0.0.0.0].1085
37 Forwarding source address is [0.0.0.0].1085
38 evSelectFD(ctx 0x80d8148, fd 5, mask 0x1, func 0x805e710, uap 0)
39 evSetTimer(ctx 0x80d8148, func 0x807cbe8, uap 0x40116158, due 969052990.812648000,

inter 0.000000000)
40 exit ns_init()
41 update_pid_file()
42 Ready to answer queries.
43 prime_cache: priming = 0, root = 0
44 evSetTimer(ctx 0x80d8148, func 0x805bc30, uap 0, due 969052969.000000000, inter 0.

000000000)
45 sysquery: send -> [192.33.4.12].53 dfd=5 nsid=32211 id=0 retry=969052969
46 datagram from [192.33.4.12].53, fd 5, len 436
47 13 root servers

We added the line numbers to the debugging output; you won’t see them in yours.
Lines 2–6 give the version of BIND you are running and the name of the configura-
tion file. Version 8.2.3-T 7B was released by ISC (Internet Software Consortium) in
August 2000. We used the configuration file in the current directory, ./named.conf,
for this run.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 13: Reading BIND Debugging Output

Lines 7–23 show BIND reading the configuration file and the zone datafiles. This
nameserver is a caching-only nameserver—the only files read are db.127.0.0 (lines 9–16)
and db.cache (lines 17–23). Line 9 shows the zone being updated (0.0.127.inaddr.arpa),
and line 10 shows the file containing the zone data (db.127.0.0). Line 11 indicates that
any old data for the zone is purged before new data is added. Line 12 says the zone is
being reloaded, even though the zone is actually being loaded for the first time. The
zone data is loaded during lines 13–15. On lines 16 and 23, z_time is the time to check
when this zone is up to date; z_refresh is the zone refresh time. These values matter only
if the nameserver is a slave for the zone.

Lines 25–39 show the initialization of file descriptors. (In this case, they’re really
socket descriptors.) File descriptors 20 and 21 (lines 27–29) are bound to 127.0.0.1,
the loopback address. Descriptor 20 is a datagram socket, and descriptor 21 is a
stream socket. File descriptors 22 and 23 (lines 32–34) are bound to the 192.249.
249.3 interface. Each interface address was considered and used; they would not be
used if the interface had not been initialized or if the address were already in the list.
File descriptor 5 (lines 36–39) is bound to 0.0.0.0, the wildcard address. Most net-
work daemons use only one socket bound to the wildcard address, not sockets
bound to individual interfaces. The wildcard address picks up packets sent to any
interface on the host. Let’s digress for a moment to explain why named uses both a
socket bound to the wildcard address and sockets bound to specific interfaces.

When named receives a request from an application or from another nameserver, it
receives the request on one of the sockets bound to a specific interface. If named did
not have sockets bound to specific interfaces, it would receive the requests on the
socket bound to the wildcard address. When named sends back a response, it uses
the same socket descriptor that the request came in on. Why does named do this?
When responses are sent out via the socket bound to the wildcard address, the ker-
nel fills in the sender’s address with the address of the interface the response was
actually sent out on. This address may or may not be the same address that the
request was sent to. When responses are sent out via the socket bound to a specific
address, the kernel fills in the sender’s address with that specific address—the same
address the request was sent to. If a nameserver gets a response from an IP address it
doesn’t know about, the response is tagged a martian and discarded. named tries to
avoid causing martian responses by sending its responses on descriptors bound to
specific interfaces, so the address it replies from is the same address the request was
sent to. However, when named sends out queries, it uses the wildcard descriptor
because there is no need to use a specific IP address.

Lines 43–47 show the nameserver sending out a system query to find which
nameservers are currently serving the root zone. This is known as priming the cache.
The first server queried sent a response that included 13 nameservers.

The nameserver is now initialized and ready to answer queries.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 383

Nameserver Startup (BIND 9, Debug Level 1)
Here’s what a BIND 9 nameserver looks like starting up. When you start the
nameserver, BIND 9 logs debug messages to named.run in your shell’s current direc-
tory. Then, after BIND 9 has read the configuration file and switches to the directory
in which your database files are stored, it logs debug messages to named.run in that
directory. Here is the named.run from your shell’s current directory:

1 26-Jun-2005 15:34:23.136 starting BIND 9.3.2 -d1
2 26-Jun-2005 15:34:23.232 loading configuration from '/etc/named.conf'
3 26-Jun-2005 15:34:23.247 no IPv6 interfaces found
4 26-Jun-2005 15:34:23.247 listening on IPv4 interface lo, 127.0.0.1#53
5 26-Jun-2005 15:34:23.248 listening on IPv4 interface eth0, 192.249.249.3#53
6 26-Jun-2005 15:34:23.255 command channel listening on 127.0.0.1#953

Lines 1 and 2 show the version of BIND we’re running (9.3.2) and the configuration
file it’s reading.

Line 3 reminds us that our host doesn’t have any IP Version 6 network interfaces; if
it did, BIND 9 could listen on those interfaces for queries.

Lines 4 and 5 show the nameserver listening on two network interfaces: lo, the loop-
back interface, and eth0, the Ethernet interface. BIND 9 displays the address and
port in the format address#port, unlike BIND 8, which uses [address].port. Line 6
shows named listening on port 953, the default port, for control messages.

At this point, BIND 9 reads the configuration file and switches to the directory with
your database files if your configuration file has an options statement that specifies a
new directory, like the one shown here:

options {
 directory "/var/named";
};

Here is the named.run from /var/named:

1 26-Jun-2005 15:34:23.255 now using logging configuration from config file
2 26-Jun-2005 15:34:23.256 load_configuration: success
3 26-Jun-2005 15:34:23.256 zone 0.0.127.IN-ADDR.ARPA/IN: starting load
4 26-Jun-2005 15:34:23.258 zone 0.0.127.IN-ADDR.ARPA/IN: loaded
5 26-Jun-2005 15:34:23.258 zone 0.0.127.IN-ADDR.ARPA/IN: journal rollforward completed

successfully: no journal
6 26-Jun-2005 15:34:23.258 zone 0.0.127.IN-ADDR.ARPA/IN: loaded serial 3
7 26-Jun-2005 15:34:23.258 zone authors.bind/CH: starting load
8 26-Jun-2005 15:34:23.259 zone authors.bind/CH: loaded
9 26-Jun-2005 15:34:23.259 zone hostname.bind/CH: starting load

10 26-Jun-2005 15:34:23.259 zone hostname.bind/CH: loaded
11 26-Jun-2005 15:34:23.259 zone version.bind/CH: starting load
12 26-Jun-2005 15:34:23.259 zone version.bind/CH: loaded
13 26-Jun-2005 15:34:23.260 zone id.server/CH: starting load
14 26-Jun-2005 15:34:23.260 zone id.server/CH: loaded
15 26-Jun-2005 15:34:23.260 dns_zone_maintenance: zone 0.0.127.IN-ADDR.ARPA/IN: enter
16 26-Jun-2005 15:34:23.260 dns_zone_maintenance: zone version.bind/CH: enter

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 13: Reading BIND Debugging Output

17 26-Jun-2005 15:34:23.260 dns_zone_maintenance: zone hostname.bind/CH: enter
18 26-Jun-2005 15:34:23.260 dns_zone_maintenance: zone authors.bind/CH: enter
19 26-Jun-2005 15:34:23.260 dns_zone_maintenance: zone id.server/CH: enter
20 26-Jun-2005 15:34:23.263 running

Lines 3–6 show the nameserver loading 0.0.127.in-addr.arpa. The starting and loaded
messages are self-explanatory. The no journal message indicates that no journal file
was present. (A journal file, described in Chapter 10, is a record of dynamic updates
the nameserver received for the zone.)

Lines 7–14 show the nameserver loading the built-in CHAOSNET zones authors.bind,
hostname.bind, version.bind, and id.server.

Finally, lines 15–19 show the nameserver doing maintenance on its zones. Zone
maintenance is the process that schedules periodic tasks, such as SOA queries for
slave and stub zones or NOTIFY messages.

If you are curious about what is in the built-in CHOASNET zones, you can query
your nameserver for the zone data, as we did here with a dig query for authors.bind,
record type any, class CHAOSNET:

dig @wormhole.movie.edu authors.bind any c
; <<>> DiG 9.3.2 <<>> @wormhole.movie.edu authors.bind any ch
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6822
;; flags: qr aa rd; QUERY: 1, ANSWER: 14, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;authors.bind. CH ANY

;; ANSWER SECTION:
authors.bind. 0 CH TXT "Mark Andrews"
authors.bind. 0 CH TXT "James Brister"
authors.bind. 0 CH TXT "Ben Cottrell"
authors.bind. 0 CH TXT "Michael Graff"
authors.bind. 0 CH TXT "Andreas Gustafsson"
authors.bind. 0 CH TXT "Bob Halley"
authors.bind. 0 CH TXT "David Lawrence"
authors.bind. 0 CH TXT "Danny Mayer"
authors.bind. 0 CH TXT "Damien Neil"
authors.bind. 0 CH TXT "Matt Nelson"
authors.bind. 0 CH TXT "Michael Sawyer"
authors.bind. 0 CH TXT "Brian Wellington"
authors.bind. 86400 CH SOA authors.bind. hostmaster.authors.bind. 0
28800 7200 604800 86400
authors.bind. 0 CH NS authors.bind.

;; Query time: 2 msec
;; SERVER: wormhole.movie.edu#53(192.249.249.1)
;; WHEN: Sun Jun 26 16:30:28 2005
;; MSG SIZE rcvd: 402

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 385

A Successful Lookup (BIND 8, Debug Level 1)
Suppose you want to watch the nameserver look up a name. Your nameserver wasn’t
started with debugging. Use ndc once to turn on debugging, look up the name, then
use it again to turn off debugging, like this:

ndc trace 1
/etc/ping galt.cs.purdue.edu.
ndc notrace

We did this; here’s the resulting named.run file:

datagram from [192.249.249.3].1162, fd 20, len 36

req: nlookup(galt.cs.purdue.edu) id 29574 type=1 class=1
req: missed 'galt.cs.purdue.edu' as '' (cname=0)
forw: forw -> [198.41.0.10].53 ds=4 nsid=40070 id=29574 2ms retry 4sec
datagram from [198.41.0.10].53, fd 4, len 343

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40070
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 9, ADDITIONAL: 9
;; galt.cs.purdue.edu, type = A, class = IN
EDU. 6D IN NS A.ROOT-SERVERS.NET.
EDU. 6D IN NS H.ROOT-SERVERS.NET.
EDU. 6D IN NS B.ROOT-SERVERS.NET.
EDU. 6D IN NS C.ROOT-SERVERS.NET.
EDU. 6D IN NS D.ROOT-SERVERS.NET.
EDU. 6D IN NS E.ROOT-SERVERS.NET.
EDU. 6D IN NS I.ROOT-SERVERS.NET.
EDU. 6D IN NS F.ROOT-SERVERS.NET.
EDU. 6D IN NS G.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 5w6d16h IN A 198.41.0.4
H.ROOT-SERVERS.NET. 5w6d16h IN A 128.63.2.53
B.ROOT-SERVERS.NET. 5w6d16h IN A 128.9.0.107
C.ROOT-SERVERS.NET. 5w6d16h IN A 192.33.4.12
D.ROOT-SERVERS.NET. 5w6d16h IN A 128.8.10.90
E.ROOT-SERVERS.NET. 5w6d16h IN A 192.203.230.10
I.ROOT-SERVERS.NET. 5w6d16h IN A 192.36.148.17
F.ROOT-SERVERS.NET. 5w6d16h IN A 192.5.5.241
G.ROOT-SERVERS.NET. 5w6d16h IN A 192.112.36.4
resp: nlookup(galt.cs.purdue.edu) qtype=1
resp: found 'galt.cs.purdue.edu' as 'edu' (cname=0)
resp: forw -> [192.36.148.17].53 ds=4 nsid=40071 id=29574 1ms
datagram from [192.36.148.17].53, fd 4, len 202

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40071
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 4
;; galt.cs.purdue.edu, type = A, class = IN
PURDUE.EDU. 2D IN NS NS.PURDUE.EDU.
PURDUE.EDU. 2D IN NS MOE.RICE.EDU.
PURDUE.EDU. 2D IN NS PENDRAGON.CS.PURDUE.EDU.
PURDUE.EDU. 2D IN NS HARBOR.ECN.PURDUE.EDU.
NS.PURDUE.EDU. 2D IN A 128.210.11.5
MOE.RICE.EDU. 2D IN A 128.42.5.4

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 13: Reading BIND Debugging Output

PENDRAGON.CS.PURDUE.EDU. 2D IN A 128.10.2.5
HARBOR.ECN.PURDUE.EDU. 2D IN A 128.46.199.76
resp: nlookup(galt.cs.purdue.edu) qtype=1
resp: found 'galt.cs.purdue.edu' as 'cs.purdue.edu' (cname=0)
resp: forw -> [128.46.199.76].53 ds=4 nsid=40072 id=29574 8ms
datagram from [128.46.199.76].53, fd 4, len 234

send_msg -> [192.249.249.3].1162 (UDP 20) id=29574
Debug off

First, notice that IP addresses, not domain names, are logged—odd for a nameserver,
don’t you think? It’s really not that odd, though. If you are trying to debug a prob-
lem with looking up names, you don’t want the nameserver looking up additional
names just to make the debugging output more readable; the extra queries would
interfere with the debugging. None of the debugging levels translate IP addresses into
domain names. You have to use a tool (like the one we provide later) to convert them
for you.

Let’s go through this debugging output line by line. This detailed approach is impor-
tant if you want to understand what each line means. If you turn on debugging,
you’re probably trying to find out why some name can’t be looked up, and you’re
going to have to figure out what the trace means.

datagram from [192.249.249.3].1162, fd 20, len 36

A datagram came from the host with IP address 192.249.249.3 (toystory.movie.edu).
You may see the datagram come from 127.0.0.1 if the sender is on the same host as
the nameserver. The sending application used port 1162. The nameserver received
the datagram on file descriptor (fd) 20. The startup debugging output, like the one
shown earlier, tells you which interface file descriptor 20 is bound to. The length
(len) of the datagram was 36 bytes.

req: nlookup(galt.cs.purdue.edu) id 29574 type=1 class=1

Since the next debugging line starts with req, we know that the datagram was a
request. The name looked up in the request was galt.cs.purdue.edu. The request ID is
29574. The type=1 means the request is for address information. The class=1 means
the class is IN. You can find a complete list of query types and classes in the header
file /usr/ include/arpa/nameser.h.

req: missed 'galt.cs.purdue.edu' as '' (cname=0)

The nameserver looked up the requested name and didn’t find it. It then tried to find
a remote nameserver to ask; none was found until the root zone (the empty quotes).
The cname=0 means the nameserver didn’t encounter a CNAME record. If it does
see a CNAME record, the canonical name is looked up instead of the original name,
and cname will be nonzero.

forw: forw -> [198.41.0.10].53 ds=4 nsid=40070 id=29574 2ms retry 4sec

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 387

The query was forwarded to the nameserver (port 53) on host 198.41.0.10 (j.root-
servers.net). The nameserver used file descriptor 4 (which is bound to the wildcard
address) to send the query. The nameserver tagged this query with ID number 40070
(nsid=40070) so that it could match the response to the original question. The appli-
cation used ID number 29574 (id=29574), as you saw on the nlookup line. The
nameserver will wait four seconds before trying the next nameserver.

datagram from [198.41.0.10].53, fd 4, len 343

The nameserver on j.root-servers.net responded. Since the response was a delega-
tion, it is printed in full in the debug log.

resp: nlookup(galt.cs.purdue.edu) qtype=1

After the information in the response message is cached, the name is looked up
again. As mentioned earlier, qtype=1 means that the nameserver is looking for
address information.

resp: found 'galt.cs.purdue.edu' as 'edu' (cname=0)
resp: forw -> [192.36.148.17].53 ds=4 nsid=40071 id=29574 1ms
datagram from [192.36.148.17].53, fd 4, len 202

The root nameserver responds with a delegation to the edu servers. The same query
is sent to 192.36.148.17 (i.root-servers.net), one of the edu servers. i.root-servers.net
responds with information about the purdue.edu servers.

resp: found 'galt.cs.purdue.edu' as 'cs.purdue.edu' (cname=0)

This time there is some information at the cs.purdue.edu level.

resp: forw -> [128.46.199.76].53 ds=4 nsid=40072 id=29574 8ms

A query is sent to the nameserver on 128.46.199.76 (harbor.ecn.purdue.edu). This
time the nameserver ID is 40072.

datagram from [128.46.199.76].53, fd 4, len 234

The nameserver on harbor.ecn.purdue.edu responded. We have to look at what hap-
pens next to figure out the contents of this response.

send_msg -> [192.249.249.3].1162 (UDP 20) id=29574

The last response must have contained the address requested, since the nameserver
responded to the application (which used port 1162, if you look back at the original
query). The response was in a UDP packet (as opposed to a TCP connection), and it
used file descriptor 20.

This nameserver was “quiet” when we did this trace; it wasn’t handling other que-
ries at the same time. When you do a trace on an active nameserver, though, you
won’t be so lucky. You’ll have to sift through the output and patch together those
pieces that pertain to the lookup in which you are interested. It’s not that hard,
though. Start up your favorite editor, search for the nlookup line with the name you
looked up, then trace the entries with the same nsid. You’ll see how to follow the
nsid in the next BIND 8 trace.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 13: Reading BIND Debugging Output

A Successful Lookup (BIND 9, Debug Level 1)
We’ll show you the debugging output produced by looking up the same domain
name on a BIND 9 nameserver at debug level 1, but it’s almost laughably short. Still,
as we said, it’s important to know what debugging output looks like under correct
operation. Anyway, here goes:

1 28-Jun-2005 21:14:20.554 createfetch: galt.cs.purdue.edu A
2 28-Jun-2005 21:14:20.568 createfetch: . NS

This does in fact show you the query being processed. You will get better data if you
turn on query logging to see the actual queries. After adding the following lines to /etc/
named.conf:

logging {
 category queries {
 default_debug;
 };
};

you get the following debug output:

1 28-Jun-2005 21:16:36.080 client 192.249.249.3#1090: query: galt.cs.purdue.edu IN A +
2 28-Jun-2005 21:16:36.081 createfetch: galt.cs.purdue.edu A
3 28-Jun-2005 21:16:36.081 createfetch: . NS

The first line tells us that a client at IP address 192.249.249.3 (that is, the local host),
running on port 1090, sent us a query for galt.cs.purdue.edu’s address. The + at the end
of the line indicates that recursion was requested. The other lines are logged by the
portion of the nameserver that does name resolution to let us know what it’s up to.

A Successful Lookup with Retransmissions (BIND 8, Debug Level 1)
Not all lookups are as “clean” as the last one: sometimes the query must be retrans-
mitted. The user doesn’t see any difference as long as the lookup succeeds, although
a query involving retransmissions will take longer. Following is a trace where there
are retransmissions. We converted the IP addresses to domain names after the trace
was done. Notice how much easier it is to read with names!

1 Debug turned ON, Level 1
2
3 datagram from toystory.movie.edu port 3397, fd 20, len 35
4 req: nlookup(ucunix.san.uc.edu) id 1 type=1 class=1
5 req: found 'ucunix.san.uc.edu' as 'edu' (cname=0)
6 forw: forw -> i.root-servers.net port 53 ds=4 nsid=2 id=1 0ms retry 4 sec
7
8 datagram from i.root-servers.net port 53, fd 4, len 240

<delegation lines removed>
9 resp: nlookup(ucunix.san.uc.edu) qtype=1

10 resp: found 'ucunix.san.uc.edu' as 'san.uc.edu' (cname=0)
11 resp: forw -> uceng.uc.edu port 53 ds=4 nsid=3 id=1 0ms
12 resend(addr=1 n=0) - > ucbeh.san.uc.edu port 53 ds=4 nsid=3 id=1 0ms
13

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 389

14 datagram from toystory.movie.edu port 3397, fd 20, len 35
15 req: nlookup(ucunix.san.uc.edu) id 1 type=1 class=1
16 req: found 'ucunix.san.uc.edu' as 'san.uc.edu' (cname=0)
17 resend(addr=2 n=0) - > uccba.uc.edu port 53 ds=4 nsid=3 id=1 0ms
18 resend(addr=3 n=0) - > mail.cis.ohio-state.edu port 53 ds=4 nsid=3 id=1 0ms
19
20 datagram from mail.cis.ohio-state.edu port 53, fd 4, len 51
21 send_msg -> toystory.movie.edu (UDP 20 3397) id=1

This trace starts out the same way as the last trace (lines 1–11): the nameserver
receives a query for ucunix.san.uc.edu, sends the query to an edu nameserver (i.root-
servers.net), receives a response that includes a list of nameservers for uc.edu, and
sends the query to one of the uc.edu nameservers (uceng.uc.edu).

What’s new in this trace are the resend lines (lines 12, 17, and 18). The forw on line
11 counts as resend(addr=0 n=0); we CS dweebs always start counting at zero. Since
uceng.uc.edu didn’t respond, the nameserver goes on to try ucbeh.san.uc.edu (line
12), uccba.uc.edu (line 17), and mail.cis.ohio-state.edu (line 18). The off-site
nameserver on mail.cis.ohio-state.edu finally responds (line 20). Notice that you can
track all the retransmissions by searching for nsid=3; that’s important to know,
because lots of other queries may be wedged between these.

Also, notice the second datagram from toystory.movie.edu (line 14). It has the same
port, file descriptor, length, ID, and type as the query on line 3. The application
didn’t receive a response in time, so it retransmitted its original query. Since the
nameserver is still working on the first query transmitted, this one is a duplicate. It
doesn’t say so in this output, but the nameserver detected the duplicate and dropped
it. We can tell because there is no forw: line after the req: lines, as there was on lines
4–6.

Can you guess what this output might look like if the nameserver has trouble look-
ing up a name? You’d see a lot of retransmissions as the nameserver kept trying to
look up the name (which you could track by matching the nsid= lines). You’d see the
application send a couple more retransmissions, thinking that the nameserver hadn’t
received the application’s first query. Eventually, the nameserver would give up, usu-
ally after the application itself gave up.

With a BIND 9.1.0 or later nameserver, you won’t see resends until debug level 3, and
at that point they’ll be very difficult to pick out from BIND 9’s other logged mes-
sages. Moreover, even at debug level 3, BIND 9.1.0 doesn’t tell you which nameserver
it’s resending to.

A Slave Nameserver Checking Its Zone (BIND 8, Debug Level 1)
In addition to tracking down problems with nameserver lookups, you may have to
track down why a slave server is not loading from its master. Tracking down this
problem can often be done by simply comparing the zone’s SOA serial numbers on
the two servers using nslookup or dig, as we’ll show in Chapter 14. If your problem is

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 13: Reading BIND Debugging Output

more elusive, you may have to resort to looking at the debugging information. We’ll
show you what the debugging information should look like if your server is running
normally.

This debugging output was generated on a “quiet” nameserver—one not receiving
any queries—to show you exactly which lines pertain to zone maintenance. Remem-
ber that a BIND 8 slave nameserver uses a child process to transfer the zone data to
the local disk before reading it in. While the slave logs its debugging information to
named.run, the slave’s child process logs its debugging information to xfer.ddt.PID.
The PID suffix, by default the process ID of the child process, may be changed to
ensure that the filename is unique. Beware—turning on debugging on a slave
nameserver will leave xfer.ddt.PID files lying around, even if you are only trying to
trace a lookup. Our trace is at debugging level 1, and we turned on the BIND 8 log-
ging option print-time. Debug level 3 gives you more information, more than you
may want if a transfer actually occurs. A debugging level 3 trace of a zone transfer of
several hundred resource records can create an xfer.ddt.PID file several megabytes in
size.

21-Feb 00:13:18.026 do_zone_maint for zone movie.edu (class IN)
21-Feb 00:13:18.034 zone_maint('movie.edu')
21-Feb 00:13:18.035 qserial_query(movie.edu)
21-Feb 00:13:18.043 sysquery: send -> [192.249.249.3].53 dfd=5
 nsid=29790 id=0 retry=888048802
21-Feb 00:13:18.046 qserial_query(movie.edu) QUEUED
21-Feb 00:13:18.052 next maintenance for zone 'movie.edu' in 2782 sec
21-Feb 00:13:18.056 datagram from [192.249.249.3].53, fd 5, len 380
21-Feb 00:13:18.059 qserial_answer(movie.edu, 26739)
21-Feb 00:13:18.060 qserial_answer: zone is out of date
21-Feb 00:13:18.061 startxfer() movie.edu
21-Feb 00:13:18.063 /usr/etc/named-xfer -z movie.edu -f db.movie
 -s 26738 -C 1 -P 53 -d 1 -l xfer.ddt 192.249.249.3
21-Feb 00:13:18.131 started xfer child 390
21-Feb 00:13:18.132 next maintenance for zone 'movie.edu' in 7200 sec

21-Feb 00:14:02.089 endxfer: child 390 zone movie.edu returned
 status=1 termsig=-1
21-Feb 00:14:02.094 loadxfer() "movie.edu"
21-Feb 00:14:02.094 purge_zone(movie.edu,1)

21-Feb 00:14:30.049 db_load(db.movie, movie.edu, 2, Nil)
21-Feb 00:14:30.058 next maintenance for zone 'movie.edu' in 1846 sec

21-Feb 00:17:12.478 slave zone "movie.edu" (IN) loaded (serial 26739)
21-Feb 00:17:12.486 no schedule change for zone 'movie.edu'

21-Feb 00:42:44.817 Cleaned cache of 0 RRs

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Reading Debugging Output | 391

21-Feb 00:45:16.046 do_zone_maint for zone movie.edu (class IN)
21-Feb 00:45:16.054 zone_maint('movie.edu')
21-Feb 00:45:16.055 qserial_query(movie.edu)
21-Feb 00:45:16.063 sysquery: send -> [192.249.249.3].53 dfd=5
 nsid=29791 id=0 retry=888050660
21-Feb 00:45:16.066 qserial_query(movie.edu) QUEUED
21-Feb 00:45:16.067 next maintenance for zone 'movie.edu' in 3445 sec
21-Feb 00:45:16.074 datagram from [192.249.249.3].53, fd 5, len 380
21-Feb 00:45:16.077 qserial_answer(movie.edu, 26739)
21-Feb 00:45:16.078 qserial_answer: zone serial is still OK
21-Feb 00:45:16.131 next maintenance for zone 'movie.edu' in 2002 sec

Unlike the previous traces, each line in this trace has a timestamp. The timestamp
makes it clear which debug statements are grouped together.

This nameserver is a slave for a single zone, movie.edu. The line with time 00:13:18.026
shows that it is time to check with the master server. The server queries for the zone’s
SOA record and compares serial numbers before deciding to load the zone. The lines
with times 00:13:18.059 through 00:13:18.131 show the zone’s serial number (26739),
show that the zone is out of date, and start a child process (pid 390) to transfer the
zone. At time 00:13:18.132, a timer is set to expire 7,200 seconds later. This is the
amount of time the server allows for a transfer to complete. At time 00:14:02.089, you
see the exit status of the child process. The status of 1 indicates that the zone data was
successfully transferred. The old zone data is purged (time 00:14:02.094), and the new
data is loaded.

The next maintenance (see time 00:14:30.058) is scheduled for 1,846 seconds later.
For this zone, the refresh interval is 3,600, but the nameserver chose to check again
in 1,846 seconds. Why? The nameserver is trying to avoid having its refresh timer
become synchronized. Instead of using 3,600 exactly, it uses a random time between
half the refresh interval (1,800) and the full refresh interval (3,600). At 00:45:16.046,
the zone is checked again, and this time it is up to date.

If your trace ran long enough, you’d see more lines like the one at 00:42:44.817—
one line each hour. What’s happening is that the server is making a pass through its
cache, freeing any data that has expired to reduce the amount of memory used.

The master server for this zone is a BIND 4 nameserver. If the master is a BIND 8
nameserver, the slave is notified when the zone changes rather than waiting for the
refresh interval to pass. The slave server’s debug output looks almost exactly the
same, but the trigger to check the zone status is a NOTIFY:

rcvd NOTIFY(movie.edu, IN, SOA) from [192.249.249.3].1059
qserial_query(movie.edu)
sysquery: send -> [192.249.249.3].53 dfd=5
 nsid=29790 id=0 retry=888048802

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 13: Reading BIND Debugging Output

A Slave Nameserver Checking Its Zone (BIND 9 Debug Level 1)
The equivalent debugging output from a BIND 9.3.1 nameserver at level 1 is, as
usual, more concise. Here’s what it looks like:

04-Jul-2005 15:05:00.059 zone_timer: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.059 zone_maintenance: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.059 queue_soa_query: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.059 soa_query: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.061 refresh_callback: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.062 refresh_callback: zone movie.edu/IN: Serial: new 2005010923,
 old 2005010922
04-Jul-2005 15:05:00.062 queue_xfrin: zone movie.edu/IN: enter
04-Jul-2005 15:05:00.062 zone movie.edu/IN: Transfer started.
04-Jul-2005 15:05:00.062 zone movie.edu/IN: requesting IXFR from 192.249.249.3#53
04-Jul-2005 15:05:00.063 transfer of 'movie.edu/IN' from 192.249.249.3#53:
 connected using 192.249.249.2#1106
04-Jul-2005 15:05:00.070 calling free_rbtdb(movie.edu)
04-Jul-2005 15:05:00.070 zone movie.edu/IN: zone transfer finished: success
04-Jul-2005 15:05:00.070 zone movie.edu/IN: transferred serial 5
04-Jul-2005 15:05:00.070 transfer of 'movie.edu' from 192.249.249.3#53: end of
 transfer
04-Jul-2005 15:05:01.089 zone_timer: zone movie.edu/IN: enter
04-Jul-2005 15:05:01.089 zone_maintenance: zone movie.edu/IN: enter
04-Jul-2005 15:05:19.121 notify_done: zone movie.edu/IN: enter
04-Jul-2005 15:05:19.621 notify_done: zone movie.edu/IN: enter

The message at 15:05:00.059 shows the refresh timer popping, causing the nameserver
to begin maintenance for the zone on the next line. First, the nameserver queues a
query for the SOA record for the IN class zone movie.edu (queue_soa_query at the same
timestamp), which it sends. At 15:05:00.062, the nameserver finds that the master
nameserver has a higher serial number than it does (2005010923 to its 2005010922),
so it queues an inbound zone transfer (queue_xfrin). All of eight milliseconds later (at
15:05:00.070), the transfer is done, and at 15:05:01.089, the nameserver resets the
refresh timer (zone_timer).

The next three lines show the nameserver doing maintenance on movie.edu again. If,
for example, some of movie.edu’s nameservers were outside the movie.edu zone, the
nameserver would use this opportunity to look up their addresses (not just A, but
also A6 and AAAA records!) so that it could include them in future responses. On
the last two lines, our nameserver sends NOTIFY messages—two, to be exact—to
the nameservers listed in the NS records for movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

The Resolver Search Algorithm and Negative Caching (BIND 8) | 393

The Resolver Search Algorithm and Negative Caching
(BIND 8)
In this trace, we’ll show you what the BIND search algorithm and negative caching
look like from the perspective of a BIND 8 nameserver. We could look up galt.cs.pur-
due.edu like the last trace, but it wouldn’t show the search algorithm. Instead, we
will look up foo.bar, a name that doesn’t exist. In fact, we’ll look it up twice:

1 datagram from cujo.horror.movie.edu 1109, fd 6, len 25
2 req: nlookup(foo.bar) id 19220 type=1 class=1
3 req: found 'foo.bar' as '' (cname=0)
4 forw: forw -> D.ROOT-SERVERS.NET 53 ds=7 nsid=2532 id=19220 0ms retry 4sec
5
6 datagram from D.ROOT-SERVERS.NET 53, fd 5, len 25
7 ncache: dname foo.bar, type 1, class 1
8 send_msg -> cujo.horror.movie.edu 1109 (UDP 6) id=19220
9

10 datagram from cujo.horror.movie.edu 1110, fd 6, len 42
11 req: nlookup(foo.bar.horror.movie.edu) id 19221 type=1 class=1
12 req: found 'foo.bar.horror.movie.edu' as 'horror.movie.edu' (cname=0)
13 forw: forw -> carrie.horror.movie.edu 53 ds=7 nsid=2533 id=19221 0ms

 retry 4sec
14 datagram from carrie.horror.movie.edu 53, fd 5, len 42
15 ncache: dname foo.bar.horror.movie.edu, type 1, class 1
16 send_msg -> cujo.horror.movie.edu 1110 (UDP 6) id=19221

Look up foo.bar again:

17 datagram from cujo.horror.movie.edu 1111, fd 6, len 25
18 req: nlookup(foo.bar) id 15541 type=1 class=1
19 req: found 'foo.bar' as 'foo.bar' (cname=0)
20 ns_req: answer -> cujo.horror.movie.edu 1111 fd=6 id=15541 size=25 Local
21
22 datagram from cujo.horror.movie.edu 1112, fd 6, len 42
23 req: nlookup(foo.bar.horror.movie.edu) id 15542 type=1 class=1
24 req: found 'foo.bar.horror.movie.edu' as 'foo.bar.horror.movie.edu' (cname=0)
25 ns_req: answer -> cujo.horror.movie.edu 1112 fd=6 id=15542 size=42 Local

Let’s look at the resolver search algorithm. The first name looked up (line 2) is exactly
the name we typed in. Since the name had at least one dot, it is looked up without
modification. When that name lookup failed, horror.movie.edu was appended to the
name and looked up.

Line 7 shows the caching of the negative answer (ncache). If the same name is looked
up again in the next few minutes (line 19), the nameserver still has the negative
response in its cache, so the server can answer immediately that the name doesn’t
exist. (If you don’t believe this hand-waving, compare lines 3 and 19. On line 3,
nothing was found for foo.bar, but line 19 shows the whole name being found.)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 13: Reading BIND Debugging Output

The Resolver Search Algorithm and Negative Caching
(BIND 9)
Here’s what a BIND 9.3.1 nameserver’s debugging output looks like when looking
up foo.bar twice:

04-Jul-2005 15:45:42.944 client cujo.horror.movie.edu#1044: query: foo.bar A +
04-Jul-2005 15:45:42.945 createfetch: foo.bar. A
04-Jul-2005 15:45:42.945 createfetch: . NS
04-Jul-2005 15:45:43.425 client cujo.horror.movie.edu#1044: query:
 foo.bar.horror.movie.edu A +
04-Jul-2005 15:45:43.425 createfetch: foo.bar.horror.movie.edu. A

This assumes, of course, that you added the following lines to /etc/named.conf to see
the queries:

logging {
 category queries {
 default_debug;
 };
};

This output is more subtle and succinct than BIND 8’s, but you can get the infor-
mation you need from it. The first line, at 15:45:42.944, shows the initial query for
foo.bar’s address arriving from the client cujo.horror.movie.edu (remember, we ran
this through our magic IP-to-name filter, which we’ll introduce next). The next two
lines show the nameserver dispatching two tasks (createfetch) to look up foo.bar:
the first is the actual task to look up foo.bar’s address, while the second is a subsid-
iary task to look up NS records for the root zone, necessary to complete the foo.bar
lookup. Once the nameserver has current NS records for the root, it queries a root
nameserver for foo.bar’s address and gets a response indicating that no top-level
domain called bar exists. Unfortunately, you don’t see that.

The line at 15:45:43.425 shows cujo.horror.movie.edu applying the search list, look-
ing up foo.bar.horror.movie.edu. This causes the nameserver to dispatch a task (cre-
atefetch) to look up that domain name.

When we look up foo.bar again, we see:

04-Jul-2005 15:45:46.557 client cujo.horror.movie.edu#1044: query: foo.bar A +
04-Jul-2005 15:45:46.558 client cujo.horror.movie.edu#1044: query:
 foo.bar.horror.movie.edu A +

Notice the absence of createfetch entries? That’s because our nameserver has the neg-
ative answers cached.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Tools | 395

Tools
Let’s wrap up loose ends. We told you about our tool to convert IP addresses to
names so that your debugging output is easier to read. Here is such a tool written in
Perl:

#!/usr/bin/perl -n

use "Socket";

if (/\b)(\d+\.\d+\.\d+\.\d+)\b/) {
$addr = pack('C4', split(/\./, $1));
($name, $rest) = gethostbyaddr($addr, &AF_INET);
if($name) {s/$1/$name/};
}

print;

It’s best not to pipe named.run output into this script with debugging on because the
script will generate its own queries to the nameserver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

396

Chapter 14CHAPTER 14

Troubleshooting DNS and BIND 14

“Of course not,” said the Mock Turtle. “Why, if a fish
came to me, and told me he was going on a journey, I
should say, ‘With what porpoise?’”
“Don’t you mean ‘purpose’?” said Alice.
“I mean what I say,” the Mock Turtle replied, in an
offended tone. And the Gryphon added, “Come, let’s
hear some of your adventures.”

In the last two chapters, we’ve demonstrated how to use nslookup and dig, and how
to read the nameserver’s debugging information. In this chapter, we’ll show you how
to use these tools—plus traditional Unix networking tools like trusty ol’ ping—to
troubleshoot real-life problems with DNS and BIND.

Troubleshooting, by its nature, is a tough subject to teach. You start with any of a
world of symptoms and try to work your way back to the cause. We can’t cover the
whole gamut of problems you may encounter on the Internet, but we will certainly
do our best to show how to diagnose the most common of them. And along the way,
we hope to teach you troubleshooting techniques that will be valuable in tracking
down more obscure problems that we don’t document.

Is NIS Really Your Problem?
Before we launch into a discussion of how to troubleshoot a DNS or BIND problem,
we should make sure you know how to tell whether a problem is caused by DNS as
opposed to NIS. On hosts running NIS, figuring out whether the culprit is DNS or
NIS can be difficult. The stock BSD nslookup, for example, doesn’t pay any attention
to NIS. You can run nslookup on a Sun and query the nameserver ’til the cows come
home while all the other services are using NIS.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 397

How do you know where to put the blame? Some vendors have modified nslookup to
use NIS for name service if NIS is configured. The HP-UX nslookup, for example, will
report that it’s querying an NIS server when it starts up:

% nslookup
Default NIS Server: toystory.movie.edu
Address: 192.249.249.3

>

A surefire way to decide whether an answer came from NIS is to use ypcat to list the
hosts database. For example, to find out whether andrew.cmu.edu is in your NIS
hosts map, you could execute:

% ypcat hosts | grep andrew.cmu.edu

If you find the answer in NIS (and you know NIS is being consulted first), you’ve
found the cause of the problem.

Finally, in the versions of Unix that use the nsswitch.conf file, you can determine the
order in which the different name services are used by referring to the entry for the
hosts database in the file. An entry like this, for example, indicates that NIS is being
checked first:

hosts: nis dns files

while this entry has the name resolver querying DNS first:

hosts: dns nis files

For more detailed information on the syntax and semantics of the nsswitch.conf file,
see Chapter 6.

These hints should help you identify the guilty party or at least exonerate one sus-
pect. If you narrow down the suspects and DNS is still implicated, you’ll just have to
read this chapter.

Troubleshooting Tools and Techniques
We went over nslookup, dig, and the nameserver’s debugging output in the last two
chapters. Before we go on, let’s introduce some new tools that can be useful in trou-
bleshooting: named-xfer, nameserver database dumps, and query logging.

How to Use named-xfer
named-xfer is the program that BIND 8 nameservers start to perform zone transfers.
(BIND 9 nameservers, you’ll remember, are multithreaded, so they don’t need a sep-
arate program to do inbound zone transfers; they just start a new thread.) named-
xfer checks whether the slave’s copy of the zone data is up to date and transfers a
new zone if necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 14: Troubleshooting DNS and BIND

In Chapter 13, we showed you the debugging output a BIND 8 slave nameserver
logged as it checked its zone. When the slave server transferred the zone, it started a
child process (named-xfer) to pull the data to the local filesystem. We didn’t tell you,
however, that you can also start named-xfer manually instead of waiting for named to
start it, and that you can tell it to produce debugging output independent of named.

This can be useful if you’re tracking down a problem with zone transfers but don’t
want to wait for named to schedule one. To test a zone transfer manually, you need
to specify a number of command-line options:

% /usr/sbin/named-xfer
Usage error: no domain
Usage: named-xfer
 -z zone_to_transfer
 -f db_file
 [-i ixfr_file]
 [-s serial_no]
 [-d debug_level]
 [-l debug_log_file]
 [-t trace_file]
 [-p port]
 [-S] [-Z]
 [-C class]
 [-x axfr-src]
 [-X axfr-src-v6]
 [-T tsig_info_file]
 servers [-ixfr|-axfr]...

This is the output from a BIND 8.4.7 version of named-xfer. Earlier versions of
named-xfer won’t have all these options.

When named starts named-xfer, it specifies the –z option (the zone named wants to
check), the –f option (the name of the zone datafile that corresponds to the zone,
from named.conf), the –s option (the zone’s serial number on the slave from the cur-
rent SOA record), and the addresses of the servers the slave was instructed to load
from (the IP addresses from the masters substatement in the zone statement in
named.conf). If named is running in debug mode, it also specifies the debug level for
named-xfer with the –d option. The other options aren’t usually necessary to trouble-
shoot problems; they have to do with incremental zone transfers, TSIG signing zone
transfers, and such.

When you run named-xfer manually, you can also specify the debug level on the com-
mand line with –d. (Don’t forget, though, that debug levels above 3 produce tons of
debugging output if the transfer succeeds!) You can also specify an alternate filename
for the debug file with the –l option. The default log file is /var/tmp/xfer.ddt.XXXXXX,
where XXXXXX is a suffix appended to preserve uniqueness or a file by the same name
in /usr/tmp. And you can specify the name of the host to load from instead of its IP
address.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 399

For example, with the following command line, you can see whether zone transfers
from toystory.movie.edu are working:

% /usr/sbin/named-xfer -z movie.edu -f /tmp/db.movie -s 0 toystory.movie.edu.
% echo $?
4

In this command, we specified a serial number of 0 because we wanted to force
named-xfer to attempt a zone transfer even if it wasn’t needed. If 0 is higher than
movie.edu’s serial number on toystory (remember, serial numbers use sequence space
arithmetic), we’d need to choose a different number. Also, we told named-xfer to put
the new zone datafile in /tmp rather than overwrite the zone’s working zone datafile.

We can tell if the transfer succeeded by looking at named-xfer’s return value. If
you’re running BIND 8.1.2 or older, your named-xfer has four possible return values:

0 The zone data is up to date and no transfer was needed.

1 Indicates a successful transfer.

2 The host(s) named-xfer queried can’t be reached, or an error occurred and
named-xfer may have logged an error message to syslog.

3 An error occurred and named-xfer logged an error message to syslog.

As of BIND 8.2, four new return values have been added to accommodate incremen-
tal zone transfers:

4 Indicates a successful AXFR (full) zone transfer

5 Indicates a successful IXFR (incremental) zone transfer

6 Indicates that the master nameserver returned an AXFR to named-xfer’s IXFR
request

7 Indicates that the transfer was refused

It’s perfectly legal for a nameserver—even one that supports IXFR—to return a full
zone transfer to a request for an incremental zone transfer. For example, the master
nameserver may be missing part of the record of the changes made to the zone.

Note that BIND 8.2 and later named-xfers don’t use return value 1 anymore. Return
value 1 has been replaced by return values 4–7.

What if I Don’t Have named-xfer?
If you’ve upgraded to BIND 9 and don’t have a named-xfer binary, you can still use
nslookup or dig to do a zone transfer. Either query tool will give you some of the
information that named-xfer would have given you.

For example, to use dig to do the same zone transfer we showed you earlier, you can
run:

% dig @toystory.movie.edu movie.edu. axfr

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 14: Troubleshooting DNS and BIND

With nslookup, you can change your nameserver and use the ls –d command from
interactive mode.

Unfortunately, both dig and nslookup are more limited than named-xfer is in report-
ing errors. If nslookup can’t transfer a zone, it usually reports an “unspecified error”:

> ls movie.edu.
[toystory.movie.edu]
*** Can't list domain movie.edu: Unspecified error

This could be caused by an allow-transfer access list, the fact that toystory.movie.edu
isn’t actually authoritative for movie.edu, or a number of other problems. To tell
which, you may just have to send other, related queries or check the syslog output on
the master nameserver.

How to Read a BIND 8 Database Dump
Poring over a dump of the nameserver’s internal database—including cached informa-
tion—can also help you track down problems. The ndc dumpdb command causes
named to dump its authoritative data, cached data, and hints data to named_dump.db
in BIND’s working directory.* An example of a named_dump.db file follows. The
authoritative data and cached entries, mixed together, appear first in the file. At the
end of the file is the hints data.

; Dumped at Tue Jan 6 10:49:08 1998
;; ++zone table++
; 0.0.127.in-addr.arpa (type 1, class 1, source db.127.0.0)
; time=0, lastupdate=0, serial=1,
; refresh=0, retry=3600, expire=608400, minimum=86400
; ftime=884015430, xaddr=[0.0.0.0], state=0041, pid=0
;; --zone table--
; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's
; Note: NT=milliseconds for any A RR which we've used as a nameserver
; --- Cache & Data ---
$ORIGIN .
. 518375 IN NS G.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS J.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS K.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS L.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS M.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS A.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS H.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS B.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS C.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS D.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS E.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS I.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]
 518375 IN NS F.ROOT-SERVERS.NET. ;Cr=auth [128.8.10.90]

* BIND 9.1.0 is the first version of BIND 9 to support dumping the database.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 401

EDU 86393 IN SOA A.ROOT-SERVERS.NET. hostmaster.INTERNIC.NET. (
 1998010500 1800 900 604800 86400) ;Cr=addtnl [128.63.2.53]
$ORIGIN 0.127.in-addr.arpa.
0 IN SOA cujo.movie.edu. root.cujo.movie.edu. (
 1998010600 10800 3600 608400 86400) ;Cl=5
 IN NS cujo.movie.edu. ;Cl=5
$ORIGIN 0.0.127.in-addr.arpa.
1 IN PTR localhost. ;Cl=5
$ORIGIN EDU.
PURDUE 172787 IN NS NS.PURDUE.EDU. ;Cr=addtnl [192.36.148.17]
 172787 IN NS MOE.RICE.EDU. ;Cr=addtnl [192.36.148.17]
 172787 IN NS PENDRAGON.CS.PURDUE.EDU. ;Cr=addtnl [192.36.148.17]
 172787 IN NS HARBOR.ECN.PURDUE.EDU. ;Cr=addtnl [192.36.148.17]
$ORIGIN movie.EDU.
;cujo 593 IN SOA A.ROOT-SERVERS.NET. hostmaster.INTERNIC. NET. (
; 1998010500 1800 900 604800 86400);EDU.; NXDOMAIN ;-$
 ;Cr=auth [128.63.2.53]
$ORIGIN RICE.EDU.
MOE 172787 IN A 128.42.5.4 ;NT=84 Cr=addtnl [192.36.148.17]
$ORIGIN PURDUE.EDU.
CS 86387 IN NS pendragon.cs.PURDUE.edu. ;Cr=addtnl [128.42.5.4]
 86387 IN NS ns.PURDUE.edu. ;Cr=addtnl [128.42.5.4]
 86387 IN NS harbor.ecn.PURDUE.edu. ;Cr=addtnl [128.42.5.4]
 86387 IN NS moe.rice.edu. ;Cr=addtnl [128.42.5.4]
NS 172787 IN A 128.210.11.5 ;NT=4 Cr=addtnl [192.36.148.17]
$ORIGIN ECN.PURDUE.EDU.
HARBOR 172787 IN A 128.46.199.76 ;NT=6 Cr=addtnl [192.36.148.17]
$ORIGIN CS.PURDUE.EDU.
galt 86387 IN A 128.10.2.39 ;Cr=auth [128.42.5.4]
PENDRAGON 172787 IN A 128.10.2.5 ;NT=20 Cr=addtnl [192.36.148.17]
$ORIGIN ROOT-SERVERS.NET.
K 604775 IN A 193.0.14.129 ;NT=10 Cr=answer [128.8.10.90]
A 604775 IN A 198.41.0.4 ;NT=20 Cr=answer [128.8.10.90]
L 604775 IN A 198.32.64.12 ;NT=8 Cr=answer [128.8.10.90]
B 604775 IN A 128.9.0.107 ;NT=9 Cr=answer [128.8.10.90]
M 604775 IN A 202.12.27.33 ;NT=20 Cr=answer [128.8.10.90]
C 604775 IN A 192.33.4.12 ;NT=17 Cr=answer [128.8.10.90]
D 604775 IN A 128.8.10.90 ;NT=11 Cr=answer [128.8.10.90]
E 604775 IN A 192.203.230.10 ;NT=9 Cr=answer [128.8.10.90]
F 604775 IN A 192.5.5.241 ;NT=73 Cr=answer [128.8.10.90]
G 604775 IN A 192.112.36.4 ;NT=14 Cr=answer [128.8.10.90]
H 604775 IN A 128.63.2.53 ;NT=160 Cr=answer [128.8.10.90]
I 604775 IN A 192.36.148.17 ;NT=102 Cr=answer [128.8.10.90]
J 604775 IN A 198.41.0.10 ;NT=21 Cr=answer [128.8.10.90]
; --- Hints ---
$ORIGIN .
. 3600 IN NS A.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS B.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS C.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS D.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS E.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS F.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS G.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS H.ROOT-SERVERS.NET. ;Cl=0

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 14: Troubleshooting DNS and BIND

 3600 IN NS I.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS J.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS K.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS L.ROOT-SERVERS.NET. ;Cl=0
 3600 IN NS M.ROOT-SERVERS.NET. ;Cl=0
$ORIGIN ROOT-SERVERS.NET.
K 3600 IN A 193.0.14.129 ;NT=11 Cl=0
L 3600 IN A 198.32.64.12 ;NT=9 Cl=0
A 3600 IN A 198.41.0.4 ;NT=10 Cl=0
M 3600 IN A 202.12.27.33 ;NT=11 Cl=0
B 3600 IN A 128.9.0.107 ;NT=1288 Cl=0
C 3600 IN A 192.33.4.12 ;NT=21 Cl=0
D 3600 IN A 128.8.10.90 ;NT=1288 Cl=0
E 3600 IN A 192.203.230.10 ;NT=19 Cl=0
F 3600 IN A 192.5.5.241 ;NT=23 Cl=0
G 3600 IN A 192.112.36.4 ;NT=18 Cl=0
H 3600 IN A 128.63.2.53 ;NT=11 Cl=0
I 3600 IN A 192.36.148.17 ;NT=21 Cl=0
J 3600 IN A 198.41.0.10 ;NT=13 Cl=0

The nameserver that created this named_dump.db file was authoritative only for 0.0.
127.in-addr.arpa. Only two names have been looked up by this server: galt.cs.pur-
due.edu and cujo.movie.edu. In the process of looking up galt.cs.purdue.edu, this
server cached not only the address of galt, but also the list of nameservers for pur-
due.edu and the addresses for those servers. The name cujo.movie.edu, however,
doesn’t really exist (nor does the zone movie.edu, except in our examples), so the
server cached the negative response. In the dump file, the negative response is com-
mented out (the line starts with a semicolon), and the reason is listed (NXDO-
MAIN) instead of real data. You’ll notice the TTL is quite low (593). On BIND 8.2
and later nameservers, negative responses are cached according to the last field in
the SOA record, which is usually much smaller than the default TTL for the zone.

The hints section at the bottom of the file contains the data from the db.cache file.
The TTL of the hints data is decremented, and it may go to 0, but the hints are never
discarded.

Note that some of the resource records are followed by a semicolon and NT=. You
will only see these on the address records of nameservers. The number is the round-
trip time calculation that the nameserver keeps so that it knows which nameservers
have responded most quickly in the past; the nameserver with the lowest round-trip
time will be tried first the next time.

The cached data is easy to pick out: those entries have a tag (Cr=) and (sometimes)
the IP address of the server the data came from.* The zone data and hint data are

* The nameserver prints the IP address of the remote nameserver if it’s available. On BIND 8.2 and later
nameservers, the IP address is available only if you’ve turned on host-statistics, which we introduced in
Chapter 8. On earlier BIND 8 nameservers, it’s on by default. host-statistics keeps impressive statistics on
every nameserver and resolver you’ve ever communicated with, which is very useful for some purposes (such
as figuring out which nameserver your server got a record from) but consumes a fair amount of memory.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 403

tagged with Cl=, which is just a count of the level in the domain tree (the root is level
0, foo would be level 1, foo.foo would be level 2, etc.). Let’s digress a moment to
explain the concept of credibility.

One of the advances between BIND 4.8.3 and 4.9 was the addition of a credibility
measure. This allows a nameserver to make more intelligent decisions about what to
do with new data from a remote server.

A 4.8.3 nameserver had only two credibility levels: locally authoritative data and
everything else. The locally authoritative data was data from your zone datafiles;
your nameserver knew better than to update its internal copy of what came from
your zone file. But all data from remote nameservers was considered equal.

Here is a situation that could happen and the way a 4.8.3 server would deal with it.
Suppose that your server looked up an address for toystory.movie.edu and received an
authoritative answer from the movie.edu nameserver. (Remember, an authoritative
answer is the best you can get.) Sometime later, while looking up foo.oreilly.com, your
server receives another address record for toystory.movie.edu, but this time as part of
the delegation information for oreilly.com (which toystory.movie.edu is a slave for).
The 4.8.3 nameserver would update the cached address record for toystory.movie.edu,
even though the data came from the com nameserver instead of the authoritative
movie.edu nameserver. Of course, the com and movie.edu nameservers will have
exactly the same data for toystory.movie.edu, so this won’t be a problem, right? Yeah,
and it never rains in southern California, either.

A 4.9 or newer nameserver is more intelligent. Like a 4.8.3 nameserver, it still consid-
ers your zone data unassailable—beyond any doubt. But a 4.9 or newer nameserver
distinguishes among the different data from remote nameservers. Here is the hierar-
chy of remote data credibility from most credible to least:

auth
These records are data from authoritative answers—the answer section of a
response message with the authoritative answer bit set.

answer
These records are data from nonauthoritative, or cached, answers—the answer
section of a response message without the authoritative answer bit set.

addtnl
These records are data from the rest of the response message—the authority and
additional sections. The authority section of the response contains NS records
that delegate a zone to an authoritative nameserver. The additional section con-
tains address records that may complete information in other sections (e.g.,
address records that go with NS records in the authority section).

There is one exception to this rule: when the nameserver is priming its root
nameserver cache, the records that would be at credibility addtnl are bumped up to
answer to make them harder to change accidentally. Notice in the dump that the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 14: Troubleshooting DNS and BIND

address records for root nameservers are at credibility answer, but the address
records for the purdue.edu nameservers are at credibility addtnl.

In the situation just described, a 4.9 or newer nameserver would not replace the
authoritative data (credibility = auth) for toystory.movie.edu with the delegation data
(credibility = addtnl) because the authoritative answer would have higher credibility.

How to Read a BIND 9 Database Dump
With BIND 9, the database dump changed significantly. Here is the result of run-
ning rndc dumpdb. The nameserver dumps its cache data to named_dump.db in
BIND’s working directory. What you don’t see in this dump is the authoritative data.
To get that, you must run rndc dumpdb –all.

