

 [image: Learning GNU Emacs, 3rd Edition]

 Learning GNU Emacs, 3rd Edition

Debra Cameron

James Elliott

Marc Loy

Eric S. Raymond

Bill Rosenblatt

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596006488/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Emacs is the most powerful text editor available today. Unlike most
other editors (in particular, unlike the standard Unix editor,
vi), Emacs is a complete working
environment. No matter what you do, you can start Emacs in the
morning, work all day and all night, and never leave it: you can use
it to edit, rename, delete, and organize files; to compile programs;
to run shell commands; and so on. Before windowing systems like X and
Microsoft Windows became popular, Emacs often served as a complete
windowing system of its own. All you needed was a terminal, and you
could live within Emacs forever. Emacs is also infinitely flexible;
you can write your own commands, change the keys that are associated
with commands, and (if you are willing to take the time) do just
about anything you want.

Why Read This Book?

Because it does so much, Emacs has a reputation for being extremely
complicated. We don’t think that’s
warranted; we teach you Emacs from the ground up, covering first the
basics and then some of the more advanced features.
In this book, we have tried to reach as broad an audience as
possible: from casual users to professional writers and web authors
to programmers to system administrators. No matter what you do with
Emacs, you will find it’s easy to learn; after one
or two sessions, you’ll know the basics of editing
any file. After you learn the basics, you can go on to learn about
more advanced topics that provide the real benefits of using Emacs.
These include:
	Using multiple windows and buffers so you can work on several files
at once

	Customizing keyboard commands

	Tailoring Emacs to fit your work style

	Making Emacs your work environment where you can do all your everyday
tasks, such as organizing files, compiling programs, and issuing
shell commands

	Creating macros to streamline repetitive tasks

	Using Emacs to support programming in many languages (including C,
C++, Lisp, Java, and Perl)

	Formatting files with various markup languages, such as HTML and XML

	Using word abbreviations to avoid spelling out long phrases or to
correct common misspellings

Of course, many of the topics may not apply to you; some topics may
be appropriate for a second reading but not for the first. Toward the
end of the preface, we’ll sketch several different
ways to approach the book, depending on your interests and
experience.

Which Emacs Is Which?

 Numerous
versions of Emacs are available, offering a wide range of features,
but two are in widespread use today: GNU Emacs and XEmacs. (An
exhaustive list of Emacs implementations can be found at
http://www.finseth.com/~fin/emacs.html.) XEmacs
was originally tailored for GUI usage and has a fairly wide user
base, but lacks some of the features of GNU Emacs.[1]

This book covers GNU Emacs. Since its appearance, GNU Emacs has
become the most popular, powerful, and flexible Emacs, and
there’s no reason to believe that this situation
will change. If you know GNU Emacs, you will be able to adapt to any
other Emacs implementation with no trouble; it’s not
so easy to go in the other direction.
This book, however, isn’t limited to GNU Emacs
users. Because of the similarities between different Emacs
implementations, this book should help you get started with any Emacs
editor. The basic keyboard commands change little from one editor to
another—you’ll find that C-n (for Ctrl-n) almost always means
“move to the next line.” Emacs
editors tend to differ in the more advanced commands and features,
but if you are using these more advanced facilities and you
aren’t using GNU Emacs, you should consider making
the switch.

[1] Quite a few issues come up in discussions of GNU Emacs versus XEmacs,
with character encoding schemes, user interface differences, and
copyright issues among them. We’re not interested in
taking sides in the battles between these emacsen.

What’s New in This Edition?

This third edition covers GNU Emacs 21, specifically 21.3 and even
more specifically 21.3.5.[2] This new edition has been completely revised and expanded
to cover new features and to meet the evolving needs of Emacs users.
Here are some of the highlights of what we’ve
changed:
	User interface changes, including the addition of an icon-based
toolbar, extensive changes to menus, and a more graphical interface
(Chapter 1)

	How Emacs interacts with the operating system clipboard, including
specific clipboard-related commands (Chapter 2)

	Dynamic abbreviations (Chapter 3)

	Expanded coverage of the directory editor, Dired, to help you
organize and work with files more efficiently (Chapter 5)

	Changes to the way Emacs handles tabs and indentation and how to get
Emacs to do what you want it to (Chapter 7)

	Artist mode for drawing with the mouse (Chapter 7)

	Inserting characters from other character sets in HTML files (Chapter 8)

	Using font-lock mode for coloring text for easier editing (Chapter 9)

	Expanded Java coverage, including how to install and use the Java
Development Environment for Emacs (JDEE) (Chapter 9)

	Perl support with Cperl mode (Chapter 9)

	Managing changes to large, multiple file projects more effectively
using etags (Chapter 9)

	Customizing Emacs through the interactive Custom interface or through
the .emacs startup file (Chapter 10)

	Expanded coverage of how version control mode connects with a variety
of change control systems, including CVS, RCS, Subversion, and SCCS
(Chapter 12)

	A new chapter on platform-specific considerations, including details
on how to install the latest version of Emacs on Unix, Windows, and
Mac OS X (Chapter 13)

[2] Typically we would not
find the need to be quite so specific, but the user interface changed
at Emacs 21.3.5; in particular you’ll notice
different toolbar icons if you have an earlier version.

GNU Emacs and the Free Software Foundation

 You don’t need to
know its history to use GNU Emacs, but its origins are an interesting
part of computer history. The Free Software Foundation (FSF), which
maintains and distributes GNU Emacs, has become an important part of
computer culture.

 A long
time ago (1975) at MIT, Richard Stallman wrote the first Emacs
editor. According to the folklore, the original Emacs editor was a
set of macros for TECO, an almost incomprehensible and now obsolete
line editor. The name Emacs stands for “Editing
Macros.” Tradition also has it that Emacs is a play
on the name of a favorite ice cream store. Much has happened since
1975. TECO has slipped into deserved obscurity, and Emacs has been
rewritten as an independent program. Several commercial versions of
Emacs appeared, of which Unipress Emacs and CCA Emacs were the most
important. For several years, these commercial implementations were
the Emacs editors you were most likely to run across outside of the
academic world.
Stallman’s Emacs became prominent with the birth of
the Free Software Foundation (FSF) and the GNU Project in 1984. GNU
stands for “GNU’s Not
Unix” and refers to a complete Unix-like operating
system (OS) that Stallman and his associates were building.
Stallman founded the FSF to guarantee that some software would always
remain free. Note that Free does not necessarily
mean cheap (you may have to pay a fee to cover the cost of
distribution); it most definitely does mean liberated from
restrictions about how it can be used and specifically how it can be
shared.
Stallman is widely recognized as the founder of the free software
movement, which was an important predecessor of the open source
movement. Linux is now the most prominent example of open source
software, and it falls under the GNU Public License or GPL (available
online at http://www.gnu.org/copyleft/gpl.html).
Stallman argues that much of Linux outside the kernel itself is GNU
software and so he refers to it as GNU/Linux. All controversies
aside, Stallman’s contribution to the open source
movement cannot be overestimated. GNU software and open source
software distributed under the GPL are a mainstay for developers and
computer users all over the world.

 The
FSF was created precisely to distribute programs under terms that
encourage you to share, rather than hoard, software. The GPL is
designed to prevent an unfortunately common practice—namely, a
company taking public domain code, making a few modifications and bug
fixes, and then copyrighting the modified version. Once a company
does this, the program has essentially become private property and
disappears from the public domain. Stallman formed the foundation
because he finds this practice abhorrent. As he explains in the GNU
Manifesto, “I cannot in good conscience sign a
nondisclosure agreement or a software license agreement . . . So that
I can continue to use computers without dishonor, I have decided to
put together a sufficient body of free software so that I will be
able to get along without any software that is not
free.” Elsewhere in the manifesto, Stallman calls
sharing software the “fundamental act of friendship
among programmers.” Their software is free because
it can be shared and will
always be shareable—without restriction.
FSF software is not under restrictive copyright laws, which Stallman
objects to in principle. In fact, he coined the term
copyleft to describe the FSF’s
sharable software base.[3]

Since GNU Emacs was first released, many other pieces of the GNU
operating environment have fallen into place: C and C++ compilers
(gcc and g++), a very
powerful debugger (gdb), substitutes for
lex and yacc (called flex and
bison, respectively), a Unix shell
(bash, which stands for
“Bourne-Again Shell”), the Gimp (a
graphics tool comparable to Adobe PhotoShop), GNOME (a desktop
environment for Linux), and many other programs and libraries. Many
important open source projects that originally used variants of the
GPL or other licensing schemes have adopted the GPL as their license,
including Python, Mozilla, and Zope. Author David Wheeler argues that
all open source projects should release their software under a
GPL-compatible license[4] (see http://www.dwheeler.com/essays/gpl-compatible.html
for his views and some statistics about GPL’d
software). With Linux, GNU tools, and other GPL’d
software, it’s possible to have a complete operating
environment consistent with the values set forth by the FSF.

[3] FSF programs such as Emacs
are often distributed with commercial systems. Even in these cases,
the General Public License guarantees your right to use and give away
their programs without restriction. Of course, the license does not
apply to other proprietary software with which GNU tools have been
shipped.

[4] GPL-compatible is a critical
distinction for many organizations. As our reviewer Mike Trent points
out, many organizations release their software under a modified GPL
because the GPL’s license is actually
“viral.” That is, if one line of
GPL’d code appears in a project, the entire project
must be GPL’d. This means corporations interested in
protecting their assets but still wanting to share code with the open
source community cannot use the GPL without some modification.

An Approach to Learning Emacs

This book is designed to get you started with Emacs as quickly as
possible, whether you are an experienced computer user or a novice.
The first two chapters give you the basics you need to know, and the
rest of the book builds on these basics. After the first two
chapters, you don’t have to read the rest
consecutively; you can skip to the topics that interest you.
Additionally, the book is designed to give you just the level of
hand-holding you want; you can either read the book in detail or skim
it, looking for tables of commands and examples.
Here are some reading paths you could take:
	
 If

 	
 Read

	
 You are a casual user

 	
 Preface, Chapter 1-Chapter 3, Chapter 14

	
 You are a programmer or system administrator

 	
 Preface, Chapter 1-Chapter 5, Chapter 9-Chapter 12

	
 You are a writer or production person

 	
 Preface, Chapter 1-Chapter 3, Chapter 7, Chapter 8, Chapter 14

	
 You want to customize Emacs

 	

 Chapter 10 and possibly Chapter 11

	
 You write HTML or XML

 	
 Preface, Chapter 1 - Chapter 3, Chapter 8

	
 You want to use operating system commands in Emacs

 	

 Chapter 5

	
 You use Emacs on Windows or Mac OS X

 	

 Chapter 13

These reading paths are offered only as a guideline. Emacs is one
gigantic, functionally rich editor. We’ve divided it
up into digestible bites for you, so you don’t have
to be put off by its size and scope. The best way to learn Emacs is
incrementally; learn a little now, then learn more features as you
get curious about them. If you need to do something and
don’t know how to do it in Emacs, Emacs probably
already does it; if it doesn’t, you can learn how to
write a Lisp function to add it to Emacs (see Chapter 11 for details). The online help system is an
excellent place to learn about new features on the fly; online help
is discussed in Chapter 1 and in more detail in
Chapter 14.
Here’s a list of some features you might want to
learn about on a rainy day:
	How to use multiple Emacs buffers, windows, and frames (Chapter 4)

	Word abbreviation mode (Chapter 3)

	Macros (Chapter 6)

	How to map function keys to Emacs commands (Chapter 10)

	How to issue (and edit) shell commands (Chapter 5)

	How to organize files in Emacs (Chapter 5)

	Using ediff to compare files (Chapter 12)

Here’s a quick summary of what’s in
each chapter:

 Chapter 1, Emacs Basics,
tells you how to start Emacs and how to work with files. It also
provides a quick introduction to the online help system.

 Chapter 2, Editing,
explains commands for moving around, copying and pasting text, and
undoing changes. It also introduces very basic customization.

 Chapter 3, Search and
Replace, covers more editing features, including search
and replace, word abbreviation mode, and spell checking.

 Chapter 4, Using Buffers, Windows,
and Frames, describes how to use multiple buffers and
windows, both Emacs-style windows (that divide a single OS window)
and traditional OS windows (which Emacs refers to as
frames). It also discusses how to bookmark your
place in large files.

 Chapter 5, Emacs as a Work
Environment, talks about issuing commands from within
Emacs, working with files and directories, and using basic time
management tools such as the calendar and diary.

 Chapter 6, Writing Macros,
discusses using macros to eliminate repetitive tasks.

 Chapter 7, Simple Text Formatting and
Specialized Editing, covers basic text formatting (such as
tabs, indentation, and centering) as well as some of the more
rarefied features, like outline mode and rectangle editing.

 Chapter 8, Markup Language
Support, describes Emacs support for HTML, XML, TEX, and
LATEX..

 Chapter 9, Computer Language
Support, covers Emacs as a programming environment,
including editing support for C, Java, Lisp, Perl, and SQL, as well
as the interface to compilers and the Unix make utility. It also describes the Java
Development Environment for Emacs (JDEE).

 Chapter 10, Customizing
Emacs, describes Emacs’s customization
facilities. The interactive Custom tool allows you to change
variables without editing your startup file. The chapter also
explains how to set up your .emacs customization
file. It describes how to modify your display, keyboard commands, and
editing environment as well as how to load Lisp packages for extra
functionality.

 Chapter 11, Emacs Lisp
Programming, describes the basics of Emacs Lisp, the
language you can use to further customize Emacs.

 Chapter 12, Version
Control, describes VC mode for version control and its
interface to CVS, RCS, Subversion, and SCCS.

 Chapter 13, Platform-Specific
Considerations, discusses how to install Emacs on Unix,
Windows, and Mac OS X. It also provides platform-specific information
for Windows and Mac OS X.

 Chapter 14, The Help
System, describes Emacs’s rich,
comprehensive online help facilities.

 Appendix A, Emacs Variables, lists many
important Emacs variables, including all the variables mentioned in
this book.

 Appendix B, Emacs Lisp Packages, lists some of
the most useful Lisp packages that come with Emacs.

 Appendix C, Bugs and Bug Fixes, tells you how
(and when) to report bugs you find in Emacs. It also describes how to
contribute to the GNU Project, whether through code enhancements or
monetarily.

 Appendix D, Online Resources, gives a tour of
some important Emacs-related web sites.

 Appendix E, Quick Reference, provides brief
descriptions of the most important Emacs commands discussed in this
book.
The book concludes with a glossary that defines Emacs terms
you’ll encounter, an index, and a detachable quick
reference card that summarizes important commands for easy access.

What We Haven’t Included

GNU Emacs is a large and powerful editor; in this book, we give you
only a sample of what it does. Many features have been left out, and
more features are added all the time. Some topics, however, are not
covered:

	Compatibility modes
	GNU Emacs provides compatibility modes for vi, for example. We’ve left a
discussion of these modes out. If you really want to use vi or another editor, do so.
You’re better off getting to know Emacs on its own
terms rather than pretending it is something else.

	Many programming language modes
	In this book, we discuss editing modes for C++, Java, Lisp, Perl, and
SQL. There are many modes for other languages, including rare
languages like Scheme. There’s no way we could
discuss everything.

	Advanced Lisp programming
	GNU Emacs incorporates a complete Lisp interpreter. We give a very
basic and brief introduction to Emacs Lisp; Chapter 11 should be enough to get you started, but it
really only scratches the surface. We recommend the
FSF’s Emacs Lisp Reference
Manual, now included in the Emacs distribution.

	Using Emacs to access the Internet
	When our last edition came out, it was common to use Emacs to access
Internet resources or read email. Now that isn’t so
common; better mailers, browsers, and other tools are commonly in use
on all platforms.

	Unicode support
	At present, Emacs is on its way to full Unicode support; that is the
most important change slated for the next major release. At this
writing, Unicode support is spotty.

	Games and amusements
	GNU Emacs includes an eclectic bunch of games and amusements,
including the ability to pipe random quotations from Zippy the
Pinhead into the famous “Eliza”
pseudopsychoanalyst. Emacs 21 includes a Games menu under Tools with
several cool ways to waste time in Emacs (and it
doesn’t even include Emacs’s
version of pong, one of our favorites). Alas, we had to draw the line
somewhere.

The Meta Key

Emacs commands consist of a modifier, such as Control, which you hold down as you would the
Shift key, and a series of
keystrokes. For example, Control-x
 Control-s saves a file.
The other modifier Emacs uses is the
Meta key. Few keyboards have keys
labeled Meta. Because of this, in
previous editions of this book, we refused to talk about the
Meta key and substituted Esc in all our instructions.
In this edition, we want you to learn
where the Meta key is. Typically
Meta keys are to the immediate left
and right of the Space bar. On Linux and Windows keyboards, the
Alt key is the Meta key. On Mac keyboards, the Apple key, often called Command is the Meta key by default.
Why learn about and use the Meta
key? The reason is speed. We emphasize key bindings in this book. New
users may find icons and menus helpful, but in the long run, learning
how to keep your hands on the keyboard allows you to gain speed and
boosts your productivity. The Meta
key will help you gain that speed and make it easy for you to use
Emacs help, which refers to Meta.
Depending on your style, you may still prefer to use Esc instead of Meta. Just bear in mind that with Esc you press and release the key, then press
the next key.

Conventions Used in This Book

This section covers the conventions used in this book.
Keystroke Notation

 Emacs commands
consist of a modifier, such as Ctrl
or Meta, followed by one or two
characters. Commands shown in this book abbreviate Ctrl to C
and Meta to M:
	
 C-g

	Hold down the Ctrl key and press
g.

	
 M-x

	Hold down the Meta key and press
x.

Sometimes Meta is followed by a
literal hyphen character. In these cases, we spell out Meta:
	
 Meta
 -

	Hold down the Meta key and press
-.

To complete a command you may need to press Enter. (This key may be labeled Return.)

	
 Enter

	Press the Enter key.

	
 Esc

	Can be used as an alternative to Meta. Press Esc, release it, then
press the next key.

A few mouse commands use the Shift
key as a modifier, often in combination with the Ctrl key. This is abbreviated as:
	
 S-right

	Hold down Shift and click the right
mouse button.

	
 C-S-right

	Hold down Shift and Ctrl and click the right mouse button.

All Emacs commands, even the simplest ones, have a full name; for
example, forward-word is equivalent
to the keystrokes M-f, and forward-char is equivalent to C-f. This tying of a command to a keystroke
combination is called a key binding. Some commands have only full
names, with no corresponding key binding.
When we discuss a command, we’ll give both its full
name and the keystrokes (if any) that you can type to invoke it.

Command Tables

To find a group of commands quickly, look for tables in each section
that summarize commands. These tables are formatted like this:
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-n

 	

 next-line

 	
 Move to the next line.

	

 C-x C-f
 File
 →
 Open File

 	

 find-file

 	
 Open a specified file.

	
 (none)

 	

 yow

 	
 Print ineffable wisdom from the Pinhead in the minibuffer.

The first column shows the default key binding for the command, the
second column shows the command’s full name, and the
third column describes what the command does. For example, pressing
C-n (also known as the next-line command) moves the cursor to the
next line in the file. Some commands, like C-x
C-f, can also be reached through menus. If there is a menu
option for a particular command, it is given in
italics below the keystrokes for the command.
For example, you can use the find-file command by typing C-x C-f or by selecting Open File from the File menu. Sometimes you’ll
see (none) in the keystrokes column, which
doesn’t mean you can’t use the
command, but rather that the command isn’t bound to
particular keystrokes. To use commands with no keystrokes, type
M-x, followed by the
command’s full name, and press Enter. (Try typing M-x
pong Enter sometime.)

Examples

Throughout the book, you’ll find keystrokes to type,
followed by a screenshot showing the results.
	
 Type: C-x C-f
 myfile

	

[image: image with no caption]

	
 Use the find-file command to open a
file or create a new file.

 C-x C-f is in bold, indicating that
this is exactly what you type. myfile is
shown in constant width italics because you could substitute any
filename you choose and need not type exactly what you see here.
Typically, these screenshots come from a Linux system. We also
include screenshots taken on Mac OS X and Windows. When we show such
screenshots, we include an indication of the platform in the caption
for the screenshot.
Toward the end of the book, when we’re discussing
programming modes, customization, and Lisp programming, screenshots
become rather unwieldy. We eventually use fewer of them. Instead, we
may show one or two lines of text. If it’s relevant,
we show the cursor’s position:
/* This is a c comment */

Font Usage

This book uses the following font conventions:
	
 boldface

	Indicates operating system commands, Emacs keystrokes, command names,
and variables.

	
 italic

	Indicates filenames, URLs, and new terms when first introduced.

	
 constant width

	Indicates buffer names, Lisp code, C code, Emacs messages, and other
excerpts from programs.

	
 constant width italic

	Indicates dummy parameters that you replace with an actual value. May
also be shown sometimes in angle brackets (<filename>).

How to Contact Us

We have tested and verified the information in this book to the best
of our ability, but you may find that features have changed (or even
that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	1-800-998-9938 (in the U.S. or Canada)
	1-707-829-0515 (international/local)
	1-707-829-0104 (FAX)

To ask technical questions or comment on the book, send email to:

 bookquestions@oreilly.com

We have a web site for the book, where we’ll list
examples, errata, and any plans for future editions. You can access
this page at:

 http://www.oreilly.com/catalog/gnu3/

[image: image with no caption]

When you see a Safari® enabled icon on the cover of your favorite technology book that means the book is available online through the O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-Books.
It’s a virtual library that let’s
you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you nee the
most accurate, current information. Try it free at http://safari.oreilly.com.
For more information about this book and others, see the
O’Reilly web site:

 http://www.oreilly.com

You can also send questions about Emacs and suggestions about this
book to deb@oreilly.com.

Acknowledgments

 Debra Cameron: First, I would like
to thank Duffy Craven for introducing me to Emacs. Second, I would
like to thank my coauthors. Bill Rosenblatt was a tremendous help on
the first edition of this book, and Eric Raymond worked with blinding
speed and brilliance on the second, providing some input on the third
as well. I would especially like to thank my coauthors Jim Elliott
and Marc Loy, without whom, in all honesty, this third edition would
never have been finished. Their constant encouragement, support, and
hard work helped make this edition a reality. I would like to thank
all the readers who wrote in with their suggestions, especially
Russell Harris, Seema Kumar, and Hui Oulan. I would also like to
thank Eric Pement, who pointed me to the very interesting TEI Emacs
add-on, as well as the authors of that extended environment for
Emacs, including Sebastian Rahtz and Syd Bauman. Personally, I would
like to thank my husband Jim and my kids Meg, David, Beth, and Kevin
for their patience and help during the revision of this book and also
my friends Irene and Jacki for their support. Most of all, I would
like to thank all the developers and hackers who continue to make GNU
Emacs the most amazing piece of software I have ever worked with.

 James Elliott: I have to thank Deb
for asking me to help people learn about Emacs. I’ve
long admired (and relied on) the editor and its ever-growing
ecosystem of tools and extensions, as well as the philosophy and
results of the Free Software Foundation. They represent a
distillation of what makes computing an interesting and valuable
field for me, and I am honored to be part of this project.
Ironically, I have to also thank Deb for letting me take a big chunk
of time off when my Hibernate book came into being.
Thanks are also due to Marc, both for initially introducing me to the
fine folks at O’Reilly and for his help and input on
this book. He ended up contributing more than he signed up for when I
got pulled away in the middle. Nor should I forget my fine colleagues
at GE’s Corporate Research and Development Center in
Niskayuna, New York who first introduced me to the mysteries of Emacs
as an intern there. I’m indebted to Joe for his love
and support. And let’s hear it for the cast of
thousands who have grown Emacs into what it is today!

 Marc Loy: I have the occasionally
lazy—no, let’s say overworked—staff at
the University of Southern California’s computer labs to thank for
getting me started on Emacs. They were out of vi cheat sheets when I sat down to write my
first computer program. (I won’t admit to the
language I had to use.) I’ve been grateful for that
happenstance ever since. I’d also like to thank Jim
and Deb for their cheery outlook on things as we finished up this
latest edition. As always, my sister Amy and my partner Ron remain
constant forces for good in my world and make all the silliness (like
politics) surrounding the fun stuff (like writing about Emacs)
tolerable.

 Eric Raymond: My thanks go first to
the hacker community at large, all the people who created the rich
tradition of Emacs Lisp programming that takes Emacs customization
from elegant theoretical possibility to practical tool. I learned
what I know partly from reading code written by the likes of Olin
Shivers, Jamie Zawinski, Kyle Jones, Barry Warsaw, Roland McGrath,
Richard Stallman himself (of course), and many others. Secondly, my
thanks and warmest love go as always to my wife Catherine, who
supported me on many levels while I worked on my bits of this book.
Finally, my thanks and respect to the hip, professional, and clueful
people at O’Reilly. They know how to produce a good
book and how to treat an author right. They care, and it shows.

 Bill Rosenblatt: I would like to
thank the following people: Professor Richard Martin (Princeton
Classics Department), for planting the seed in me that eventually
turned writing from a chore to a pleasure; Intermetrics, Inc., for
giving me little enough to do that I could fritter away my workdays
delving into GNU Emacs; Hal Stern, for getting me this gig; Sandy
Wise, for his help; Jessica Lustig, for her love and support; and
most importantly, my grad-school housemates for putting up with a
tied-up phone line at all hours of the day and night.

Chapter 1. Emacs Basics

Some of you out there are probably dying to get your hands on the
keyboard and start typing. We won’t try to stop you;
turn to the section called “Starting
Emacs” and you can go ahead. But do read the
beginning of this chapter later when you’re ready
for a break. Emacs is much easier to learn if you understand some of
the basic concepts involved, which we discuss in the following
introduction.

Introducing Emacs!

GNU Emacs is one of the

 most
commonly used text editors in the world today. Many users prefer
Emacs to vi (Unix’s
standard editor) or to other GUI text editors. Why is Emacs so
popular? It isn’t the newest tool, and
it’s certainly not the prettiest. But it may well be
the most useful tool you’ll ever learn. We want to
present what you need to know about Emacs to do useful work, in a way
that lets you use it effectively. This book is a guide for Emacs
users; it tries to satisfy the needs of many readers, ranging from
casual users to programmers.
Our approach therefore isn’t to tell you absolutely
everything that Emacs does. It has many features and commands that
this book doesn’t describe. We
don’t think that’s a problem; Emacs
has a comprehensive online help facility that helps you figure out
what these are. We focus our attention on describing how to get
useful work done. After covering basic editing in the first three
chapters, we describe how to use Emacs as a comprehensive working
environment: how to boost productivity with multiple buffers and
windows, how to give commands without leaving the editor, how to take
advantage of special editing modes, how to use Emacs for editing
special types of files (source files for various programming
languages), and so on. We cover the most important commands and the
most important editing modes. However, you should always keep one
principle in mind: Emacs does many things well, but it
isn’t important for that reason. Emacs is important
because of the integration of different things you need to do.

 What does
integration mean? A simple
example
will help. Assume that someone sends you a mail message describing a
special command for accessing a new printer. You can fire up an Emacs
shell, paste the command into Emacs, and execute it directly. If it
works, you can edit your startup file to create an alias for the
command. You can do all this without leaving the editor and without
having to retype the command once. That’s why Emacs
is so powerful. It’s more than just an editor;
it’s a complete environment that can change the way
you work.
An initial word of advice, too. Many people think that Emacs is an
extremely difficult editor to learn. We don’t see
why. Admittedly, it has a lot of features, and you probably will
never use all of them. But any editor, no matter how simple or
complex, has the same basic functions. If you can learn one, you can
learn any of them. We’ll give you the standard
mnemonic devices that will help you remember commands (like
"C-p means previous
line”), but we really don’t think
even these are necessary. They get you over an initial hump in the
learning process but don’t make much difference in
the long run. Learning to use an editor is basically a matter of
learning finger habits: learning where to put your fingers to move to the
previous line. If you experiment with Emacs and try typing a few of
our examples, you’ll quickly acquire these finger
habits. And after you’ve acquired these habits,
you’ll never forget, any more than
you’ll forget how to ride a bicycle. After using
Emacs for a day or two, we never had to think,
"C-p means previous
line.” Our fingers just knew where to go. Once
you’re at this point, you’re home.
You can become creative with Emacs and start thinking about how to
put its features to work for you. Emacs has extensive menus, but we
still recommend learning the key bindings for commonly used commands.
Good finger habits can make you an incredibly fast typist, and
reaching from keyboard to mouse only slows you down.
The finger-habits approach also implies a different way of reading
this book. Intellectually, it’s possible to absorb a
lot from one reading, but you can form only a few new habits each
day. (Unless, of course, they’re bad habits.) Chapter 2 covers most of the basic editing techniques
you’ll use. You may need to read it several times,
with a slightly different focus each time. For example, Emacs gives
you many different ways to move forward: you can move forward one
character, one word, one line, one sentence, one paragraph, one page,
and so on. All of these techniques are covered in Chapter 2. Start by learning how to move forward and
backward, then gradually add more complex commands. Similarly, Emacs
provides many different techniques for searching through a file,
covered in Chapter 3. Don’t
feel obliged to learn them all at once; pick something, practice it,
and move on to the next topic. No one will complain if you have to
work through the first three chapters of our book several times
before you’re comfortable. Time spent developing
good habits is time well spent.

Understanding Files and Buffers

You don’t really

 edit
files with Emacs. Instead, Emacs copies the contents of a file into a
temporary buffer and you edit that. The file on disk
doesn’t change until you save the buffer. Like
files, Emacs buffers have names. The name of a buffer is usually the
same as the name of the file that you’re editing.
There are a few exceptions. Some buffers don’t have
associated files—for example, *scratch* is
just a temporary practice buffer, like a scratchpad; the help
facility displays help messages in a buffer named
Help, which also isn’t
connected to a file.