;
; Start view _default
;
;
; Cache dump of view '_default'
;
$DATE 20050827190436
; authanswer
. 518364 IN NS A.ROOT-SERVERS.NET.
 518364 IN NS B.ROOT-SERVERS.NET.
 518364 IN NS C.ROOT-SERVERS.NET.
 518364 IN NS D.ROOT-SERVERS.NET.
 518364 IN NS E.ROOT-SERVERS.NET.
 518364 IN NS F.ROOT-SERVERS.NET.
 518364 IN NS G.ROOT-SERVERS.NET.
 518364 IN NS H.ROOT-SERVERS.NET.
 518364 IN NS I.ROOT-SERVERS.NET.
 518364 IN NS J.ROOT-SERVERS.NET.
 518364 IN NS K.ROOT-SERVERS.NET.
 518364 IN NS L.ROOT-SERVERS.NET.
 518364 IN NS M.ROOT-SERVERS.NET.
; glue
A3.NSTLD.COM. 172764 A 192.5.6.32
; glue
C3.NSTLD.COM. 172764 A 192.26.92.32
; glue
D3.NSTLD.COM. 172764 A 192.31.80.32
; glue
E3.NSTLD.COM. 172764 A 192.12.94.32
; glue
G3.NSTLD.COM. 172764 A 192.42.93.32
; glue
H3.NSTLD.COM. 172764 A 192.54.112.32
; glue
L3.NSTLD.COM. 172764 A 192.41.162.32
; glue
M3.NSTLD.COM. 172764 A 192.55.83.32
; glue

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 405

edu. 172764 NS A3.NSTLD.COM.
 172764 NS C3.NSTLD.COM.
 172764 NS D3.NSTLD.COM.
 172764 NS E3.NSTLD.COM.
 172764 NS G3.NSTLD.COM.
 172764 NS H3.NSTLD.COM.
 172764 NS L3.NSTLD.COM.
 172764 NS M3.NSTLD.COM.
; authauthority
cujo.movie.edu. 10796 \-ANY ;-$NXDOMAIN
; glue
purdue.edu. 172764 NS NS.purdue.edu.
 172764 NS MOE.RICE.edu.
 172764 NS HARBOR.ECN.purdue.edu.
 172764 NS PENDRAGON.cs.purdue.edu.
; authauthority
cs.purdue.edu. 86364 NS ns.purdue.edu.
 86364 NS moe.rice.edu.
 86364 NS ns2.purdue.edu.
 86364 NS harbor.ecn.purdue.edu.
 86364 NS pendragon.cs.purdue.edu.
; authanswer
galt.cs.purdue.edu. 86364 A 128.10.2.39
; glue
PENDRAGON.cs.purdue.edu. 172764 A 128.10.2.5
; glue
HARBOR.ECN.purdue.edu. 172764 A 128.46.154.76
; glue
NS.purdue.edu. 172764 A 128.210.11.5
; additional
ns2.purdue.edu. 3564 A 128.210.11.57
; glue
MOE.RICE.edu. 172764 A 128.42.5.4
; additional
A.ROOT-SERVERS.NET. 604764 A 198.41.0.4
; additional
B.ROOT-SERVERS.NET. 604764 A 192.228.79.201
; additional
C.ROOT-SERVERS.NET. 604764 A 192.33.4.12
; additional
D.ROOT-SERVERS.NET. 604764 A 128.8.10.90
; additional
E.ROOT-SERVERS.NET. 604764 A 192.203.230.10
; additional
F.ROOT-SERVERS.NET. 604764 A 192.5.5.241
; additional
G.ROOT-SERVERS.NET. 604764 A 192.112.36.4
; additional
H.ROOT-SERVERS.NET. 604764 A 128.63.2.53
; additional
I.ROOT-SERVERS.NET. 604764 A 192.36.148.17
; additional
J.ROOT-SERVERS.NET. 604764 A 192.58.128.30
; additional

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 14: Troubleshooting DNS and BIND

K.ROOT-SERVERS.NET. 604764 A 193.0.14.129
; additional
L.ROOT-SERVERS.NET. 604764 A 198.32.64.12
; additional
M.ROOT-SERVERS.NET. 604764 A 202.12.27.33
;
; Start view _default
;
;
; Address database dump
;
; M3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.55.83.32 [srtt 20] [flags 00000000] [ttl 1796]
; L3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.41.162.32 [srtt 20] [flags 00000000] [ttl 1796]
; H3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.54.112.32 [srtt 27] [flags 00000000] [ttl 1796]
; G3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.42.93.32 [srtt 15] [flags 00000000] [ttl 1796]
; E3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.12.94.32 [srtt 17] [flags 00000000] [ttl 1796]
; D3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.31.80.32 [srtt 10] [flags 00000000] [ttl 1796]
; C3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.26.92.32 [srtt 28156] [flags 00000000] [ttl 1796]
; A3.NSTLD.COM [v4 TTL 6] [v4 success] [v6 unexpected]
; 192.5.6.32 [srtt 23155] [flags 00000000] [ttl 1796]
; M.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 202.12.27.33 [srtt 0] [flags 00000000] [ttl 1764]
; L.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 198.32.64.12 [srtt 16] [flags 00000000] [ttl 1764]
; K.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 193.0.14.129 [srtt 22] [flags 00000000] [ttl 1764]
; J.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.58.128.30 [srtt 25] [flags 00000000] [ttl 1764]
; I.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.36.148.17 [srtt 19] [flags 00000000] [ttl 1764]
; H.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 128.63.2.53 [srtt 19] [flags 00000000] [ttl 1764]
; G.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.112.36.4 [srtt 24] [flags 00000000] [ttl 1764]
; F.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.5.5.241 [srtt 17850] [flags 00000000] [ttl 1764]
; E.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.203.230.10 [srtt 7] [flags 00000000] [ttl 1764]
; D.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 128.8.10.90 [srtt 8] [flags 00000000] [ttl 1764]
; C.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.33.4.12 [srtt 5] [flags 00000000] [ttl 1764]
; B.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 192.228.79.201 [srtt 24] [flags 00000000] [ttl 1764]
; A.ROOT-SERVERS.NET [v4 TTL 86364] [v4 success] [v6 unexpected]
; 198.41.0.4 [srtt 29] [flags 00000000] [ttl 1764]
;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Tools and Techniques | 407

; Unassociated entries
;
; 128.210.11.5 [srtt 47718] [flags 00000000] [ttl 1764]
; 128.10.2.5 [srtt 9] [flags 00000000] [ttl 1764]
; 128.42.5.4 [srtt 2] [flags 00000000] [ttl 1764]
; 128.46.154.76 [srtt 6] [flags 00000000] [ttl 1764]
;
; Start view _bind
;
;
; Cache dump of view '_bind'
;
$DATE 20050827190436
;
; Start view _bind
;
;
; Address database dump
;
;
; Unassociated entries
;
; Dump complete

The nameserver that created this named_dump.db file was authoritative only for 0.0.
127.in-addr.arpa (although you won’t see that data because we didn’t use rndc
dumpdb –all to dump the authoritative data). Only two names have been looked up
by this server: galt.cs.purdue.edu and cujo.movie.edu. In the process of looking up
galt.cs.purdue.edu, this server cached not only the address of galt, but also the list of
nameservers for edu, purdue.edu, cs.purdue.edu, and the addresses for those servers.
The name cujo.movie.edu, however, doesn’t really exist (nor does the zone movie.edu,
except in our examples), so the server cached the negative response.

Like BIND 8, BIND 9 tags each data with information about how trustworthy the
data is. The trust measure is displayed in a comment before the actual data. In the
snippet below, the NS record for the root domain is at trust level authanswer.

; authanswer
. 518364 IN NS A.ROOT-SERVERS.NET.

Here is a complete list of the trust levels you might see in a database dump:

Trust level Description

secure DNSSEC-validated

authanswer Answer from an authoritative server

authauthority Data from the authority section of an authoritative response

answer Answer from a nonauthoritative server

glue Referral data

additional Data from the additional section of a response

pending Subject to DNSSEC validation but has not yet been validated

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 14: Troubleshooting DNS and BIND

In the Address database dump section of the previous code, the nameserver is display-
ing some additional data it keeps about other nameservers. Some of the data is asso-
ciated with the name (whether it does IPv4 or IPv6), and some of the data is
associated with the address (the smoothed round-trip time and flags, which indi-
cates only EDNS0 support at this point).

The next section is the Unassociated entries section. This section is just like the
Address database dump section, but the data associated with the name has gone
away. The only thing left is the data associated with the address. The first entry in
the Address database dump section (M3.NSTLD.COM) has a TTL of 6. In six sec-
onds, the data associated with the name will expire, and the data associated with
192.55.83.32 will be demoted to the Unassociated entries section.

Logging Queries
BIND has a feature called query logging that can help diagnose certain problems.
When query logging is turned on, a running nameserver logs every query to syslog.
This feature can help you find resolver configuration errors because you can verify
that the name you think is being looked up really is the name being looked up.

First, make sure that LOG_INFO messages are being logged by syslog for the facility
daemon. Next, you turn on query logging. This can be done in several ways: for
BIND 8, start the nameserver with –q on the command line or send an ndc querylog
command to a running nameserver. For BIND 9.1.0 or later (earlier versions don’t
support query logging), use rndc querylog. You’ll start seeing syslog messages like
this:

Feb 20 21:43:25 toystory named[3830]:
 XX+ /192.253.253.2/carrie.movie.edu/A
Feb 20 21:43:32 toystory named[3830]:
 XX+ /192.253.253.2/4.253.253.192.in-addr.arpa/PTR

Or, if you’re running BIND 9, like this:

Jan 13 18:32:25 toystory named[13976]: info: client 192.253.253.2#1702: query:
 carrie.movie.edu IN A
Jan 13 18:32:42 toystory named[13976]: info: client 192.253.253.2#1702: query:
 4.253.253.192.in-addr.arpa IN PTR

These messages include the IP address of the host that made the query, as well as the
query itself. Since the first example comes from a BIND 8.2.3 nameserver and these
queries are recursive, they begin with XX+. Iterative queries begin with just XX.
(Nameservers older than BIND 8.2.1 don’t distinguish between recursive and nonre-
cursive queries.) After enough queries have been logged, you can turn off query log-
ging by sending another ndc querylog or rndc querylog command to your nameserver.

If you’re stuck running an older BIND 9 nameserver, you can still see the queries
received in named’s debugging output at level 1.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 409

Potential Problem List
Now that we’ve given you a nice set of tools, let’s talk about how you can use them
to diagnose real problems. There are some problems that are easy to recognize and
correct. We should cover these as a matter of course; they’re some of the most com-
mon problems because they’re caused by some of the most common mistakes. Here
are the contestants, in no particular order. We call ’em our “Unlucky Thirteen.”

1. Forgot to Increment Serial Number
The main symptom of this problem is that slave nameservers don’t pick up any
changes you made to the zone’s datafile on the primary. The slaves think the zone
data hasn’t changed because the serial number is still the same.

How do you check whether you remembered to increment the serial number? Unfor-
tunately, that’s not so easy. If you don’t remember what the old serial number was,
and your serial number gives you no indication of when it was updated, there’s no
direct way to tell whether it’s changed.* When you reload the primary, it loads the
updated zone file regardless of whether you’ve changed the serial number. It checks
the file’s timestamp, sees that it’s been modified since it last loaded the data, and
reads the file. About the best you can do is to use nslookup to compare the data
returned by the primary and by a slave. If they return different data, you probably
forgot to increment the serial number. If you can remember a recent change you
made, you can look for that data. If you can’t remember a recent change, you can try
transferring the zone from a primary and from a slave, sorting the results, and using
diff to compare them.

The good news is that, although determining whether the zone was transferred is
tricky, making sure the zone is transferred is simple. Just increment the serial num-
ber on the primary’s copy of the zone datafile and reload the zone on the primary.
The slaves should pick up the new data within their refresh interval, or sooner if they
use NOTIFY. If you run BIND 9.3 slaves, you can use the new rndc retransfer com-
mand to force an immediate zone transfer. To force BIND 8 slaves to transfer the
new data, you can delete the backup file and restart named, or execute named-xfer by
hand (on the slaves, naturally):

/usr/sbin/named-xfer -z movie.edu -f bak.movie.edu -s 0 toystory.movie.edu
echo $?

If named-xfer returns 1 or 4, the zone was transferred successfully. Other return val-
ues indicate that no zone was transferred, either because of an error or because the

* On the other hand, if you encode the date into the serial number, as many people do (e.g., 2001010500 is
the first rev of data on January 5, 2001), you may be able to tell at a glance whether you updated the serial
number when you made the change.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 14: Troubleshooting DNS and BIND

slave thought the zone was up to date. (See the earlier section “How to Use named-
xfer” for more details.)

There’s another variation of the “forgot to increment the serial number” problem.
We see it in environments where administrators use tools such as h2n to create zone
datafiles from the host table. With scripts like h2n, it’s temptingly easy to delete old
zone datafiles and create new ones from scratch. Some administrators do this occa-
sionally because they mistakenly believe that data in the old zone datafiles can creep
into the new ones. The problem with deleting the zone datafiles is that, without the
old datafile to read for the current serial number, h2n starts over at serial number 1.
If your zone’s serial number on the primary rolls all the way back to 1 from 598 or
what have you, the slaves emit a syslog error message warning you that something
might be wrong:

Jun 7 20:14:26 wormhole named[29618]: Zone "movie.edu"
 (class 1) SOA serial# (1) rcvd from [192.249.249.3]
 is < ours (112)

So if the serial number on the primary looks suspiciously low, check the serial num-
ber on the slaves, too, and compare them:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> set q=soa
> movie.edu.
Server: toystory.movie.edu
Address: 192.249.249.3

movie.edu
 origin = toystory.movie.edu
 mail addr = al.movie.edu
 serial = 1
 refresh = 10800 (3 hours)
 retry = 3600 (1 hour)
 expire = 604800 (7 days)
 minimum ttl = 86400 (1 day)
> server wormhole.movie.edu.
Default Server: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

> movie.edu.
Server: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

movie.edu
 origin = toystory.movie.edu
 mail addr = al.movie.edu
 serial = 112
 refresh = 10800 (3 hours)
 retry = 3600 (1 hour)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 411

 expire = 604800 (7 days)
 minimum ttl = 86400 (1 day)

wormhole.movie.edu, as a movie.edu slave, should never have a larger serial number
than the primary, so clearly something’s amiss.

This problem is really easy to spot, by the way, with the tool we’ll write in Chapter 15.

2. Forgot to Reload Primary Nameserver
Occasionally, you may forget to reload your primary nameserver after making a
change to the configuration file or to a zone datafile. The nameserver won’t know to
load the new configuration or the new zone data; it doesn’t automatically check the
timestamp of the file and notice that it changed. Consequently, any changes you’ve
made won’t be reflected in the nameserver’s data: new zones won’t be loaded, and
new records won’t percolate out to the slaves.

To check when you last reloaded the nameserver, scan the syslog output for the last
entry like this for a BIND 9 nameserver:

Mar 8 17:22:08 toystory named[22317]: loading configuration from '/etc/named.conf'

Or like this for a BIND 8 nameserver:

Mar 8 17:22:08 toystory named[22317]: reloading nameserver

These messages tell you the last time you sent a reload command to the nameserver.
If you killed and then restarted the nameserver, you’ll see an entry like this on a
BIND 9 nameserver:

Mar 8 17:22:08 toystory named[22317]: running

On a BIND 8 nameserver, it’d look like:

Mar 8 17:22:08 toystory named[22317]: restarted

If the time of the restart or reload doesn’t correlate with the time you made the last
change, reload the nameserver again. And check that you incremented the serial
numbers in zone datafiles you changed, too. If you’re not sure when you edited the
zone datafile, you can check the file modification time by doing a long listing of the
file with ls –l.

3. Slave Nameserver Can’t Load Zone Data
If a slave nameserver can’t get the current serial number for a zone from its master
nameserver, it logs a message via syslog. On a BIND 9 nameserver, that looks like:

Sep 25 22:02:38 wormhole named[21246]: refresh_callback: zone
 movie.edu/IN: failure for 192.249.249.3#53: timed out

On BIND 8, look for:

Jan 6 11:55:25 wormhole named[544]: Err/TO getting serial# for "movie.edu"

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 14: Troubleshooting DNS and BIND

If you let this problem fester, the slave will expire the zone. A BIND 9 nameserver
will report:

Sep 25 23:20:20 wormhole named[21246]: zone_expire: zone
 movie.edu/IN: expired

A BIND 8 nameserver will log:

Mar 8 17:12:43 wormhole named[22261]: secondary zone
 "movie.edu" expired

Once the zone has expired, you’ll start getting SERVFAIL errors when you query the
nameserver for data in the zone:

% nslookup robocop wormhole.movie.edu.
Server: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

*** wormhole.movie.edu can't find robocop.movie.edu: Server failed

There are three leading causes of this problem: a loss in connectivity to the master
server due to network failure, an incorrect IP address for the master server in the con-
figuration file, or a syntax error in the zone datafile on the master server. First, check
the configuration file’s entry for the zone and see what IP address the slave is
attempting to load from:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.3; };
 file "bak.movie.edu";
};

Make sure that’s really the IP address of the master nameserver. If it is, check con-
nectivity to that IP address:

% ping 192.249.249.3 -n 10
PING 192.249.249.3: 64 byte packets

----192.249.249.3 PING Statistics----
10 packets transmitted, 0 packets received, 100% packet loss

If the master server isn’t reachable, make sure that the host the nameserver runs on is
really running (e.g., is powered on, etc.), or look for a network problem. If the host is
reachable, make sure named is running on the host and that you can manually trans-
fer the zone:

/usr/sbin/named-xfer -z movie.edu -f /tmp/db.movie.edu -s 0 192.249.249.3
echo $?
2

A return code of 2 means that an error occurred. Check to see if there is a syslog mes-
sage. In this case, there is a message:

Jan 6 14:56:07 zardoz named-xfer[695]: record too short from [192.249.249.3], zone
movie.edu

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 413

At first glance, this error looks like a truncation problem. The real problem is easier
to see if you use nslookup:

% nslookup - toystory.movie.edu
Default Server: toystory.movie.edu
Address: 192.249.249.3

> ls movie.edu This attempts a zone transfer
[toystory.movie.edu]
*** Can't list domain movie.edu: Query refused

What’s happening here is that named is refusing to allow you to transfer its zone
data. The remote server has probably secured its zone data with an allow-transfer
substatement.

If the master server is responding as not authoritative for the zone, you’ll see a mes-
sage like this from your BIND 9 nameserver:

Sep 26 13:29:23 zardoz named[21890]: refresh_callback: zone movie.edu/IN:
 non-authoritative answer from 192.249.249.3#53

Or on BIND 8, like this:

Jan 6 11:58:36 zardoz named[544]: Err/TO getting serial# for "movie.edu"
Jan 6 11:58:36 zardoz named-xfer[793]: [192.249.249.3] not authoritative for
 movie.edu, SOA query got rcode 0, aa 0, ancount 0, aucount 0

If this is the correct master server, the server should be authoritative for the zone.
This probably indicates that the master had a problem loading the zone, usually
because of a syntax error in the zone datafile. Contact the administrator of the mas-
ter server and have her check her syslog output for indications of a syntax error (see
the section “5. Syntax Error in Configuration File or Zone Datafile”).

4. Added Name to Zone Datafile but Forgot to Add PTR Record
Because mappings of hostnames to IP addresses are disjointed from mappings of IP
addresses to hostnames in DNS, it’s easy to forget to add a PTR record for a new host.
Adding the A record is intuitive, but many people who are used to host tables assume
that adding an address record takes care of the reverse mapping, too. That’s not true:
you need to add a PTR record for the host to the appropriate reverse-mapping zone.

Forgetting to add the PTR record for a host’s address usually causes that host to fail
authentication checks. For example, users on the host won’t be able to rlogin to
other hosts without specifying a password, and rsh or rcp to other hosts simply won’t
work. The servers these commands talk to must be able to map a client’s IP address
to a domain name to check .rhosts and hosts.equiv. These users’ connections will
cause entries like this to be syslogged:

Aug 15 17:32:36 toystory inetd[23194]: login/tcp:
 Connection from unknown (192.249.249.23)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 14: Troubleshooting DNS and BIND

Also, some network servers on the Internet, including certain FTP servers, deny
access to hosts whose IP addresses don’t map back to domain names. An attempt to
access such a server might produce an error message like this:

530- Sorry, we're unable to map your IP address 140.186.66.1 to a hostname
530- in the DNS. This is probably because your nameserver does not have a
530- PTR record for your address in its tables, or because your reverse
530- nameservers are not registered. We refuse service to hosts whose
530- names we cannot resolve.

That makes the reason you can’t use the service pretty evident. Other servers, how-
ever, don’t bother printing informative messages; they simply deny service.

nslookup is handy for checking whether you’ve forgotten the PTR record:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> beetlejuice Check for a name-to-address mapping
Server: toystory.movie.edu
Address: 192.249.249.3

Name: beetlejuice.movie.edu
Address: 192.249.249.23

> 192.249.249.23 Now check for a corresponding address-to-name mapping
Server: toystory.movie.edu
Address: 192.249.249.3

*** toystory.movie.edu can't find 192.249.249.23: Non-existent domain

On the primary for 249.249.192.in-addr.arpa, a quick check of the db.192.249.249
file will tell you if the PTR record hasn’t been added to the zone datafile or if the
nameserver hasn’t been reloaded. If the nameserver having trouble is a slave for the
zone, check that the serial number was incremented on the primary and that the
slave has had enough time to load the zone.

5. Syntax Error in Configuration File or Zone Datafile
Syntax errors in a nameserver’s configuration file and in zone datafiles are also rela-
tively common (more or less, depending on the experience of the administrator).
Generally, an error in the config file will cause the nameserver to fail to load one or
more zones. Some typos in the options statement will cause the nameserver to fail to
start at all and to log an error like this via syslog (BIND 9):

Sep 26 13:39:30 toystory named[21924]: change directory to '/var/name' failed: file
 not found
Sep 26 13:39:30 toystory named[21924]: options configuration failed: file not found
Sep 26 13:39:30 toystory named[21924]: loading configuration: failure
Sep 26 13:39:30 toystory named[21924]: exiting (due to fatal error)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 415

A BIND 8 nameserver logs:

Jan 6 11:59:29 toystory named[544]: can't change directory to /var/name: No
 such file or directory

Note that you won’t see an error message when you try to start named on the com-
mand line or at boot time, but named won’t stay running for long.

If the syntax error is in a less important line in the config file—say, in a zone state-
ment—only that zone will be affected. Usually, the nameserver won’t be able to load
the zone at all (say, you misspell “masters” or the name of the zone datafile, or you
forget to put quotes around the filename or domain name). This produces syslog out-
put from BIND 9 like this:

Sep 26 13:43:03 toystory named[21938]: /etc/named.conf:80:
 parse error near 'masters'
Sep 26 13:43:03 toystory named[21938]: loading configuration: failure
Sep 26 13:43:03 toystory named[21938]: exiting (due to fatal error)

Or, from BIND 8:

Jan 6 12:01:36 toystory named[841]: /etc/named.conf:10: syntax error near
 'movie.edu'

If a zone datafile contains a syntax error yet the nameserver succeeds in loading the
zone, it either answers as nonauthoritative for all data in the zone or returns a SERV-
FAIL error for lookups in the zone:

% nslookup carrie.movie.edu.
Server: toystory.movie.edu
Address: 192.249.249.3

*** toystory.movie.edu can't find carrie.movie.edu.: Server failed

Here’s the BIND 9 syslog message produced by the syntax error that caused this
problem:

Sep 26 13:45:40 toystory named[21951]: error: dns_rdata_fromtext: db.movie.edu:11:
 near 'postmanrings2x': unexpected token
Sep 26 13:45:40 toystory named[21951]: error: dns_zone_load: zone movie.edu/IN:
 database db.movie.edu: dns_db_load failed: unexpected token
Sep 26 13:45:40 toystory named[21951]: critical: loading zones: unexpected token
Sep 26 13:45:40 toystory named[21951]: critical: exiting (due to fatal error)

Here’s BIND 8’s error:

Jan 6 15:07:46 toystory named[693]: db.movie.edu:11: Priority error
 (postmanrings2x.movie.edu.)
Jan 6 15:07:46 toystory named[693]: master zone "movie.edu" (IN) rejected due
 to errors (serial 1997010600)

If you looked in the zone datafile for the problem, you’d find this record:

postmanrings2x IN MX postmanrings2x.movie.edu.

The MX record is missing the preference field, which causes the error.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 14: Troubleshooting DNS and BIND

Note that unless you correlate the SERVFAIL error or lack of authority (when you
expect the nameserver to be authoritative) with a problem or scan your syslog file
assiduously, you might never notice the syntax error!

Also, an “invalid” hostname can be a syntax error:

Jan 6 12:04:10 toystory named[841]: owner name "ID_4.movie.edu" IN (primary)
 is invalid - rejecting
Jan 6 12:04:10 toystory named[841]: db.movie.edu:11: owner name error
Jan 6 12:04:10 toystory named[841]: db.movie.edu:11: Database error near (A)
Jan 6 12:04:10 toystory named[841]: master zone "movie.edu" (IN) rejected
 due to errors (serial 1997010600)

6. Missing Dot at the End of a Domain Name in a Zone Datafile
It’s very easy to leave off trailing dots when editing a zone datafile. Since the rules for
when to use them change so often (don’t use them in the configuration file, don’t use
them in resolv.conf, do use them in zone datafiles to override $ORIGIN...), it’s hard
to keep them straight. These resource records:

zorba IN MX 10 zelig.movie.edu
movie.edu IN NS toystory.movie.edu

really don’t look that odd to the untrained eye, but they probably don’t do what
they’re intended to. In the db.movie.edu file, they’d be equivalent to:

zorba.movie.edu. IN MX 10 zelig.movie.edu.movie.edu.
movie.edu.movie.edu. IN NS toystory.movie.edu.movie.edu.

unless the origin were explicitly changed.

If you omit a trailing dot after a domain name in the resource record’s data (as
opposed to leaving off a trailing dot in the resource record’s name), you usually end
up with wacky NS or MX records:

% nslookup -type=mx zorba.movie.edu.
Server: toystory.movie.edu
Address: 192.249.249.3

zorba.movie.edu preference = 10, mail exchanger
 = zelig.movie.edu.movie.edu
zorba.movie.edu preference = 50, mail exchanger
 = postmanrings2x.movie.edu.movie.edu

The cause of this should be fairly clear from the nslookup output. But if you forget
the trailing dot on the domain name field in a record (as in the movie.edu NS record
just listed), spotting your mistake might not be as easy. If you try to look up the
record with nslookup, you won’t find it under the domain name you thought you
used. Dumping your nameserver’s database may help you root it out:

$ORIGIN edu.movie.edu.
movie IN NS toystory.movie.edu.movie.edu.

The $ORIGIN line looks odd enough to stand out.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 417

7. Missing Root Hints Data
You’re unlikely to run into this problem with BIND 9 because it has built-in root
hints.

If, for some reason, you forget to install a root hints file on your nameserver or you
accidentally delete it, your nameserver will be unable to resolve names outside of its
authoritative data. This behavior is easy to recognize using nslookup, but be careful
to use full, dot-terminated domain names, or else the search list may cause mislead-
ing failures:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> ftp.uu.net. A lookup of a name outside your nameserver's authoritative data
 causes a SERVFAIL error...

Server: toystory.movie.edu
Address: 192.249.249.3

*** toystory.movie.edu can't find ftp.uu.net.: Server failed

A lookup of a name in your nameserver’s authoritative data returns a response:

> wormhole.movie.edu.
Server: toystory.movie.edu
Address: 192.249.249.3

Name: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

> ^D

To confirm your suspicion that the root hints data is missing, check the syslog out-
put for an error like this:

Jan 6 15:10:22 toystory named[764]: No root nameservers for class IN

Class 1, you’ll remember, is the IN, or Internet, class. This error indicates that
because no root hints data was available, no root nameservers were found.

8. Loss of Network Connectivity
Though the Internet is more reliable today than it was back in the wild and woolly
days of the ARPAnet, network outages are still relatively common. Without “lifting
the hood” and poking around in debugging output, these failures usually look like
poor performance:

% nslookup nisc.sri.com.
Server: toystory.movie.edu
Address: 192.249.249.3

*** Request to toystory.movie.edu timed out ***

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 14: Troubleshooting DNS and BIND

If you turn on nameserver debugging, though, you may see that your nameserver,
anyway, is healthy. It received the query from the resolver, sent the necessary que-
ries, and waited patiently for a response. It just didn’t get one. Here’s what the
debugging output might look like on a BIND 8 nameserver:

Debug turned ON, Level 1

Here, nslookup sends the first query to our local nameserver for the IP address of
nisc.sri.com. The query is then forwarded to another nameserver, and, when no
answer is received, is resent to a different nameserver:

datagram from [192.249.249.3].1051, fd 5, len 30
req: nlookup(nisc.sri.com) id 18470 type=1 class=1
req: missed 'nisc.sri.com' as 'com' (cname=0)
forw: forw -> [198.41.0.4].53 ds=7 nsid=58732 id=18470 0ms retry 4 sec
resend(addr=1 n=0) -> [128.9.0.107].53 ds=7 nsid=58732 id=18470 0ms

Now nslookup is getting impatient, and it queries our local nameserver again. Notice
that it uses the same source port. The local nameserver ignores the duplicate query
and tries forwarding the query two more times:

datagram from [192.249.249.3].1051, fd 5, len 30
req: nlookup(nisc.sri.com) id 18470 type=1 class=1
req: missed 'nisc.sri.com' as 'com' (cname=0)
resend(addr=2 n=0) -> [192.33.4.12].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=3 n=0) -> [128.8.10.90].53 ds=7 nsid=58732 id=18470 0ms

nslookup queries the local nameserver again, and the nameserver fires off more queries:

datagram from [192.249.249.3].1051, fd 5, len 30
req: nlookup(nisc.sri.com) id 18470 type=1 class=1
req: missed 'nisc.sri.com' as 'com' (cname=0)
resend(addr=4 n=0) -> [192.203.230.10].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=0 n=1) -> [198.41.0.4].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=1 n=1) -> [128.9.0.107].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=2 n=1) -> [192.33.4.12].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=3 n=1) -> [128.8.10.90].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=4 n=1) -> [192.203.230.10].53 ds=7 nsid=58732 id=18470 0ms
resend(addr=0 n=2) -> [198.41.0.4].53 ds=7 nsid=58732 id=18470 0ms
Debug turned OFF

On a BIND 9 nameserver, there’s considerably less detail at debug level 1. Still, you
can see that the nameserver is trying repeatedly to look up nisc.sri.com:

Sep 26 14:33:27.486 client 192.249.249.3#1028: query: nisc.sri.com A
Sep 26 14:33:27.486 createfetch: nisc.sri.com. A
Sep 26 14:33:32.489 client 192.249.249.3#1028: query: nisc.sri.com A
Sep 26 14:33:32.490 createfetch: nisc.sri.com. A
Sep 26 14:33:42.500 client 192.249.249.3#1028: query: nisc.sri.com A
Sep 26 14:33:42.500 createfetch: nisc.sri.com. A
Sep 26 14:34:02.512 client 192.249.249.3#1028: query: nisc.sri.com A
Sep 26 14:34:02.512 createfetch: nisc.sri.com. A

At higher debug levels, you can actually see the timeouts, but BIND 9.3.2 still
doesn’t show the addresses of the remote nameservers tried.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 419

From the BIND 8 debugging output, you can extract a list of the IP addresses of the
nameservers that your nameserver tried to query, and then check your connectivity
to them. Odds are, ping won’t have much better luck than your nameserver did:

% ping 198.41.0.4 -n 10 ping first nameserver queried
PING 198.41.0.4: 64 byte packets

----198.41.0.4 PING Statistics----
10 packets transmitted, 0 packets received, 100% packet loss
% ping 128.9.0.107 -n 10 ping second nameserver queried
PING 128.9.0.107: 64 byte packets

----128.9.0.107 PING Statistics----
10 packets transmitted, 0 packets received, 100% packet loss

If it does, you should check that the remote nameservers are really running. You
might also check whether your Internet firewall is inadvertently blocking your
nameserver’s queries. If you’ve upgraded to BIND 8 or 9 recently, see the sidebar “A
Gotcha with BIND 8 or 9 and Packet-Filtering Firewalls” in Chapter 11 and see if it
applies to you.

If ping can’t get through either, all that’s left to do is locate the break in the network.
Utilities like traceroute and ping’s record route option can be very helpful in deter-
mining whether the problem is on your network, the destination network, or some-
where in the middle.

Also, use your own common sense when tracking down the break. In this trace, for
example, the remote nameservers your nameserver tried to query are all root
nameservers. (You might have had their PTR records cached somewhere, so you
could find out their domain names.) Now it’s not very likely that each root’s local
network went down, nor that the Internet’s backbone networks collapsed entirely.
Occam’s razor says that the simplest condition that could cause this behavior—
namely, the loss of your network’s link to the Internet—is most likely the cause.

9. Missing Subdomain Delegation
Even though registrars do their very best to process your requests as quickly as possi-
ble, it may take a day or two for your subdomain’s delegation to appear in your par-
ent zone’s nameservers. If your parent zone isn’t one of the generic top-level
domains, your mileage may vary. Some parents are quick and responsible, others are
slow and inconsistent. Just like in real life, though, you’re stuck with them.

Until your zone’s delegation appears in your parent zone’s nameservers, your
nameservers will be able to look up data in the Internet’s namespace, but no one out
on the Internet (outside of your domain) will know how to look up data in your
namespace.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 14: Troubleshooting DNS and BIND

That means that even though you may be able to send mail outside of your domain,
the recipients won’t be able to reply to it. Furthermore, no one will be able to ssh to,
ftp to, or even ping your hosts by domain name.

Remember that this applies equally to any in-addr.arpa zones you may run. Until
their parent zones add delegation to your servers, nameservers on the Internet won’t
be able to reverse-map addresses on your networks.

To determine whether your zone’s delegation has made it into your parent zone’s
nameservers, query a parent nameserver for the NS records for your zone. If the par-
ent nameserver has the data, any nameserver on the Internet can find it:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> server a.root-servers.net. Query a root nameserver
Default Server: a.root-servers.net
Address: 198.41.0.4

> set norecurse Instruct the server to answer out of its own data
> set type=ns and to look for NS records
> 249.249.192.in-addr.arpa. for 249.249.192.in-addr.arpa
Server: a.root-servers.net
Address: 198.41.0.4

192.in-addr.arpa nameserver = chia.ARIN.NET
192.in-addr.arpa nameserver = dill.ARIN.NET
192.in-addr.arpa nameserver = BASIL.ARIN.NET
192.in-addr.arpa nameserver = henna.ARIN.NET
192.in-addr.arpa nameserver = indigo.ARIN.NET
192.in-addr.arpa nameserver = epazote.ARIN.NET
192.in-addr.arpa nameserver = figwort.ARIN.NET

> server dill.arin.net. Query an in-addr.arpa nameserver
Server: dill.arin.net
Address: 192.35.51.32

> 249.249.192.in-addr.arpa.
Server: dill.arin.net
Address: 192.35.51.32

*** dill.arin.net can't find 249.249.192.in-addr.arpa.: Non-existent domain

Here, the delegation clearly hasn’t been added yet. You can either wait patiently or, if
an unreasonable amount of time has passed since you requested delegation from
your parent zone, contact your parent zone’s administrator and ask what’s up.

10. Incorrect Subdomain Delegation
Incorrect subdomain delegation is another familiar problem on the Internet. Keep-
ing delegation up to date requires human intervention—informing your parent

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 421

zone’s administrator of changes to your set of authoritative nameservers. Conse-
quently, delegation information often becomes inaccurate as administrators make
changes without letting their parents know. Far too many administrators believe that
setting up delegation is a one-shot deal: they let their parents know which nameserv-
ers are authoritative once when they set up their zone and then never talk to them
again. They don’t even call on Mother’s Day.

An administrator may add a new nameserver, decommission another, and change
the IP address of a third, all without telling the parent zone’s administrator. Gradu-
ally, the number of nameservers correctly delegated to by the parent zone dwindles.
In the best case, this leads to long resolution times as querying nameservers struggle
to find an authoritative nameserver for the zone. If the delegation information
becomes badly out of date, and the last authoritative nameserver is brought down for
maintenance, the information within and below the zone will be inaccessible.

If you suspect bad delegation from your parent zone to your zone, from your zone to
one of your children, or from a remote zone to one of its children, you can check
with nslookup:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> server a.root-servers.net. Set server to the parent zone’s nameserver that
 you suspect has bad delegation
Default Server: a.root-servers.net
Address: 198.41.0.4

> set type=ns Look for NS records
> hp.com. for the zone in question
Server: a.root-servers.net.
Address: 198.41.0.4

Non-authoritative answer:
*** Can't find hp.com.: No answer

Authoritative answers can be found from:
com nameserver = A.GTLD-SERVERS.NET.
com nameserver = G.GTLD-SERVERS.NET.
com nameserver = H.GTLD-SERVERS.NET.
com nameserver = C.GTLD-SERVERS.NET.
com nameserver = I.GTLD-SERVERS.NET.
com nameserver = B.GTLD-SERVERS.NET.
com nameserver = D.GTLD-SERVERS.NET.
com nameserver = L.GTLD-SERVERS.NET.
com nameserver = F.GTLD-SERVERS.NET.
com nameserver = J.GTLD-SERVERS.NET.
com nameserver = K.GTLD-SERVERS.NET.
com nameserver = E.GTLD-SERVERS.NET.
com nameserver = M.GTLD-SERVERS.NET.
A.GTLD-SERVERS.NET has AAAA address 2001:503:a83e::2:30

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 14: Troubleshooting DNS and BIND

A.GTLD-SERVERS.NET internet address = 192.5.6.30
G.GTLD-SERVERS.NET internet address = 192.42.93.30
H.GTLD-SERVERS.NET internet address = 192.54.112.30
C.GTLD-SERVERS.NET internet address = 192.26.92.30
I.GTLD-SERVERS.NET internet address = 192.43.172.30
B.GTLD-SERVERS.NET has AAAA address 2001:503:231d::2:30
B.GTLD-SERVERS.NET internet address = 192.33.14.30
D.GTLD-SERVERS.NET internet address = 192.31.80.30
L.GTLD-SERVERS.NET internet address = 192.41.162.30
F.GTLD-SERVERS.NET internet address = 192.35.51.30
J.GTLD-SERVERS.NET internet address = 192.48.79.30
K.GTLD-SERVERS.NET internet address = 192.52.178.30
E.GTLD-SERVERS.NET internet address = 192.12.94.30
M.GTLD-SERVERS.NET internet address = 192.55.83.30

> server a.gtld-servers.net. Switch to a COM nameserver
Default server: a.gtld-servers.net.
Address: 192.5.6.30#53

> hp.com. Ask again
Server: a.gtld-servers.net.
Address: 192.5.6.30#53

Non-authoritative answer:
hp.com nameserver = am10.hp.com.
hp.com nameserver = am3.hp.com.
hp.com nameserver = ap1.hp.com.
hp.com nameserver = eu1.hp.com.
hp.com nameserver = eu2.hp.com.
hp.com nameserver = eu3.hp.com.

Authoritative answers can be found from:
am10.hp.com internet address = 15.227.128.50
am3.hp.com internet address = 15.243.160.50
ap1.hp.com internet address = 15.211.128.50
eu1.hp.com internet address = 16.14.64.50
eu2.hp.com internet address = 16.6.64.50
eu3.hp.com internet address = 16.8.64.50

Let’s say you suspect that the delegation to am10.hp.com is incorrect. You now query
am10.hp.com for data in the hp.com zone (e.g., the SOA record for hp.com) and
check the answer:

> server am10.hp.com.
Default Server: am10.hp.com
Addresses: 15.227.128.50

> set norecurse
> set type=soa
> hp.com.
Server: am10.hp.com
Addresses: 15.227.128.50

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 423

Non-authoritative answer:
hp.com
 origin = charon.core.hp.com
 mail addr = hostmaster.hp.com
 serial = 1008811
 refresh = 3600
 retry = 900
 expire = 604800
 minimum = 600

Authoritative answers can be found from:
hp.com nameserver = eu3.hp.com.
hp.com nameserver = am3.hp.com.
hp.com nameserver = ap1.hp.com.
hp.com nameserver = eu1.hp.com.
hp.com nameserver = eu2.hp.com.
am3.hp.com internet address = 15.243.160.50
ap1.hp.com internet address = 15.211.128.50
eu1.hp.com internet address = 16.14.64.50
eu2.hp.com internet address = 16.6.64.50
eu3.hp.com internet address = 16.8.64.50

If am10.hp.com really were authoritative for hp.com, it would have responded with
an authoritative answer. The administrator of the hp.com zone can tell you whether
am10.hp.com should be an authoritative nameserver for hp.com, so that’s who you
should contact.

Another common symptom of this is a “lame server” error message:

Oct 1 04:43:38 toystory named[146]: Lame server on '40.234.23.210.in-addr.arpa'
(in '210.in-addr.arpa'?): [198.41.0.5].53 'RS0.INTERNIC.NET': learnt(A=198.41.0.
21,NS=128.63.2.53)

Here’s how to read this: your nameserver was referred by the nameserver at 128.63.2.53
to the nameserver at 198.41.0.5 for a name in the domain 210.in-addr.arpa, specifically
40.234.23.210.in-addr.arpa. The response from the nameserver at 198.41.0.5 indicated
that it wasn’t, in fact, authoritative for 210.in-addr.arpa, and therefore either the delega-
tion that 128.63.2.53 gave you is wrong, or the server at 198.41.0.5 is misconfigured.

11. Syntax Error in resolv.conf
Despite the resolv.conf file’s simple syntax, people do occasionally make mistakes
when editing it. And, unfortunately, lines with syntax errors in resolv.conf are silently
ignored by the resolver. The result is usually that some part of your intended config-
uration doesn’t take effect: either your local domain name or search list isn’t set cor-
rectly, or the resolver won’t query one of the nameservers you configured it to query.
Commands that rely on the search list won’t work, your resolver won’t query the
right nameserver, or it won’t query a nameserver at all.

The easiest way to check whether your resolv.conf file is having the intended effect is
to run nslookup. nslookup will kindly report the local domain name and search list it

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 14: Troubleshooting DNS and BIND

derives from resolv.conf, plus the nameserver it’s querying, when you type set all, as
we showed you in Chapter 12:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> set all
Default Server: toystory.movie.edu
Address: 192.249.249.3

Set options:
 novc nodebug nod2
 search recurse
 timeout = 0 retry = 3 port = 53
 querytype = A class = IN
 srchlist=movie.edu

>

Check that the output of set all is what you expect, given your resolv.conf file. For
example, if you set search fx.movie.edu movie.edu in resolv.conf, you’d expect to see:

srchlist=fx.movie.edu/movie.edu

in the output. If you don’t see what you’re expecting, look carefully at resolv.conf. If
there’s nothing obvious, look for unprintable characters (with vi’s set list command,
for example). Watch out for trailing spaces, especially; on older resolvers, a trailing
space after the domain name will set the local domain name to include a space. No
real top-level domain names actually end with spaces, of course, so all of your non-
dot-terminated lookups will fail.

12. Local Domain Name Not Set
Failing to set your local domain name is another old standby gaffe. You can set it
implicitly by setting your hostname to your host’s fully qualified domain name or
explicitly in resolv.conf. The characteristics of an unset local domain name are
straightforward: folks who use single-label names (or abbreviated domain names) in
commands get no joy:

% telnet br
br: No address associated with name
% telnet br.fx
br.fx: No address associated with name
% telnet br.fx.movie.edu
Trying...
Connected to bladerunner.fx.movie.edu.
Escape character is '^]'.

HP-UX bladerunner.fx.movie.edu A.08.07 A 9000/730 (ttys1)
login:

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Potential Problem List | 425

You can use nslookup to check this one, much as you do when you suspect a syntax
error in resolv.conf:

% nslookup
Default Server: toystory.movie.edu
Address: 192.249.249.3

> set all
Default Server: toystory.movie.edu
Address: 192.249.249.3

Set options:
 novc nodebug nod2
 search recurse
 timeout = 0 retry = 3 port = 53
 querytype = A class = IN
 srchlist=

Notice that the search list is set. You can also track this down by enabling debugging
on the nameserver. (This, of course, requires access to the nameserver, which may
not be running on the host that the problem is affecting.) Here’s how the debugging
output from a BIND 9 nameserver might look after trying those telnet commands:

Sep 26 16:17:58.824 client 192.249.249.3#1032: query: br A
Sep 26 16:17:58.825 createfetch: br. A
Sep 26 16:18:09.996 client 192.249.249.3#1032: query: br.fx A
Sep 26 16:18:09.996 createfetch: br.fx. A
Sep 26 16:18:18.677 client 192.249.249.3#1032: query: br.fx.movie.edu A

On a BIND 8 nameserver, it would look something like this:

Debug turned ON, Level 1

datagram from [192.249.249.3].1057, fd 5, len 20
req: nlookup(br) id 27974 type=1 class=1
req: missed 'br' as '' (cname=0)
forw: forw -> [198.41.0.4].53 ds=7 nsid=61691 id=27974 0ms retry 4 sec

datagram from [198.41.0.4].53, fd 5, len 20
ncache: dname br, type 1, class 1
send_msg -> [192.249.249.3].1057 (UDP 5) id=27974

datagram from [192.249.249.3].1059, fd 5, len 23
req: nlookup(br.fx) id 27975 type=1 class=1
req: missed 'br.fx' as '' (cname=0)
forw: forw -> [128.9.0.107].53 ds=7 nsid=61692 id=27975 0ms retry 4 sec

datagram from [128.9.0.107].53, fd 5, len 23
ncache: dname br.fx, type 1, class 1
send_msg -> [192.249.249.3].1059 (UDP 5) id=27975

datagram from [192.249.249.3].1060, fd 5, len 33
req: nlookup(br.fx.movie.edu) id 27976 type=1 class=1
req: found 'br.fx.movie.edu' as 'br.fx.movie.edu' (cname=0)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 14: Troubleshooting DNS and BIND

req: nlookup(bladerunner.fx.movie.edu) id 27976 type=1 class=1
req: found 'bladerunner.fx.movie.edu' as 'bladerunner.fx.movie.edu'
 (cname=1)
ns_req: answer -> [192.249.249.3].1060 fd=5 id=27976 size=183 Local
Debug turned OFF

Contrast this with the debugging output produced by the application of the search
list in Chapter 13. The only names looked up here are exactly what the user typed,
with no domain names appended at all. Clearly, the search list isn’t being applied.

13. Response from Unexpected Source
One problem we’ve seen increasingly often in the DNS newsgroups is the “response
from unexpected source.” This was once called a martian response: it’s a response
that comes from an IP address other than the one your nameserver sent a query to.
When a BIND nameserver sends a query to a remote server, BIND conscientiously
makes sure that answers come only from the IP addresses on that server. This helps
minimize the possibility of accepting spoofed responses. BIND is equally demanding
of itself: a BIND server makes every effort to reply via the same network interface
that it received a query on.

Here’s the error message you’d see upon receiving a possibly unsolicited response:

Mar 8 17:21:04 toystory named[235]: Response from unexpected source ([205. 199.4.
131].53)

This can mean one of two things: either someone is trying to spoof your nameserver,
or—more likely—you sent a query to an older BIND server or a different make of
nameserver that’s not as assiduous about replying from the same interface it receives
queries on.

Transition Problems
With the release of BIND 8, and now BIND 9, many Unix operating systems are
updating their resolvers and nameservers. Some features of the most recent versions
of BIND, however, may seem like errors to you after you upgrade to a new version.
We’ll try to give you an idea of some changes you may notice in your nameserver and
name service after making the jump.

Resolver Behavior
The changes to the resolver’s default search list described in Chapter 6 may seem like
a problem to your users. Recall that with a local domain name set to fx.movie.edu,
your default search list will no longer include movie.edu. Therefore, users accus-
tomed to using commands such as ssh db.personnel and having the partial domain
name expanded to db.personnel.movie.edu will have their commands fail. To solve
this problem, you can use the search directive to define an explicit search list that

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Interoperability and Version Problems | 427

includes your local domain name’s parent. Or just tell your users to expect the new
behavior.

Nameserver Behavior
Before Version 4.9, a BIND nameserver would gladly load data in any zone from any
zone datafile that the nameserver read as a primary. If you configured the nameserver
as the primary for movie.edu and told it that the movie.edu data was in db.movie.edu,
you could stick data about hp.com in db.movie.edu, and your nameserver would load
the hp.com resource records into the cache. Some books even suggested putting the
data for all your in-addr.arpa zones in one file. Ugh.

All BIND 4.9 and later nameservers ignore any “out of zone” resource records in a
zone datafile. So if you cram PTR records for all your in-addr.arpa zones into one file
and load it with a single zone statement, the nameserver ignores all the records not in
the named zone. And that, of course, means loads of missing PTR records and failed
gethostbyaddr() calls.

BIND does log that it’s ignoring the records in syslog. The messages look like this in
BIND 9:

Sep 26 13:48:19 toystory named[21960]: dns_master_load: db.movie.edu:16: ignoring
out-of-zone data

and like this in BIND 8:

Jan 7 13:58:01 toystory named[231]: db.movie.edu:16: data "hp.com" outside zone
 "movie.edu" (ignored)
Jan 7 13:58:01 toystory named[231]: db.movie.edu:17: data "hp.com" outside zone
 "movie.edu" (ignored)

The solution is to use one zone datafile and one zone statement per zone.

Interoperability and Version Problems
With the move to BIND 9 and the introduction of Microsoft DNS Server, more
interoperability problems are cropping up between nameservers. There are also a
handful of problems unique to one version or another of BIND or the underlying
operating system. Many of these are easy to spot and correct, and we would be
remiss if we didn’t cover them.

Zone Transfer Fails Because of Proprietary WINS Record
When a Microsoft DNS Server is configured to consult a WINS server for names it
can’t find in a given zone, it inserts a special record into the zone datafile. The record
looks like this:

@ IN WINS &IP address of WINS server

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 14: Troubleshooting DNS and BIND

Unfortunately, WINS is not a standard record type in the IN class. Consequently, if
there are BIND slaves that transfer this zone, they’ll choke on the WINS record and
refuse to load the zone:

May 23 15:58:43 toystory named-xfer[386]: "fx.movie.edu IN 65281" - unknown type
(65281)

The workaround for this is to configure the Microsoft DNS Server to filter out the
proprietary record before transferring the zone. You do this by selecting the zone on
the left side of the DNS Manager screen, right-clicking on it, and selecting Proper-
ties. Click on the WINS Lookup tab in the resulting Zone Properties window, shown
in Figure 14-1.

Checking Settings only affect local server filters out the WINS record for that zone.
However, if there are any Microsoft DNS Server slaves, they won’t see the record
either, even though they can use it.

Nameserver Reports “no NS RR for SOA MNAME”
You’ll see this error only on BIND 8.1 servers:

May 8 03:44:38 toystory named[11680]: no NS RR for SOA MNAME "movie.edu" in
 zone "movie.edu"

The 8.1 server was a real stickler about the first field in the SOA record. Remember
that one? In Chapter 4, we said that it was, by convention, the domain name of the pri-
mary nameserver for the zone. BIND 8.1 assumes it is and checks for a corresponding

Figure 14-1. Zone Properties window

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Interoperability and Version Problems | 429

NS record pointing the zone’s domain name to the server in that field. If there’s no
such NS record, BIND emits that error message. It will also prevent NOTIFY messages
from working correctly. The solution is either to change your MNAME field to the
domain name of a nameserver listed in an NS record or to upgrade to a newer version
of BIND 8. Upgrading is the better option because BIND 8.1 is so old. The check was
removed in BIND 8.1.1.

Nameserver Reports “Too many open files”
On hosts with many IP addresses or a low limit on the maximum number of files a
user can open, BIND will report:

Dec 12 11:52:06 toystory named[7770]: socket(SOCK_RAW): Too many open files

and die.

Since BIND tries to bind() to and listen on every network interface on the host, it
may run out of file descriptors. This is especially common on hosts that use lots of
virtual interfaces, often in support of web hosting. The possible solutions are:

• Use name-based virtual hosting, which doesn’t require additional IP addresses.

• Configure your BIND 8 or 9 nameserver to listen on only one or a few of the
host’s network interfaces using the listen-on substatement. If toystory.movie.edu
is the host we’re having this problem with, the following:

options {
 listen-on { 192.249.249.3; };
};

will tell named on toystory.movie.edu to bind() only to the IP address 192.249.
249.3.

• Reconfigure your operating system to allow a process to open more file descrip-
tors concurrently.

Resolver Reports “asked for PTR, got CNAME”
This is another problem related to BIND’s strictness. On some lookups, the resolver
logs:

Sep 24 10:40:11 toystory syslog: gethostby*.getanswer: asked for
 "37.103.74.204.in-addr.arpa IN PTR", got type "CNAME"
Sep 24 10:40:11 toystory syslog: gethostby*.getanswer: asked for
 "37.103.74.204.in-addr.arpa", got "37.32/27.103.74.204.in-addr.arpa"

What happened here is that the resolver asked the nameserver to reverse-map the IP
address 204.74.103.37 to a domain name. The server did, but in the process found that
37.103.74.204.in-addr.arpa was actually an alias for 37.32/27.103.74.204.in-addr.arpa.
That’s almost certainly because the folks who run 103.74.204.in-addr.arpa are using
the scheme we described in Chapter 9 to delegate part of their namespace. The BIND

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 14: Troubleshooting DNS and BIND

4.9.3-BETA resolver, however, doesn’t understand that and flags it as an error, think-
ing it didn’t get the domain name or the type it was after. And, believe it or not, some
operating systems ship with the BIND 4.9.3-BETA resolver as their system resolver.

The only solution to this problem is to upgrade to a newer version of the BIND
resolver.

Nameserver Startup Fails Because UDP Checksums Disabled
On some hosts running SunOS 4.1.x, you’ll see this error:

Sep 24 10:40:11 toystory named[7770]: ns_udp checksums NOT turned on: exiting

named checked to make sure UDP checksumming was turned on on this system, and it
wasn’t, so named exited. named is insistent on UDP checksumming for good reason: it
makes copious use of UDP and needs those UDP datagrams to arrive unmolested.

The solution to this problem is to enable UDP checksums on your system. The BIND
distribution has documentation on that in shres/sunos/INSTALL and src/port/sunos/
shres/ISSUES (in the BIND 8 distribution).

Other Nameservers Don’t Cache Your Negative Answers
You need a keen eye to notice this problem, and, if you’re running BIND 8, you’d
have to have turned off an important feature to have caused the problem. If you’re
running BIND 9, though, the feature is turned off by default. If you’re running a
BIND 8 or 9 nameserver and other resolvers and servers seem to ignore your server’s
cached negative responses, auth-nxdomain is probably off.

auth-nxdomain is an options substatement that tells a BIND 8 or 9 nameserver to flag
cached negative responses as authoritative, even though they’re not. That is, if your
nameserver has cached the fact that titanic.movie.edu does not exist from the authori-
tative movie.edu nameservers, auth-nxdomain tells your server to pass along that
cached response to resolvers and servers that query it as though it were the authorita-
tive nameserver for movie.edu.

The reason this feature is sometimes necessary is that some nameservers check to
make sure that negative responses (such as an NXDOMAIN return code or no records
with a NOERROR return code) are marked authoritative. In the days before negative
caching, negative responses had to be authoritative, so this was a sensible sanity
check. With the advent of negative caching, however, a negative response could come
from the cache. To make sure that older servers don’t ignore such answers, though, or
consider them errors, BIND 8 and 9 let you falsely flag those responses as authorita-
tive. In fact, that’s the default behavior for a BIND 8 nameserver, so you shouldn’t see
remote queriers ignoring your BIND 8 server’s negative responses unless you’ve
explicitly turned off auth-nxdomain. BIND 9 nameservers, on the other hand, have

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

TSIG Errors | 431

auth-nxdomain off by default, so queriers may ignore their responses even if you
haven’t touched the config file.

TTL Not Set
As we mentioned in Chapter 4, RFC 2308 was published just before BIND 8.2 was
released. RFC 2308 changed the semantics of the last field in the SOA record to be
the negative-caching TTL and introduced a new control statement, $TTL, to set the
default TTL for a zone datafile.

If you upgrade to a BIND 8 nameserver newer than 8.2 without adding the necessary
$TTL control statements to your zone datafiles, you’ll see messages like this one in
your nameserver’s syslog output:

Sep 26 19:34:39 toystory named[22116]: Zone "movie.edu" (file db.movie.edu): No
default TTL ($TTL <value>) set, using SOA minimum instead

BIND 8 generously assumes that you just haven’t read RFC 2308 yet and is content to
use the last field of the SOA record as both the zone’s default TTL and its negative-
caching TTL. BIND 9 nameservers older than 9.2.0, however, aren’t so forgiving:

Sep 26 19:35:54 toystory named[22124]: dns_master_load: db.movie.edu:7: no TTL
 specified
Sep 26 19:35:54 toystory named[22124]: dns_zone_load: zone movie.edu/IN:
 database db.movie.edu: dns_db_load failed: no ttl
Sep 26 19:35:54 toystory named[22124]: loading zones: no ttl
Sep 26 19:35:54 toystory named[22124]: exiting (due to fatal error)

So before upgrading to BIND 9, be sure that you add the necessary $TTL control
statements.

TSIG Errors
As we said in Chapter 11, transaction signatures require time synchronization and
key synchronization (the same key on either end of the transaction, plus the same
key name) to work. Here are a couple of errors that may arise if you lose time syn-
chronization or use different keys or key names:

• Here’s an error you’d see on a BIND 8 nameserver if you had configured TSIG
but had too much clock skew between your primary nameserver and a slave:

Sep 27 10:47:49 wormhole named[22139]: Err/TO getting serial# for "movie.edu"
Sep 27 10:47:49 wormhole named-xfer[22584]: SOA TSIG verification from server
[192.249.249.3], zone movie.edu: message had BADTIME set (18)

Here, your nameserver tries to check the serial number of the movie.edu zone on
toystory.movie.edu (192.249.249.3). The response from toystory.movie.edu doesn’t
verify because wormhole.movie.edu’s clock shows a time difference of more than
10 minutes from the time the response was signed. The Err/TO message is just a
byproduct of the failure of the TSIG-signed response to verify.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 14: Troubleshooting DNS and BIND

• If you use a different key name on either end of the transaction, even if the data
the key name refers to is the same, you’ll see an error like this one from your
BIND 8 nameserver:

Sep 27 12:02:44 wormhole named-xfer[22651]: SOA TSIG verification from server
[209.8.5.250], zone movie.edu: BADKEY(-17)

This time, the TSIG-signed response doesn’t check out because the verifier can’t
find a key with the name specified in the TSIG record. You’d see the same error
if the key name matched but pointed to different data.

As always, BIND 9 is considerably more closed-mouthed about TSIG failure, report-
ing only:

Sep 27 13:35:42.804 client 192.249.249.1#1115: query: movie.edu SOA
Sep 27 13:35:42.804 client 192.249.249.1#1115: error

at debug level 3 for both previous scenarios.

Problem Symptoms
Some problems, unfortunately, aren’t as easy to identify as the ones we listed. You’ll
experience some misbehavior but won’t be able to attribute it directly to its cause,
often because any of a number of problems can cause the symptoms you see. For
cases like this, we’ll suggest some of the common causes of these symptoms and
ways to isolate them.

Local Name Can’t Be Looked Up
The first thing to do when a program such as ssh or ftp can’t look up a local domain
name is to use nslookup or dig to try to look up the same name. When we say “the
same name,” we mean literally the same name: don’t add labels and a trailing dot if
the user didn’t type them. Don’t query a different nameserver than the user did.

As often as not, the user mistyped the name or doesn’t understand how the search
list works and just needs direction. Occasionally, you’ll turn up real host configura-
tion errors:

• Syntax errors in resolv.conf (problem 11 in the earlier section “Potential Problem
List”)

• An unset local domain name (problem 12)

You can check for either of these using nslookup’s set all command.

If nslookup points to a problem with the nameserver rather than with the host config-
uration, check for the problems associated with the type of nameserver. If the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Problem Symptoms | 433

nameserver is the primary for the zone, but it isn’t responding with data you think it
should:

• Check that the zone datafile contains the data in question and that the
nameserver has loaded it (problem 2). A database dump can tell you for sure
whether the data was loaded.

• Check the configuration file and the pertinent zone datafile for syntax errors
(problem 5). Check the nameserver’s syslog output for indications of those
errors.

• Ensure that the records have trailing dots, if they require them (problem 6).

If the nameserver is a slave server for the zone, you should first check whether its
master has the correct data. If it does, and the slave doesn’t:

• Make sure you’ve incremented the serial number on the primary (problem 1).

• Look for a problem on the slave in updating the zone (problem 3).

If the primary doesn’t have the correct data, of course, diagnose the problem on the
primary.

If the problem server is a caching-only nameserver:

• Make sure it has its root hints (problem 7).

• Check that your parent zone’s delegation to your zone exists and is correct
(problems 9 and 10). Remember that to a caching-only server, your zone looks
like any other remote zone. Even though the host it runs on may be inside your
zone, the caching-only nameserver must be able to locate an authoritative server
for your zone from your parent zone’s servers.

Remote Names Can’t Be Looked Up
If your local lookups succeed but you can’t look up domain names outside your local
zones, there is a different set of problems to check:

• First, did you just set up your nameservers? You might have omitted the root
hints data (problem 7).

• Can you ping the remote zone’s nameservers? Maybe you can’t reach the remote
zone’s servers because of connectivity loss (problem 8).

• Is the remote zone new? Maybe its delegation hasn’t yet appeared (problem 9).
Or the delegation information for the remote zone may be wrong or out of date
due to neglect (problem 10).

• Does the domain name actually exist on the remote zone’s servers (problem 2)?
On all of them (problems 1 and 3)?

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 14: Troubleshooting DNS and BIND

Wrong or Inconsistent Answer
If you get the wrong answer when looking up a local domain name, or an inconsis-
tent answer depending on which nameserver you ask or when you ask, first check
the synchronization between your nameservers:

• Are they all holding the same serial number for the zone? Did you forget to incre-
ment the serial number on the primary after you made a change (problem 1)? If
you did, the nameservers may all have the same serial number, but they will
answer differently out of their authoritative data.

• Did you roll the serial number back to 1 (problem 1 again)? Then the primary’s
serial number will appear much lower than the slaves’ serial numbers.

• Did you forget to reload the primary (problem 2)? Then the primary will return
(via nslookup or dig, for example) a different serial number from the one in the
zone datafile.

• Are the slaves having trouble updating from their master(s) (problem 3)? If so,
they should have syslogged appropriate error messages.

• Is the nameserver’s round-robin feature rotating the addresses of the domain
name you’re looking up?

If you get these results when looking up a domain name in a remote zone, you
should check whether the remote zone’s nameservers have lost synchronization. You
can use tools such as nslookup and dig to determine whether the remote zone’s
administrator forgot to increment the serial number, for example. If the nameservers
answer differently from their authoritative data but show the same serial number, the
serial number probably wasn’t incremented. If the primary’s serial number is much
lower than the slaves’, the primary’s serial number was probably accidentally reset.
We usually assume a zone’s primary nameserver is running on the host listed in the
MNAME (first) field of the SOA record.

You probably can’t determine conclusively that the primary hasn’t been reloaded,
though. It’s also difficult to pin down updating problems between remote nameserv-
ers. In cases like this, if you’ve determined that the remote nameservers are giving
out incorrect data, contact the zone administrator and (gently) relay what you’ve
found. This will help the administrator track down the problem on the remote end.

If you can determine that a parent nameserver—a remote zone’s parent, your zone’s
parent, or even one in your zone—is giving out a bad answer, check whether this is
coming from old delegation information. Sometimes this requires contacting both
the administrator of the remote zone and the administrator of its parent to compare
the delegation and the current, correct list of authoritative nameservers.

If you can’t induce the administrator to fix the data or if you can’t track down the
administrator, you can always use the bogus server substatement to instruct your
nameserver not to query that particular server.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Problem Symptoms | 435

Lookups Take a Long Time
Slow name resolution is usually due to one of two problems:

• Connectivity loss (problem 8), which you can diagnose with nameserver debug-
ging output and tools such as ping

• Incorrect delegation information (problem 10) pointing to the wrong nameserv-
ers or the wrong IP addresses

Usually, going over the debugging output and sending a few pings will point to one
or the other: either you can’t reach the nameservers at all, or you can reach the hosts
but the nameservers aren’t responding.

Sometimes, though, the results are inconclusive. For example, the parent nameserv-
ers delegate to a set of nameservers that don’t respond to pings or queries, but con-
nectivity to the remote network seems all right (a traceroute, for example, will get
you to the remote network’s “doorstep”—the last router between you and the host).
Is the delegation information so badly out of date that the nameservers have long
since moved to other addresses? Are the hosts simply down? Or is there really a
remote network problem? Usually, finding out requires a call or a message to the
administrator of the remote zone. (Remember, whois gives you phone numbers!)

rlogin and rsh to Host Fails Access Check
This is a problem you expect to see right after you set up your nameservers. Users
unaware of the change from the host table to domain name service won’t know to
update their .rhosts files. (We covered what needs to be updated in Chapter 6.) Con-
sequently, rlogin’s or rsh’s access check will fail and deny the user access.

Other causes of this problem are missing or incorrect in-addr.arpa delegation (prob-
lems 9 and 10) or forgetting to add a PTR record for the client host (problem 4). If
you’ve recently upgraded to BIND 4.9 or newer and have PTR data for more than
one in-addr.arpa zone in a single zone datafile, your nameserver may be ignoring the
out-of-zone data. Any of these situations will result in the same behavior:

% rlogin wormhole
Password:

In other words, the user is prompted for a password despite having set up password-
less access with .rhosts or hosts.equiv. If you were to look at the syslog file on the des-
tination host (wormhole.movie.edu, in this case), you’d probably see something like
this:

May 4 18:06:22 wormhole inetd[22514]: login/tcp: Connection
 from unknown (192.249.249.213)

You can tell which problem it is by stepping through the resolution process with
your favorite query tool. First, query one of your in-addr.arpa zone’s parent
nameservers for NS records for your in-addr.arpa zone. If these are correct, query the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 14: Troubleshooting DNS and BIND

nameservers listed for the PTR record corresponding to the IP address of the rlogin or
rsh client. Make sure they all have the PTR record and that the record maps to the
right domain name. If not all the nameservers have the record, check for a loss of
synchronization between the primary and the slaves (problems 1 and 3).

Access to Services Denied
Sometimes rlogin and rsh aren’t the only services to go. Occasionally, you’ll install
BIND on your server and your diskless hosts won’t boot, and hosts won’t be able to
mount disks from the server, either.

If this happens, make sure that the case of the domain names your nameservers return
agrees with the case your previous name service returned. For example, if you are run-
ning NIS and your NIS host maps contain only lowercase names, you should make
sure your nameservers also return lowercase domain names. Some programs are case-
sensitive and won’t recognize names in a different case in a datafile, such as /etc/
bootparams or /etc/exports.

Can’t Get Rid of Old Data
Sometimes, after decommissioning a nameserver or changing a server’s IP address,
you’ll find the old address record lingering around. An old record may show up in a
nameserver’s cache or in a zone datafile weeks or even months later. The record
clearly should have timed out of any caches by now. So why’s it still there? Well,
there are a few reasons this happens. We’ll describe the simpler cases first.

Old delegation information

The first (and simplest) case occurs if a parent zone doesn’t keep up with its children
or if the children don’t inform the parent of changes to the authoritative nameserv-
ers for the zone. If the edu administrators have this old delegation information for
movie.edu:

$ORIGIN movie.edu.
@ 86400 IN NS toystory
 86400 IN NS wormhole
toystory 86400 IN A 192.249.249.3
wormhole 86400 IN A 192.249.249.254 ; wormhole's former
 ; IP address

the edu nameservers will give out the bogus old address for wormhole.movie.edu.

This is easily corrected once it’s isolated to the parent zone’s nameservers: just con-
tact the parent zone’s administrator and ask to have the delegation information
updated. If your parent zone is one of the gTLDs, you may be able to fix the prob-
lem by filling out a form on your registrar’s web site to modify the information about
the nameserver. If any of the child zone’s nameservers have cached the bad data, kill

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Problem Symptoms | 437

them (to clear out their caches), delete any backup zone datafiles that contain the
bad data, and restart them.

Registration of a non-nameserver

This is a problem unique to the gTLD zones: com, net, and org. Sometimes, you’ll
find the gTLD nameservers giving out stale address information about a host in one
of your zones—and not even a nameserver! But why would the gTLD nameservers
have information about an arbitrary host in one of your zones?

Here’s the answer: you can register hosts in the gTLD zones that aren’t nameservers at
all, such as your web server. For example, you can register an address for www.foo.com
through a com registrar, and the com nameservers will give out that address. You
shouldn’t, though, because you’ll lose a fair amount of control over the address. If you
need to change the address, it could take a day or more to push the change through
your registrar. If you run the foo.com primary nameserver, you can make the change
almost instantly.

What have I got?

How do you determine which of these problems is plaguing you? Pay attention to
which nameservers are distributing the old data and which zones the data relates to:

• Is the nameserver a gTLD nameserver? Check for a stale, registered address.

• Is the nameserver your parent nameserver but not a gTLD nameserver? Check
the parent for old delegation information.

That’s about all we can think to cover. It’s certainly not a comprehensive list, but we
hope it’ll help you solve the more common problems you encounter with DNS and
give you ideas about how to approach the rest. Boy, if we’d only had a troubleshoot-
ing guide when we started!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

438

Chapter 15CHAPTER 15

Programming with the Resolver and
Nameserver Library Routines 15

“I know what you’re thinking about,” said
Tweedledum; “but it isn’t so, nohow.”
“Contrariwise,” continued Tweedledee, “if it was so, it
might be; and if it were so, it would be; but as it isn’t,
it ain’t. That’s logic.”

I bet you think resolver programming is hard. Contrariwise! It isn’t very hard, really.
The format of DNS messages is quite straightforward; you don’t have to deal with
ASN.1* at all, as you do with SNMP. And you have nifty library routines to make
parsing DNS messages easy. We’ve included portions of RFC 1035 in Appendix A.
However, you might find it handy to have a copy of RFC 1035 to look at as we go
through this chapter; at least have a copy of it nearby when you write your own DNS
programs.

Shell Script Programming with nslookup
Before you go off and write a C program to do your DNS chore, you should write the
program as a shell script using nslookup or dig. There are good reasons to start with a
shell script:

• You can write the shell script much faster than you can write a C program.

• If you’re not comfortable with DNS, you can work out the details of your pro-
gram’s logic with a quick shell script prototype. When you finally write the C
program, you can focus on the additional control you have with C rather than
spending your time reworking the basic functionality.

* ASN.1 stands for Abstract Syntax Notation. ASN.1 is a method of encoding object types, accepted as an
international standard by the International Organization for Standardization.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 439

• You might find out that the shell script version does your task well enough so
that you don’t have to write the C program after all. And not only is it quicker to
write shell scripts, but they’re easier to maintain if you stick with them for the
long run.

If you prefer Perl over plain old shell programming, you can use Perl instead. At the
end of this chapter, we’ll show you how to use the Perl Net::DNS module written by
Michael Fuhr.

A Typical Problem
Before you write a program, you need a problem to solve. Let’s suppose you want
your network management system to watch over your primary master and slave
nameservers. You want it to notify you of several problems: a nameserver that isn’t
running (it might have died), a nameserver that is not authoritative for a zone it is
supposed to be authoritative for (the config file or zone datafile might have been
messed up), or a nameserver that has fallen behind in updating its zone data (the pri-
mary master’s serial number might have been decreased accidentally).

Each problem is easily detectable. If a nameserver is not running on a host, the host
sends back an ICMP port unreachable message. You can find this out with either a
query tool or the resolver routines. Checking whether a nameserver is authoritative
for a zone is easy: ask it for the zone’s SOA record. If the answer is nonauthoritative
or the nameserver does not have the SOA record, there’s a problem. You’ll have to
ask for the SOA record in a nonrecursive query so that the nameserver doesn’t go off
and look up the SOA record from another server. Once you have the SOA record,
you can extract the serial number.

Solving This Problem with a Script
This problem requires a program that takes the domain name of a zone as an argu-
ment, looks up the nameservers for that zone, and then queries each nameserver for
the SOA record for the zone. The response will show whether the nameserver is
authoritative, and it will show the zone’s serial number. If there is no response, the
program needs to determine if there’s even a nameserver running on the host. Once
you write this program, you should run it on each zone you want to watch over.
Since this program looks up the nameservers (by looking up the NS records for the
zone), we assume that you have listed all your nameservers in NS records in your
zone data. If that’s not the case, you will have to change this program to read a list of
nameservers from the command line.

Let’s write the basic program as a shell script that uses nslookup. First, we figure out
what the output of nslookup looks like so that we can parse it with Unix tools. We’ll
look up NS records to find out which nameservers are supposed to be authoritative

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

for the zone, both when the server is authoritative for the zone that contains the NS
records and when it isn’t:

% nslookup

Default Server: relay.hp.com
Address: 15.255.152.2

> set type=ns

Find out what the response looks like when the nameserver is not authoritative for
the NS records:

> mit.edu.

Server: relay.hp.com
Address: 15.255.152.2

Non-authoritative answer:
mit.edu nameserver = STRAWB.MIT.EDU
mit.edu nameserver = W20NS.MIT.EDU
mit.edu nameserver = BITSY.MIT.EDU

Authoritative answers can be found from:
MIT.EDU nameserver = STRAWB.MIT.EDU
MIT.EDU nameserver = W20NS.MIT.EDU
MIT.EDU nameserver = BITSY.MIT.EDU
STRAWB.MIT.EDU internet address = 18.71.0.151
W20NS.MIT.EDU internet address = 18.70.0.160
BITSY.MIT.EDU internet address = 18.72.0.3

Then, find out what the response looks like when the nameserver is authoritative for
the NS records:

> server strawb.mit.edu.

Default Server: strawb.mit.edu
Address: 18.71.0.151

> mit.edu.

Server: strawb.mit.edu
Address: 18.71.0.151

mit.edu nameserver = BITSY.MIT.EDU
mit.edu nameserver = STRAWB.MIT.EDU
mit.edu nameserver = W20NS.MIT.EDU
BITSY.MIT.EDU internet address = 18.72.0.3
STRAWB.MIT.EDU internet address = 18.71.0.151
W20NS.MIT.EDU internet address = 18.70.0.160

You can see from this output that we can grab the domain names of the nameservers
by looking for the lines that contain nameserver and saving the last field. When the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 441

nameserver wasn’t authoritative for the NS records, it printed them twice, so we’ll
have to weed out duplicates.

Next, we look up the SOA record for the zone, both when the server is authoritative
for the zone that contains the SOA record and when it isn’t. We turn off recurse so
the nameserver doesn’t go off and query an authoritative nameserver for the SOA:

% nslookup

Default Server: relay.hp.com
Address: 15.255.152.2

> set type=soa

> set norecurse

Find out what the response looks like when the nameserver is not authoritative and
does not have the SOA record:

> mit.edu.

Server: relay.hp.com
Address: 15.255.152.2

Authoritative answers can be found from:
MIT.EDU nameserver = STRAWB.MIT.EDU
MIT.EDU nameserver = W20NS.MIT.EDU
MIT.EDU nameserver = BITSY.MIT.EDU
STRAWB.MIT.EDU internet address = 18.71.0.151
W20NS.MIT.EDU internet address = 18.70.0.160
BITSY.MIT.EDU internet address = 18.72.0.3

Then, find out what the response looks like when the nameserver is authoritative for
the zone:

> server strawb.mit.edu.

Default Server: strawb.mit.edu
Address: 18.71.0.151

> mit.edu.

Server: strawb.mit.edu
Address: 18.71.0.151

mit.edu
 origin = BITSY.MIT.EDU
 mail addr = NETWORK-REQUEST.BITSY.MIT.EDU
 serial = 1995
 refresh = 3600 (1H)
 retry = 900 (15M)
 expire = 3600000 (5w6d16h)
 minimum ttl = 21600 (6H)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

When the nameserver was not authoritative for the zone, it returned references to
other nameservers. If the nameserver had previously looked up the SOA record and
cached it, the nameserver would have returned the SOA record and said that it was
nonauthoritative. We need to check for both cases. When the nameserver returns the
SOA record and it is authoritative, we can grab the serial number from the line that
contains serial.

Now we need to see what nslookup returns when no nameserver is running on a host.
We’ll change servers to a host that does not normally run a nameserver and look up
an SOA record:

% nslookup

Default Server: relay.hp.com
Address: 15.255.152.2

> server galt.cs.purdue.edu.

Default Server: galt.cs.purdue.edu
Address: 128.10.2.39

> set type=soa

> mit.edu.

Server: galt.cs.purdue.edu
Address: 128.10.2.39

*** galt.cs.purdue.edu can't find mit.edu.: No response from server

Last, we need to see what nslookup returns if a host is not responding. We can test
this by switching nameservers to an unused IP address on our LAN:

% nslookup

Default Server: relay.hp.com
Address: 15.255.152.2

> server 15.255.152.100

Default Server: [15.255.152.100]
Address: 15.255.152.100

> set type=soa

> mit.edu.

Server: [15.255.152.100]
Address: 15.255.152.100

*** Request to [15.255.152.100] timed-out

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 443

In the last two cases, the error message was written to stderr.* We can use that fact
when writing our shell script. Now we are ready to compose the shell script. We’ll
call it check_soa:

#!/bin/sh
if test "$1" = ""
then
 echo usage: $0 zone
 exit 1
fi
ZONE=$1
#
Use nslookup to discover the name servers for this zone ($1).
Use awk to grab the name server's domain names from the nameserver lines.
(The names are always in the last field.) Use sort -u to weed out
duplicates; we don't actually care about collation.
#
SERVERS=`nslookup -type=ns $ZONE |\
 awk '/nameserver/ {print $NF}' | sort -u`
if test "$SERVERS" = ""
then
 #
 # Didn't find any servers. Just quit silently; nslookup will
 # have detected this error and printed a message. That will
 # suffice.
 #
 exit 1
fi
#
Check each server's SOA serial number. The output from
nslookup is saved in two temp files: nso.$$ (standard output)
and nse.$$ (standard error). These files are rewritten on
every iteration. Turn off defname and search since we
should be dealing with fully qualified domain names.
#
NOTE: this loop is rather long; don't be fooled.
#
for i in $SERVERS
do
 nslookup >/tmp/nso.$$ 2>/tmp/nse.$$ <<-EOF
 server $i
 set nosearch
 set nodefname
 set norecurse
 set q=soa
 $ZONE
EOF
 #
 # Does this response indicate that the current server ($i) is
 # authoritative? The server is NOT authoritative if (a) the

* Not all versions of nslookup print the last error message for a timeout. Be sure to check what yours prints.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

 # response says so, or (b) the response tells you to find
 # authoritative info elsewhere.
 #
 if egrep "Non-authoritative|Authoritative answers can be" \
 /tmp/nso.$$ >/dev/null
 then
 echo $i is not authoritative for $ZONE
 continue
 fi
 #
 # We know the server is authoritative; extract the serial number.
 #
 SERIAL=`cat /tmp/nso.$$ | grep serial | sed -e "s/.*= //"`
 if test "$SERIAL" = ""
 then
 #
 # We get here if SERIAL is null. In this case, there should
 # be an error message from nslookup; so cat the "standard
 # error" file.
 #
 cat /tmp/nse.$$
 else
 #
 # Report the server's domain name and its serial number.
 #
 echo $i has serial number $SERIAL
 fi
done # end of the "for" loop
#
Delete the temporary files.
#
rm -f /tmp/nso.$$ /tmp/nse.$$

Here is what the output looks like:

% check_soa mit.edu

BITSY.MIT.EDU has serial number 1995
STRAWB.MIT.EDU has serial number 1995
W20NS.MIT.EDU has serial number 1995

If you are pressed for time, this short tool will solve your problem, and you can go on
to other work. If you find that you are checking lots of zones and that this tool is too
slow, you’ll want to convert it to a C program. Also, if you want more control over
the error messages—rather than relying on nslookup for error messages—you’ll have
to write a C program. We’ll do that later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 445

C Programming with the Resolver Library Routines
Before writing any code, though, you need to be familiar with the DNS message for-
mat and the resolver library routines. In the shell script we just wrote, nslookup
parsed the DNS message. In a C program, though, you have to do the parsing. Let’s
start this section on programming by looking at the DNS message format.

DNS Message Format
You’ve seen the DNS message format before, in Chapter 12. It looks like this:

• Header section

• Question section

• Answer section

• Authority section

• Additional section

The format of the header section is described in RFC 1035 on pages 26–28, and in
Appendix A of this book. It looks like this:

query identification number (2 octets)
query response (1 bit)
opcode (4 bits)
authoritative answer (1 bit)
truncation (1 bit)
recursion desired (1 bit)
recursion available (1 bit)
reserved (3 bits)
response code (4 bits)
question count (2 octets)
answer record count (2 octets)
name server record count (2 octets)
additional record count (2 octets)

You’ll also find opcode, response code, type, and class values defined in arpa/
nameser.h, as well as routines to extract this information from a message. We’ll dis-
cuss these routines, part of the nameserver library, shortly.

The question section is described on pages 28–29 of RFC 1035. It looks like this:

domain name (variable length)
query type (2 octets)
query class (2 octets)

The answer, authority, and additional sections are described on pages 29–30 of RFC
1035. These sections comprise some number of resource records that look like this:

domain name (variable length)
type (2 octets)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

class (2 octets)
TTL (4 octets)
resource data length (2 octets)
resource data (variable length)

The header section contains a count of how many of these resource records are in
each section.

Domain Name Storage
As you can see, the names stored in the DNS message are of variable length. Unlike
C, DNS does not store the names as null-terminated strings. Domain names are
stored as a series of length/value pairs ending with an octet of 0. Each label in a
domain name is composed of a length octet and a label. A name like venera.isi.edu is
stored as:

6 venera 3 isi 3 edu 0

You can imagine how much of a DNS message could be devoted to storing names.
The developers of DNS recognized this and came up with a simple way to compress
domain names.

Domain Name Compression
Often, an entire domain name or, at least, the trailing labels of a domain name match a
name already stored in the message. Domain name compression eliminates the repeti-
tion of domain names by storing a pointer to the earlier occurrence of the name instead
of inserting the name again. Here is how it works. Suppose a response message already
contains the name venera.isi.edu. If the name vaxa.isi.edu is added to the response, the
label vaxa is stored, and then a pointer to the earlier occurrence of isi.edu is added. So
how are these pointers implemented?

The first two bits of the length octet indicate whether a length/label pair or a pointer
to a length/label pair follows. If the first two bits are zeros, then the length and label
follow. As you may remember from way back in Chapter 2, a label is limited to 63
characters. That’s because the length field has only the remaining six bits for the
length of the label—enough to represent the lengths 0–63. If the first two bits of the
length octet are ones, then what follows is not a length but a pointer. The pointer is
the last 6 bits of the length octet and the next octet—14 bits in total. The pointer is
an offset from the start of the DNS message. Now, when vaxa.isi.edu is compressed
into a buffer containing only venera.isi.edu, this is what results:

 byte offset: 0 123456 7 890 1 234 5 6 7890 1 2
 -------------+--------------+--------
pkt contents: 6 venera 3 isi 3 edu 0 4 vaxa 0xC0 7

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 447

The 0xC0 is a byte with the high two bits ones and the rest of the bits zeros. Since the
high two bits are ones, this is a pointer instead of a length. The pointer value is 7: the
last six bits of the first octet are zeros and the second octet is 7. At offset seven in this
buffer, you find the rest of the domain name that begins with vaxa, which is isi.edu.

In this example, we only showed the compression in two domain names in a buffer,
not a whole DNS message. A DNS message would have had a header as well as other
fields. This example is intended only to give you an idea of how the domain name
compression works. Now the good news: you don’t really need to care how names
are compressed as long as the library routines do it properly. What you do need to
know is how parsing a DNS response message can get messed up if you are off by
one byte. For example, try to expand the name starting with byte two instead of byte
one. You’ll discover that “v” doesn’t make a very good length octet or pointer.

The Resolver Library Routines
The resolver library contains the routines that you need to write your application.
You’ll use these routines to generate queries. You’ll use the nameserver library rou-
tines, explained next, to parse the response.

In case you’re wondering why we’re not using the BIND 9 resolver routines in our
code, BIND 9 includes library routines to perform lots of powerful DNS functions,
but they’re oriented toward the BIND 9 nameserver’s needs and are very compli-
cated to use, we’re told. BIND 9 includes the BIND 8 resolver in lib/bind/resolv and
we will continue to use that for now. A program linked against the BIND 8 library
routines will work just fine with a BIND 9 nameserver.

Here are the header files you must include:

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

Now let’s look at the resolver library routines.

herror and h_errno
extern int h_errno;
int herror(const char *s)

herror is a routine like perror, except that it prints out a string based on the value of the
external variable h_errno instead of errno. The only argument is:

s A string used to identify the error message. If a string s is supplied, it is printed first,
followed by “:” and a string based on the value of h_errno.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

Here are the possible values of h_errno:

HOST_NOT_FOUND
The domain name does not exist. The return code in the nameserver response was
NXDOMAIN.

TRY_AGAIN
Either the nameserver is not running, or the nameserver returned SERVFAIL.

NO_RECOVERY
Either the domain name could not be compressed because it was an invalid domain
name (e.g., a name missing a label—.movie.edu) or the nameserver returned FORMERR,
NOTIMP, or REFUSED.

NO_DATA
The domain name exists, but there is no data of the requested type.

NETDB_INTERNAL
There was a library error unrelated to the network or name service. Instead, see errno
for the problem description.

res_init
int res_init(void)

res_init reads resolv.conf and initializes a data structure called _res (more about that later).
All the previously discussed routines will call res_init if they detect that it hasn’t been called
previously. Or you can call it on your own; this is useful if you want to change some of the
defaults before calling the first resolver library routine. If there are any lines in resolv.conf
that res_init doesn’t understand, it ignores them. res_init always returns 0, even if the
manpage reserves the right to return –1.

res_mkquery
int res_mkquery(int op,
 const char *dname,
 int class,
 int type,
 const u_char *data,
 int datalen,
 const u_char *newrr,
 u_char *buf,
 int buflen)

res_mkquery creates the query message. It fills in all the header fields, compresses the
domain name into the question section, and fills in the other question fields.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 449

The dname, class, and type arguments are the same as for res_search and res_query. The
remaining arguments are:

op
The “operation” to be performed. This is normally QUERY, but it can be IQUERY
(inverse query). However, as we’ve explained before, IQUERY is seldom used. BIND
versions 4.9.4 and later, by default, do not even support IQUERY.

data
A buffer containing the data for inverse queries. It is NULL when op is QUERY.

datalen
The size of the data buffer. If data is NULL, then datalen is 0.

newrr
A buffer used for the dynamic update code (covered in Chapter 10). Unless you are
playing with this feature, it is always NULL.

buf
A buffer in which res_mkquery places the query message. It should be PACKETSZ or
larger, like the answer buffer in res_search and res_query.

buflen
The size of the buf buffer (e.g., PACKETSZ).

res_mkquery returns the size of the query message or –1 if there was an error.

res_query
int res_query(const char *dname,
 int class,
 int type,
 u_char *answer,
 int anslen)

res_query is one of the “mid-level” resolver routines. It does all the real work in looking up
the domain name: it makes a query message by calling res_mkquery, sends the query by
calling res_send, and looks at enough of the response to determine whether your question
was answered. In many cases, res_query is called by res_search, which just feeds it the
different domain names to look up. As you’d expect, these two functions have the same
arguments. res_query returns the size of the response, or it fills in h_errno and returns –1 if
there was an error or the answer count was 0.

res_search
int res_search(const char *dname,
 int class,
 int type,
 u_char *answer,
 int anslen)

res_search is the “highest level” resolver routine, and is called by gethostbyname. res_search
applies the search algorithm to the domain name passed to it. That is, it takes the domain

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

name it receives (dname), “completes” the name (if it’s not fully qualified) by adding the
various domain names from the resolver search list, and calls res_query until it receives a
successful response, indicating that it found a valid, fully qualified domain name. In addi-
tion to implementing the search algorithm, res_search looks in the file referenced by your
HOSTALIASES environment variable. (The HOSTALIASES variable was described in
Chapter 6.) So it also takes care of any “private” host aliases you might have. res_search
returns the size of the response or fills in h_errno and returns –1 if there was an error or the
answer count is 0. (h_errno is like errno, but for DNS lookups.)

Therefore, the only parameter that’s really of interest to res_search is dname; the others are
just passed through to res_query and the other resolver routines. The other arguments are:

class
The class of the data you’re looking up. This is almost always the constant C_IN, the
Internet class. The class constants are defined in arpa/nameser.h.

type
The type of data you’re looking up. Again, this is a constant defined in arpa/ nameser.h.
A typical value would be T_NS to retrieve a nameserver record, or T_MX to retrieve an
MX record.

answer
A buffer in which res_search will place the response message. Its size should be at least
PACKETSZ (from arpa/nameser.h) bytes.

anslen
The size of the answer buffer (e.g., PACKETSZ).

res_search returns the size of the response or –1 if there was an error.

res_send
int res_send(const u_char *msg,
 int msglen,
 u_char *answer,
 int anslen)

res_send implements the retry algorithm. It sends the query message, msg, in a UDP data-
gram, but it can also send it over a TCP stream. The response message is stored in answer.
This routine, of all the resolver routines, is the only one to use black magic (unless you
know all about connected datagram sockets). You’ve seen these arguments before in the
other resolver routines:

msg
The buffer containing the DNS query message

msglen
The size of the message

answer
The buffer in which to store the DNS response message

anslen
The size of the answer message

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 451

res_send returns the size of the response or –1 if there was an error. If this routine returns –1
and errno is ECONNREFUSED, then there is no nameserver running on the target
nameserver host.

You can look at errno to see if it is ECONNREFUSED after calling res_search or res_query.
(res_search calls res_query, which calls res_send.) If you want to check errno after calling
res_query, clear errno first. That way, you know the current call to res_send was the one
that set errno. However, you don’t have to clear errno before calling res_search. res_search
clears errno itself before calling res_query.

The _res Structure
Each resolver routine (i.e., each routine whose name starts with res_) uses a com-
mon data structure called _res. You can change the behavior of the resolver routines
by changing _res. If you want to change the number of times res_send retries a query,
you can change the value of the retry field. If you want to turn off the resolver search
algorithm, you turn off the RES_DNSRCH bit from the options mask. You’ll find the
all-important _res structure in resolv.h:

struct _ _res_state {
 int retrans; /* retransmission time interval */
 int retry; /* number of times to retransmit */
 u_long options; /* option flags - see below. */
 int nscount; /* number of name servers */
 struct sockaddr_in
 nsaddr_list[MAXNS]; /* address of name server */
#define nsaddr nsaddr_list[0] /* for backward compatibility */
 u_short id; /* current packet id */
 char *dnsrch[MAXDNSRCH+1]; /* components of domain to search */
 char defdname[MAXDNAME]; /* default domain */
 u_long pfcode; /* RES_PRF_ flags - see below. */
 unsigned ndots:4; /* threshold for initial abs. query */
 unsigned nsort:4; /* number of elements in sort_list[] */
 char unused[3];
 struct {
 struct in_addr addr; /* address to sort on */
 u_int32_t mask;
 } sort_list[MAXRESOLVSORT];
};

The options field is a simple bit mask of the enabled options. To turn on a feature,
turn on the corresponding bit in the options field. Bit masks for each of the options
are defined in resolv.h; the options are:

RES_INIT
If this bit is on, res_init has been called.

RES_DEBUG
This bit causes resolver debugging messages to be printed—if the resolver rou-
tines were compiled with DEBUG, that is. Off is the default.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

RES_AAONLY
Requires the answer to be authoritative, not from a nameserver’s cache. It’s too
bad this isn’t implemented, as it would be a useful feature. Given the BIND
resolver’s design, this feature would have to be implemented in the nameserver,
and it’s not.

RES_PRIMARY
Query the primary master nameserver only—again, not implemented.

RES_USEVC
Turn on this bit if you’d like the resolver to make its queries over a virtual cir-
cuit (TCP) connection instead of with UDP datagrams. As you might guess,
there is a performance penalty for setting up and tearing down a TCP connec-
tion. Off is the default.

RES_STAYOPEN
If you are making your queries over a TCP connection, turning on this bit causes
the connection to be left open, so you can use it to query the same remote
nameserver again. Otherwise, the connection is torn down after the query has
been answered. Off is the default.

RES_IGNTC
If the nameserver response has the truncation bit set, then the default resolver
behavior is to retry the query using TCP. If this bit is turned on, the truncation
bit in the response message is ignored, and the query is not retried using TCP.
Off is the default.

RES_RECURSE
The default behavior for the BIND resolver is to send recursive queries. Turning
off this bit turns off the “recursion desired” bit in the query message. On is the
default.

RES_DEFNAMES
The default behavior for the BIND resolver is to append the local domain name
to any domain name that does not have a dot in it. Turning off this bit turns off
appending the local domain name. On is the default.

RES_DNSRCH
The default behavior for the BIND resolver is to append each element of the
search list to a domain name that does not end in a dot. Turning off this bit
turns off the search list function. On is the default.

RES_INSECURE1
The default behavior for a 4.9.3 or later BIND resolver is to ignore answers from
nameservers that were not queried. Turning on this bit disables this security
check. Off (i.e., security check on) is the default.

RES_INSECURE2
The default behavior for a 4.9.3 or later BIND resolver is to ignore answers in
which the question section of the response does not match the question section

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 453

of the original query. Turning on this bit disables this security check. Off (i.e.,
security check on) is the default.

RES_NOALIASES
The default behavior for the BIND resolver is to use aliases defined in the file
specified by the user’s HOSTALIASES environment variable. Turning on this bit
disables the HOSTALIASES feature for 4.9.3 and later BIND resolvers. Previous
resolvers did not allow this feature to be disabled. Off is the default.

RES_USE_INET6
Tells the resolver to return IPv6 addresses (in addition to IPv4 addresses) to the
gethostbyname function.

RES_ROTATE
Normally, a resolver that sends repeated queries always queries the first
nameserver in resolv.conf first. With RES_ROTATE set, a BIND 8.2 or later
resolver sends its first query to the first nameserver in resolv.conf, its second to
the second nameserver, and so on. (See the options rotate directive in Chapter 6
for details.) The default is not to rotate nameservers.

RES_NOCHECKNAME
Since BIND 4.9.4, resolvers have checked the domain names in responses to
make sure they conform to the naming guidelines described in Chapter 4. BIND
8.2 resolvers offer the option of turning off the name-checking mechanism. Off
(i.e., name check on) is the default.

RES_KEEPTSIG
This option tells a BIND 8.2 or later resolver not to strip the TSIG record from a
signed DNS message. This way, the application that called the resolver can
examine it.

RES_BLAST
“Blast” all recursive servers by sending queries to them simultaneously. Not
implemented yet.

RES_DEFAULT
This isn’t a single option, but rather a combination of the RES_RECURSE,
RES_DEFNAMES, and RES_DNSRCH options, all of which are on by default.
You normally won’t need to set RES_DEFAULT explicitly; it’s set for you when
you call res_init.

The Nameserver Library Routines
The nameserver library contains routines you need to parse response messages. Here
are the header files you must include:

#include <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

#include <arpa/nameser.h>
#include <resolv.h>

Following are the nameserver library routines.

ns_get16 and ns_put16
u_int ns_get16(const u_char *cp)
void ns_put16(u_int s, u_char *cp)

The DNS messages have fields that are unsigned short integer (type, class, and data length,
to name a few). ns_get16 returns a 16-bit integer pointed to by cp, and ns_put16 assigns the
16-bit value of s to the location pointed to by cp.

ns_get32 and ns_put32
u_long ns_get32(const u_char *cp)
void ns_put32(u_long l, u_char *cp)

These routines are like their 16-bit counterparts except that they deal with a 32-bit integer
instead of a 16-bit integer. The TTL (time to live) field of a resource record is a 32-bit
integer.

ns_initparse
int ns_initparse(const u_char *msg,
 int msglen,
 ns_msg *handle)

ns_initparse is the first routine you must call before you use the other nameserver library
routines. ns_initparse fills in the data structure pointed to by handle, which is a parameter
passed to other routines. The arguments are:

msg
A pointer to the beginning of the response message buffer

msglen
The size of the message buffer

handle
A pointer to a data structure filled in by ns_initparse

ns_initparse returns 0 on success and –1 if it fails to parse the message buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 455

ns_msg_base, ns_msg_end, and ns_msg_size
const u_char *ns_msg_base(ns_msg handle)
const u_char *ns_msg_end(ns_msg handle)
int ns_msg_size(ns_msg handle)

These routines return a pointer to the start of the message, a pointer to the end of the
message, and the size of the message. They return the data you passed into ns_initparse.
The only argument is:

handle
A data structure filled in by ns_initparse

ns_msg_count
u_int16_t ns_msg_count(ns_msg handle, ns_sect section)

ns_msg_count returns a counter from the header section of the response message. Its argu-
ments are:

handle
A data structure filled in by ns_initparse

section
An enumerated type that can have the following values:

ns_s_qd /* Query: Question section */
ns_s_zn /* Update: Zone section */
ns_s_an /* Query: Answer section */
ns_s_pr /* Update: Prerequisite section */
ns_s_ns /* Query: Name Server section */
ns_s_ud /* Update: Update section */
ns_s_ar /* Query|Update: Additional records section */

ns_msg_get_flag
u_int16_t ns_msg_get_flag(ns_msg handle, ns_flag flag)

ns_msg_get_flag returns the “flag” fields from the header section of the response message.
Its arguments are:

handle
A data structure filled in by ns_initparse

flag
An enumerated type that can have the following values:

ns_f_qr /* Question/Response */
ns_f_opcode /* Operation Code */
ns_f_aa /* Authoritative Answer */
ns_f_tc /* Truncation Occurred */

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

ns_f_rd /* Recursion Desired */
ns_f_ra /* Recursion Available */
ns_f_z /* Must Be Zero */
ns_f_ad /* Authentic Data (DNSSEC) */
ns_f_cd /* Checking Disabled (DNSSEC) */
ns_f_rcode /* Response Code */
ns_f_max

ns_msg_id
u_int16_t ns_msg_id(ns_msg handle)

ns_msg_id returns the identification from the header section (described earlier) of the
response message. The only argument is:

handle
A data structure filled in by ns_initparse

ns_name_compress
int ns_name_compress(const char *exp_dn,
 u_char *comp_dn,
 size_t length,
 const u_char **dnptrs,
 const u_char **lastdnptr)

ns_name_compress compresses a domain name. You won’t normally call this routine your-
self—you’ll let res_mkquery do it for you. However, if you need to compress a name for
some reason, this is the tool to do it. The arguments are:

exp_dn
The “expanded” domain name that you supply—i.e., a normal, null-terminated string
containing a fully qualified domain name.

comp_dn
The place where ns_name_compress will store the compressed domain name.

length
The size of the comp_dn buffer.

dnptrs
An array of pointers to previously compressed domain names. dnptrs[0] points to the
beginning of the message; the list ends with a NULL pointer. After you’ve initialized
dnptrs[0] to the beginning of the message and dnptrs[1] to NULL, dn_comp updates
the list each time you call it.

lastdnptr
A pointer to the end of the dnptrs array. ns_name_compress needs to know where the
end of the array is so it doesn’t overrun it.

If you want to use this routine, look at how it is used in the BIND source in src/lib/resolv/
res_mkquery.c (BIND 8) or res/res_mkquery.c (BIND 4). It’s often easier to see how to use a
routine from an example than from an explanation. ns_name_compress returns the size of
the compressed name or –1 if there was an error.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 457

ns_name_skip
int ns_name_skip(const u_char **ptrptr, const u_char *eom)

ns_name_skip is like ns_name_uncompress, but instead of uncompressing the name, it just
skips over it. The arguments are:

ptrptr
A pointer to a pointer to the name to skip over. The original pointer is advanced past
the name.

eom
A pointer to the first byte after the message. It is used to make sure that ns_name_skip
doesn’t go past the end of the message.

ns_name_skip returns 0 if successful. It returns –1 if it fails to uncompress the name.

ns_name_uncompress
int ns_name_uncompress(const u_char *msg,
 const u_char *eomorig,
 const u_char *comp_dn,
 char *exp_dn,
 size_t length)

ns_name_uncompress expands a “compressed” domain name. You’ll use this routine if you
parse a nameserver response message, as we do in check_soa, the C program that follows.
The arguments are:

msg
A pointer to the beginning of your response message.

eomorig
A pointer to the first byte after the message. It is used to make sure that ns_name_uncom-
press doesn’t go past the end of the message.

comp_dn
A pointer to the compressed domain name within the message.

exp_dn
The place where ns_name_uncompress will store the expanded name. You should
always allocate an array of MAXDNAME characters for the expanded name.

length
The size of the exp_dn buffer.

ns_name_uncompress returns the size of the compressed name or –1 if there was an error.
You might wonder why ns_name_uncompress returns the size of the compressed name, not
the size of the expanded name. It does this because when you call ns_name_uncompress,
you are parsing a DNS message and need to know how much space the compressed name
occupied in the message so that you can skip over it.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

ns_parserr
int ns_parserr(ns_msg *handle,
 ns_sect section,
 int rrnum,
 ns_rr *rr)

ns_parserr extracts information about a response record and stores it in rr, which is a
parameter passed to other nameserver libarary routines. The arguments are:

handle
A pointer to a data structure filled in by ns_initparse.

section
The same parameter described in ns_msg_count.

rrnum
A resource record number for the resource records in this section. Resource records
start numbering at 0. ns_msg_count tells you how many resource records are in this
section.

rr
A pointer to a data structure to be initialized.

ns_parserr returns 0 on success and –1 if it fails to parse the response buffer.

ns_rr routines
char *ns_rr_name(ns_rr rr)
u_int16_t ns_rr_type(ns_rr rr)
u_int16_t ns_rr_class(ns_rr rr)
u_int32_t ns_rr_ttl(ns_rr rr)
u_int16_t ns_rr_rdlen(ns_rr rr)
const u_char *ns_rr_rdata(ns_rr rr)

These routines return individual fields from a response record. Their only argument is:

rr A data structure filled in by ns_parserr

Parsing DNS Responses
The easiest way to learn how to parse a DNS message is to look at code that already
does it. Assuming that you have the BIND source code, the best file to look through
is src/lib/resolv/res_debug.c (BIND 8) or lib/bind/resolv/res_debug.c (BIND 8 resolver
in the BIND 9 distribution). (If you’re really determined to use BIND 9, you might
have to read almost 3,000 lines of lib/dns/message.c.) res_debug.c contains fp_query
(or res_pquery in BIND 8.2 and later), the function that prints out the DNS mes-
sages in the nameserver debugging output. Our sample program traces its parentage
to code from this file.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 459

You won’t always want to parse the DNS response manually. An intermediate way to
parse the response is to call p_query, which calls fp_query, to print out the DNS mes-
sage. Then use Perl or awk to grab what you need. Cricket has been known to wimp
out in this way.

A Sample Program: check_soa
Let’s now look at a C program to solve the same problem for which we wrote a shell
script earlier.

Here are the header files that are needed, the declarations for external variables, and
the declarations of functions. Notice that we use both h_errno (for the resolver rou-
tines) and errno. We limit this program to checking 20 nameservers. You’ll rarely see
a zone with more than 10 nameservers, so an upper limit of 20 should suffice.

/**
 * check_soa -- Retrieve the SOA record from each name server *
 * for a given zone and print out the serial number. *
 * *
 * usage: check_soa zone *
 * *
 * The following errors are reported: *
 * o There is no address for a server. *
 * o There is no server running on this host. *
 * o There was no response from a server. *
 * o The server is not authoritative for the zone. *
 * o The response had an error response code. *
 * o The response had more than one answer. *
 * o The response answer did not contain an SOA record. *
 * o The expansion of a compressed domain name failed. *
 **/

/* Various header files */
#include <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <arpa/nameser.h>
#include <resolv.h>

/* Error variables */
extern int h_errno; /* for resolver errors */
extern int errno; /* general system errors */

/* Our own routines; code included later in this chapter */
void nsError(); /* report resolver errors */
void findNameServers(); /* find a zone's name servers */
void addNameServers(); /* add name servers to our list */
void queryNameServers(); /* grab SOA records from servers */
void returnCodeError(); /* report response message errors */

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

/* Maximum number of name servers we will check */
#define MAX_NS 20

The main body of the program is small. We have an array of string pointers, nsList, to
store the names of the nameservers for the zone. We call the resolver function res_init
to initialize the _res structure. It wasn’t necessary for this program to call res_init
explicitly because it would have been called by the first resolver routine that used the
_res structure. However, if we had wanted to modify the value of any of the _res fields
before calling the first resolver routine, we would have made the modifications right
after calling res_init. Next, the program calls findNameServers to find all the
nameservers for the zone referenced in argv[1] and to store them in nsList. Last, the
program calls queryNameServers to query each nameserver in nsList for the SOA
record for the zone:

main(argc, argv)
int argc;
char *argv[];
{
 char *nsList[MAX_NS]; /* list of name servers */
 int nsNum = 0; /* number of name servers in list */

 /* sanity check: one (and only one) argument? */
 if(argc != 2){
 (void) fprintf(stderr, "usage: %s zone\n", argv[0]);
 exit(1);
 }

 (void) res_init();

 /*
 * Find the name servers for the zone.
 * The name servers are written into nsList.
 */
 findNameServers(argv[1], nsList, &nsNum);

 /*
 * Query each name server for the zone's SOA record.
 * The name servers are read from nsList.
 */
 queryNameServers(argv[1], nsList, nsNum);

 exit(0);
}

The routine findNameServers follows. This routine queries the local nameserver for
the NS records for the zone. It then calls addNameServers to parse the response mes-
sage and store away all the nameservers it finds. The header files, arpa/nameser.h and
resolv.h, contain declarations we make extensive use of:

/**
 * findNameServers -- find all of the name servers for the *
 * given zone and store their names in nsList. nsNum is *

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 461

 * the number of servers in the nsList array. *
 **/
void
findNameServers(domain, nsList, nsNum)
char *domain;
char *nsList[];
int *nsNum;
{
 union {
 HEADER hdr; /* defined in resolv.h */
 u_char buf[NS_PACKETSZ]; /* defined in arpa/nameser.h */
 } response; /* response buffers */
 int responseLen; /* buffer length */

 ns_msg handle; /* handle for response message */

 /*
 * Look up the NS records for the given domain name.
 * We expect the domain name to be a fully qualified, so
 * we use res_query(). If we'd wanted the resolver search
 * algorithm, we would have used res_search() instead.
 */
 if((responseLen =
 res_query(domain, /* the zone we care about */
 ns_c_in, /* Internet class records */
 ns_t_ns, /* Look up name server records*/
 (u_char *)&response, /*response buffer*/
 sizeof(response))) /*buffer size */
 < 0){ /*If negative */
 nsError(h_errno, domain); /* report the error */
 exit(1); /* and quit */
 }

 /*
 * Initialize a handle to this response. The handle will
 * be used later to extract information from the response.
 */
 if (ns_initparse(response.buf, responseLen, &handle) < 0) {
 fprintf(stderr, "ns_initparse: %s\n", strerror(errno));
 return;
 }

 /*
 * Create a list of name servers from the response.
 * NS records may be in the answer section and/or in the
 * authority section depending on the DNS implementation.
 * Walk through both. The name server addresses may be in
 * the additional records section, but we will ignore them
 * since it is much easier to call gethostbyname() later
 * than to parse and store the addresses here.
 */

 /*
 * Add the name servers from the answer section.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

 */
 addNameServers(nsList, nsNum, handle, ns_s_an);

 /*
 * Add the name servers from the authority section.
 */
 addNameServers(nsList, nsNum, handle, ns_s_ns);
}

/**
 * addNameServers -- Look at the resource records from a *
 * section. Save the names of all name servers. *
 **/

void
addNameServers(nsList, nsNum, handle, section)
char *nsList[];
int *nsNum;
ns_msg handle;
ns_sect section;
{
 int rrnum; /* resource record number */
 ns_rr rr; /* expanded resource record */

 int i, dup; /* misc variables */

 /*
 * Look at all the resource records in this section.
 */
 for(rrnum = 0; rrnum < ns_msg_count(handle, section); rrnum++)
 {
 /*
 * Expand the resource record number rrnum into rr.
 */
 if (ns_parserr(&handle, section, rrnum, &rr)) {
 fprintf(stderr, "ns_parserr: %s\n", strerror(errno));
 }

 /*
 * If the record type is NS, save the name of the
 * name server.
 */
 if (ns_rr_type(rr) == ns_t_ns) {

 /*
 * Allocate storage for the name. Like any good
 * programmer should, we test malloc's return value,
 * and quit if it fails.
 */
 nsList[*nsNum] = (char *) malloc (MAXDNAME);
 if(nsList[*nsNum] == NULL){
 (void) fprintf(stderr, "malloc failed\n");
 exit(1);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 463

 /* Expand the name server's domain name */
 if (ns_name_uncompress(
 ns_msg_base(handle),/* Start of the message */
 ns_msg_end(handle), /* End of the message */
 ns_rr_rdata(rr), /* Position in the message */
 nsList[*nsNum], /* Result */
 MAXDNAME) /* Size of nsList buffer */
 < 0) { /* Negative: error */
 (void) fprintf(stderr, "ns_name_uncompress failed\n");
 exit(1);
 }

 /*
 * Check the domain name we've just unpacked and add it to
 * the list of name servers if it is not a duplicate.
 * If it is a duplicate, just ignore it.
 */
 for(i = 0, dup=0; (i < *nsNum) && !dup; i++)
 dup = !strcasecmp(nsList[i], nsList[*nsNum]);
 if(dup)
 free(nsList[*nsNum]);
 else
 (*nsNum)++;
 }
 }
}

Notice that we don’t explicitly check for finding zero nameserver records. We don’t
need to check because res_query flags that case as an error; it returns –1 and sets her-
rno to NO_DATA. If res_query returns –1, we call our own routine, nsError, to print
out an error string from h_errno instead of using herror. The herror routine isn’t a
good fit for our program because its messages assume you are looking up address
data (e.g., if h_ errno is NO_DATA, the error message is “No address associated with
name”).