A Word About Modes

Emacs achieves some of
its famed versatility by having various editing modes in which it
behaves slightly differently. The word mode may sound technical, but
what it really means is that Emacs becomes sensitive to the task at
hand. When you’re writing, you often want features
like word wrap so that you don’t have to
press Enter at the end of every
line. When you’re programming, the code must be
formatted correctly depending on the language. For writing,
there’s text mode; for programming, there are modes
for different languages, including C, Java, and Perl. Modes, then,
allow Emacs to be the kind of editor you want for different tasks.
Text mode and Java mode are

 major modes. A buffer can be in only one
major mode at a time; to exit a major mode, you have to enter another
one. Table 1-1 lists some of the major modes, what
they do, and

 where they’re covered in
this book.
Table 1-1. Major modes
	
 Mode

 	
 Function

	
 Fundamental mode

 	
 The default mode (Chapter 6)

	
 Text mode

 	
 For writing text (Chapter 2)

	
 View mode

 	
 For viewing files but not editing (Chapter 4)

	
 Shell mode

 	
 For running a shell within Emacs (Chapter 5)

	
 Outline mode

 	
 For writing outlines (Chapter 7)

	
 Indented text mode

 	
 For indenting text automatically (Chapter 7)

	
 Paragraph indent text mode

 	
 For indenting the first line of each paragraph (Chapter 7)

	
 Picture mode

 	
 For creating ASCII drawings using the keyboard (Chapter 7)

	
 HTML mode

 	
 For writing HTML (Chapter 8)

	
 SGML mode

 	
 For writing SGML and XML (Chapter 8)

	
 LaTeX mode

 	
 For formatting files for TEX and LATEX (Chapter 8)

	
 Compilation mode

 	
 For compiling programs (Chapter 9)

	
 cc mode

 	
 For writing C, C++, and Java programs (Chapter 9)

	
 Java mode

 	
 For writing Java programs (Chapter 9)

	
 Perl mode and Cperl mode

 	
 For writing Perl programs (Chapter 9)

	
 SQL mode

 	
 For interacting with databases using SQL (Chapter 9)

	
 Emacs Lisp mode

 	
 For writing Emacs Lisp functions (Chapter 9 and Chapter 11)

	
 Lisp mode

 	
 For writing Lisp programs (Chapter 9
and Chapter 11)

	
 Lisp interaction mode

 	
 For writing and evaluating Lisp expressions (Chapter 9 andChapter 11)

 Whenever
you edit a file,

 Emacs attempts to put you into the
correct major mode for what you’re going to edit. If
you edit a file that ends in .c, it puts you
into cc mode. If you edit a file that ends in
.el, it puts you in Lisp mode. Sometimes it
looks at the contents of the file rather than just its name. If you
edit a file formatted for TEX, Emacs puts you in LaTeX mode. If it
cannot tell what mode you should be in, it puts you in fundamental
mode, the most general of all. Because Emacs is extensible, add-in
modes are also available; we talk about some in this book, though we
do not list them in Table 1-1.

 In addition to
major modes
 there are also minor
modes. These define a particular aspect of
Emacs’s behavior and can be turned on and off within
a major mode. For example, auto-fill mode means that Emacs should do
word wrap; when you type a long line, it should automatically make an
appropriate line break. Table 1-2 lists some minor
modes, what they do, and where they’re covered in

 this book.
Table 1-2. Minor modes
	
 Mode

 	
 Function

	
 Auto-fill mode

 	
 Enables word wrap (Chapter 2).

	
 Overwrite mode

 	
 Replaces characters as you type instead of inserting them (Chapter 2).

	
 Auto-save mode

 	
 Saves your file automatically every so often in a special auto-save
file (Chapter 2).

	
 Isearch mode

 	
 For searching (Chapter 3).

	
 Flyspell mode

 	
 For flyspell spell-checker (Chapter 3).

	
 Flyspell prog mode

 	
 For spell-checking programs with flyspell (Chapter 3).

	
 Abbrev mode

 	
 Allows you to use word abbreviations (Chapter 3).

	
 Paragraph indent text mode

 	
 For indenting the first line of each paragraph (Chapter 7).

	
 Refill mode

 	
 A mode in which Emacs attempts to fill paragraphs as you edit them (a
bit experimental; mentioned in Chapter 2).

	
 Artist mode

 	
 For creating ASCII drawings using the mouse (Chapter 7).

	
 Outline mode

 	
 For writing outlines (Chapter 7).

	
 SGML name entity mode

 	
 For inserting special characters in HTML, SGML, and XML documents
(Chapter 8).

	
 ISO accents mode

 	
 For inserting accented characters in text files.

	
 Font lock mode

 	
 For highlighting text in colors and fonts to improve readability
(separating, for example, comments from code visually) (Chapter 9).

	
 Compilation mode

 	
 For compiling programs (Chapter 9).

	
 Enriched mode

 	
 For saving text attributes (Chapter 10).

	
 VC mode

 	
 For using various version control systems under Emacs (Chapter 12).

	
 Info mode

 	
 A mode for reading Emacs’s own documentation (Chapter 14).

You may have noticed

 that several modes, including paragraph
indent text mode, outline mode, and compilation mode, are both major
and minor modes. Each can be used alone—as a major
mode—or with another major mode as a minor mode.
There are many other modes that we won’t discuss,
including modes for some obscure but interesting programming
languages (like Modula-2). There are also some other modes that Emacs
uses itself, like Dired mode for the directory editing feature
(described in Chapter 5).
In addition, if you’re good at Lisp programming, you
can add your own modes. Emacs is almost infinitely extensible.

Starting Emacs

To start Emacs,

 simply click on the Emacs icon or type
emacs on the command line and press
Enter.[1]

	
 Click on the Emacs icon or, from the command line, type: emacs Enter

	

[image: image with no caption]

	
 Starting Emacs.

You’ll see a short message describing a few
important menu items and the version of Emacs that
you’re running. It may appear as a graphical splash
screen (like the one shown here) or a text splash screen. This
message disappears as soon as you type the first character. Emacs
then puts you in an (almost) empty buffer called
scratch, an ideal place for you to experiment.

[1] How you start Emacs may vary by platform.
Linux has no icon on the desktop by default; Windows and Mac OS X do
(if you’ve installed Emacs on these platforms). Note
that Mac OS X comes with a version of GNU Emacs installed in
/usr/bin, and that is what runs by default when
you start up Emacs using the Terminal application. You
won’t be able to use the mouse at all if you run
Emacs in the Terminal application, and there are a number of other
limitations as well. Better versions of GNU Emacs are available to
you; see Chapter 13 for details.

About the Emacs Display

When you enter

 Emacs,
you see a large workspace near the top of the window where you do
your editing. (See Figure 1-1.)
[image: Understanding the Emacs display]

Figure 1-1. Understanding the Emacs display

A cursor marks your position. The

 cursor
is also called point, particularly among people
who are more familiar with Emacs and in the online help system;
therefore, it’s useful to remember this term.
You don’t have to do anything special before you
start typing. As long as you type alphanumeric characters and
punctuation, Emacs inserts them into your buffer. The cursor
indicates where Emacs inserts the new characters; it moves as you
type. Unlike many editors (particularly vi), Emacs does not have separate modes for
inserting text and giving commands. Try typing something right now,
and you’ll begin to see how easy Emacs is to use.
(If you get stuck for any reason, just press C-g.)
The Toolbar

The toolbar is a new feature
in Emacs 21. Its
basic icons and their functions are listed in Table 1-3. Note that the toolbar is context sensitive;
in some modes, such as the Info mode for reading the Emacs manual,
the toolbar changes to provide browsing help. We’ll
discuss those icons

 when we cover the relevant modes.
Table 1-3. Icons on the Emacs toolbar
	
 Icon

 	
 Function

 	
 Where to learn more

	

[image: image with no caption]

 	
 Find a file or create a new file (supplying the filename).

 	
 This chapter

	

[image: image with no caption]

 	
 Start the directory editor so you can manipulate files and folder.

 	

 Chapter 5

	

[image: image with no caption]

 	
 Kill the current buffer.

 	

 Chapter 4

	

[image: image with no caption]

 	
 Save current buffer in its associated file.

 	
 This chapter

	

[image: image with no caption]

 	
 Save current buffer as a different file.

 	
 This chapter

	

[image: image with no caption]

 	
 Undo.

 	

 Chapter 2

	

[image: image with no caption]

 	
 Cut text that comprises the current region.

 	

 Chapter 2

	

[image: image with no caption]

 	
 Copy text in current region.

 	

 Chapter 2

	

[image: image with no caption]

 	
 Paste cut or copied text.

 	

 Chapter 2

	

[image: image with no caption]

 	
 Search for a string.

 	

 Chapter 3

	

[image: image with no caption]

 	
 Print page (with headings).

 	

 Chapter 5

	

[image: image with no caption]

 	
 Customize using interactive interface.

 	

 Chapter 10

	

[image: image with no caption]

 	
 Start online help system.

 	

 Chapter 14

If you don’t like the toolbar, you

 can
hide it using a menu option (Options→ Show/Hide→
Toolbar), and choosing Options→ Save Options. For more
information, see Section 2.7 at the end of Chapter 2.

The Menus

The menu bar menu lists the options File, Edit, Options,
Buffers, Tools, and Help; you can explore them to see what options
are available.
In addition to navigating

 the menus using the mouse, Emacs now
offers pop-up menus. In the Emacs window, hold down Ctrl and click the right mouse button to pop
up the Edit menu.[2]

You can access menus without

 a mouse using the keyboard. In this
case, using keyboard commands is much more efficient than menus, but
for completeness, we’ll show you how to use the
text-based menus. (If you prefer to use the mouse with Emacs but have
access only to a text interface, see Chapter 13
to learn how to download and install a version of Emacs that runs
graphically on Unix, Linux, Mac OS X, or Windows.)
If your mouse does not work with the menus, press F10 or M-` (a
back quote, the single open quotation mark, located above the
Tab key in the upper-left corner of
many keyboards) to access them.
	
 Press: F10

	

[image: image with no caption]

	
 Using text-based menus (Emacs 21.2 on Mac OS X Terminal application).

 You can select
text-based menu

 options in three ways:
	
 You can press Enter to select the default option that
appears in the minibuffer. If you want a different one, press the up
or down arrow key until the option you want appears and press
Enter.

	You can type the letter preceding the option in the
Completions buffer. For example, type f to choose File.

	You can press PgUp to move to the
Completions buffer, then use the arrow keys to
move to the option you want. Press Enter. (On Mac OS X, press Shift-PgUp instead.)

After you select a menu option, choices for that menu appear. Repeat
the process until you find the option you’re looking
for.

The Mode Line

Just above the
bottom of the window (on the second-to-last line), Emacs prints a lot
of information about what it’s doing. This line is
called the mode line. At the beginning of the
mode line, you may see some information about the coding system that
Emacs is using for the file; usually you’ll see just
--:, indicating that there is no unusual encoding
scheme in place. Near the left edge of the mode line, you may see two
asterisks (**). These

 asterisks indicate that
you’ve modified whatever you’re
editing. If you haven’t made any changes, the
asterisks won’t be there. Next, Emacs prints the
name of the buffer
 you
are editing (*scratch*). Following this, Emacs
shows where you are in the buffer—your position relative to the
rest of the file and what line you are on (L5 for
line 5 in Figure 1-1). If you’re
at the beginning of the file, Emacs prints the word
Top; if you’re at the end, it
prints Bot; if you’re in the
middle, it shows you a percentage (for example,
50% means you’re looking at the
midpoint); and if the entire file is visible, Emacs prints the word
All. In parentheses following this is the editing
mode or modes you are in, in this case Lisp
Interaction is the major mode (no minor modes are active).
The scrollbar on the side of the window also indicates your position
in the file.[3]

You will often work with several buffers simultaneously. In this
case, each buffer has its own mode line, and when you switch buffers,
the mode line reflects the state of the current buffer.
Don’t worry about this for now; just remember that
every buffer has a mode line to describe it.

The Minibuffer

Below

 the
mode line is the minibuffer. This is the area
where Emacs echoes the commands you enter and where you specify
filenames for Emacs to find, values for search and replace, and so
on. It is also where Emacs displays error messages. If you find
yourself stuck in the minibuffer, press C-g to get out again.

[2] Emacs works
best with a three-button mouse (more buttons are okay, too).

[3] The scrollbar’s
location depends on the platform and windowing system
you’re using. Linux puts scrollbars on the left
while Mac OS X and Windows put them on the right by default. Note
also that the order of the information in the mode line is different
if you run Emacs in a terminal window.

Emacs Commands

You’re about to start
learning some Emacs
commands, so let’s discuss them a bit first. How do
you give commands? Each command has a formal name, which (if
you’re fastidious) is the name of a Lisp routine.
Some command names are quite long; you usually
wouldn’t want to type the whole thing. As a result,
we need some way to abbreviate commands.
Emacs ties a command name to a short sequence

 of
keystrokes. This tying of commands to keystrokes is
known as
binding. Even things you don’t
normally think about as commands, such as inserting the characters
that you type, are handled through the binding mechanism. Keys like
“A” are bound to the Emacs command
self-insert-command, which inserts
them into the buffer you are editing.[4] Most actions that you would normally think
of as editor commands are bound to keystroke sequences starting with
Ctrl or Meta. Emacs also binds some commands to mouse
clicks (alone or modified by Shift
or Ctrl) and to options on menus.
The authors of Emacs try to bind the most frequently used commands to
the key sequences that are the easiest to reach. Here are the
varieties of key sequences you’ll encounter:
	The

 most commonly used commands (such as
cursor movement commands) are bound to C-
 n (where
n is any character). To press C-
 n, press and hold the
Ctrl key and press
n, then release both keys.

	Slightly
 less commonly
used commands are bound to M-
 n. To press M-
 n, press and hold the
Meta key (usually next to the space
bar), then press n.

	Other commonly used

 commands are bound to C-x
 something (C-x followed by something else—one or
more characters or another control sequence). Among other types of
commands, file manipulation commands, like the ones you are about to
learn, are generally bound to C-x
 something.

	Some

 specialized commands are bound to
C-c
 something.
These commands often relate to one of the more specialized modes,
such as Java mode or HTML mode. You won’t encounter
them until later in this book.

	This list still doesn’t take care of all the
possibilities. You can get at the remaining commands by typing
M-x
 long-command-name
 Enter. (This works for any command really,
but the keystrokes are usually easier to learn.)

You can define your own key
bindings, too, and you should do so if you find yourself using the
long form of a command all the time. More on this topic in Chapter 10.
You can also access common commands through menus, but for maximum
productivity, we recommend you learn the keystrokes, often given in
parentheses following the menu option.

[4] In certain
special editing
modes, such as dired-mode for
viewing and manipulating directories on your computer, the normal
typing keys don’t insert themselves. They are
instead bound to special commands that do things like opening and
renaming files. This flexibility in defining and changing
keymaps, while it might seem somewhat arbitrary
and overwhelming at first, is one of the great sources of power in
Emacs.

Opening a File

You can open a file by specifying

 the filename when you start Emacs from the
command line or by typing C-x C-f
(the long command name is find-file).
The paper icon on the toolbar also runs this command. In some
applications, a similar icon simply creates a new, unnamed file
(e.g., Document1 in Word). Emacs expects you to
provide a filename, as we’ll see in a moment.
	
 Press: C-x C-f

	

[image: image with no caption]

	
 Emacs prompts you for a filename.

To press C-x C-f, hold down
Ctrl, press x and then press f. Now release Ctrl.
After you press C-x C-f, Emacs uses
the minibuffer to ask you for the filename. Whenever Emacs wants
input from you, it puts the cursor in the minibuffer. When
you’re done typing in the minibuffer, press Enter.
	
 Type: newfile
 Enter

	

[image: image with no caption]

	
 Emacs starts another buffer with the new file in it.

What if you try to read the same file twice? Instead of creating a
new buffer, Emacs just moves you to the buffer the file is in.
You can also open a file in Emacs by dragging and dropping it on an
Emacs window or on the Emacs icon.
Now is a good time to try typing if you haven’t
already done so. You may find yourself wanting to learn more about
cursor movement and editing; that’s fine. Feel free
to skim the rest of this chapter and go on to Chapter 2. We recommend that you read the sections on
saving files and exiting Emacs. There’s also a table
of commands at the end of this chapter for future reference. If
you’d like to learn more about working with files as
well as some shortcuts, stay with us through the rest of the chapter.
If You Read the Wrong File

If you happen to read
 the wrong file, an easy way to get
the right file is by typing C-x C-v
(for find-alternate-file). This
command means “Read a different file instead of the
one I just read.” After typing C-x C-v, Emacs puts the name of the current
file in the minibuffer; you can then correct a typo or the path, the
most common reasons for finding the wrong file. Make the correction
and press Enter. Emacs replaces the
buffer’s contents with the alternate file.

Letting Emacs Fill in the Blanks

Emacs has a very

 helpful feature known as completion. If
you want an existing file, you need only type the first few letters
of the name, enough to uniquely identify the filename. Press
Tab, and Emacs completes the
filename for you. For example, suppose you are trying to find a file
called dickens.
	
 Type: C-x C-f di

	

[image: image with no caption]

	
 After C-x C-f, Emacs prompts you for
the filename; type the first few letters.

	
 Press: Tab

	

[image: image with no caption]

	
 When you press Tab, Emacs fills in
the rest of the filename.

	
 Press: Enter

	

[image: image with no caption]

	
 Emacs reads the file dickens.

If more than one file starts with di, Emacs
displays a window with various files that start with that string. You
select one by typing a few more characters (enough to identify your
file as unique) and pressing Tab
again. Or you can select one of the alternatives with the mouse or by
pressing PgUp to move to the
completions window, moving to the desired option, then pressing
Enter.
Completion also works for long command names. It’s a
wonderful Emacs feature that can save you time—and show you
some commands you might not know existed in the process. Chapter 14 provides more details on the glories of
completion.

Inserting and Appending Files

If you
 want to insert one file
into another, you simply move to the appropriate location in the file
and type C-x i. (Yes, we know, we
haven’t told you how to move around in a file yet.
Use the arrow keys for now and we’ll teach you the
“real” Emacs cursor movement
commands in Chapter 2.) To append a file, move
to the end of the file (M->) and
type C-x i. As with C-x C-f, Emacs prompts you for the filename in
the minibuffer.

How Emacs Chooses a Default Directory

When

 you use any command that asks for a
filename (such as C-x C-f), Emacs
displays a default directory in the minibuffer and asks you to type
the rest of the filename. How does Emacs choose the default
directory? The default directory is taken from the buffer that the
cursor is currently in. If you are editing a file in your home
directory when you type C-x C-f,
Emacs assumes you want to edit another file in your home directory.
If you are editing the file
/sources/macros/html.macs then Emacs makes the
default directory /sources/macros. If you want
to find a file in another directory, edit the default directory that
Emacs displays.

Saving Files

To save the

 file
you are editing, type C-x C-s. Emacs
writes the file. To let you know that the file was saved, it puts the
message Wrote filename in the minibuffer. If you
haven’t made any changes to the file, Emacs puts the
message No changes need to be saved in the
minibuffer. You can also get to this option by pressing the diskette
on the toolbar or choosing Save (current buffer) from the File menu.
If you decide to save something you’ve typed in the
scratch buffer by typing C-x C-s, Emacs asks you for a filename. After
you give it a filename, Emacs changes the mode line accordingly.
A related command is write-file
(C-x C-w). It is the Emacs
equivalent of the Save As option found on many
applications’ File
 menus.
The write-file command asks you to
type a new filename in the minibuffer. However, if you just press
Enter instead of typing a new
filename, write-file saves the file
with its old name—just as C-x
C-s would have done. (It does ask if you want to replace
the current file with the one in this buffer, however.)
The write-file command is useful for
editing files that you do not have permission to change. Use the
find-file command

 to
get the file you want into a buffer, and then use write-file to create your own private version,
with a different name or path. This maneuver allows you to copy the
file to one that you own and can change. Of course, the original file
is not affected.

Leaving Emacs

To quit
 Emacs,
type C-x C-c or close it like you
would any other application. If you have made changes to a buffer,
Emacs asks you if you want to save them.[5] If you type y, Emacs writes the file, then exits. If you
type n, Emacs asks you to confirm
that you want to abandon the changes you made by typing yes or no in
full. If you type no, your normal
Emacs session continues just as if you never attempted to exit. If
you type yes, you exit Emacs and the
changes you made during this session do not become permanent. Leaving
without saving changes can be useful if you make changes you
didn’t intend
 to make.
By the way, Emacs is picky about whether you type y or yes.
Sometimes it wants one, sometimes the other. If it asks for a
y, you can sometimes get away with
typing yes but not vice versa. If it
beeps and displays, Please answer yes or no, you
didn’t enter the whole word and it wants you to.

[5] One
exception to this rule is the *scratch* buffer.
It’s a scratchpad and Emacs assumes you were
doodling, not doing serious artwork, so to speak. If you do any
serious work in the *scratch* buffer, you must
save it explicitly.

Getting Help

Emacs has extensive online help, which is discussed further in
Chapter 14. You can enter help through the
lifesaver icon on the toolbar or through the Help menu. Either method
will show you a help menu,
 described
later in this section. To enter help using the keyboard, press
C-h. Pressing C-h ? gives you a list of options. Pressing
C-h t starts a tutorial that is an
excellent introduction to Emacs.
To get information about the meaning of a keystroke combination,
press C-h k for describe-key. For example, if you type
C-h k C-x i, Emacs displays a
description of the insert-file
command, which is bound to C-x i.
Pressing C-h f (for describe-function) asks Emacs to describe a
function (really just a command name, such as find-file). Essentially, C-h k and C-h
f give you the same information; the difference is that
with C-h k, you press a key whereas
with C-h f, you type a command name.
Assume you want to find out about what C-x
i does.
	
 Type: C-h k

	

[image: image with no caption]

	
 Asking for help about a keyboard command.

	
 Type: C-x i

	

[image: image with no caption]

	
 Emacs splits the screen to display help.

A few things to notice: the window

 is
now split into two parts because you’re looking at
two separate buffers. Each buffer has its own mode line. The lower
buffer is the *Help* buffer; it contains the
information about the insert-file
command. Emacs keeps the cursor in the dickens
buffer because there’s no good reason for you to
edit the *Help* buffer.
You might also notice that in

 the
text describing this command, Emacs calls the cursor
point. This term is used throughout Emacs to
refer to the cursor; you’re bound to encounter it.
To make the *Help* buffer disappear, press
C-x 1 (we cover this command in
Chapter 4).
The Help Menu

You can also use the Help menu to access help

 commands quickly, and you can get there
either through the menu or through the lifesaver on the toolbar. On
this menu, you find options we’ve discussed here:
Emacs Tutorial, Describe→ Describe Key, and
Describe→ Describe Function. It includes a host of
interesting options, including access to the Emacs frequently asked
questions (FAQ) file, a new search feature, and even an Emacs
psychiatrist (you might tell it something like
“Emacs is driving me over the edge
today”). There’s an interface to
Info, Emacs’s online documentation. Simply choose
Read the Emacs Manual to start Info.
In this section, we’ve given a very brief
introduction to a few of the paths you can take in the help system.
There are many more help facilities; they are described thoroughly in
Chapter 14. The help features
we’ve described here should be enough to get you
started; if you want to learn more, jump ahead to Chapter 14.

Summary

Now you know the basic commands for starting and stopping Emacs and
for working with files. Chapter 2 builds on

 these commands to give you the skills
you need for editing with Emacs. Table 1-4
summarizes the commands we covered in this chapter.
Table 1-4. File handling commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x C-f
 File
 →
 Open File

 	

 find-file

 	
 Find file and read it in a new buffer.

	

 C-x C-v

 	

 find-alternate-file

 	
 Read an alternate file, replacing the one read with C-x C-f.

	

 C-x iFile → Insert File

 	

 insert-file

 	
 Insert file at cursor position.

	

 C-x C-sFile → Save (current
buffer)

 	

 save-buffer

 	
 Save file.

	

 C-x C-wFile → Save Buffer As

 	

 write-file

 	
 Write buffer contents to file.

	

 C-x C-cFile → Exit Emacs

 	

 save-buffers-kill-emacs

 	
 Exit Emacs.

	

 C-h

 	

 help-command

 	
 Enter the online help system.

	

 C-h fHelp → Describe
Function

 	

 describe-function

 	
 Gives online help for a given command name.

	
	
	

	

 C-h kHelp → Describe Key

 	

 describe-key

 	
 Gives online help for a given keystroke sequence.

	

 C-h tHelp → Emacs Tutorial

 	

 help-with-tutorial

 	
 Start the Emacs tutorial.

	

 C-h iHelp → Browse Manuals

 	

 info-goto-emacs-command-node

 	
 Start the Info documentation reader.

Problems You May Encounter

	
 Emacs doesn’t do what this
book says or look like our screenshots. Make sure that you
have GNU Emacs 21.3.5
or
later running by typing M-x version
Enter or selecting Help→ About Emacs. Read the
section “Making Emacs Work the Way You
Want” in Chapter 2. You may
need to install a graphical version of Emacs if you are running in a
terminal window; see Chapter 13 for details.

	
 The toolbar icons are completely
different. The icons changed between Emacs 21.3.1 and
Emacs 21.3.5. The older

 icons do the same thing; the newer ones
are substantially better looking and more intuitive. Upgrade Emacs
using instructions in Chapter 13.

	
 You can’t access menus using
the mouse. Use

 the text-based menus instead by
pressing F10 or M-`. Better yet, install a graphical version
of Emacs using the instructions in Chapter 13.

	
 PgUp doesn’t work
properly
 when
using text-based menus. PgUp is
probably bound to some application-specific function, such as
scrolling in the Mac OS X Terminal application. Press Shift-PgUp, F10, or M-`
to access the menus.

	

 You can’t see a mode line or
minibuffer. Your

 Emacs
window is bigger than your display. See Chapter 10 for information on how to get Emacs to
start with a reasonable window size. As a temporary workaround,
resize the window. (On some Windows systems, maximizing the window
ironically makes it smaller, solving the problem.)

Chapter 2. Editing

Now that you know how to enter and exit Emacs as well as the basics
of working with files, it’s time to learn how to
move around in and edit files. Emacs offers lots of ways to move
around in files. At first, you might find it confusing that there are
so many ways to do the same thing. Be patient—as you learn, the
confusion will lessen, and you’ll begin to
appreciate the
variety
of Emacs commands. The more ways you learn, the fewer keystrokes
you’ll need to get to the part of the file you want
to edit.
If you want to practice commands while you’re
reading—which will help you learn faster—start by typing
a page or two from anything you happen to have handy; the newspaper
is fine. That will give you some text to work with as you learn the
editing skills described in this chapter. Don’t
worry if you make mistakes; just keep on typing. You can correct any
mistakes after you learn the basic editing skills outlined here.
Learning any editor is primarily a matter of forming certain finger
habits rather than memorizing what the book says. You will learn the
right finger habits only if you start typing.
When you are typing and you get to the right side of the display, you
have two options. You can press Enter to go to the next line, or you can keep
typing. If you type a long line and don’t press
Enter, Emacs waits until you reach
the end of the display. Then it puts a curved arrow at the end of the
line and one at the beginning of the next line as a visual indication
that the next line is a continuation of the previous line (see Figure 2-1). If Emacs is run in a nongraphical
environment, a backslash (\) is used instead.
[image: Graphical versions of Emacs use curved arrows to indicate that a line is continued; terminal versions use backslashes]

Figure 2-1. Graphical versions of Emacs use curved arrows to indicate that a line is continued; terminal versions use backslashes

Refill mode is a minor mode that

 keeps
paragraphs neat as you edit them. It is not on by default. Look at
the mode line. If the word Refill appears, you are
in refill mode already. If not, you can turn it on for this buffer
only by typing M-x refill-mode
Enter. If you decide that you don’t like
refill mode, type M-x refill-mode
Enter again. This command is like a light switch: it
toggles refill mode on and off.
You may decide that you want to enter refill mode automatically
whenever you edit. We’ll describe how to do so at
the end of this chapter.
In some contexts, refill mode can be annoying, and it is still a work
in progress according to the Emacs manual. You
m
 ay
prefer auto-fill mode. You enter it in the same way; type M-x auto-fill-mode Enter. The word
Fill appears on the mode line.
When you type paragraphs, auto-fill mode formats them. When you edit
them, however, auto-fill mode does not automatically reformat them.
You do that yourself using the fill-paragraph command, M-q.
If you turn on refill mode and then decide to use auto-fill mode, you
still have to turn refill mode off explicitly by typing M-x refill-mode Enter. Otherwise, both modes
appear on the mode line, and refill mode continues its merry
automatic reformatting of paragraphs, ignoring the fact that
auto-fill mode has been enabled.
Watch out for one important pitfall when reformatting paragraphs. In
text mode, a paragraph is any text that is indented or has a blank
line before and after it. If you have a file with no blank lines,
Emacs thinks it is all one long paragraph. Typing M-q takes all the text, ignoring line breaks,
and makes it one long paragraph. This command is a particular problem
if you have a data file, a program, or if you just prefer to write
files with no blank lines. Luckily, pressing C-_ or C-x u
(both for undo) magically puts
things back the way they were. If you regularly create files with no
blank lines, here are some suggestions:
	Instead of writing
 in text mode, use paragraph indent
text mode. In this mode, a line that starts with any blank space is a
new paragraph. Type M-x
paragraph-indent-text-mode to start this mode;
you’ll see Parindent on the mode
line. See Chapter 6 for more details.

	Use a specific mode rather than text mode for writing. For example,
use HTML mode or LaTeX mode, described in Chapter 8, for editing files of these types. These
special modes redefine what a paragraph means so that the fill-paragraph command works correctly.
Otherwise, these modes are very similar to text mode.

	Instead of filling a paragraph, fill
a marked section of
text called a region (we’ll
discuss regions later in this chapter). Define the region you want to
fill and press M-x fill-region
Enter. This command takes a region and formats each
individual paragraph within it.

 Table 2-1 lists commands for filling text
automatically and reformatting paragraphs with auto-fill

 mode.
Table 2-1. Text filling and reformatting commands
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none) [1]

 	

 refill-mode

 	
 Toggle refill mode, in which Emacs automatically reformats text.

	
 (none)Options
 →
 Word Wrap in Text Modes

 	

 auto-fill-mode

 	
 Toggle auto-fill mode, in which Emacs formats paragraphs as you type
them.

	

 M-q

 	

 fill-paragraph

 	
 Reformat paragraph.

	
 (none)Edit
 →
 Fill

 	

 fill-region

 	
 Reformat individual paragraphs within a region.

	[1] Remember that
(none) in the first column means that you type
M-x followed by the command name in
the second column, then press Enter
to run the command. There are no default keystrokes. To use the
refill-mode command, type M-x refill-mode Enter.

Moving the Cursor

The easiest way to move the cursor
 is to click the left button on
your mouse or to press the arrow keys. However, it’s
a hassle to reach for a mouse all the time. Learn to use keyboard
commands to move around so that you will ultimately achieve blinding
speed and maximum productivity in Emacs.
To use Emacs commands to move
the cursor forward one space, type
C-f (f for
“forward”). As you might guess,
C-b moves the cursor backward. To
move up, type C-p (for previous-line), and to move down, type
C-n (for next-line). It’s easier to
memorize commands if you remember what the letters stand for.

 Figure 2-2 illustrates how to move up, down, left,
and right using Emacs commands.
[image: Basic cursor motion]

Figure 2-2. Basic cursor motion

If you’re at the end of a line, C-f moves to the first character on the next
line. Likewise, if you’re at the beginning of a
line, C-b moves to the last
character of the previous line. If there’s no place
to go, Emacs beeps and displays the message Beginning of
buffer or End of buffer.
Other Ways to Move the Cursor

Now we’ll learn some more advanced ways to move the
cursor. One common way is moving forward and

 backward by word: M-f moves forward a word;
M-b moves
backward a word. You can also move to the
beginning or end of the line. C-a
moves you to the beginning of the line (just like
a is the beginning of the alphabet). C-e moves you to the end
of the line. To move backward one sentence, type M-a; to move forward one sentence, type
M-e. To move forward a whole
paragraph at a time, type M-}; to
move backward a paragraph, type M-{.
If you’re in the middle of a sentence or paragraph,
moving back a sentence or paragraph actually takes you to the
beginning of the current sentence or paragraph.