The next routine queries each nameserver that we’ve found for an SOA record. In
this routine, we change the value of several of the _res structure fields. By changing
the nsaddr_list field, we change which nameserver res_send queries. We disable the
search list by turning off bits in the options field; all the domain names that this pro-
gram handles are fully qualified:

/**
 * queryNameServers -- Query each of the name servers in nsList *
 * for the SOA record of the given zone. Report any *
 * errors encountered (e.g., a name server not running or *
 * the response not being an authoritative response). If *
 * there are no errors, print out the serial number for the zone. *
 **/

void
queryNameServers(domain, nsList, nsNum)
char *domain;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

char *nsList[];
int nsNum;
{
 union {
 HEADER hdr; /* defined in resolv.h */
 u_char buf[NS_PACKETSZ]; /* defined in arpa/nameser.h */
 } query, response; /* query and response buffers */
 int responseLen, queryLen; /* buffer lengths */

 u_char *cp; /* character pointer to parse DNS message */

 struct in_addr saveNsAddr[MAXNS]; /* addrs saved from _res */
 int nsCount; /* count of addresses saved from _res */
 struct hostent *host; /* structure for looking up ns addr */
 int i; /* counter variable */

 ns_msg handle; /* handle for response message */
 ns_rr rr; /* expanded resource record */

 /*
 * Save the _res name server list since
 * we will need to restore it later.
 */
 nsCount = _res.nscount;
 for(i = 0; i < nsCount; i++)
 saveNsAddr[i] = _res.nsaddr_list[i].sin_addr;

 /*
 * Turn off the search algorithm and turn off appending
 * the local domain name before we call gethostbyname();
 * the name server's domain names will be fully qualified.
 */
 _res.options &= ~(RES_DNSRCH | RES_DEFNAMES);

 /*
 * Query each name server for the zone's SOA record.
 */
 for(nsNum-- ; nsNum >= 0; nsNum--){

 /*
 * First, we have to get the IP address of every name server.
 * So far, all we have are domain names. We use gethostbyname()
 * to get the addresses, rather than anything fancy.
 * But first, we have to restore certain values in _res
 * because _res affects gethostbyname(). (We altered
 * _res in the previous iteration through the loop.)
 *
 * We can't just call res_init() again to restore
 * these values since some of the _res fields are
 * initialized when the variable is declared, not when
 * res_init() is called.
 */

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 465

 _res.options |= RES_RECURSE; /* recursion on (default) */
 _res.retry = 4; /* 4 retries (default) */
 _res.nscount = nsCount; /* original name servers */
 for(i = 0; i < nsCount; i++)
 _res.nsaddr_list[i].sin_addr = saveNsAddr[i];

 /* Look up the name server's address */
 host = gethostbyname(nsList[nsNum]);
 if (host == NULL) {
 (void) fprintf(stderr,"There is no address for %s\n",
 nsList[nsNum]);
 continue; /* nsNum for-loop */
 }

 /*
 * Now get ready for the real fun. host contains IP
 * addresses for the name server we're testing.
 * Store the first address for host in the _res
 * structure. Soon, we'll look up the SOA record...
 */
 (void) memcpy((void *)&_res.nsaddr_list[0].sin_addr,
 (void *)host->h_addr_list[0], (size_t)host->h_length);
 _res.nscount = 1;

 /*
 * Turn off recursion. We don't want the name server
 * querying another server for the SOA record; this name
 * server ought to be authoritative for this data.
 */
 _res.options &= ~RES_RECURSE;

 /*
 * Reduce the number of retries. We may be checking
 * several name servers, so we don't want to wait too
 * long for any one server. With two retries and only
 * one address to query, we'll wait at most 15 seconds.
 */
 _res.retry = 2;

 /*
 * We want to see the response code in the next
 * response, so we must make the query message and
 * send it ourselves instead of having res_query()
 * do it for us. If res_query() returned -1, there
 * might not be a response to look at.
 *
 * There is no need to check for res_mkquery()
 * returning -1. If the compression was going to
 * fail, it would have failed when we called
 * res_query() earlier with this domain name.
 */
 queryLen = res_mkquery(
 ns_o_query, /* regular query */
 domain, /* the zone to look up */

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

 ns_c_in, /* Internet type */
 ns_t_soa, /* look up an SOA record */
 (u_char *)NULL, /* always NULL */
 0, /* length of NULL */
 (u_char *)NULL, /* always NULL */
 (u_char *)&query,/* buffer for the query */
 sizeof(query)); /* size of the buffer */

 /*
 * Send the query message. If there is no name server
 * running on the target host, res_send() returns -1
 * and errno is ECONNREFUSED. First, clear out errno.
 */
 errno = 0;
 if((responseLen = res_send((u_char *)&query,/* the query */
 queryLen, /* true length*/
 (u_char *)&response,/*buffer */
 sizeof(response))) /*buf size*/
 < 0){ /* error */
 if(errno == ECONNREFUSED) { /* no server on the host */
 (void) fprintf(stderr,
 "There is no name server running on %s\n",
 nsList[nsNum]);
 } else { /* anything else: no response */
 (void) fprintf(stderr,
 "There was no response from %s\n",
 nsList[nsNum]);
 }
 continue; /* nsNum for-loop */
 }

 /*
 * Initialize a handle to this response. The handle will
 * be used later to extract information from the response.
 */
 if (ns_initparse(response.buf, responseLen, &handle) < 0) {
 fprintf(stderr, "ns_initparse: %s\n", strerror(errno));
 return;
 }

 /*
 * If the response reports an error, issue a message
 * and proceed to the next server in the list.
 */
 if(ns_msg_getflag(handle, ns_f_rcode) != ns_r_noerror){
 returnCodeError(ns_msg_getflag(handle, ns_f_rcode),
 nsList[nsNum]);
 continue; /* nsNum for-loop */
 }

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 467

 /*
 * Did we receive an authoritative response? Check the
 * authoritative answer bit. If this name server isn't
 * authoritative, report it, and go on to the next server.
 */
 if(!ns_msg_getflag(handle, ns_f_aa)){
 (void) fprintf(stderr,
 "%s is not authoritative for %s\n",
 nsList[nsNum], domain);
 continue; /* nsNum for-loop */
 }

 /*
 * The response should only contain one answer; if more,
 * report the error, and proceed to the next server.
 */
 if(ns_msg_count(handle, ns_s_an) != 1){
 (void) fprintf(stderr,
 "%s: expected 1 answer, got %d\n",
 nsList[nsNum], ns_msg_count(handle, ns_s_an));
 continue; /* nsNum for-loop */
 }

 /*
 * Expand the answer section record number 0 into rr.
 */
 if (ns_parserr(&handle, ns_s_an, 0, &rr)) {
 if (errno != ENODEV){
 fprintf(stderr, "ns_parserr: %s\n",
 strerror(errno));
 }
 }

 /*
 * We asked for an SOA record; if we got something else,
 * report the error and proceed to the next server.
 */
 if (ns_rr_type(rr) != ns_t_soa) {
 (void) fprintf(stderr,
 "%s: expected answer type %d, got %d\n",
 nsList[nsNum], ns_t_soa, ns_rr_type(rr));
 continue; /* nsNum for-loop */
 }

 /*
 * Set cp to point the the SOA record.
 */
 cp = (u_char *)ns_rr_rdata(rr);

 /*
 * Skip the SOA origin and mail address, which we don't
 * care about. Both are standard "compressed names."
 */

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

 ns_name_skip(&cp, ns_msg_end(handle));
 ns_name_skip(&cp, ns_msg_end(handle));

 /* cp now points to the serial number; print it. */
 (void) printf("%s has serial number %d\n",
 nsList[nsNum], ns_get32(cp));

 } /* end of nsNum for-loop */
}

Notice that we use recursive queries when we call gethostbyname, but nonrecursive
queries when we look up the SOA record. gethostbyname may need to query other
nameservers to find the host’s address. But we don’t want the nameserver querying
another server when we ask it for the SOA record; it’s supposed to be authoritative
for this zone, after all. Allowing the nameserver to ask another server for the SOA
record would defeat the error check.

The next two routines print out error messages:

/**
 * nsError -- Print an error message from h_errno for a failure *
 * looking up NS records. res_query() converts the DNS *
 * message return code to a smaller list of errors and *
 * places the error value in h_errno. There is a routine *
 * called herror() for printing out strings from h_errno *
 * like perror() does for errno. Unfortunately, the *
 * herror() messages assume you are looking up address *
 * records for hosts. In this program, we are looking up *
 * NS records for zones, so we need our own list of error *
 * strings. *
 **/
void
nsError(error, domain)
int error;
char *domain;
{
 switch(error){
 case HOST_NOT_FOUND:
 (void) fprintf(stderr, "Unknown zone: %s\n", domain);
 break;
 case NO_DATA:
 (void) fprintf(stderr, "No NS records for %s\n", domain);
 break;
 case TRY_AGAIN:
 (void) fprintf(stderr, "No response for NS query\n");
 break;
 default:
 (void) fprintf(stderr, "Unexpected error\n");
 break;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 469

/**
 * returnCodeError -- print out an error message from a DNS *
 * response return code. *
 **/
void
returnCodeError(rcode, nameserver)
ns_rcode rcode;
char *nameserver;
{
 (void) fprintf(stderr, "%s: ", nameserver);
 switch(rcode){
 case ns_r_formerr:
 (void) fprintf(stderr, "FORMERR response\n");
 break;
 case ns_r_servfail:
 (void) fprintf(stderr, "SERVFAIL response\n");
 break;
 case ns_r_nxdomain:
 (void) fprintf(stderr, "NXDOMAIN response\n");
 break;
 case ns_r_notimpl:
 (void) fprintf(stderr, "NOTIMP response\n");
 break;
 case ns_r_refused:
 (void) fprintf(stderr, "REFUSED response\n");
 break;
 default:
 (void) fprintf(stderr, "unexpected return code\n");
 break;
 }
}

To compile this program using the resolver and nameserver routines in libc:

% cc -o check_soa check_soa.c

Or, if you’ve newly compiled the BIND code as we describe in Appendix C and want
to use the latest header files and resolver library:

% cc -o check_soa -I/usr/local/src/bind/src/include \

check_soa.c /usr/local/src/bind/src/lib/libbind.a

Here is what the output looks like:

% check_soa mit.edu

BITSY.MIT.EDU has serial number 1995
W20NS.MIT.EDU has serial number 1995
STRAWB.MIT.EDU has serial number 1995

If you look back at the shell script output, it looks the same, except that the shell
script’s output is sorted by the nameserver’s name. What you can’t see is that the C
program ran much faster.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

Perl Programming with Net::DNS
If using the shell to parse nslookup’s output seems too awkward and writing a C pro-
gram seems too complicated, consider writing your program in Perl using the Net::DNS
module written by Michael Fuhr. You’ll find the package at http://www.perl.com/CPAN-
local/modules/by-module/Net/Net-DNS-0.12.tar.gz.

Net::DNS treats resolvers, DNS messages, sections of DNS messages, and individual
resource records as objects and provides methods for setting or querying each
object’s attributes. We’ll examine each object type first, then give a Perl version of
our check_soa program.

Resolver Objects
Before making any queries, you must first create a resolver object:

$res = new Net::DNS::Resolver;

Resolver objects are initialized from your resolv.conf file, but you can change the
default settings by making calls to the object’s methods. Many of the methods
described in the Net::DNS::Resolver manual page correspond to fields and options
in the _res structure described earlier in this chapter. For example, if you want to set
the number of times the resolver tries each query before timing out, you can call the
$res->retry method:

$res->retry(2);

To make a query, call one of the following methods:

$res->search
$res->query
$res->send

These methods behave like the res_search, res_query, and res_send library functions
described in the C programming section, though they take fewer arguments. You
must provide a domain name, and you can optionally provide a record type and class
(the default behavior is to query for A records in the IN class). These methods return
Net::DNS::Packet objects, which we’ll describe next. Here are a few examples:

$packet = $res->search("terminator");
$packet = $res->query("movie.edu", "MX");
$packet = $res->send("version.bind", "TXT", "CH");

Packet Objects
Resolver queries return Net::DNS::Packet objects, whose methods you can use to
access the header, question, answer, authority, and additional sections of a DNS
message:

$header = $packet->header;
@question = $packet->question;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 471

@answer = $packet->answer;
@authority = $packet->authority;
@additional = $packet->additional;

Header Objects
DNS message headers are returned as Net::DNS::Header objects. The methods
described in the Net::DNS::Header manual page correspond to the header fields
described in RFC 1035 and in the HEADER structure used in C programs. For exam-
ple, if you want to find out if this is an authoritative answer, call the $header->aa
method:

if ($header->aa) {
 print "answer is authoritative\n";
} else {
 print "answer is not authoritative\n";
}

Question Objects
The question section of a DNS message is returned as a list of Net::DNS::Question
objects. You can find the name, type, and class of a question object with the follow-
ing methods:

$question->qname
$question->qtype
$question->qclass

Resource Record Objects
The answer, authority, and additional sections of a DNS message are returned as lists
of Net::DNS::RR objects. You can find the name, type, class, and TTL of an RR
object with the following methods:

$rr->name
$rr->type
$rr->class
$rr->ttl

Each record type is a subclass of Net::DNS::RR and has its own type-specific meth-
ods. Here’s an example that shows how to get the preference and mail exchanger out
of an MX record:

$preference = $rr->preference;
$exchanger = $rr->exchange;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 15: Programming with the Resolver and Nameserver Library Routines

A Perl Version of check_soa
Now that we’ve described the objects Net::DNS uses, let’s look at how to use them
in a complete program. We’ve rewritten check_soa in Perl:

#!/usr/local/bin/perl -w

use Net::DNS;

#--
Get the zone from the command line.
#--

die "Usage: check_soa zone\n" unless @ARGV == 1;
$domain = $ARGV[0];

#--
Find all the name servers for the zone.
#--

$res = new Net::DNS::Resolver;

$res->defnames(0);
$res->retry(2);

$ns_req = $res->query($domain, "NS");
die "No name servers found for $domain: ", $res->errorstring, "\n"
 unless defined($ns_req) and ($ns_req->header->ancount > 0);

@nameservers = grep { $_->type eq "NS" } $ns_req->answer;

#--
Check the SOA record on each name server.
#--

$| = 1;
$res->recurse(0);

foreach $nsrr (@nameservers) {

 #--
 # Set the resolver to query this name server.
 #--

 $ns = $nsrr->nsdname;
 print "$ns ";

 unless ($res->nameservers($ns)) {
 warn ": can't find address: ", $res->errorstring, "\n";
 next;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Perl Programming with Net::DNS | 473

 #--
 # Get the SOA record.
 #--

 $soa_req = $res->send($domain, "SOA");
 unless (defined($soa_req)) {
 warn ": ", $res->errorstring, "\n";
 next;
 }

 #--
 # Is this name server authoritative for the zone?
 #--

 unless ($soa_req->header->aa) {
 warn "is not authoritative for $domain\n";
 next;
 }

 #--
 # We should have received exactly one answer.
 #--

 unless ($soa_req->header->ancount == 1) {
 warn ": expected 1 answer, got ",
 $soa_req->header->ancount, "\n";
 next;
 }

 #--
 # Did we receive an SOA record?
 #--

 unless (($soa_req->answer)[0]->type eq "SOA") {
 warn ": expected SOA, got ",
 ($soa_req->answer)[0]->type, "\n";
 next;
 }

 #--
 # Print the serial number.
 #--

 print "has serial number ", ($soa_req->answer)[0]->serial, "\n";
}

Now that you’ve seen how to write a DNS program using a shell script, a Perl script,
and C code, you should be able to write one of your own using the language that
best fits your situation.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

474

Chapter 16CHAPTER 16

Architecture 16

“Now if you’ll only attend, Kitty, and not talk so
much, I’ll tell you all my ideas about Looking-glass
House.”

You’ve now seen bits and pieces of the Movie U. DNS infrastructure: our first pri-
mary and slave nameservers in Chapter 4, more slaves in Chapter 8, a delegated sub-
domain and its associated authoritative nameservers in Chapter 9. In Chapter 11, we
introduced external nameservers and forwarders, split namespaces, views, and more.
It may be difficult to get a sense of how all these components work together because
we introduced them over so many pages. In this chapter, we’ll put all of these com-
ponents together into an overall design for a DNS infrastructure—what we call DNS
architecture.

DNS architecture focuses on high-level aspects of your nameservers’ configuration
rather than the contents of your zones. Which nameserver is primary and which is
slave for which zones? How are Internet domain names resolved? Who forwards to
whom? Which nameserver-based ACLs and firewall rules protect which nameservers?

It’s critical that you document your DNS architecture, just as you would your net-
work topology. That documentation can help you identify single points of failure,
performance bottlenecks, and security exposures. When name resolution goes awry,
it’ll be much easier to track down the problem with a thorough understanding of
your DNS architecture rather than trying to piece it together from named.conf files
and dig output.

However, digesting a complete DNS architecture all at once can be tough. Let’s
begin by looking at a small piece of it: external, authoritative nameservers.

External, Authoritative DNS Infrastructure
External, authoritative nameservers play a particularly important role in name reso-
lution: they make your external zone data available to nameservers on the Internet.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

External, Authoritative DNS Infrastructure | 475

When people on the Internet send us email or visit our web site, they rely on data
served by these nameservers.

In Chapter 11, we described the nameservers that “advertised” our external zones.
One, ns.movie.edu, the primary for our external zones, sat outside our firewall on our
perimeter network. Our ISP’s nameserver, ns1.isp.net, acted as a slave for our exter-
nal zones.

These nameservers, because they’re directly exposed to the Internet, require special
attention. We should disable recursion on ns.movie.edu, because it has no business
handling recursive queries. This helps protect it against brute-force denial-of-service
attacks, because its capacity to handle nonrecursive queries is many times its capac-
ity to serve recursive queries. We should also limit zone transfers to just our ISP’s
nameserver, preferably using TSIG. This helps protect the nameserver against denial-
of-service attacks in which the attacker simply tries to start numerous concurrent
zone transfers. And we can implement ACLs on our router or external firewall to
limit the network traffic that our external nameservers are exposed to: minimally, we
need to allow inbound UDP and TCP to port 53 and outbound UDP and TCP from
our nameserver’s port 53.

We might later decide to enhance our external DNS infrastructure by setting up a
new primary nameserver for our external zones, this one inside the firewall. In fact,
using views, we can configure the internal movie.edu primary as the primary for the
external movie.edu, too. This might be more convenient for us as administrators
because it allows us to make changes to either the internal or external namespace
from the same host. Here’s how the primary’s named.conf file might look:

options {
 directory "/var/named";
};

acl "internal" {
 127/8; 192.249.249/24; 192.253.253/24; 192.253.254/24; 192.254.20/24;
};

view "internal" {
 match-clients { "internal"; };
 recursion yes;

 zone "movie.edu" {
 type master;
 file "db.movie.edu.internal";
 forwarders {};
 };

 zone "249.249.192.in-addr.arpa" {
 type master;
 file "db.192.249.249";
 };

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 16: Architecture

 zone "253.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.253";
 };

 zone "254.253.192.in-addr.arpa" {
 type master;
 file "db.192.253.254";
 };

 zone "20.254.192.in-addr.arpa" {
 type master;
 file "db.192.254.20";
 };

 zone "." {
 type hint;
 file "db.cache";
 };
};

key "ns.movie.edu" {
 algorithm hmac-md5;
 secret "JprUYzd+p2TO/B7k9k9Gdg==";
};

view "external" {
 match-clients { key "ns.movie.edu"; };
 recursion no;

 zone "movie.edu" {
 type master;
 file "db.movie.edu.external";
 };

 zone "4.1.200.in-addr.arpa" {
 type master;
 file "db.200.1.4";
 };
};

To minimize the traffic we need to allow through the firewall, we can ask our ISP to
use our slave nameserver on the DMZ, ns.movie.edu, as its master for movie.edu and
4.1.200.in-addr.arpa.

Since we probably don’t want to allow queries from nameservers on the Internet to a
nameserver inside the firewall, we need to configure the new primary nameserver as a
hidden primary. This is a primary that, like the unregistered slaves we introduced in
Chapter 8, isn’t listed in the NS records for our external zones—not the NS records
in the zones themselves and not in their parent zones. This prevents any Internet
nameserver from trying to query it during the normal name resolution process. All
we need to do to configure the new nameserver as a hidden primary is to leave it out

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

External, Authoritative DNS Infrastructure | 477

of the list of nameservers we register through our registrar and not add any NS
records referring to it to our external zones.

Figure 16-1 shows how this works.

We should protect the hidden primary by allowing only DNS traffic between it and
our slave nameservers out on the Internet, in order to support NOTIFY messages the
primary sends to the slaves, and refresh queries and zone transfer requests from the
slaves to the primary. This requires allowing the traffic outlined in Table 16-1.

Figure 16-1. External authoritative nameservers, including a hidden primary

Table 16-1. Network traffic to allow between hidden primary and slaves

Source IP
address Source port

Destination IP
address

Destination
port Protocol

NOTIFY messages Primary Dynamic Slaves 53 UDP

NOTIFY
responses

Slaves 53 Primary Dynamic UDP

Refresh queries Slaves Dynamic Primary 53 UDP

Refresh
responses

Primary 53 Slaves Dynamic UDP

Zone transfer
requests

Slaves Dynamic Primary 53 TCP, including
connection
establishment

Zone transfer
responses

Primary 53 Slaves Dynamic TCP

Movie U.
internal network

toystory.movie.edu
(Hidden primary for
external movie.edu)

Movie U.
DMZ network

ns.movie.edu
(Slave for

external movie.edu)

ISP’s
network

ns1.isp.net
(Slave for

external movie.edu)

Zone transfers

Firewall

Zone transfers

Internet
Parent (edu)
nameservers

Delegation

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 16: Architecture

We can even tighten these rules a little using the notify-source and query-source sub-
statements to nail down the source UDP ports.

Our views configuration duplicates these restrictions on the primary itself, using
TSIG keys rather than IP addresses. (Notice the use of a TSIG key in the external
view’s match-clients substatement.) This gives us redundant, independent mecha-
nisms protecting our primary nameserver—important for “defense in depth.”

Forwarder Infrastructure
That’s only half of our external DNS infrastructure. We also need to let internal
resolvers and nameservers resolve Internet domain names. We can satisfy that
requirement by allowing our internal nameservers to query arbitrary nameservers on
the Internet, assuming our firewall is capable of that. That can be dangerous, though,
for reasons we discussed back in Chapter 11. Consequently, most organizations run
forwarders, which basically act as DNS proxy servers. (We introduced them back in
Chapter 10.) We’ll set up two forwarders, for redundancy, near our connection to
the Internet. The forwarders can send queries through our firewall to nameservers on
the Internet and receive responses; nameservers on the Internet, however, won’t be
allowed to query our forwarders. We can enforce this using an allow-query ACL in
our forwarders’ named.conf files and state-based UDP filtering on our firewall. As
with the ACLs protecting the hidden primary, this gives us defense in depth.

Be sure to run the latest version of BIND, at least 9.3.0, on your internal nameserv-
ers to ensure that they choose intelligently between the two forwarders, as described
in Chapter 10. Older BIND nameservers (e.g., before 9.3.0) with simpler forwarder
selection algorithms can have problems if their first forwarder fails. Since they
blindly try the first forwarder each time they forward a query, each forwarded query
will take longer to process—sometimes several seconds longer. This can quickly add
up on a nameserver processing hundreds of queries per second, even to the point of
causing the nameserver to refuse new recursive queries. (Remember the default limit
of 1,000 concurrent recursive queries?)

As recommended back in Chapter 11, we’ll configure our internal nameservers to
forward only queries for domain names outside our internal namespace. Any domain
names ending in movie.edu should be resolved internally, via iterative queries. On
authoritative movie.edu nameservers, this requires adding an empty forwarders sub-
statement within the movie.edu zone statement, like so:

zone "movie.edu" {
 type slave;
 masters { 192.249.249.1; };
 file "bak.movie.edu";
 forwarders {};
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Forwarder Infrastructure | 479

On other nameservers, such as the fx.movie.edu nameservers, we can add a stub
movie.edu zone:

zone "movie.edu" {
 type stub;
 masters { 192.249.249.1; };
 file "bak.fx.movie.edu";
 forwarders {};
};

This gives those nameservers the NS records they need to resolve movie.edu domain
names—and a rule that tells them to resolve those domain names without relying on
the forwarders—without the overhead of zone transfers.

Let’s not forget to set up a similar configuration for our reverse-mapping zones, too,
if any of them are parent zones. We don’t want queries for domain names in our
reverse-mapping zones to leak to our forwarders and possibly out to the Internet.

Figure 16-2 shows how this works.

Could we have saved a few bucks on hardware by using our external authoritative
nameservers as forwarders, too? Sure, but that also would have presented a risk. Even
if we’d created separate external authoritative and forwarder views, with recursion
disabled in the external authoritative view and access to the forwarder view limited to

Figure 16-2. Forwarding infrastructure

Forwarders

Firewall

Internet

Queries for
Internet

domain names

Queries to Internet
nameservers

Internal nameservers
Queries for

internal
domain names

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 16: Architecture

our internal address space, the external nameservers would now be exposed to both
queries and responses from arbitrary IP addresses on the Internet. That’s twice as
many potential vectors hackers can use to attack our external nameservers—
nameservers which are now twice as important, because they support both external
authoritative name service and forwarding.

Internal DNS Infrastructure
We’ve already discussed one aspect of our internal DNS architecture: the forwarding
configuration. While that’s important, there’s more to cover. For movie.edu, we have a
primary nameserver running on toystory.movie.edu and slaves on wormhole.movie.edu
and zardoz.movie.edu. For fx.movie.edu, bladerunner.fx.movie.edu is the primary and
outland.fx.movie.edu is a slave.

If we can scare up a little extra hardware, we might set up hidden primaries for
movie.edu and fx.movie.edu, too. In our external authoritative DNS infrastructure, a
hidden primary configuration is necessary to prevent nameservers on the Internet
from trying to query our primary, which is inside the firewall and not reachable from
the Internet. Internally, a hidden primary configuration offers different advantages.

Inside the firewall, using a hidden primary helps to insulate our resolvers and
nameservers from occasional configuration and data-entry snafus, maintenance-
induced outages, and the like. If we accidentally mess up while editing a zone data-
file on the movie.edu primary and our nameserver starts spewing SERVFAIL
responses to movie.edu queries, this won’t degrade our name service. Our slaves,
which answer all queries from resolvers and other internal nameservers, won’t be
affected. They’ll keep responding with the last good version of the zone they trans-
ferred, and won’t transfer a new copy of the zone until the primary is back up and
responding authoritatively. We’ll have until movie.edu’s expiration time—weeks—to
fix the problem. If we can’t fix the problem before the zone’s expiration time, we
should probably consider a change of career.

As time goes on, we’ll probably need to expand our internal DNS infrastructure.
Let’s say we need to provide name service to a new building on campus. Using the
guidelines in Chapter 8, we should determine whether the resolvers in the building
generate enough queries to warrant setting up a local nameserver. If not—assuming
the connection from the building to the rest of the campus network is reliable—we
can just configure the building’s resolvers to query our existing internal nameservers.

If the building merits its own nameserver, or if the connection to the rest of the net-
work is slow or flaky, we can set up a local nameserver. If we expect the local resolv-
ers to do most of their queries in movie.edu, we can configure the nameserver as a
slave for the zone. If the building’s link to the campus network is slow, we can omit
the NS records in movie.edu pointing to the slave to prevent other internal nameserv-
ers from trying to query it—making it what’s sometimes referred to as a stealth slave.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Operations | 481

We should also determine which reverse-mapping zones local resolvers will query
the most, and whether we should configure the building’s nameserver as a slave for
them, too.

Operations
While not strictly architectural, it’s a good idea to spend some time documenting
DNS operations. For example, you can institute a change control process, which can
include saving older versions of named.conf and zone datafiles, perhaps by checking
each modified file in using the Revision Control System, RCS. In fact, before saving a
new version of a zone datafile, and certainly before putting the zone into produc-
tion, you should check its syntax using the named-checkzone command, introduced
in Chapter 4. Likewise, check the syntax of new named.conf files using named-
checkconf. You can use a script to automate the process of managing zone datafiles,
which will:

1. Edit the file

2. Use named-checkzone to check the zone datafile

3. If named-checkzone exits with errors, reedit the file

4. Otherwise, use ci -l to check the file in to RCS

To make it easier to monitor your nameservers, you can aggregate their syslog out-
put on a single host. If you haven’t reconfigured named’s logging, that’s a simple
matter of adding a line like:

daemon.* @loghost

to the syslog.conf files on the hosts running your nameservers. If that catches syslog
messages from network servers you don’t want sent, you can easily reconfigure your
nameservers to use a unique facility name with a logging statement like this:

logging {
 channel default_syslog {
 syslog local0;
 };
};

Now adding the line:

local0.* @loghost

to syslog.conf sends only named’s syslog messages to your log host (assuming you’re
not using the local0 facility for anything else).

To ensure that you’re notified of important messages your nameservers log, set up a
logfile monitor. swatch* is a popular (and free!) program that scans logfiles for regular

* swatch is available from http://swatch.sourceforge.net/.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 16: Architecture

expressions you specify and takes action—sends email, pages you—based on rules
you establish.

Monitoring syslog output won’t detect all possible problems, though. In addition,
you should probably set up some form of monitoring that uses DNS queries to check
the integrity of your namespace. We might use dnswalk,* a powerful program for
checking zone data, for this. We could run dnswalk hourly from cron, for example:

0 * * * * /usr/bin/dnswalk movie.edu. 2>&1 | mail –s "dnswalk: `date`"
hostmaster@movie.edu

If that generates more email than you’re interested in, grep the output for important
error messages and only mail what matches.

Finally—and you experienced system administrators knew this already—you need to
back up your nameservers regularly. Nightly backups of your hosts’ filesystems may
be enough, or you may want to keep copies of important named.conf and zone data-
files on a central host for easier recovery or just for ready examination. rsync, which
we introduced in Chapter 8, can come in handy for this task.

Keeping Up with DNS and BIND
As the administrators of many zones and several BIND nameservers, we believe it’s
critical to keep up with the latest developments. You can do so by subscribing to the
BIND Users mailing list or, at minimum, BIND Announce, which we talked about in
Chapter 3. Using these resources, you can stay up to date on BIND vulnerabilities,
and the availability of patches and new versions of BIND.

Of course, we think a good way to keep up with DNS and BIND is to keep buying
the latest edition of this book, too. See you next time!

* dnswalk is available from http://sourceforge.net/projects/dnswalk/.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

483

Chapter 17 CHAPTER 17

Miscellaneous17

“The time has come,” the Walrus said, “To talk of
many things: Of shoes—and ships—and sealing-

wax—Of cabbages—and kings—And why the sea is
boiling hot—And whether pigs have wings.”

It’s time we tied up loose ends. We’ve already covered the mainstream of DNS and
BIND, but there’s a handful of interesting niches we haven’t explored. Some of these
may actually be useful to you, such as instructions on how to accommodate Active
Directory with BIND; others may just be interesting. We can’t in good conscience
send you out into the world without completing your education!

Using CNAME Records
We talked about CNAME resource records in Chapter 4. We didn’t tell you every-
thing about CNAME records, though; we saved that for this chapter. When you set
up your first nameservers, you probably wouldn’t have cared about the subtle
nuances of the magical CNAME record. Some of this trivia is interesting, some is
arcane. We’ll let you decide which is which.

CNAMEs Attached to Interior Nodes
If you’ve ever renamed your zone because of a company reorganization or acquisi-
tion, you may have considered creating a single CNAME record that pointed from the
zone’s old domain name to its new domain name. For instance, if the fx.movie.edu
zone were renamed magic.movie.edu, we’d be tempted to create a single CNAME
record to map all the old domain names to the new names:

fx.movie.edu. IN CNAME magic.movie.edu.

With this in place, you’d expect a lookup of empire.fx.movie.edu to result in a lookup
of empire.magic.movie.edu. Unfortunately, this doesn’t work: you can’t have a
CNAME record attached to an interior node like fx.movie.edu if it owns other

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 17: Miscellaneous

records. Remember that fx.movie.edu has an SOA record and NS records, so attach-
ing a CNAME record to it violates the rule that a domain name be either an alias or a
canonical name, not both.

If you’re running BIND 9, though, you can use the brand-spanking-new DNAME
record (introduced in Chapter 10) to create an alias from your zone’s old domain
name to its new one:

fx.movie.edu. IN DNAME magic.movie.edu.

The DNAME record can coexist with other record types at fx.movie.edu—like the
SOA record and NS records that are undoubtedly there—but you can’t have any
other domain names that end in fx.movie.edu. It’ll “synthesize” CNAME records
from domain names in fx.movie.edu to like domain names in magic.movie.edu when
the names in fx.movie.edu are looked up.

If you don’t have BIND 9, you’ll have to create aliases the old-fashioned way—a
CNAME record for each individual domain name within the zone:

empire.fx.movie.edu. IN CNAME empire.magic.movie.edu.
bladerunner.fx.movie.edu. IN CNAME bladerunner.magic.movie.edu.

If the subdomain isn’t delegated, and consequently doesn’t have an SOA record and
NS records attached, you can also create an alias for fx.movie.edu. However, this
applies only to the domain name fx.movie.edu and not to other domain names in the
fx.movie.edu zone.

Hopefully, the tool you use to manage your zone datafiles can handle creating
CNAME records for you. (h2n, which was introduced in Chapter 4, does just that.)

CNAMEs Pointing to CNAMEs
You may have wondered whether it is possible to have an alias (CNAME record)
pointing to another alias. This might be useful in situations where an alias points
from a domain name outside your zone to a domain name inside your zone. You may
not have any control over the alias outside your zone. What if you want to change
the domain name it points to? Can you simply add another CNAME record?

The answer is yes: you can chain together CNAME records. The BIND implementa-
tion supports it, and the RFCs don’t expressly forbid it. But while you can chain
CNAME records, is it a wise thing to do? The RFCs recommend against it because of
the possibility of creating a CNAME loop and because it slows resolution. You may
be able to do it in a pinch, but you probably won’t find much sympathy on the Net if
something breaks. And all bets are off if a new (non-BIND-based) nameserver imple-
mentation emerges.*

* And one has (the Microsoft DNS Server, shipped with server versions of Windows). It also permits CNAMEs
that point to CNAMEs, though.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using CNAME Records | 485

CNAMEs in the Resource Record Data
For any other record besides a CNAME record, you must use canonical domain
names in the resource record data. Applications and nameservers won’t operate cor-
rectly otherwise. As we mentioned back in Chapter 5, for example, sendmail recog-
nizes only the canonical name of the local host on the right side of an MX record. If
sendmail doesn’t recognize the local host’s name, it won’t strip the correct MX
records out when paring down the MX list and may try to deliver mail to itself or to
less preferred hosts, causing mail to loop.

BIND 8 nameservers log messages like these when they encounter aliases on the right
side of a record:

Sep 27 07:43:48 toystory named[22139]: "digidesign.com IN NS" points to a CNAME
(ns1.digidesign.com)
Sep 27 07:43:49 toystory named[22139]: "moreland.k12.ca.us IN MX" points to a CNAME
(mail.moreland.k12.ca.us)

BIND 9 nameservers, unfortunately, don’t seem to notice.

Multiple CNAME Records
One pathological configuration that honestly hadn’t occurred to us—and many
pathological configurations have occurred to us—is multiple CNAME records
attached to the same domain name. Some administrators use this with round robin
to rotate between RRsets. For example, the records:

fullmonty IN CNAME fullmonty1
fullmonty IN CNAME fullmonty2
fullmonty IN CNAME fullmonty3

can be used to return all the addresses attached to fullmonty1, then all the addresses
of fullmonty2, then all the addresses of fullmonty3 on a nameserver that didn’t recog-
nize this as the abomination it is. (It violates the “CNAME and other data” rule, for
one.)

BIND 4 doesn’t recognize this as a misconfiguration; BIND 8 and 9.1.0 and later do.
BIND 8 lets you permit it if you want to with:

options {
 multiple-cnames yes;
};

In BIND 9, there’s no option to allow it. The default, naturally, is to disallow it.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 17: Miscellaneous

Looking Up CNAMEs
At times you may want to look up a CNAME record itself, not data for the canonical
name. With nslookup or dig, this is easy to do. You can either set the query type to
cname, or set the query type to any and then look up the name:

% nslookup
Default Server: wormhole
Address: 0.0.0.0

> set query=cname
> toys
Server: wormhole
Address: 0.0.0.0

toys.movie.edu canonical name = toystory.movie.edu

> set query=any
> toys
Server: wormhole
Address: 0.0.0.0

toys.movie.edu canonical name = toystory.movie.edu
> exit

% dig toys.movie.edu cname
; <<>> DiG 9.3.2 <<>> toys.movie.edu cname
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43984
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 4

;; QUESTION SECTION:
;toys.movie.edu. IN CNAME

;; ANSWER SECTION:
toys.movie.edu. 86400 IN CNAME toystory.movie.edu.

Finding Out a Host’s Aliases
One thing you can’t easily do with DNS is find out a host’s aliases. With the host
table, it’s easy to find both the canonical name of a host and any aliases: no matter
which you look up, they’re all there, together, on the same line:

% grep toystory /etc/hosts
192.249.249.3 toystory.movie.edu toystory toys

With DNS, however, if you look up the canonical name, all you get is the canonical
name. There’s no easy way for the nameserver or the application to know whether
aliases exist for that canonical name.

% nslookup
Default Server: wormhole
Address: 0.0.0.0

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using CNAME Records | 487

> toystory
Server: wormhole
Address: 0.0.0.0

Name: toystory.movie.edu
Address: 192.249.249.3

If you use nslookup or dig to look up an alias, you’ll see that alias and the canonical
name. nslookup and dig report both the alias and the canonical name in the message.
But you won’t see any other aliases that might point to that canonical name:

% nslookup
Default Server: wormhole
Address: 0.0.0.0

> toys
Server: wormhole
Address: 0.0.0.0

Name: toystory.movie.edu
Address: 192.249.249.3
Aliases: toys.movie.edu

> exit

% dig toys.movie.edu

; <<>> DiG 9.3.2 <<>> toys.movie.edu
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29782
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 4

;; QUESTION SECTION:
; toys.movie.edu. IN A

;; ANSWER SECTION:
toys.movie.edu. 86400 IN CNAME toystory.movie.edu.
toystory.movie.edu. 86400 IN A 192.249.249.3

About the only way to find out all the CNAMEs for a host is to transfer the whole
zone and pick out the CNAME records in which that host is the canonical name:

% nslookup
Default Server: wormhole
Address: 0.0.0.0

> ls -t cname movie.edu
[wormhole.movie.edu]
$ORIGIN movie.edu.
toys 1D IN CNAME toystory
wh 1D IN CNAME wormhole
mi 1D IN CNAME monsters-inc
>

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 17: Miscellaneous

Even this method shows you the aliases only within that zone; there could be aliases
in a different zone, pointing to canonical names in this zone.

Wildcards
Something else we haven’t covered in detail yet is DNS wildcards. There are times
when you want a single resource record to cover any possible name, rather than cre-
ating zillions of resource records that are all the same except for the domain name to
which they apply. DNS reserves a special character, the asterisk (*), to use in zone
datafiles as a wildcard name. It matches any number of labels in a name as long as
there isn’t an exact match with a name already in the nameserver’s database.

Most often, you’d use wildcards to forward mail to non-Internet-connected net-
works. Suppose our site wasn’t connected to the Internet, but we had a host that
relayed mail between the Internet and our network. We can add a wildcard MX
record to the movie.edu zone for Internet consumption that points all our mail to the
relay. Here is an example:

*.movie.edu. IN MX 10 movie-relay.nea.gov.

Since the wildcard matches one or more labels, this resource record applies to names
such as toystory.movie.edu, empire.fx.movie.edu, or casablanca.bogart.classics.movie.edu.
The danger with wildcards is that they clash with search lists. This wildcard also
matches cujo.movie.edu.movie.edu, making wildcards dangerous to use in our internal
zone data. Remember that some versions of sendmail apply the search list when looking
up MX records:

% nslookup
Default Server: wormhole
Address: 0.0.0.0

> set type=mx Look up MX records
> cujo.movie.edu for cujo
Server: wormhole
Address: 0.0.0.0

cujo.movie.edu.movie.edu This isn’t a real host’s name!
 preference = 10, mail exchanger = movie-relay.nea.gov

What are other limitations of wildcards? Wildcards do not match domain names for
which there is already data. Suppose we did use wildcards within our zone data, as in
these partial contents of db.movie.edu:

* IN MX 10 mail-hub.movie.edu.
et IN MX 10 et.movie.edu.
jaws IN A 192.253.253.113
fx IN NS bladerunner.fx.movie.edu.
fx IN NS outland.fx.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Dial-up Connections | 489

Mail to toystory.movie.edu is sent to mail-hub.movie.edu, but mail to et.movie.edu is sent
directly to et.movie.edu. An MX lookup of jaws.movie.edu results in a response saying
there was no MX data for that domain name. The wildcard doesn’t apply because an A
record exists. The wildcard also doesn’t apply to domain names in fx.movie.edu because
wildcards don’t apply across delegation. Nor does the wildcard apply to the domain
name movie.edu, because the wildcard amounts to zero or more labels followed by a dot,
followed by movie.edu.

A Limitation of MX Records
While we are on the topic of MX records, let’s talk about how they can result in mail
taking a longer path than necessary. The MX records are a list of data returned when
the domain name of a mail destination is looked up. The list isn’t ordered according
to which exchanger is closest to the sender. Here is an example of this problem. Your
non-Internet-connected network has two hosts that can relay Internet mail to your
network. One host is in the United States, and one host is in France. Your network is
in Greece. Most of your mail comes from the United States, so you have someone
maintain your zone and install two wildcard MX records—the highest preference to
the U.S. relay and a lower preference to the relay in France. Since the United States
relay is at a higher preference, all mail will go through that relay (as long as it is
reachable). If someone in France sends you a letter, it will travel across the Atlantic
to the United States and back because there is nothing in the MX list to indicate that
the French relay is closer to that sender.

Dial-up Connections
Another recent development in networking (recent only relative to DNS’s age) that
presents a challenge to DNS is the dial-up Internet connection. When the Internet
was young, and DNS was born, there was no such thing as a dial-up connection.
With the enormous explosion in the Internet’s popularity and the propagation of
Internet service providers who offer dial-up Internet connectivity to the masses, a
whole new breed of problems with name service has been introduced.

The basic goal when setting up DNS to work with dial-up is to enable every host in
your network to resolve the domain names of every host it needs to access. (Of
course, when your connection to the Internet is down, your hosts probably don’t
need to resolve Internet domain names.) If you’re using dial-on-demand, there’s the
additional goal of minimizing unnecessary dialouts: if you’re looking up the domain
name of a host on your local network, that shouldn’t require your router to bring up
a connection to the Internet.

We’ll separate dial-up connections into two categories: manual dial-up, by which we
mean a connection to the Internet that must be brought up by a user, and dial-on-
demand, which implies the use of a device—often a router, but sometimes just a host

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 17: Miscellaneous

running Linux or another server operating system—to connect to the Internet auto-
matically whenever hosts generate traffic bound for the Internet. We’ll also describe
two scenarios for each category of dial-up: one in which you have just one host dial-
ing up a connection to the Internet, and one in which you have a small network of
hosts dialing up a connection. Before we talk about these scenarios, though, let’s dis-
cuss what causes dialouts and how to avoid them.

What Causes Dialouts
Many users, particularly in Europe, where ISDN is popular, connect to the Internet
via dial-on-demand connections. Nearly all of these users want to minimize, if not
completely prevent, unnecessary connections to the Internet. Connection setup is
often more expensive than successive minutes, and always takes time.

BIND nameservers, unfortunately, aren’t terribly well suited to running behind dial-
on-demand connections. They periodically send system queries to look up the cur-
rent list of root nameservers, even when the nameserver isn’t resolving domain
names. And the operation of the search list can cause the nameserver to query
remote nameservers. For example, say your local domain name is tinyoffice.mega-
corp.com and you have a local nameserver authoritative for that zone. Your default
search list, on some resolvers, might include:

tinyoffice.megacorp.com
megacorp.com

Let’s say you try to FTP to one of your local systems, deadbeef.tinyoffice.megacorp.com,
but you misspell it deadbeer:

% ftp deadbeer

Because of your search list, your resolver first looks up deadbeer.tinyoffice.mega-
corp.com. Your local nameserver, authoritative for the tinyoffice.megacorp.com
zone, can tell that domain name doesn’t exist. But then your resolver appends the
second domain name in the search list and looks up deadbeer.megacorp.com. To
figure out whether that domain name exists, your nameserver needs to query a
megacorp.com server, which requires bringing up the dial-on-demand link.

Avoiding Dialouts
There are several general techniques that can help you minimize unnecessary dialouts.
The first, and probably simplest, is to run a version of BIND that supports negative
caching (which means any version of BIND 8 or 9). That way, if you mistakenly put
deadbeer into a configuration file, your nameserver looks up deadbeer.megacorp.com
once, and then caches the fact that the domain name doesn’t exist for the duration of
megacorp.com’s negative caching TTL.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Dial-up Connections | 491

Another technique is to use a minimal search list. If your local domain name is tinyof-
fice.megacorp.com, you could make do with a search list of just tinyoffice.megacorp.com.
That way, a typo won’t cause a dialout.

Using a modern resolver is also important. The default search list for a post–BIND 4.9
resolver is just the local domain name, which qualifies as “minimal” in our book. And
a modern resolver knows to try a domain name with dots as-is, even if it doesn’t end
in a dot.

Finally, you can use other naming services, such as /etc/hosts, for local name resolu-
tion and configure your resolvers to use DNS only if a name cannot be found in /etc/
hosts. As long as you keep the names of all your local hosts in /etc/hosts, you won’t
need to worry about needless connections to the Internet.

Now let’s apply these techniques to our scenarios.

Manual Dial-up with One Host
The easiest way to deal with the simple dial-up scenario is to configure your host’s
resolver to use a nameserver provided by your Internet service provider. Most ISPs
run nameservers for their subscribers’ use. If you’re not sure whether your ISP pro-
vides nameservers for your use, or if you don’t know what its IP addresses are, check
its web site, send an email, or call the provider.

Some operating systems, such as Windows NT, Windows 2000, and Windows XP,
let you define a set of nameservers for use with a particular dial-up provider. So, for
example, you can configure one set of nameservers to use when you dial up UUNet
and another to use when you dial up your office. This is useful if you dial in to multi-
ple ISPs.

This configuration is usually adequate for most casual dial-up users. Name resolu-
tion will fail unless the dial-up connection is up, but that’s not likely to be a problem
because there’s no use for Internet name service without Internet connectivity.

Some of you, however, may want to run a nameserver when your dial-up connection
is active. It can help your performance by caching domain names you look up fre-
quently, for example. This is easy to set up with a Unix-like operating system such as
Linux: you’ll typically use a script like ifup to bring up your dial-up connection and
ifdown to bring it down. If that’s the case, there are probably also scripts called ifup-
post and ifdown-post that ifup and ifdown call, respectively, after they’ve done most
of their work. You can start named as named or with ndc start in ifup-post, and shut it
down with ndc stop or rndc stop in ifdown-post. About the only other thing you’d
need to do is set your local domain name in resolv.conf. The default resolver behav-
ior, querying a nameserver on the local host, should do fine both when the
nameserver’s running and when it’s not.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 17: Miscellaneous

Manual Dial-up with Multiple Hosts
The simplest solution to use with the multiple host/manual dial-up scenario is simi-
lar to the resolver-only configuration. You can configure your resolvers to use your
ISP’s nameservers, but also configure the resolvers to check /etc/hosts (or NIS, if you
go for that sort of thing) before querying a nameserver. Then make sure your /etc/
hosts file contains the names of all the hosts on your local network.

If you’d like to run a nameserver locally, you need to modify this configuration only
slightly: configure the resolvers to use your local nameserver instead of your ISP’s. This
gives you the benefits of local caching, but local name resolution will work (via /etc/
hosts) even when your connection to the Internet is down. You may as well start and
stop the local nameserver from ifup-post and ifdown-post, as described earlier.

For those of you who really want to use DNS for all name resolution, you can forgo
the /etc/hosts file and create forward-mapping and reverse-mapping zones on your
local nameserver for your hosts. You should trim your resolvers’ search lists to the
bare minimum, though, to minimize the chance that you’ll induce your nameserver
to look up some wacky remote domain name.

Dial-on-Demand with One Host
If you have a single host with a dial-on-demand connection to the Internet, your sim-
plest solution is still a resolver-only configuration. Configure your resolver to use
your ISP’s nameservers, and when the resolver needs to look up a domain name, it’ll
query one of those nameservers and bring up the link. If there are some domain
names that your host looks up routinely as part of “housekeeping,” such as localhost
or 1.0.0.127.in-addr.arpa, you can add the appropriate entries to /etc/hosts and con-
figure your resolver to check /etc/hosts before querying a nameserver.

If you’d like to run a nameserver locally, make sure it is able to map localhost and
1.0.0.127.in-addr.arpa to 127.0.0.1 and localhost, respectively, and trim your
search list to the minimum.

If your nameserver brings up the link more than you think it should, try turning on
query logging (with ndc querylog on a BIND 8 nameserver or rndc querylog on a
BIND 9.1.0 or later nameserver) and look for the domain names that bring up the
link. If many of them are in a single zone, you might consider configuring your local
nameserver as a slave for that zone. At least that way, you’ll bring up the link at most
only once per refresh interval to resolve domain names in the zone.

Dial-on-Demand with Multiple Hosts
The simplest solution in this scenario is exactly the same as the first solution we
described earlier in the section “Manual Dialup with Multiple Hosts”: a resolver-only
configuration with the resolvers configured to check /etc/hosts before querying a

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Dial-up Connections | 493

nameserver. As with all dial-on-demand configurations, you’ll want to trim your
search list.

Alternatively, you could try one of the two variants: running a local nameserver and
using it as a backup to /etc/hosts, or creating forward- and reverse-mapping zones for
the local hosts on the local nameserver.

Running Authoritative Nameservers over Dial-on-Demand
This may sound like a silly subject to some of you—who would run an authoritative
nameserver behind a dial-on-demand connection?—but in some parts of the world,
where bandwidth and Internet connectivity aren’t easy to come by, this is a neces-
sity. And, believe it or not, BIND provides a mechanism to accommodate such
nameservers.

If you run an authoritative nameserver behind a dial-on-demand link, you want to
concentrate zone maintenance activities into as short a window as possible. If your
nameserver is authoritative for 100 zones, you’d rather not have zone refresh timers
popping every few minutes and the resulting SOA queries bringing up the dial-on-
demand link over and over again.

With BIND 8.2 and newer nameservers and BIND 9.1.0 and later nameservers, you
can configure a heartbeat interval. The heartbeat interval is how frequently you’d like
your nameserver to bring up its dial-on-demand connection, in minutes:

options {
 heartbeat-interval 180; // 3 hours
};

The default is 60 minutes, and you can disable zone maintenance by setting the inter-
val to 0.

If you then mark one or more of your zones as dial-up zones, the nameserver will try
to concentrate all maintenance of that zone into a short period and to perform the
maintenance no more often than the heartbeat interval. For a slave zone, that means
inhibiting the normal refresh timer (even ignoring the refresh interval, if it’s smaller
than the heartbeat interval!) and querying the master for the zone’s SOA record only
at the heartbeat interval. For a master zone, that means sending out NOTIFY mes-
sages, which will presumably bring up the dial-on-demand link and trigger a refresh
on the slaves.

To mark all of a nameserver’s zones as dial-up zones, use the dialup substatement in
an options statement:

options {
 heartbeat-interval 60;
 dialup yes;
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 17: Miscellaneous

To mark a single zone as a dial-up zone, use the dialup substatement in the zone
statement:

zone "movie.edu" {
 type master;
 file "db.movie.edu";
 dialup yes;
};

Dial-up zones are also useful in another, perhaps unintended way: on nameservers
that serve as slaves for thousands of zones. Some ISPs provide slave service on a large
scale but get bitten by miscreants who set their zone’s refresh intervals far too low.
Their nameservers end up swamped with sending out SOA queries for those zones.
By configuring all the zones as dial-up zones and setting the heartbeat interval to
something reasonable, ISPs can prevent this.

Network Names and Numbers
The original DNS specifications didn’t provide the ability to look up a network name
based on a network number—a feature that was provided by the original HOSTS.TXT
file. Since then, RFC 1101 has defined a system for storing network names; this system
also works for subnets and subnet masks, so it goes significantly beyond HOSTS.TXT.
Moreover, it doesn’t require any modification to the nameserver software at all; it’s
based entirely on the clever use of PTR and A records.

Remember that to map an IP address to a name in DNS, you reverse the IP address,
append in-addr.arpa, and look up PTR records. This same technique maps a network
number to a network name—for example, to map network 15/8 to “HP Internet.” To
look up the network number, include the network bits and pad them with trailing zeros
to make four bytes, and look up PTR data just as you did with a host’s IP address. For
example, to find the network name for the old ARPAnet, network 10/8, look up PTR
data for 0.0.0.10.in-addr.arpa. You get back an answer like ARPAnet.ARPA.

If the ARPAnet is subnetted, you’ll also find an address record at 0.0.0.10.in-addr.arpa.
The address would be the subnet mask, 255.255.0.0, for instance. If you were inter-
ested in the subnet name instead of the network name, you apply the mask to the IP
address and look up the subnet number.

This technique allows you to map the network number to a name. To provide a com-
plete solution, there must be a way to map a network name to its network number.
This, again, is accomplished with PTR records. The network name has PTR data that
points to the network number (reversed with in-addr.arpa appended).

Let’s see what the data might look like in HP’s zone datafiles (the HP Internet has
network number 15/8) and step through mapping a network number to a network
name.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Network Names and Numbers | 495

Partial contents of the file db.hp.com:

;
; Map HP's network name to 15.0.0.0.
;
hp-net.hp.com. IN PTR 0.0.0.15.in-addr.arpa.

Partial contents of the file db.corp.hp.com:

;
; Map corp's subnet name to 15.1.0.0.
;
corp-subnet.corp.hp.com. IN PTR 0.0.1.15.in-addr.arpa.

Partial contents of the file db.15:

;
; Map 15.0.0.0 to hp-net.hp.com.
; HP's subnet mask is 255.255.248.0.
;
0.0.0.15.in-addr.arpa. IN PTR hp-net.hp.com.
 IN A 255.255.248.0

Partial contents of the file db.15.1:

;
; Map the 15.1.0.0 back to its subnet name.
;
0.0.1.15.in-addr.arpa. IN PTR corp-subnet.corp.hp.com.

Here’s the procedure to look up the subnet name for the IP address 15.1.0.1:

1. Apply the default network mask for the address’s class. Address 15.1.0.1 is a
Class A address, so the mask is 255.0.0.0. Applying the mask to the IP address
makes the network number 15.

2. Send a query (type=A or type=ANY) for 0.0.0.15.in-addr.arpa.

3. The query response contains address data. Since there is address data at 0.0.0.15.in-
addr.arpa (the subnet mask, 255.255.248.0), apply the subnet mask to the IP
address. This yields 15.1.0.0.

4. Send a query (type=A or type=ANY) for 0.0.1.15.in-addr.arpa.

5. The query response does not contain address data, so 15.1.0.0 is not further
subnetted.

6. Send a PTR query for 0.0.1.15.in-addr.arpa.

7. The query response contains the network name for 15.1.0.1: corp-subnet.corp.
hp.com.

In addition to mapping between network names and numbers, you can also list all
the networks for your zone with PTR records:

movie.edu. IN PTR 0.249.249.192.in-addr.arpa.
 IN PTR 0.253.253.192.in-addr.arpa.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 17: Miscellaneous

Now for the bad news: despite the fact that RFC 1101 contains everything you need
to know to set this up, there’s very little software we know of that actually uses this
type of network name encoding, and very few administrators go to the trouble of
adding this information. Until software actually makes use of DNS-encoded net-
work names, about the only reason for setting this up is to show off. But that’s a
good enough reason for many of us.

Additional Resource Records
There are a number of resource records that we haven’t covered yet in this book.
Some of these are experimental, but some are on the standards track and are coming
into more prevalent use. We’ll describe them here to give you a little head start in
getting used to them.

AFSDB
AFSDB has a syntax like that of the MX record, and semantics a bit like that of the
NS record. An AFSDB record gives either the location of an AFS cell database server
or of a DCE cell’s authenticated nameserver. The type of server the record points to
and the name of the host running the server are contained in the record-specific data
portion of the record.

So what’s an AFS cell database server? Or AFS, for that matter? AFS originally stood
for the Andrew File System, designed by the good folks at Carnegie-Mellon Univer-
sity as part of the Andrew Project. (It’s now an IBM product.) AFS is a network file-
system, like NFS, but one that handles the latency of wide area networks much
better than NFS does and provides local caching of files to enhance performance. An
AFS cell database server runs the process responsible for tracking the location of
filesets (groups of files) on various AFS fileservers within a cell (a logical group of
hosts). So being able to find the AFS cell database server is the key to finding any file
in the cell.

And what’s an authenticated nameserver? It holds location information about all
sorts of services available within a DCE cell. A DCE cell? That’s a logical group of
hosts that share services offered by The Open Group’s Distributed Computing Envi-
ronment (DCE).

And now, back to our story. To access another cell’s AFS or DCE services across a
network, you must first find out where that cell’s cell database servers or authenti-
cated nameservers are—hence the new record type. The domain name the record is
attached to gives the name of the cell the server knows about. Cells often share
names with DNS domains, so this usually doesn’t look at all odd.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Additional Resource Records | 497

As we said, the AFSDB record’s syntax is like the MX record’s syntax. In place of the
preference value, you specify the number 1 for an AFS cell database server or 2 for a
DCE authenticated nameserver.

In place of the mail exchanger host, you specify the name of the host running the
server. Simple!

Suppose an fx.movie.edu system administrator sets up a DCE cell (which includes AFS
services) because she wants to experiment with distributed processing to speed up
graphics rendering. She runs both an AFS cell database server and a DCE nameserver
on bladerunner.fx.movie.edu, another cell database server on empire.fx.movie.edu, and
another DCE nameserver on aliens.fx.movie.edu. She should set up the AFSDB
records as follows:

; Our DCE cell is called fx.movie.edu, same as the domain name of the zone
fx.movie.edu. IN AFSDB 1 bladerunner.fx.movie.edu.
 IN AFSDB 2 bladerunner.fx.movie.edu.
 IN AFSDB 1 empire.fx.movie.edu.
 IN AFSDB 2 aliens.fx.movie.edu.

LOC
RFC 1876 defines an experimental record type, LOC, that allows zone administra-
tors to encode the locations of their computers, subnets, and networks. In this case,
location means latitude, longitude, and altitude. Future applications could use this
information to produce network maps, assess routing efficiency, and more.

In its basic form, the LOC record takes latitude, longitude, and altitude (in that
order) as its record-specific data. Latitude and longitude are expressed in the format:

<degrees> [minutes [seconds.<fractional seconds>]] (N|S|E|W)

Altitude is expressed in meters.

If you’re wondering how in the world you’re going to get that data, check out “RFC
1876 Resources” at http://www.ckdhr.com/dns-loc. This site, created by Christopher
Davis, one of the authors of RFC 1876, is an indispensable collection of informa-
tion, useful links, and utilities for people creating LOC records.

If you don’t have your own Global Positioning System receiver to carry around to all of
your computers—and we know many of you do—two sites that may come in handy are
Tele Atlas’s Eagle Geocoding at http://www.geocode.com/modules.php?name=TestDrive_
Eagle, which you can use to find the latitude and longitude of most addresses in the
United States, and AirNav’s Airport Information at http://www.airnav.com/airports,
which lets you find the elevation of the closest airport to you. If you don’t have a major
airport near you, don’t worry: the database even includes the helipad at your neighbor-
hood hospital!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 17: Miscellaneous

Here’s a LOC record for one of our hosts:

huskymo.boulder.acmebw.com. IN LOC 40 2 0.373 N 105 17 23.528 W 1638m

Optional fields in the record-specific data allow you to specify how large the entity
you’re describing is, in meters (LOC records can describe networks, after all, which
can be quite large), as well as the horizontal and vertical precision. The size defaults
to one meter, which is perfect for a single host. Horizontal precision defaults to
10,000 meters, and vertical precision to 10 meters. These defaults represent the size
of a typical zip or postal code, the idea being that you can fairly easily find a latitude
and longitude given a zip code.

You can also attach LOC records to the names of subnets and networks. If you’ve
taken the time to enter information about the names and addresses of your networks
in the format described in RFC 1101 (covered earlier in this chapter), you can attach
LOC records to the network names:

;
; Map HP's network name to 15.0.0.0.
;
hp-net.hp.com. IN PTR 0.0.0.15.in-addr.arpa.
 IN LOC 37 24 55.393 N 122 8 37 W 26m

SRV
Locating a service or a particular type of server within a zone is a difficult problem if
you don’t know which host it runs on. Some zone administrators have attempted to
solve this problem by using service-specific aliases in their zones. For example, at
Movie U., we created the alias ftp.movie.edu and pointed it to the domain name of
the host that runs our FTP archive:

ftp.movie.edu. IN CNAME plan9.fx.movie.edu.

This makes it easy for people to guess a domain name that will get them to our FTP
archive, and separates the domain name people use to access the archive from the
domain name of the host it runs on. If we want to move the archive to a different
host, we can simply change the CNAME record.

The experimental SRV record, introduced in RFC 2782, is a general mechanism for
locating services. In addition, SRV provides powerful features that allow zone admin-
istrators to distribute load and provide backup services, similar to what the MX
record provides. In fact, you might think of an SRV record as a generalized MX
record, useful for services besides SMTP-based electronic mail.

A unique aspect of the SRV record is the format of the domain name it’s attached to.
Like service-specific aliases, the domain name to which an SRV record is attached
gives the name of the service sought, as well as the protocol it runs over, concate-
nated with a domain name. The labels representing the service name and the protocol

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Additional Resource Records | 499

begin with an underscore to distinguish them from labels in the domain name of a
host. So, for example:

_ftp._tcp.movie.edu

represents the SRV records someone ftp’ing to movie.edu should retrieve in order to
find the movie.edu FTP servers, while:

_http._tcp.www.movie.edu

represents the SRV records someone accessing the URL http://www.movie.edu should
look up in order to find the www.movie.edu web servers.

The names of the service and protocol should appear in IANA’s list of port number
assignments (available at http://www.iana.org/assignments/port-numbers) or be unique
names used only locally. Don’t use the port or protocol numbers, just the names.

The SRV record has four resource record–specific fields: priority, weight, port, and
target. Priority, weight, and port are unsigned 16-bit numbers (between 0 and
65535). Target is a domain name.

Priority
Works very similarly to the preference in an MX record: the lower the number in
the priority field, the more desirable the associated target. When searching for
hosts offering a given service, clients should try all targets at a lower priority
value before trying those at a higher priority value.

Weight
Allows zone administrators to distribute load to multiple targets. Clients should
query targets that have the same priority in proportion to their weight. For
example, if one target has a priority of 0 and a weight of 1, and another target
also has a priority of 0 but a weight of 2, the second target should receive twice
as much load (in queries, connections, whatever) as the first. It’s up to the ser-
vice’s clients to direct that load: they typically use a system call to choose a ran-
dom number. If the number is, say, in the top one-third of the range, they try the
first target, and if the number is in the bottom two-thirds of the range, they try
the second target.

Port
Specifies the port on which the service being sought is running. This allows zone
administrators to run servers on nonstandard ports. For example, an administra-
tor can use SRV records to point web browsers at a web server running on port
8000 instead of the standard HTTP port (80).

Target
Specifies the domain name of a host on which the service is running (on the port
specified in the port field). Target must be the canonical name of the host (not
an alias), with address records attached to it.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 17: Miscellaneous

So, for the movie.edu FTP server, we added these records to db.movie.edu:

_ftp._tcp.movie.edu. IN SRV 1 0 21 plan9.fx.movie.edu.
 IN SRV 2 0 21 thing.fx.movie.edu.

This instructs SRV-capable FTP clients to try the FTP server on plan9.fx.movie.edu’s
port 21 first when accessing movie.edu’s FTP service, and then to try the FTP server
on thing.fx.movie.edu’s port 21 if plan9.fx.movie.edu’s FTP server isn’t available.

The records:

_http._tcp.www.movie.edu. IN SRV 0 2 80 www.movie.edu.
 IN SRV 0 1 80 www2.movie.edu.
 IN SRV 1 1 8000 postmanrings2x.movie.edu.

direct web queries for www.movie.edu (the web site) to port 80 on www.movie.edu
(the host) and www2.movie.edu, with www.movie.edu getting twice the queries
that www2.movie.edu does. If neither is available, the queries will go to
postmanrings2x.movie.edu on port 8000.

To advertise that a particular service isn’t available, use a dot in the target field:

_gopher._tcp.movie.edu. IN SRV 0 0 0 .

Unfortunately, support for the SRV record among clients is, to put it mildly, thin.
Certain SIP clients, Windows 2000, Windows XP, and Windows Server 2003 are
notable exceptions. (More about Windows support for SRV records later in this
chapter.) That’s really too bad, given how useful SRV could be. Since SRV isn’t
widely supported, don’t use SRV records in lieu of address records. It’s prudent to
include at least one address record for the “base” domain name to which your SRV
records are attached (that is, the domain name without the labels that begin with
underscores), and more if you’d like the load spread between addresses. If you only
list a host as a backup in the SRV records, don’t include its IP address. Also, if a host
runs a service on a nonstandard port, don’t include an address record for it since
there’s no way to redirect clients to a nonstandard port with an A record.

So, for www.movie.edu, we included all these records:

_http._tcp.www.movie.edu. IN SRV 0 2 80 www.movie.edu.
 IN SRV 0 1 80 www2.movie.edu.
 IN SRV 1 1 8000 postmanrings2x.movie.edu.
www.movie.edu. IN A 200.1.4.3 ; the address of www.movie.edu and
 IN A 200.1.4.4 ; the address of www2.movie.edu
 ; for the benefit of non-SRV aware
 ; clients

Browsers that can handle SRV records will send twice as many requests to www.
movie.edu as to www2.movie.edu, and will use postmanrings2x.movie.edu only if both
of the main web servers are unavailable. Browsers that don’t use SRV records will
have their requests round-robined between the addresses of www.movie.edu and
www2.movie.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

ENUM | 501

ENUM
ENUM, which stands for Telephone Number Mapping, is a new application of DNS; its
overall function is to use DNS to map E.164 numbers to URIs.* These URIs might iden-
tify a particular VoIP user, an email address, a fax machine, or many other possibilities.

You’re probably already familiar with E.164 numbers, though perhaps not by that
name. The E.164 recommendation from the International Telecommunication
Union, or ITU, specifies the format of world telephone numbers. These formats
begin with a country code (such as “1,” which actually identifies not a particular
country but the North American Dialing Plan, which includes the United States,
Canada, and parts of Mexico and the Caribbean), then usually an area code or a city
code. The format of the rest of the number is defined locally.

Phone numbers may be written with various forms of punctuation separating the
country code and other fields. In the United States, for example, we often write the
area code in parentheses, as in (408) 555-1234. Other common formats use dashes,
periods, parentheses, or some combination of these. A plus sign (“+”) is frequently
used before a country code to help identify it.

Mapping an E.164 number to a URI makes it possible, for example, for a caller to
reach a VoIP user even though he doesn’t know and can’t dial the URI that identifies
the VoIP user. As long as the caller knows an E.164 number that maps to the correct
URI, his phone (or, more likely, some software or device acting on behalf of his
phone) can determine the destination URI and make the call. ENUM also allows
users of different VoIP networks to communicate without resorting to using the pub-
lic switched telephone network. And ENUM promises to become a kind of unified
directory of methods for communicating with people. Under a single E.164 number,
you can list URIs that allow people to contact you via phone, email, fax, and instant
messaging, for example.

Translating E.164 Numbers into Domain Names
ENUM uses DNS to map E.164 numbers to URIs, and DNS uses domain names to
index data, so we need to write the phone number in a canonical format and trans-
late it into a domain name before looking it up. This requires the following steps:

1. Remove all punctuation separating the digits of the phone number and add a
plus sign before the country code. (This converts the phone number “+1-408-
555-1234” to the string “+14085551234.”) The result is referred to as ENUM’s
Application Unique String, or AUS, which we’ll use later.

* URIs are Uniform Resource Identifiers. URLs, or Uniform Resource Locators, such as you’d type into a
browser, are a subset of URIs, as are URNs, or Uniform Resource Names.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 17: Miscellaneous

2. Remove the plus sign and reverse the order of the digits in the number. (This
converts the string “+14085551212” to the string “21215558041.”)

3. Insert periods after each of the digits in the string and append “e164.arpa.” The
result is the domain name to be looked up. (This converts the string
“2121558041” to the domain name 2.1.2.1.5.5.5.8.0.4.1.e164.arpa.)

The NAPTR Record
Now that we’ve turned our E.164 number into a domain name to look up, we need
to know what to look up. ENUM stores the information we need in a type of record
called a NAPTR record.* NAPTR records take six record-specific fields, some of them
fairly unusual:

Order
Similar to an MX record’s preference value or an SRV record’s priority, this field
tells ENUM clients the order in which to use this record relative to the other
NAPTR records attached to this domain name. The value is an unsigned, 16-bit
integer. The lower the value, the earlier in the order the record should be used.

Preference
Also an unsigned, 16-bit integer, this field provides ENUM clients with a hint as
to which record to use. If an ENUM client supports access using more than one
of the URIs listed in a set of NAPTR records with the same value for order, it can
use the value of preference to help decide which record to choose, lower prefer-
ence values indicating greater preference. On the other hand, the client is also free
to choose among the record according to its own capabilities and preferences.

Flags
The “u” flag is the only flag defined in NAPTR records that are used with
ENUM. It indicates that this NAPTR record is terminal; that is, it maps an E.164
number directly to a URI. As you’ll see, NAPTR records can also map to other
domain names, which in turn map to URIs.

Service
The service field for ENUM records always begins with “e2u+” (in uppercase or
lowercase—case isn’t significant). “e2u” stands for “E.164 to URI.” The string
after e2u+ indicates the type, and optionally the subtype, of URI this NAPTR
record maps to. For example, the e2u+sip service maps E.164 numbers to URIs
that begin with “sip:” or “sips:”.

* NAPTR records were actually developed before ENUM and can be used for other purposes, but their only
common use today is to support ENUM.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

ENUM | 503

Regular expression
This field contains a substitution expression, much like you’d expect to find in
Perl or sed. The substitution expression modifies the AUS we derived earlier. The
first half of the substitution expression is a POSIX extended regular expression.
The second half can contain a combination of bytes to replace a portion of the
AUS and back references to portions of the AUS matched between parentheses.
The optional flag “i” indicates that the substitution expression should be applied
case-insensitively. We show some examples later in this section.

Replacement
For nonterminal NAPTR records, this field specifies the next domain name to
look up.

Here are some examples of NAPTR records taken from RFC 3761, which describes
ENUM:

$ORIGIN 3.8.0.0.6.9.2.3.6.1.4.4.e164.arpa.
 NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:info@example.com!" .
 NAPTR 10 101 "u" "E2U+h323" "!^.*$!h323:info@example.com!" .
 NAPTR 10 102 "u" "E2U+msg" "!^.*$!mailto:info@example.com!" .

(Note that in each record, the final record-specific field, replacement, is a single dot,
which indicates that there’s no replacement domain name.)

These NAPTR records map the E.164 number +441632960083 to three possible
URIs. All have the same value for order, but the administrator of the records indi-
cated a preference for the SIP URI.

The regular expression fields look weird enough in a DNS context to warrant some
explanation. The exclamation point (!) is used as a delimiter, just as a forward-slash
(/) often is. There must be exactly three: one appears before the substitution expres-
sion, one between the substitution and the replacement, and one after the replace-
ment and before any flags. You can use any nonnumeric character for the delimiter
that’s not a valid flag (that is, not the letter “i”). It’s prudent to use either “/” or “!”
because they’re easy to identify.

The extended regular expression matches all or part of the AUS. In the case of these
records, “^.*$” matches the entire AUS. “^” anchors the expression to the begin-
ning of the AUS, and “$” to the end. “.*” matches zero or more occurrences of any
character. So the expression matches the whole AUS, start to finish. The replace-
ment values simply replace the AUS wholesale with a URI: sip:info@example.com, in
the first record. Most terminal NAPTR records in ENUM, mercifully, just replace the
whole AUS with a URI.

Here’s an example of a NAPTR record that uses a back reference to extract part of
the AUS and use it in the URI:

$ORIGIN 0.5.6.1.e164.arpa.
* NAPTR 10 100 "u" "E2U+sip" "/^+1650(.*)$/sip:\1@peninsula.sip.sbc.com/" .

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 17: Miscellaneous

The extended regular expression uses parentheses to save everything in the AUS after
+1650, then uses it in the SIP URI that replaces the AUS. (“\1” is replaced by what-
ever matched the portion of the regular expression in parentheses, just as in Perl.)

Of course, once an E.164 number has been translated to a URI, it may require addi-
tional DNS lookups to map domain names in the URI to IP addresses or other data.

Registering ENUM Domain Names
E.164 numbers, like domain names in DNS, are hierarchical. This makes delegation
under e164.arpa straightforward: country code–level subdomains of e164.arpa will
generally be delegated to registries acting on behalf of that country. The registries
will then delegate subdomains to carriers or other telecommunications companies.

For example, 9.4.e164.arpa, the ENUM zone for country code 49, which belongs to
Germany, has already been delegated to DENIC—also the registry for the de top-
level domain. Any user with a German phone number can register NAPTR records
under 9.4.e164.arpa by working through participating DENIC members, who will
validate that the user actually owns the number and request that the appropriate
NAPTR records be added.

To find out whether your country code’s subdomain of e164.arpa has been dele-
gated, and, if so, to whom, you can check RIPE’s web site at http://www.ripe.net/
enum/request-archives/.

Privacy and Security Issues with ENUM
There are justifiable concerns about the privacy and security of ENUM data. To be
useful, records in the e164.arpa namespace must be accessible by anyone. It would
be trivial for a spammer to mine all of the email addresses out of that namespace, for
example, by walking all possible phone numbers. A hacker might be able to spoof
the NAPTR records associated with an E.164 number, redirecting calls made to that
number.

DNSSEC can help with the second type of threat. In fact, several of the ENUM RFCs
refer to DNSSEC as a possible solution.

Internationalized Domain Names
One shortcoming in the original design of DNS that has become painfully obvious
over the years is the character set supported in domain names. While DNS purists
may tell you that labels in domain names can contain any binary value, US-ASCII
characters are really the only values that are useful and supported by all DNS imple-
mentations. As the Internet has expanded internationally, this has meant that com-
panies in countries in which European languages aren’t widely spoken have been

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Internationalized Domain Names | 505

forced to use ASCII characters for their domain names. Even Europeans have had to
transcribe their non-ASCII characters into ASCII; most Germans, for example, reflex-
ively write ä and ö as ae and oe, respectively.

RFC 3490 introduced a method for encoding international characters in the labels of
domain names. Because simply inserting non-ASCII characters into domain names
doesn’t work, most DNS software interprets multibyte characters as a sequence of
ASCII characters, for example; these international characters are encoded into ASCII.
The resulting ASCII-compatible encoding, or ACE, is basically unintelligible to ordi-
nary humans in the same way that base-64 encodings are. To help distinguish an
ACE-encoded label in a domain name from a normal but particularly cryptic ASCII
label, ACE encodings include a specific prefix, “xn--,” which is now forbidden to
appear in a normal, ASCII label. Domain names with one or more labels encoded in
ACE are referred to as internationalized domain names, or IDNs.

Rather than trying to accommodate the multitude of language- and script-specific
character sets that computers support, RFC 3490 encodes only a single character set,
called Unicode, into ASCII. But what a character set it is! Unicode contains tens of
thousands of characters from the world’s scripts.* In almost all cases, it’s possible to
transform a string typed in a script-specific character set (say ISO Latin-1) into a Uni-
code equivalent.

The burden of encoding Unicode into ACE is placed on applications, not on resolv-
ers or nameservers. If a web browser allows a user to type www.etwas-ähnlich.de as a
URL, it’s incumbent upon that web browser to encode the “etwas-ähnlich” label into
the equivalent ACE encoding before passing the domain name to the resolver to look
up.† In a way, that’s good news for you, the administrator, because you don’t need
to upgrade your resolvers or nameservers. On the other hand, if your Marketing folks
drop by with a list of internationalized domain names they want registered, you may
end up with a whole lot of very nasty-looking zone data.

For example, say Marketing wants you to register etwas-ähnlich.de. DENIC, the reg-
istry that runs the top-level de zone, requires that you have a zone’s nameservers up
and running before it’ll delegate the zone to you. So you’ll need to determine the
ACE encoding of etwas-ähnlich.de.

There are several web sites that offer simple ACE encoding utilities, among them:

• http://www.imc.org/idna/

• http://www.idnforums.com/converter/

• http://josefsson.org/idn.php/

* To learn more about Unicode, see The Unicode Consortium’s web site at http://www.unicode.org/.

† Since “www” and “com” are simple ASCII labels, they don’t need to be encoded.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 17: Miscellaneous

Using any of these, you can determine that “xn--etwas-hnlich-lcb.de” is the ACE-
encoded equivalent of etwas-ähnlich.de. In the named.conf file on your primary
nameserver, you need to add a zone statement like this:

zone "xn--etwas-hnlich-lcb.de" {
 type master;
 file "db.xn--etwas-hnlich-lcb.de";
};

The zone datafile, too, needs to refer to the ACE-encoded domain name:

$TTL 1d
xn--etwas-hnlich-lcb.de. IN SOA ns1.xn--etwas-hnlich-lcb.de. (
 hostmaster.xn--etwas-hnlich-lcb.de.
 2006012500 1h 15m 30d 1h)
 IN NS ns1.xn--etwas-hnlich-lcb.de.
 IN NS ns2.xn--etwas-hnlich-lcb.de.

Of course, you can avoid some of this by using nameservers with regular ASCII
domain names and by using a different email address in the SOA record.

If you’re planning on doing any large-scale manipulation of internationalized domain
names, you’ll probably need a set of library routines to convert ACE to Unicode and
back. There are several available; here are a couple:

• JNIC’s idnkit, available in the BIND 9 distribution in contrib/idn/idnkit-1.0-src

• The GNU IDN Library, or libidn, at http://www.gnu.org/software/libidn/

A few notes of caution about IDNs. First, support for IDNs in web browsers is
spotty. While Firefox and Opera support IDN, Internet Explorer doesn’t until IE 7.0,
which as of this writing is in beta. Most other programs that take domain names as
input, such as mail clients, have no IDN support at all.

There’s also concern that IDNs complicate an already tricky problem with
homographs, different characters whose glyphs (written forms) look the same. This
has been a relatively minor problem in the ASCII past, exploited by hackers who take
advantage of the fact that it can be difficult to differentiate between “1” and “l” or
“0” and “O,” and who try to lure you into clicking on a familiar-looking URL like
www.goog1e.com. IDNs pose a greater threat, because many different Unicode char-
acters appear indistinguishable. Consequently, some newer versions of the browsers
that support IDN actually display the ACE version of an IDN label rather than its
Unicode equivalent. Yuck.

DNS and WINS
In our first edition—oh, for those simpler days!—we mentioned the close alignment
between NetBIOS names and domain names, but noted that, alas, there was no way
for DNS to function as a NetBIOS nameserver. Basically, a nameserver would need
to support dynamic updates to function as a NetBIOS nameserver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS and WINS | 507

Of course, BIND 8 and 9 do support dynamic updates. Unfortunately, neither Net-
BIOS clients nor WINS servers send dynamic updates to nameservers. WINS servers
accept only the peculiar, proprietary dynamic updates sent by NetBIOS clients. In
other words, a WINS server doesn’t speak DNS.

However, Microsoft provides a nameserver, the Microsoft DNS Server, which in turn
can talk to WINS servers. The Microsoft DNS Server has a nice graphical administra-
tion tool, as you would expect from Microsoft, and provides a handy hook into
WINS: you can configure the server to query a WINS server for address data if it
doesn’t find the data in a DNS zone.

This is done by adding a new WINS record to the zone. The WINS record, like the
SOA record, is attached to the zone’s domain name. It acts as a flag to tell the
Microsoft DNS Server to query a WINS server if it doesn’t find an address for the
name it’s looking up. The record:

@ 0 IN WINS 192.249.249.39 192.253.253.39

tells the Microsoft DNS Server to query the WINS servers running at 192.249.249.39
and 192.253.253.39 (in that order) for the name. The zero TTL is a precaution
against the record being looked up and cached.

There’s also a companion WINS-R record that allows a Microsoft DNS Server to
reverse-map IP addresses using a NetBIOS NBSTAT request. If an in-addr.arpa zone
contains a WINS-R record such as:

@ 0 IN WINS-R movie.edu

and the IP address sought doesn’t appear in the zone, the nameserver attempts to
send a NetBIOS NBSTAT request to the IP address being reverse-mapped. This
amounts to calling a phone number and asking the person on the other end, “What’s
your name?” The nameserver then appends a dot and the domain name in the
record-specific data, in this case “.movie.edu,” to the result.

These records provide valuable glue between the two namespaces. Unfortunately,
the integration isn’t perfect. As they say, the devil is in the details.

The main problem, as we see it, is that only Microsoft DNS Servers support the WINS
and WINS-R records. Therefore, if you want lookups in the fx.movie.edu zone to be
relayed to the Special Effects Department’s WINS server, then all fx.movie.edu
nameservers must be Microsoft DNS Servers. Why? Imagine that the nameservers for
fx.movie.edu were mixed, with some Microsoft DNS Servers and some BIND
nameservers. If a remote nameserver tried to look up a NetBIOS name in fx.movie.edu,
it would choose which of the fx.movie.edu nameservers to query according to round-
trip time. If the server it happened to choose were a Microsoft DNS Server, it would be
able to resolve the name to a dynamically assigned address. However, if it happened to
choose a BIND nameserver, it wouldn’t be able to resolve the name.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 17: Miscellaneous

The best DNS-WINS configuration we’ve heard of so far puts all WINS-mapped data
in its own zone, say wins.movie.edu. All the nameservers for wins.movie.edu are
Microsoft DNS Servers, and the zone wins.movie.edu contains just an SOA record,
NS records, and a WINS record pointing to the WINS servers for wins.movie.edu.
This way, there’s no chance of inconsistent answers between authoritative servers for
the zone.

Reverse-mapping data, of course, can’t easily be split into separate zones for BIND
and Microsoft nameservers to maintain. So if you want both traditional, PTR record-
based reverse mapping and WINS-R-enhanced reverse mapping, you’ll need to host
your reverse-mapping zones solely on Microsoft DNS Servers.

Another problem is that WINS and WINS-R are proprietary. BIND nameservers
don’t understand them, and, in fact, a BIND slave that transfers a WINS record from
a Microsoft DNS Server primary master will fail to load the zone because WINS is an
unknown type. (We discussed this, and how to work around it, in Chapter 14.)

The answer to these problems is the DNS standard dynamic update functionality
that was first introduced in BIND 8 (described in Chapter 10) and the support for it
in Windows 2000, Windows XP, and Windows Server 2003. Dynamic update allows
the addition and deletion of records from a zone, which in turn gives the folks at
Microsoft the functionality they need to use DNS as a name service for NetBIOS. So
without further ado...

DNS, Windows, and Active Directory
Modern Windows operating systems—by which we mean Windows 2000, Win-
dows XP, and Windows Server 2003—can use standard dynamic updates to register
hosts in DNS. For a modern Windows client, registration means adding a name-to-
address mapping and an address-to-name mapping for that client—information
Windows clients formerly registered with WINS servers. For a Windows server, reg-
istration involves adding records to a zone to tell clients which services it’s running
and where (on which host and port). For example, an Active Directory Domain Con-
troller uses dynamic update to add SRV records that tell Windows clients which ser-
vices it’s running.

How Windows Uses Dynamic Update
So what gets added when a client registers? Let’s reboot a Windows client in the Spe-
cial Effects Lab and see.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS, Windows, and Active Directory | 509

Our client is called mummy.fx.movie.edu. It has the fixed IP address 192.253.254.13
(it doesn’t get its address from our DHCP server). At boot time, the dynamic update
routines on the client go through the following steps:

1. Look up the SOA record for mummy.fx.movie.edu on the local nameserver. Though
there isn’t an SOA record for that domain name, the authority section of the
response includes the SOA record of the zone that contains mummy.fx.movie.edu,
which is fx.movie.edu.

2. Look up the address of the nameserver in the MNAME field of the SOA record,
bladerunner.fx.movie.edu.

3. Send a dynamic update to bladerunner.fx.movie.edu with two prerequisites: that
mummy.fx.movie.edu isn’t an alias (i.e., doesn’t own a CNAME record) and that
it doesn’t already have an address record pointing to 192.253.254.13. The
dynamic update contains no update section; it’s just a probe to see what’s out
there.

4. If mummy.fx.movie.edu already points to the correct address, stop. Otherwise,
send another dynamic update to bladerunner.fx.movie.edu with the prerequisites
that mummy.fx.movie.edu isn’t an alias and doesn’t have an address record—any
address record—already. If the prerequisites are satisfied, the update adds an
address record pointing mummy.fx.movie.edu to 192.253.254.13. If mummy.fx.
movie.edu already has an address record, the client sends an update to delete that
address record and add its own.

5. Look up the SOA record for 254.253.192.in-addr.arpa.

6. Look up the address of the nameserver in the MNAME field of the SOA record
(though because the MNAME field contains bladerunner.fx.movie.edu, which we
looked up recently, and modern Windows OSes have a caching resolver, this
shouldn’t require another query).

7. Send a dynamic update to bladerunner.fx.movie.edu with the prerequisite that
13.254.253.192.in-addr.arpa isn’t an alias. If the prerequisite is satisfied, the
update adds a PTR record mapping 192.253.254.13 back to mummy.fx.movie.
edu. If 13.254.253.192.in-addr.arpa is an alias, stop.

If we’re using the Microsoft DHCP Server included with a modern Windows server
operating system, the DHCP server, by default, adds the PTR record. There’s also an
option in the DHCP server’s MMC-based management interface that allows the
administrator to specify that the DHCP server add both the PTR record and the A
record. If the DHCP server had added the A record, though, it wouldn’t have set a
prerequisite.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 17: Miscellaneous

Servers, particularly Domain Controllers, register lots of information in DNS using
dynamic update, both when they’re first set up and periodically thereafter. (The net-
logon service, for example, registers its SRV records hourly!) This allows clients to
locate services on whichever host and port they’re running. Since we just set up an
Active Directory domain called fx.movie.edu, let’s take a look at the records that our
Domain Controller, matrix.fx.movie.edu, added:

fx.movie.edu. 600 IN A 192.253.254.14
ec4caf62-31b2-4773-bcce-7b1e31c04d25._msdcs.fx.movie.edu. 600 IN CNAME matrix.fx.
movie.edu.
gc._msdcs.fx.movie.edu. 600 IN A 192.253.254.14
_gc._tcp.fx.movie.edu. 600 IN SRV 0 100 3268 matrix.fx.movie.edu.
_gc._tcp.Default-First-Site-Name._sites.fx.movie.edu. 600 IN SRV 0 100 3268 matrix.
fx.movie.edu.
_ldap._tcp.gc._msdcs.fx.movie.edu. 600 IN SRV 0 100 3268 matrix.fx.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.gc._msdcs.fx.movie.edu. 600 IN SRV 0 100
3268 matrix.fx.movie.edu.
_kerberos._tcp.dc._msdcs.fx.movie.edu. 600 IN SRV 0 100 88 matrix.fx.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.dc._msdcs.fx.movie.edu. 600 IN SRV 0
100 88 matrix.fx.movie.edu.
_kerberos._tcp.fx.movie.edu. 600 IN SRV 0 100 88 matrix.fx.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.fx.movie.edu. 600 IN SRV 0 100 88
matrix.fx.movie.edu.
_kerberos._udp.fx.movie.edu. 600 IN SRV 0 100 88 matrix.fx.movie.edu.
_kpasswd._tcp.fx.movie.edu. 600 IN SRV 0 100 464 matrix.fx.movie.edu.
_kpasswd._udp.fx.movie.edu. 600 IN SRV 0 100 464 matrix.fx.movie.edu.
_ldap._tcp.fx.movie.edu. 600 IN SRV 0 100 389 matrix.fx.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.fx.movie.edu. 600 IN SRV 0 100 389 matrix.
fx.movie.edu.
_ldap._tcp.pdc._msdcs.fx.movie.edu. 600 IN SRV 0 100 389 matrix.fx.movie.edu.
_ldap._tcp.97526bc9-adf7-4ec8-a096-0dbb34a17052.domains._msdcs.fx.movie.edu. 600 IN
SRV 0 100 389 matrix.fx.movie.edu.
_ldap._tcp.dc._msdcs.fx.movie.edu. 600 IN SRV 0 100 389 matrix.fx.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.fx.movie.edu. 600 IN SRV 0 100
389 matrix.fx.movie.edu.

Whoa! That’s a lot of records!

These records tell Active Directory clients where the services offered by the Domain
Controller, including Kerberos and LDAP, are running.* You can see from the SRV
records that they’re all running on matrix.fx.movie.edu, our only Domain Controller.
If we had another Domain Controller, you’d see twice as many records.

The owner names of all the records end in fx.movie.edu, the name of the Active Direc-
tory domain. If the Active Directory domain was called ad.movie.edu, the dynamic
update routines would update the zone containing the domain name ad.movie.edu,
which is movie.edu.

* For an explanation of the function of each of these records, see the document “How DNS Support for Active
Directory Works” at http://www.microsoft.com/Resources/Documentation/windowsserv/2003/all/techref/en-us/
w2k3tr_addns_how.asp.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS, Windows, and Active Directory | 511

Problems with Active Directory and BIND
While Microsoft’s decision to replace WINS with DNS was laudable, the implemen-
tation poses some problems for folks who run BIND nameservers. First, Windows
clients and DHCP servers have a nasty habit of deleting address records owned by
the same domain name as the clients or servers. For example, if we let the users in
the Special Effects Lab configure their own computers and choose their computers’
names, and one user happens to use a name that is already taken, maybe by one of
our rendering servers, his computer will try to delete the conflicting address record
(that of the rendering server) and add its own. That’s not very sociable.

Luckily, that behavior can be corrected on the client. The client does, in fact, check
to see whether the domain name it’s using already owns an address record by setting
the prerequisite described in the previous section’s Step 4. (It just deletes it if it does
exist, by default.) But you can follow the instructions in Microsoft Knowledge Base
article Q246804 to tell the client not to delete conflicting records. The price? A cli-
ent can’t differentiate between an address being used by a different host with the
same domain name and an address that formerly belonged to it, so if the client
changes addresses, it can’t automatically update the zone.

If you elect to have your Microsoft DHCP Server handle all registration, you don’t
have the option of leaving conflicting addresses alone. The Microsoft DHCP Server
doesn’t use prerequisites to detect collisions; it just unceremoniously deletes conflict-
ing address records.

Given the limitations of having the DHCP server handle all the registering, why
would anyone consider it? Because if you allow any client to register itself, and you
can use only primitive, IP address–based access lists to authorize dynamic updates,
you are allowing any client’s address to dynamically update your zones. Savvier users
of those clients can easily fire off a few custom-made dynamic updates to change
your zone’s MX records or the address of your web server.

Secure Dynamic Update
Surely Microsoft doesn’t just live with these problems, right? No, not with the
Microsoft DNS Server. The Microsoft DNS Server supports GSS-TSIG, a dialect of
TSIG (which we covered in Chapter 11). A client that uses GSS-TSIG negotiates a
TSIG key with the help of a Kerberos server, then uses that key to sign a dynamic
update. The use of GSS, the Generic Security Service, to retrieve the key means that
an administrator doesn’t need to hardcode a key on each of his clients.

Since the name of the TSIG key the client uses to sign the update is just the domain
name of the client, the nameserver can make sure that only the client that added an
address can delete it later, simply by tracking the domain name of the TSIG key used
to add a given record. Only an updater with the same TSIG key is allowed to delete
that record.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 17: Miscellaneous

Modern Windows clients try GSS-TSIG-signed dynamic updates if their unsigned
dynamic updates are refused. You can also configure them to send signed updates
first by following the instructions in Knowledge Base article Q246804, mentioned
earlier.

BIND and GSS-TSIG

Unfortunately, BIND nameservers don’t yet support GSS-TSIG, so you can’t use
Windows’s secure dynamic update with BIND. A forthcoming version of BIND 9,
however, is scheduled to support GSS-TSIG. Once BIND does support GSS-TSIG,
you’ll be able to use all the update policy rules described in Chapter 10 to control
which keys can update which records. A simple set of rules that says:

zone "fx.movie.edu" {
 type master;
 file "db.fx.movie.edu";
 update-policy {
 grant *.fx.movie.edu. self *.fx.movie.edu. A;
 grant matrix.fx.movie.edu. self matrix.fx.movie.edu. ANY;
 grant matrix.fx.movie.edu. subdomain fx.movie.edu. SRV CNAME A;
 };
};

may someday be enough to let Windows clients and servers register what they need
in your zone.

What to Do?
In the meantime, how do you handle the proliferation of Windows and Active Direc-
tory on your network? Well, Microsoft would advise you to “upgrade” all your
nameservers to the Microsoft DNS Server. But if you like BIND—and we do—you’d
probably like some other options.

Handling Windows clients

The first (and probably most common) option for handling your Windows clients
is to create a delegated subdomain for all of them to live in. We might call ours
win.fx.movie.edu. Within win.fx.movie.edu, anything goes: clients can stomp on
other clients’ addresses, and someone may send a bunch of hand-crafted dynamic
updates to add bogus records to the zone. The intent is to create a sandbox (or jail,
if you prefer) that the clients can’t break out of and that they can trash if they want
to. If you have kids, you have an intuitive understanding of this concept.

By default, a Windows client will try to register itself in a forward-mapping zone with
the same name as its Active Directory domain. So we’ll have to do some extra configu-
ration to tell our clients to register in win.fx.movie.edu instead of in fx.movie.edu. In
particular, we’ll have to go to a window that resides at My Computer ➝ Properties ➝

Network Identification ➝ Properties ➝ More, uncheck “Change primary DNS suffix

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS, Windows, and Active Directory | 513

when domain membership changes,” and type win.fx.movie.edu in the field labeled
Primary DNS suffix of this computer. On all our clients.

Another possibility is to leave your clients in your main production zone (for our lab,
that’s fx.movie.edu) but allow dynamic updates only from the address of the DHCP
server. You then configure your DHCP server to assume responsibility for maintain-
ing both A records and PTR records. (You can manually add A and PTR records for
hosts that don’t use DHCP.)

In this scenario, it’s more difficult for the little imps to send their custom dynamic
updates to your nameserver because it involves spoofing the address of the DHCP
server. It’s still possible that someone will bring up a client with a domain name that
conflicts with an existing domain name in the zone, though.

If you’re willing to consider using a different DHCP server, you can deploy an even
more secure solution. The latest versions of the ISC DHCP server support TSIG-
signed dynamic updates and use a clever mechanism based on TXT records to avoid
name collisions in DHCP clients. When the DHCP server adds an A record on behalf
of a DHCP client, it also adds a TXT record to the client’s domain name, in which
the record-specific data is a one-way hash of the client’s MAC address. The resulting
records look like this:

walktheline A 192.253.254.237
 TXT "313f1778871429e6d240893c1afc163aee"

If the DHCP server later tries to add a different A record to that domain name on
behalf of a client, it checks whether the client’s MAC address hashes to the same
value that’s stored in the TXT record. If it does, the DHCP server removes the old A
record because it belonged to the same client; the client has probably just moved to a
new subnet or leased a different address. If it doesn’t, the DHCP server won’t per-
form the update because the old A record likely belongs to a different client that hap-
pens to have the same domain name.

For more information on the ISC DHCP server, see http://www.isc.org/sw/dhcp/.

Handling Windows servers

The main server you need to accommodate with your nameservers is the Domain
Controller (or Controllers, if you have more than one). The DC wants to add the
passel of records we showed earlier. If it can’t add them at setup time, it’ll write the
records, in master file format, to a file called System32\Config\netlogon.dns under the
system root.

First, you need to determine which zone you need to update. That’s just a matter of
finding the zone that contains the Active Directory domain name. If your Active
Directory domain has the same name as an existing zone, of course, that’s the zone
to update. Otherwise, just keep stripping off the leading labels of your Active Direc-
tory domain until you get to the domain name of a zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 17: Miscellaneous

Once you have the zone that you need to update, you need to decide how to proceed.
If you don’t mind letting your Domain Controller dynamically update your zone, just
add an appropriate allow-update substatement to the zone statement and you’re done.
If you’d rather not allow your DC complete control of the zone, you can leave
dynamic updates disabled and let the DC create the netlogon.dns file. Then use an
$INCLUDE control statement to read the contents of the file into your zone datafile:

$INCLUDE netlogon.dns

If neither option appeals to you because you want the DC to be able to change its
records but don’t want it mangling your zone, you still have a trick up your sleeve.
You can take advantage of the funny format of the owner names in SRV records and
create delegated subdomains called (in our case) _udp.fx.movie.edu, _tcp.fx.movie.edu,
_sites.fx.movie.edu, and _msdcs.fx.movie.edu. (You might have to turn off name check-
ing for _msdcs.fx.movie.edu, because the Domain Controller wants to add an address
record to the zone in addition to a slew of SRV records, and the owner name of that
record will contain an underscore.) Then let the DC dynamically update these zones,
but not your main zone:

acl dc { 192.253.254.13; };

zone "_udp.fx.movie.edu" {
 type master;
 file "db._udp.fx.movie.edu";
 allow-update { dc; };
};

zone "_tcp.fx.movie.edu" {
 type master;
 file "db._tcp.fx.movie.edu";
 allow-update { dc; };
};

zone "_sites.fx.movie.edu" {
 type master;
 file "db._sites.fx.movie.edu";
 allow-update { dc; };
};

zone "_msdcs.fx.movie.edu" {
 type master;
 file "db._msdcs.fx.movie.edu";
 allow-update { dc; };
 check-names ignore;
};

If your Domain Controllers run Windows Server 2003, you need to add two more
zones to that list: DomainDNSZones.fx.movie.edu and ForestDNSZones.fx.movie.edu:

zone "DomainDNSZones.fx.movie.edu" {
 type master;
 file "db.DomainDNSZones.fx.movie.edu";

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS, Windows, and Active Directory | 515

 allow-update { dc; };
};

zone "ForestDNSZones.fx.movie.edu" {
 type master;
 file "db.ForestDNSZones.fx.movie.edu";
 allow-update { dc; };
 check-names ignore;
};

Now you have the best of both worlds: dynamic registration of services with a safe
production zone.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

517

Appendix A APPENDIX A

DNS Message Format and Resource
Records

This appendix outlines the format of DNS messages and enumerates all the resource
record types. The resource records are shown in their textual format, as you would
specify them in a zone datafile, and in their binary format, as they appear in DNS
messages. You’ll find a few resource records here that weren’t covered earlier
because they are experimental or obsolete.

We’ve included the portions of RFC 1035, written by Paul Mockapetris, that deal
with the textual format of master files (what we called zone data files in the book) or
with the DNS message format (for those of you who need to parse DNS packets).

Master File Format
(From RFC 1035, pages 33–35)

The format of these files is a sequence of entries. Entries are predominantly line-
oriented, though parentheses can be used to continue a list of items across a line
boundary, and text literals can contain CRLF within the text. Any combination of
tabs and spaces acts as a delimiter between the separate items that make up an
entry. The end of any line in the master file can end with a comment. The com-
ment starts with a semicolon (;).

The following entries are defined:

blank[comment]

$ORIGIN domain-name [comment]

$INCLUDE file-name [domain-name] [comment]

domain-namerr [comment]

blankrr [comment]

Blank lines, with or without comments, are allowed anywhere in the file.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

518 | Appendix A: DNS Message Format and Resource Records

Two control entries are defined: $ORIGIN and $INCLUDE. $ORIGIN is followed
by a domain name and resets the current origin for relative domain names to the
stated name. $INCLUDE inserts the named file into the current file and may option-
ally specify a domain name that sets the relative domain name origin for the included
file. $INCLUDE may also have a comment. Note that an $INCLUDE entry never
changes the relative origin of the parent file, regardless of changes to the relative ori-
gin made within the included file.

The last two forms represent RRs. If an entry for an RR begins with a blank, the RR
is assumed to be owned by the last stated owner. If an RR entry begins with a
domain-name, the owner name is reset.

rr contents take one of the following forms:

[TTL] [class] type RDATA
[class] [TTL] type RDATA

The RR begins with optional TTL and class fields, followed by a type and RDATA
field appropriate to the type and class. Class and type use the standard mnemonics;
TTL is a decimal integer. Omitted class and TTL values default to the last explicitly
stated values. Since type and class mnemonics are disjoint, the parse is unique.

domain-names make up a large share of the data in the master file. The labels in the
domain name are expressed as character strings and separated by dots. Quoting con-
ventions allow arbitrary characters to be stored in domain names. Domain names
that end in a dot are called absolute, and are taken as complete. Domain names that
do not end in a dot are called relative; the actual domain name is the concatenation
of the relative part with an origin specified in an $ORIGIN, $INCLUDE, or argu-
ment to the master file-loading routine. A relative name is an error when no origin is
available.

character-string is expressed in one of two ways: as a contiguous set of characters
without interior spaces, or as a string beginning with " and ending with ". Inside a "-
delimited string any character can occur, except for " itself, which must be quoted
using a backslash (\).

Because these files are text files, several special encodings are necessary to allow arbi-
trary data to be loaded. In particular:

.
Of the root.

@
A free-standing @ denotes the current origin.

\X
Where X is any character other than a digit (0–9), \ is used to quote that charac-
ter so that its special meaning does not apply. For example, \. can place a dot
character in a label.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

A address | 519

\DDD
Where each D is a digit in the octet corresponding to the decimal number
described by DDD. The resulting octet is assumed to be text and is not checked
for special meaning.

()
Parentheses are used to group data that crosses a line boundary. In effect, line
terminations are not recognized within parentheses.

;
 A semicolon is used to start a comment; the remainder of the line is ignored.

Character Case
(From RFC 1035, page 9)

For all parts of the DNS that are part of the official protocol, all comparisons between
character strings (e.g., labels, domain names, etc.) are done in a case-insensitive man-
ner. At present, this rule is in force throughout the domain system without exception.
However, future additions beyond current usage may need to use the full binary octet
capabilities in names, so attempts to store domain names in seven-bit ASCII or use of
special bytes to terminate labels, etc., should be avoided.

Types
Here is a complete list of resource record types. The textual representation is used in
master files. The binary representation is used in DNS queries and responses. These
resource records are described on pages 13–21 of RFC 1035.

A address
(From RFC 1035, page 20)

Textual Representation
owner ttl class A address

Example
localhost.movie.edu. IN A 127.0.0.1

Binary Representation
Address type code: 1
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ADDRESS A 32 bit Internet address.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

520 | Appendix A: DNS Message Format and Resource Records

CNAME canonical name
(From RFC 1035, page 14)

Textual Representation
owner ttl class CNAME canonical-dname

Example
wh.movie.edu. IN CNAME wormhole.movie.edu.

Binary Representation
CNAME type code: 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
CNAME A domain-name which specifies the canonical
 or primary name for the owner. The owner name is
 an alias.

HINFO host information
(From RFC 1035, page 14)

Textual Representation
owner ttl class HINFO cpu os

Example
grizzly.movie.edu. IN HINFO VAX-11/780 UNIX

Binary Representation
HINFO type code: 13
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CPU /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / OS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
CPU A character-string which specifies the CPU type.
OS A character-string which specifies the
 operating system type.

MX mail exchanger
(From RFC 1035, page 17)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

PTR pointer | 521

Textual Representation
owner ttl class MX preference exchange-dname

Example
ora.com. IN MX 0 ora.ora.com.
 IN MX 10 ruby.ora.com.
 IN MX 10 opal.ora.com.

Binary Representation
MX type code: 15
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / EXCHANGE /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
PREFERENCE A 16 bit integer which specifies the preference
 given to this RR among others at the same owner.
 Lower values are preferred.
EXCHANGE A domain-name which specifies a host willing
 to act as a mail exchange for the owner name.

NS name server
(From RFC 1035, page 18)

Textual Representation
owner ttl class NS name-server-dname

Example
movie.edu. IN NS terminator.movie.edu.

Binary Representation
NS type code: 2
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NSDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
NSDNAME A domain-name which specifies a host which
 should be authoritative for the specified
 class and domain.

PTR pointer
(From RFC 1035, page 18)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

522 | Appendix A: DNS Message Format and Resource Records

Textual Representation
owner ttl class PTR dname

Example
1.249.249.192.in-addr.arpa. IN PTR wormhole.movie.edu.

Binary Representation
PTR type code: 12
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PTRDNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
PTRDNAME A domain-name which points to some location in
 the domain name space.

SOA start of authority
(From RFC 1035, pages 19–20)

Textual Representation
owner ttl class SOA source-dname mbox (serial refresh retry expire minimum)

Example
movie.edu. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 1 ; Serial
 10800 ; Refresh after 3 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

Binary Representation
SOA type code: 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SERIAL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | REFRESH |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RETRY |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | EXPIRE |
 | |

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

WKS well-known services | 523

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | MINIMUM |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
MNAME The domain-name of the name server that was the
 original or primary source of data for this zone.
RNAME A domain-name which specifies the mailbox of the
 person responsible for this zone.
SERIAL The unsigned 32 bit version number of the original
 copy of the zone. Zone transfers preserve this
 value. This value wraps and should be compared
 using sequence space arithmetic.
REFRESH A 32 bit time interval before the zone should be
 refreshed.
RETRY A 32 bit time interval that should elapse before
 a failed refresh should be retried.
EXPIRE A 32 bit time value that specifies the upper limit
 on the time interval that can elapse before the
 zone is no longer authoritative.
MINIMUM The unsigned 32 bit minimum TTL field that should
 be exported with any RR from this zone.

TXT text
(From RFC 1035, page 20)

Textual Representation
owner ttl class TXT txt-strings

Example
cujo.movie.edu. IN TXT "Location: machine room dog house"

Binary Representation
TXT type code: 16
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXT-DATA /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
TXT-DATA One or more character-strings.

WKS well-known services
(From RFC 1035, page 21)

Textual Representation
owner ttl class WKS address protocol service-list

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

524 | Appendix A: DNS Message Format and Resource Records

Example
terminator.movie.edu. IN WKS 192.249.249.3 TCP (telnet smtp
 ftp shell domain)

Binary Representation
WKS type code: 11
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PROTOCOL | |
 +--+--+--+--+--+--+--+--+ |
 | |
 / BIT MAP /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ADDRESS An 32 bit Internet address.
PROTOCOL An 8 bit IP protocol number.
BIT MAP A variable length bit map. The bit map must
 be a multiple of 8 bits long.

New Types from RFC 1183

AFSDB Andrew File System Data Base (experimental)

Textual Representation
owner ttl class AFSDB subtype hostname

Example
fx.movie.edu. IN AFSDB 1 bladerunner.fx.movie.edu.
 IN AFSDB 2 bladerunner.fx.movie.edu.
 IN AFSDB 1 empire.fx.movie.edu.
 IN AFSDB 2 aliens.fx.movie.edu.

Binary Representation
AFSDB type code: 18
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SUBTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / HOSTNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
SUBTYPE Subtype 1 is an AFS cell database server. Subtype 2
 is a DCE authenticated name server.
HOSTNAME A domain-name which specifies a host that has a
 server for the cell named by the owner of the RR.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

RP Responsible Person (experimental) | 525

ISDN Integrated Services Digital Network address (experimental)

Textual Representation
owner ttl class ISDN ISDN-address sa

Example
delay.hp.com. IN ISDN 141555514539488
hep.hp.com. IN ISDN 141555514539488 004

Binary Representation
ISDN type code: 20
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / ISDN ADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / SUBADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ISDN ADDRESS A character-string which identifies the ISDN number
 of owner and DDI (Direct Dial In) if any.
SUBADDRESS An optional character-string specifying the
 subaddress.

RP Responsible Person (experimental)

Textual Representation
owner ttl class RP mbox-dname txt-dname

Example
; The current origin is fx.movie.edu
@ IN RP ajs.fx.movie.edu. ajs.fx.movie.edu.
bladerunner IN RP root.fx.movie.edu. hotline.fx.movie.edu.
 IN RP richard.fx.movie.edu. rb.fx.movie.edu.
ajs IN TXT "Arty Segue, (415) 555-3610"
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"
rb IN TXT "Richard Boisclair, (415) 555-9612"

Binary Representation
RP type code: 17
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAILBOX /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXTDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
MAILBOX A domain-name that specifies the mailbox for
 the responsible person.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

526 | Appendix A: DNS Message Format and Resource Records

TXTDNAME A domain-name for which TXT RR's exist. A
 subsequent query can be performed to retrieve
 the associated TXT resource records at
 txt-dname.

RT Route Through (experimental)

Textual Representation
owner ttl class RT preference intermediate-host

Example
sh.prime.com. IN RT 2 Relay.Prime.COM.
 IN RT 10 NET.Prime.COM.

Binary Representation
RT type code: 21
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / INTERMEDIATE /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
PREFERENCE A 16 bit integer which specifies the preference
 given to this RR among others at the same owner.
 Lower values are preferred.
EXCHANGE A domain-name which specifies a host which will
 serve as an intermediate in reaching the host
 specified by owner.

X25 X.25 address (experimental)

Textual Representation
owner ttl class X25 PSDN-address

Example
relay.pink.com. IN X25 31105060845

Binary Representation
X25 type code: 19
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PSDN ADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

PX pointer to X.400/RFC 822 mapping information | 527

where:
PSDN ADDRESS A character-string which identifies the PSDN
 (Public Switched Data Network) address in the
 X.121 numbering plan associated with owner.

New Types from RFC 1664

PX pointer to X.400/RFC 822 mapping information

Textual Representation
owner ttl class PX preference RFC822 address X.400 address

Example
ab.net2.it. IN PX 10 ab.net2.it. O-ab.PRMD-net2.ADMDb.C-it.

Binary Representation
PX type code: 26
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAP822 /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAPX400 /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
PREFERENCE A 16 bit integer which specifies the preference given to
 this RR among others at the same owner. Lower values
 are preferred.
MAP822 A domain-name element containing rfc822-domain, the
 RFC 822 part of the RFC 1327 mapping information.
MAPX400 A domain-name element containing the value of

x400-in-domain-syntax derived from the X.400 part of
 the RFC 1327 mapping information.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

528 | Appendix A: DNS Message Format and Resource Records

New Types from RFC 3596

AAAA IPv6 Address

Textual Representation
owner ttl class AAAA IPv6-address

Example
ipv6-host IN AAAA 4321:0:1:2:3:4:567:89ab

Binary Representation
AAAA type code: 28
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ADDRESS A 128 bit Internet address.

New Types from RFC 2782

SRV Locate Services

Textual Representation
owner ttl class SRV Priority Weight Port Target

Example
_http._tcp.www.movie.edu. IN SRV 0 2 80 www.movie.edu.

Binary Representation
SRV type code: 33

The RFC does not contain a diagram of the binary representation. The priority,
weight, and port are unsigned 16 bit integers. The target is a domain name.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

NAPTR Naming Authority Pointer | 529

New Types from RFC 2915

NAPTR Naming Authority Pointer

Textual Representation
owner ttl class NAPTR Order Preference Flags Service RegExp Replacement

Example
gatech.edu IN NAPTR 100 50 "s" "http+I2L+I2C+I2R" "" _http._tcp.gatech.edu.

Binary Representation
NAPTR type code: 35
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ORDER |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / FLAGS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / SERVICES /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / REGEXP /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / REPLACEMENT /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ORDER A 16-bit unsigned integer specifying the order in which
 the NAPTR records MUST be processed to ensure the correct
 ordering of rules.
PREFERENCE A 16-bit unsigned integer that specifies the order in
 which NAPTR records with equal "order" values SHOULD be processed,
 low numbers being processed before high numbers.
FLAGS A <character-string> which contains various flags.
SERVICES A <character-string> which contains protocol and service
 identifiers.
REGEXP A <character-string> which contains a regular expression.
REPLACEMENT A <domain-name> which specifies the new value in the
 case where the regular expression is a simple replacement
 operation.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

530 | Appendix A: DNS Message Format and Resource Records

Classes
(From RFC 1035, page 13)

CLASS fields appear in resource records. The following CLASS mnemonics and val-
ues are defined:

IN 1: the Internet

CS 2: the CSNET class (obsolete—used only for examples in some obsolete RFCs)

CH 3: the CHAOS class

HS 4: the Hesiod class

DNS Messages
In order to write programs that parse DNS messages, you need to understand the
message format. DNS queries and responses are most often contained within UDP
datagrams. Each message is fully contained within a UDP datagram. If the query and
response are sent over TCP, they are prefixed with a two-byte value indicating the
length of the query or response, excluding the two-byte length. The following sec-
tions detail the format and content of the DNS message.

Message Format
(From RFC 1035, page 25)

All communications inside the domain protocol are carried in a single format called a
message. The top-level format of the message is divided into five sections (some may
be empty in certain cases), shown here:

+---------------------+
| Header |
+---------------------+
| Question | the question for the name server
+---------------------+
| Answer | RRs answering the question
+---------------------+
| Authority | RRs pointing toward an authority
+---------------------+
| Additional | RRs holding additional information
+---------------------+

The header section is always present. The header includes fields that specify which
remaining sections are present and specifies whether the message is a query or a
response, a standard query or some other opcode, etc.

The names of the sections after the header are derived from their use in standard que-
ries. The question section contains fields that describe a question to a nameserver.
These fields are a query type (QTYPE), a query class (QCLASS), and a query domain

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

DNS Messages | 531

name (QNAME). The last three sections have the same format: a possibly empty list
of concatenated resource records (RRs). The answer section contains RRs that answer
the question, the authority section contains RRs that point toward an authoritative
nameserver, and the additional records section contains RRs that relate to the query
but are not strictly answers for the question.