 Figure 2-3 uses a few paragraphs of Victor
Hugo’s Les
Misérables to show how you can move the cursor
more than one character at a time.
[image: Moving the cursor more than one character at a time]

Figure 2-3. Moving the cursor more than one character at a time

You may have picked up on a pattern here. Notice the difference
between commands starting

 with
Ctrl and those starting with
Meta. Ctrl commands generally move in smaller units
than their associated Meta commands.
For example, C-b moves the cursor
backward one character, whereas M-b
moves the cursor back one word. Likewise, C-a moves to the beginning of the line,
whereas M-a moves to the beginning
of a sentence.
There’s one caveat about moving
by sentence or paragraph. Emacs
defines a sentence pretty strictly. You need two
spaces after the final punctuation mark, unless
you’re at the end of the line. If
there’s only one space, Emacs won’t
recognize it. Similarly, moving backward and forward by paragraph
involves understanding the Emacs definition of a paragraph. To Emacs
(and to most of us), paragraphs are either indented with a tab or at
least one space or have blank lines between them (block style). You
can change these definitions, but first you have to understand how to
use regular expressions, which are discussed briefly in Chapter 3 and in more depth in Chapter 11. Chapter 10 discusses
how to change variables.
If your file has page breaks in it, you can move to the next page or
previous page by typing C-x]
(forward-page) or C-x [(backward-page). Similar to paragraph and
sentence movement, moving by page involves the Emacs definition of
what a page is. A variable called page-delimiter defines what constitutes a page
break. If there are no Emacs-recognized page breaks in the file,
Emacs regards the buffer as one very long page. In this case, the
forward-page command takes you to
the end of the buffer, and the backward-page command takes you to the
beginning of the buffer.
In text mode, a page break is a formfeed character that tells the
printer to move to the next page (to feed the next form or page
through the printer, hence the term formfeed)
before continuing to print. If you are in text mode and you want to
insert page breaks in your file, type C-q
C-l (the lowercase letter L). C-q is the quoted-insert command. It tells Emacs to put a
C-l control character in your file,
rather than interpreting C-l as the
recenter command. A C-l character looks like two characters (^L),
but it’s really only one. (Try to erase one using
Del and see what we mean.)

Moving a Screen (or More) at a Time

Like other graphical
 applications, you can use the scrollbar
to move around in Emacs. Like most things in Emacs, in addition to
using the mouse or scrollbar to move around, you should learn
Emacs’s own keyboard commands to maximize your
productivity.
If you want to page through a file one screen at a time, use the
PgDown key or type C-v. Emacs displays the next full screen from
your file. It leaves a couple of lines from the previous screen at
the top to give you a sense of context. Likewise, pressing M-v (or the PgUp key) shows you the previous screen.
Together, M-v and C-v provide a convenient way to scroll through
a file quickly.
Scrolling happens
 automatically
if you type any motion command that takes you beyond the limits of
the text currently displayed. For example, if you are on the last
line of the screen and press C-n,
Emacs scrolls forward. Similarly, if you are at the top of the screen
and press C-p, Emacs scrolls
backward.
You often want to move all the
way to the beginning or the end of a file. Type M-> or press End to go to the end of a buffer. To go to the
beginning, type M-< or press
Home. It may help you to remember
that > points to the end of the buffer, and < points to the
beginning of the buffer.
There are two more ways to move around that may come in handy.
M-x goto-line Enter
 n
 Enter moves the cursor to line n of
the file. Of course, Emacs starts counting lines from the beginning
of the file. Likewise, M-x goto-char Enter
 n
 Enter goes to the nth
character of the file, counting from the beginning. In both cases,
n is a number.
For programmers, these commands are useful because many compilers
give error messages like Syntax error on line 356.
By using these commands, you can move easily to the location of your
error. There are some more sophisticated ways to link Emacs with
error reports from compilers and other programs. In addition, several
other cursor motion commands are applicable only when you are editing
programs (see Chapter 9 for details).

Repeating Commands

Now let’s learn some efficiency

 tricks.
Emacs lets you repeat any command as many times as you want to.
First, you can repeat a command any number of times by pressing
M-
 n before the
command, where n is the number of times you want
to repeat it. This command is called

 the
digit-argument command.
You can give M-
 n a large argument if
you want it to repeat the command many times. For example,
let’s say you are editing a large file of 1000
lines. If you typed M-500 C-n, the
cursor would move down 500 lines, to the halfway point in the file.
If you give M-
 n
a larger argument than it can execute, it repeats the command as many
times as possible and then stops.
There’s another multiplier command you can use, too:
C-u (the universal-argument command). You can give
C-u an argument just like you do
M-
 n. Typing
either M-5 or C-u 5 repeats the command that follows five
times. But unlike M-
 n, C-u doesn’t need an argument
to repeat commands. With no argument, C-u executes the next command four times. If
you type C-u C-u, it executes the
command 16 times. In this way, you can stack up C-u’s to make commands
execute many times: 16, 64, 256, and so on.[2]

Centering the Display

 C-l, the recenter command, puts

 the
current line in the center of the window vertically. This feature is
useful if you’re typing at the bottom or the top of
the display. Typing C-l quickly
moves the material that you care about to the middle of the display,
where it is easier to see the full context.

 C-l also redraws the display, if for
any reason it appears obscured or contains random characters. This
doesn’t happen as often as it used to when we used
terminals, but it can be a handy thing to know about, especially if
you find yourself using Emacs remotely in a terminal interface.

 Table 2-2 lists cursor

 movement
commands. If the command is mnemonic, the word to remember is given
in italics.
Table 2-2. Cursor movement commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-f

 	

 forward-char

 	
 Move forward one character (right).

	

 C-b

 	

 backward-char

 	
 Move backward one character (left).

	

 C-p

 	

 previous-line

 	
 Move to previous line (up).

	

 C-n

 	

 next-line

 	
 Move to next line (down).

	

 M-f

 	

 forward-word

 	
 Move one word forward.

	

 M-b

 	

 backward-word

 	
 Move one word backward.

	

 C-a

 	

 beginning-of-line

 	
 Move to beginning of line.

	

 C-e

 	

 end-of-line

 	
 Move to end of line.

	

 M-e

 	

 forward-sentence

 	
 Move forward one sentence.

	

 M-a

 	

 backward-sentence

 	
 Move backward one sentence.

	

 M-}

 	

 forward-paragraph

 	
 Move forward one paragraph.

	

 M-{

 	

 backward-paragraph

 	
 Move backward one paragraph.

	

 C-v

 	

 scroll-up

 	
 Move forward one screen.

	

 M-v

 	

 scroll-down

 	
 Move backward one screen.

	

 C-x]

 	

 forward-page

 	
 Move forward one page.

	

 C-x [

 	

 backward-page

 	
 Move backward one page.

	

 M-<

 	

 beginning-of-buffer

 	
 Move to beginning of file.

	

 M->

 	

 end-of-buffer

 	
 Move to end of file.

	
 (none)

 	

 goto-line

 	
 Go to line n of file.

	
 (none)

 	

 goto-char

 	
 Go to character n of file.

	

 C-l

 	

 recenter

 	
 Redraw screen with current line in the center.

	

 M-
 n

 	

 digit-argument

 	
 Repeat the next command n times.

	

 C-u
 n

 	

 universal-argument

 	
 Repeat the next command n times (four times if
you omit n).

Emacs Commands and Your Keyboard

You can access many Emacs

 commands by pressing standard keys on
your keyboard, such as PageDown (to
scroll down one screen) or Home (to
go to the beginning of a buffer). Figure 2-4 shows
a sample keyboard layout and what the keys do. Your keys may be in a
slightly different place, but if you have a key with the same or a
similar name, it should work. We say
“should” because there are
situations in which the keys won’t work—for
example, if you use Emacs on a remote machine. We recommend that you
also learn the standard Emacs commands; they work on any keyboard,
and they are often easier to reach once you learn them.
[image: Emacs commands and your keyboard]

Figure 2-4. Emacs commands and your keyboard

[2] Most
often, you’ll use C-u as we’ve described here.
However, it doesn’t always work as a multiplier;
sometimes C-u modifies the
command’s function. Later in this chapter,
you’ll see one such case. However, if
you’re doing something where a multiplier makes
sense, C-u is almost certain to
work.

Deleting Text

Before you start practicing deletion

 commands,
you might want to know the undo command, which is discussed fully
later in this chapter. Typing C-_ or
C-x u undoes your last edit; typing
undo again undoes the edit before
that one, and so on.
Emacs provides many ways to delete text. The simplest way to delete
text is to press the Del key, which
deletes the character immediately to the left of the cursor. See
Figure 2-4 for possible locations of the Del key on your keyboard. It is sometimes
referred to as the Backspace key.
Del is easiest to define by what it
does: it deletes the previous character. If you’re
typing and you decide to erase the last character you typed, what key
do you reach for? That’s the key Emacs refers to as
Del.
Emacs provides a number of other deletion commands—perhaps too
many for your taste, although you’ll eventually find
a reason to use most of them. For example, C-d (for delete-character) deletes the character under
the cursor. The command for deleting the next word is M-d (for kill-word). Once again, note how the Meta key augments the command: C-d operates on a character, and M-d operates on a word.
Emacs has commands to delete

 the next or previous word, sentence, and
paragraph. By their names, you can guess what they do when
you’re between words, sentences, or paragraphs. If
you’re in the middle of an entity, however, they do
something a little surprising: they delete a portion of the current
word, sentence, or paragraph, backward or forward depending on
whether the command deletes previous or next. For example,
here’s how M-d acts
differently depending on where the cursor is.
	

 If the cursor is here:

 	

 M-d makes this edit:

	
 It was the worst of times

 	
 It was the w of times

	
 It was the worst of times

 	
 It was the of times

	
 It was the worst of times

 	
 It was the wors of times

Similarly, if you are in the

 middle of a word and ask Emacs to
delete the previous word (M-Del, for
backward-kill-word), it deletes from
the cursor position back to the beginning of the current word.
If you want to delete an entire line or part of a line, use the
command C-k (for kill-line). This command deletes everything
from the cursor to the end of the line. Typing C-k on a blank line deletes the line itself.
So, it usually takes two C-k’s to delete a line: one
to delete the text and one to delete the resulting blank line. If you
want to delete everything from the beginning of the line up to the
cursor, try the more complex incantation Meta -
C-k (i.e., hold down Meta, followed by a hyphen, and then C-k).
You can also use C-k to join two
lines. If you’re at the end of a line, C-k deletes the newline character, effectively
making two lines into one long line.
The Kill Ring

By now you may have noticed that
 some deletion commands in Emacs are
called kill commands, such as kill-region, kill-word, and the like. In Emacs, killing is
not fatal, but in fact, quite the opposite. Text that has been killed
is not gone forever but is hidden in an area called the
kill ring. The kill ring, though it sounds
somewhat like a violent gang, is an internal storage area where Emacs
puts things you’ve copied or deleted. Do not confuse
the kill ring with the system clipboard, which allows for copying and
pasting between applications. We’ll cover how Emacs
relates to the system clipboard later in this chapter.
You can get back what you’ve deleted by typing
C-y (for yank).[3] Conveniently, if you kill several lines in succession,
Emacs collects them into a single item and places the whole unit into
the kill ring; a single C-y command
will bring everything back. In the following example,
we’ll use C-k four
times to delete the first two lines of A Tale of Two
Cities. (Remember: the first C-k deletes the text; the second C-k deletes the remaining blank line.) Then
we’ll use a single C-y to bring everything back.
	
 Initial state:

	

[image: image with no caption]

	
 The cursor is in upper-left corner.

	
 Type: C-k C-k C-k C-k

	

[image: image with no caption]

	
 You have deleted the first two lines with C-k.

	
 Type: C-y

	

[image: image with no caption]

	
 You got everything back with a single command.

What exactly goes
 into the kill ring? Everything you
delete with C-k in addition to
everything you delete with C-w and
everything you copy with M-w (two
commands that you’ll learn shortly) go into the kill
ring. Words, sentences, and paragraphs that you delete with M-d, M-Del,
and their relatives also go into the kill ring. In addition, text
that you delete with C-u followed by
either Del or C-d goes into the kill ring. About the only
thing that Emacs doesn’t save in the kill ring is
single characters, deleted with Del
or C-d. (If you need to, you can get
this type of deletion back using the undo command, bound to both C- _ and C-x
u.)
Emacs is clever about what it puts into the kill ring: when it is
assembling a big block of text from a group of deletions, it always
assembles the text correctly. For example, you can type a few
M-d’s, followed by
some M-Del’s, with
a couple of C-k’s
thrown in. When you type C-y, Emacs
yanks all the text that you’ve deleted in the proper
order.
However, there’s one thing you have to watch out
for. Emacs stops assembling these blocks of text as soon as you give
any command that isn’t a kill
command. For example, if you type C-k, then delete a single character with
C-d, then type another C-k, you’ve broken the chain.
Emacs doesn’t consider deletion of a single
character with C-d a
“kill” command;
it’s just a deletion and it isn’t
stored. In this case, you haven’t made a single
chain of kill commands; you’ve made two chains.
Later, we’ll see how to get the older killed text
back.

 Table 2-3 summarizes the commands for

 deleting, killing, and yanking text,
including options from the Edit
menu.
Table 2-3. Deletion commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-d

 	

 delete-char

 	
 Delete character under cursor.

	

 Del

 	

 delete-backward-char

 	
 Delete previous character.

	

 M-d

 	

 kill-word

 	
 Delete next word.

	

 M-Del

 	

 backward-kill-word

 	
 Delete previous word.

	

 C-k

 	

 kill-line

 	
 Delete from cursor to end of line.

	

 M-k

 	

 kill-sentence

 	
 Delete next sentence.

	

 C-x Del

 	

 backward-kill-sentence

 	
 Delete previous sentence.

	

 C-y

 	

 yank

 	
 Restore what you’ve deleted.

	

 C-w
 Edit
 →
 Cut

 	

 kill-region

 	
 Delete a marked region (see next section).

	
 (none)

 	

 kill-paragraph

 	
 Delete next paragraph.

	
 (none)

 	

 backward-kill-paragraph

 	
 Delete previous paragraph.

[3] You may be used to
pressing C-v to paste in all
applications if you are a Linux or Windows user. Emacs has options to
change its default paste, cut, and copy commands to the familiar C-v,
C-x, and C-c. See “Making Emacs Work the Way You
Want” for details. Also, a quick warning to
vi users who are learning Emacs:
vi also uses the term
yank, but its meaning is almost the exact
opposite. Don’t let this confuse you.

Marking Text to Delete, Move, or Copy

What if the text you want to

 delete is just a phrase? Or
half a paragraph? Or several paragraphs? In Emacs, you select

 text
by defining an area called a region. You can
mark regions with the mouse or by using the keyboard. What happens
with the mouse is a bit complicated, so we describe it later in this
chapter, following our discussion of the system clipboard.
To define a region using the keyboard, you use

 a
secondary pointer called a mark. Some versions
of Emacs display the mark on the screen; unfortunately, in GNU Emacs,
the mark is invisible.
You set the mark at one end of the region by pressing C-Space or
C-@, then move the cursor to the other
end of the region. (The cursor
is sometimes also referred to as point. There is
one minor but important difference between the cursor and the point,
however. The cursor is on top of a character; in Emacs, the point is
actually in between the character the cursor is on and the previous
character. As we said, this difference is minor, but it helps you to
visualize where the cursor should be when you mark a region.) Figure 2-5 illustrates point, mark, and region.
[image: Point, mark, and region]

Figure 2-5. Point, mark, and region

Let’s mark a sample region. In this example, we
remove the phrase “it was the worst of
times.” First, we find the beginning of the phrase.
Then we set the mark, move forward to the end of the phrase, and cut.
	
 Move to the beginning of “it” and
press C-Space.

	

[image: image with no caption]

	
 Set the mark; Mark set appears in
the minibuffer.

Move to the “i” in
“it was the age of wisdom.” Because
the point is really just before the
“i,” this placement will be just
right.
	
 Move to the “i” in
“it was the age of wisdom”

	

[image: image with no caption]

	
 The point is at the end of the region to be marked.

Now the region is marked. If the region is not highlighted,
you’ll want to make sure it is marked correctly
before giving the delete command. Press C-x
C-x (for exchange-point-and-mark); this command swaps
the locations of the mark and the point. If the cursor moves to where
you thought the mark was, the region is marked correctly. Especially
because you can’t see the mark,
it’s a good habit to check its location using
C-x C-x before deleting a region.
People who have used Emacs for years still forget to set the mark and
then make a deletion without knowing what they’ve
just deleted. (The undo command, bound to C-_ and C-x
u, comes in handy in such a case.)
To cut the region,

 press
C-w (for kill-region). (The scissors icon on the
toolbar also works.)
	
 Press: C-w

	

[image: image with no caption]

	

 C-w cuts the region.

If you’re not sure of what you

 deleted,
just press C-_ to undo it. The text
is still marked, and you can delete it again with C-w if you want to. To move text, mark it,
press C-w to cut the region, then
move the cursor to the place you want to insert the text, and press
C-y. If you yank the text back into
the wrong location, just type C-_ to
undo it, then move to the place you really wanted to put the text,
and press C-y again.
When you’re defining a region, you normally set the
mark at one end and then move the cursor to the other end of the
region. A few shortcuts are helpful in some of the most common
situations. To mark a

 paragraph,
press M-h. This sets the mark at the
end of the paragraph and places the cursor at the beginning
automatically. Similarly, C-x h (for
mark-whole-buffer) marks the entire
buffer; the cursor goes to the beginning, and the mark is placed at
the end. Finally, C-x C-p marks the
current page, with pages being defined by the
C-l character if you are in text
mode. Of course, marking a paragraph, page, or buffer is usually only
the prelude to some other operation, like killing (C-w).
Copying Text

To copy text, mark a
 region,
then press M-w (for kill-ring-save; the toolbar icon with two
pieces of paper also runs this command). Move the cursor to the place
where you want to insert the copied text and press C-y. Copying text is exactly the same as
killing it, except that Emacs doesn’t delete
anything. The text you have copied is placed in the kill ring, so you
can use C-y to access it as often as
you like.
One advantage to M-w is that it
works on read-only files and buffers. For example, if you wanted to
create a file of Emacs hints, you could use M-w to copy some text from online help into
one of your buffers.
Here are the steps for some common deletion tasks.
To mark a

 region:
	Move the cursor to the beginning of the area you want to delete.

	Press C-Space. Emacs displays the
message Mark set.

	Move the cursor to the end of the region you want to delete.

To delete
a

region:
	Mark the region to be deleted.

	Press C-w to delete the region.

To move

 text:
	Delete the text you want to move using the procedures for marking and
deleting a region.

	Move the cursor where you want to insert the text.

	Press C-y. Emacs inserts the text
you deleted.

To copy

 text:
	Mark the region you want to copy.

	Press M-w to copy the text.

	Move the cursor where you want to insert the copied text and press
C-y. Emacs inserts the text you
copied.

Recovering Earlier Deletions

Earlier we mentioned

 the kill ring, a temporary storage
area in which Emacs saves the stuff you delete. So far,
we’ve assumed that you’re
interested in resurrecting what you’ve most recently
killed. However, the kill ring does a lot more. It actually stores
your last 30 deletions. We’ve seen that C-y restores the text you deleted most
recently. Typing M-y deletes the
text you just yanked and gets the next most recent text from the kill
ring.
Here’s how it works. In Table 2-4, assume that you’ve just
killed the words “most recent.”
C-y retrieves these words from the
kill ring. When you press M-y, Emacs
gets rid of “most recent” and gets
the next entry from the kill ring
(“second-last”).
Table 2-4. The kill ring in action
	
 Keystrokes

 	
 Action

	

 C-y

 	
 This was the most recent
 deletion.

	

 M-y

 	
 This was the second-last
 deletion.

	

 M-y

 	
 This was the third-last
 deletion.

	

 M-y

 	
 This was the fourth-last
 deletion.

You can keep on typing M-y,
retrieving successively more ancient deletions, until you reach the
end of the kill ring (at which point it cycles back to the most
recently killed text; that’s why
it’s called a ring).
Thirty deletions by default is a nice size—far more generous
than most programs offer. But you can enlarge or reduce the size of
the kill ring if you wish, using a variable called kill-ring-max. To experiment, give the
command: M-x set-variable Enter kill-ring-max
Enter
 new-value
 Enter (where new-value is
a number).

Selecting and Pasting

Using the menus, you can access

 text from the kill ring in a more
straightforward way: by choosing Edit→ Select and Paste. A
menu showing deletions appears, with the most recent ones on top. To
show you as many deletions as possible, each line in the window
represents a separate deletion. So if you’ve killed
a large region, say 500 lines, you see only the beginning of the
first line of that deletion, ellipses, and the end of the deletion.
Your selection is pasted into the buffer at the cursor position.

 Table 2-5 summarizes commands

 for working with regions.
Table 2-5. Commands for working with regions
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-@ or C-
Space

 	

 set-mark-command

 	
 Mark the beginning (or end) of a region.

	

 C-x C-x

 	

 exchange-point-and-mark

 	
 Exchange location of cursor and mark.

	

 C-w

 	

 kill-region

 	
 Delete the region.

	

 C-y

 	

 yank

 	
 Paste most recently killed or copied text.

	

 M-w

 	

 kill-ring-save

 	
 Copy the region (so it can be pasted with C-y).

	

 M-h

 	

 mark-paragraph

 	
 Mark paragraph.

	

 C-x C-p

 	

 mark-page

 	
 Mark page.

	

 C-x h

 	

 mark-whole-buffer

 	
 Mark buffer.

	

 M-y

 	

 yank-pop

 	
 After C-y, pastes earlier deletion.

Emacs and the Clipboard

Emacs 21 plays well
with the
clipboard, though it still may not do what you want it to in some
cases. Let’s dig into this in a little more detail.
Placing Text on the Clipboard

By default, text

 that you cut or copy using icons on the
toolbar or options on the Edit menu is placed on the clipboard and is
accessible to other applications.
Unfortunately, Emacs diverges by platform on this issue. Normally we
save platform-specific issues for Chapter 13,
but cutting and pasting is such a vital operation that we must
describe the differences here.
On Windows and Mac OS X (but not on Linux) any text you cut or copy
using C-w or M-w is also copied to the clipboard.
On Windows and Mac OS X, simply selecting text with the mouse places
it on the clipboard. (This doesn’t work on Linux.).
Most applications require you to highlight text, then issue a copy
command. Emacs doesn’t. Table 2-6
shows

 how this works on various platforms.
Table 2-6. Selecting text with the mouse
	
	
 Linux

 	
 Windows

 	
 Mac OS X graphical

 	
 Mac OS X terminal

	
 Sends to clipboard?

 	
 no

 	
 yes

 	
 yes

 	
 no[4]

	
 Sends to kill ring?

 	
 yes

 	
 yes

 	
 yes

 	
 no

	[4] You can make this happen if you highlight the text
and then press xxxMacSymxxx-C. Simply highlighting the text
doesn’t copy it to the clipboard.

To send text to the clipboard on Linux, select it with the mouse (or
mark it as a region), then click on the cut or copy toolbar icon or
menu option. You can also use the clipboard-specific commands listed
in Table 2-7 on any platform.

Retrieving Text from the Clipboard

As we mentioned,
in
 other applications, you typically cut and
paste by selecting text, then issuing a copy command. How do you then
paste that text into Emacs?
Not surprisingly, the paste icon on the toolbar and the associated
option on the Edit menu do this in most cases (see Table 2-7; Emacs on Mac OS X disables both the icon and
the option inappropriately; the associated command name clipboard-yank works, however). C-y inserts text from the clipboard too.
Additionally, an easy mouse gesture works on most platforms: simply
click the middle mouse button or mouse wheel in the Emacs window to
paste from the clipboard. The caveat here is that you must have a
mouse with a middle button.
Table 2-7. Pasting from the clipboard
	
	
 Linux

 	
 Windows

 	
 Mac OS X graphical

 	
 Mac OS X terminal

	

 C-y pastes?

 	
 yes

 	
 yes

 	
 yes

 	
 no[5]

	
 Toolbar paste icon pastes?

 	
 yes

 	
 yes

 	
 no

 	
 no

	
 Edit→ Paste option pastes?

 	
 yes

 	
 yes

 	
 no

 	
 no

	
 Middle mouse button pastes?

 	
 yes

 	
 yes

 	
 yes

 	
 no

	

 M-x clipboard-yank pastes?

 	
 yes

 	
 yes

 	
 yes

 	
 no

	[5] xxxMacSymxxx-v passtes from the clipboard.

Another issue with

 cutting and

 pasting
is encoding. Encoding is a complex topic in Emacs; full Unicode
support is slated for Emacs 22. At this point, we can only point you
to a variable that may help you resolve cut-and-paste related
encoding issues: set-clipboard-coding-system.
If you’re interested in the clipboard, you may want
to change Emacs’ keys for cutting and pasting to the
more universal C-x, C-c, and C-v.
See “Making Emacs Work the Way You
Want” later in this chapter for more details.

 Table 2-8 summarizes clipboard-related

 commands.
Table 2-8. Clipboard commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 (none)

 	

 clipboard-kill-region

 	
 Cut region and place both in kill ring and on system clipboard.

	

 (none)

 	

 clipboard-yank

 	
 Paste text from clipboard.

	

 (none)

 	

 clipboard-kill-ring-save

 	
 Copy text to clipboard.

Editing Tricks and Shortcuts

Now that you’ve learned the basics of
editing—moving the cursor to the right position, deleting,
copying, and moving text—you can learn some tricks that make
editing easier.
Fixing Transpositions

The most common

 typo
involves the transposition of two letters, and most typos are noticed
immediately after you make them. Pressing C-t transposes two letters, to put them in the
right order:
	

 Before C-t

 	

 After C-t

	
 the best of timse, it

 	
 the best of times
 it

To transpose two letters, put the cursor on the second of the two
letters to be transposed. Press C-t.
(If you often transpose letters, word abbreviation mode, discussed in
Chapter 3, cleans up typos automatically.)
You can also transpose two words, lines, paragraphs, or sentences. To
transpose two words, put the cursor between the two words and press
M-t. After Emacs has finished, the
cursor follows the second of the two (transposed) words:
	

 Before M-t

 	

 After M-t

	
 one three two

 	
 one two three

Interestingly, Emacs moves words, but not
punctuation.
Let’s say that two names are reversed:
	
 Before M-t

 	
 After M-t

	
 Charles, Dickens

 	
 Dickens, Charles

To transpose two lines, put the cursor anywhere on the second of the
two and press C-x C-t. Emacs moves
the second before the first:
	

 Before C-x C-t

 	

 After C-x C-t

	
 second line

 	
 first line

	
 f
 irst line

 	
 second line

	
 third line

 	
 t
 hird line

 Table 2-9 summarizes the transposition

 commands.
Table 2-9. Transposition commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-t

 	

 transpose-chars

 	
 Transpose two letters.

	

 M-t

 	

 transpose-words

 	
 Transpose two words.

	

 C-x C-t

 	

 transpose-lines

 	
 Transpose two lines.

	
 (none)

 	

 transpose-sentences

 	
 Transpose two sentences.

	
 (none)

 	

 transpose-paragraphs

 	
 Transpose two paragraphs.

Changing Capitalization

Mistakes in capitalization are also

 common
and annoying typing errors. Emacs has some special commands for
fixing capitalization. To capitalize the first letter of any word,
put the cursor on the first letter and press M-c. To put a word in lowercase, press
M-l. To put a word in

 uppercase,
press M-u. The key bindings here are
mnemonic: Meta followed by c for capitalize, l for lowercase, and u for uppercase. Note that if the cursor is in
the middle of a word, Emacs takes action only from the character
under the cursor to the end of the word. You can easily use M-l to lowercase the second half of a word,
and so on.
If you notice that the word you just typed is incorrect, you can use
the same commands prefaced by Meta-
(press and hold Meta followed by a
hyphen). This corrects the previous word without moving the cursor.
If the cursor is positioned in the middle of a word, using Meta- before a command causes it to work on
the first part of the word (the part preceding the cursor), rather
than the part following the cursor.
For example, starting with
 abcd

 e

 fghij
 :
	

 If you press:

 	

 You’ll get:

	

 Meta - u

 	
 abcdEFGHIJ

	

 Meta - M-u

 	
 ABCDefghij

	

 M-c

 	
 abcdEfghij

	

 Meta - M-c

 	
 Abcdefghij

 Table 2-10 summarizes the

 capitalization commands.
Table 2-10. Capitalization commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 M-c

 	

 capitalize-word

 	
 Capitalize first letter of word.

	

 M-u

 	

 upcase-word

 	
 Uppercase word.

	

 M-l

 	

 downcase-word

 	
 Lowercase word.

	

 Meta - M-c

 	

 negative-argument; capitalize-word

 	
 Capitalize previous word.

	

 Meta - M-u

 	

 negative-argument; upcase-word

 	
 Uppercase previous word.

	

 Meta - M-l

 	

 negative-argument; downcase-word

 	
 Lowercase previous word.

Overwrite Mode

You may be used to

 typing
over old text rather than having to delete it. There is a certain
satisfaction in destroying some really bad text in this way. You can
do this in Emacs, too, by entering a minor mode called overwrite
mode. When you’re in overwrite mode, any new text
you type wipes out the text that’s underneath. When
you’re not in overwrite mode (i.e., in normal
Emacs), any new text you type is inserted at the cursor position and
any subsequent text is pushed to the right. (Other software may refer
to this as insert mode; because it is the way GNU Emacs normally
behaves, it doesn’t have a name here.)
To enter overwrite mode, press the Insert key.[6]
 Ovwrt
should appear on the mode line. If this doesn’t work
(or if you don’t have an Insert key), type M-x
overwrite-mode Enter. You can turn off overwrite mode by
typing M-x overwrite-mode Enter
again. Using Emacs’s command completion, simply type
M-x ov and press Enter. This is enough of a unique string to
tell Emacs you want to toggle overwrite mode. Completion, one of the
best shortcuts in Emacs, is discussed further in Chapter 14.

[6] On a Mac keyboard,
we found that the Help key, to the
left of Home, toggles overwrite
mode.

Canceling Commands and Undoing Changes

Sometimes you start a command by accident or change your mind about
it. Don’t worry: with Emacs, you can quit in the
middle or undo it.
Canceling Commands

When you want to cancel any

 command
that’s in progress, press C-g. The word Quit appears in the command area. This command
is helpful when you are stuck in the minibuffer and
didn’t really mean to go there. Depending on what
you were doing, you may have to press C-g a few times.