Header Section Format
(From RFC 1035, pages 26–28)

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
ID A 16 bit identifier assigned by the program that
 generates any kind of query. This identifier is copied
 the corresponding reply and can be used by the requester
 to match up replies to outstanding queries.
QR A one bit field that specifies whether this message is a
 query (0), or a response (1).
OPCODE A four bit field that specifies kind of query in this
 message. This value is set by the originator of a query
 and copied into the response. The values are:
 0 a standard query (QUERY)
 1 an inverse query (IQUERY)
 2 a server status request (STATUS)
 3-15 reserved for future use
AA Authoritative Answer - this bit is valid in responses,
 and specifies that the responding name server is an
 authority for the domain name in question section.
 Note that the contents of the answer section may have
 multiple owner names because of aliases. The AA bit
 corresponds to the name which matches the query name, or
 the first owner name in the answer section.
TC TrunCation - specifies that this message was truncated
 due to length greater than that permitted on the
 transmission channel.
RD Recursion Desired - this bit may be set in a query and
 is copied into the response. If RD is set, it directs
 the name server to pursue the query recursively.
 Recursive query support is optional.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

532 | Appendix A: DNS Message Format and Resource Records

RA Recursion Available - this bit is set or cleared in a
 response, and denotes whether recursive query support is
 available in the name server.
Z Reserved for future use. Must be zero in all queries
 and responses.
RCODE Response code - this 4 bit field is set as part of
 responses. The values have the following
 interpretation:
 0 No error condition
 1 Format error - The name server was
 unable to interpret the query.
 2 Server failure - The name server was
 unable to process this query due to a
 problem with the name server.
 3 Name Error - Meaningful only for
 responses from an authoritative name
 server, this code signifies that the
 domain name referenced in the query does
 not exist.
 4 Not Implemented - The name server does
 not support the requested kind of query.
 5 Refused - The name server refuses to
 perform the specified operation for
 policy reasons. For example, a name
 server may not wish to provide the
 information to the particular requester,
 or a name server may not wish to perform
 a particular operation (e.g., zone
 transfer) for particular data.
 6-15 Reserved for future use.
QDCOUNT An unsigned 16 bit integer specifying the number of
 entries in the question section.
ANCOUNT An unsigned 16 bit integer specifying the number of
 resource records in the answer section.
NSCOUNT An unsigned 16 bit integer specifying the number of name
 server resource records in the authority records
 section.
ARCOUNT An unsigned 16 bit integer specifying the number of
 resource records in the additional records section.

Question Section Format
(From RFC 1035, pages 28–29)

The question section is used to carry the “question” in most queries, i.e., the parame-
ters that define what is being asked. The section contains QDCOUNT (usually one)
entries, each of the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

QTYPE values | 533

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / QNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QCLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
QNAME A domain name represented as a sequence of labels, where
 each label consists of a length octet followed by that
 number of octets. The domain name terminates with the
 zero length octet for the null label of the root. Note
 that this field may be an odd number of octets; no
 padding is used.
QTYPE A two octet code which specifies the type of the query.
 The values for this field include all codes valid for a
 TYPE field, together with some more general codes which
 can match more than one type of RR.
QCLASS A two octet code that specifies the class of the query.
 For example, the QCLASS field is IN for the Internet.

QCLASS values
(From RFC 1035, page 13)

QCLASS fields appear in the question section of a query. QCLASS values are a superset of
CLASS values; every CLASS is a valid QCLASS. In addition to CLASS values, the following
QCLASS is defined:

* 255 Any class

QTYPE values
(From RFC 1035, pages 12–13)

QTYPE fields appear in the question part of a query. QTYPES are a superset of TYPEs;
hence, all TYPEs are valid QTYPEs. Also, the following QTYPEs are defined:

AXFR
252 A request for a transfer of an entire zone

MAILB
253 A request for mailbox-related records (MB, MG, or MR)

MAILA
254 A request for mail agent RRs (obsolete—see MX)

*
255 A request for all records

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

534 | Appendix A: DNS Message Format and Resource Records

Answer, Authority, and Additional Section Format
(From RFC 1035, pages 29–30)

The answer, authority, and additional sections all share the same format: a variable
number of resource records, in which the number of records is specified in the corre-
sponding count field in the header. Each resource record has the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
where:
NAME A domain name to which this resource record pertains.
TYPE Two octets containing one of the RR type codes. This
 field specifies the meaning of the data in the RDATA
 field.
CLASS Two octets which specify the class of the data in the
 RDATA field.
TTL A 32 bit unsigned integer that specifies the time
 interval (in seconds) that the resource record may be
 cached before it should be discarded. Zero values are
 interpreted to mean that the RR can only be used for the
 transaction in progress, and should not be cached.
RDLENGTH An unsigned 16 bit integer that specifies the length in
 octets of the RDATA field.
RDATA A variable length string of octets that describes the
 resource. The format of this information varies
 according to the TYPE and CLASS of the resource record.
 For example, if the TYPE is A and the CLASS is IN,
 the RDATA field is a 4 octet ARPA Internet address.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Character string | 535

Data Transmission Order
(From RFC 1035, pages 8–9)

The order of transmission of the header and data described in this document is
resolved to the octet level. Whenever a diagram shows a group of octets, the order of
transmission of those octets is the normal order in which they are read in English.
For example, in the following diagram, the octets are transmitted in the order they
are numbered:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 3 | 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 5 | 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Whenever an octet represents a numeric quantity, the leftmost bit in the diagram is
the high order, or most significant, bit. That is, the bit labeled 0 is the most signifi-
cant bit. For example, the following diagram represents the value 170 (decimal):

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1 0 1 0 1 0 1 0|
+-+-+-+-+-+-+-+-+

Similarly, whenever a multioctet field represents a numeric quantity, the leftmost bit
of the whole field is the most significant bit. When a multioctet quantity is transmit-
ted, the most significant octet is transmitted first.

Resource Record Data

Data Format
In addition to two- and four-octet integer values, resource record data can contain
domain names or character strings.

Character string
(From RFC 1035, page 13)

A character string is a single length octet followed by that number of characters. A char-
acter string is treated as binary information, and can be up to 256 characters in length
(including the length octet).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

536 | Appendix A: DNS Message Format and Resource Records

Domain name
(From RFC 1035, page 10)

Domain names in messages are expressed in terms of a sequence of labels. Each label is
represented as a one-octet length field followed by that number of octets. Since every
domain name ends with the null label of the root, a domain name is terminated by a length
byte of 0. The high order two bits of every length octet must be 0, and the remaining 6 bits
of the length field limit the label to 63 octets or less.

Message compression
(From RFC 1035, page 30)

In order to reduce the size of messages, the domain system uses a compression scheme that
eliminates the repetition of domain names in a message. In this scheme, an entire domain
name or a list of labels at the end of a domain name is replaced with a pointer to a prior
occurrence of the same name.

The pointer takes the form of a two-octet sequence:

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1| OFFSET |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The first two bits are ones. This allows a pointer to be distinguished from a label, since the
label must begin with 2 zero bits because labels are restricted to 63 octets or less. (The 10
and 01 combinations are reserved for future use.) The OFFSET field specifies an offset
from the start of the message (i.e., the first octet of the ID field in the domain header). A
zero offset specifies the first byte of the ID field, etc.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

537

Appendix B APPENDIX B

BIND Compatibility Matrix1

Table B-1 shows you which versions of BIND support various features.

Table B-1. BIND compatibility matrix

Feature BIND version

8.2.3 8.4.7 9.1.0 9.3.2

Multiprocessor support ✗ ✗

Dynamic update ✗ ✗ ✗ ✗

TSIG-signed dynamic update ✗ ✗ ✗ ✗

TSIG-based update policy ✗ ✗

NOTIFY ✗ ✗ ✗ ✗

Incremental zone transfer ✗ ✗ ✗ ✗

Incremental zone transfers with
manual zone editing

✗

Forwarding ✗ ✗ ✗ ✗

Forward zones ✗ ✗ ✗ ✗

Use of RTT for forwarders ✗ ✗ ✗

Views ✗ ✗

Round robin ✗ ✗ ✗ ✗

Configurable RRset order ✗ ✗

Configurable sort list ✗ ✗ ✗ ✗

Disabling recursion ✗ ✗ ✗ ✗

Recursion access list ✗ ✗ ✗ ✗

Query access lists ✗ ✗ ✗ ✗

Zone transfer access lists ✗ ✗ ✗ ✗

EDNS0 ✗ ✗ ✗

IPv6 transport ✗ ✗ ✗

AAAA records ✗ ✗ ✗ ✗

DNSSECbis ✗

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

538

Appendix CAPPENDIX C

Compiling and Installing BIND on Linux 2

The versions of BIND shipped with most versions of Linux are fairly recent. Still,
BIND 8.4.7 is the most current BIND release (at the time of this writing), and the
ISC recommends that you upgrade to BIND 9. For those of you who can’t wait until
your version of Linux updates to the latest version of BIND 8 or 9, this appendix will
show you how to do it yourself.

Instructions for BIND 8
Compiling and installing the latest version of BIND 8 is easy. (Because the path to
BIND 8 includes following the link bind-8, you will always get the latest version.)
The following sections provide detailed instructions.

Get the Source Code
First, you must get the source code. There’s a copy on ftp.isc.org, available for anony-
mous FTP:

% cd /tmp
% ftp ftp.isc.org.
Connected to isrv4.pa.vix.com.
220 ProFTPD 1.2.0 Server (ISC FTP Server) [ftp.isc.org]
Name (ftp.isc.org.:user): ftp
331 Anonymous login ok, send your complete e-mail address as password.
Password:
230 Anonymous access granted, restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

Now you need to find the right file:

ftp > cd /isc/bind/src/cur/bind-8
250 CWD command successful.
ftp > binary
200 Type set to I.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Instructions for BIND 8 | 539

ftp > get bind-src.tar.gz
local: bind-src.tar.gz remote: bind-src.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for bind-src.tar.gz (1600504 bytes).
226 Transfer complete.
1600504 bytes received in 23 seconds (56 Kbytes/s)
ftp > quit
221 Goodbye.

Unpack the Source Code
Now you have the compressed tar file that contains the BIND source. Just use the tar
command to uncompress and untar it:

% tar -zxvf bind-src.tar.gz

(This assumes you have a version of tar that can handle compressed gzip’ed files; if
you don’t, you can get a new copy of tar via anonymous FTP from ftp.gnu.org in /gnu/
tar/tar-1.15.tar.) This creates a src directory with several subdirectories, including bin,
include, lib, and port. Here are the contents of these subdirectories:

bin
Source code for all BIND binaries, including named.

include
Copies of include files referenced by the BIND code. You should use these to
build your nameserver instead of using those shipped with your system because
they have been updated.

lib
Source code for libraries used by BIND.

port
Information BIND uses to customize compilation settings and compile-time
options for various operating systems.

Use the Proper Compiler Settings
Before you can build everything, you need a C compiler. Nearly every version of
Linux comes with gcc, the GNU C compiler, which works fine. If you need to get
gcc, you can find information at http://www.gnu.org/software/gcc/gcc.html.

By default, BIND assumes that you’re using the GNU C compiler and various other
GNUish utilities, such as flex and byacc. These are a standard part of most Linux
development environments. If your version of Linux uses different programs,
though, you’ll need to modify port/linux/Makefile.set. This file lets BIND know
which programs to use.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

540 | Appendix C: Compiling and Installing BIND on Linux

Build Everything
Next, you compile everything from the top-level directory. First, run:

% make stdlinks

Then, run:

% make clean
% make depend

This removes any old object files you might have sitting around from previous com-
pilation attempts and updates the Makefile dependencies. Then, compile the source
code by running:

% make all

The source code should compile without any errors. Next, install the new named and
named-xfer programs into /usr/sbin. You’ll need to become root to do this. Use the
command:

make install

Instructions for BIND 9
Here’s how to compile and install BIND 9 on your Linux host. (At the time of this
writing, 9.3.2 is the latest version.)

Get the Source Code
As with BIND 8, you must get the source code first. And again, this requires FTP’ing
to ftp.isc.org:

% cd /tmp
% ftp ftp.isc.org.
Connected to isrv4.pa.vix.com.
220 ProFTPD 1.2.1 Server (ISC FTP Server) [ftp.isc.org]
Name (ftp.isc.org.:user): ftp
331 Anonymous login ok, send your complete email address as your password.
Password:
230 Anonymous access granted, restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

Change to the right directory and get the file you need:

ftp> cd /isc/bind9
250 CWD command successful.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Instructions for BIND 9 | 541

At this point, you should check to see what is the latest version available by doing a
dir command. At the time of this writing, 9.3.2 is the latest version.

ftp> cd 9.3.2
250 CWD command successful.
ftp> get bind-9.3.2.tar.gz
local: bind-9.3.2.tar.gz remote: bind-9.3.2.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for bind-9.3.2.tar.gz (4673603 bytes).
226 Transfer complete.
4673603 bytes received in 92.4 secs (35 Kbytes/sec)
ftp> quit
221 Goodbye.

Unpack the Source Code
Use the tar command to uncompress and untar the compressed tar file:

% tar zxvf bind-9.3.2.tar.gz

Unlike the BIND 8 distribution, this creates a bind-9.3.2 subdirectory in your work-
ing directory for all the BIND source code. (BIND 8 distributions always unpacked
everything into the working directory.) The bind-9.3.2 subdirectory will have subdi-
rectories called:

bin
Source code for all BIND binaries, including named

contrib
Contributed tools

doc
Documentation for BIND, including the invaluable Administrator Resource
Manual

lib
Source code for libraries used by BIND

make
Makefiles

Run configure, and Build Everything
Also unlike BIND 8, BIND 9 uses the near-miraculous configure script to determine
the appropriate includes and compiler settings. Read through the README file to
determine whether you need any special settings. configure supports command-line
options that allow you to build without threads, use a different installation direc-
tory, and much more. To run configure:

% ./configure

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

542 | Appendix C: Compiling and Installing BIND on Linux

Or, if you need to disable threads, for example, run:

% ./configure --disable-threads

To build BIND, type:

% make all

The source code should compile without errors. To install BIND, type this as root:

make install

That’s all there is!

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

543

Appendix D APPENDIX D

Top-Level Domains3

This table lists all the two-letter country codes and all the top-level domains that
aren’t countries. Not all the countries are registered in the Internet’s namespace at
the time of this writing, but there aren’t many missing.

Domain Country or organization Domain Country or organization

AC Ascension Island BE Belgium

AD Andorra BF Burkina Faso

AE United Arab Emirates BG Bulgaria

AERO Aeronautical Industry BH Bahrain

AF Afghanistan BI Burundi

AG Antigua and Barbuda BIZ Generic

AI Anguilla BJ Benin

AL Albania BM Bermuda

AM Armenia BN Brunei Darussalam

AN Netherlands Antilles BO Bolivia

AO Angola BR Brazil

AQ Antarctica BS Bahamas

AR Argentina BT Bhutan

ARPA ARPA Internet BV Bouvet Island

AS American Samoa BW Botswana

AT Austria BY Belarus

AU Australia BZ Belize

AW Aruba CA Canada

AZ Azerbaijan CC Cocos (Keeling) Islands

BA Bosnia and Herzegovina CD Congo, Democratic Republic of the

BB Barbados CF Central African Republic

BD Bangladesh CG Congo

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

544 | Appendix D: Top-Level Domains

CH Switzerland FX France, metropolitan

CI Cote d’Ivoire GA Gabon

CK Cook Islands GB United Kingdoma

CL Chile GD Grenada

CM Cameroon GE Georgia

CN China GF French Guiana

CO Colombia GG Guernsey, Alderney, and Sark (British
Channel Islands)

COM Generic (formerly commercial) GH Ghana

COOP Cooperatives GI Gibraltar

CR Costa Rica GL Greenland

CU Cuba GM Gambia

CV Cape Verde GN Guinea

CX Christmas Island GOV U.S. Federal Government

CY Cyprus GP Guadeloupe

CZ Czech Republic GQ Equatorial Guinea

DE Germany GR Greece

DJ Djibouti GS South Georgia and the South Sandwich
Islands

DK Denmark GT Guatemala

DM Dominica GU Guam

DO Dominican Republic GW Guinea-Bissau

DZ Algeria GY Guyana

EC Ecuador HK Hong Kong

EDU Education HM Heard and McDonald Islands

EE Estonia HN Honduras

EG Egypt HR Croatia

EH Western Sahara HT Haiti

ER Eritrea HU Hungary

ES Spain ID Indonesia

ET Ethiopia IE Ireland

EU European Union IL Israel

FI Finland IM Isle of Man

FJ Fiji IN India

FK Falkland Islands (Malvinas) INFO Generic

FM Micronesia, Federated States of INT International entities

FO Faroe Islands IO British Indian Ocean Territory

FR France IQ Iraq

Domain Country or organization Domain Country or organization

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Top-Level Domains | 545

IR Iran MK Macedonia, the Former Yugoslav Repub-
lic of

IS Iceland ML Mali

IT Italy MM Myanmar

JE Jersey (British Channel Island) MN Mongolia

JM Jamaica MO Macau

JO Jordan MOBI Mobile devices

JOBS Jobs MP Northern Mariana Islands

JP Japan MQ Martinique

KE Kenya MR Mauritania

KG Kyrgyzstan MS Montserrat

KH Cambodia MT Malta

KI Kiribati MU Mauritius

KM Comoros MUSEUM Museums

KN Saint Kitts and Nevis MV Maldives

KP Korea, Democratic People’s Republic of MW Malawi

KR Korea, Republic of MX Mexico

KW Kuwait MY Malaysia

KY Cayman Islands MZ Mozambique

KZ Kazakhstan NA Namibia

LA Lao People’s Democratic Republic NAME Names

LB Lebanon NATO North Atlantic Treaty Organization

LC Saint Lucia NC New Caledonia

LI Liechtenstein NE Niger

LK Sri Lanka NET Generic (formerly networking
organizations)

LR Liberia NF Norfolk Island

LS Lesotho NG Nigeria

LT Lithuania NI Nicaragua

LU Luxembourg NL Netherlands

LV Latvia NO Norway

LY Libyan Arab Jamahiriya NP Nepal

MA Morocco NR Nauru

MC Monaco NU Niue

MD Moldova, Republic of NZ New Zealand

MG Madagascar OM Oman

MH Marshall Islands ORG Generic (formerly organizations)

MIL U.S. military PA Panama

Domain Country or organization Domain Country or organization

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

546 | Appendix D: Top-Level Domains

PE Peru SY Syrian Arab Republic

PF French Polynesia SZ Swaziland

PG Papua New Guinea TC Turks and Caicos Islands

PH Philippines TD Chad

PK Pakistan TF French Southern Territories

PL Poland TG Togo

PM St. Pierre and Miquelon TH Thailand

PN Pitcairn TJ Tajikistan

PR Puerto Rico TK Tokelau

PRO Professionals TL Timor-Leste

PS Palestinian Authority TM Turkmenistan

PT Portugal TN Tunisia

PW Palau TO Tonga

PY Paraguay TP East Timor

QA Qatar TR Turkey

RE Reunion TRAVEL Travel

RO Romania TT Trinidad and Tobago

RU Russian Federation TV Tuvalu

RW Rwanda TW Taiwan, Province of China

SA Saudi Arabia TZ Tanzania, United Republic of

SB Solomon Islands UA Ukraine

SC Seychelles UG Uganda

SD Sudan UK United Kingdom

SE Sweden UM United States Minor Outlying Islands

SG Singapore US United States

SH St. Helena UY Uruguay

SI Slovenia UZ Uzbekistan

SJ Svalbard and Jan Mayen Islands VA Holy See (Vatican City State)

SK Slovakia VC Saint Vincent and The Grenadines

SL Sierra Leone VE Venezuela

SM San Marino VG Virgin Islands (British)

SN Senegal VI Virgin Islands (U.S.)

SO Somalia VN Vietnam

SR Suriname VU Vanuatu

ST Sao Tome and Principe WF Wallis and Futuna Islands

SU Union of Soviet Socialist Republics WS Samoa

SV El Salvador YE Yemen

Domain Country or organization Domain Country or organization

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Top-Level Domains | 547

YT Mayotte ZM Zambia

YU Yugoslavia ZR Republic of Zaire

ZA South Africa ZW Zimbabwe

a In practice, the United Kingdom uses “UK” for its top-level domain.

Domain Country or organization Domain Country or organization

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

548

Appendix EAPPENDIX E

BIND Nameserver and Resolver
Configuration 4

BIND Nameserver Boot File Directives
and Configuration File Statements
Here’s a handy list of all the boot file directives and configuration file statements for
the BIND nameserver, as well as configuration directives for the BIND resolver.
Some of the directives and statements exist only in later versions, so your nameserver
may not support them yet. Most of this information is based on the named.conf man-
ual page, so you can check your manual page if your version of BIND is a newer than
8.4.7or 9.3.2.

The options statement has become quite extensive. At the end of this appendix, we
have included the description of each configuration option from the BIND 9 Admin-
istrator Reference Manual, in case you don’t have easy access to the manual page. For
BIND 8, this information is on the named.conf manual page.

BIND 8 Configuration File Statements

acl

Function

Creates a named IP address matching list, for access control and other uses.

Syntax
acl name {
 address_match_list;
};

Covered in Chapters 10 and 11.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

logging | 549

controls (8.2+)

Function

Configures a channel used by ndc to control the nameserver.

Syntax
controls {
 [inet (ip_addr | *) port ip_port allow address_match_list;]
 [unix path_name perm number owner number group number;]
};

Covered in Chapter 7.

include

Function

Inserts the specified file at the point the include statement is encountered.

Syntax
include path_name;

Covered in Chapter 7.

key (8.2+)

Function

Defines a key ID that can be used in a server statement or an address match list to asso-
ciate a TSIG key with a particular nameserver.

Syntax
key key_id {
 algorithm algorithm_id;
 secret secret_string;
};

Covered in Chapters 10 and 11.

logging

Function

Configures the nameserver’s logging behavior.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

550 | Appendix E: BIND Nameserver and Resolver Configuration

Syntax
logging {
 [channel channel_name {
 (file path_name
 [versions (number | unlimited)]
 [size size_spec]
 | syslog (kern | user | mail | daemon | auth | syslog | lpr |
 news | uucp | cron | authpriv | ftp |
 local0 | local1 | local2 | local3 |
 local4 | local5 | local6 | local7)
 | null);

 [severity (critical | error | warning | notice |
 info | debug [level] | dynamic);]
 [print-category yes_or_no;]
 [print-severity yes_or_no;]
 [print-time yes_or_no;]
 };]

 [category category_name {
 channel_name; [channel_name; ...]
 };]
 ...
};

Covered in Chapter 7.

options

Function

Configures global options.

Syntax
options {
 [allow-query { address_match_list };]
 [allow-recursion { address_match_list };]
 [allow-transfer { address_match_list };]
 [also-notify { ip_addr; [ip_addr; ...] };]
 [auth-nxdomain yes_or_no;]
 [blackhole { address_match_list };]
 [check-names (master | slave | response) (warn | fail | ignore);]
 [cleaning-interval number;]
 [coresize size_spec;]
 [datasize size_spec;]
 [deallocate-on-exit yes_or_no;]
 [dialup yes_or_no;]
 [directory path_name;]
 [dump-file path_name;]
 [edns-udp-size number;]
 [fake-iquery yes_or_no;]

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

options | 551

 [fetch-glue yes_or_no;]
 [files size_spec;]
 [forward (only | first);]
 [forwarders { [ip_addr ; [ip_addr ; ...]] };]
 [has-old-clients yes_or_no;]
 [heartbeat-interval number;]
 [hostname hostname_string;]
 [host-statistics yes_or_no;]
 [host-statistics-max number;]
 [interface-interval number;]
 [lame-ttl number;]
 [listen-on [port ip_port] { address_match_list };]
 [listen-on-v6 [port ip_port] { address_match_list };]
 [maintain-ixfr-base yes_or_no;]
 [max-ixfr-log-size number;]
 [max-ncache-ttl number;]
 [max-transfer-time-in number;]
 [memstatistics-file path_name;]
 [min-roots number;]
 [multiple-cnames yes_or_no;]
 [named-xfer path_name;]
 [notify yes_or_no;]
 [pid-file path_name;]
 [preferred-glue (A | AAAA);]
 [query-source [address (ip_addr | *)] [port (ip_port | *)];]
 [query-source-v6 [address (ipv6_addr | *)]
 [port (ip_port | *)] ;]
 [recursion yes_or_no;]
 [rfc2308-type1 yes_or_no;]
 [rrset-order { order_spec; [order_spec; ...] };]
 [serial-queries number;]
 [sortlist { address_match_list };]
 [stacksize size_spec;]
 [statistics-file path_name;]
 [statistics-interval number;]
 [suppress-initial-notify yes_or_no;]
 [topology { address_match_list };]
 [transfer-format (one-answer | many-answers);]
 [transfer-source (ip_addr | *);]
 [transfer-source-v6 ipv6_addr;]
 [transfers-in number;]
 [transfers-out number;]
 [transfers-per-ns number;]
 [treat-cr-as-space yes_or_no;]
 [use-id-pool yes_or_no;]
 [use-ixfr yes_or_no;]
 [version version_string;]
};

Covered in Chapters 4, 10, 11, and 16.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

552 | Appendix E: BIND Nameserver and Resolver Configuration

server

Function

Defines the characteristics to be associated with a remote nameserver.

Syntax
server ip_addr {
 [bogus yes_or_no;]
 [edns yes_or_no;]
 [keys { key_id [key_id ...] };]
 [support-ixfr yes_or_no;]
 [transfers number;]
 [transfer-format (one-answer | many-answers);]
};

Covered in Chapters 10 and 11.

trusted-keys (8.2+)

Function

Configures the public keys of security roots for use in DNSSEC.

Syntax
trusted-keys {
 domain-name flags protocol_id algorithm_id public_key_string;
 [domain-name flags protocol_id algorithm_id public_key_string; [...]]
};

Covered in Chapter 11.

zone

Function

Configures the zones maintained by the nameserver.

Syntax
zone "domain_name" [(in | hs | hesiod | chaos)] {
 type master;
 file path_name;
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-update { address_match_list };]
 [also-notify { ip_addr; [ip_addr; ...]
 [check-names (warn | fail | ignore);]
 [dialup yes_or_no | notify;]
 [forward (only | first);]

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Configuration File Statements | 553

 [forwarders { [ip_addr; [ip_addr; ...]] };]
 [notify yes_or_no;]
 [pubkey flags protocol_id algorithm_id public_key_string;]
};

zone "domain_name" [(in | hs | hesiod | chaos)] {
 type (slave | stub);
 masters [port ip_port] { ip_addr; [ip_addr; ...] };
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-update { address_match_list };]
 [also-notify { ip_addr; [ip_addr; ...] };
 [check-names (warn | fail | ignore);]
 [dialup yes_or_no;]
 [file path_name;]
 [forward (only | first);]
 [forwarders { [ip_addr; [ip_addr; ...]] };]
 [max-transfer-time-in number;]
 [notify yes_or_no;]
 [pubkey flags protocol_id algorithm_id public_key_string;]
 [transfer-source ipv4_addr;]
 [transfer-source-v6 ipv6_addr;]
};

zone "domain_name" [(in | hs | hesiod | chaos)] {
 type forward;
 [forward (only | first);]
 [forwarders { [ip_addr ; [ip_addr ; ...]] };]
 [check-names (warn | fail | ignore);]
};

zone "." [(in | hs | hesiod | chaos)] {
 type hint;
 file path_name;
 [check-names (warn | fail | ignore);]
};

Covered in Chapters 4 and 10.

BIND 9 Configuration File Statements

Comments
• C style: /* */

• C++ style: // to end of line

• Unix style: # to end of line

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

554 | Appendix E: BIND Nameserver and Resolver Configuration

acl

Function

Creates a named IP address matching list, for access control and other uses.

Syntax
acl string { address_match_element; ... };

Covered in Chapters 10 and 11.

controls

Function

Configures a channel used by rndc to control the nameserver.

Syntax
controls {
 inet (ipv4_address | ipv6_address | *)
 [port (integer | *)]
 allow { address_match_element; ... }
 [keys { string; ... }];
 unix unsupported; // not implemented
};

Covered in Chapter 7.

include

Function

Inserts the specified file at the point where the include statement is encountered.

Syntax
include path_name;

Covered in Chapter 7.

key

Function

Defines a key ID that can be used in a server statement or an address match list to asso-
ciate a TSIG key with a particular nameserver.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

lwres | 555

Syntax
key domain_name {
 algorithm string;
 secret string;
};

Covered in Chapters 10 and 11.

logging

Function

Configures the nameserver’s logging behavior.

Syntax
logging {
 channel string {
 file log_file
 [versions (number | unlimited)]
 [size size_spec];
 syslog optional_facility;
 null;
 stderr;
 severity log_severity;
 print-time boolean;
 print-severity boolean;
 print-category boolean;
 };
 category string { string; ... };
};

Covered in Chapter 7.

lwres

Function

Configures the light-weight resolver daemon.

Syntax
lwres {
 listen-on [port integer] {
 (ipv4_address | ipv6_address) [port integer]; ...
 };
 view string optional_class;
 search { string; ... };
 ndots integer;
};

The light-weight resolver daemon is not covered in this book.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

556 | Appendix E: BIND Nameserver and Resolver Configuration

masters

Function

Defines the masters for a zone. You can define the masters for a zone directly inside the
zone statement, or you can define the masters in one place (using this statement), give the
list a name, and refer to the list name inside the zone statement.

Syntax
masters string [port integer] {
 (masters | ipv4_address [port integer] |
 ipv6_address [port integer]) [key string]; ...
};

Covered in Chapters 4 and 10 as part of the zone statement.

options

Function

Configures global options.

Syntax
options {
 avoid-v4-udp-ports { port; ... };
 avoid-v6-udp-ports { port; ... };
 blackhole { address_match_element; ... };
 coresize size;
 datasize size;
 directory quoted_string;
 dump-file quoted_string;
 files size;
 heartbeat-interval integer;
 host-statistics boolean; // not implemented
 host-statistics-max number; // not implemented
 hostname (quoted_string | none);
 interface-interval integer;
 listen-on [port integer] { address_match_element; ... };
 listen-on-v6 [port integer] { address_match_element; ... };
 match-mapped-addresses boolean;
 memstatistics-file quoted_string;
 pid-file (quoted_string | none);
 port integer;
 querylog boolean;
 recursing-file quoted_string;
 random-device quoted_string;
 recursive-clients integer;
 serial-query-rate integer;
 server-id (quoted_string | none |;
 stacksize size;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

options | 557

 statistics-file quoted_string;
 statistics-interval integer; // not yet implemented
 tcp-clients integer;
 tcp-listen-queue integer;
 tkey-dhkey quoted_string integer;
 tkey-gssapi-credential quoted_string;
 tkey-domain quoted_string;
 transfers-per-ns integer;
 transfers-in integer;
 transfers-out integer;
 use-ixfr boolean;
 version (quoted_string | none);
 allow-recursion { address_match_element; ... };
 sortlist { address_match_element; ... };
 topology { address_match_element; ... }; // not implemented
 auth-nxdomain boolean; // default changed
 minimal-responses boolean;
 recursion boolean;
 rrset-order {
 [class string] [type string]
 [name quoted_string] string string; ...
 };
 provide-ixfr boolean;
 request-ixfr boolean;
 rfc2308-type1 boolean; // not yet implemented
 additional-from-auth boolean;
 additional-from-cache boolean;
 query-source querysource4;
 query-source-v6 querysource6;
 cleaning-interval integer;
 min-roots integer; // not implemented
 lame-ttl integer;
 max-ncache-ttl integer;
 max-cache-ttl integer;
 transfer-format (many-answers | one-answer);
 max-cache-size size_no_default;
 check-names (master | slave | response)
 (fail | warn | ignore);
 cache-file quoted_string;
 suppress-initial-notify boolean; // not yet implemented
 preferred-glue string;
 dual-stack-servers [port integer] {
 (quoted_string [port integer] |
 ipv4_address [port integer] |
 ipv6_address [port integer]); ...
 }
 edns-udp-size integer;
 root-delegation-only [exclude { quoted_string; ... }];
 disable-algorithms string { string; ... };
 dnssec-enable boolean;
 dnssec-lookaside string trust-anchor string;
 dnssec-must-be-secure string boolean;

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

558 | Appendix E: BIND Nameserver and Resolver Configuration

 dialup dialuptype;
 ixfr-from-differences ixfrdiff;

 allow-query { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };

 notify notifytype;
 notify-source (ipv4_address | *) [port (integer | *)];
 notify-source-v6 (ipv6_address | *) [port (integer | *)];
 also-notify [port integer] { (ipv4_address | ipv6_address)
 [port integer]; ... };
 allow-notify { address_match_element; ... };

 forward (first | only);
 forwarders [port integer] {
 (ipv4_address | ipv6_address) [port integer]; ...
 };

 max-journal-size size_no_default;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-retry-time integer;
 min-retry-time integer;
 max-refresh-time integer;
 min-refresh-time integer;
 multi-master boolean;
 sig-validity-interval integer;

 transfer-source (ipv4_address | *)
 [port (integer | *)];
 transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];

 alt-transfer-source (ipv4_address | *)
 [port (integer | *)];
 alt-transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];
 use-alt-transfer-source boolean;

 zone-statistics boolean;
 key-directory quoted_string;

 allow-v6-synthesis { address_match_element; ... }; // obsolete
 deallocate-on-exit boolean; // obsolete
 fake-iquery boolean; // obsolete
 fetch-glue boolean; // obsolete
 has-old-clients boolean; // obsolete
 maintain-ixfr-base boolean; // obsolete
 max-ixfr-log-size size; // obsolete
 multiple-cnames boolean; // obsolete
 named-xfer quoted_string; // obsolete

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

trusted-keys | 559

 serial-queries integer; // obsolete
 treat-cr-as-space boolean; // obsolete
 use-id-pool boolean; // obsolete
};

Covered in Chapters 4, 10, 11, and 16.

server

Function

Defines the characteristics to be associated with a remote nameserver.

Syntax
server (ipv4_address | ipv6_address) {
 bogus boolean;
 edns boolean;
 provide-ixfr boolean;
 request-ixfr boolean;
 keys server_key;
 transfers integer;
 transfer-format (many-answers | one-answer);
 transfer-source (ipv4_address | *)
 [port (integer | *)];
 transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];

 support-ixfr boolean; // obsolete
};

Covered in Chapters 10 and 11.

trusted-keys

Function

Configures the public keys of security roots for use in DNSSEC.

Syntax
trusted-keys {
 domain_name flags protocol algorithm key; ...
};

Covered in Chapter 11.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

560 | Appendix E: BIND Nameserver and Resolver Configuration

view

Function

Creates and configures a view.

Syntax
view string optional_class {
 match-clients { address_match_element; ... };
 match-destinations { address_match_element; ... };
 match-recursive-only boolean;

 key string {
 algorithm string;
 secret string;
 };

 zone string optional_class {
 ...
 };

 server (ipv4_address | ipv6_address) {
 ...
 };

 trusted-keys {
 string integer integer integer quoted_string; ...
 };

 allow-recursion { address_match_element; ... };
 sortlist { address_match_element; ... };
 topology { address_match_element; ... }; // not implemented
 auth-nxdomain boolean; // default changed
 minimal-responses boolean;
 recursion boolean;
 rrset-order {
 [class string] [type string]
 [name quoted_string] string string; ...
 };
 provide-ixfr boolean;
 request-ixfr boolean;
 rfc2308-type1 boolean; // not yet implemented
 additional-from-auth boolean;
 additional-from-cache boolean;
 query-source querysource4;
 query-source-v6 querysource6;
 cleaning-interval integer;
 min-roots integer; // not implemented
 lame-ttl integer;
 max-ncache-ttl integer;
 max-cache-ttl integer;
 transfer-format (many-answers | one-answer);

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

view | 561

 max-cache-size size_no_default;
 check-names (master | slave | response)
 (fail | warn | ignore);
 cache-file quoted_string;
 suppress-initial-notify boolean; // not yet implemented
 preferred-glue string;
 dual-stack-servers [port integer] {
 (quoted_string [port integer] |
 ipv4_address [port integer] |
 ipv6_address [port integer]); ...
 };
 edns-udp-size integer;
 root-delegation-only [exclude { quoted_string; ... }];
 disable-algorithms string { string; ... };
 dnssec-enable boolean;
 dnssec-lookaside string trust-anchor string;

 dnssec-must-be-secure string boolean;
 dialup dialuptype;
 ixfr-from-differences ixfrdiff;

 allow-query { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };

 notify notifytype;
 notify-source (ipv4_address | *) [port (integer | *)];
 notify-source-v6 (ipv6_address | *) [port (integer | *)];
 also-notify [port integer] { (ipv4_address | ipv6_address)
 [port integer]; ... };
 allow-notify { address_match_element; ... };

 forward (first | only);
 forwarders [port integer] {
 (ipv4_address | ipv6_address) [port integer]; ...
 };

 max-journal-size size_no_default;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-retry-time integer;
 min-retry-time integer;
 max-refresh-time integer;
 min-refresh-time integer;
 multi-master boolean;
 sig-validity-interval integer;

 transfer-source (ipv4_address | *)
 [port (integer | *)];
 transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

562 | Appendix E: BIND Nameserver and Resolver Configuration

 alt-transfer-source (ipv4_address | *)
 [port (integer | *)];
 alt-transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];
 use-alt-transfer-source boolean;

 zone-statistics boolean;
 key-directory quoted_string;

 allow-v6-synthesis { address_match_element; ... }; // obsolete
 fetch-glue boolean; // obsolete
 maintain-ixfr-base boolean; // obsolete
 max-ixfr-log-size size; // obsolete
};

Covered in Chapters 10 and 11.

zone

Function

Configures the zones maintained by the nameserver.

Syntax
zone string optional_class {
 type (master | slave | stub | hint |
 forward | delegation-only);
 file quoted_string;

 masters [port integer] {
 (masters |
 ipv4_address [port integer] |
 ipv6_address [port integer]) [key string]; ...
 };

 database string;
 delegation-only boolean;
 check-names (fail | warn | ignore);
 dialup dialuptype;
 ixfr-from-differences boolean;

 allow-query { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };
 update-policy {
 (grant | deny) string
 (name | subdomain | wildcard | self) string
 rrtypelist; ...
 };

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND Resolver Statements | 563

 notify notifytype;
 notify-source (ipv4_address | *) [port (integer | *)];
 notify-source-v6 (ipv6_address | *) [port (integer | *)];
 also-notify [port integer] { (ipv4_address | ipv6_address)
 [port integer]; ... };
 allow-notify { address_match_element; ... };

 forward (first | only);
 forwarders [port integer] {
 (ipv4_address | ipv6_address) [port integer]; ...
 };

 max-journal-size size_no_default;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-retry-time integer;
 min-retry-time integer;
 max-refresh-time integer;
 min-refresh-time integer;
 multi-master boolean;
 sig-validity-interval integer;

 transfer-source (ipv4_address | *)
 [port (integer | *)];
 transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];

 alt-transfer-source (ipv4_address | *)
 [port (integer | *)];
 alt-transfer-source-v6 (ipv6_address | *)
 [port (integer | *)];
 use-alt-transfer-source boolean;

 zone-statistics boolean;
 key-directory quoted_string;

 ixfr-base quoted_string; // obsolete
 ixfr-tmp-file quoted_string; // obsolete
 maintain-ixfr-base boolean; // obsolete
 max-ixfr-log-size size; // obsolete
 pubkey integer integer integer quoted_string; // obsolete
};

Covered in Chapters 4 and 10.

BIND Resolver Statements
The following statements are for the resolver configuration file, /etc/resolv.conf.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

564 | Appendix E: BIND Nameserver and Resolver Configuration

; and #

Function

Adds a comment to the resolver configuration file.

Syntax
; free-format-comment

or:

free-format-comment

Example
Added parent domain to search list for compatibility with 4.8.3

Covered in Chapter 6.

domain

Function

Defines your resolver’s local domain name.

Syntax
domain domain-name

Example
domain corp.hp.com

Covered in Chapter 6.

nameserver

Function

Tells your resolver to query a particular nameserver.

Syntax
nameserver IP-address

Example
nameserver 15.255.152.4

Covered in Chapter 6.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

options ndots | 565

options attempts (8.2+)

Function

Specifies the number of times the resolver should query each nameserver.

Syntax
options attempts:number-of-attempts

Example
options attempts:2

Covered in Chapter 6.

options debug

Function

Turns on debugging output in the resolver.

Syntax
options debug

Example
options debug

Covered in Chapter 6.

options ndots

Function

Specifies the number of dots an argument must have in it so that the resolver will look it up
before applying the search list.

Syntax
options ndots:number-of-dots

Example
options ndots:1

Covered in Chapter 6.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

566 | Appendix E: BIND Nameserver and Resolver Configuration

options no-check-names (8.2+)

Function

Turns off name checking in the resolver.

Syntax
options no-check-names

Example
options no-check-names

Covered in Chapter 6.

options timeout (8.2+)

Function

Specifies the resolver’s per-nameserver timeout.

Syntax
options timeout:timeout-in-seconds

Example
options timeout:1

Covered in Chapter 6.

options rotate (8.2+)

Function

Rotates the order in which the resolver queries nameservers.

Syntax
options rotate

Example
options rotate

Covered in Chapter 6.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 567

search

Function

Defines your resolver’s local domain name and search list.

Syntax
search local-domain-name next-domain-name-in-search-list
... last-domain-name-in-search-list

Example
search corp.hp.com pa.itc.hp.com hp.com

Covered in Chapter 6.

sortlist

Function

Specifies networks for your resolver to prefer.

Syntax
sortlist network-list

Example
sortlist 128.32.4.0/255.255.255.0 15.0.0.0

Covered in Chapter 6.

BIND 9 Options Statement
Remember that statement that had way too many choices for you to consider?

options {
 avoid-v4-udp-ports { port; ... };
 avoid-v6-udp-ports { port; ... };
 blackhole { address_match_element; ... };
 ...
}

This section explains each choice.

This text came from the BIND 9 Administrator Reference Manual (created by Nomi-
num). If you are running BIND 8, look for similar information in the named.conf
manual page.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

568 | Appendix E: BIND Nameserver and Resolver Configuration

Definition and Usage
The options statement sets up global options to be used by BIND. This statement
may appear only once in a configuration file. If there is no options statement, an
options block with each option set to its default is used.

directory
The working directory of the server. Any nonabsolute pathnames in the configu-
ration file will be taken as relative to this directory. The default location for most
server output files (e.g., named.run) is this directory. If a directory is not speci-
fied, the working directory defaults to ., the directory from which the server was
started. The directory specified should be an absolute path.

key-directory
When performing dynamic update of secure zones, the directory where the public-
and private-key files should be found, if different than the current working direc-
tory. The directory specified must be an absolute path.

named-xfer
This option is obsolete. It was used in BIND 8 to specify the pathname to the
named-xfer program. In BIND 9, no separate named-xfer program is needed; its
functionality is built into the nameserver.

tkey-domain
The domain appended to the names of all shared keys generated with TKEY.
When a client requests a TKEY exchange, it may or may not specify the desired
name for the key. If present, the name of the shared key will be “client-specified
part” + “tkey-domain.” Otherwise, the name of the shared key will be “random
hex digits” + “tkey-domain.” In most cases, the domainname should be the
server’s domain name.

tkey-dhkey
The Diffie-Hellman key used by the server to generate shared keys with clients
using the Diffie-Hellman mode of TKEY. The server must be able to load the
public and private keys from files in the working directory. In most cases, the
keyname should be the server’s hostname.

dump-file
The pathname of the file the server dumps the database to when instructed to do
so with rndc dumpdb. If not specified, the default is named_dump.db.

memstatistics-file
The pathname of the file the server writes memory usage statistics to on exit. If
not specified, the default is named.memstats.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 569

pid-file
The pathname of the file the server writes its process ID in. If not specified, the
default is /var/run/named.pid. The pid-file is used by programs that want to send
signals to the running nameserver. Specifying pid-file none disables the use of a
PID file: no file will be written and all existing files are removed. Note that none
is a keyword, not a filename, and therefore is not enclosed in double quotes.

statistics-file
The pathname of the file the server appends statistics to when instructed to do
so using rndc stats. If not specified, the default is named.stats in the server’s cur-
rent directory.

port
The UDP/TCP port number the server uses for receiving and sending DNS pro-
tocol traffic. The default is 53. This option is mainly intended for server testing;
a server using a port other than 53 can’t communicate with the global DNS.

random-device
The source of entropy to be used by the server. Entropy is primarily needed for
DNSSEC operations, such as TKEY transactions and dynamic update of signed
zones. This option specifies the device (or file) from which to read entropy. If
this is a file, operations requiring entropy will fail when the file has been
exhausted. If not specified, the default value is /dev/random (or equivalent) when
present, and none otherwise. The random-device option takes effect during the
initial configuration load at server startup time and is ignored on subsequent
reloads.

preferred-glue
If specified, the listed type (A or AAAA) is emitted before other glue in the addi-
tional section of a query response. The default is not to preference any type
(NONE).

root-delegation-only
Turns on enforcement of delegation-only in TLDs and root zones with an optional
exclude list.

Note that some TLDs are not delegation-only (e.g., “DE,” “LV,” “US,” and
“MUSEUM”).

options {
 root-delegation-only exclude { "de"; "lv"; "us"; "museum"; };
};

disable-algorithms
Disables the specified DNSSEC algorithms at and below the specified name.
Multiple disable-algorithms statements are allowed. Only the most specific will
be applied.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

570 | Appendix E: BIND Nameserver and Resolver Configuration

dnssec-lookaside
When set, dnssec-lookaside provides the validator with an alternate method to
validate DNSKEY records at the top of a zone. When a DNSKEY is at or below a
domain specified by the deepest dnssec-lookaside, and the normal dnssec valida-
tion has left the key untrusted, the trust-anchor is appended to the key name,
and a DLV record is looked up to see if it can validate the key. If the DLV record
validates a DNSKEY (similarly to the way a DS record does), the DNSKEY RRset
is deemed to be trusted.

dnssec-must-be-secure
Specifies hierarchies that must/may not be secure (signed and validated). If yes,
then named accepts answers only if they are secure. If no, normal dnssec valida-
tion applies, allowing for insecure answers to be accepted. The specified domain
must be under a trusted-key, or dnssec-lookaside must be active.

Boolean Options
auth-nxdomain

If yes, the AA bit is always set on NXDOMAIN responses, even if the server is
not actually authoritative. The default is no; this is a change from BIND 8. If you
are using very old DNS software, you may need to set it to yes.

deallocate-on-exit
This option was used in BIND 8 to enable checking for memory leaks on exit.
BIND 9 ignores the option and always performs the checks.

dialup
If yes, the server treats all zones as if they are doing zone transfers across a dial-
on-demand dialup link, which can be brought up by traffic originating from this
server. This has different effects according to zone type and concentrates the
zone maintenance so that it all happens in a short interval, once every heartbeat-
interval and hopefully during the one call. It also suppresses some of the normal
zone maintenance traffic. The default is no.

The dialup option may also be specified in the view and zone statements, in
which case it overrides the global dialup option.

If the zone is a master zone, the server sends out a NOTIFY request to all the
slaves (default). This should trigger the zone serial number check in the slave
(providing it supports NOTIFY), allowing the slave to verify the zone while the
connection is active. The set of servers to which NOTIFY is sent can be con-
trolled by notify and also-notify.

If the zone is a slave or stub zone, the server suppresses the regular “zone up to
date” (refresh) queries and performs them only when the heartbeat-interval
expires in addition to sending NOTIFY requests.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 571

Finer control can be achieved using notify, which sends only NOTIFY messages;
notify-passive, which sends NOTIFY messages and suppresses the normal refresh
queries; refresh, which suppresses normal refresh processing and sends refresh
queries when the heartbeat-interval expires; and passive, which just disables nor-
mal refresh processing.

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery
In BIND 8, if this option is enabled, it simulates the obsolete DNS query type
IQUERY. BIND 9 never does IQUERY simulation.

fetch-glue
This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to
fetch-glue resource records it didn’t have when constructing the additional data sec-
tion of a response. This is now considered a bad idea, and BIND 9 never does it.

flush-zones-on-shutdown
When the nameserver exits due receiving SIGTERM, flush/do not flush any
pending zone writes. The default is flush-zones-on-shutdown no.

has-old-clients
This option was incorrectly implemented in BIND 8 and is ignored by BIND 9.
To achieve the intended effect of has-old-clients yes, specify the two separate
options auth-nxdomain yes and rfc2308-type1 no instead.

host-statistics
In BIND 8, this option enables statistics to be kept for every host the nameserver
interacts with. Not implemented in BIND 9.

maintain-ixfr-base
This option is obsolete. It was used in BIND 8 to determine whether a transac-
tion log was kept for incremental zone transfer. BIND 9 maintains a transaction
log whenever possible. If you need to disable outgoing incremental zone trans-
fers, use provide-ixfr no.

minimal-responses
If yes, then when generating responses, the server adds records to the authority
and additional data sections only when they are required (e.g., delegations, nega-
tive responses). This may improve the performance of the server. The default is no.

Dialup mode Normal refresh heartbeat refresh heartbeat notify

no (default) Yes No No

yes No Yes Yes

notify Yes No Yes

refresh No Yes No

passive No No No

notify-passive No No Yes

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

572 | Appendix E: BIND Nameserver and Resolver Configuration

multiple-cnames
This option is used in BIND 8 to allow a domain name to have multiple CNAME
records in violation of the DNS standards. BIND 9.2 always strictly enforces the
CNAME rules both in master files and dynamic updates.

notify
If yes (the default), DNS NOTIFY messages are sent when a zone the server is in
is authoritative for changes. The messages are sent to the servers listed in the
zone’s NS records (except the master server identified in the SOA MNAME field)
and to any servers listed in the also-notify option.

If explicit, notifies are sent only to servers explicitly listed using also-notify. If no,
no notifies are sent.

The notify option may also be specified in the zone statement, in which case it
overrides the options notify statement. It is necessary to turn off this option only
if it causes slaves to crash.

recursion
If yes, and a DNS query requests recursion, the server attempts to do all the
work required to answer the query. If recursion is off, and the server does not
already know the answer, it returns a referral response. The default is yes. Note
that setting recursion no does not prevent clients from getting data from the
server’s cache; it only prevents new data from being cached as an effect of client
queries. Caching may still occur due to the server’s internal operation, such as
NOTIFY address lookups. See also fetch-glue.

rfc2308-type1
Setting this to yes causes the server to send NS records along with the SOA
record for negative answers. The default is no. Not yet implemented in BIND 9.

use-id-pool
This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics
If yes, the server collects statistical data on all zones (unless specifically turned
off on a per-zone basis by specifying zone-statistics no in the zone statement).
These statistics may be accessed using rndc stats, which dumps them to the file
listed in the statistics-file.

use-ixfr
This option is obsolete. If you need to disable IXFR to a particular server or serv-
ers, see the information on the provide-ixfr option.

provide-ixfr
This clause determines whether the local server, acting as master, will respond
with an incremental zone transfer when the given remote server, a slave, requests
it. If set to yes, incremental transfer is provided whenever possible. If set to no,
all transfers to the remote server are nonincremental.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 573

request-ixfr
The request-ixfr clause determines whether the local server, acting as a slave, will
request incremental zone transfers from the given remote server, a master.

treat-cr-as-space
This option was used in BIND 8 to make the server treat carriage return (“\r”)
characters the same way as a space or tab character, in order to facilitate loading
of zone files on a Unix system that were generated on an NT or DOS machine.
In BIND 9, both Unix “\n” and NT/DOS “\r\n” newlines are always accepted,
and the option is ignored.

additional-from-auth
additional-from-cache

These options control the behavior of an authoritative server when answering
queries that have additional data, or when following CNAME and DNAME
chains.

When both options are set to yes (the default), and a query is being answered
from authoritative data (a zone configured into the server), the additional data
section of the reply is filled in using data from other authoritative zones and
from the cache. In some situations, this is undesirable, such as when there is
concern about the correctness of the cache, or when servers have slave zones that
may be added and modified by untrusted third parties. Also, avoiding the search
for this additional data speeds up server operations at the possible expense of
additional queries to resolve what would otherwise be provided in the addi-
tional section.

For example, if a query asks for an MX record for host foo.example.com, and the
record found is “MX 10 mail.example.net,” normally the address records (A and
AAAA) for mail.example.net are provided as well, if known, even though they are
not in the example.com zone. Setting these options to no disables this behavior
and makes the server search for additional data only in the zone it answers from.

These options are intended for use in authoritative-only servers or in authoritative-
only views. Attempts to set them to no without also specifying recursion no causes
the server to ignore the options and logs a warning message.

Specifying additional-from-cache no actually disables the use of the cache not
only for additional data lookups but also when looking up the answer. This is
usually the desired behavior in an authoritative-only server when the correctness
of the cached data is an issue.

When a nameserver is nonrecursively queried for a name that is not below the
apex of any served zone, it normally answers with an “upwards referral” to the
root servers or the servers of some other known parent of the query name. Since
the data in an upwards referral comes from the cache, the server can’t provide
upwards referrals when additional-from-cache no has been specified. Instead, it

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

574 | Appendix E: BIND Nameserver and Resolver Configuration

responds to such queries with REFUSED. This should not cause any problems
because upwards referrals are not required for the resolution process.

match-mapped-addresses
If yes, an IPv4-mapped IPv6 address matches any address match list entries that
match the corresponding IPv4 address. Enabling this option is sometimes useful
on IPv6-enabled Linux systems. It works around a kernel quirk that causes IPv4
TCP connections such as zone transfers to be accepted on an IPv6 socket that
uses mapped addresses. As a result, address match lists designed for IPv4 fail to
match. The use of this option for any other purpose is discouraged.

ixfr-from-differences
When yes, and when the server loads a new version of a master zone from its zone
file or receives a new version of a slave file via a nonincremental zone transfer, it
compares the new version to the previous one and calculates a set of differences.
The differences are then logged in the zone’s journal file such that the changes
can be transmitted to downstream slaves as an incremental zone transfer.

By allowing incremental zone transfers to be used for nondynamic zones, this
option saves bandwidth at the expense of increased CPU and memory consump-
tion at the master. In particular, if the new version of a zone is completely differ-
ent from the previous one, the set of differences are comparable in size to the
combined size of the old and new zone version. The server then needs to tempo-
rarily allocate memory to hold this complete difference set.

multi-master
This should be set when you have multiple masters for a zone and the addresses
refer to different machines. If yes, named will not log when the serial number on
the master is less than what named currently has. The default is no.

dnssec-enable
Enables DNSSEC support in named. Unless set to yes, named behaves as if it
does not support DNSSEC. The default is no.

querylog
Specifies whether query logging should be started when named starts. If query-
log is not specified, the query logging is determined by the presence of the log-
ging category queries.

check-names
Restricts the character set and syntax of certain domain names in master files
and/or DNS responses received from the network. The default varies according
to usage area. For master zones, the default is fail. For slave zones, the default is
warn. For answer, received from the network (response), the default is ignore.

The rules for legal hostnames/mail domains are derived from RFC 952 and RFC
821 as modified by RFC 1123.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 575

check-names applies to the owner names of A, AAA, and MX records. It also applies
to the domain names in the RDATA of NS, SOA, and MX records, and to the
RDATA of PTR records when the owner name indicates when it is a reverse lookup
of a hostname (the owner name ends in IN-ADDR.ARPA, IP6.ARPA, IP6.INT).

Forwarding
The forwarding facility can create a large site-wide cache on a few servers, reducing
traffic over links to external nameservers. It can also allow queries by servers that do
not have direct access to the Internet but wish to look up exterior names anyway.
Forwarding occurs only on those queries for which the server is not authoritative and
does not have the answer in its cache.

forward
This option is meaningful only if the forwarders list is not empty. A value of first,
the default, causes the server to query the forwarders first, and if that doesn’t
answer the question, the server then looks for the answer itself. If only is speci-
fied, the server queries only the forwarders.

forwarders
Specifies the IP addresses to be used for forwarding. The default is the empty list
(no forwarding).