Undoing Changes

What happens if you make a

 mistake
while you’re editing? You can undo your changes by
pressing C-_ or C-x u (for undo; conveniently, the toolbar also has an
undo icon, a curved left arrow). By typing undo repeatedly, you can gradually work your
way back to a point before your mistake.[7] Although the undo
command is very powerful, saving your file frequently, if not
compulsively, is nevertheless a good idea. We usually save a file
whenever we stop typing—even if only for a few seconds. Train
your fingers to press C-x C-s
whenever you pause; it’s a good habit to form.
If you’re used to typing C-z to undo, you can easily change
Emacs’s behavior to match your habits. See
“Making Emacs Work the Way You
Want” at the end of this chapter for information on
CUA mode.
What if you’d like to redo a command after you type
undo? There is no formal
redo command, but you can use undo in the following way. Just move the
cursor in any direction, and

 type C-_ or C-x u
again. Emacs redoes the last command you undid. You can repeat it to
redo previous undos.
Although undo is an important
command, it can be slow if you want to undo a large number of
changes. Table 2-11 summarizes three methods for
undoing changes and circumstances in which you might want to use
them.
Table 2-11. Methods for undoing changes
	

 If you:

 	

 Use this command:

	
 Don’t like the recent changes
you’ve made and want to undo them one by one

 	

 C-_
 or
 C-x u (undo)

	
 Want to undo all changes made since you last saved the file

 	

 M-x revert-buffer Enter

	
 Want to go back to an earlier version of the file (the file as it was
when you started this editing session)

 	

 C-x C-f
 filename
 ~ Enter
C-x C-w
 filename
 Enter

We’ve already talked about undoing changes with
undo; next we describe how to revert
a buffer from a file and how to go back to an earlier version.

Reverting a Buffer from a File

If the undo command
isn’t

 useful,
there’s another way to restore a file to an earlier
state. If you want to get the file back to the state that is stored
on disk, type M-x revert-buffer
Enter. Emacs asks the following question:
Revert buffer from file filename? (yes or no)
The filename is the name of your original file. Type yes if you want to restore the file, or
no if you’ve
changed your mind. Emacs copies the file stored on disk into the
buffer, conveniently forgetting everything that happened since the
last time you saved the file. Although this command is called
revert-buffer, note that it can
revert only buffers associated with files.

Going Back to a Previous Version: Backup Files

The first time you save a file during

 an editing session, Emacs creates a
backup file. If something disastrous happens, and the other
techniques for undoing changes won’t help you, you
can always return to the backup file. The name of the backup file is the same as the
name of the file you’re editing, with a tilde
(~) added. For example, if you are
editing the file text, the backup file is
text~.
Emacs doesn’t provide any special commands for
restoring a buffer from the backup copy. The easiest way to do this
is to edit the backup copy and then save it as the real file. For
example, if you were working with a file called
text, you could: exit Emacs by typing C-x C-c, then start Emacs again by typing
emacs
 text~.
After the backup file is displayed, save it as the real file by
typing C-x C-w
 text
 Enter. As a safeguard, Emacs asks you before it writes
over the original file:
File text exists; overwrite? (y or n)
Type y to overwrite the original

 file with the backup file.
GNU Emacs also has a

 numbered backup facility. If you turn
on numbered backups, Emacs creates a backup file (with the suffix
~n~) every time you save your file.
n increments with each successive save. If you
are nervous about deleting older versions, it might be worth using:
you can keep all of your old versions forever, if you want to.
However, numbered backups can also waste disk space; a happy medium
may be to tell Emacs to keep the last n
versions, where n is the number of versions you
want to keep. The variables that control numbered backups are
described in Appendix A. If you are interested in full-blown version
control, check out VC mode, discussed in Chapter 12. Table 2-12

 summarizes the commands for
stopping commands and undoing changes.
Table 2-12. Stopping and undoing commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-g

 	

 keyboard-quit

 	
 Abort current command.

	

 C-x u

 	

 advertised-undo[8]

 	
 Undo last edit (can be done repeatedly).

	

 C-_
 Edit
 →
 Undo

 	

 undo

 	
 Undo last edit (can be done repeatedly).

	
 (none)

 	

 revert-buffer

 	
 Restore buffer to the state it was in when the file was last saved
(or auto-saved).

	[8] There is no
real difference between undo and
advertised-undo. They work the same
way.

Recovering Lost Changes

We’ve just discussed how to

 eliminate
changes you don’t want to keep; getting back changes
you’ve lost is a different kind of problem. You
might lose changes if the power goes out momentarily or if the
computer you’re working on suddenly freezes or is
turned off accidentally. You might also lose changes if you exit
Emacs abnormally. Luckily, Emacs, being the watchful editor that it
is, saves your file for you every so often in auto-save
files. If you watch carefully, you’ll see
the message Auto saving in the
minibuffer from time to time. Using auto-save files, you can get back
most, if not all, of your changes. The name of an auto-save file is
the same as the name of the file you are editing, with a sharp
(#) added to the beginning and the
end. For example, if you are editing the file
text, its auto-save file is
#text#.
To recover text from an
 auto-save file, type M-x recover-file Enter. Emacs opens a window
that lists both the file and its associated auto-save file so that
you can compare the time at which they were created, their size, and
so forth. Emacs asks you the following question:
Recover auto-save file #text#? (yes or no)
Type yes to confirm that you want to
copy the contents of the auto-save file into the current file or
no if you change your mind. (If you
are unsure, you might want to use C-x
C-f to read the auto-save file #text#
into a buffer first and look it over carefully before using the
recover-file command. If you really
want to compare the differences between the two versions, see
“Comparing Files Between Windows”
in Chapter 4.)
When does Emacs create
 auto-save
files? Emacs creates an auto-save file every few hundred keystrokes
or if Emacs is terminated abnormally.[9]
You can change the frequency with which Emacs creates auto-save files
by changing the variable auto-save-interval. By default, Emacs creates
an auto-save file every 300 keystrokes. For more information on
changing variable values, see Chapter 10.
There’s one more important fact to know about Emacs
and auto-save files. If you delete a large portion of a file, Emacs
stops auto-saving the file and displays a message telling you so. To
make Emacs start auto-saving again, save the file with C-x C-s or type M-1 M-x
auto-save Enter (that’s the number 1).
Now you’ve learned enough commands for most of the
editing you’ll do with Emacs. At this point, you may
want to learn how to make Emacs turn on certain features like
auto-fill mode automatically, so you don’t have to
turn them on every time you enter Emacs. The next section provides a
brief introduction to customization; this topic is covered in much
greater detail in Chapter 10.

[7] If you find
that you repeat the undo command frequently, it’s
worth getting fluent with C-_.
It’s true that this requires holding down Ctrl and Shift at the same time, but once
you’ve got that down, pressing _ repeatedly is much easier than typing
C-x u again and again.

[9] We should say
that Emacs tries to do this. In some cases,
Emacs can’t, and there is really no guarantee. Power
surges and OS crashes are examples of times where things happen so
fast that Emacs may not be able to create an auto-save file. But we
are surprised at how often it manages to do so.

Making Emacs Work the Way You Want

If you’ve been reading straight through this book,
you may have started a list of things you’d like to
change

 about
Emacs, such as
	Hiding the toolbar

	Changing Emacs cut and paste commands to C-x, C-c, and
C-v

	Turning on text mode and a fill mode so Emacs does word wrap

	Changing the way some of the keys work

We’re going to tell you how to give Emacs the to-do
list, a list of options to turn on each time you enter Emacs. These
options are defined in an initialization file called
.emacs. Initialization files run automatically.
Some run when you start up your computer. Others, like
.emacs, run when you start up an associated
software program. So .emacs runs automatically
when you start Emacs and turns on whatever options the file defines.
Emacs doesn’t need this file to run; its only
purpose is to make Emacs work the way you want it to.
The .emacs file consists of Lisp statements. If
you’re not a Lisp programmer, you can think of each
line as an incantation that follows a certain pattern; you need to
type it exactly.
Emacs now has another way to handle customization:
an interactive interface called Custom that writes Lisp for you and
automatically inserts it in your .emacs file.
The Custom interface is discussed in Chapter 10,
but we’ll show you an even faster method for common
options.

When you want to add a line to your .emacs file
directly, take these steps:
	Enter Emacs (if you’re not already there).

	Type C-x C-f ~/.emacs
 Enter.

	Type the line to be added exactly as shown in this book and press
Enter.

	Press C-x C-s to save the
.emacs file.

	Press C-x C-c to exit Emacs.

	Restart Emacs to have the line take effect.

If you make a minor typing mistake (such as forgetting a single
quotation mark or a parenthesis), you are likely to get an error
message that says Error in init file when you
restart Emacs. Simply edit the .emacs file
again, checking the line you added against the place you got it from,
whether from this book or another user’s
.emacs file. Usually, you can find the error if
you look hard enough; if not, find someone who has a
.emacs file (and preferably understands Lisp)
and ask for help. Make the changes, save the file, and restart Emacs.
What if you make a change that essentially keeps Emacs from being
able to start? You can still exit Emacs, rename the file, edit it,
then save it as .emacs and try again.
Hiding the Toolbar

New users may find the

 toolbar helpful. Others may
not. It’s easy to hide it by selecting
Options→ Show/Hide→ Toolbar, and then
Options→ Save Options.
When Emacs sets options for you through Custom (and this is what it
is doing even when you use the Options menu), it writes your
.emacs file. If you already have a
.emacs file, it appends to it. Custom
essentially groups all of its settings in one part of the file, and
it is commented to indicate that you should not change it manually.
Here’s the .emacs file that we
created by selecting this option:
 (custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)
This may seem a bit bulky, but as we’ll see in the
next section, Emacs adds this section only once and then augments it
when you set more options either through the options menu or directly
through the Custom interface. Also note that this auto-generated Lisp
is certainly less clean than Lisp statements you’ll
typically see in .emacs files.
That’s another reason not to edit
Custom’s work directly.

Turning On CUA Mode for C-x, C-c, and C-v to Cut, Copy, and Paste

If you’re new to Emacs,

 you might be
used to the Common User Access (CUA) conventions for cutting,
copying, and pasting, C-x, C-c, and C-v
respectively. You might reach for C-z for undo. CUA mode was once an add-on mode
that you had to install separately, but it became so popular that it
is now part of Emacs. It’s coded in a clever way
that doesn’t interfere with Emacs keystrokes that
are prefixed with C-x and C-c. Details on CUA mode can be found in Chapter 13.
You can turn this feature on through the Options menu to try it out.
Simply choose Options→ C-x/C-c/C-v cut and paste (CUA).
After you select this option, a check mark appears next to it on the
Options menu. To keep it for subsequent sections, select Save Options
from the Options menu. Emacs writes your .emacs
file for you. If you turned off the toolbar and then set this option,
your .emacs file would look like this (note that
the line relating to CUA mode is bold so you can see the difference
from the previous example):
 (custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(cua-mode t nil (cua-base))
 '(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)
Interestingly, Emacs happily writes the .emacs
file even if it is open at the time. You can watch Emacs
change the file if you have it open when you choose Save Options.

Turning On Text Mode and Auto-Fill Mode Automatically

To make text mode the default

 major
mode and start auto-fill mode automatically each time you enter
Emacs, add these lines to your .emacs file:
(setq default-major-mode 'text-mode)
(add-hook 'text-mode-hook 'turn-on-auto-fill)
The first line tells Emacs to make text mode the default major mode;
in other words, “Turn on text mode unless I tell you
otherwise.” The second line turns on auto-fill mode
whenever you are in text mode. Alternatively, selecting
Options→ Word Wrap in Text Modes, and then Options→
Save Options adds auto-fill mode to your .emacs
file directly. It doesn’t make text mode the default
major mode, however.
If you prefer refill mode, replace the second line of code with this
line:
(add-hook 'text-mode-hook (lambda () (refill-mode 1)))

Remapping Keys

Another major use of the .emacs file is

 to
redefine things about Emacs that irritate you. You may have ergonomic
concerns about Emacs; more than one person has aggravated carpal
tunnel syndrome using the default bindings. You may simply be used to
reaching for certain keys for certain functions and would rather
change Emacs than your habits. Whatever the case, this section gives
a brief introduction to key remapping; for more details, see Chapter 10.
If you use the default bindings (rather than CUA mode), you may use
C-x u for undo.[10] (Undo is such a common
command that it’s easy to type C-x C-u by mistake when you undo repeatedly.
Unfortunately, C-x C-u is a disabled
command for upcase-region. If you
type C-x C-u, an annoying message
about enabling the command pops up.
If you don’t anticipate a big need for upcasing
regions, you can redefine C-x C-u so
that it also runs undo. To do so,
add this line to your .emacs file:
(define-key global-map "\C-x\C-u" 'undo)
After making this change, typing C-x
C-u runs undo, just as C-x
u does.
Emacs customization is extremely powerful, and you can make Emacs
work just the way you want it to. A far more extensive treatment of
customization is found in Chapter 10. This brief
introduction is meant to whet your appetite and to make it possible
for you to add lines to your .emacs file as we
mention potential customizations throughout the book.
The next chapter covers topics such as the many searches offered by
Emacs, including query-replace, as well as spell checking and word
abbreviation mode (often used to correct typos automatically). If you
want to learn about these features, go on to the next chapter. From
here on, you can take a selective approach to reading this book,
picking and choosing whatever you want to learn about; you
don’t need to read the rest of the book
sequentially.

Problems You May Encounter

	
 You get an error message when you start Emacs
after changing the
 .emacs
 file. The message appears only

 briefly; press M-p to view it again. Edit your
.emacs file, checking the lines you added
carefully against their source for minor typographical errors.
Something as simple as a missing hyphen or apostrophe can cause this
error. Fix the error, save the file, exit Emacs, and reenter. In
extreme cases (the .emacs file is so messed up
that Emacs won’t even let you edit it), exit Emacs,
rename the .emacs file, and then start Emacs and
edit it again to fix it. Rename it back to
.emacs and start again.

	
 Paragraphs are not reformatted
properly. This

 seems to relate to window size. Try
resizing the window horizontally until paragraphs format properly.

[10] You
could use C-_ for undo instead and
then you wouldn’t need to read this section. We
recommend that you read it anyway because you might find another
annoying key mapping that you want to change and this section tells a
bit about how to do so.

Chapter 3. Search and Replace

The commands we discussed in the first two chapters are enough to get
you started, but they’re certainly not enough to do
any serious editing. If you’re using Emacs for
anything longer than a few paragraphs, you’ll want
the support this chapter describes. In this chapter, we cover the
various ways that Emacs lets you search for and replace text. Emacs
provides the traditional search and replace facilities you would
expect in any editor; it also provides several important variants,
including incremental searches, regular expression searches, and
query-replace. We also cover spell-checking here, because it is a
type of replacement (errors are sought and replaced with
corrections). Finally, we cover word abbreviation mode; this feature
is a type of automatic replacement that can be a real timesaver.

Different Kinds of Searches

While you’re editing, you frequently want to find
something you’ve already typed. Rather than hunt
through the file trying to find what you’re looking
for, virtually all editors provide some kind of search feature that
lets you look for a particular text string. Emacs is no exception to
the rule. It supplies a search command—in fact, it provides a
dizzying array of search commands. Here’s a quick
summary of the different kinds of searches that are available:
	
 Simple search

	You give Emacs a search string,
 and it finds the next occurrence. You
will find this search in almost any editor.

	
 Incremental search

	With incremental search, Emacs
 starts to search the file as soon as
you type the first character of a search string. It continues to
search as you type more characters.

	
 Word search

	A word search is like a simple search,
 except that Emacs searches only for
full words and phrases. For example, if you are searching for the
word hat, you don’t have to
worry about finding the word that. A word search
is also useful when you need to find a phrase that is spread across
two lines.

	
 Regular expression search

	To search for patterns, you can
 use a regular expression
search. For example, if you wanted to find all instances of B1 and B2,
you could search for them using the regular expression B[12]. However, regular expressions can be
extremely complex. We’ll give a brief introduction
to this topic here; it is discussed more fully in Chapter 11.

	
 Incremental regular expression search

	This search procedure is a combination
 of an incremental
search and a regular expression search.

You can search forward or

 backward. Searches can be either
case-sensitive, meaning that Emacs considers upper- and lowercase
letters to be different (i.e., the words This
and this are different) or case-insensitive, in
which upper- and lowercase are not differentiated (i.e.,
This and this are
equivalent). By default, searches are case-insensitive, with upper-
and lowercase letters considered to be the same. One exception: if
you type any uppercase letters, Emacs makes the whole search string
case-sensitive; it assumes you are looking for something precise
since you’ve made the extra effort to type some
letters in uppercase.
Replacement operations are closely related to searches. As with
searches, Emacs offers you several different flavors:
	
 Simple search and replace

	In this procedure, Emacs replaces
 all occurrences of one string with
another. Usually, this is too radical a solution and can have
unintended results. Try query-replace instead.

	
 Query-replace

	With query-replace, Emacs
 conditionally
replaces a string throughout a file. Emacs finds all occurrences of
the search string, and for each one it asks you whether or not to
perform the replacement. This type of replacement is useful if you
need to change some, but not all, instances of a word or phrase
throughout a file.

	
 Regular expression replace

	Regular expression replacement
 uses the powerful pattern matching
facility of the same name to find strings and replace them.

So now you know what you’ll be looking at.
Don’t be intimidated by the wealth of searches that
are available. In practice, you’ll probably settle
on one search command and one replace command and use these for 99
percent of your work. For example, we use incremental search and
query-replace most of the time. If you’re a writer,
you may use word search all the time; if you’re a
programmer, you might want a regular expression search. If
you’re just beginning, you may want to learn
incremental search and read the rest of this chapter later. However,
if you know what’s available,
you’ll be able to make use of the other search
commands when they become useful.
Incremental Search

Incremental search starts
 to work from the moment you type the
first character of the search string. Many users like the efficiency
of incremental searches, and they like the highlighting as well.
Emacs highlights all

 occurrences
of the search string in aqua blue (if your display supports it) and
uses purple to highlight the string at the cursor position (the
current match).
	
 Type: C-s m

	

[image: image with no caption]

	
 Emacs highlights all the words that start with m.

To start an incremental
 search,
type C-s and then type the text you
want to find. Emacs temporarily enters Isearch mode. Notice how this
search works: Emacs looks for each character as soon as you type it.
For example, if you are searching for the word
meter, in an incremental search Emacs finds the
next m as soon as you type the
m; it finds the next me as
soon as you type the e; it finds the
met as soon as you type the
t; and so on. Sooner or later, you either find
what you want, or Emacs is unable to find anything. If you find what
you want, press Enter; doing so
stops the search at the current place in the file. If Emacs
can’t find anything that matches your search string,
it prints the message Search failed at the bottom
of your screen and then it beeps.
Here’s what happens when we search for the word
meter; the numbers show how the cursor moves
with each new letter in the search string.
	
 Type: C-s meter

	

[image: image with no caption]

	
 Emacs moves the cursor from one position to another as you type the
letters of the search string.

In this incremental search, Emacs moves the cursor from position 1 to
2, to 3, and so on, as you type the search string
meter. Also, note that
Isearch appears on the mode line.
What happens if you find the string you’re looking
for but not the right occurrence of the string?
Let’s say you’re searching for the
word eschatology and you find the word, but
you’re still not in the right place. Simply press
C-s again to find the next
occurrence of the current search string. Emacs uses the same search
string; you don’t have to retype it.
Remember to press Enter when
you’ve found the text you want. Forgetting to stop
the search (by pressing Enter or
with any other cursor movement command) is a common mistake: you type
a few things, and suddenly Emacs is off looking at some completely
different part of the file. What has happened? Emacs thinks
you’re still searching, and it has just added the
characters you’ve typed to the search string.
If you type a letter in your search string incorrectly, press
Del: Emacs moves back to the first
instance of the reduced string in the file. If you keep pressing
Del to delete characters from the
search string, you’ll see Emacs cycle back through
the file to previous matches.
To cancel a
 search (that is, to give up searching),
type C-g. This command brings you
back to the place where the search began.
To search backward through a file, use C-r, which works exactly like C-s except that it searches in the opposite
direction. It puts the cursor at the beginning of the text you find.
Just as you can do when repeating C-s, you can press C-r to make the search go in the other
direction without retyping the search string.
To avoid typing your search string, you can copy text from the buffer
into the search string. To copy text from
 the cursor position through the next
space or punctuation mark into the search string, type C-s C-w (it may help to think of C-s C-w as
"search a
word“). To copy text from the
cursor to the end of the line into the search string, type C-s C-y. Notice that the text that is yanked
is always converted to lowercase; this conversion ensures that the
search will be case-insensitive. You can also copy text from the kill
ring to the search string by typing C-s
M-y. After you’ve given this command, you
can press M-p to see previous items
from the kill ring. M-n takes you to
the next item if you’ve gone back with M-p.
Once you’re in an incremental search, certain keys
(such as Enter and Del) have different functions than they
normally do. This situation may sound confusing, but
it’s actually fairly easy to get

 used to. Table 3-1
shows a summary of key functions during incremental search.
Table 3-1. Incremental search commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-s
 Edit
 →
 Search
 →
 Incremental Search
 →
 Forward
String

 	

 isearch-forward

 	
 Start incremental search forward; follow by search string. Also, find
next occurrence (forward) of search string.

	

 C-r
 Edit
 →
 Search
 →
 Incremental Search
 →
 Backward
String

 	

 isearch-backward

 	
 Start incremental search backward; follow by search string. Also,
find next occurrence (backward) of search string.

	

 Enter

 	

 isearch-exit

 	
 In an incremental search , exit the search.

	

 C-g

 	

 keyboard-quit

 	
 In an incremental search , cancel the search.

	

 Del

 	

 isearch-delete-char

 	
 In an incremental search, delete character from search string.

	

 C-s C-w

 	

 isearch-yank-word

 	
 Start an incremental search with the word the cursor is on as the
search string.

	

 C-s C-y

 	

 isearch-yank-line

 	
 Start an incremental search with the text from the cursor position to
the end of the line as the search string.

	

 C-s M-y

 	

 isearch-yank-kill

 	
 Start an incremental search with text from the kill ring as the
search string.

	

 C-s C-s

 	

 isearch-repeat-forward

 	
 Repeat previous search.

	
 C-r C-r

 	

 isearch-repeat-backward

 	
 Repeat previous search backward.

Simple Searches

Emacs also offers a simple, or
 nonincremental, search. To use a more
straightforward search, type C-s
Enter. Type the search string, press Enter, and Emacs begins the search. Simply
press C-s again to repeat the
search. To start a nonincremental search backwards through the file,
press C-r Enter. Again, you type the
search string and press Enter to
begin the search.
The search icon on the

 toolbar (a magnifying glass over paper)
and the Edit→ Search→ String Forward option run the
same kind of a search. The prompt is slightly different. C-s Enter prompts you with
Search: in the minibuffer while the toolbar icon
and the menu option prompt with Search for
string:. This is a minor difference; the searches are
virtually identical otherwise.

 Table 3-2 summarizes the simple

 search commands.
Table 3-2. Simple search commands
	
 Keystrokes

 	
 Action

	

 C-s Enter
 searchstring
 Enter
 Edit
 →
 Search
 →
 String
Forward

 	
 Start nonincremental search forward.

	

 C-s

 	
 Repeat search forward.

	

 C-r Enter
 searchstrin
 g
 Enter
 Edit
 →
 Search
 →
 String
Backwards

 	
 Start nonincremental search backward.

	

 C-r

 	
 Repeat search backward.

Word Search

If you’re searching for a phrase and

 you
know it’s in the file but you can’t
find it with incremental search, try word search. (You probably
can’t find your phrase with incremental search
because the phrase has a line break in it.) Word search is a
nonincremental search that ignores line breaks, spaces, and
punctuation. It also requires that your search string match entire
words in the file.
To do a word search, type C-s Enter
C-w (for word-search-forward). The prompt Word
search appears in the minibuffer. (Don’t
be put off by the prompts that appear along the way:
you’ll see an I-search prompt
after typing C-s and a
Search prompt after pressing Enter. Ignore these.) Type the search string
and press Enter. Emacs searches for
the given string. To do a word search backwards, type C-r Enter C-w instead. For example, assume
that you have the following text, with the cursor at the beginning:
He said, "All good elephants are wise, aren't they?"
She answered, "Some are smarter than others, but we
think this is socially conditioned."
The command C-s Enter C-w they she
Enter positions the cursor after the word
She. This command looks complicated, but
it’s really nothing more than a word search
(C-s Enter C-w) for the word
they, followed by the word
she. It ignores the punctuation
(?”) and the newline between
they and she.
Assume that you’re looking for the word
the. You don’t want to bother
with thence, there,
theater, thesis,
blithe, or any other word that happens to
contain the letters the. In this situation,
neither an incremental search nor a simple search is very
useful—you need a word search. If you’re
writing a paper, word search is often exactly what you need. It is
the only one of the three basic search commands
that allows you to find what you want even if the phrase is split
between two lines.
Now that you’ve seen the three most commonly used
searches, you might want to experiment and see which you find most
useful.

Search and Replace

Search and replace definitely go together, like coffee and cream.
Let’s say you’re working on a new
software application and at the last possible moment, the Marketing
Department decides to change the product’s name.
Tere’s a press release for Whirligig, an email
service that periodically reminds you to make healthy lifestyle
changes like exercising, drinking water, and taking vitamins. The
level of harassment or, as the marketing department says,
encouragement, can be set by the user. Whirligig
isn’t really the most descriptive name, so at the
last minute the Marketing Department changes it to HealthBug.
Simple Search and Replace Operations

Assume you’re in the situation
we just described. You want to replace every occurrence of one string
with another. You know that Whirligig is never correct, and there is
absolutely no ambiguity about how you want to replace it. When you
want to replace every instance of a given string, you can use a
simple command that tells Emacs to do just that. Type M-x replace-string Enter, then type the search
string and press Enter. Now type the
replacement string and press Enter
again. Emacs replaces all occurrences in the file from the cursor
position onward. If you want to search and replace throughout the
file, press M-< to go to the
beginning of the file before typing this command.
Here’s a quick example of using replace-string.
	
 Initial state:

	

[image: image with no caption]

	
 Whirligig appears four times, but the cursor is positioned after the
first instance.

Now we’ll do the replacement.
	
 Type: M-x replace-string Enter Whirligig Enter
HealthBug Enter

	

[image: image with no caption]

	
 Emacs replaces all instances from the cursor position onward.

The replacement occurs only from the cursor position onward;
Whirligig in the first sentence is still
incorrect. We’ll work with this example again in a
moment.

Query-Replace

Few search and replace

 situations are as straightforward as
those we’ve described. Often you’re
not sure that you want to replace every appearance of your search
string: a global replacement can be reckless. If you want to decide
whether to replace the string on a case-by-case basis, use a
query-replace, which allows you to change a string conditionally
throughout a file. After Emacs finds an occurrence of the search
string, it asks whether it should replace it, and you respond
accordingly.
To use query-replace, go to the beginning of the buffer using
M-< and then type M-%. The prompt Query
replace: appears in the minibuffer. Type the search string
and press Enter. Now this appears:
Query replace searchstring with:
Type the replacement string and press Enter. So far, this procedure is almost
identical to a replace-string
operation; only the prompts are different.
Emacs now searches for the first occurrence of the search string.
When it finds one, a new prompt appears:
Query replacing searchstring with newstring
Before performing the replacement, Emacs waits for a response to tell
it what to do. Table 3-3 lists the possible
responses and
their
results.
Table 3-3. Responses during query-replace
	

 Keystrokes

 	

 Action

	

 Space or y

 	
 Replace searchstring with
newstring and go to the next instance of
the string.

	

 Del or n

 	
 Don’t replace; move to next instance.

	
 .

 	
 Replace the current instance and quit.

	
 ,

 	
 Replace and let me see the result before moving on. (Press Space or y
to move on.)

	

 !

 	
 Replace all the rest and don’t ask.

	

 ^

 	
 Back up to the previous instance.

	

 Enter or q

 	
 Exit query-replace.

	

 E

 	
 Modify the replacement string.

	

 C-r

 	
 Enter a recursive edit (discussed in detail later).

	

 C-w

 	
 Delete this instance and enter a recursive edit (so you can make a
custom replacement).

	

 C-M-c

 	
 Exit recursive edit and resume query-replace.

	

 C-]

 	
 Exit recursive edit and exit query-replace.

This list seems like a lot of keystrokes to remember, but you can get
away with knowing two or three. Most of the time
you’ll respond to the prompt by pressing Space, telling Emacs to perform the
replacement and go on to the next instance, or n to skip this replacement and go on to the
next instance. If you’re not too sure what will
happen, enter a comma (,); Emacs
makes the replacement but doesn’t go on until you
press Space. After performing the
first few replaces, you may realize that there’s no
need to inspect every change individually. Typing an exclamation mark
(!) tells Emacs to go ahead and
finish the job without bothering you anymore. If you remember these
keystrokes, you’re all set.
How does this work in practice? Let’s revisit our
previous example, assuming that we want to change
Whirligig to HealthBug
throughout (and that we didn’t save the changes we
made with replace-string).
	
 Type: M-< M-% Whirligig Enter HealthBug
Enter

	

[image: image with no caption]

	
 You’re ready to replace the first occurrence; press
 Space to go on.

	
 Press: Space

	

[image: image with no caption]

	
 When you press Space, Emacs replaces
the first word; the query-replace operation then moves to the second
word.

This procedure continues until you reach the end of the file. As
we’ve said, typing ! fixes the rest of the file.
In Table 3-3, you might have noticed that several
keys, such as Space, have
specialized meanings while the replacement is in progress. In
practice, using these keys for a different function is not confusing,
though it might sound bad on paper. You might want to try a
query-replace on a practice file to get the hang of using the
different responses. If you are easily amused, you might enjoy
opening the Emacs FAQ, saving it as another file, then replacing
Emacs throughout.

Repeating Query-Replaces (and Other Complex Commands)

Now that you’ve learned the

 basics
of query-replace, let’s talk about a shortcut that
applies not only in query-replace but anywhere in Emacs: repeating
complex commands, with slight modifications. We often exit a
query-replace by mistake or decide that the replacement we really
wanted was just slightly different. Do we have to type it all again?
No. Simply go the beginning of the file and press C-x Esc Esc. The last complex command you
typed appears. If it’s not the one you want, type
M-p to see the previous command (do
this as many times as necessary; M-n
goes to the next command). For example, let’s go to
the beginning of the file and repeat the query-replace we just
carried out.
	
 Type: M-< followed by C-x Esc Esc

	

[image: image with no caption]

	
 Emacs puts the last complex command in the minibuffer; in fact it
looks more complex than we remember it.