Forwarding can also be configured on a per-domain basis, which allows global for-
warding options to be overridden in a variety of ways. You can set particular
domains to use different forwarders, have a different forward only/first behavior, or
not forward at all.

Dual-Stack Servers
Dual-stack servers are used as servers of last resort to work around problems in
reachability due the lack of support for either IPv4 or IPv6 on the host machine.

dual-stack-servers
Specifies hostnames/addresses of machines with access to both IPv4 and IPv6
transports. If a hostname is used, the server must be able to resolve the name
using only the transport it has. If the machine is dual-stacked, the dual-stack-
servers have no effect unless access to a transport has been disabled on the com-
mand line (e.g., named –4).

Access Control
Access to the server can be restricted based on the IP address of the requesting system.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

576 | Appendix E: BIND Nameserver and Resolver Configuration

allow-notify
Specifies which hosts are allowed to notify this server—a slave—of zone changes
in addition to the zone masters. allow-notify may also be specified in the zone
statement, in which case it overrides the options allow-notify statement. It is only
meaningful for a slave zone. If not specified, the default is to process notify mes-
sages only from a zone’s master.

allow-query
Specifies which hosts are allowed to ask ordinary DNS questions. allow-query
may also be specified in the zone statement, in which case it overrides the options
allow-query statement. If not specified, the default is to allow queries from all
hosts.

allow-recursion
Specifies which hosts are allowed to make recursive queries through this server.
If not specified, the default is to allow recursive queries from all hosts. Note that
disallowing recursive queries for a host does not prevent the host from retrieving
data that is already in the server’s cache.

allow-update-forwarding
Specifies which hosts are allowed to submit dynamic DNS updates to slave zones
that are forwarded to the master. The default is none, which means that no
update forwarding is performed. To enable update forwarding, specify allow-
update-forwarding any. Specifying values other than none or any is usually coun-
terproductive because the responsibility for update access control should rest
with the master server, not the slaves.

Note that enabling the update-forwarding feature on a slave server may expose
to attacks those master servers that rely on insecure IP address–based access
control.

allow-v6-synthesis
This option was introduced for the smooth transition from AAAA to A6 and
from “nibble labels” to binary labels. However, since both A6 and binary labels
were then deprecated, this option was also deprecated. It is now ignored with
some warning messages.

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server. allow-
transfer may also be specified in the zone statement, in which case it overrides
the options allow-transfer statement. If not specified, the default allows transfers
to all hosts.

blackhole
Specifies a list of addresses the server doesn’t accept queries from or use to
resolve a query. Queries from these addresses aren’t responded to. The default is
none.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 577

Interfaces
The interfaces and ports that the server answers queries from may be specified using
the listen-on option. listen-on takes an optional port, and an address_match_list. The
server listens on all interfaces allowed by the address match list. If a port is not speci-
fied, port 53 is used.

Multiple listen-on statements are allowed. For example:

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

enables the nameserver on port 53 for the IP address 5.6.7.8, and on port 1234 of an
address on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server listens on port 53 on all interfaces.

The listen-on-v6 option specifies the interfaces and the ports on which the server lis-
tens for incoming queries sent using IPv6.

When:

{ any; }

is specified as the address_match_list for the listen-on-v6 option, the server does not
bind a separate socket to each IPv6 interface address as it does for IPv4 if the operat-
ing system has enough API support for IPv6 (specifically if it conforms to RFC 3493
and RFC 3542). Instead, it listens on the IPv6 wildcard address. If the system has
incomplete API support for IPv6, however, the behavior is the same as that for IPv4.

A list of particular IPv6 addresses can also be specified, in which case the server lis-
tens on a separate socket for each specified address, regardless of whether the desired
API is supported by the system.

Multiple listen-on-v6 options can be used. For example:

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

enables the nameserver on port 53 for any IPv6 addresses (with a single wildcard
socket) and on port 1234 of IPv6 addresses that is not in the prefix 2001:db8::/32
(with separate sockets for each matched address).

To make the server not listen on any IPv6 address, use:

listen-on-v6 { none; };

If no listen-on-v6 option is specified, the server doesn’t listen on any IPv6 address.

Query Address
If the server doesn’t know the answer to a question, it queries other nameservers.
query-source specifies the address and port used for such queries. For queries sent
over IPv6, there is a separate query-source-v6 option. If address is * or is omitted, a

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

578 | Appendix E: BIND Nameserver and Resolver Configuration

wildcard IP address (INADDR_ANY) is used. If port is * or is omitted, a random
unprivileged port is used; avoid-v4-udp-ports and avoid-v6-udp-ports can prevent
named from selecting certain ports. The defaults are:

query-source address * port *;
query-source-v6 address * port *;

Note that the address specified in the query-source option is used for both UDP and
TCP queries, but the port applies only to UDP queries. TCP queries always use a ran-
dom unprivileged port.

See also transfer-source and notify-source.

Zone Transfers
BIND has mechanisms in place to facilitate zone transfers and set limits on the
amount of load transfers place on the system. The following options apply to zone
transfers:

also-notify
Defines a global list of IP addresses of nameservers that are also sent NOTIFY
messages whenever a fresh copy of the zone is loaded, in addition to the servers
listed in the zone’s NS records. This helps to ensure that copies of the zones will
quickly converge on stealth servers. If an also-notify list is given in a zone state-
ment, it overrides the options also-notify statement. When a zone notify state-
ment is set to no, the IP addresses in the global also-notify list are not sent
NOTIFY messages for that zone. The default is the empty list (no global notifica-
tion list).

max-transfer-time-in
Inbound zone transfers running longer than this many minutes are terminated.
The default is 120 minutes (2 hours). The maximum value is 28 days (40,320
minutes).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes are termi-
nated. The default is 60 minutes (1 hour). The maximum value is 28 days
(40,320 minutes).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes are termi-
nated. The default is 120 minutes (2 hours). The maximum value is 28 days
(40,320 minutes).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes are termi-
nated. The default is 60 minutes (1 hour). The maximum value is 28 days
(40,320 minutes).

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 579

serial-query-rate
Slave servers periodically query master servers to find out if zone serial numbers
have changed. Each such query uses a minute amount of the slave server’s net-
work bandwidth. To limit the amount of bandwidth used, BIND 9 limits the rate
at which queries are sent. The value of the serial-query-rate option, an integer, is
the maximum number of queries sent per second. The default is 20.

serial-queries
In BIND 8, the serial-queries option sets the maximum number of concurrent
serial number queries allowed to be outstanding at any given time. BIND 9 does
not limit the number of outstanding serial queries and ignores the serial-queries
option. Instead, it limits the rate at which the queries are sent as defined using
the serial-query-rate option.

transfer-format
Zone transfers can be sent using two different formats, one-answer and many-
answers. The transfer-format option is used on the master server to determine
which format it sends. one-answer uses one DNS message per resource record
transferred. many-answers packs as many resource records as possible into a
message. many-answers is more efficient, but is only supported by relatively new
slave servers, such as BIND 9, BIND 8.x, and patched versions of BIND 4.9.5.
The default is many-answers. transfer-format may be overridden on a per-server
basis using the server statement.

transfers-in
The maximum number of inbound zone transfers that can be running concur-
rently. The default value is 10. Increasing transfers-in may speed up the conver-
gence of slave zones, but it also may increase the load on the local system.

transfers-out
The maximum number of outbound zone transfers that can be running concur-
rently. Zone transfer requests in excess of the limit are refused. The default value
is 10.

transfers-per-ns
The maximum number of inbound zone transfers that can be concurrently trans-
ferring from a given remote nameserver. The default value is 2. Increasing trans-
fers-per-ns may speed up the convergence of slave zones, but it also may increase
the load on the remote nameserver. transfers-per-ns may be overridden on a per-
server basis by using the transfers phrase of the server statement.

transfer-source
transfer-source determines which local addresses are bound to IPv4 TCP connec-
tions that fetch zones transferred inbound by the server. It also determines the
source IPv4 address, and optionally the UDP port, used for the refresh queries
and forwarded dynamic updates. If not set, it defaults to a system controlled
value that is usually the address of the interface closest to the remote end. This

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

580 | Appendix E: BIND Nameserver and Resolver Configuration

address must appear in the remote end’s allow-transfer option for the zone being
transferred, if one is specified. This statement sets the transfer-source for all
zones but can be overridden on a per-view or per-zone basis by including a trans-
fer-source statement within the view or zone block in the configuration file.

transfer-source-v6
The same as transfer-source, except zone transfers are performed using IPv6.

alt-transfer-source
An alternate transfer source if the one listed in transfer-source fails, and use-alt-
transfer-source is set.

alt-transfer-source-v6
An alternate transfer source if the one listed in transfer-source-v6 fails, and use-
alt-transfer-source is set.

use-alt-transfer-source
Use the alternate transfer sources or not. If views are specified, this defaults to
no; otherwise, it defaults to yes (for BIND 8 compatibility).

notify-source
notify-source determines which local source address—and, optionally, UDP
port—is used to send NOTIFY messages. This address must appear in the slave
server’s masters zone clause or in an allow-notify clause. This statement sets the
notify-source for all zones but can be overridden on a per-zone/per-view basis by
including a notify-source statement within the zone or view block in the configu-
ration file.

notify-source-v6
Like notify-source, but applies to notify messages sent to IPv6 addresses.

Bad UDP Port Lists
avoid-v4-udp-ports and avoid-v6-udp-ports specify a list of IPv4 and IPv6 UDP ports
that aren’t used as system-assigned source ports for UDP sockets. These lists prevent
named from choosing as its random source port a port that is blocked by your fire-
wall. If a query is sent with such a source port, the answer doesn’t get by the fire-
wall, and the nameserver has to query again.

Operating System Resource Limits
The server’s usage of many system resources can be limited. Scaled values are
allowed when specifying resource limits. For example, 1G can be used instead of
1073741824 to specify a limit of one gigabyte. unlimited requests unlimited use, or
the maximum available amount. default uses the limit that was in force when the
server was started.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 581

The following options set operating system resource limits for the nameserver pro-
cess. Some operating systems don’t support some or any of the limits. On such sys-
tems, a warning is issued if the unsupported limit is used.

coresize
The maximum size of a core dump. The default is default.

datasize
The maximum amount of data memory the server may use. The default is
default. This is a hard limit on server memory usage. If the server attempts to
allocate memory in excess of this limit, the allocation will fail, which may, in
turn, leave the server unable to perform DNS service. Therefore, this option is
rarely useful as a way to limit the amount of memory used by the server, but it
can be used to raise an operating system data size limit that is too small by
default. If you wish to limit the amount of memory used by the server, use the
max-cache-size and recursive-clients options instead.

files
The maximum number of files the server may have open concurrently. The
default is unlimited.

stacksize
The maximum amount of stack memory the server may use. The default is
default.

Server Resource Limits
The following options set limits on the server’s resource consumption that are
enforced internally by the server rather than the operating system:

max-ixfr-log-size
This option is obsolete; it is accepted and ignored for BIND 8 compatibility. The
option max-journal-size performs a similar function in BIND 8.

max-journal-size
Sets a maximum size for each journal file. When the journal file approaches the
specified size, some of the oldest transactions in the journal are automatically
removed. The default is unlimited.

host-statistics-max
In BIND 8, specifies the maximum number of host statistic entries to be kept.
Not implemented in BIND 9.

recursive-clients
The maximum number of simultaneous recursive lookups the server will perform
on behalf of clients. The default is 1000. Because each recursing client uses a fair
bit of memory, on the order of 20 kilobytes, the value of the recursive-clients
option may have to be decreased on hosts with limited memory.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

582 | Appendix E: BIND Nameserver and Resolver Configuration

tcp-clients
The maximum number of simultaneous client TCP connections the server will
accept. The default is 100.

max-cache-size
The maximum amount of memory to use for the server’s cache, in bytes. When
the amount of data in the cache reaches this limit, the server causes records to
expire prematurely so that the limit is not exceeded. In a server with multiple
views, the limit applies separately to the cache of each view. The default is
unlimited, meaning that records are purged from the cache only when their TTLs
expire.

tcp-listen-queue
The listen queue depth. The default and minimum is 3. If the kernel supports
the accept filter “dataready,” this also controls how many TCP connections are
queued in kernel space waiting for some data before being passed to accept. Val-
ues less than 3 are silently raised.

Periodic Task Intervals
cleaning-interval

The server removes expired resource records from the cache every cleaning-interval
minutes. The default is 60 minutes. The maximum value is 28 days (40,320 min-
utes). If set to 0, no periodic cleaning occurs.

heartbeat-interval
The server performs zone maintenance tasks for all zones marked as dialup
whenever this interval expires. The default is 60 minutes. Reasonable values are
up to 1 day (1,440 minutes). The maximum value is 28 days (40,320 minutes). If
set to 0, no zone maintenance for these zones occurs.

interface-interval
The server scans the network interface list every interface-interval minutes. The
default is 60 minutes. The maximum value is 28 days (40,320 minutes). If set to
0, interface scanning occurs only when the configuration file is loaded. After the
scan, the server begins listening for queries on any newly discovered interfaces
(provided they are allowed by the listen-on configuration), and stops listening on
interfaces that have gone away.

statistics-interval
Nameserver statistics are logged every statistics-interval minutes. The default is
60. The maximum value is 28 days (40,320 minutes). If set to 0, no statistics are
logged.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 583

statistics-interval is not yet implemented in BIND 9.

Topology
All other things being equal, when the server chooses a nameserver to query from a
list of nameservers, it prefers the one that is topologically closest to itself. The topol-
ogy statement takes an address_match_list and interprets it in a special way. Each
top-level list element is assigned a distance. Nonnegated elements get a distance
based on their position in the list, in which the closer the match is to the start of the
list, the shorter the distance between it and the server. A negated match is assigned
the maximum distance from the server. If there is no match, the address gets a dis-
tance that is further than any nonnegated list element and closer than any negated
element. For example:

topology {
 10/8;
 !1.2.3/24;
 { 1.2/16; 3/8; };
};

prefers servers on network 10 the most, followed by hosts on network 1.2.0.0 (net-
mask 255.255.0.0) and network 3, with the exception of hosts on network 1.2.3 (net-
mask 255.255.255.0), which is preferred least of all.

The default topology is:

topology { localhost; localnets; };

The topology option is not yet implemented in BIND 9.

The sortlist Statement
The response to a DNS query may consist of multiple resource records (RRs) form-
ing a resource records set (RRset). The nameserver will normally return the RRs
within the RRset in an indeterminate order. The client resolver code should rear-
range the RRs as appropriate, that is, using any addresses on the local net in prefer-
ence to other addresses. However, not all resolvers can do this or are correctly
configured. When a client is using a local server, the sorting can be performed in the
server, based on the client’s address. This requires configuring only the nameservers,
not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it even
more specifically than the topology statement does. Each top-level statement in the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

584 | Appendix E: BIND Nameserver and Resolver Configuration

sortlist must itself be an explicit address_match_list with one or two elements. The
first element (which may be an IP address, an IP prefix, an ACL name, or a nested
address_match_list) of each top-level list is checked against the source address of the
query until a match is found.

Once the source address of the query has been matched, if the top-level statement
contains only one element, the actual primitive element that matched the source
address selects the address in the response to move to the beginning of the response.
If the statement is a list of two elements, the second element is treated the same as
the address_match_list in a topology statement. Each top-level element is assigned a
distance, and the address in the response with the minimum distance is moved to the
beginning of the response.

In the following example, any queries received from any of the addresses of the host
itself will get responses preferring addresses on any of the locally connected net-
works. The next most preferred are addresses on the 192.168.1/24 network, and
after that, either the 192.168.2/24 or 192.168.3/24 network; no preference is shown
between these two networks. Queries received from a host on the 192.168.1/24 net-
work prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24
networks. Queries received from a host on the 192.168.4/24 or 192.168.5/24 net-
work prefer only other addresses on their directly connected networks.

sortlist {
 { localhost; // IF the local host
 { localnets; // THEN first fit on the
 192.168.1/24; // following nets
 { 192.168.2/24; 192.168.3/24; }; }; };
 { 192.168.1/24; // IF on class C 192.168.1
 { 192.168.1/24; // THEN use .1, or .2 or .3
 { 192.168.2/24; 192.168.3/24; }; }; };
 { 192.168.2/24; // IF on class C 192.168.2
 { 192.168.2/24; // THEN use .2, or .1 or .3
 { 192.168.1/24; 192.168.3/24; }; }; };
 { 192.168.3/24; // IF on class C 192.168.3
 { 192.168.3/24; // THEN use .3, or .1 or .2
 { 192.168.1/24; 192.168.2/24; }; }; };
 { { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
 };
};

The following example gives reasonable behavior for the local host and hosts on
directly connected networks. It is similar to the behavior of the address sort in BIND
4.9.x. Responses sent to queries from the local host will favor any of the directly con-
nected networks. Responses sent to queries from any other hosts on a directly con-
nected network will prefer addresses on that same network. Responses to other
queries will not be sorted.

sortlist {
 { localhost; localnets; };
 { localnets; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 585

RRset Ordering
When multiple records are returned in an answer, it may be useful to configure the
order of the records placed into the response. The rrset-order statement permits con-
figuration of the ordering of the records in a multiple-record response.

An order_spec is defined as follows:

[class class_name][type type_name][name "domain_name"]
 order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY.
If no name is specified, the default is “*”.

Here are the legal values for ordering:

fixed
Records are returned in the order they are defined in the zone file.

random
Records are returned in a random order.

cyclic
Records are returned in a round-robin order.

For example:

rrset-order {
 class IN type A name "host.example.com" order random;
 order cyclic;
};

causes any responses for type A records in class IN that have host.example.com as a
suffix to always be returned in random order. All other records are returned in cyclic
order.

If multiple rrset-order statements appear, they are not combined: the last one applies.

The rrset-order statement is not yet fully implemented in BIND 9.
BIND 9 currently does not support fixed ordering.

Tuning
lame-ttl

Sets the number of seconds to cache a lame server indication. 0 disables cach-
ing; this is not recommended. Default is 600 (10 minutes). Maximum value is
1800 (30 minutes).

max-ncache-ttl
To reduce network traffic and increase performance, the server stores negative
answers. max-ncache-ttl sets a maximum retention time for these answers in the

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

586 | Appendix E: BIND Nameserver and Resolver Configuration

server in seconds. The default max-ncache-ttl is 10,800 seconds (3 hours). max-
ncache-ttl cannot exceed seven days and is silently truncated to seven days if set
to a greater value.

max-cache-ttl
max-cache-ttl sets the maximum time for which the server caches ordinary (posi-
tive) answers. The default is one week (seven days).

min-roots
The minimum number of root servers that is required for a request for the root
servers to be accepted. Default is 2. Not yet implemented in BIND 9.

sig-validity-interval
Specifies the number of days in the future when DNSSEC signatures automati-
cally generated as a result of dynamic updates will expire. The default is 30 days.
The maximum value is 10 years (3,660 days). The signature inception time is
unconditionally set to one hour before the current time to allow for a limited
amount of clock skew.

min-refresh-time
max-refresh-time
min-retry-time
max-retry-time

These options control the server’s behavior on refreshing a zone (querying for
SOA changes) or retrying failed transfers. Usually the SOA values for the zone
are used, but these values are set by the master, giving slave server administra-
tors little control over their contents.

These options allow the administrator to set a minimum and maximum refresh
and retry time per-zone, per-view, or globally. These options are valid for slave and
stub zones, and clamp the SOA refresh and retry times to the specified values.

edns-udp-size
edns-udp-size sets the advertised EDNS UDP buffer size. Valid values are 512 to
4096 (values outside this range are silently adjusted). The default value is 4096.
The usual reason for setting edns-udp-size to a nondefault value is to get UDP
answers to pass through broken firewalls that block fragmented packets and/or
block UDP packets that are greater than 512 bytes.

Built-in Server Information Zones
The server provides some helpful diagnostic information through a number of built-
in zones under the pseudo-top-level-domain bind in the CHAOS class. These zones
are part of a built-in view of class CHAOS, which is separate from the default view of
class IN; therefore, any global server options such as allow-query do not apply to
these zones. If you feel the need to disable these zones, use the following options, or
hide the built-in CHAOS view by defining an explicit view of class CHAOS that
matches all clients.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

BIND 9 Options Statement | 587

version
The version the server should report via a query of the name version.bind with
type TXT, class CHAOS. The default is the real version number of this server.
Specifying version none disables processing of the queries.

hostname
The hostname the server should report via a query of the name hostname.bind
with type TXT, class CHAOS. This defaults to the hostname of the machine
hosting the nameserver as found by gethostname(). The primary purpose of such
queries is to identify which of a group of anycast servers is actually answering
your queries. Specifying hostname none; disables processing of the queries.

server-id
The ID of the server should report via a query of the name ID.SERVER with type
TXT, class CHAOS. The primary purpose of such queries is to identify which of
a group of anycast servers is actually answering your queries. Specifying server-id
none; disables processing of the queries. Specifying server-id hostname; causes
named to use the hostname as found by gethostname(). The default server-id is
none.

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

589

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$=w names (sendmail), 116
. (dot)

DNS database root node, 4
missing at domain name end in zone

datafile, 416
resolver option, ndots, 110
trailing dot in full domain names, 146
trailing dot indicating FQDN, 103

/ (slash), leading slash in full pathnames, 103
:: notation, IPv6 addresses, 269

A
A (address) records, 59

adding for hosts in zone datafiles, 137
creating for aliases on multihomed

hosts, 60
multiple, using to set up

round-robin, 250
query statistics on BIND 8

nameserver, 170
restricting dynamic updates to, 234
Windows XP DNS client, 124

A6 (address) records, 275
forward mapping and, 276

AAAA (address) records, 275
example, 275

absolute domain names, 12
absolute pathnames, 5
access control lists (see ACLs)
access lists, support in BIND 8 and 9, 38

ACE, 505
converting to and from Unicode, 506
encoding utilities, 505

acl statement, 227, 554
using with view statement, 248

ACLs (access control lists), 227
applying to particular zone, 290
applying to queries, 289
applying to zone transfers, 290
causing nslookup startup problems, 368
global, puttin on zone data, 319
IP-based, uses of, 232
queries in and out of nameserver

authoritative zone, 297
updating with dynamic update, 231

actions, 120
Active Directory, 508–515

handling servers, 513
problems with BIND, 511

AD (Authenticated Data) flag, 333
additional records section, DNS

messages, 361
Address database dump section, 408
address match lists, 226

argument to allow-update statement, 232
argument to allow-update-forwarding

statement, 232
named, 227
TSIG key names included in, 232
(see also ACLs)

address record (AAAA), 275
address records (see A records)

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

590 | Index

address sorting, 59
by nameserver, 253–255

address type, 17
address-to-name lookup, 54
address-to-name mappings, PTR records, 60
administrative contact for zones, 51
advertising nameservers, 294

listening on network interface IP address,
named.conf file, 298

aero domains, 19
AFSDB records, 496
algorithm field

DNSKEY records, 326
DS records, 331
RRSIG records, 327

aliases, 6, 59
configuring mailers to identify, 96
created on parent, deleting for

subdomain, 224
not checked by mailers, 95
providing for hosts after configuring

DNS, 118
(see also CNAME records)

Alice’s Adventures in Wonderland, xx
allow-notify substatement (zone), accepting

messages from nameservers other
than zone master nameservers, 240

allow-query substatement, 289, 297
placing global access list on zone

data, 319
restricting all queries, 289
restricting queries in a zone, 290
restricting queries to internal

network, 295
allow-recursion substatement, 257

using ACLs for recursive and nonrecursive
queries, 297

allow-transfer substatement, 162, 290
restricting transfers to internal IP

addresses, 291
allow-update substatement, 231, 287
allow-update-forwarding substatement, 232
also-notify substatement (zone), 239

suppressing NOTIFY messages to all
nameservers except list, 240

American Registry of Internet Numbers
(ARIN), 50

answer section, DNS messages, 361
any (address match list), 227
ANY records, queries on BIND 8

nameserver, 171

APNIC (Asia Pacific Network Information
Center), 50

architecture, 474–482
DNS operations, 481
external, authoritative DNS

infrastructure, 474–478
forwarder infrastructure, 478–480
internal DNS infrastructure, 480

ARIN (American Registry of Internet
Numbers), 50

arpa domain, 18
ARPAnet, 1

name-to-address mapping for hosts, 3
Asia Pacific Network Information Center

(APNIC), 50
asymmetric cryptographic algorithms, 323
attacks

nameserver guarding against network
attack, 163

spoofing attacks involving recursion, 295
taking advantage of DNS traffic through

firewall, 304
vulnerabilities of BIND versions, 288

attempts (resolver option), 110
au top-level domain, 19
Authenticated Data (AD) flag, 333
authentication

dynamic updates to signed zones, 346
email authentication and DNS, 96–99

SPF, 97–99
rndc program, 131
using ruserok() call, 102

auth-nxdomain substatement, 268
authoritative answers, 356, 360

aa flag, dig, 373
authoritative nameserver for a zone, 57
authoritative nameservers

choosing between, 30
lookups by caching-only servers, 187

authoritative servers for a zone, nonrecursive
nameserver as, 257

authority section, DNS messages, 361
AXFR records

IXFR versus, 240
queries on BIND 8 nameserver, 171

B
backbones, 2
base-64 encoding of a password, 132
base-64-encoded key, creating, 285

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 591

bastion host, 304
configuring for split namespace, 317–319
forwarding mail to the Internet

through, 313
forwarding queries to nameserver on, 305
split namespace, protecting zone data

on, 319
using views on, 321

BIND (Berkeley Internet Name Domain), xii
compatibility matrix, 537
compiling and installing on

Linux, 538–542
controlling the nameserver, 127–136

mdc and controls (BIND 9), 131–135
ndc and controls (BIND 8), 128–131
using signals, 135

debugging, 376–395
defining aliases for hosts, 118
finding IP addresses, 40
forward zones, 246
forwarding, 244–247
getting the software, 37
GSS-TSIG and, 512
history of, 9
incremental zone transfers, 241
IXFRs, 241

configuring in BIND 8, 242
configuring in BIND 9, 243

logging, 148–158
categories, 154–158
channels, 152–154
channels and categories, 148
logging statement, 151

mailing lists and Usenet newsgroups, 39
nameserver and resolver

configuration, 548–587
nameserver statistics, 166–176

BIND 8, 168–175
BIND 9, 175
query/response exchange, 166–168
using, 176

negative caching by nameservers, 34
new update-policy mechanism (version

9), xiii
packet-filtering firewalls and BIND 8 or

9, 302
problems with Active Directory, 511
recent versions for nameservers exposed

to Internet, 304
recent versions, advantages of, 38
resolver (version 8.4.6), 100

resolver configuration
default search list, 103
version 4.9 directives, 112

resolvers, 26
roundtrip time metric used by

nameservers, 31
security

recent versions, 287–289
running with least privilege, 292–294

setting up, 53–88
configuration file, 65–67
default zone TTL, 56
loopback address, 62
root hints, 63–65
zone datafiles, 55, 57–62
zone default TTL, 56

source code for most recent versions, 38
support of DNS dynamic update (versions

8 and 9), 228
versions, xiii
views (BIND 9), 247–250
(see also nameservers)

bind-users mailing list, security issues, 288
bitstring labels (IPv6 reverse mapping), 279
biz domains, 19, 46
blackhole substatement, 258
bogus nameserver, avoiding, 257
Boolean options (nslookup), 352
BSD Unix operating system, 1
bstat tool, 171

C
C programming

check_soa (example), 459–469
with nameserver routines, 453–458
with resolver library routines, 445–453

_res structure, 451
ca (Canada) domain, 22
caching, 34

cleaning stale cache entries, 265
preventing a nameserver from building a

cache, 256
root nameservers, 27
TTL, 35

values on cached records, 266
Windows XP resolver, 124

disabling, 125
negative caching, 125

caching-only nameservers, 187
not registering, 192

Canada (ca) domain, 22

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

592 | Index

cannot set resource limits on this system
(syslog message), 159

canonical names
domain names in NS records, 211
mailers looking for, 95
PTR records and, 60
(see also CNAME records)

canonical, domain names, 6
canonical name records (see CNAME

records)
canonicalization (sendmail), 116

aliases in sendmail features, 60
canonicalization filter, disambiguating

hostnames, 118
carriage return and a newline

(Windows), 268
Carroll, Lewis, xx
categories (logging), 148, 154–158

BIND 8, 154
BIND 9, 156
config, 154
default, 150

syslog and, 151
logging to channels, 148
specifying in channel logging

statement, 150
viewing all category messages, 157

CD (Checking Disabled) flag, 333
chain of trust, 330–333
chaining fowarders, avoiding, 245
channels (logging), 148, 152–154

configuring, 149
data formatting, 154
discarding default category messages, 150
file, 153
logging categories to, 148
null, 154
severity levels of messages, 149
stderr, 154
syslog, 153

CHAOS class, 530
Checking Disabled (CD) flag, 333
checksums, UDP checksums disabled, 430
chmod(1) manual page, 128
chroot(), 292
chrooted environment, setting up, 293
CIDR (Classless Inter-Domain Routing), 49
class $=w names (sendmail), 116

Class A, Class B, and Class C networks, 49
subnetted Class A and B networks on

nonoctet boundaries, 216
subnetted Class C networks on nonoctet

boundaries, 216
CLASS fields in resource records, 530
classes

error in, 164
for internets, 16
of networks, 49
record types defined by, 17

Classless Inter-Domain Routing (CIDR), 49
cleaning-interval substatement, 265
client/server architecture of DNS, 4
clients, limiting number served by

nameserver concurrently, 264
CNAME (canonical name) records, 59,

483–488
attached to interior nodes, 483
in data portion of resource record, 163
finding out host aliases, 486
hosts moving into subdomain from

parent, 212
looking up, 486
mailers and, 95
multiple

attached to a domain name, 485
used to set up round robin, 251

network or subnet hosts moved to new
subdomain, 223

pointing to CNAMEs, 484
query statistics on BIND 8

nameserver, 170
resolver getting instead of PTR, 429
sendmail and, 116
in resource record data, 485
updating for hosts in zone datafiles, 137
using address records instead of, 60

com domain, 17, 46
interpreting domain names (example), 20

command (ndc program), 130
command line, changing nslookup options

from, 352
command-line option (BIND

debugging), 380
comments, 553

BIND resolvers, version 4.9, 111
in zone datafiles, 56

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 593

comp.protocols.dns.bind newsgroup,
security information on BIND, 288

compatibility, nameservers, 267
complete Internet access, 53
compressing a domain name, 456
conditions, 119
config category (logging), 154
configuration files

format of, 55
syntax error, 414–416

connection-specific DNS suffixes, 122
connectivity, nameserver host, 179
continue action, 120
control messages, changing debugging

levels, 380
control statements, 128, 554

configuring nameserver to listen for
control messages, 128

use in BIND 9, 131
zone datafiles, 144

$INCLUDE, 147
$ORIGIN, 146

coop domains, 19
core size limit, 263
corp subdomain, 20
country top-level domains, 42

second-level domains, 42
country-code top-level domains, 18
CPU usage, named process, 180
critical severity, 149
cryptographic checksum, 283
cryptographic keys

changing, 346–348
steps in process, 346

configuring for TSIG, 284
KSKs, 335
public-key cryptography, 322
secret key to hash value in TSIG

records, 284
sending to be signed, 340
signing zone transfer requests by slave

nameservers, 291
TSIG, 283
ZSKs, 335

cryptographic signatures (TSIG), 232
cryptography, public-key, 322
CSNET class, 530

D
d2 option (nslookup), 359, 369
daemon facility, 149, 153

data segment size, changing default limit
on, 263

database dumps
changing location of nameserver dump

file, 148
reading BIND 8 dump, 400–404
reading BIND 9 dump, 404–408

datafiles, 26
(see also zone datafiles)

date command, 175
db.ADDR file, updating hosts, 137
db.cache file, 187

getting current version, 65
temporary root nameserver, 200

db.DOMAIN file
adding/deleting hosts, 137
inserting resource records from

spcl.DOMAIN file, 143
db.movie.edu.signed file (example), 338
db.root file, 199, 311

forwarding internal hosts’ mail to the
Internet, 313

DC (Domain Controller), 513
debug file (see named.run file)
debug message (example), 154
debug option (nslookup), 359
debug severity, 149
debugging

BIND, 376–395
debugging levels, 376–380
examples, 383–393
reading output, 380–392
turning on, 379

Perl script converting IP addreses to
names, 395

turning off completely for nslookup, 359
default category (logging), 150–152

BIND 8, 154
BIND 9, 156

default servers are not available message, 368
default_stderr channel (logging), 154
default-key substatement, rndc.conf file, 133
default-server substatement, rndc.conf

options statement, 133
delegation, 21

checking using host, 220
forward mapping, by internal roots, 310
in-addr.arpa subdomains, 215
in-addr.arpa zones, by internal roots, 310
managing, 221–223

with stubs, 222

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

594 | Index

delegation (continued)
managing transition to

subdomains, 223–225
removing parent aliases, 224

old (outdated) information, 436
subdomains, 25, 206–210

administrative overhead, 202
deciding on, 204
of in-addr.arpa domains, 215–220
incorrect, 420–423
missing, 419

to unsigned zones, 332
zones, 22

delegation signer records (see DS records)
DHCP, 228

dynamic updates to A, TXT, and PTR
records, allowing with
update-policy, 234

dial-up connections, 489–494
authoritative nameservers over

dial-on-demand, 493
dial-on-demand

with multiple hosts, 492
with one host, 492

dialouts
avoiding, 490
causes of, 490

manual dial-up
with multiple hosts, 492
with one host, 491

dial-up substatement, 493
Diffie-Hellman cryptographic algorithm, 326
dig tool, 371–375

DNSSEC-capable nameserver verifying a
record, 334

options, 375
output format, 372
retrieving current list of root

nameservers, 143
specifying query aspects on command

line, 371
zone transfers, 374, 399

digest type field (DS records), 331
digital signatures, 324

private key, stored in RRSIG record, 326
disasters, network

coping with, 198–200
long outages (days), 198
really long outages (weeks), 199

planning for, 195–198
dist file, 185
dname parameter (res_search), 450

DNAME records, 275, 484
reverse mapping and, 278–281

DNS (Domain Name System), xi, 4
architecture, 474–482

external, authoritative
infrastructure, 474–478

forwarder infrastructure, 478–480
internal infrastructure, 480
operations, 481

BIND resolver client, 106
contents of messages, 360, 372
dial-up Internet connections, 489–494
domain namespace, 11–17
dynamic update (see dynamic updates)
EDNS0, 274
electronic mail and, 89–96
email authentication, 96–99

SPF, 97–99
history of, 3
Internet firewalls and, 300–322

DNS traffic passing freely
through, 303

internal roots, 309–315
Internet forwarders, 304–309
split namespace, 315–322

master file format, 517–519
message format, 445
messages, 530–535
network failures, 195–198
NOTIFY (see NOTIFY)
parsing responses, 458–469
security (see security)
situations for using or not using DNS, 9
traffic placing undue load on

network, 182
Windows 2000 DNS white paper, 121
Windows and Active Directory, 508–515

handling Windows cients, 512
handling Windows servers, 513

WINS and, 506–508
DNS database, structure of, 4
DNS resource records, 55
DNS Security Extensions (see DNSSEC)
DNSEXT, 39
DNSKEY records, 324–326, 332, 335

adding to zone data, 347
adding to zone datafile, 337
algorithm field, 326
flags field, 324
in keyset file, 340
protocol field, 325
public key, 326

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 595

SEP flag, 325
signed by dnssec-signzone, 337
zone-signing keys and key-signing

keys, 335
dnskeygen program, 285
DNSSEC (DNS Security Extensions), xiii,

322–348
algorithm number, 285
changing keys, 346–348
DNSKEY records, 324–326
DO, AD, and CD, 333
DS record and chain of trust, 330–333
dynamic update and, 342–346
how the records are used, 334
NSEC records, 328–330
performance and, 335
public-key cryptography and digital

signatures, 323
RRSIG records, 326–328
signing a zone, 336–342

generating key pairs, 336
parent zone, 341
sending keys to be signed, 340

zone-signing keys and key-signing
keys, 335

dnssec-keygen program, 132, 285, 336
–a, –b, and –n options, 337
–f KSK option, 337

dnssec-signzone program, 337
creation of DS record, 340
keyset file, 340
options, 339
re-signing records, 340
re-signing zone, 340

DO flag, 333
Domain Controller (DC), 513
domain directive (resolvers), 102

resolver updates and, 105
using with search directive, BIND

4.9, 112
domain name aliases, 6
Domain Name System (see DNS)
domain names, 5, 12

adding to hostnames in host authorization
files, 117

choosing, 41–52
compression, 446
ENUM, registering, 504
internationalized, 48, 504–506
Internet, resolving, 305
interpreting, 20
local domain name for resolver, 101

local domain name not set, 424
mapped to OSI Network Service Access

Point addresses, 171
mapping addresses to, 32
mappings between aliases and, 118
missing dot at end in zone datafile, 416
multiple CNAME records attached to a

domain, 252
ordering in a zone, 328
RR-specific portion of NS records, 211
storage of, 446
translating E.164 numbers to, 501

domain namespace, 11
domain names, 12
domains, 13–16
Internet domain namespace, 17–21
RRs, 16

domains, 4, 13–16
deciding number of nameservers, 177
delegating, 21
DNS versus NIS, 15
lifecycle of parent domain, 225
structure, mirroring organization

structure, 203
subdomains, 16
top-level, 543–547
zones versus, 22

dot (see .)
DS (delegation signer) records, 331–333, 335

creation by dnssec-signzone, 340
creation for signed parent zone, 342

DSA/SHA-1 cryptographic algorithm, 326
dsset file, 342
dumpdb command

ndc program, 131
rndc program, 135

Dunlap, Kevin, 9
dynamic severity, 149
Dynamic Update standard (RFC 2136), 39
dynamic updates (DNS), xiii, 228–235

access lists, 38
causing notification, 236
DNSSEC and, 342–346
forwarded, source address for, 271
incremental zone transfer and, 241
refusing during manual updates to zone

datafile, 241
restricting with TSIG, 287
secure, on Windows, 511
serial numbers and, 230
signed with TSIG, 232
updating ACLs, 231

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

596 | Index

dynamic updates (DNS) (continued)
use by Windows, 508–510
zone datafiles and, 230

E
E.164 numbers, 501

mapping to URIs, 501
edns server substatement, 274
EDNS0 (Extension Mechanisms for DNS,

version 0), 274
support required by DNSSEC, 333

edns-udp-size options substatment, 274
edu (educational) domain, 5, 17

interpreting domain names (example), 20
edu zone, 22
educational domain (see edu domain)
electronic mail, 89–99

authentication, DNS and, 96–99
SPF, 97–99

forwarding for certain Internet domain
names using internal roots, 314

mail exchangers, 92
mail from internal hosts, sending through

internal root, 313
mail server for example domain, 92
MX algorithm, 94
MX records, 90–92
nameserver-intensive tasks, 180
programs, differences in behavior, 116

elliptic curve–based public-key
algorithm, 326

end-of-line sequences, Windows and
Unix, 268

ENUM (Telephone Number Mapping), xiv,
501–504

E.164 numbers, translating to domain
names, 501

NAPTR records, 502–504
privacy and security issues, 504
registering domain names, 504

error severity, 149
errors, herror routine, 447
/etc/hosts file

newly created, delegated subdomain, 206
nslookup and, 351
site-wide or workgroup, keeping for

disasters, 198
Europe, network registrations, 50
example programs in this book, xvii
exec command (ndc program), 130
expanded space (us domain), 46
expanding domain name, 457

expire value (SOA records), 194
choosing, 194

explicit argument (notify substatement), 239
explicit views, zone statements within, 250
exports, NFS-mount and, 115
Extension Mechanisms for DNS, version 0

(see EDNS0)
external DNS infrastructure, 474–480
external view, 249

recursion turned off, 300
extranets, 2

F
facilities, syslog channels, 153
fetch-glue substatement, 256
file descriptors, 160

requirements by named, 264
files

open, limiting number for named, 264
Too many open files error, 429

filesystem, DNS database, 4
firewalls

DNS messages exceeding 512 bytes, 274
Internet firewall blocking nameserver

queries, 419
Internet, DNS and, 300–322

DNS traffic passing freely
through, 303

firewall software, 301
internal roots, 309–315
Internet forwarders, 304–309
packet filters, 301
proxies, 302
split namespace, 315–322

flags field (DNSKEY record), 324
flush command (rndc), 135
flushname name command (rndc), 135
forward mapping, 54

delegation by internal root
nameservers, 310

IPv6, 275
experimental, 276

forward zones, xiii, 246, 317
specifying which queries are not

forwarded, 246
using, 308

forwarders, 244, 478–480
chaining, reasons to avoid, 245
Internet, 304–309

problems with, 307
nonrecursive nameservers, not listing

as, 257

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 597

retransmitting queries to, 245
selection by nameservers, 247

forwarders substatement, 244, 305
empty list of forwarders, 246

forward-first mode, 244
forward-only versus, 245

forwarding, 244–247
forward zones, 246
problems with, 306
restricting nameservers to forward-only

mode, 245
forwarding mail, 90
forward-only mode, 245
FQDN (fully qualified domain name), 12

indicated with trailing dot (.), 103
freeze command (rndc), 241
freeze zone command (rndc program), 134
ftp command, 115
fully qualified domain name (see FQDN)

G
Generic Security Service (GSS), 511
generic top-level domains (see gTLDs)
getpid command (ndc program), 130
getrlimit() and setrlimit() system calls, 159
global routing prefix (IPv6), 269, 277
glue fetching, turning off, 295
glue records, 211
gov domain, 17
graphical user environments,

nameserver-intensive, 180
group file, 294
GSS (Generic Security Service), 511
GSS-TSIG, 511

BIND and, 512
gTLDs (generic top-level domains), 18, 42

choosing a domain name under, 46
new, 19

H
h_errno variable, 447
h2n script, 141–143

adding resource records manually, 143
creating aliases for network or subnet

hosts moved to new
subdomain, 224

creating named.conf, 208
–d option, 141

deleting aliases for subdomain hosts
created on parent, 225

–n option, 141
options requiring hostname, 143
other options, 142

halt command (rndc program), 135
Harvest tool, 171
hash value in TSIG records, 284
Header objects (Net::DNS), 471
header section, DNS messages, 360
herror routine, 447
Hesiod class, 530
hidden primary, 476
hidden primary servers, 113
HINFO (host information) records

query statistics on BIND 8
nameserver, 171

HMAC-MD5 cryptographic algorithm, 132,
283

homogeneity of nameservers, 179
host identifiers, 49
host information records (see HINFO

records)
host program, 220

download sites, 220
using to check delegation, 220

host tables
DNS advantages over, 89
example domain, 54
generating zone datafiles from, 141–143
resolvers falling back on, 196
translating into DNS zone data, 54

HOSTALIASES environment variable, 118
hostname

canonicalized, sendmail program, 116
determining local domain from, 101
identifying client to NFS server, 115

hosts
choosing for nameservers, 178

factors to consider, 179
configuring, 100–126

electronic mail programs, 116
hostnames in host authorization

files, 117
nsswitch.conf file, 119
providing aliases, 118
resolver, 100–114
service behavior, differences, 115
Windows XP resolver, 120–126

DNS information about, 11
domain name aliases, 6

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

598 | Index

hosts (continued)
domain names, 6
per-host statistics, BIND 8, 171–175, 183
represented by domain names, 14

hosts database, 119
listing with ypcat, 397

hosts.equiv file, adding domain names to
hostnames, 117

HOSTS.TXT file, 3
host-statistics substatement, 169, 183
human resources management industry (jobs)

domain, 19
HUP signal, 136

I
ICANN (Internet Corporation for Assigned

Names and Numbers), 19
ICMP (Internet Control Message Protocol)

port unreachable message, 196
port unreachable, host unreachable, or

network unreachable, 107
identity (update-policy statement), 233
idle time, limiting for zone transfers, 261
IDN (Internationalized Domain Names), xiv,

48, 504–506
ifconfig command, 196
in-addr.arpa domains

subdomains of, 214–220
subnetting on nonoctet

boundary, 215–220
subnetting on octet boundary, 215

in-addr.arpa zones, 51
delegating, 212
delegation by internal roots, 310
registering nameservers, 191

$INCLUDE statement, 144, 147
include mechanism (SPF TXT records), 98
include statement, 144, 554

reading key statement from another
file, 285

incremental zone transfer (IXFR), xiii,
39, 240–244

calculating from differences in zone
datafile versions, 241

configuring in BIND 8, 242
configuring in BIND 9, 243
files, 242
limitations of, 241

inet substatement (controls), 131
info domain, 19, 46

info severity, 149
messages sent to syslog and debug

file, 152
int (international organizations) domain, 18
interface ID (IPv6 addresses), 269
interface interval, 266
internal view, 249

recursion turned on, 300
Internationalized Domain Names (see IDN)
international organizations (int) domain, 18
Internet

history of, 1
necessity of DNS, 10
versus internets, 2

Internet access, types of, 53
Internet class, 530
Internet connections

dial-up, 489–494
authoritative nameservers over

dial-on-demand, 493
dial-on-demand with multiple

hosts, 492
dial-on-demand with one host, 492
dialouts, avoiding, 490
dialouts, causes of, 490
manual dial-up, with multiple

hosts, 492
manual dial-up, with one host, 491

Internet Control Message (see ICMP)
Internet Corporation for Assigned Names

and Numbers (ICANN), 19
Internet domain namespace, 17–21

reading domain names, 20
top-level domains, 17–19

Internet firewalls
DNS and, proxies, 302
types of software, 301

Internet forwarders, 304–309
Internet root nameservers, 27
Internet service providers (see ISPs)
Internet Software Consortium (see ISC)
Internet Systems Consortium, 9
internets

TCP/IP-based, deciding on use of
DNS, 10

versus the Internet, 2
InterNIC

Network Modification form, 191
site, 47

intranets, 2

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 599

IP addresses
assignment by DHCP, 228
converting to names in debugging

output, 395
finding for hosts, 40
mapping to domain names, 32
nameserver address sorting, 253–255

IP address-to-name mappings, controlling for
hosts on your network, 51

IP networks, checking registration, 48–50
IP prefixes, 226
ip6.arpa, 275
ipconfig /displaydns command, 125
ipconfig /flushdns command, 125
IPv4 transport, configuring, 270–272
IPv6

addresses, 268–270
:: notation, 269
allocation of addresses to sites, 270
global routing prefix, 269
interface ID, 269
prefixes, 269
subnet ID, 269
suffixes, 269

configuring transport, 273
forward and reverse mapping, 274,

276–281
A6 records and forward

mapping, 276–278
DNAME records and reverse

mapping, 278–281
using AAAA records and ip6.arpa, xiii

ISC (Internet Software Consortium)
BIND web page, 39
web site for BIND source code, 38

ISC DHCP server, 513
ISO 3166 top-level domains

country-code abbreviations, 18
uk model, 19
United States model, 19

ISPs (Internet service providers)
assignment of IP addresses by DHCP, 228
in-addr.arpa zone, delegation of

subdomains, 51
nameservers provided by, 40
network registrations, 48

iteration, 29
iterative queries, 29

nameservers answering, 294
.ixfr file, 242
IXFR (see incremental zone transfer)
IXFR records, 240

ixfr-base substatement, 242
ixfr-from-differences substatement, 241

J
JEEVES, 9
.jnl (journal) files, 231

configuring maximum size, 244
IXFR information, 242

jobs domain, 19
journal files (see .jnl files)

K
key pairs, 323

generating new, 336, 347
signed zones, DNSSEC, 324

key statements, 284, 554
defining for multiple nameservers, 134
rndc program, 131
rndc.conf file, 132
within view statement, 248

key tag field
RRSIG records, 328
RS records, 331

keys specification, rndc program, 131
keys substatement, 286
keyset file, 340, 342
KSKs (key-signing keys), 335, 337, 347

changing, 348
re-signing zone with new, 347

L
labels field (RRSIG records), 327
LACNIC (Latin American and Caribbean

Internet Addresses Registry), 50
lame delegation, 192
lame server error message, 423
lame server syslog message, 165
lame TTL, 267
LANs (local area networks), 2

deciding whether to use DNS, 10
volume of DNS traffic, 182

Latin America and Caribbean Internet
Addresses Registry (LACNIC), 50

least privilege, 292–294
level, domains, 16
limited Internet access, 53
Linux, compiling and insalling BIND

on, 538–542
listen-on substatement, 270
listen-on-v6 substatement, 273
load balancing, 251

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

600 | Index

load distribution, 251
shuffle address records, 250
(see also round-robin load distribution)

LOC records, 497
Local Area Connection Properties (Windows

XP), 120
local area networks (see LANs)
local domain name, 102

inability to look up, 432
not set, 424

local nameserver, resolver defaulting to, 113
local0 facility, syslog channel using, 153
LOCALDOMAIN environment variable, 102
localhost (address match list), 227
locality space (us domain), 46
localnets (address match list), 227
log.msgs file, 150, 151
logfiles, 231

dynamic updates, 231
IXFR, 242

trimming back to specified size, 243
logging

BIND, 148–158
categories, 154–158
channels, 152–154
channels and categories, 148
logging statement, 151
NOTIFY message information, 237

queries, 408
logging statement, 149, 555

category specification, 150
syntax, 151
viewing all category log messages (BIND

8), 158
lookups, too slow, 435
loopback address, 62

binding named against, 298
IPv6, 269
not using with multiple nameserver

directives, 107
lpd.allow file, disambiguating

hostnames, 117
ls command, 364, 367
lserver command, 357
lwres statement, 555

M
mail exchangers, 90, 92

good mail exchangers, qualities of, 93
inability to use IP address instead of

domain name to identify, 92

preference value or priority, 90
(see also MX records)

mail servers, example domain, 92
mailing lists, BIND users, 39

updated db.cache file, 65
mail-routing loops, preventing

MX algorithm, 94
preventing, 90

maintain-ixfr-base substatement, 242
maintenance intervals, nameservers, 265

cleaning interval, 265
interface interval, 266
statistics interval, 266

many-answers transfer format, 243, 261
configuring nameserver for, 262

master file format, 55, 517–519
master server, 25
masters substatement, 238, 268, 556

specifying alternate port, 270
specifying zone transfer TSIG key, 286

match-clients substatement, 248
match-destinations substatement, 248
match-recursive-only substatement, 248
max-journal-size substatement, 244
max-ncache-ttl substatement, 266
max-refresh-time and min-refresh-time

substatements, 261
max-retry-time substatement, 261
max-transfer-idle-in substatement, 261
max-transfer-idle-out substatement, 261
max-transfer-time-in substatement, 260
max-transfer-time-out substatement, 260
MD5 cryptographic algorithm, 283
memory

limiting use by nameserver, 262
limits on use by named process stack, 263

memory utilization, monitoring for
nameservers, 180

message digest, 283
message IDs, random, using in queries, 296
Microsoft DHCP Server, 511
Microsoft DNS Server, 507

Active Directory–integrated zones, 268
interoperability problems, 427
many-answers zone transfer format, 262
support for GSS-TSIG, 511
support of DNS NOTIFY, 239

Microsoft Knowledge Base article
Q246804, 511

mil domain, 18
min-refresh-time substatement, 261
min-retry-time substatement, 261

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 601

mmencode program, 132, 285
MNAME field (zone SOA record), listing

primary nameserver, 228
mobi domain (mobile devices), 19
Mockapetris, Paul, 4, 9
multi-master zone substatement, 268
multiple-cnames statement, 251
museum domains, 19
MX records, 90–92

backup mail server, identifying, 92
destinations with A record and no MX

record, 91
explanation of, 93
limitation of, 489
MX algorithm, 94
preference value, 90
query statistics on BIND 8

nameserver, 171
sendmail and, 116
updating for hosts in zone datafiles, 137
wildcard, 313, 488

N
name collisions, 7
name domains, 19
name resolution (see resolution)
named

common syslog messages, 159
finding process ID and sending

signal, 136
killing with rndc stop command, 139
load placed on host CPU, 180
stack size limit, 263
–t option, 293
two processes for advertising and

resolving nameserver, 297
–u and –g options, 292

named address match list, 227
named –g other command, 292
named.conf file, 55

address match list defined with acl
statement, 227

advertising nameserver, listening on
network interface IP address, 298

bastion host for split namespace, 318
bastion host nameserver in split

namespace, 320
caching-only nameserver, 187
complete example, 249
controls substatement, 133
db.root file for root nameservers, 312

default origin for zone datafiles, 146
key definition, matching in rndc.conf

file, 132
limiting total number of zone

transfers, 259
parent zone authoritative nameservers

configured as stub for child
zone, 223

primary nameserver
configured as slave, 214
delegated subdomain, 207

reconfiguring slave nameserver as
primary, 198

resolving nameserver, listening on
loopback address, 298

rndc key statement and, 132
rndc-confgen, using with, 133
root zone statement, 199
slave nameserver

in delegated subdomain, 210
updating from another slave, 186

named.conf.primary file, 145
named.conf.slave file, 146
named.pid file, 147
named.run file, 150, 379

default category assigned to null
channel, 151

messages of severity info and above, 152
named.stats file, 148, 168, 175
named_dump.db file, 148
named-conf file, trusted-keys statement, 332
namedroppers mailing list, 39
named-xfer file, 147, 397–399
nameserver directive, resolving nameserver

listening on loopback address, 299
nameserver directive (resolvers), 105–109

multiple nameservers configured, 107
one nameserver configured, 107
using multiple, 106

nameserver records (see NS records)
nameservers, xii, 4, 22–26

adding, 185–189
caching-only, 187
partial-slave, 188
primary master and slave, 185

address sorting, 253–255
authoritative

choosing between, 30
over dial-on-demand, 493

authority for a zone, 22
blackhole list, 257
bogus, avoiding, 257

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

602 | Index

nameservers (continued)
caching, 34

TTL, 35
capacity planning, 180

determining source of queries, 183
load of named process on CPU, 180
memory utilization, 180
placing new nameserver, 184
query volume, 181
statistics on busy nameserver, 181
statistics on quiet nameserver, 181

changing system file locations, 147
choosing host for, 178

factors to consider, 179
clients that access (resolvers), 26
compatibility with resolvers and other

nameservers, 267
configuring to use internal root

nameserver, 312
controlling, 127–136

mdc and controls (BIND 9), 131–135
ndc and controls (BIND 8), 128–131
using signals, 135

deciding on number, 177
guidelines, 177

delegating subdomains, 25
designating as forwarder, 244
EDNS0 support, 274
emulation by nslookup, 349
exposed to Internet, running recent

version of BIND, 304
external, authoritative, 474–478
forwarder selection, 247
forward-first mode, 244
foward-only mode, 245
IPv4 configuration, 270–272
IPv6 transport, configuring, 273
iterative resolution, 30
library routines, 453–458
logging, 148–158

categories, 154–158
channels, 152–154
channels and categories, 148
logging statement, 151

nonrecursive, 256
organizing your files, 143–147

changing origin, 146
including other zone datafiles, 147
using several directories, 144–146

preferring on certain networks, 255–256

preventative maintenance, 158–176
BIND statistics, 166–176
common syslog messages, 159–166

processing dynamic updates, messages
resulting from, 230

provided by ISPs, 40
query messages, sending out with

nslookup, 361–364
recursive resolution, 29
registering, 189–192

caching-only, 192
some of your nameservers, 189

resolution, 27–34
securing, 287–300

BIND versions, 287–289
restricting queries, 289
running BIND with least

privilege, 292–294
split-function nameservers, 294–296
two nameservers in one, 296–300
unauthorized zone transfers, 290–292

serving as internal root and authoritative
nameserver, 312

setting up, 53–88
zone data, 54–65
zones, 53

specified for Windows XP resolver, 121
startup failure because UDP checksum

disabled, 430
stub zones (BIND 8 and 9), 222
switching for nslookup query, 357
transition problems, BIND versions, 427
tuning, 258–267

maintenance intervals, 265
resource limits, 262–265
TTLs, 266
zone transfers, 258–262

types of, 25
updating zone datafiles, 136–143

adding and deleting hosts, 137
generating datafiles from host

table, 141–143
new serial number, 138
root hints, 143
RP records, 140
SOA serial numbers, 137
TXT records, 140

zone datafiles, 26
(see also BIND)

namespace, domain, 11–17

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 603

namespaces
shadow, 315
split, 315–322

name-to-address lookup, 54
name-to-address mappings, 58

WIndows XP clients, 124
nametype (update-policy statement), 233
naming, views, 248
naming services, hosts database, 119
NAPTR records, 502–504

spoofing, 504
ndc program, 128–131

–c option, 128, 294
changing debugging level with control

messages, 380
getting statistics from BIND 8

nameserver, 168
help, 129
interactive and noninteractive modes, 129
signals, equivalent to commands, 135
start and restart commands, 130
support for commands by rndc

program, 134
toggling query logging, 136

negative caching, 34
BIND 8, 393
BIND 9, 394
max-ncache-ttl options

substatement, 266
nameserver inability to, 430
TTL, 56, 194
Windows XP resolver, 125

negative responses
authenticated (NSEC record), 328–330
format of, 267

net domain, 18
Net::DNS module, 470–473
Net::DNS Perl module, 287
NetBIOS names, 506
NetBIOS naming service (WINS), 124
netgroup, filesystems for NFS-mount, 115
network identifiers, 49
Network Information Service (see NIS)
network infrastructure, organizatins

providing, 18
network interface IP address, advertising

nameserver listening on, 298
network interfaces, scanning for nameserver

host, 266
Network Modification form, 191
network resources, mirrored, 250

Network Solutions, Inc., 47
network time protocol (NTP), 286
networks

checking registration, 48–50
classes of, 49
deciding number of nameservers, 177
failures, coping with, 198–200

long outages (days), 198
really long outages (weeks), 199

failures, planning for, 195–198
loss of connectivity to Internet, 417–419
names and numbers, 494–496
specifying for preference by the

resolver, 109
newlines, 268
newsgroups, BIND, 39
NFS service, 115
NIS (Network Information Service), 10

deciding if problem is caused by, 396
domains, DNS domains versus, 15
nslookup and, 351