When we press M-<, we move to the
beginning of the file; when we press C-x Esc Esc, the last complex command is
displayed. Emacs speaks to itself in dark words, but we can still see
that this is the command that we want.
This is the right command, so we don’t have to press
M-p to see a previous command. If we
wanted to, we could change the query-replace strings before pressing
Enter. In this case, the Marketing
Department has once again changed the product’s name
from HealthBug (since bug could be construed as pest) to HealthBot
(neutral, but a bit less descriptive in our opinion). Our earlier
query replace changed Whirligig to HealthBug. We need to modify this
command so it replaces Bug with
Bot.
	
 In the minibuffer, change Whirligig to
Bug and HealthBug to
Bot and press Enter.

	

[image: image with no caption]

	
 Pressing Enter executes the command
again with the modified search and replacement strings.

As we mentioned, C-x Esc Esc works
for any command involving input in the minibuffer, not just
query-replace. But we use this feature most frequently in
query-replace. It is also good for repeating keyboard macros (see
Chapter 6).

Recursive Editing

When you do a query-replace, you

 inevitably see something else you want
to change in the file. Try it a few
times—you’ll see what we mean! We typically
try to remember the problem until we’re done, then
get frustrated when we forget exactly what and where the problem was.
Fortunately, Emacs provides an easier way. It allows you to start a
recursive edit while you’re in the middle of a
query-replace. By starting a recursive edit, you effectively put
query-replace on hold while you make any other desired edits. When
you exit the recursive edit, the query-replace resumes where you left
off.
To start a recursive edit while in
query-replace, press C-r. (Note that like many other key bindings,
C-r has a different meaning in
query-replace than it does in standard Emacs.) When you start a
recursive edit, square brackets ([]) appear on
the mode line. Let’s go back, one more time, to our
public relations piece. You’ve used query-replace to
find the first Bug to change to Bot, and you are about to press
Space to fix it, when you remember
that the lawyers said that the “64 ounces of
water” statement was too specific and could be
construed as giving medical advice. A quick recursive edit saves the
day.
	
 Type: C-r

	

[image: image with no caption]

	
 Notice the square brackets around (Text Fill),
indicating a recursive edit in progress.

Now do any editing you want to; you are in an editing mode just like
standard Emacs. Move down to the third line and delete
“64 ounces of.” When you want to
resume the query-replace, press C-M-c. This command tells Emacs to leave the
recursive edit and reactivate the query-replace. Emacs moves back to
the point where you were when you started the recursive edit. You can
then continue making replacements just as if nothing had happened.
	
 Delete “64 ounces of,” then type
C-M-c

	

[image: image with no caption]

	
 Emacs goes back to query-replace and you press Space to fix the next Bug.

If you decide to exit the recursive edit and cancel the query-replace
in one fell swoop, you can type C-]
(for abort-recursive-edit) or
M-x top-level Enter rather than
C-M-c.
In fact, you can start a recursive edit at any time, not just when
you’re in a query-replace. The command M-x recursive-edit Enter puts you into a
recursive edit; C-M-c takes you out
of the recursive edit and brings you back to what you were doing
before. You can even have recursive edits within recursive edits,
although the possibility for confusion increases with each new level.

Are Emacs Searches Case-Sensitive?

By default, Emacs searches
 are
not case-sensitive. Look at the Options menu and
you’ll see that the

 option Case-Insensitive Search is the
only option that is checked by default.
What does this mean in practical terms? If you search for the word
random, the search finds
random, Random, and
RANDOM, as well as oddities like
RanDoM and rANdOM. When
doing replacements, Emacs pays attention to the form of the word
being replaced and replaces it with the same case. If you replaced
random with tandem,
Random would be replaced with
Tandem, and RANDOM would be
replaced with TANDEM. If you mix capitalization,
the replacement string appears just as you type it.
healthbug would be replaced with
HealthBug if that was the case in the replacement string.
In other words, the default search and replacement operations usually
do what you want: they find a search string regardless of its case
and adjust the replacement appropriately for its context. However,
sometimes you need finer control.
The variable case-fold-search
determines

 whether
searches are case-sensitive. It applies to all searches: incremental
searches, word searches, searches within search-and-replace
operations, and so on. By default, case-fold-search is set to t, which means “ignore case
unless the user types in mixed or uppercase.” This
sensible default is usually just what you want. But if you need
case-sensitive searches, the Case-Insensitive Search option on the
Options menu provides an easy way to experiment with this variable.
Likewise, if you don’t want Emacs to

 adjust
the case of your replacement strings, you can set the variable
case-replace. Again, its value is
t (for
“true”) by default, which means
“adjust the case of a replacement string to match
the original text”—that is, capitalize the
replacement if the original word was capitalized and so on. Setting
this variable to nil means
“never adjust the case of the replacement string;
always put it in exactly as I typed it.” To change
the value of case-replace, type
M-x
 set-variable
 Enter
case-replace Enter nil Enter (there’s no
menu option for this variable).
Both the menu option and the set-variable command change the behavior of
Emacs only temporarily. If you start a new editing session,
you’ll be back to the default behavior. This is
probably what you want, because searching separately for capitalized
and lowercase words is inconvenient.
You can set the value for the Case-Insensitive Search option
permanently by selecting Save Options from the Options menu or by
adding this line to your .emacs file:
(setq-default case-fold-search nil) ; require exact matches
To set case-replace permanently, add
the following line to your .emacs file.
You’ll need to restart Emacs to have the change take
effect.
(setq-default case-replace nil) ; never change case when replacing
You could change these variables through Emacs’s
interactive customization facility, Custom, instead (see Chapter 10).

Regular Expressions for Search and Replacement Operations

Sometimes none of the simpler
 searches described in this chapter are
adequate. Regular expressions allow you to build searches with
strings that contain various wildcards.

 Table 3-4 shows some of the

 characters you can use in creating
a regular expression.
Table 3-4. Characters for creating regular expressions
	

 Character(s)

 	

 Match

	

 ^

 	
 Matches the beginning of a line.

	

 $

 	
 Matches the end of a line.

	
 .

 	
 Matches any single character (like ? in filenames).

	

 .*

 	
 Matches any group of zero or more characters (. matches any character
and * matches zero or more of the previous character).

	

 \<

 	
 Matches the beginning of a word.

	

 \>

 	
 Matches the end of a word.

	

 []

 	
 Matches any character specified within the brackets; for example,
[a-z] matches any alphabetic character.

	

 \s, \S

 	
 Matches any whitespace character: space, a newline, a tab, a carriage
return, a formfeed, or a backspace; \S matches any character except
whitespace.

	

 \d, \D

 	
 Matches any single digit, 0-9; \D matches any character but a digit.

	

 \w, \W

 	
 Matches any “word” character
(upper- and lowercase letters, digits, and the underscore character);
\W matches any character but these.

If you do a regular expression search for ^word$, you would find instances of
word on a line by itself. The ^ says that the w must be the first character on the line, the
$ says that the d must be the last character.
If you wanted to find all words starting with
beg and ending with the letter
s, you could use beg[a-z]*s as your regular expression. This
would find the words begins,
begets, and begonias, in
addition to really odd words like shibegrees and
altbegaslia. If you don’t want
these mutants—that is, if you really want words that begin with
beg and end with s, use
\<beg[a-z]*s\>. The \< is a special sequence that matches the
beginning of a word; \> matches
the end of a word. If you wanted to find the words
beg, big, and
bag; but not begonias, and
certainly not any strange words with beg on the
inside, you would use \<b[a-z]g\> as the regular expression.
To search for a ^, $, .,
*, [,], or any
number of
 other special characters, you
obviously can’t use the character itself. Put a
backslash (\) first—i.e., to search for a period, search for \.
For example, to search for the electronic mail
address`:
howie@mcds.com
the regular expression would be:
howie@mcds\.com
This is a barebones introduction to regular expressions; see Chapter 11 for more details and Mastering
Regular Expressions by Jeffrey Friedl
(O’Reilly) for a book-length treatment of this
topic.
You can use regular expressions in

 incremental
searches and in query-replace. Table 3-5 lists the
commands you use for regular expression searches. Although they are
initiated with slightly

 different commands, the
searches are the same as those described earlier in this chapter.
Table 3-5. Regular expression search commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-M-s Enter
 Edit
 →
 Search
 →
 Regexp Forward

 	

 re-search-forward

 	
 Search for a regular expression forward.

	

 C-M-r Enter
 Edit
 →
 Search
 →
 Regexp Backwards

 	

 re-search-backward

 	
 Search for a regular expression backward.

	

 C-M-s
 Edit
 →
 Search
 →
 Incremental Search
 →
 Forward
Regexp

 	

 isearch-forward-regexp

 	
 Search incrementally forward for a regular expression.

	

 C-M-r
 Edit
 →
 Search
 →
 Incremental Search
 →
 Backward
Regexp

 	

 isearch-backward-regexp

 	
 Search incrementally backward for a regular expression.

	

 C-M-%
 Edit
 →
 Replace
 →
 Replace Regexp

 	

 query-replace-regexp

 	
 Query-replace a regular expression.

	
 (none)

 	

 replace-regexp

 	
 Globally replace a regular expression unconditionally (use with
caution).

Checking Spelling Using Ispell

Emacs includes two spell-checking interfaces: to the Unix spell
checker, spell, and to Ispell, which many people,
including us, prefer. We say
“interfaces” because Emacs does not
include the executables for either of these spell-checkers. Because
Ispell is superior and runs on a variety of platforms,
we’ll cover only Ispell here. If you attempt to run
Ispell and it is not available, you’ll have to
install it. Chapter 13 provides details on
installing Ispell on Windows and on Mac OS X.
A further enhancement to Ispell is Flyspell, a command that
highlights misspelled words on the fly. If you have Ispell installed,
you’ll have Flyspell support as well.
Checking a Buffer

Ispell includes options to

 check a buffer, a region, the comments in
a program, or a single word. After you type the command telling
Ispell what area you want to check, it works the same way for all
these options. We’ll describe ispell-buffer here. If all the words are
spelled correctly, Ispell displays the message,
Spell-checking done. If Ispell finds a misspelled word, a screen
like the following appears. Let’s spell-check a
hastily typed passage from Homer’s
Odyssey.
	
 Type: Esc x ispell-buffer Enter

	

[image: image with no caption]

	
 Ispell finds the first unrecognized word in the buffer.

Ispell moves to the first unrecognized word, in this case a proper
name correctly spelled (except for the proper accent marks). At the
top of the screen, Ispell opens a small window that displays
alternative spellings, numbered starting with 0. The minibuffer says
C-h or ? for more options, SPC to leave unchanged, character
to replace word. In this case, we have a properly spelled
name, so press i to ask Ispell to
insert it into your private
 dictionary, which is kept in a
file called .ispell_<language> in your
home directory,[1] where language is the
language you are using (English by default). If
this file doesn’t exist, Ispell creates it without
complaint and later asks you if you want to save it. To insert the
word in the dictionary in lowercase, press u and Ispell lowercases the word and then puts
it into your dictionary. Of course, because this is a proper name, we
insert it as it appears in the passage.
	
 Press i:

	

[image: image with no caption]

	
 Ispell moves to the next unrecognized word, another proper name.

	
 We insert a few more proper names and move along to the first real
misspelling, pwers.

	

[image: image with no caption]

	
 Ispell finds pwers misspelled.

Ispell opens a window at the top of the screen listing choices for a
replacement. Usually one of its top few choices is correct.
	
 To select powers, press: 1

	

[image: image with no caption]

	
 Ispell replaces the word and goes on to the next misspelling.

If one of the words that Ispell lists at the top of the screen is
correct, you type the number, and Ispell makes the replacement. To
replace a word yourself, press r.
After you type the corrected word, Ispell replaces it. If you press
R instead, Ispell starts a
query-replace through which you can correct all cases of the
misspelling in this buffer.
Instead of replacing the
word, you may simply want Ispell to skip
over it. To skip this occurrence of a misspelled word, press
Space. To ignore a misspelled word
for the rest of the session for all buffers, press a (for accept). Uppercase A has one subtle difference: it tells Ispell
to accept the word for this session but only in this buffer.
If you can see that something more complicated is wrong, you can
start a recursive edit by typing C-r. Fix the error and type C-M-c to exit the recursive edit and resume
Ispell. (You may recall that we discussed recursive editing earlier
in this chapter.)
Our passage repeatedly spells would incorrectly
and typing the character beside the correct word only replaces a
single incidence, so a better choice would be to type R to query-replace the word throughout the
buffer.
	
 Type: R

	

[image: image with no caption]

	
 Ispell asks for the correction for wuld.

	
 Change wuld to would and
press Enter.

	

[image: image with no caption]

	
 Ispell starts a query-replace.

We want to replace all occurrences of the misspelled word, so
we’ll type !,
which, as you might recall, means “replace them all
without asking.”
	
 Type ! then y
when prompted about saving your personal dictionary.

	

[image: image with no caption]

	
 Emacs moves to the “next”
misspelling, crse.

Ispell replaces the words,
then goes on to the next misspelling,
crse. Note that this misspelling occurs before
the second incorrect wuld. Because we already
query-replaced wuld with
would, Ispell had to move backward to find the
next misspelling.
Remember that Ispell, like all spellcheckers, corrects only true
misspellings. If a misspelling forms another word, Ispell will leave
it alone. It’s up to you to change
fries to fires in this
passage.
Different forms of the same word must be corrected separately. For
example, if you misspell receive,
receives, and receiving by
reversing the i and the e,
you must change each misspelled word.

Checking a Single Word

Sometimes when you

 are typing, you’ll say,
“That doesn’t look
right.” To check the word the cursor is on, type
M-$ (for ispell-word). Ispell checks the spelling of
the word and displays word
 :
ok if the word is spelled correctly. If the word is
incorrect, Ispell displays a window with the options discussed
earlier.

Completing a Word

You might start typing a

 word and then wonder,
“How is that spelled?” This is
where ispell-complete-word comes in.
You’re typing a word and you get stuck. Type
M-Tab (for ispell-complete-word) and you get a list of
choices. After typing occur, you use this
command to find out the answer.
	
 Type: occur M-Tab

	

[image: image with no caption]

	
 Ispell choices appear at the top of the screen.

	
 To select occurrence, type: 2

	

[image: image with no caption]

	
 Ispell completes the word for you.

This feature varies in its helpfulness. In this case the replacement
needed was shown. It won’t always work that way, but
you can always simply spell it wrong and then use ispell-buffer to fix it.

Spellchecking on the Fly with Flyspell

Flyspell highlights misspelled

 words as you type. You can also use
it to check existing text. The commands for doing this are different.
To check text as you type, enter Flyspell mode by typing M-x flyspell-mode Enter.
Fly appears on the mode line. If you set up Emacs
to enter Flyspell mode automatically, your text is always
spell-checked “on the fly.” An
alternative to Flyspell mode is Flyspell prog mode. In this mode,
designed for programmers, Emacs highlights misspellings only in
comments or strings. To enter it, type M-x
flyspell-prog-mode Enter.
To check existing text, you run M-x
flyspell-buffer Enter. This command is like ispell-buffer; it spell-checks the entire
buffer. Flyspell’s interface is different; it
underlines all the words it suspects are misspelled and gives you a
pop-up menu of alternatives.
The best way to check out Flyspell mode is to turn it on and type
some misspelled text to see it in action. No matter whether you enter
Flyspell mode or run flyspell-buffer, you correct errors in the
same way. We’ll demonstrate flyspell-buffer on our misspelled
odyssey file. Because it’s an
existing file (not a new file we’re typing), we need
to issue the flyspell-buffer
command.
	
 Type: Esc x flyspell-buffer Enter

	

[image: image with no caption]

	
 Flyspell highlights misspelled words (Mac OS X).

Flyspell highlights

 misspelled
words in red. Words that are repeatedly misspelled are highlighted in
yellow. Note that it doesn’t highlight the proper
names we inserted in the dictionary earlier using Ispell; Flyspell
checks to see whether words are in your personal dictionary before
highlighting them as errors.
You move to a misspelled word and press the middle mouse button to
display a pop-up menu of possible replacements. (This implies that
you have a three-button mouse, and, to be honest, you need one to
make Flyspell work properly.) You select a replacement using the
mouse.
	
 Move the cursor to crse and press the middle
mouse button.

	

[image: image with no caption]

	
 Flyspell displays a pop-up window of alternatives; you choose one
with the mouse (Mac OS X).

	
 Choose curse with the mouse.

	

[image: image with no caption]

	
 Emacs inserts the correct replacement (Mac OS X).

Ispell inserts new words in the dictionary. Flyspell takes it a step
further, creating word abbreviations for

 words
that you misspell. In essence, a word abbreviation tells Emacs, in
this case, that wrd is just an abbreviation for
word, and that therefore Emacs should replace it
automatically. If you turn on word abbreviation mode, described in
the next section, chronic misspellings that Flyspell encounters will
be automatically corrected.
How can you tell Flyspell is using word abbreviations? When you exit
a session in which you’ve used Flyspell, you see a
prompt that says, Save
 abbrevs
 in
 ~/.abbrev_defs (y
 or
 n). This automatic
correction won’t occur without turning on word
abbreviation mode, whether in your startup or manually. Read the
section on this topic in this chapter for more details.
What do you do if you encounter a word that’s
spelled correctly but that Flyspell doesn’t
recognize? You could insert it in your Ispell dictionary if
it’s a word you use frequently. The Save word option
on the Flyspell pop-up menu handles this. For a temporary fix, the
options Accept buffer and Accept session tell Flyspell to accept a
word for the current buffer or for all buffers in the current Emacs
session automatically. Of course, if it’s a word you
use frequently, you may want to insert it in the Ispell dictionary to
keep Flyspell from flagging it each time.
To enter flyspell mode automatically, add this line to your
.emacs file:
(setq-default flyspell-mode t)

 Table 3-6 summarizes the Ispell and Flyspell
commands.
Table 3-6. Spell-checking commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 M-$
 Tools
 →
 Spell Checking
 →
 Spell-Check Word

 	

 ispell-word

 	
 Check the word the cursor is on or the word following the cursor.

	
 (none)Tools
 →
 Spell Checking
 →
 Spell-Check
Region

 	

 ispell-region

 	
 Check spelling of the region.

	
 (none)Tools
 →
 Spell Checking
 →
 Spell-Check
Buffer

 	

 ispell-buffer

 	
 Check spelling of the buffer.

	
 (none)Tools
 →
 Spell Checking
 →
 Spell-Check
Message

 	

 ispell-message

 	
 Check spelling of the body of a mail message.

	
 (none)Tools
 →
 Spell Checking
 →
 Spell-Check
Comments

 	

 ispell-comments-and-strings

 	
 Check spelling of comments and strings in a program.

	

 C-u M-$
 Tools
 →
 Spell Checking
 →
 Continue Spell-Checking

 	

 ispell-continue

 	
 Resume Ispell; it works only if stopped Ispell with C-g.

	
 (none)

 	

 ispell-kill-ispell

 	
 Kill the Ispell process, which continues to run in the background
after it is invoked.

	

 M-Tab
 Tools
 →
 Spell Checking
 →
 Complete Word

 	

 ispell-complete-word

 	
 In text mode, list possible completions for the current word.

	
 (none)Tools
 →
 Spell Checking
 →
 Automatic Spell-Checking (Flyspell)

 	

 flyspell-mode

 	
 Enter the Flyspell minor mode, in which incorrectly spelled words are
highlighted.

	
 (none)

 	

 flyspell-buffer

 	
 Spell-check the current buffer, underlining all misspelled words. Use
middle mouse button to correct.

[1] Your default dictionary might be
called something else entirely, like
.aspell.language.pws. If you run the command
ispell-check-version,
you’ll see that although Ispell is supposedly
running, it’s really Aspell behind the scenes.

Word Abbreviations

Word abbreviation mode

 and dynamic
abbreviations are two features that lazy typists will love. The
authors proudly include themselves in that category, so
you’ll be in good company if you choose to explore
these features. Dynamic abbreviations are less complex, so
we’ll discuss them first.
Dynamic Abbreviations

Let’s say that you are

 a scientist writing a
paper on invertebrates. You’re likely to have many
long technical words in your paper, and if you’re
like us, you get tired of typing long words.
Dynamic abbreviations come to the rescue. After
you’ve typed a long word once, you can simply type a
few letters and give the command M-/
(for dabbrev-expand). Emacs inserts
the nearest word that starts with that string.
	
 Type: In M-/

	

[image: image with no caption]

	
 Emacs inserts the last word starting with in, in
this case, interesting.

 Interesting was not the word we were hoping for;
it’s invertebrates we wanted.
Without moving the cursor, type M-/
again.
	
 Type: M-/

	

[image: image with no caption]

	
 Emacs inserts the word Invertebrates, which is
what we wanted.

The word being expanded need not be earlier in the file to be
considered nearest. Emacs looks behind and ahead of the cursor
position to find words it can expand. If there are eligible words
that are equidistant above and below the cursor position both, Emacs
selects the word that is above as the expansion.
Earlier we talked about completing a word with Ispell. Dynamic
abbreviations are a bit different. When you complete a word, the word
probably isn’t in the buffer (yet). When you use a
dynamic abbreviation, you simply don’t want to type
a word you typed earlier and you’re asking Emacs to
do it for you.
Using dynamic abbreviations doesn’t require entering
a special minor mode, as standard word abbreviations do. They are
simply an aid for the tired typist. Word abbreviation mode has some
other advantages, though, such as the ability to create an
abbreviation for a phrase or a habitual typo, as we will see next.

Word Abbreviation Mode

Word abbreviation mode lets you
define abbreviations for special words
and phrases. You can
u
 se it in
many ways. Traditionally, abbreviation mode is used so that you
don’t have to type long words or phrases in their
entirety. For example, let’s say you are writing a
contract that repeatedly references the National Institute of
Standards and Technology, and you are not allowed to use an acronym.
Rather than typing the full name, you can define the abbreviation
nist. Once you have set up this definition,
Emacs inserts the full name whenever you type the abbreviation
nist, followed by a space, tab, or punctuation
mark. Emacs watches for you to type an abbreviation, then expands it
automatically for you.
Before showing you how to get into word abbreviation mode and define
your abbreviation list, we’ll start with an example.
Our favorite nontraditional use for word abbreviation mode is to
correct misspellings as you type.[2] Almost everyone has a dozen or so
words that they habitually type incorrectly because of worn neural
pathways. You can simply tell Emacs that these misspellings are
“abbreviations” for the correct
versions, and Emacs fixes the misspellings every time you type them;
you may not even notice that you typed the word wrong before Emacs
fixes it. So assume that you’ve entered word
abbreviation mode, and that you’ve defined
receive as an abbreviation for
recieve; now, as you’re typing,
you make an innocent mistake.
	
 Type: You will recieve

	

[image: image with no caption]

	
 You type the offending word but haven’t yet pressed
Space, which will cue Emacs to
correct it (Windows).

	
 Type: Space the materials you requested
shortly

	

[image: image with no caption]

	
 Emacs corrects the word automatically after you press Space; you need not stop typing or even be
aware that a mistake has been made and corrected (Windows).

Besides the convenience of being able to invent abbreviations for
phrases that you frequently type, you can see that setting up a short
list of abbreviations for common misspellings could reduce the time
it takes to proofread files and reduce the number of common typing
errors.
When you define abbreviations, never use abbreviations that are words
in their own right or Emacs may expand the word when you
don’t want it to, because expansion takes place
without asking. For example, if you frequently write about the World
Association for Replicant Technology, don’t define
an abbreviation of wart, or you
won’t be able to write about the difficulties of
handling toads. (If you use the word wart so
infrequently that you think the convenience of the acronym warrants
it, you can use C-_ to undo the
abbreviation when you really want to type wart.)
Emacs knows the abbreviations exactly as you define them. If you
define recieve as an abbreviation for
receive, you must also define
recieves, recieving, and
recieved as abbreviations to cover all the forms
of the word you might misspell.
Before you go ahead and define some abbreviations,
here’s one more basic fact you should know. Emacs
classifies abbreviations according to which modes they work in.
Global abbreviations work in all modes; local abbreviations work only
in the mode in which they were defined. For example,

 if
you want abbreviations to work only in text mode and not in C mode,
define them as local while you are in text mode.
If you want abbreviations to work in any mode,

 define
them as global. Remember: abbreviations are
local to modes, not to files or buffers.
Emacs also provides an inverse method for defining abbreviations.
This method is called inverse because you type
the abbreviation and then the definition. Some commands (which we
won’t discuss) let you type the definition and then
the abbreviation, but they require some tricky key sequences to let
Emacs know how many words preceding the cursor are part of the
abbreviation. The inverse method is easier and it works whether the
definition for the abbreviation is one word or ten words.
Trying word abbreviations for one session

Usually, if you go to the trouble of defining a word abbreviation,
you will use it in more than one Emacs session. But if
you’d like to try out abbreviation mode to see if
you want to incorporate it into your startup, use the following
procedure.
To define word abbreviations for

 this
buffer and session:
	Enter word abbreviation mode by typing M-x
abbrev-mode Enter. Abbrev appears on
the mode line. For a global abbreviation, type the abbreviation you
want to use and type C-x a i g or
C-x a - (for add-inverse-global). (For a local
abbreviation, type C-x a i l for
add-inverse-local instead.) Emacs
then asks you for the expansion.

	Type the definition for the abbreviation and press Enter. Emacs then expands the abbreviation and
will do so each time you type it followed by a space or punctuation
mark.

	When you exit Emacs. it asks if you want to save the abbreviations in
.abbrev_defs. Type y if you want to save them.

	The abbreviations you’ve defined will work only in
buffers where you enter abbrev mode.

If you find that you like using word abbreviation mode, you may want
to make it part of your startup, as described in the following
section.

Making word abbreviations part of your startup

Once you become hooked on using abbreviation mode,
it’s easiest to incorporate it into your
.emacs file. This procedure
creates a permanent file of your word abbreviations that is loaded
every time you start Emacs. You can also delete abbreviations from
this file; we’ll discuss how to do so in the next
section.
To define word abbreviations and make them part of your startup:
	Add these lines to your .emacs file:
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)

	Save the .emacs file and reenter Emacs.
Abbrev appears on the mode line. You may get an
error message saying Emacs can’t load your abbrev
file (understandable if you haven’t created the file
yet). Ignore this error message; it won’t happen
again.

	Type an abbreviation and type C-x a i g
or C-x a - following the
abbreviation. These commands create a global abbreviation; if you
want to create a local abbreviation instead, type C-x a i l. Emacs asks you for the expansion.

	Type the definition for the abbreviation and press Enter. Emacs expands the abbreviation and will
do so each time you type it followed by a space or punctuation mark.
You can define as many abbreviations as you want to by repeating
Steps 3 and 4.

	Type C-x C-c to exit Emacs. Emacs
asks if you want to save the abbreviations in
.abbrev_defs.

	Type y to save your abbreviations.

After you define some abbreviations and save them, Emacs loads the
abbreviations file automatically. When you define word abbreviations
in subsequent sessions, Emacs asks again whether you want to save the
abbreviations file. Respond with a y
to save the new abbreviations you’ve defined and
have them take effect automatically.

Deleting a word abbreviation

If you use word

 abbreviations
frequently, you may define an abbreviation and later change your
mind. You can edit the word abbreviation list by typing M-x edit-abbrevs Enter. You can see (but not
edit) the list by typing M-x list-abbrevs
Enter.
After the list is displayed, use C-k
(or any other editing commands) to delete the abbreviations you
don’t want to use. Because Emacs itself formats this
list, don’t try to edit lines or add new lines;
deleting is about the only operation that’s safe.
Here’s how the abbreviations look when you edit word
abbreviations. The file is divided into different sections based on
whether the abbreviations are global or local to a particular mode:
(text-mode-abbrev-table)

(lisp-mode-abbrev-table)

(fundamental-mode-abbrev-table)

(global-abbrev-table)

"iwthout" 1 "without"
"prhase" 1 "phrase"
"teh" 1 "the"
"fo" 1 "of"
"eamcs" 2 "Emacs"
"wrok" 1 "work"
"aslo" 1 "also"
"sotred" 1 "stored"
"inforamtion" 1 "information"
"esc" 6 "Esc"
"taht" 1 "that"
"chatper" 1 "chapter"
"adn" 1 "and"
"iwth" 1 "with"
"chpater" 1 "chapter"
"loaction" 1 "location"
"recieve" 1 "receive"
"wart" 1 "World Association for Replicant Technology"
The file is divided into sections by mode. We defined global
abbreviations in this case; any abbreviations Flyspell (described
earlier in this chapter) creates are local abbreviations and would be
listed under the mode in which they were defined.
In this buffer, the first column lists the abbreviations (in this
case, mostly misspellings). The second column is for internal record
keeping; you don’t need to concern yourself with it.
The third column provides the definitions of the abbreviations, the
word or phrase that Emacs substitutes whenever it sees the
abbreviation.
To delete any abbreviation, delete the line for that abbreviation and
save the file by typing M-x
write-abbrev-file. You can move back to the buffer you
were editing before by typing C-x b
(a command for working with multiple buffers, discussed in Chapter 4).

Disabling word abbreviations

You can get rid of word

 abbreviations completely
in one of two ways. First, you can type M-x
kill-all-abbrevs Enter. This command disables word
abbreviations for the current session.
Second, you can delete the file the abbreviations are in. If you made
word abbreviations part of your startup, delete the read-abbrev-file line from your
.emacs file.

Abbreviations and capitalization

Usually, Emacs capitalizes

 abbreviations exactly the way you
want. If you run into special situations with abbreviations and
capitalization, however, you may wantl to know
what’s going on behind the scenes. Here are the
rules:
	If the abbreviation’s definition contains any
uppercase letters, Emacs always inserts the definition without
changing anything. For example, if you define
ora as an abbreviation for
O’Reilly Media,
O’Reilly will always be
capitalized exactly as shown.

	If the abbreviation’s definition is all lowercase,
Emacs capitalizes according to the following rules:
	If you type all of the letters of the abbreviation in lowercase,
Emacs inserts the definition in lowercase.

	If you type any of the letters of the abbreviation in uppercase,
Emacs capitalizes the first letter of the first word.

	If you type all of the letters of the abbreviation in uppercase,
Emacs capitalizes the first letter of every word, unless the variable
abbrev-all-caps is set to t; in this case, it capitalizes all letters.