“no” preceding nslookup option’s name, 352
no response from server error, 367
no-check-names (resolver option), 111
nodes, DNS database, 4
nonauthoritative answers, 356
noncommercial organizations, 18
none (address match list), 227
nonexistent domain message, 368
nonrecursive queries

sent between nameservers, 244
(see also iterative queries)

NOTFOUND condition, 119
notice severity, 149
NOTIFY, xiii, 186, 235–240

adding nameservers besides those in zone
NS records to list, 239

announcement identification, 236
announcements sent by slave after zone

transfer, 236
BIND slave nameservers not supporting

(NOTIMP error), 239
response by slave to NOTIFY

announcement, 236
sending messages to alternate ports, 271
turning off, 239
zone transfer scheme, complex, 238

notify substatement (zone), explicit
argument, 239

notify-source substatement, 272
notify-source-v6 substatement, 273

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

604 | Index

notrace command
ndc program, 131
rndc program, 135

NS (nameserver) records, 58
delegated in-addr.arpa subdomains, 215
delegated subdomain, 211

checking on parent zone
nameserver, 220

explicit TTL specified on, 191
no NS RR for SOA MNAME, 428
query statistics on BIND 8

nameserver, 170
too many for a zone, 370

ns_get32 routine, 454
ns_init_parse routine, 454
ns_msg_count routine, 455
ns_msg_get_flag routine, 455
ns_msg_id routine, 456
ns_name_compress routine, 456
ns_name_skip routine, 457
ns_name_uncompress routine, 457
ns_parserr routine, 458
ns_put32 routine, 454
ns_update() resolver routine, 229
NSAP records, queries on BIND 8

nameserver, 171
NSEC records, 328–330, 333

last domain name in a zone, 329
recalculation for dynamic updates, 343,

345
signed for parent zone, 341

NSFNET, 2
traffic report, 182

nslookup, 349–371
.nslookuprc file, 354
checking for bad delegation, 421
checking for forgotten PTR records, 414
common tasks, 355–358

authoritative or nonauthoritative
answers, 356

looking up record types, 355
switching nameservers, 357

emulation of resolver or nameserver, 349
ending a session, 370
finding administrator for parent

zone, 213
finding email address of technical contact

for subdomain, 42
finding IP address for domain name, 40

interactive sessions, 351
less common tasks, 358–365

query and response messages,
showing, 359–361

querying like BIND
nameserver, 361–364

zone transfers, 364
multiple nameservers and, 350
noninteractive sessions, 351
options, 352–354

abbreviating, 352
BIND 9.3.2, 352
Boolean and value, 352
changing, 352
listed, 353

search list, 350
avoiding, 355

shell script programming with, 439–444
timeouts, 350
troubleshooting, 366–370

finding out what’s being looked
up, 369

looking up right data, 366
no PTR record for nameserver

address, 368
no response from first resolv.conf

nameserver, 369
no response from server, 367
refused queries, 368
unspecified error, 370

using NIS, 397
versions, xiii
zone transfers, 351, 399

nsswitch.conf file, 119, 397
nsupdate program, 229

commands, 229
–k option, key files generated by

dnssec-keygen, 287
TSIG-signed dynamic updates, 287
–y option, 287

NTP (network time protocol), 286
null channel (logging), 150, 154
null label (“ ”), 4

O
octet boundary, subnetting on, 215
one-answer transfer format, 262
one-way hash functions, 283, 324
open files limit, 264, 429

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 605

operating systems
compiling BIND source code, 38
limiting memory use by nameservers, 262
nameserver homogeneity and, 179

operations, DNS, 481
options directive (BIND resolvers), 110
options statement

allow-query substatement, 289
global ACL on zone data, 319

allow-recursion substatement, 257
allow-transfer substatement, 290
auth-nxdomain substatement, 268
BIND 8, 550–551, 556–559
BIND 9, 567–587
blackhole substatement, 258
cleaning-interval substatement, 265
dialup substatement, 493
edns-udp-size substatement, 274
fetch-glue substatement, 256
forwarders substatement, 244, 246
host-statistics substatement, 169, 183
ixfr-from-differences substatement, 241
lame-ttl substatement, 267
listen-on substatement, 270
listen-on-v6 substatement, 273
maintain-ixfr-base substatement, 242
max-journal-size substatement, 244
max-ncache-ttl substatement, 266
max-refresh-time substatement, 261
max-transfer-idle-in substatement, 261
max-transfer-idle-out substatement, 261
max-transfer-time-in substatement, 260
max-transfer-time-out substatement, 260
min-refresh-time substatement, 261
notify-source substatement, 272
notify-source-v6 substatement, 273
provide-ixfr substatement, 243
query-source substatement, 271, 302
recursive-clients substatement, 264
request-ixfr substatement, 243
rfc2308-type1 substatement, 267
rrset-order substatement, 252
serial-queries substatement, 265
setting host-statistics, 169
sig-validity-interval substatement, 344
sortlist substatement, 254
statistics-interval substatement, 266
transfer-format substatement, 262
transfer-source sustatement, 271
transfer-source-v6 substatement, 273
transfers-out substatement, 260
transfers-per-ns, 258

use-id-pool substatement, 295
view statement and, 248

options statement (rndc.conf), 132
default-server substatement, 133

options substatements (zone)
allow-notify, 240
speficying also-notify as, 239
within view statement, 248

org domain, 18, 46
$ORIGIN statement, 144

changing origin to use shorter names, 205
changing zone datafile origin, 146

original TTL field (RRSIG records), 327
OSI Network Service Access Point addresses,

domain names mapped to, 171

P
packet-filtering firewalls, 301

internal nameserver communication with
Internet nameservers, 304

popular commercial firewalls, 302
problems with BIND 8 or 9, 302

parent zones
registering nameservers, 190
signing, 341

partial-secondary nameservers, 188
partial-slave nameservers, 188

registering, 191
passwd file, 294
performance, DNSSEC and, 335
Perl, programming with Net::DNS, 470–473

check_soa, Perl version, 472
Perl module, Net::DNS, 287
Perl scripts, converting IP addresses to names

in debugging output, 395
PID files, 136

advertising and resolving nameserver, 299
ping utility

checking an interface for a multihomed
host, 59

diagnosing network connectivity
problems, 419

rotate resolver option and, 111
pointer records (see PTR records)
polling mechanism to determine need for

zone transfer, 235
port unreachable message, 196
ports

configuring for IPv4, 270–272
configuring for IPv6, 273
specifying for nameserver listening,

IPv4, 270

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

606 | Index

post (postal community) domain, 19
preference values (MX records), 90, 95

mailer at highest preference, 95
prefixes, IPv6 addresses, 269
primary DNS suffix, 122

BIND 4.8.3–style search derived
from, 124

setting for a computer, 124
Primary DNS suffix of this computer, 513
primary entries (zone datafile), 145
primary master nameservers, 25

datafiles, 26
primary nameservers

accessible from Internet, restricting zone
transfers from, 292

adding, 185
caching-only server lookups in zone, 187
configured to use forwarder, 244
delegated subdomain, configuring as

slave, 214
delegating subdomain to, 211
forgetting to reload, 411
hidden, 476
IXFR capability, matching zone transfer

requests to, 243
listing in MNAME field of zone SOA

record, 228
named.conf file, created in delegated

subdomain, 207
notifying slaves of changes to zone data

(see NOTIFY)
registering, 189
reloading after updating zone

datafiles, 137
storing site zone datafiles in separate

directories, 144
TTL, 193
zone datafiles, adding and deleting

hosts, 137
primary servers, hidden, 113
primary zones, storing datafiles in separate

directory, 144
private key, 323

dynamic update records, signing, 342
KSKs, 335
reasons to change, 346
specifying for dnssec-signzone, 339
stored in RRSIG record, 326

pro (professionals) domains, 19
processes, limits on memory use, 262
processing mail, 90

professionals (pro) domains, 19
program examples in this book, xvii
protocol field (DNSKEY records), 325
provide-ixfr substatement, 243
proxies, 302

without ability to pass DNS traffic, 304
ps command, finding process ID of

nameserver, 136
pstree program, 136
PTR (pointer) records, 60

forgetting to add to zone datafile for new
host, 413

ip6.arpa domains, 275
mapping network number to a

name, 494–496
query statistics on BIND 8

nameserver, 170
resolver getting CNAME when asking for

PTR, 429
router connecting to other networks, 207
unable to find for nameserver

address, 368
updating for hosts in zone datafiles, 137
Windows XP DNS clients, 124

public key, 323
authorized to sign zone data (DS

record), 331
in DNSKEY records, 326
stored in DNSKEY record, 324

public-key cryptography, 322
digital signatures and, 323
generating key pairs, 336

Q
qr flag (dig), 373
queries

access lists, 38
displaying for nslookup, 359
DNS messages, contents of, 360
IXFR type, 240
query/response exchange for a

lookup, 166–168
recursive and iterative, 29
refused, 368
retransmitting to forwarders, 245
security restrictions, 289

restricting all queries, 289
volume received by nameserver,

checking, 181
query logging, 408
QUERY operation code, 360

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 607

querylog command
ndc program, 131
rndc program, 134

query-source substatement, 271, 302
querytype option (nslookup), 355
Question objects (Net::DNS), 471
question section, DNS messages, 361
quit command (ndc), 131

R
rdist tool, 185

special option, 186
reconfig command, rndc program, 134
recursing command (rndc), 135
recursion, 29

nonrecursive nameserver, 256
rd flag, dig, 373
turning off, 295

for nslookup query, 361
recursive queries, 29

choosing between authoritative
nameservers, 30

forwarders, nonrecursive nameservers
and, 257

nameservers answering, 294
resolving nameserver for, 295
sent by nameservers to forwarder, 244

recursive-clients substatement, 264
redirect modifier (SPF records), 98
refresh intervals, 235

limiting zone transfer frequency, 261
refresh value, changing in SOA records, 194
refresh zone command (rndc program), 134
refused queries, 368
regional Internet registries (see RIRs)
registering

domain names, containing non-ASCII
characters, 48

ENUM domain names, 504
nameservers, 189–192

caching-only, 192
partial-slave, 191
some of your nameservers, 189

registrars, 41, 44
choosing, 47
registration policies and procedures, 50

registration, 41
anon-nameserver, 437
automatic, in Windows XP, 124
checking for networks, 48–50
delegated subdomain, 213
zones, 50

registries, 41
RIRs, 50

relative pathnames, 4
reload command

ndc program, 130
rndc program, 134, 137
syslog message in response to, 159

remote names, inability to look up, 433
Remote Procedure Call (see RPC)
request-ixfr substatement, 243
_res structure, 451
res_init routine, 448
res_mkquery routine, 448
res_query routine, 449
res_search routine, 449
res_send routine, 450
resolution, 27–34

caching, 34
iterative, 29
mapping addresses to names, 32
process taken as a whole, 31
recursive, 29
root nameservers, 27
too slow, 435

resolv.conf file, 101, 563–567
comments in, 111
no response from first nameserver, 369
nonrecursive servers, not listed in, 256
one or no nameserver listed, 196
resolver only (sample configuration), 113
resolving nameserver listening on

loopback address, 299
sample configurations, local

nameserver, 114
syntax error in, 423

resolv.h file, 451
resolver routine, ns_update(), 229
resolvers, 4, 26, 32, 100–114

address sorting, 253
BIND resolver statements, 563–567
configuring, 101–112

comments, 111
local domain name, 101
nameserver directive, 105–109
options directive, 110
search directive, 104
search list, 102
sortlist directive, 109
timeouts in BIND 4.9 to 8.2, 108
version 4.9 directives, 112

determining which are using BIND 8
nameserver, 183

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

608 | Index

resolvers (continued)
determining which are using BIND 9

nameserver, 184
emulation by nslookup, 349
errors causing fall back to host table, 196
getting CNAME instead of PTR, 429
internal only, querying nameserver, 296
library routines, 447–453

_res structure, 451
nameserver serving, 295
nonrecursive nameservers and, 256
query messages, 361
sample configurations, 112–114

local nameserver, 113
resolver only, 112

search algorithm, 393
transition problems, BIND versions, 426
Windows XP, 120–126

advanced configuration, 121
automatic registration, 124
caching, 124
DNS suffixes, 122
negative answers, 122
retransmission algorithm, 121
subnet prioritization, 125

resolving nameserver, 295
listening on loopback address,

named.conf file, 298
resource limits for nameservers, 262–265

core files size limit, 263
data segment size limit, 262
limiting number of clients, 264
limiting SOA queries, 265
open files limit, 264
stack size limit, 263

resource records (see RRs)
responses

displaying for nslookup, 359
DNS messages, contents of, 360
from unexpected source, 426
parsing, 458–469
wrong or inconsistent answers, 434

Responsible Person records (see RP records)
restart command, ndc program, 130
retransfer zone command (rndc

program), 134
retry value (SOA records), 194
return action, 120

reverse mapping, 54
IPv6, 275

bitstring labels, 279
DNAME records, 278–281
experimental, 276

queries for domain names sent to
forwarders, 308

rfc2308-type1 substatement, 267
.rhosts file

adding domain names to hostnames, 117
canonical name, entering, 60

RIPE Network Coordination Centre, 50
RIRs (regional Internet registries), 50

registering your in-addr.arpa zone, 52
rlogin, failed access check, 435
rlogin command, 115
rndc program, 128, 131–135

changing debugging level with control
messages, 380

controlling multiple servers, 133
creating rndc.conf file, 132
cryptographic keys for user

authentication, 131
freeze command, 241
getting BIND 9 nameserver statistics, 175
new commands (BIND 9.3.2), 134
–p option, 134
reload command, 137
rndc-confgen command, 133
–s option, 134
stop command, 139
thaw command, 241
trace command, 150

root hints
caching-only nameserver, 187
missing data, 417
updating, 143

root nameservers
internal, 309–315

configuring all internal nameservers to
use them, 312

db.root file, 311
forward-mapping delegation, 310
in-addr.arpa delegation, 310
mail from internal hosts to the

Internet, 313
mail to specific Internet domains, 314
placement of, 309

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 609

problems with, 315
use by other internal nameservers, 313

recursion and, 256
resolution, 27
setting up your own during long

outages, 199
root node, DNS database, 4
root zone nameservers, root hints

data, 63–65
rotate (resolver option), 111
round robin, 59
round-robin load distribution, 126, 250–253

rrset-order substatement, 252
using multiple CNAMEs, 251

round-trip time (see RTT)
route command, 196
routers, default, hardcoding IP address into

startup file, 197
routing loops, preventing for mail, 90

MX algorithm, 94
RP (Responsible Person) records, 140

examples of RP and related records, 141
RPC (Remote Procedure Call), client

identification to NFS server, 115
RR (resource records) (DNS), 16, 55,

496–500, 519–530
A (address), 59
adding hosts to zone datafiles, 137
adding/deleting in zone with DNS

dynamic update, 228
AFSDB, 496
aliases in, 59
CLASS fields, 530
classes, 16
CNAME, 59

in data portion, 163
commonly used, 140
data, 535
in datafiles, 26
deleting host from zone datafiles, 137
difficulty generating from /etc/hosts, 143
DNSKEY record, 324–326
DNSSEC records, 334
domain names in NS records, 211
DS, 331–333
LOC, 497
looking up different types with

nslookup, 355
MX, 90–92
nonexistent for a domain, 366
NS, 58

NSEC records, 328–330
ns_parserr routine and, 458
objects (Net::DNS), 471
order in zone datafiles, 56
PTR, 60
re-signing DNSSEC records with

dnssec-signzone, 340
rotation by nameserver for a domain, 250
rrset-order substatement, 252
RRSIG records, 326–328
SOA, 57
SRV, 498–500
TSIG, 284
TTL

changing, 192–194
tuning values, 266

types covered by update-policy
statement, 234

rrset-order substatement, 252
order for records returned by

nameserver, 253
RRsets

adding or deleting with dynamic
update, 228

private-key digital signature stored
on, 326

signed, original TTL on records, 327
RRSIG records, 326–328, 332, 335

algorithm field, 327
expiration, 347
for DS record, 341
key tag field, 328
labels field, 327
original TTL field, 327
signature expiration and inception

fields, 327
signature field, 328
signer’s name field, 328
type covered field, 327

RSA cryptographic algorithm, 323
RSA/MD5 cryptographic algorithm, 326
RSA/SHA-1 cryptographic algorithm, 326
rsh, failed access check, 435
rsh command, 115
rsync tool, 185
RTT (round-trip time), 31

choosing between nameservers based
on, 255

ruserok() library call, 102

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

610 | Index

S
search algorithm, resolver, 393
search directive (BIND resolvers), 104

sample configuration, 112
using with domain directive, BIND

4.9, 112
search list, 102

application by dig tool, 371
avoiding with nslookup, 355
BIND 4.8.3 resolvers, 104
BIND 4.8.3–style search list, from primary

DNS suffix, 124
BIND 4.9 and later, 103
BIND versions 4.8.3 to 4.9, 103
changes in BIND versions, 426
nslookup, 350
sendmail program, difference in use

of, 116
turning off for nslookup, 361

secondary entries (zone datafile), 145
secondary master nameservers, 25

(see also slave nameservers)
second-level domain, 16
Secure Entry Point flag (see SEP flag)
security, 282–348

BIND, latest versions, 38
DNS and Internet firewalls, 300–322

DNS traffic passing freely
through, 303

internal roots, 309–315
Internet forwarders, 304–309
split namespace, 315–322

DNSSEC, 322–348
ENUM, 504
nameserver host, 179
nameservers, 287–300

BIND versions, 287–289
guarding against network attack, 163
restricting queries, 289
running BIND with least

privilege, 292–294
split-function nameservers, 294–296
two nameservers in one, 296–300
unauthorized zone transfers, 290–292

public-key cryptography and digital
signatures, 323

system file locations, 147
TSIG, 283–287

Sender Policy Framework (see SPF)

sendmail
adding alias to sendfmail.cf file, 96
ANY record queries, 171
behavior differences, resolver

configuration and, 116
CNAME queries to canonicalize mail

address, 170
destinations with A record and no MX

record, 91
getting mail to Internet without

configuration changes, 313
mail-routing loop, error message, 95
using A (address) records instead of

CNAME records, 60
sendmail.cf file

adding domain names to hostnames, 117
change to class w or fileclass w, 224

SEP (Secure Entry Point) flag, DNSKEY
records, 325, 336

sequence space arithmetic, 139
serial numbers

Active Directory–integrated zones,
Microsoft DNS Server, 268

changed for zone you’re backing up, 164
DNS dynamic update and, 230
forgetting to increment, 409–411
incrementing after changes in zone

datafiles, 137
starting over with new, 138
updating in zone datafiles, 137

serial-queries substatement, 265
serial-query-rate options substatement, 265
server command, 357
server statement, 552, 559

associating nameserver with key, 134
edns substatement, 274
keys substatement, 286
provide-ixfr substatement, 243
request-ixfr substatement, 243
support-ixfr substatement, 242
transfer-format substatement, 262
transfers substatement, 259
within view statement, 248

service access denied, 436
set command, changing nslookup

options, 352
set norecurse and set nosearch commands,

nslookup, 361
set type=any command (nslookup), 366
setrlimit system call, 159

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 611

severities
debug level 1, 154
logging messages, 149
specifying for file channel, 153

shadow namespace, 315
zone datafile, 316

shell scripts, programming with nslookup or
dig, 438–444

shuffle address records, 250
signals, controlling the nameserver, 135
signature expiration field (RRSIG

records), 344
signature inception field (RRSIG

records), 327
signature field (RRSIG records), 328
signature inception field (RRSIG

records), 344
signatures, cryptographic (TSIG), 232
signer’s name field (RRSIG records), 328
signing, 324

zones, 336–342
generating key pairs, 336
parent zone, 341
sending keys to be signed, 340

sig-validity-interval substatement, 344
Simple Mail Transfer Protocol (SMTP), 90
size substatement (file channel), 153
slash (see /)
slave nameservers, 25

AXFR queries to initiate zone
transfers, 171

caching-only server lookups in zone, 187
changes to zone datafiles, 137
checking zone (BIND 8, Debug Level

1), 389–391
checking zone (BIND 9, Debug Level

1), 392
configured to use forwarder, 244
datafiles, 26
inbound zone transfers (named-xfer), 147
loading zone data from other slaves, 186
network traffic between hidden primary

and, 477
NOTIFY announcements, sending after

zone transfer, 236
NOTIFY announcment response to

master, 236
polling mechanism to determine need for

zone transfer, 235
preventing zone transfers from, 291
putting on delegated subdomain, 213

reconfiguring as primary during
outages, 198

registering, 189
setting up for new, delegated

subdomain, 210
signing zone transfer requests, 291
TTL, 193
unable to load zone data, 411–413
unable to reach master for zone

transfer, 161
zone transfer requests, matching to

primary’s IXFR capabilities, 243
slave zones, storing datafiles in separate

directory, 144
SMTP (Simple Mail Transfer Protocol), 90
snapshot of current statistics (syslog

message), 160
SOA (start of authority) records

adding to zone datafiles, 57
changing values, 194

refresh value, 194
check_soa example program

C version, 459–469
Perl version, 472

checking for delegated subdomain, 221
email address of zone technical

contact, 42
in-addr.arpa zone corresponding to your

ISP’s network, 51
limiting number of queries on

nameserver, 265
MNAME field, listing primary nameserver

for a zone, 228
no NS RR for SOA MNAME, 428
query statistics on BIND 8

nameserver, 170
serial numbers, 137
slave nameserver queries, source address

for, 271
subdomain created in parent’s zone, 205

sockets, Unix domain, 128, 131
software, nameserver host, 179
sortlist directive (BIND resolvers), 109
sortlist substatement, 254
spcl.DOMAIN file, 143
SPF (Sender Policy Framework), xiii, 97
split namespaces, 315–322

configuring the bastion host, 317–319
protecting zone data on bastion host, 319
security precautions on bastion host

nameserver, 319
views, using on bastion host, 321

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

612 | Index

sponsored TLDs (sTLDs), 19
spoofing attacks

involving recursion, 295
NAPTR records, 504
response from unexpected source, 426

SRI (Stanford Research Institute), 3
SRV records, 498–500

fields, 499
stack size limit, changing for named, 263
Stanford Research Institute (SRI), 3
start command, ndc program, 130
start of authority records (see SOA records)
startup file, hardcoding IP address of default

router, 197
statistics

BIND, understanding, 166–176
BIND 8, 168–175
BIND 9, 175
query/response exchange, 166–168
using BIND statistics, 176

snapshot of current, BIND 8
nameserver, 160

statistics-interval substatement, 181, 266
stats command

ndc program, 131
rndc program, 134, 175

status command
ndc program, 130
rndc program, 135

stderr channel (logging), 154
stealth slave, 480
sTLDs (sponsored TLDs), 19
stop command

ndc program, 130
rndc program, 135, 139

string (update-policy statement), 233
stub /etc/hosts file on each host, 197
stub resolver, 27
stub zones, 223

reverse-mapping zones configured as, 309
subdomains, 4, 16, 201–225

changing zone datafile origin, 146
creating, 204–214

and delegating, 206–210
deciding on delegation, 204
in parent’s zone, 205

deciding how many to implement, 202
delegated, 21

signed and unsigned, 332
delegating, 25

delegation
checking using host, 220
incorrect, 420–423
managing, 221–223
missing, 419

domain name, 16
of generic top-level domains, 46
lifecycle of parent domain, 225
managing transition to, 223–225
naming, 203

establishing conventions, 203
of in-addr.arpa domains, 214–220

subnetting on nonoctet
boundary, 215–220

subnetting on octet boundary, 215
reasons for implementing, 202
responsibility for, 5
rules for dividing domain into, 203
of shadow namespace, 316

subnet ID (IPv6), 269
subnets, 49

looking up name for IP address, 495
prioritization, Windows XP resolver, 125
specifying for preference by the

resolver, 109
subnetting

on nonoctet boundary, 215–220
on octet boundary, 215

SUCCESS condition, 119
successful lookup

BIND 8, Debug Level 1, 385–387
BIND 9, Debug Level 1, 388
with retransmissions (BIND 8, Debug

Level 1), 388
suffixes

DNS, using with Windows XP
resolver, 122

IPv6 addresses, 269
support-ixfr substatement, 242
symmetric encryption algorithms, 324
syslog

BIND 8 nameserver query volume, 182
common messages, 159–166

bad owner name, 161
class error, 164
CNAME in data portion of resource

record, 163
lame server, 165
Malformed response, 162
out of zone data, 162

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 613

problem with zone data, 161
queries received by nameserver, 165
reloading nameserver, 159
Response from unexpected

source, 163
slave unable to reach master server for

zone transfer, 161
snapshot of current statistics, 160
starting second nameserver without

killing first, 166
Too many open files, 160
zone backup, serial number

changed, 164
configuring channel to go to, 149
default category and, 151
logging channels directed to, 153
messages of serverity info and above, 152
NOTIFY message information, 237
severity levels, 149

syslog common messages, starting
named, 159

syslogd, –a option, 293
system files, changing locations, 147

T
TCP ports, nameservers listening on for

control messages, 128
TCP/IP (Transmission Control

Protocol/Internet Protocol), 1
networks, classes, 16

technical contact for zones, 51
Telephone Number Mapping (see ENUM)
telnet command, 115
thaw command (rndc), 241
thaw zone command (rndc program), 134
Through the Looking-Glass, xx
time to live (see TTL)
timeout (resolver option), 110
timeouts

BIND
versions 4.9 to 8.2, 108
versions 8.2 and later, 108

nslookup versus nameservers and
resolvers, 350

Too many open files (syslog message), 160
Too many open files error, 429
top utility, 181
top-level domains, 16, 543–547

country code, 18
existing or reserved names, not using to

name subdomains, 204
Internet domain namespace, 17–19

new, 19
generic top-level domains, 19

traditions and extent to which they are
followed, 19

topology feature (BIND 8), 255
trace command

ndc program, 131
rndc program, 135, 150

traceroute, 419
transaction signatures (see TSIG)
transfer format, many-answers, 243
transfer-format substatement, 262
transfers substatement, 259
transfer-source substatement, 271
transfer-source-v6 substatement, 273
Transmission Control Protocol/Internet

Protocol (see TCP/IP)
transports

IPv4, 270–272
IPv6, 273

travel domain, 19
tree structure, DNS database, 4
troubleshooting, 396–437

forgot to increment serial
number, 409–411

forgot to reload primary nameserver, 411
incorrect subdomain delegation, 420–423
interoperability and version

problems, 427–431
local domain name not set, 424
local name can’t be looked up, 432
logging queries, 408
missing dot at domain name end in zone

datafile, 416
missing root hints data, 417
missing subdomain delegation, 419
network connectivity loss, 417–419
NIS, 396
old data, unable to get rid of, 436
PTR record, forgetting to add for new

host, 413
reading BIND 8 database dump, 400–404
reading BIND 9 database dump, 404–408
remote names, inability to look up, 433
response from unexpected source, 426
rlogin and rsh fail access check, 435
services, access denied, 436
slave nameserver can’t load zone

data, 411–413
slow lookups, 435
syntax error in config file or zone

datafile, 414–416

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

614 | Index

troubleshooting (continued)
syntax error in resolv.conf, 423
tools (see dig tool; nslookup)
transition to recent BIND versions, 426
using named-xfer, 397–399
wrong or inconsistent answers, 434
zone transfer with nslookup or dig, 399

trust anchor, 332
trust levels in database dumps, 407
trusted-keys statement, 332, 335, 341, 552,

559
TRYAGAIN condition, 119
TSIG (transaction signatures), xiii, 283–287

configuring, 284–286
keys, 284
time synchronization, 285

dynamic updates signed with, 232
errors, 431
GSS-TSIG, 511
limitations of, 322
one-way hash functions, 283
records, 283
signing zone transfer requests, 291
update-policy zone substatement (BIND

9), 233
TTL (time to live), 35, 266

changing, 192–194
deciding on, performance versus

consistency, 35
default, setting for zone, 56
explicit, specified on NS records, 191
minimum TTL, pre–BIND 8.2

nameservers, 194
not set, 431
original TTL on records in signed

RRset, 327
raising default for zones not changing

frequently, 195
records in root hints file, 65
Windows XP resolver caching, 124

TXT records
associated with RP records, 140
queries on BIND 8 nameserver, 171
SPF, 97–99

common mechanisms used in, 98
updating in zone datafiles, 140

type covered field (RRSIG records), 327
types field (update-policy statement), 234

U
UDP

checksums disabled, 430
datagrams, 274
DNS messages based on, 333

uk domain, organizationally oriented
subdomains, 19

Unassociated entries section (database
dump), 408

UNAVAIL condition, 119
uncompressing domain names, 457
Unicode, 505

converting ACE to and from, 506
uninterruptible power system (UPS), 197
Unix

BIND software included with, 38
domain sockets, 128, 131
end-of-line sequence, 268
networking commands, search list applied

to domain name argument, 103
Unix epoch, converting to date, 175
Unix filesystem, DNS database versus, 4
unsigned zones, delegating to, 332
unspecified error (nslookup), 370, 400
unsponsored gTLDs, 19
update forwarding, 228

controlling which updates are
forwarded, 232

TSIG-signed, 232
update-policy substatement, 231, 233, 287
UPS (uninterruptible power system), 197
URIs, mapping E.165 numbers to, 501
URLs

country top-level domains, web sites, 42
regional Internet registries, whois web

page, 50
us top-level domain, 20, 45

interpreting domain names (example), 20
use-id-pool substatement, 295
Usenet newsgroups, BIND, 39

V
value options (nslookup), 352
verifying, 324
version.bind query, 288
versions substatement (file channel), 153
view command (nslookup), 365
view statement, 247, 560–562

match-clients substatement, 248
match-destinations substatement, 248

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 615

match-recursive-only substatement, 248
types of substatements, 248

views, 247–250
full named.conf file (example), 249
resolving and advertising

nameservers, 299
support by BIND 9, 38
using on bastion host, 321

vulnerabilities in BIND versions, 288

W
warning severity, 149
web sites, top-level domains, 42
web surfing, nameserver use, 180
whois, 43

administrative and technical contacts for
zones, 51

finding right whois server, 43
regional Internet registries, web page, 50

wildcard MX records, 313
wildcards, 488
WINCH signal, 136
Windows 2000 DNS white paper, 121
Windows Internet Name Service (see WINS)
Windows operating systems, 508–515

end-of-line sequence, 268
problems with Active Directory and

BIND, 511
secure dynamic update, 511
using dynamic update, 508–510

Windows Server 2003, 514
Windows XP resolver, 120–126

advanced configuration, 121
automatic registration, 124
caching, 124
DNS suffixes, 122
negative answers, handling of, 122
retransmission algorithm, 121
subnet prioritization, 125

WINS (Windows Internet Name
Service), 10, 124, 506–508

zone transfer failure from proprietary
record, 427

X
X Windows-based user environments, 180
X0.hosts file, adding domain names to

hostnames, 117

Y
ypcat, listing hosts database, 397

Z
zone ca (Canada), 22
zone datafiles, 26, 54

calculating IXFR from differences in
versions, 241

comments and blank lines, 56
completed (example), 61
creating for new, delegated

subdomain, 206
db.movie.edu.signed (example), 338
DNS resource records, 55
dynamic update and, 230
forgotten PTR record for new host

name, 413
internal and external views, 249
missing dot at domain name end, 416
organizing, 143–147

changing origin, 146
including other files, 147
using several directories, 144–146

records belonging in another zone, 162
root zone (db.root), 311
root, db.root file, 199
setting up

A and alias records, 58
NS records, 58
PTR records, 60

shadow namespace, 316
SOA records, 57
syntax error in, 414–416
TTL, changing on resource

records, 192–194
updating, 136–143

adding and deleting hosts, 137
generating datafiles from host

table, 141–143
new serial number, 138
root hints, 143
RP records, 140
SOA serial numbers, 137
TXT records, 140

updating loops, slave nameservers, 187
zone statement, 552

allow-query substatement, 290
allow-transfer substatement, 291
allow-update or update-policy

substatements, 231
allow-update-forwarding

substatement, 232
also-notify substatement, 239
BIND 8, 562–563
dialup substatement, 494

This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

616 | Index

zone statement (continued)
ixfr-base, 242
ixfr-from-differences substatement, 241
masters substatement, 238, 268

port specification, 270
specifying TSIG key, 286

max-refresh-time substatement, 261
max-transfer-idle-in substatement, 261
max-transfer-idle-out substatement, 261
max-transfer-time-in substatement, 260
max-transfer-time-out substatement, 260
min-refresh-time substatement, 261
multi-master substatement, 268
normal zones with forwarders

substatement, 246
notify-source substatement, 272
preventing zone transfers from slaves, 291
transfer-source substatement, 272
transfer-source-v6 substatement, 273
turning off NOTIFY, 239
update-policy substatement, 233
within view statement, 248

zone transfers, 25, 258–262
access lists, 38
complex, example of, 238
failure because of proprietary WINS

records, 427
following NOTIFY announcement, 236
incremental, xiii, 39, 240–244
initiation by AXFR queries, 171
limiting duration of inbound, 260
limiting frequency of, 261
limiting idle time, 261
limiting requests per nameserver, 258
limiting total number requested, 259
limiting total number served

simultaneously, 260
more efficient, with many-answers

format, 261
nslookup, 351
polling scheme by slave nameservers to

determine need for, 235
preventing unauthorized

transfers, 290–292

slave unable to reach master server
for, 161

source address for, controlling, 271
specifying TSIG key, 286
triggering with NOTIFY, 186
using dig, 374
using named-xfer, 397–399
using nslookup, 364
using nslookup or dig, 399

zones, xii, 5, 22–26
change notification (DNS

NOTIFY), 235–240
delegating hosting of, 10
domain names, ordering, 328
domains versus, 22
example (Movie University), 53
forward zones, 246, 308
keys, types of, 335
nameserver authority for, 22
nameservers, types of, 25
pointers to authoritative nameservers for

delegated subdomains, 25
reason for existing, 203
registering, 50
setting up zone data, 54–65

loopback address, 62
root hints, 63–65
zone datafiles, 55, 57–62
zone default TTL, 56

signing, 336–342
generating key pairs, 336
parent zone, 341
sending keys to be signed, 340

SOA record, email address of technical
contact, 42

stub zones, 223
top-level, authoritative nameservers

for, 27
unsigned, deletating to, 332

ZSKs (zone-signing keys), 335, 337
re-signing zone with new key, 347
signing zone with new key, 347

About the Authors
Cricket Liu graduated from the University of California at Berkeley, that great
bastion of free speech, unencumbered Unix, and cheap pizza. He joined Hewlett-
Packard after graduation and worked there for nine years.

Cricket began managing the hp.com zone after the Loma Prieta earthquake forcibly
transferred the zone’s management from HP Labs to HP’s Corporate Offices (by
cracking a sprinkler main and flooding a Labs computer room). Cricket was host-
master@hp.com for over three years and then joined HP’s Professional Services
Organization to co-found HP’s Internet Consulting Program.

He left HP in 1997 to form Acme Byte & Wire, a DNS consulting and training
company, with his friend (and now coauthor) Matt Larson. Network Solutions
acquired Acme in June 2000 and, later the same day, merged with VeriSign. Cricket
worked for a year as Director of DNS Product Management for VeriSign Global
Registry Services.

He joined Infoblox, a company that develops DNS and DHCP appliances, in March
2003, and is currently its Vice President of Architecture.

Cricket, his wife Paige, their son Walt, and daughter Greta live in California with
their two Siberian Huskies, Annie and Dakota.

Paul Albitz is a software engineer at Hewlett-Packard. He earned a Bachelor of
Science degree from the University of Wisconsin, LaCrosse, and a Master of Science
degree from Purdue University.

Paul worked on BIND for the HP-UX 7.0 and 8.0 releases. During this time, he
developed the tools used to run the hp.com domain. Since then, he has worked on
various HP products during his 19-year career: HP JetDirect software, HP OfficeJet
fax firmware, the HPPhoto web site, and HP Photosmart Premier software.

Paul and his wife Katherine live in San Diego, California with their two cats, Gracie
and Tiffany.

Colophon
The animals on the cover of DNS and BIND, Fifth Edition, are grasshoppers. Grass-
hoppers are found all over the globe. Of over 5,000 species, 100 different
grasshopper species are found in North America. Grasshoppers are greenish-brown,
and range in length from a half inch to four inches, with wingspans of up to six
inches. Their bodies are divided into three sections: the head, thorax, and abdomen,
with three pairs of legs and two pairs of wings.

Male grasshoppers use their hind legs and forewings to produce a “chirping” sound.
Their hind legs have a ridge of small pegs that are rubbed across a hardened vein in

the forewing, causing an audible vibration much like a bow being drawn across a
string.

Grasshoppers are major crop pests, particularly when they collect in swarms. A
single grasshopper can consume 30 mg of food a day. In collections of 50 or more
grasshoppers per square yard—a density often reached during grasshopper
outbreaks—grasshoppers consume as much as a cow would per acre. In addition to
consuming foliage, grasshoppers damage plants by attacking them at vulnerable
points and causing the stems to break off.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Versions
	What’s New in the Fifth Edition?
	Organization
	Audience
	Obtaining the Example Programs
	How to Contact Us
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	Quotations
	Acknowledgments

	Background
	A (Very) Brief History of the Internet
	On the Internet and Internets
	The History of the Domain Name System

	The Domain Name System, in a Nutshell
	The History of BIND
	Must I Use DNS?

	How Does DNS Work?
	The Domain Namespace
	Domain Names
	Domains
	Resource Records

	The Internet Domain Namespace
	Top-Level Domains
	Country-code top-level domains
	New top-level domains

	Further Down
	Reading Domain Names

	Delegation
	Nameservers and Zones
	Delegating Subdomains
	Types of Nameservers
	Zone Datafiles

	Resolvers
	Resolution
	Root Nameservers
	Recursion
	Iteration
	Choosing Between Authoritative Nameservers
	The Whole Enchilada
	Mapping Addresses to Names

	Caching
	Time to Live

	Where Do I Start?
	Getting BIND
	Handy Mailing Lists and Usenet Newsgroups
	Finding IP Addresses

	Choosing a Domain Name
	On Registrars and Registries
	Where in the World Do I Fit?
	whois

	Back in the U.S.A.
	The generic top-level domains
	Choosing a registrar

	Checking That Your Network Is Registered
	Registering Your Zones

	Setting Up BIND
	Our Zone
	Setting Up Zone Data
	The Zone Datafiles
	Comments
	Setting the Zone’s Default TTL
	SOA Records
	NS Records
	Address and Alias Records
	PTR Records
	The Completed Zone Datafiles
	The Loopback Address
	The Root Hints Data

	Setting Up a BIND Configuration File
	Abbreviations
	Appending Domain Names
	The @ Notation
	Repeat Last Name
	The Shortened Zone Datafiles

	Hostname Checking
	Tools
	BIND 9 Tools

	Running a Primary Nameserver
	Starting Up the Nameserver
	Check for Syslog Errors
	Testing Your Setup with nslookup
	Set the local domain name
	Look up a local domain name
	Look up a local address
	Look up a remote domain name
	One more test

	Editing the Startup Files

	Running a Slave Nameserver
	Setup
	Backup Files
	SOA Values
	Multiple Master Servers

	Adding More Zones
	What’s Next?

	DNS and Electronic Mail
	MX Records
	Movie.edu’s Mail Server
	What’s a Mail Exchanger, Again?
	The MX Algorithm
	DNS and Email Authentication
	The Sender Policy Framework

	Configuring Hosts
	The Resolver
	Resolver Configuration
	The Local Domain Name
	The Search List
	The BIND 4.9 and later search list
	The BIND 4.8.3 search list

	The search Directive
	The nameserver Directive
	One nameserver configured
	More than one nameserver configured

	The sortlist Directive
	The options Directive
	Comments
	A Note on the 4.9 Resolver Directives

	Sample Resolver Configurations
	Resolver Only
	Local Nameserver

	Minimizing Pain and Suffering
	Differences in Service Behavior
	Electronic Mail
	Updating .rhosts, hosts.equiv, etc.
	Providing Aliases

	Additional Configuration Files
	nsswitch.conf

	The Windows XP Resolver
	Caching
	Subnet Prioritization

	Maintaining BIND
	Controlling the Nameserver
	ndc and controls (BIND 8)
	rndc and controls (BIND 9)
	Using rndc to control multiple servers
	New rndc commands

	Using Signals

	Updating Zone Datafiles
	Adding and Deleting Hosts
	SOA Serial Numbers
	Starting Over with a New Serial Number
	Additional Zone Datafile Entries
	General text information
	Responsible Person

	Generating Zone Datafiles from the Host Table
	Keeping the Root Hints Current

	Organizing Your Files
	Using Several Directories
	Changing the Origin in a Zone Datafile
	Including Other Zone Datafiles

	Changing System File Locations
	Logging
	The logging Statement
	Channel Details
	File channels
	syslog channels
	stderr channel
	null channel
	Data formatting for all channels

	Category Details
	BIND 8 categories
	BIND 9 categories
	Viewing all category messages

	Keeping Everything Running Smoothly
	Common Syslog Messages
	Understanding the BIND Statistics
	BIND 8 statistics
	BIND 9 statistics
	Using the BIND statistics

	Growing Your Domain
	How Many Nameservers?
	Where Do I Put My Nameservers?
	Capacity Planning

	Adding More Nameservers
	Primary Master and Slave Servers
	Caching-Only Servers
	Partial-Slave Servers

	Registering Nameservers
	Changing TTLs
	Changing Other SOA Values

	Planning for Disasters
	Outages
	Recommendations

	Coping with Disaster
	Long Outages (Days)
	Really Long Outages (Weeks)

	Parenting
	When to Become a Parent
	How Many Children?
	What to Name Your Children
	How to Become a Parent: Creating Subdomains
	Creating a Subdomain in the Parent’s Zone
	Creating and Delegating a Subdomain
	An fx.movie.edu Slave
	On the movie.edu Primary Nameserver
	Delegating an in-addr.arpa Zone
	Adding a movie.edu Slave

	Subdomains of in-addr.arpa Domains
	Subnetting on an Octet Boundary
	Subnetting on a Nonoctet Boundary
	/8 (Class A–sized) and /16 (Class B–sized) networks
	/24 (Class C–sized) networks

	Good Parenting
	Using host
	Managing Delegation
	Managing delegation with stubs

	Managing the Transition to Subdomains
	Removing Parent Aliases

	The Life of a Parent

	Advanced Features
	Address Match Lists and ACLs
	DNS Dynamic Update
	Dynamic Update and Serial Numbers
	Dynamic Update and Zone Datafiles
	Update Access Control Lists
	TSIG-Signed Updates

	DNS NOTIFY (Zone Change Notification)
	Incremental Zone Transfer (IXFR)
	IXFR Limitations
	IXFR from Differences
	IXFR Files
	BIND 8 IXFR Configuration
	BIND 9 IXFR Configuration

	Forwarding
	A More Restricted Nameserver
	Forward Zones

	Views
	Round-Robin Load Distribution
	Multiple CNAMEs
	The rrset-order Substatement

	Nameserver Address Sorting
	Preferring Nameservers on Certain Networks
	A Nonrecursive Nameserver
	Avoiding a Bogus Nameserver
	System Tuning
	Zone Transfers
	Limiting transfers requested per nameserver
	Limiting the total number of zone transfers requested
	Limiting the total number of zone transfers served
	Limiting the duration of a zone transfer
	Limiting the frequency of zone transfers
	More efficient zone transfers

	Resource Limits
	Changing the data segment size limit
	Changing the stack size limit
	Changing the core size limit
	Changing the open files limit
	Limiting the number of clients
	Limiting SOA queries

	Maintenance Intervals
	Cleaning interval
	Interface interval
	Statistics interval

	TTLs

	Compatibility
	The ABCs of IPv6 Addressing
	Addresses and Ports
	Configuring the IPv4 Transport
	Configuring the IPv6 Transport
	EDNS0
	IPv6 Forward and Reverse Mapping
	AAAA and ip6.arpa
	A6, DNAMEs, Bitstring Labels, and ip6.arpa
	A6 records and forward mapping
	DNAME records and reverse mapping

	Security
	TSIG
	One-Way Hash Functions
	The TSIG Record
	Configuring TSIG
	Using TSIG

	Securing Your Nameserver
	BIND Version
	Restricting Queries
	Restricting all queries
	Restricting queries in a particular zone

	Preventing Unauthorized Zone Transfers
	Running BIND with Least Privilege
	Split-Function Nameservers
	“Advertising” nameserver configuration
	“Resolving” nameserver configuration

	Two Nameservers in One

	DNS and Internet Firewalls
	Types of Firewall Software
	Packet filters
	Proxies

	A Bad Example
	Internet Forwarders
	The trouble with forwarding
	Using forward zones

	Internal Roots
	Where to put internal root nameservers
	Forward-mapping delegation
	in-addr.arpa delegation
	The db.root file
	Configuring other internal nameservers
	How internal nameservers use internal roots
	Mail from internal hosts to the Internet
	Mail to specific Internet domain names
	The trouble with internal roots

	A Split Namespace
	Configuring the bastion host
	Protecting zone data on the bastion host
	The final configuration
	Using views on the bastion host

	The DNS Security Extensions
	Public-Key Cryptography and Digital Signatures
	The DNSKEY Record
	The RRSIG Record
	The NSEC Record
	The DS Record and the Chain of Trust
	Islands of security
	Delegating to unsigned zones

	DO, AD, and CD
	How the Records Are Used
	DNSSEC and Performance
	Zone-Signing Keys and Key-Signing Keys
	Signing a Zone
	Generating your key pairs
	Signing your zone
	Sending your keys to be signed
	Signing a parent zone

	DNSSEC and Dynamic Update
	Changing Keys
	What Was That All About?

	nslookup and dig
	Is nslookup a Good Tool?
	Multiple Servers
	Timeouts
	The Search List
	Zone Transfers
	Using NIS and /etc/hosts

	Interactive Versus Noninteractive
	Option Settings
	The .nslookuprc File

	Avoiding the Search List
	Common Tasks
	Looking Up Different Record Types
	Authoritative Versus Nonauthoritative Answers
	Switching Nameservers

	Less Common Tasks
	Showing the Query and Response Messages
	Querying Like a BIND Nameserver
	Zone Transfers

	Troubleshooting nslookup Problems
	Looking Up the Right Data
	No Response from Server
	No PTR Record for Nameserver’s Address
	Query Refused
	First resolv.conf Nameserver Not Responding
	Finding Out What Is Being Looked Up
	Unspecified Error

	Best of the Net
	Using dig
	dig’s Output Format
	Zone Transfers with dig
	dig Options

	Reading BIND Debugging Output
	Debugging Levels
	What Information Is at Each Level?
	BIND 8 debugging levels
	BIND 9 debugging levels

	Turning On Debugging
	Debugging Command-Line Option
	Changing the Debugging Level with Control Messages

	Reading Debugging Output
	Nameserver Startup (BIND 8, Debug Level 1)
	Nameserver Startup (BIND 9, Debug Level 1)
	A Successful Lookup (BIND 8, Debug Level 1)
	A Successful Lookup (BIND 9, Debug Level 1)
	A Successful Lookup with Retransmissions (BIND 8, Debug Level 1)
	A Slave Nameserver Checking Its Zone (BIND 8, Debug Level 1)
	A Slave Nameserver Checking Its Zone (BIND 9 Debug Level 1)

	The Resolver Search Algorithm and Negative Caching (BIND 8)
	The Resolver Search Algorithm and Negative Caching (BIND 9)
	Tools

	Troubleshooting DNS and BIND
	Is NIS Really Your Problem?
	Troubleshooting Tools and Techniques
	How to Use named-xfer
	What if I Don’t Have named-xfer?
	How to Read a BIND 8 Database Dump
	How to Read a BIND 9 Database Dump
	Logging Queries

	Potential Problem List
	1. Forgot to Increment Serial Number
	2. Forgot to Reload Primary Nameserver
	3. Slave Nameserver Can’t Load Zone Data
	4. Added Name to Zone Datafile but Forgot to Add PTR Record
	5. Syntax Error in Configuration File or Zone Datafile
	6. Missing Dot at the End of a Domain Name in a Zone Datafile
	7. Missing Root Hints Data
	8. Loss of Network Connectivity
	9. Missing Subdomain Delegation
	10. Incorrect Subdomain Delegation
	11. Syntax Error in resolv.conf
	12. Local Domain Name Not Set
	13. Response from Unexpected Source

	Transition Problems
	Resolver Behavior
	Nameserver Behavior

	Interoperability and Version Problems
	Zone Transfer Fails Because of Proprietary WINS Record
	Nameserver Reports “no NS RR for SOA MNAME”
	Nameserver Reports “Too many open files”
	Resolver Reports “asked for PTR, got CNAME”
	Nameserver Startup Fails Because UDP Checksums Disabled
	Other Nameservers Don’t Cache Your Negative Answers
	TTL Not Set

	TSIG Errors
	Problem Symptoms
	Local Name Can’t Be Looked Up
	Remote Names Can’t Be Looked Up
	Wrong or Inconsistent Answer
	Lookups Take a Long Time
	rlogin and rsh to Host Fails Access Check
	Access to Services Denied
	Can’t Get Rid of Old Data
	Old delegation information
	Registration of a non-nameserver
	What have I got?

	Programming with the Resolver and Nameserver Library Routines
	Shell Script Programming with nslookup
	A Typical Problem
	Solving This Problem with a Script

	C Programming with the Resolver Library Routines
	DNS Message Format
	Domain Name Storage
	Domain Name Compression
	The Resolver Library Routines
	herror and h_errno
	res_init
	res_mkquery
	res_query
	res_search
	res_send

	The _res Structure
	The Nameserver Library Routines
	ns_get16 and ns_put16
	ns_get32 and ns_put32
	ns_initparse
	ns_msg_base, ns_msg_end, and ns_msg_size
	ns_msg_count
	ns_msg_get_flag
	ns_msg_id
	ns_name_compress
	ns_name_skip
	ns_name_uncompress
	ns_parserr
	ns_rr routines

	Parsing DNS Responses
	A Sample Program: check_soa

	Perl Programming with Net::DNS
	Resolver Objects
	Packet Objects
	Header Objects
	Question Objects
	Resource Record Objects
	A Perl Version of check_soa

	Architecture
	External, Authoritative DNS Infrastructure
	Forwarder Infrastructure
	Internal DNS Infrastructure
	Operations
	Keeping Up with DNS and BIND

	Miscellaneous
	Using CNAME Records
	CNAMEs Attached to Interior Nodes
	CNAMEs Pointing to CNAMEs
	CNAMEs in the Resource Record Data
	Multiple CNAME Records
	Looking Up CNAMEs
	Finding Out a Host’s Aliases

	Wildcards
	A Limitation of MX Records
	Dial-up Connections
	What Causes Dialouts
	Avoiding Dialouts
	Manual Dial-up with One Host
	Manual Dial-up with Multiple Hosts
	Dial-on-Demand with One Host
	Dial-on-Demand with Multiple Hosts
	Running Authoritative Nameservers over Dial-on-Demand

	Network Names and Numbers
	Additional Resource Records
	AFSDB
	LOC
	SRV

	ENUM
	Translating E.164 Numbers into Domain Names
	The NAPTR Record
	Registering ENUM Domain Names
	Privacy and Security Issues with ENUM

	Internationalized Domain Names
	DNS and WINS
	DNS, Windows, and Active Directory
	How Windows Uses Dynamic Update
	Problems with Active Directory and BIND
	Secure Dynamic Update
	BIND and GSS-TSIG

	What to Do?
	Handling Windows clients
	Handling Windows servers

	DNS Message Format and Resource Records
	Master File Format
	Character Case
	Types
	A address
	CNAME canonical name
	HINFO host information
	MX mail exchanger
	NS name server
	PTR pointer
	SOA start of authority
	TXT text
	WKS well-known services

	New Types from RFC 1183
	AFSDB Andrew File System Data Base (experimental)
	ISDN Integrated Services Digital Network address (experimental)
	RP Responsible Person (experimental)
	RT Route Through (experimental)
	X25 X.25 address (experimental)

	New Types from RFC 1664
	PX pointer to X.400/RFC 822 mapping information

	New Types from RFC 3596
	AAAA IPv6 Address

	New Types from RFC 2782
	SRV Locate Services

	New Types from RFC 2915
	NAPTR Naming Authority Pointer

	Classes

	DNS Messages
	Message Format
	Header Section Format
	Question Section Format
	QCLASS values
	QTYPE values

	Answer, Authority, and Additional Section Format
	Data Transmission Order

	Resource Record Data
	Data Format
	Character string
	Domain name
	Message compression

	BIND Compatibility Matrix
	Compiling and Installing BIND on Linux
	Instructions for BIND 8
	Get the Source Code
	Unpack the Source Code
	Use the Proper Compiler Settings
	Build Everything

	Instructions for BIND 9
	Get the Source Code
	Unpack the Source Code
	Run configure, and Build Everything

	Top-Level Domains
	BIND Nameserver and Resolver Configuration
	BIND Nameserver Boot File Directives and Configuration File Statements
	BIND 8 Configuration File Statements
	acl
	controls (8.2+)
	include
	key (8.2+)
	logging
	options
	server
	trusted-keys (8.2+)
	zone

	BIND 9 Configuration File Statements
	Comments
	acl
	controls
	include
	key
	logging
	lwres
	masters
	options
	server
	trusted-keys
	view
	zone

	BIND Resolver Statements
	; and #
	domain
	nameserver
	options attempts (8.2+)
	options debug
	options ndots
	options no-check-names (8.2+)
	options timeout (8.2+)
	options rotate (8.2+)
	search
	sortlist

	BIND 9 Options Statement
	Definition and Usage
	Boolean Options
	Forwarding
	Dual-Stack Servers
	Access Control
	Interfaces
	Query Address
	Zone Transfers
	Bad UDP Port Lists
	Operating System Resource Limits
	Server Resource Limits
	Periodic Task Intervals
	Topology
	The sortlist Statement
	RRset Ordering
	Tuning
	Built-in Server Information Zones

	Index