 Table 3-7 shows some examples.
Table 3-7. Word abbreviation capitalization
	

 Abbreviation

 	

 Definition

 	

 You type:

 	

 Expands to:

 	

 Because:

	
	
	
	
	

	
 lc

 	
 lamb chop

 	

 lc

 	
 lamb chop

 	

 lc is lowercase, so lamb
chop is lowercase.

	
 lc

 	
 lamb chop

 	

 Lc

 	
 Lamb chop

 	
 There’s one capital in Lc, so
Lamb is capitalized.

	
 lc

 	
 lamb chop

 	

 lC

 	
 Lamb chop

 	
 There’s one capital in lC, so
Lamb is capitalized.

	
 lc

 	
 lamb chop

 	

 LC

 	
 Lamb Chop

 	

 LC is all capitals, so both words are
capitalized.

	
 lc

 	
 Lamb Chop

 	

 lc

 	
 Lamb Chop

 	
 Capitals in the definition are always unchanged.

	
 lc

 	
 Lamb Chop

 	

 LC

 	
 Lamb Chop

 	
 Capitals in the definition are always unchanged.

You don’t need to remember the rules, but looking
them over may help you out if you can’t understand
how Emacs is capitalizing. In our experience, defining abbreviations
in lowercase circumvents most capitalization problems.

 Table 3-8 summarizes word abbreviation commands.
Table 3-8. Word abbreviation commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 M-/

 	

 dabbrev-expand

 	
 Complete this word based on the nearest word that starts with this
string (press M-/ again if
that’s not the word you want).

	
 (none)

 	

 abbrev-mode

 	
 Enter (or exit) word abbreviation mode.

	

 C-x a -
 or
 C-x a i g

 	

 inverse-add-global-abbrev

 	
 After typing the global abbreviation, type the definition.

	

 C-x a i l

 	

 inverse-add-mode-abbrev

 	
 After typing the local abbreviation, type the definition.

	
 (none)

 	

 unexpand-abbrev

 	
 Undo the last word abbreviation.

	
 (none)

 	

 write-abbrev-file

 	
 Write the word abbreviation file.

	
 (none)

 	

 edit-abbrevs

 	
 Edit the word abbreviations.

	
 (none)

 	

 list-abbrevs

 	
 View the word abbreviations.

	
 (none)

 	

 kill-all-abbrevs

 	
 Kill abbreviations for this session.

Problems You May Encounter

	
 You search for a string you can see on the
screen, and Emacs can’t find it. The most
probable explanation
 is that Emacs is taking into
account line breaks and punctuation, and you’re not
including these in the search string. Use word search, which ignores
any line breaks or punctuation, to find the string.

	
 You get a message that says,
Searching for program: No such file or directory
ispell. You
don’t have Ispell installed. Ispell is external to
Emacs; see Chapter 13 for details on installing
Ispell on Mac OS X and Windows.

	
 You can’t see the pop-up menu
in Flyspell. You activate this pop-up menu by pointing the
mouse at a given word and pressing the middle mouse button.
Essentially, you need a three-button mouse to run Flyspell.

[2] Once upon a time
this use of word abbreviation mode was nontraditional; these days
Flyspell, described earlier, automatically defines misspellings as
abbreviations.

Chapter 4. Using Buffers, Windows, and Frames

One of the most universally useful features of Emacs is the ability
to edit multiple buffers at once and to display more than one buffer
using windows and frames. The commands for doing this are simple; you
learn only a few commands and yet experience a tremendous boost in
productivity. The more you use multiple buffers, frames, and windows,
the more uses you’ll think of for them.
In this chapter, we discuss how to use buffers, windows, and frames.
First we cover the most commonly used commands, then, in the case of
buffers and windows, move on to some more esoteric commands. At the
end of the chapter, we discuss bookmarks, a method for marking your
place in a file.

Understanding Buffers, Windows, and Frames

Conceptually, Emacs is different from most applications in two
important ways. First, its window terminology is different. Second,
Emacs buffers are not tied to windows or frames, unlike most
applications.
Windows Versus Frames

Let’s get our terms

 straight first. GUI windows are not
Emacs windows. Emacs calls GUI windows frames.
In part, this terminology is necessary because Emacs predates GUIs
and is still often used on terminals without GUI windows. Emacs
windows are split screens. We’ve seen them already;
for example, when you ask for keyboard help, you see it displayed in
a *Help* buffer at the bottom of your screen.
Figures Figure 4-1 and Figure 4-2
show Emacs frames and Emacs windows. In Figure 4-1,
we see our dickens and odyssey
buffers in two separate frames. Figure 4-2 shows a
single frame displaying two Emacs windows, one on top of the other,
showing these two files.
[image: Editing dickens and odyssey in Emacs frames]

Figure 4-1. Editing dickens and odyssey in Emacs frames

[image: Editing dickens and odyssey in Emacs windows]

Figure 4-2. Editing dickens and odyssey in Emacs windows

From now on, when we say frame, we mean a separate GUI window. When
we say window, we mean a portion of the current Emacs display. And
from a practical standpoint, we emphasize that this is not an
either-or proposition. Even if you prefer multiple frames, you will
still use Emacs-style windows sometimes. Emacs itself will see to
that.

Buffers: Independent of Windows and Frames

Now what about buffers? Essentially,

 both
windows and frames are ways to display a buffer, which, as defined in
Chapter 1, may contain a copy of a file or not.
Buffers may contain files. They may be Emacs-generated buffers, like
Messages, *scratch*, or
Help. Or they may be buffers that you create but
haven’t written to a file.
Most GUI applications tie certain files to certain GUI windows or, in
Emacspeak, frames. Emacs’s detachment of buffers
from their display (whether a split display or a separate frame) is
more powerful and flexible. To be honest, most of the time we prefer
using a single Emacs frame and switching between
buffers using C-x b.
It’s much easier than mousing between frames or
dealing with a split screen, though each has its advantages in some
situations.

More About Buffers

How do you know how many

 buffers are active in Emacs
and what they are? There are three ways: the buffer list (which
appears in a window when you type C-x
C-b), the Buffers menu (which lists active buffers

 and commands for navigating them), and the
Buffer pop-up menu (accessed by holding down Ctrl and clicking the left mouse button, which
lists buffers by mode).
Emacs creates its own specialized buffers. The names for these

 internal buffers generally have the format
*
 buffer
name
 *. *Help*,
scratch, and *Buffer List*
are just a few of the buffers that Emacs creates.
When you start Emacs, it generates two buffers:
	
 Messages

	
 scratch

 Messages is a buffer where

 Emacs
accumulates messages from its startup and from the minibuffer.
scratch is just what it sounds like: a temporary
scratchpad where you can type. It won’t be saved
unless you explicitly write it to a file using C-x C-w.
Of course, typically you edit files with Emacs. These files are then
copied into buffers of the same name. If you ask for help,
you’ll also have a *Help* buffer.
The number of buffers you
can have really has no limit. Most of the
time, only one or two buffers are displayed, but even if you
can’t see them, all the buffers you create in an
Emacs session are still active. You can think of them as a stack of
pages, with the one being displayed as the top page. At any time, you
can turn to another page (another buffer), or you can create a new
page.
Each buffer has an associated

 major mode
that determines much about how Emacs behaves in that buffer. For
example, text mode, designed for writing text, behaves differently
from Lisp mode, which is designed for writing Lisp programs.
You can display multiple buffers in separate windows or frames or
both. The important thing to remember is that all the buffers you
create are active even if they are not currently displayed.

Working with Multiple Buffers

If you want to create a

 buffer that contains a file, simply type
C-x C-f to find the file. Emacs
automatically creates a second buffer and moves you there. If you
already have a copy of the file in a buffer, C-x C-f just moves you to the existing buffer.
This move is sensible and probably really what you want anyhow; if
C-x C-f read the file from disk
every time, you could end up with many versions of the same file that
were each slightly different. If the filename you give C-x C-f doesn’t exist, Emacs
assumes you want to create a new file by that name and moves you to a
blank buffer.
Switching Buffers

 C-x C-f is always followed by a

 filename. The command for moving between
buffers, C-x b, is followed by a
buffer name. Did you realize that the mode line
doesn’t display filenames but only buffer names?
Some versions of Emacs show both, but GNU Emacs shows only the buffer
name. The buffer name and the filename, if any, are the same unless
you change them (see the section “Renaming
Buffers,” later in this chapter).
To move between the buffers, type C-x
b. Emacs shows you a default buffer name. Press Enter if that’s the buffer
you want, or type the first few characters of the correct buffer name
and press Tab. Emacs fills in the
rest of the name. Now press Enter to
move to the buffer.
You can do the following with C-x b:
	

 If you type C-x b followed by:

 	

 Emacs:

	
 A new buffer name

 	
 Creates a new buffer that isn’t connected with a
file and moves there.

	
 The name of an existing buffer

 	
 Moves you to the buffer (it doesn’t matter whether
the buffer is connected with a file or not).

If you want to create a second (or third or fourth, etc.) empty
buffer, type C-x b. Emacs asks for a
buffer name. You can use any name, for example, practice, and press Enter. Emacs creates the buffer and moves you
there. For example, assume you’ve been working on
your tried-and-true dickens buffer. But
you’d like something new, so you start a new buffer
to play with some prose from James Joyce.
	
 Type: C-x b joyce

	

[image: image with no caption]

	
 You typed a new buffer name.

	
 Type: Enter

	

[image: image with no caption]

	
 Now you have a new buffer named joyce to type in.

This procedure isn’t all that different from using
C-x C-f; about the only difference
is that the new buffer, joyce,
isn’t yet associated with a file. Therefore, if you
quit Emacs, the editor won’t ask you whether or not
you want to save it.

 C-x b is especially useful if you
don’t know the name of the file you are working
with. Assume you’re working with some obscure file
with an unusual name such as
.saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com.
Now assume that you accidentally do something that makes this buffer
disappear from your screen. How do you get
.saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com
back onto the screen? Do you need to remember the entire name or even
a part of it? No. Before doing anything else, just type C-x b. The default buffer is the buffer that
most recently disappeared; type Enter and you’ll see it
again.
Alternatively, the Buffer Menu popup

 lists buffers
by major mode, and you can choose one. Hold down Ctrl and click the left mouse button to see a
pop-up menu of your current buffers. (The Buffers menu at the top of
the screen also shows all current buffers.)
	
 Hold down Ctrl and click the left
mouse button.

	

[image: image with no caption]

	
 Emacs displays a pop-up menu of current buffers by mode (Mac OS X).

To cycle through all the buffers you

 have, type C-x
 → to go to the
next buffer (in the buffer list) or C-x
 to go to the previous buffer. (Don’t
hold down Ctrl while you press the arrow key or Emacs beeps
unhappily.)

Deleting Buffers

It’s easy to create buffers, and just

 as
easy to delete them when you want to. You may want to delete buffers
if you feel your Emacs session is getting cluttered with too many
buffers. Perhaps you started out working on a set of five buffers and
now want to do something with another five. Getting rid of the first
set of buffers makes it a bit easier to keep things straight.
Deleting a buffer can also be a useful emergency escape. For example,
some replacement operation may have had disastrous results. You can
kill the buffer and choose not to save the changes, then read the
file again.
Deleting a buffer doesn’t delete the underlying file
nor is it the same as not displaying a buffer. Buffers that are not
displayed are still active whereas deleted buffers are no longer part
of your Emacs session. Using the analogy of a stack of pages,
deleting a buffer is like taking a page out of the current stack of
buffers you are editing and filing it away.
Deleting buffers doesn’t put you at risk of losing
changes, either. If you’ve changed the buffer (and
the buffer is associated with a file), Emacs asks if you want to save
your changes before the buffer is deleted. You will lose changes to
any buffers that aren’t connected to files, but you
probably don’t care about these buffers.
Deleting a buffer is such a basic operation that it is on the Emacs
toolbar, the X symbol. Now let’s learn how to do it
from the keyboard to increase your fluency in Emacs.
To delete a buffer, type C-x k (for
kill-buffer). Emacs shows the name
of the buffer currently displayed; press Enter to delete it or type another buffer name
if the one being displayed is not the one you want to delete, then
press Enter. If
you’ve made changes that you
haven’t yet saved, Emacs displays the following
message:
Buffer buffer name modified. Kill anyway? (yes or no).
To ditch your changes, type yes, and
Emacs kills the buffer. To stop the buffer deletion process, type
no. You can then type C-x C-s to save the buffer, followed by
C-x k to kill it.
You can also have Emacs ask you about deleting each buffer, and you
can decide whether to kill each one individually. Type M-x kill-some-buffers to weed out unneeded
buffers this way. Emacs displays the name of each buffer and whether
or not it was modified, then asks whether you want to kill it. Emacs
offers to kill each and every buffer, including the buffers it
creates automatically, like *scratch* and
Messages. If you kill all the buffers in your
session, Emacs creates a new *scratch* buffer;
after all, something has to display on the screen!

Working with Windows

Windows are areas on the screen in

 which Emacs displays the buffers that
you are editing. You can have multiple windows on the screen at one
time, each displaying a different buffer or different parts of the
same buffer. Granted, the more windows you have, the smaller each one
is; unlike GUI windows, Emacs windows can’t overlap,
so as you add more windows, the older ones shrink. The screen is like
a pie; you can cut it into many pieces, but the more pieces you cut,
the smaller they have to be. You can place windows side-by-side, one
on top of the other, or mix them. Each window has its own mode line
that identifies the buffer name, the modes you’re
running, and your position in the buffer. To make it clear where one
window begins and another ends, mode lines are usually shaded.
As we’ve said, windows are not buffers. In fact, you
can have more than one window on the same buffer. Doing so is often
helpful if you want to look at different parts of a large file
simultaneously. You can even have the same part of the buffer
displayed in two windows, and any change you make in one window is
reflected in the other.
The difference between buffers and windows becomes important when you
think about marking, cutting, and pasting text. Marks are associated
with buffers, not with windows, and each buffer can have only

 one
mark. If you go to another window on the same buffer and set the
mark, Emacs moves the mark to the new location, forgetting the place
you set it last.
As for cursors, you have only

 one
cursor, and the cursor’s location determines the
active window. However, although there is only one cursor at a time,
each window does keep track of your current editing location
separately—that is, you can move the cursor from one window to
another, do some editing, jump back to the first window, and be in
the same place. A window’s notion of your current
position (whether or not the cursor is in the window) is called the
point. Each window has its own point.
It’s easy to use the terms
point and cursor
interchangeably—but we’ll try to be specific.
You can create horizontal windows or vertical windows or both, but
personally we place vertical windows with the more advanced esoterica
near the end of the chapter. Here we’ll discuss
creating horizontal windows, finding a file in a new window, and
deleting windows.
Creating Horizontal Windows

The most commonly used

 window command is C-x 2 (for split-window-vertically). This command splits
the current window into two, horizontally oriented windows. You can
repeat this command to split the screen into more horizontal windows.
	
 Initial state:

	

[image: image with no caption]

	
 Editing our trusty dickens buffer.

	
 Type: C-x 2

	

[image: image with no caption]

	
 The screen is divided into two horizontal windows; the mode line
demarcates each window.

You can also have Emacs
set up

 windows
for you when you start a session. If you want to edit two files in
horizontal windows, specify their filenames when you start Emacs at a
command prompt. For example, if you wanted to edit
dickens and joyce, you
would type emacs dickens joyce and
Emacs would display these files in two horizontal windows. If you try
this with more than two files, Emacs displays two horizontal windows,
with a file in one and a list of buffers in the other.
A number of the “other window”
commands are just the ordinary command with a 4
inserted in it. For example, to find a file in another
window, type C-x 4 f. (If only one
window is currently open, Emacs opens another one.) To select a
different buffer in another window, type C-x 4
b. Many users find these commands preferable to the normal
C-x C-f and C-x b commands because they save you a step:
you need not move to the window, give a command, and move back.
Once you’ve got multiple windows open,
it’s helpful to be able to scroll them without
moving there. To scroll the other window, type C-M-v.

Moving Between Windows

To move from one window to

 another, type C-x o (o
stands for other in this command). If you have
more than two windows displayed, Emacs moves from one to the next.
There’s no way to specify which window to move to,
so you may have to type C-x o a few
times to get to the one you want if you have more than two windows
displayed. (You can also click your mouse in a window if
you’re using the GUI version.)
Now that you can create windows and can move between them, what else
can you do? Practically anything. With our two windows on
dickens open, one on top of the other.
Initially, both of these windows are looking at the same file.
	
 Type: C-x 2

	

[image: image with no caption]

	
 Two windows open on dickens.

We can give any editing commands we want within either window. We can
move back and forth in one window without affecting the other.
Let’s see what happens if we want to edit another
file.
	
 Type: C-x C-f blake

	

[image: image with no caption]

	
 Now you have two windows, two buffers, and two files.

By using C-x o, we can edit one file
and then the other. We can kill text from one buffer and yank it back
in another. For example, let’s move the first line
of Blake’s poem to the top of the
dickens buffer.
	
 Type: C-k C-k C-x o M-< C-y Enter

	

[image: image with no caption]

	
 The Blake text has been yanked into the dickens
buffer.

Editing with multiple buffers in

 separate windows
is particularly useful if, for example, you want to copy material
from one file to another or if you want to read a file containing
reference material while editing another. Programmers often need to
look at several different files at the same time—for example, a
header file and a code file, or a function call site and the routine
that’s being called. Once you get used to the
commands for moving between different windows, you may spend most of
your time with two or three windows on your screen.

Getting Rid of Windows

Deleting a window only means that

 it
isn’t displayed anymore; it doesn’t
delete any of the information or any of your unsaved changes. The
underlying buffer is still there, and you can switch to it using
C-x b. To delete the window
you’re in, type C-x
0 (zero). If you want to delete all windows but the one
you’re working on, type C-x
1 (one), meaning “make this my one and
only window.” As you’d expect, the
remaining window “grows” to fill up
the rest of the space. You can also delete all windows on a certain
buffer by typing: M-x delete-windows-on Enter
 buffername
 Enter.

Working with Frames

By now you know that Emacs calls GUI windows
“frames.” In this section,
we’ll cover how to create frames, navigate between
frames, and delete frames.
Creating a New Frame

To open a new frame,
type
C-x 5 2 (for make-frame). Emacs makes a new frame
containing the current buffer and puts it on top of the current
frame.
If your new frame completely overlaps your current frame, you may
need to size the new frame to tell them

 apart.
For a more convenient solution, add these lines to your
.emacs file:
(setq initial-frame-alist '((top . 10) (left . 30)
 (width . 90) (height . 50)))
(setq default-frame-alist '((width . 80) (height . 45)))
These lines set up sizes for the width and height of Emacs frames.
The first frame is the size set in initial-frame-alist (in this example, 90
characters wide by 50 lines high with top and left defining an
inset), and subsequent frames, specified by default-frame-alist, will be 80 characters
wide and 45 lines high. Depending on your display, you can make these
numbers smaller or larger.
Here we edit a bit of Henry James.
	
 Type: C-x 5 2

	

[image: image with no caption]

	
 Emacs opens a new frame titled james

Frame Names
Note the title of your

 new
frame. The first frame in your session, your initial Emacs frame,
displays Emacs@
 system
name at the top (or Emacs’s best guess
at the system name). Any other frames you create display the buffer
name at the top. In fact, once you have multiple frames,
all frames display the buffer name as their
title. If you delete all frames but one, the title once again reverts
to Emacs@
 system name.

Let’s say we want to open a frame on our
dickens buffer.
	
 Type: C-x 5 f dickens Enter

	

[image: image with no caption]

	
 Emacs opens a new frame on dickens.

If you type C-x b to move to another
buffer, the name at the top of the frame changes to the new
buffer’s name (and on Linux, it shows the path as
well). To move to a buffer and put it in a new frame, type C-x 5 b. You might have guessed that one.

Moving Between Frames

You can move between frames

 in several ways. You can use the mouse to
select a frame or press C-x 5 o to
go to another frame. To see a list of current frames, select
Frames from the Buffers menu. (If you have only one frame, the
Frames option does not appear on
this menu.)

Deleting and Minimizing Frames

To get rid of a frame, press C-x 5
0. Emacs deletes

 the frame you are in. Deleting a frame,
like deleting a window, affects only the display. The underlying
buffer is still active, and you can move to it by typing C-x b.
If you try to use C-x 5 0 to delete
the only frame that is left, Emacs won’t do it. To
exit Emacs, type C-x C-c or close
the frame as you would any other GUI window using the mouse.
To minimize a frame, either minimize it in the usual way or press
C-z. Table 4-1
summarizes the frame commands.
Table 4-1. Frame commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x 5 o
 Buffers
 →
 Frames

 	

 other-frame

 	
 Move to other frame.

	

 C-x 5 0
 File
 →
 Delete Frame

 	

 delete-frame

 	
 Delete current frame.

	

 C-x 5 2
 File
 →
 New Frame

 	

 make-frame

 	
 Create a new frame on the current buffer.

	

 C-x 5 f

 	

 find-file-other-frame

 	
 Find file in a new frame.

	

 C-x 5 r

 	

 find-file-read-only-other-frame

 	
 Finds a file in a new frame, but it is read-only.

	

 C-x 5 b

 	

 switch-to-buffer-other-frame

 	
 Make frame and display other buffer in it.

More About Buffers

In this section, we’ll learn about saving multiple
buffers, renaming buffers, read-only buffers, and operations you can
do with the buffer list—not only a useful tool but a good
introduction to the principles you’ll encounter in
the directory editor, Dired, covered in Chapter 5.
Saving Multiple Buffers

You know about saving buffers

 individually
by typing C-x C-s. Once
you’re using multiple buffers, you should also know
that you can save them all at once by typing C-x s (for save-some-buffers). Emacs asks you if you want
to save each buffer that is connected with a file (it
doesn’t offer to save new buffers
you’ve created but have not associated with a file
and, of course, it doesn’t save its own internal
buffers). For each buffer, you can answer y to save it or n not to. You can also type ! to save all the buffers without asking. If
you want to save this buffer and no more, type a period (.). If you want to cancel the command and not
save the current buffer, press q (of
course, any buffers you saved before pressing q are already saved; q does not undo those). You may want to look
at the buffer before deciding whether to save it; if so, type
C-r. Emacs enters view mode,
allowing you to look at the buffer but not make changes. Press
q to exit view mode and continue
saving buffers.

Renaming Buffers

When you are editing a file,

 the buffer takes on the name of the
file. If you have long filenames, you may find it convenient to
rename buffers to shorter names (this renaming
doesn’t affect the filename, just the buffer name).
This feature is mostly useful on versions of Emacs that
don’t offer good completion capabilities; in GNU
Emacs, whenever you have to type a buffer name, you just type the
first few unique letters and press Tab to have Emacs complete the name for you.
In some circumstances, you may want to rename buffers.
To rename a buffer, type M-x
rename-buffer. Emacs asks for the new name; type it and
press Enter. The new name is
displayed on the mode line. Renaming buffers comes in particularly
handy in shell mode, described in Chapter 5.
You start one command shell, and then rename the buffer and start
another, in this way running as many shells as you have use for
simultaneously.
As mentioned earlier, in GNU Emacs only the buffer name is displayed
on the mode line, rather than the buffer name

 and the filename. Even if you rename a
buffer that contains a file, Emacs remembers the connection between
buffer and file, which you can see if you save the file (C-x C-s) or display the buffer list (described
later in the chapter).
What if you have two buffers

 with the same name? Let’s
say you are editing a file called outline from
your home directory and another file called
outline from one of your subdirectories. Both
buffers are called outline, but Emacs
differentiates them by appending <2> to the
name of the second buffer. (You can tell which is which by looking at
the buffer list, discussed later in this chapter.) Emacs offers an
option that adds a directory to buffers in this situation: select Use
Directory in Buffer Names from the Options menu.
Let’s say you’ve turned on this
option and are editing a file called .localized;
Emacs will call this buffer simply .localized. Now
you find a second file of the same name from a subdirectory. Instead
of calling this buffer .localized<2>, Emacs
names the buffer
directory
 /.localized, making
it easy for you to tell the buffers apart at a glance. This option
has some limitations. It shows only the parent directory, not the
full path, and it shows directory names only if multiple buffers have
the same name. We wish it would go a bit further and provide the
option of including the directory on the mode line for all buffers.
One word of advice: if you have a lot of buffers with names like
proposal, proposal
 <2>, and
proposal<3> around, you’re
probably forgetting to edit the directory when you ask for a file. If
you try to find a file but get the directory wrong, Emacs assumes you
want to start a new file. For example, let’s say you
want to edit the file ~/work/proposal, but
instead ask for the file ~/novel/proposal. Since
~/novel/proposal doesn’t exist,
Emacs creates a new, empty buffer named proposal.
If you correct your mistake (C-x C-f
~/work/proposal), Emacs renames your buffers accordingly:
your empty buffer proposal is associated with
~/novel/proposal; the buffer you want is named
proposal<2>.
Here’s a hint for dealing with the very common
mistake of finding the wrong file. If you notice that
you’ve found the wrong file with C-x C-f, use C-x
C-v to replace it with the one you want. C-x C-v finds a file, but instead of making a
new buffer, it replaces the file in the current buffer. It means
“get me the file I really meant to find instead of
this one.” Using this command circumvents the
problem of having unnecessary numbered buffers (i.e.,
proposal, proposal<2>,
and so on) lying around.

Read-Only Buffers

While you’re working,

 you may need to read some file that you
don’t want to change: you just want to browse
through it and look at its contents. Of course, it is easy to touch
the keyboard accidentally and make spurious modifications.
We’ve discussed several ways to restore the original
file, but it would be better to prevent this from happening at all.
How?
You can make any buffer read-only by pressing C-x C-q. Try this on a practice buffer and
you’ll notice that
 two percent signs
(%%) appear on the left side of the mode line, in
the same place where
 asterisks (**)
appear if you’ve changed a buffer. The percent signs
indicate that the buffer is read-only.[1] If
you try to type in a read-only buffer, Emacs just beeps at you and
displays an error message (Buffer is read-only) in
the minibuffer. What happens when you change your mind and want to
start editing the read-only buffer again? Just type C-x C-q again. This command toggles the
buffer’s read-only status—that is, typing
C-x C-q repeatedly makes the buffer
alternate between read-only and read-write.
Of course, toggling read-only
 status doesn’t change
the permissions on a file. If you are editing a buffer containing
someone else’s file, C-x
C-q does not change the read-only status. One way to edit
someone else’s file is to make a copy of your own
using the write-file command, and
then make changes. Let’s say you want to change a
proposal that is owned by someone else. Read the file, write the file
as one you own using C-x C-w, then
change it from read-only to writable status by pressing C-x C-q. None of this, of course, modifies the
original file; it just gives you a copy to work with. If you want to
move a minor amount of text from a read-only file to another, you can
mark the text then press M-w to copy
it. Move to the place you want to put the text and press C-y to paste it.
You can open a file as read-only in a new window by typing C-x 4 r or in a new frame by typing C-x 5 r. This is one of a number of commands
in which 4 means window and
5 means frame.

Getting a List of Buffers

Because you can create an unlimited

 number
of buffers in an Emacs session, you can have so many buffers going
that you can’t remember them all. At any point, you
can get a list of your buffers (yes, we know you know how to do that
by holding down Ctrl and clicking
the left mouse button, but this is a little different). This list
provides you with important information—for example, whether
you’ve changed the buffer since you last saved it.
If you press C-x C-b, Emacs lists
your buffers. It creates a new *Buffer List*
window on the screen, which shows you all the buffers.
	
 Type: C-x C-b

	

[image: image with no caption]

	
 Emacs displays a list of buffers.

You can use this list as an informational display
(“these are my buffers”) or you can
actually work with buffers from this list,
as

 covered in the next section.

 Figure 4-3 shows what each of the symbols in the
buffer list means.
[image: Understanding the buffer list]

Figure 4-3. Understanding the buffer list

Working with the Buffer List

The buffer list is more than a display. From the buffer list, you can
display, delete, and save buffers. To move to the buffer

 list window, type C-x o. Emacs puts the cursor in the first
column. For a particular buffer, press n
or C-n to move down a
line or p or C-p to move up a line. You can also press
Space to move down to the next line
and Del to move up. (The up and down
arrow keys work, too.) This array of up and down choices may seem
confusing, but multiple bindings are given to make it easy to move up
and down without consulting a book like this one.
You use a set of one-character commands to work with the buffers that
are listed. To delete a buffer, go to the line for the buffer you
want to delete and type d or
k. The letter D
appears in the first column. You can mark as many buffers for
deletion as you want to. The buffers aren’t deleted
immediately; when you’re finished marking buffers,
press x (which stands for
“execute”) to delete them. If any
of the buffers you want to delete are connected with files, Emacs
asks if you want to save the changes before doing anything. (Note
that it does not ask you about buffers that aren’t
connected with files, so be sure to save any that you want before
deleting them.)
If you change your mind about deleting a buffer before typing
x, you can unmark the buffer by
going to the appropriate line and typing u. As a convenience, the Del key also unmarks the previous buffer in
the list. Why would you do this? Simple: d automatically moves you down one line. If
you mark a file for deletion and immediately change your mind, you
can press a single Del rather than
moving to the previous line and typing u for unmark).
To save a buffer, go to the line for

 the buffer you want to save and press
s. The letter S
appears in the first column. Press x
when you really want to save the buffer. Therefore, you can look at
the buffer list, choose which buffers you want to delete and which
you want to save, and then type x to
do everything at once. Again, you can press u or Del to
cancel saves if you change your mind.
One command that affects a buffer

 immediately when you type it is tilde
(~). Typing ~ marks a buffer as unmodified. In effect,
this symbol tells Emacs not to save changes automatically (since the
buffer is unmodified, Emacs has no reason to save changes with its
auto-save feature). Of course, if you have made changes, the changes
are still in the buffer; it’s just that
you’re in essence
“lying” to Emacs to say that no
changes have been made. Also, if you change the buffer again after
marking it unmodified, Emacs once again knows it has been modified
and saves it automatically in a backup file. The backup filename (not
coincidentally) has the format filename~.
You can change a buffer’s status from

 read-write to read-only and back again
by pressing %. Pressing % changes the buffer’s status
immediately. Percentage signs appear on the mode line when a buffer
is read-only. When you are editing, you can toggle a buffer between
read-write and read-only by pressing C-x
C-q, as we discussed earlier.
You can also use the buffer list to display multiple buffers in
windows. To display one of the buffers in a full screen, move the
cursor into the buffer list’s window; use C-n and C-p
to move to the line for the buffer that you want, and press 1 (the number one). Emacs displays the buffer
in a full-screen window.
If you want to display one of the buffers in place of the buffer
list, you can press f. To put a
buffer in another window (i.e., one not occupied by the buffer list),
type o. Emacs displays the buffer in
the other window and puts the cursor there. Pressing C-o has a slightly different result; Emacs
displays the buffer in another window but doesn’t
put the cursor there.
One final buffer display command remains. You can ask Emacs to
display multiple buffers and have Emacs

 create
windows for them dynamically. To select buffers to be displayed in
windows, press m (for
mark) next to the buffers you want. Emacs
displays a > next to the buffers
you mark with m. To tell Emacs to
display the buffers you’ve marked, press v. Emacs makes horizontal windows to display
the buffers you’ve chosen.
To get rid of the *Buffer List* window, type
C-x 0 if you are in the buffer list
window or C-x 1 (the number one) if
you are in another window. Table 4-2 shows a
summary of buffer manipulation

 commands.
Table 4-2. Buffer manipulation commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x b
 Buffers
 →
 Select Named Buffer

 	

 switch-to-buffer

 	
 Move to the buffer specified.

	

 C-x
 →
 Buffers
 →
 Next Buffer

 	

 next-buffer

 	
 Move to the next buffer in the buffer list.

	

 C-x
 Buffers
 →
 Previous Buffer

 	

 previous-buffer

 	
 Move to the previous buffer in the buffer list.

	

 C-x C-b
 Buffers
 →
 List All Buffers

 	

 list-buffers

 	
 Display the buffer list.

	

 C-x k

 	

 kill-buffer

 	
 Delete the buffer specified.

	

 (none)

 	

 kill-some-buffers

 	
 Ask about deleting each buffer.

	

 (none)

 	

 rename-buffer

 	
 Change the buffer’s name to the name specified.

	

 C-x s

 	

 save-some-buffers

 	
 Ask whether you want to save each modified buffer.

 Table 4-3 summarizes the commands for working with

 the buffer list.
Table 4-3. Buffer list commands
	

 Keystrokes

 	

 Action

 	

 Occurs

	

 C-n,
Space, n, or

 	
 Move to the next buffer in the list (i.e., down one line).

 	
 Immediately

	

 C-p,
p, or

 	
 Move to the previous buffer in the list (i.e., up one line).

 	
 Immediately

	

 d

 	
 Mark buffer for deletion.

 	
 When you press x

	

 k

 	
 Mark buffer for deletion.

 	
 When you press x

	

 s

 	
 Save buffer.

 	
 When you press x

	

 u

 	
 Unmark buffer.

 	
 Immediately

	

 x

 	
 Execute other one-letter commands on all marked buffers.

 	
 Immediately

	

 Del

 	
 Unmark the previous buffer in the list; if there is no mark, move up
one line.

 	
 Immediately

	

 ~

 	
 Mark buffer as unmodified.

 	
 Immediately

	

 %

 	
 Toggle read-only status of buffer.

 	
 Immediately

	

 1

 	
 Display buffer in a full screen.

 	
 Immediately

	

 2

 	
 Display this buffer and the next one in horizontal windows.

 	
 Immediately

	

 f

 	
 Replace buffer list with this buffer.

 	
 Immediately

	

 o

 	
 Replace other window with this buffer.

 	
 Immediately

	

 m

 	
 Mark buffers to be displayed in windows.

 	
 When you press v

	

 v

 	
 Display buffers marked with m; Emacs
makes as many windows as needed.

 	
 Immediately

	

 q

 	
 Quit buffer list.

 	
 Immediately

[1] The exception
to the rule that ** means changed and
%% means read-only is the
scratch buffer. Because Emacs
doesn’t warn you if you kill the
scratch buffer, even if it is changed, it wants
to give you some indication that there are unsaved changes. Instead
of %%, the *scratch* buffer
puts %* on the mode line.

More About Windows

Depending on your requirements, you may want to work with
side-by-side windows in addition to or instead of horizontal windows.
For finer control, you may want to know how to size windows (and
because they’re not GUI windows, you
can’t do that with the mouse).[2] You may also want to
know how to compare files between windows, a good feature for basic
file comparison.
Creating Vertical or Side-by-Side Windows

To split the window

 vertically into two side-by-side
windows, type C-x 3. You can execute
this step repeatedly to create more side-by-side windows.
	
 Type: C-x 3

	

[image: image with no caption]

	
 Emacs creates two vertical windows.

When you create multiple vertical windows, Emacs usually

 doesn’t
have enough room to display a full line of text. Because vertical
windows don’t usually show full lines of text, a
right arrow (on graphical implementations) or a dollar sign (on
terminal-based implementations) at the end of a line tells you the
line is continued.
To see the rest of the line, you need to know how to scroll text to
the left and right. To push the text currently being displayed to the
left (so you can see what’s on the right), type
C-x <. Left arrows or dollar
signs are displayed on the left side of the window to indicate that
there is more text to the left. To push the text being displayed to
the right (so you can see what’s on the left), type
C-x >. You can use these commands
whenever one of your lines is too wide, which can happen with or
without windows.

Navigating Windows

How do you move between

 windows?
As we mentioned earlier, C-x o moves
you to the “next” window. But how
does Emacs determine what that is?
The best way to express it is to say that Emacs moves through the
windows in natural reading order, from left to right, then down, and
again from left to right. In Figure 4-4, buffer
names are numbered to show you how Emacs moves from one window to the
next.
[image: Moving between windows (Mac OS X)]

Figure 4-4. Moving between windows (Mac OS X)

Alternatively, you can simply select the window you want using the
mouse.

Enlarging and Shrinking Windows

Emacs always splits windows into

 two
equal parts. Such a split is often good enough, but sometimes
it’s not, particularly if you become a window
aficionado. When you have four or five or six windows on your screen
at once, controlling each window’s size becomes
important. Otherwise, the windows you are most interested in will
eventually become too small, and useful editing is almost impossible
when you can see only five or six lines from a file. If you want to
make the window you’re working on taller, type
C-x ^. Emacs lengthens the current
window and makes the one below it smaller, accordingly. To make the
current window wider, type C-x }.
Emacs makes this window wider, at the expense of the one to the right
of it.
To make windows smaller, you can shrink them. To shrink a window
vertically, type M-x shrink-window.
Emacs shrinks the current window by one line and the other windows on
the screen grow accordingly. To shrink a window horizontally, type
C-x {. This command makes the window
one column narrower and enlarges the other windows on the screen
horizontally.
Usually you want to work in larger increments than one line or one
column at a time, however. When you type C-u preceding any of these commands, the
command works in increments of four lines or columns at a time. For
example, with two horizontal windows on the screen,
let’s use C-u C-x ^
to enlarge the james window.
	
 Type: C-u C-x ^

	

[image: image with no caption]

	
 Emacs makes the current window larger.

As you would expect, when you make the window larger, it
automatically fills with more text from the buffer. There are
shortcuts to sizing windows as well. If you have a very small
buffer—for example, a one-line buffer containing the
vocabulary-building word for the day and its definition—you can
shrink the window to the size of the buffer by typing C-x - (for shrink-window-if-larger-than-buffer). If the
buffer is larger than the window, this command does nothing. Typing
C-x + (for balance-windows) creates windows of equal size
again. (This latter command is also useful if you have an odd number
of windows; C-x + divides the
display equally among them.)

Limits on Window Size

Windows in Emacs

 can
be as big as your screen. There’s a limit to how
small windows can be, however, and this limit is specified by the
variables window-min-height (whose
default is four lines) and window-min-width (whose default is ten
characters). If you enlarge other windows to the point that their
counterparts become less than ten characters wide or four lines high,
Emacs deletes the smaller windows. You can set these variables to
other values if you want to; more information on setting variables is
found in Chapter 10.

Comparing Files Between Windows

Especially if you’re looking

 for
minute differences between large files, the compare-windows command comes in handy. To use
compare-windows, you must first have
the buffers you want to compare in two windows, either side by side
or horizontally. Go to the beginning of each buffer, then type
M-x compare-windows. Emacs scrolls
each buffer to the place where the discrepancy is. It places the
point in each buffer at the place of the discrepancy, so using
C-x o to move the cursor between
buffers will show you exactly where the files differ.[3]

Of course, this maneuver finds only the first difference between the
two buffers. Finding the second, third, and so on, is a bit tricky.
The compare-windows command works
only if the point in both buffers is in exactly the same place.
Therefore, you need to move past the discrepancy in both buffers
before you can type M-x
compare-windows again. The Unix diff command provides a more comprehensive
(although somewhat awkward looking) way to find the differences
between two files. Emacs also provides an interface to Ediff, with options on the Compare menu (a
submenu of the Tools menu). Ediff is far more comprehensive; see
Chapter 12 for details.

 Table 4-4 summarizes the window

 commands
discussed in this chapter.
Table 4-4. Window commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x 2
 File
 →
 Split Window

 	

 split-window-vertically

 	
 Divide current window into two windows, one above the other.

	

 C-x 3

 	

 split-window-horizontally

 	
 Divide current window into two side-by-side windows.

	

 C-x >

 	

 scroll-right

 	
 Scroll the window right.

	

 C-x <

 	

 scroll-left

 	
 Scroll the window left.

	

 C-x o

 	

 other-window

 	
 Move to the other window; if there are several, move to the next
window (see “Navigating Windows”).

	

 C-x 0

 	

 delete-window

 	
 Delete the current window.

	

 C-x 1
 File
 →
 Unsplit Windows

 	

 delete-other-windows

 	
 Delete all windows but this one.

	
 (none)

 	

 delete-windows-on

 	
 Delete all windows on a given buffer.

	

 C-x ^

 	

 enlarge-window

 	
 Make window taller.

	
 (none)

 	

 shrink-window

 	
 Make window shorter.

	

 C-x }

 	

 enlarge-window-horizontally

 	
 Make window wider.

	

 C-x {

 	

 shrink-window-horizontally

 	
 Make window narrower.

	

 C-x -

 	

 shrink-window-if-larger-than-buffer

 	
 Make window smaller if buffer is smaller than window.

	

 C-x +

 	

 balance-windows

 	
 Make windows the same size.

	

 C-M-v

 	

 scroll-other-window

 	
 Scroll other window.

	

 C-x 4 f

 	

 find-file-other-window

 	
 Find a file in the other window.

	

 C-x 4 b

 	

 switch-to-buffer-other-window

 	
 Select a buffer in the other window.

	
 (none)Tools
 →
 Compare (Ediff)
 →
 This Window
and Next Window

 	

 compare-windows

 	
 Compare this window with the next window and show the first
difference.

[2] It’s true that you can’t
resize Emacs windows using the mouse. But if you resize an Emacs
frame, it does impact the size of the windows, even eliminating
windows at times if the frame cannot display all the windows. Of
course, as always, eliminating a window doesn’t
impact the underlying buffer.

[3] You can have more than two windows on the screen, but only two
are compared: the one the cursor is in and the next window (remember
that the next window is either to the right or down if there is no
window to the right).

Holding Your Place with Bookmarks

Once you start working with
multiple files,
remembering just where you were in each one becomes harder. Bookmarks
provide a convenient way of marking your place in a file, a place you
can easily return to. You might, for example, be working with a file
that has a long pathname. Rather than retype the pathname each time
you start Emacs, you could just jump to a bookmark
you’ve named current project by
having Emacs find the file and put the cursor wherever you set the
bookmark.
Bookmarks make the process of finding your place in any file easier.
Particularly if you are working on a project several directories down
from your home directory or in a totally different filesystem,
putting bookmarks in the file makes it easy to get back there.
When you create a bookmark, Emacs creates a bookmark file in your
home directory, called .emacs.bmk. It saves any
new bookmarks in this file automatically when you exit Emacs.
Bookmarks are stored by user. If you and others access the same
online documentation set, you can hold your place with your bookmark
and they can hold their places with theirs, never interfering with
each other’s reading.
From the Edit menu, you can access the Bookmarks menu, which lists
all the bookmark commands you’ll probably ever need.
We feel the menu interface for bookmarks is particularly well
developed; even if you don’t normally use menus, you
might want to make an exception in this case. (At least until you
learn the commands. Bookmarks are addictive, and when you use them
frequently, the commands are easier to type than to reach by menu.)
Setting Bookmarks

To place a bookmark at the
cursor
position, type C-x r m (for
bookmark-set). Emacs asks for a
bookmark name, which can be virtually any length (practically
speaking, as long as the width of your display) and can include
spaces (so current project or Moore
proposal's greatest flaw or
Othello Act 2 Scene 4 would all be fine). Emacs
also puts a default bookmark in parentheses, suggesting the filename
if you haven’t used a bookmark during this session
(in which case it uses the bookmark name). Either press Enter to accept the default or type a bookmark
name and then press Enter. You now
have a bookmark you can jump to at any time, in any Emacs session.
One subtlety: if you give a new bookmark the same name as an old one,
Emacs assumes you just want to move the bookmark, even if it was
formerly in another file. So remember to make bookmark names unique
unless you are really trying to move them.

Moving to a Bookmark

To move to a bookmark,

 press C-x r
b (for bookmark-jump).
Type the bookmark’s name, or type the first few
letters and press Tab. Emacs either
finishes the bookmark’s name or gives you a window
of possible choices. Press Enter
after the bookmark’s name appears. Emacs retrieves
the file and places the cursor at the bookmark location; the file is
retrieved no matter how complicated its path is.
With menus, there’s an easier way to move to a
bookmark. When you select Edit → Bookmarks→ Jump to
Bookmark, Emacs displays a window of available bookmarks. Select the
bookmark you want, and Emacs displays the file with the cursor in the
bookmark’s position. This is useful if you have set
many bookmarks, but we prefer to stick with the keyboard as much as
possible.

Renaming and Deleting Bookmarks

You may find that

 you
made the name of your bookmark too generic; current
project may be too vague if you are juggling projects and
the one in your hand is the current one. To rename a bookmark, type
M-x bookmark-rename. If you do the
renaming from the keyboard, Emacs prompts Old bookmark
name: and you type the old name and press Enter. (If you use the menus, you select the
old name from a window instead.) Then Emacs asks, New
name: and you type the new name and press Enter, all very straightforwardly. Renaming a
bookmark does just that and nothing else: it doesn’t
change the bookmark’s location or its contents; it
simply changes its name.
To delete a bookmark,

 press
M-x bookmark-delete. Type the name
of the bookmark to delete or select it with the mouse. Deleting a
bookmark doesn’t in any way affect the file that was
marked.
This discussion brings up an interesting question. What happens if
you delete text in a file in which you’ve put a
bookmark? Because a bookmark points to a position in a file and not
to a piece of text, the bookmark stays in the same place after the
text is deleted, just as the cursor remains in the same place after
you delete several paragraphs. This fact is more intuitive than it
sounds. You don’t delete bookmarks by deleting
marked text. Let’s say you have a file with four
lines. You bookmark the third line, then later delete lines two
through four. When you jump to that bookmark again, it appears after
the first line, the end of the file.
Inserting text
 works the same way. Bookmarks
point to a position in a file, not to text. If you insert a new line
before the third line, the bookmark remains at the point in the file
where you set it, in this case, the beginning of the new line. If you
move text around, the bookmark points to the same location in the
file, the line and column where you set it.
What happens if you delete a file that has a bookmark in it? If you
delete the whole file or even rename it and then try to access a
bookmark attached to the file, Emacs gives you the following error
message:

If you press y, you can give a new
path to the file, which works well if you really just renamed or
moved the file but didn’t delete it. If you press
n, however, Emacs gives you a
message, along with some advice:
Bookmark not relocated, consider removing it
In other words, Emacs argues that no one needs bookmarks to
nonexistent files, and we’re inclined to agree.

Working with a List of Bookmarks

Remember the buffer list

 we
discussed earlier in this chapter? Bookmarks have a similar list with
one-letter commands that allow you to work with all your bookmarks at
once.
To work with a list of bookmarks, type C-x r
l (the lowercase letter
“L”). The *Bookmark
List* buffer appears.
	
 Type: C-x r l

	

[image: image with no caption]

	
 Emacs displays a list of bookmarks and the path to the associated
files.

If you press Enter, f, or j,
Emacs displays the bookmarked file with the cursor in the bookmarked
location. From the bookmark list, press d to mark bookmarks for deletion, then
x to delete them (unlike in the
buffer list, in the bookmark list, deleting is the only reason you
need the x command). If you change
your mind, press Del to remove the
d before you press x. Pressing r
renames a bookmark, and Emacs prompts you for the new name. To save
all the bookmarks, press s. You can
mark several bookmarks and then display their associated files by
typing m next to the bookmarks. A
> appears beside bookmarks you’ve marked. When
you’ve marked all you want, type v (for view) and Emacs
pulls up the files associated with the bookmarks and displays them in
multiple windows (with the cursor at the bookmarked location, of
course). If you just want to move to one bookmarked file, you can
press v without marking the bookmark
first.
You can change the display of the bookmark list

 slightly
by pressing t. By default, the list
shows a bookmark’s name, followed by the complete
path to the file with which it is associated. If you press t (for toggle), only the
bookmark names appear.

 Table 4-5 summarizes the bookmark list

 commands.
It includes a few commands relating to annotations;
we’ll cover these in the next section.
Table 4-5. Commands for editing the bookmark list
	

 Command

 	

 Action

	

 Enter,
f, or j

 	
 Go to the bookmark on the current line.

	

 C-o or
o

 	
 Open the bookmark on the current line in another window; o moves the cursor to that window; C-o keeps the cursor in the current window.

	

 d, C-d, or
k

 	
 Flag bookmark for deletion.

	

 r

 	
 Rename bookmark.

	

 s

 	
 Save all bookmarks listed.

	

 m

 	
 Mark bookmarks to be displayed in multiple windows.

	

 v

 	
 Display marked bookmarks or the one the cursor is on if none are
marked.

	

 t

 	
 Toggle display of paths to files associated with bookmarks.

	

 w

 	
 In the minibuffer, display location of file associated with bookmark.

	

 x

 	
 Delete bookmarks flagged for deletion.

	

 u

 	
 Remove mark from bookmark.

	

 Del

 	
 Remove mark from bookmark on previous line or move to the previous
line (if there is no mark).

	

 q

 	
 Exit bookmark list.

	

 Space or
n

 	
 Move down a line.

	

 p

 	
 Move up a line.

	

 l

 	
 Load a bookmark file (other than the default).

	

 A

 	
 Display all annotations.

	

 a

 	
 Display annotation for current bookmark.

	

 e

 	
 Edit (or create) annotation for the current bookmark.

Annotating Bookmarks

You can add annotations

 to your bookmarks. These annotations
can provide any type of information you want: details about the file
in question, what you are doing with it, documentation for someone
else on your project to review when looking at your files, or really
anything you want.
Annotations are most easily added from the bookmark list itself. Open
the bookmark list using C-x r l,
then move to the line of the bookmark you want to annotate. Type
e, the command to edit an
annotation.
	
 From the bookmark list, type: e

	

[image: image with no caption]

	
 Emacs opens a *Bookmark Annotation Compose* window.

Emacs provides some guidance in this buffer about what to do. It says
that all lines that start with a

 comment mark (#) will be deleted and
that you press C-c C-c to save and
exit the annotations buffer.
The annotation includes lines that are commented out and
won’t become part of the annotation, but if
you’d like to keep the Author and Date lines
(logical portions of an annotation), just uncomment those lines by
deleting the initial #. You then add any annotation you would like
and press C-c C-c to exit the
window.
Annotations exhibit a couple of behaviors that are at least annoying
if not bugs. First, Emacs defines a # as the default fill prefix. You
must either change that (see Chapter 6 for
details) or delete the initial # if Emacs inserts it. Second, and
more critically, Emacs doesn’t automatically save
annotations when you exit Emacs. If you set a bookmark, Emacs saves
the bookmarks file automatically (and in fact without asking). If you
set an annotation but do not add or move a bookmark during the
session, you must save the bookmarks file manually by typing
M-x bookmark-save.
After you add an annotation, Emacs puts an asterisk (*) before the
bookmark name as a visual indication that the bookmark has been
annotated. To display an annotation for the current bookmark, press
a. To display all annotations, press
A.
When you jump to a bookmark or move to a bookmarked file from the
bookmark list, annotations are automatically displayed in another
window (but don’t edit them in this window; you must
use the procedure described earlier). If you open the bookmarked file
some other way (using C-x C-f, for
example), annotations are not displayed.

A Few More Bookmark Commands

In addition to those we’ve

 discussed,
there are a few more esoteric bookmark commands. These include
bookmark-insert, which inserts the
text of the bookmarked file at the cursor position; bookmark-write, which prompts for a new
filename in which to save bookmarks; and bookmark-load, to load these separate bookmark
files. These commands are less useful than the others, but you may
think of some clever uses we have not.

 Table 4-6 summarizes bookmark commands.
Table 4-6. Bookmark commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x r m
 Edit
 →
 Bookmarks
 →
 Set Bookmark

 	

 bookmark-set

 	
 Set a bookmark at the current cursor position.

	

 C-x r b
 Edit
 →
 Bookmarks
 →
 Jump to Bookmark

 	

 bookmark-jump

 	
 Jump to a bookmark.

	
 (none)Edit
 →
 Bookmarks
 →
 Rename
Bookmark

 	

 bookmark-rename

 	
 Rename a bookmark.

	
 (none)Edit
 →
 Bookmarks
 →
 Delete
Bookmark

 	

 bookmark-delete

 	
 Delete a bookmark.

	
 (none)Edit
 →
 Bookmarks
 →
 Save
Bookmarks

 	

 bookmark-save

 	
 Save all bookmarks in default file.

	

 C-x r l
 Edit
 →
 Bookmarks
 →
 Edit Bookmark List

 	

 bookmark-menu-list

 	
 Move to *Bookmark List* buffer.

	
 (none)Edit
 →
 Bookmarks
 →
 Insert
Contents

 	

 bookmark-insert

 	
 Insert full text of file associated with a given bookmark.

	
 (none)Edit
 →
 Bookmarks
 →
 Save Bookmarks
As

 	

 bookmark-write

 	
 Save all bookmarks in a specified file.

	
 (none)Edit
 →
 Bookmarks
 →
 Load a Bookmark
File

 	

 bookmark-load

 	
 Load bookmarks from specified file.

	
 (none)Edit
 →
 Bookmarks
 →
 Insert
Location

 	

 bookmark-insert-location

 	
 Insert the path to a given bookmark at the cursor position.

Now that you know how to work with multiple buffers, frames, and
windows, why not read the next chapter to discover some of the things
you can do with them? Some, like using the directory editor and
working with the command line from within Emacs, have been alluded to
in this chapter.

Chapter 5. Emacs as a Work Environment

Many of the everyday things you do from a command prompt can be done
from within Emacs. You can execute commands, work with directories,
and print files—all without leaving Emacs. Changing tasks is as
simple as jumping between buffers.
What’s important about this? Of course,
it’s nice to be able to move between tasks easily.
What’s even more important is that you have the same
editing environment no matter what you’re doing: you
can use all of the Emacs editing commands to work on a file, give
shell commands, then start up Dired, the directory editor, to do some
file maintenance. It is simple to move text from one window to
another. You can execute a command and then use Emacs commands to cut
and paste the results into a file. If you’re trying
to compile a program and keep getting error messages, you can save
the interactive session as a file and confer with someone about the
problem. Despite the many advantages of modern window systems, Emacs
often provides the best way to integrate the many kinds of work you
do daily.
Much of the information in this chapter involves integration between
Emacs and the operating system. Emacs is most commonly a Unix editor,
so forgive us for a bias in that direction. But we are happy to
report that for users of GNU Emacs on other platforms, integration
with the operating system is still available; you can use shell mode
to run commands and can edit directories with Dired.
There’s no reason to leave Emacs no matter what your
platform is.

Executing Commands in Shell Buffers

One of the most important features
 of Emacs is its ability to run a command
shell in a buffer. Once you have started a shell buffer, you can do
all of your normal command-line work within Emacs. What does this buy
you?
	You don’t have to leave Emacs to get a command
prompt. If you want to print or compile a file that
you’re editing, you can do it immediately.

	You can use Emacs editing features to write your commands.

	You can use Emacs editing features to “back
up” through your command list, copy an old command,
modify it, and execute it again.

	You can save your shell buffer, keeping a transcript of your editing
session—which automatically includes the output from every
command that you ran. For debugging or remembering commands you run
infrequently, this can be invaluable.

	You can copy output from commands into a file or into another command.

	You can save complex commands in a file and insert the file at the
prompt, rather than retyping the command.

As you get used to working within Emacs, you will undoubtedly
discover more and more ways to put shell mode to use.
In this section, we discuss shell mode. Later in this chapter, we
discuss directory editing, printing, and calendar and diary features
for doing simple time management in Emacs. Right now,
we’ll start with a simple variation on shell mode, a
feature that lets you execute commands one at a time.
Running One Command at a Time

To run a command while

 you’re
in an Emacs session, type M-!. Emacs
asks for the command you want to run. Type the command and press
Enter. Emacs then opens a window
called *Shell Command Output* where it displays
the results of your command.
	
 Type: M-!

	

[image: image with no caption]

	
 Emacs prompts you for a command to execute.

	
 Type: diff joyce joyce2

	

[image: image with no caption]

	
 Emacs executes the diff command and
puts the output into a *Shell
 Command
 Output* buffer.

Because the output from the diff
command is in a buffer, you can edit it, save it, or do anything else
you would like with it. Of course, if the operating system has no
diff command or cannot access it for
some reason, this command fails.
An interesting twist to the shell command facility is that you can
use a region of a buffer rather than a traditional file as input to
the command. For example, let’s say we want to sort
a phone list. First, we put the cursor somewhere in the list (say, on
the first character of Liam), then we give the
mark-paragraph command (M-h). This command defines the phone list as a
region, with the cursor at the beginning of the paragraph and the
mark at the end.
In the following example, the shaded area shows the extent of the
region we want to sort. After selecting a region, we press M-| (for shell-command-on-region); Emacs prompts for
the shell command to run.
	
 Type: M-h M-|

	

[image: image with no caption]

	
 Emacs prompts you for a command to execute (Windows).

Now we give the command sort without
specifying any input file. Emacs is taking care of the input for us.
	
 Type: sort Enter

	

[image: image with no caption]

	
 Emacs runs a sort on the region (Windows).

Emacs has sorted the phone list (i.e., everything within the region).
A useful variation for M-! puts the
output
 directly into the current
buffer, rather than into a *Shell Command Output*
buffer. To do so, precede the command with C-u: for example, C-u
M-! runs a shell command and puts the output in the
current buffer.
	
 Type: C-u M-! ls -la Enter

	

[image: image with no caption]

	
 Emacs runs ls and inserts the result
at your current location (Mac OS X).

Using Shell Mode

Now we’re ready

 to
discuss shell mode, the interactive facility for running commands. To
start a shell buffer, type M-x shell
Enter. This creates a buffer named
shell. You see the prompt for your shell within
this buffer. (This defaults to your usual shell; you can substitute
another shell to use in Emacs. See “Which
shell?” later in this chapter.)
[image: Shell buffers for Linux, Mac OS X, and Windows]

Figure 5-1. Shell buffers for Linux, Mac OS X, and Windows

For the most part, shell mode is exactly like the normal command
interface, except that you can use Emacs to edit the commands as you
type them. You can copy commands from one place to another, copy the
results into a file, save the whole shell buffer to a file, and so
on. Note in Figure 5-1 that Emacs has added a few
items to the menu bar (Complete, In/Out, and Signals).
A few tricks are worth knowing, though. For example, you normally
interrupt a command by typing C-c.
If you type C-c in shell mode, Emacs
thinks that the C-c is part of a
command meant for it, because many Emacs commands start with
C-c. Therefore, you have to type
C-c C-c to terminate the current
job. Likewise, under Unix, you type C-c
C-z to stop a job, instead of C-z, and C-c
C-d instead of C-d, and
so on. (C-c C-d is not strictly
necessary because Emacs understands C-d in context. If you’re at
the end of the buffer, C-d means
“end of file”; if
you’re anywhere else, it deletes a character.)
Alternatively, you can select options from the Signals menu rather than using control
characters, if desired (for example, selecting EOF instead of typing C-d).
Shell mode also provides a few convenient shortcuts. The command
M-p retrieves the last shell command
you typed, no matter how far back in the buffer it is. Typing
successive M-p’s
brings back earlier commands.
	
 Type: M-p

	

[image: image with no caption]

	

 M-p retrieves the last command, even
if it isn’t on the screen (Mac OS X).

In this example, the previous command was more
dickensxmas.tex. It’s no longer on the
screen; its output has pushed it off the top. M-p (for comint-previous-input) retrieves the command,
but doesn’t execute it; you can edit the command
before pressing Enter. To find
subsequent commands, type M-n.
If these commands sound
 familiar to you, they should. They
are history commands, which are identical to the minibuffer history
commands we discussed in Chapter 3. The
In/Out menu is devoted to working
with command history.

 Enter and Tab have special functions in shell mode.
Pressing Enter executes the command
on the line where the cursor is, even if you move the cursor up to
the line of an earlier command you want to execute again. When you
press Enter, Emacs copies the
command to the end of the buffer and executes it. Of course, you can
modify the command before pressing Enter.
Pressing Tab puts the Emacs
completion feature into action; use completion for operating system
commands, filenames, and variables. Note that the completion of
system commands works best on Unix implementations like Linux and Mac
OS X; Emacs doesn’t seem to find all the possible
Windows commands, for example.
If you type a command that produces a lot of output, cluttering up
your session, there’s an easy way to get rid of it.
Type C-c C-o (for comint-kill-output).
	
 Type: C-c C-o

	

[image: image with no caption]

	

 C-c C-o automatically deletes the
output from the last command (Mac OS X).

The previous command (ls-la) remains
on the screen, but its output, a long list of files, is deleted.
C-c C-o can delete output from only
the most recent command; it can’t delete output from
your previous commands.
Another useful command for shell mode is C-c
C-r (for comint-show-output). This command is useful if
a command produces a lot of output and causes the first few lines of
output to scroll off the screen. C-c
C-r repositions the window so the first line of output
from your last command is at the top of the window. If you want to
see the end of the output instead, type C-c
C-e (for comint-show-maximum-output); this command
moves the last line of the input to the bottom of the window.
When you’re writing a book, moving by paragraphs
makes sense, but when you’re using a shell, moving

 by
output group is more helpful. An output group
consists of a command and its output. To move to the previous output
group, type C-c C-p. To move to the
next output group, type C-c C-n.
An advantage of shell mode is that you can start a command and then
edit another buffer while the command runs. The shell buffer
doesn’t need to be onscreen; just type M-x shell to get the buffer back again.
You can have multiple shell buffers running at once;
just use the command M-x
rename-uniquely to rename your shell buffer. You can start
another shell buffer, and another, and another—as many as you
need to juggle all your tasks.
Which shell?

Normally, Emacs uses your default shell in shell mode. Under Windows
that’s cmd.exe (the familiar
C:\> prompt or a close
relative).[1] But Unix has a wide variety of available shells,
including the GNU Project’s bash and the zed shell, zsh. Whatever shell you normally use,
that’s what Emacs starts when you enter shell mode.
How does Emacs know which shell to start? First, it looks at the
variable shell-file-name. Then it
looks for a Unix environment variable named ESHELL. Finally it looks for an environment
variable named SHELL. If you want to
run another particular shell (for example, the zed shell) when
you’re in Emacs, you can add the following command
to your .emacs file:
(setq shell-file-name "/bin/zsh")
When Emacs starts an interactive shell, it runs an additional
initialization file after your shell’s normal
startup files. The name of this file is
.emacs_shell-name, where
shell-name is the name of the shell you want to
use in Emacs. It must be located in your home directory. For example,
if you use the C shell, you can add Emacs-only startup commands by
placing them in the file .emacs_csh.
Let’s say that when you’re in
Emacs, you want to change the prompt to emacs:% and you want an environment variable
called WITHIN_EDITOR to be set to
T. Here’s the
contents of your .emacs_csh file:
set prompt="emacs:% "
setenv WITHIN_EDITOR T
Within a shell buffer, Emacs also sets the environment variable
EMACS to t, and sets your terminal type (the TERM variable) to emacs.

Making passwords invisible in shell mode

 By
default, shell mode displays everything you type and that includes
passwords—not a good situation if someone is peering over your
shoulder. There is a way around this problem, however. Before you
type the password, type M-x
send-invisible. Emacs asks for the nonechoed text. When
you type a character, Emacs puts an asterisk in the minibuffer. Press
Enter and Emacs enters the password
without displaying it. To have Emacs hide passwords as you type them,
add the following two lines to your .emacs file:
(add-hook 'comint-output-filter-functions
 'comint-watch-for-password-prompt)
Emacs asks for nonechoed text in the minibuffer whenever a password
prompt appears on the screen, making sure that the password is never
displayed. Table 5-1 summarizes shell mode
commands.

Table 5-1. Shell mode commands
	

 Keystrokes

 	

 Command name

 	

 Action

	
 (none)

 	

 shell

 	
 Enter shell mode.

	

 C-c C-c
 Signals
 →
 BREAK

 	

 comint-interrupt-subjob

 	
 Interrupt current job; equivalent to C-c.

	

 C-d

 	

 comint-delchar-or-maybe-eof

 	
 Send EOF character if at end of buffer; delete a character elsewhere.

	

 C-c C-d
 Signals
 →
 EOF

 	

 comint-send-eof

 	
 Send EOF character.

	

 C-c C-u

 	

 comint-kill-input

 	
 Erase current line; equivalent to C-u in Unix shells.

	

 C-c C-z
 Signals
 →
 STOP

 	

 comint-stop-subjob

 	
 Suspend or stop a job; C-z in Unix
shells.

	

 M-p
 In/Out
 →
 Previous Input

 	

 comint-previous-input

 	
 Retrieve previous commands (can be repeated to find earlier
commands).

	

 M-n
 In/Out
 →
 Next Input

 	

 comint-next-input

 	
 Retrieve subsequent commands (can be repeated to find more recent
commands).

	

 Enter

 	

 comint-send-input

 	
 Send input on current line.

	

 Tab

 	

 comint-dynamic-complete

 	
 Complete current command, filename, or variable name.

	

 C-c C-o
 In/Out
 →
 Delete Current Output
Group

 	

 comint-kill-output

 	
 Delete output from last command.

	

 C-c C-r

 	

 comint-show-output

 	
 Move first line of output to top of window.

	

 C-c C-e
 In/Out
 →
 Show Maximum Output

 	

 comint-show-maximum-output

 	
 Move last line of output to bottom of window.

	

 C-c C-p
 In/Out
 →
 Backward Output Group

 	

 comint-previous-prompt

 	
 Move to previous command.

	

 C-c C-n
 In/Out
 →
 Forward Output Group

 	

 comint-next-prompt

 	
 Move to next command.

[1] You do have choices under Windows as well,
thanks to Cygwin (http://cygwin.com/). For example, if you
wanted to run Cygwin’s bash, you’ll
find helpful information on how to set that up on Ngai Kim
Hoong’s page on that topic at http://www.khngai.com/emacs/cygwin.php.

Using Dired, the Directory Editor

Dired is one of the most interesting
 features
of Emacs. With Dired, you can look at a listing of all the files in a
directory, delete them, rename them, copy them, and perform almost
all basic file operations. More important, Dired can make you more
productive. For example, you can work with groups of files, deleting,
moving, compressing, or even query-replacing strings in them.
There are several ways to start directory editing. If
you’re not in Emacs, invoke Emacs with a directory
name as an argument, for example:
% emacs literature
Emacs starts up editing the directory
literature: you’ll see a single
window that contains a listing of the literature
directory. You can also start the directory editor by using C-x C-f (or any other command for visiting a
file) and naming a directory, rather than a file. For example, typing
C-x C-f literature gets you ready to
edit the literature directory. Typing C-x d (for dired) or selecting the folder icon on the
toolbar also starts Dired; you then specify a directory name.
Finally, dragging a folder onto the Emacs window also starts
Dired.[2]

No matter how you start the editor, the result is the same.
	
 Type: C-x C-f literature Enter

	

[image: image with no caption]

	
 A basic directory editor display.

As you can see, Dired’s display is
similar
to what you see if you type ls -l at
a Unix shell prompt. The permissions
 associated
with the file, the owner, the group name, the size of the file, and
the date last modified all precede the filename. All files and
directories are listed, including those whose names start with a dot.
The cursor starts out on a filename, rather than in the first column.
Also, if your display supports
colors
(unfortunately this book doesn’t),
you’ll see that directories are blue, backup and
auto-save files are tan, and symbolic links are purple. Colors are a
function of font-lock mode. If you don’t see colors
in your directory listing, type M-x
font-lock-mode Enter or add the following line to your
.emacs file:
(global-font-lock-mode t)
By default, the list
is
sorted by filename, but you can sort it by date instead. Look at the
mode line. It says (
 Dired
by name
). To change the
order of the display, type s (for
dired-sort-toggle-or-edit). This
command puts the newest files at the top of the list, solving the
“Where’s that file I worked on
yesterday?” problem quite easily. The mode line says
(
 Dired by
date
). Typing s again toggles the sort, putting it back in
alphabetical order.
If you remember the commands used to edit the buffer list (from Chapter 4), you will find that they are almost
identical to the directory editor commands. You can do many
additional things, but the basic commands are the same.
Warning
Remember, in the directory editor you are working directly with
files, not with buffers. When you delete a file using Dired,
it’s gone permanently.

There are several ways to move around in Dired. The commands
Space, C-n, and n
all move you to the next file in the list. Del, C-p, and
p all move you to the previous file.
Arrow keys and PgUp and PgDown work as well. You can also use any of
the search commands (incremental search, word search, and so on) to
find a particular file.

 Viewing and Editing Files

When you look at a directory

 listing, you may want to get a quick
look at the files. Dired’s v command does just this: put the cursor on
the file you want to view and press v (for dired-view-file). Emacs displays the file in
view mode.[3] This is a
read-only mode, so you can’t modify the file. Press
C-c or q to return to the directory listing. While
you’re viewing the file, you can use s to start an incremental search, or press
Enter to scroll the display down one
line. Typing = tells you what line the cursor
is on. There are a number of shortcuts for other Emacs commands (like
marking text), but frankly, the regular commands work correctly.
There’s no reason to remember a special set of
commands when the ones you already know work.
If you want to edit a file from the Dired buffer, move to the line
the file is on and press Enter (a
variety of other keystrokes work as well, such as f for find or e for edit). Emacs finds the file and you can
edit it. This is a completely normal editing buffer: you can make any
changes you want, save them, visit other files, and so on. Typing
C-x b followed by the name of the
directory you were working in moves you back to the Dired buffer. Or
you can use the buffer menu (C-x
C-b) to find and display the Dired buffer.
Viewing and editing files is nice, but you already know how to do
that—right? You’re waiting for the interesting
stuff: how to delete files.

Deleting, Copying, and Renaming Files

As we’ve said, file deletion is almost

 identical to buffer deletion with the
buffer list. If you learned how to delete buffers, you know the
basics of deleting files with Dired. First, you flag a file for
deletion by moving to the file’s name and typing
d. Doing this places a D on the left margin and moves the cursor to
the next file in the list. You can flag as many files as you want.
You can change your mind at this point and type u to undelete the file. At some later time,
you type x to delete the files (more
on this in a minute). The following screen shows what the Dired
buffer looks like when you flag a few files for deletion.
	
 Type: d d d

	

[image: image with no caption]

	
 Three files flagged for deletion (Windows).

As we mentioned, you can type u at
any time to remove the deletion flags from the files. Typing
u moves you to the next file in the
list, and, if it is marked, unmarks it. You can also use Del to unmark. This command undeletes the
previous file in the list and then moves up one
line.
Because Emacs generates

 backup
files and, at times, auto-save files, you may want to delete them
from time to time. Emacs offers shortcut commands to flag such files.
Typing # flags all the auto-save files (files
whose names start and end with #) for
deletion. Emacs flags them with D. Typing ~
flags all the backup files (whose names end with ~) for deletion. You can remove the flags from
backup files you want to keep, for example, the backup copies of
files you’ve recently worked on.
When you really want files to be deleted from disk, press x. Emacs displays the names of all the files
flagged for deletion and asks you if you want to delete them.
	
 Type: x

	

[image: image with no caption]

	
 Emacs asks you to confirm the deletion by typing yes (Windows).

Type yes to delete them all or type
no to return to the Dired buffer
without deleting any of them.
This is the usual way of deleting files, but if you want a file
deleted right away, type an uppercase D. Emacs asks if you want to delete the file
(yes or no). Type yes to delete the file immediately or
no to change your mind. In Dired,
this is one of a number of cases in which the lowercase letter (like
d to flag for deletion) and the
uppercase letter (like D to delete
immediately) have a different meaning.
To copy a file in Dired, type C next
to it (it must be a capital C). Emacs asks for the name of the file
you want to copy to. Type the name and press Enter. Emacs says, Copied: 1
file. To copy several files in the list, preface the C with
a number. For example, typing 3C
would copy this file and the next two files. (See
“Working with Groups of Files”
later in this chapter for fancier ways to select a group of files to
operate on.)
To rename a file with Dired (similar to the Unix mv command), type R next to the filename. Emacs asks what the
new name should be. Type it and press Enter. Emacs says, Moved: 1
file.
If you move files between platforms, you can wind up with some
filenames in uppercase and some in lowercase. Files moving from older
versions of Windows may be in all caps, for example. Simply mark the
files in question by typing m, then
press %l for lowercase or %u for uppercase.
Voilà—painless case consistency.

Compressing and Uncompressing Files

Compressing files saves disk

 space, and Dired provides an easy way to
do it. Put the cursor on the line of the file you want to compress
and press Z (for dired-do-compress). Emacs asks the following:
Compress or uncompress filename? (y or n)
Emacs compresses the file if it’s not compressed and
uncompresses it if it is.[4] Press y to compress or uncompress the current file.
Compression happens immediately, so you can watch both the extension
and file size change as Emacs compresses the file.
What about editing compressed files? Although it’s
not on by default, Emacs has an automatic compression/decompression
mode called auto-compress mode. To enter it for this session, type
M-x auto-compress-mode Enter, which
turns automatic compression on. To enable auto-compression
automatically, add this line to your .emacs
file:
(auto-compression-mode 1)

 Comparing Files

In Chapter 4, we discussed

 comparing files in two windows. Emacs
provides a way to do this using the diff command in Dired. Set the mark on the
file you want diff to compare, put
the cursor on the other file, then type =. Emacs compares the two files and opens a
window with a *diff* buffer containing the output
from the command.
Emacs has a separate option for comparing a file to its backup file.
Put the cursor on the file you want to compare with its backup and
type M-=. Emacs displays a
diff buffer showing the differences between the
two files.
If you are serious about version control, you may want to check out
Chapter 12, which discusses version control as
well as the GNU tool ediff.

Running Shell Commands on Files

While Dired’s

 implementation of diff is useful (and there are implementations
of chmod, grep, and find as well), in a more general sense, you
can perform any command on a file by pressing an exclamation point
(!). For example,
let’s alphabetize the phone list file using the
sort command.
	
 Move to the phone file and press !

	

[image: image with no caption]

	
 Emacs asks what command you want to run (Mac OS X).

	
 Type: sort

	

[image: image with no caption]

	
 Emacs displays the output from the command in a separate window (Mac
OS X).

Usually, asterisks (*) and question

 marks are used as
wildcards in commands. In Dired, they have a special meaning. An
asterisk means “use the file I’m on
or the files I’ve marked”; that way
you don’t have to type filenames explicitly. When
multiple files are marked, a question mark means to run this command
separately on each file.
In a slightly more complex example, you might have a command with
more than one file as an argument. For example, you might want to
make a new file out of the sorted phone list.
	
 Move the cursor to the phone file, then type:
!

	

[image: image with no caption]

	
 Emacs asks what command you want to run (Mac OS X).

Now tell Emacs you want

 to sort your
phone file and put the output in a new file
called phonesorted. The cursor is on the
phone file, so you don’t need
to type its name in the command. Substitute an asterisk (*) for the
name of the file:
	
 Type: sort * > phonesorted

	

[image: image with no caption]

	
 The operating system sorts the phone file and
puts the output into the new file phonesorted
(Mac OS X).

We created the file, but it doesn’t appear on the
display, which is not automatically updated in this case. To see the
phonesorted file, type g.
	
 Type: g

	

[image: image with no caption]

	
 Emacs updates the Dired display, showing the file
phonesorted (Mac OS X).

Dired is frankly inconsistent about whether you type g before the display is updated. Some
commands, as we’ll see shortly, update the display
immediately. Others, such as running shell commands on files, do not
(Emacs really doesn’t know what shell commands
it’s running or their effect on the display). A good
rule of thumb is to type g if you
don’t see what you expect to see.

Working with Groups of Files

So far we’ve talked about working with one file at a
time; any commands you give apply to the file the cursor is on.
Working with multiple files is a better illustration of the real
power of Dired. You can organize your directories in a flash once you
learn a few shortcuts. First let’s talk about some
ways to select files, and then we’ll talk about what
we can do with the selected files.
Selecting files

So far we’ve primarily

 talked
about flagging files for deletion. When you want to do something else
with a group of files, you first mark them with an asterisk. Pressing
m marks the file the cursor is on;
an asterisk appears where you normally see a D. Typing 3m marks this file and the next two files.
Once you mark files with an asterisk, Emacs assumes that any command
you issue is meant for these files. So if you have three files marked
with an asterisk and press Z to
compress, Emacs assumes you want to compress those three files. After
the compression, the files remain marked with asterisks. So how do
you get rid of the asterisks when you’re done with
these files?
To remove the asterisks, you press M-Del (for dired-unmark-all-files). Emacs asks which
marks to remove. Press Enter, and
Emacs removes all the marks.
Sometimes it’s easier to mark the files you
don’t want to work with than those you do. Pressing
t toggles the marks, marking all
unmarked files and removing marks from those previously marked.

Selecting likely candidates for deletion

Marking files sequentially

 is simple but, in all honesty,
it’s not very powerful. Emacs provides commands for
selecting types of files that you often want to get rid of when
you’re cleaning up a directory: backup files,
auto-save files, and so-called garbage files.
Auto-save files are

 created
when a session terminates abnormally; they have the format
#
 filename
 #.
Backup files which Emacs creates periodically, have the format
filename
 ~. To mark
these files in Dired, type # or
~ respectively.
Emacs also has an option that automatically selects
“garbage” files. By default, this
includes files with the following extensions:
.log, .toc,
.dvi, .bak,
.orig, and .rej. Garbage
files are defined by a regular expression, which is contained in the
variable dired-garbage-files-regexp;
you can change the value of this variable to define garbage files as
you see fit (after all, one man’s junk is another
man’s treasure).

Selecting files by type

Dired provides commands

 for
selecting executable files, directories, and symbolic links. To
select executable files, type * *.
To select directories, type * /.
Typing * @ marks symbolic links.

Using regular expressions to choose files

Often you want to select

 related files and either archive them,
move them, compress them, or just delete them. Typically, you use
wildcards to select multiple files. In Dired, you use regular
expressions. To mark a group of files whose filenames match a regular
expression, press % followed by
m to mark them with an asterisk.
For example, let’s mark all the files that start
with ch. Remembering the quick lesson on regular
expressions from Chapter 3, ^ finds the beginning of a word, so the
regular expression ^ch would mark
all the files that start with ch.
	
 Type: %m

	

[image: image with no caption]

	
 Emacs asks for a regular expression so that it can mark the files
(Windows).

	
 Type: ^ch Enter

	

[image: image with no caption]

	
 Emacs marks all the files starting with ch and
tells you how many it marked.

Sometimes it’s more useful to mark files whose
contents match a given regular expression. To
mark files that contain a certain regular expression, type % g, followed by the regular expression to
match (think g for grep if
you’re familiar with grep).
Now that we’ve got the files marked,
let’s talk about what to do with them.

Operating on groups of files

In the course of

 daily work, a directory can get cluttered
with many different kinds of files. Eventually, you need to make
subdirectories to organize the files by project, then move the files
to those subdirectories. You can do both these things from within
Dired.
Let’s say that the ch files are
chapters from a novel you work on in your spare time. We need a
subdirectory called novel to store the files in.
You can create a directory by typing + (for dired-create-directory).
	
 Type: +

	

[image: image with no caption]

	
 Emacs asks for a directory name (Windows).

	
 Type: novel Enter

	

[image: image with no caption]

	
 Emacs creates the directory and displays it on the screen (Windows).

Now let’s move the ch files we
marked into the new directory. We’ll use the rename
command, R. This command, like the
Unix mv command, is used for
renaming files and for moving them. Because we have marked more than
one file with an asterisk, when we type R, Emacs assumes we mean to move the marked
files.
	
 Type: R

	

[image: image with no caption]

	
 Emacs asks where you want to move the marked files to (Windows).

	
 Type: novel Enter

	

[image: image with no caption]

	
 Emacs moves the files (Windows).

Now you can see that the files have moved. Marking files by regular
expression allows you to work with a select group of files quickly.
One of the more interesting things you can do with a group of files
is perform a query-replace on all

 of
them with a single command. On large projects, a last-minute change
often forces arduous searching and replacing of certain text in each
file. First, select the files you want to include in the
query-replace, then press Q (for
dired-do-query-replace). Put in the
search string, then the replacement string (the strings can be plain
text or a regular expression) and Emacs starts a query-replace that
moves you through each file sequentially. Here’s the
only hitch: if you interrupt the query-replace with a recursive edit,
you can’t restart it without going back to the Dired
buffer.
Another interesting command is searching across files for a given
regular expression. To do this, mark the files, then press A. Emacs stops at the first match; press
M-, to move to the next match.

Navigating Directories

Often when you are cleaning

 up
directories, you’re moving files between them,
organizing subdirectories, and the like. This naturally involves a
lot of moving among directories.
To move to the parent directory of the one you’re
in, press ^. To move to the next
directory in the buffer, press >;
pressing <, not surprisingly,
moves you to the previous directory in the buffer.
Sometimes it’s more convenient to edit a directory
and its subdirectories in the same buffer. To insert a subdirectory
in the current Dired buffer, move to it and press i. Emacs inserts the subdirectory at the end
of the buffer. If you insert more subdirectories in this fashion,
they will appear in alphabetical order at the end of the buffer.
As you can see, much of your file maintenance and cleanup can be done
easily from within Dired. Table 5-2 summarizes
Dired commands, some of which we haven’t fully
discussed. There’s more to learn about
Dired,[5] but now that you know the basics, you can experiment on
your own.
Table 5-2. Dired commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x d
 File
 →
 Open Directory

 	

 dired

 	
 Start Dired.

	

 A
 Operate
 →
 Search Files

 	

 dired-do-search

 	
 Do a regular expression search on marked files; stops at first match;
M-, finds next match.

	

 B
 Operate
 →
 Byte-compile

 	

 dired-do-byte-compile

 	
 Byte-compile file.

	

 C
 Operate
 →
 Copy to

 	

 dired-do-copy

 	
 Copy file.

	

 d
 Mark
 →
 Flag

 	

 dired-flag-file-deletion

 	
 Flag for deletion.

	

 D
 Operate
 →
 Delete

 	

 dired-do-delete

 	
 Query for immediate deletion.

	

 e

 Immediate
 →
 Find This
File

 	

 dired-find-file

 	
 Edit file.

	

 f

 	

 dired-advertised-find-file

 	
 Find (so you can edit).

	

 g
 Immediate
 →
 Refresh

 	

 revert-buffer

 	
 Reread the directory from disk.

	

 G
 Operate
 →
 Change Group

 	

 dired-do-chgrp

 	
 Change group permissions.

	

 h

 	

 describe-mode

 	
 Display descriptive help text for Dired.

	

 H
 Operate
 →
 Hardlink to ...

 	

 dired-do-hardlink

 	
 Create a hard link to this file; Emacs asks you to name the hard link
(not all OSes support hard links).

	

 i
 Subdir
 →
 Insert This Subdir ...

 	

 dired-maybe-insert-subdir

 	
 Add a listing of this subdirectory to the current dired buffer; if
it’s already there, just move to it.

	

 k

 	

 dired-do-kill-lines

 	
 Remove line from display (don’t delete file).

	

 L
 Operate
 →
 Load

 	

 dired-do-load

 	
 Load file.

	

 m or *
m
 Mark
 →
 Mark

 	

 dired-mark

 	
 Mark with *.

	

 M
 Operate
 →
 Change Mode

 	

 dired-do-chmod

 	
 Use chmod command on this file.

	

 n

 	

 dired-next-line

 	
 Move to next line.

	

 o
 Immediate
 →
 Find in Other Window

 	

 dired-find-file-other-window

 	
 Find file in another window; move there.

	

 C-o
 Immediate
 →
 Display in Other Window

 	

 dired-display-file

 	
 Find file in another window; don’t move there.

	

 O
 Operate
 →
 Change Owner

 	

 dired-do-chown

 	
 Change ownership of file.

	

 p

 	

 dired-previous-line

 	
 Move up a line.

	

 P
 Operate
 →
 Print

 	

 dired-do-print

 	
 Print file.

	

 q

 	

 quit-window

 	
 Quit Dired.

	

 Q
 Operate
 →
 Query Replace in Files

 	

 dired-do-query-replace

 	
 Query replace string in marked files.

	

 R
 Operate
 →
 Rename to

 	

 dired-do-rename

 	
 Rename file.

	

 S
 Operate
 →
 Symlink to

 	

 dired-do-symlink

 	
 Create a symbolic link to this file; Emacs asks you to name the
symbolic link.

	

 s

 	

 dired-sort-toggle-or-edit

 	
 Sort the Dired display by date or by filename (toggles between
these).

	

 t
 Mark
 →
 Toggle Marks

 	

 dired-toggle-marks

 	
 Toggle marks on files and directories; pressing t once marks all unmarked files and
directories; pressing t again
restores original marks.

	

 u
 Mark
 →
 Unmark

 	

 dired-unmark

 	
 Remove mark.

	

 v
 Immediate
 →
 View This File

 	

 dired-view-file

 	
 View file (read-only).

	

 w

 	

 dired-copy-filename-as-kill

 	
 Copy filename into the kill ring; if multiple files are marked, copy
names of all marked files to kill ring.

	

 x

 	

 dired-do-flagged-delete

 	
 Delete files flagged with D.

	

 y

 	

 dired-show-file-type

 	
 Display information on the type of the file using the file command.

	

 Z
 Operate
 →
 Compress

 	

 dired-do-compress

 	
 Compress or uncompress file.

	

 ~
 Mark
 →
 Flag Backup Files

 	

 dired-flag-backup-files

 	
 Flag backup files for deletion; C-u
~ removes flags.

	

 #
 Mark
 →
 Flag Auto-save Files

 	

 dired-flag-auto-save-files

 	
 Flag auto-save files for deletion; C-u
removes flags.

	

 &
 Mark
 →
 Flag Garbage Files

 	

 dired-flag-garbage-files

 	
 Flag “garbage” files for deletion.

	
 .Mark
 →
 Mark Old Backups

 	

 dired-clean-directory

 	
 Flag numbered backups for deletion (if any).

	

 =
 Immediate
 →
 Diff

 	

 dired-diff

 	
 Compare this file to another file (the one at the mark).

	

 M-=
 Immediate
 →
 Compare With Backup

 	

 dired-backup-diff

 	
 Compare this file with its backup file.

	

 ! or
X
 Operate
 →
 Shell
Command

 	

 dired-do-shell-command

 	
 Ask for shell command to execute on the current file or marked files.

	

 +
 Immediate
 →
 Create Directory

 	

 dired-create-directory

 	
 Create a directory.

	

 >
 Subdir
 →
 Next Dirline

 	

 dired-next-dirline

 	
 Move to next directory.

	

 <
 Subdir
 →
 Prev Dirline

 	

 dired-prev-dirline

 	
 Move to previous directory.

	

 ^

 	

 dired-up-directory

 	
 Find the parent directory in a new Dired buffer.

	

 $
 Subdir
 →
 Hide/Unhide Subdir

 	

 dired-hide-subdir

 	
 Hide or show the current directory or subdirectory.

	

 M-$
 Subdir
 →
 Hide All

 	

 dired-hide-all

 	
 Hide all subdirectories, leaving only their names; repeat command to
show.

	

 C-M-n
 Subdir
 →
 Next Subdir

 	

 dired-next-subdir

 	
 Move to next subdirectory (if you’ve inserted
subdirectories using i).

	

 C-M-p
 Subdir
 →
 Prev Subdir

 	

 dired-prev-subdir

 	
 Move to previous subdirectory (if you’ve inserted
subdirectories using i).

	

 C-M-u
 Subdir
 →
 Tree Up

 	

 dired-tree-up

 	
 If you’ve inserted subdirectories using i, move to the parent directory in this
buffer.

	

 C-M-d
 Subdir
 →
 Tree Down

 	

 dired-tree-down

 	
 If you’ve inserted subdirectories using i, move to the first subdirectory for this
directory in this buffer.

	

 * c
 Mark
 →
 Change Marks

 	

 dired-change-marks

 	
 Change marks on specified files, for example, from * (generic mark) to D (flagged for deletion).

	

 * ! or
M-Del
 Mark
 →
 Unmark
All

 	

 dired-unmark-all-files

 	
 Remove all marks from all files.

	

 * *
 Mark
 →
 Mark Executables

 	

 dired-mark-executables

 	
 Mark executables; C-u * unmarks.

	

 * /
 Mark
 →
 Mark Directories

 	

 dired-mark-directories

 	
 Mark directories; C-u / unmarks.

	

 * @
 Mark
 →
 Mark Symlinks

 	

 dired-mark-symlinks

 	
 Mark symlinks; C-u * @ unmarks.

	

 M-}
 Mark
 →
 Next Marked

 	

 dired-next-marked-file

 	
 Move to the next file marked with *
or D.

	

 M-{
 Mark
 →
 Previous Marked

 	

 dired-prev-marked-file

 	
 Move to previous file marked with *
or D.

	

 % d
 Regexp
 →
 Flag

 	

 dired-flag-files-regexp

 	
 Flag for deletion files that match regular expression.

	

 % g
 Regexp
 →
 Mark Containing

 	

 dired-mark-files-containing-regexp

 	
 Mark files whose contents match regular expression.

	

 % l
 Regexp
 →
 Downcase

 	

 dired-downcase

 	
 Lowercase marked files.

	

 % R
 Regexp
 →
 Mark

 	

 dired-do-rename-regexp

 	
 Rename files with filenames that match regular expression.

	

 % u
 Regexp
 →
 Upcase

 	

 dired-upcase

 	
 Uppercase marked files.

[2] The one exception to this is running Emacs in
the Mac OS X Terminal application, which has its own drag-and-drop
behavior. In the terminal—and thus in Emacs running in the
terminal window—dragging and dropping a folder inserts the
complete pathname of that folder rather than opening the folder in
Dired.

[3] What if it’s a file that
shouldn’t be viewed in Emacs, like a JPG or a PDF?
In this case, the variable dired-view-command-alist associates viewers
with file extensions. The defaults for this command work on Linux,
but require some tweaking on other platforms. See Chapter 10 for an example of using Custom to change
this variable for Mac OS X and Windows.

[4] Emacs understands only
compress and gzip formats, not ZIP or other proprietary
file compression algorithms. When you uncompress files, Emacs
recognizes and correctly uncompresses files with the following
suffixes: .z, .Z, or
.gz. When you compress files, Emacs uses
gzip, resulting in files that end in
.gz.

[5] And if all the Dired features
aren’t enough, there’s Dired-x, an
add-in module that includes other features such as omitting
unimportant files from the listing, finding files mentioned in any
buffer, and additional variables and means of marking files. For more
details, see the Info text on this subject (type C-h i to get to the Info menu).

Printing from Emacs

Emacs offers several commands
for printing
buffers and regions. To print a buffer with page numbers and headers
for the filename, type M-x print-buffer
Enter. This command sends the buffer to pr (a program that does simple formatting for
listings), followed by lpr (which
sends the listing to the printer). If you want to print the file
directly, without the headers and page numbers that pr provides, give the command M-x lpr-buffer Enter. You can also use these
commands to print a selected portion of a file. First define a region
by setting a mark at one end and moving the cursor to the other end.
Then give the command M-x print-region
Enter (or M-x lpr-region
Enter).
The lpr-buffer and lpr-region commands

 always check the variable lpr-switches to determine whether any options
should be passed to the Unix lpr
command. These options are used to request a particular printer and
for many other purposes; see the manpage for lpr for more information. For example, if you
want to use the printer named lpt1 whenever you print from Emacs, you
would want to set lpr-switches to
-Plpt1. To do so, add the following line to your
.emacs file:
(setq lpr-switches '("-Plpt1"))
Note the single quote preceding, and the parentheses surrounding, the
string "-Plpt1“. This is just weird-but-necessary Lisp
syntax; see Chapter 11 for more details.
You can also print from Dired. To print the file the cursor is on,
type P. Emacs puts the default
printing command in the minibuffer, and you can modify it.
Emacs also includes commands to print a buffer as a PostScript file.
If you have formatted text in the file, you can print the buffer with
those attributes by typing M-x
ps-print-buffer-with-faces.

 Table 5-3 provides a summary of commands for
printing.
Table 5-3. Printing commands
	

 Keystrokes

 	

 Action

	

 M-x print-buffer
 File
 →
 Print Buffer

 	
 Print the buffer (similar to Unix pr |
lpr).

	

 M-x print-region
 File
 →
 Print Region

 	
 Print the region (similar to Unix pr |
lpr).

	

 M-x lpr-buffer

 	
 Print buffer with no page numbers (similar to Unix lpr).

	

 M-x lpr-region

 	
 Print region with no page numbers (similar to Unix lpr).

	

 P
 Operate
 →
 Print

 	
 From Dired, put the default print command in the minibuffer; you can
change it or press Enter to execute
it.

	

 M-x
ps-print-buffer-with-faces
 File
 →
 Postscript Print Buffer

 	
 Print the buffer with text attributes.

	

 M-x
ps-print-region-with-faces
 File
 →
 Postscript Print Region

 	
 Print the region with text attributes.

Reading Manpages in Emacs

You can read Unix online
 documentation (called
manpages) from within Emacs by typing M-x man or by selecting Man from the Help menu.[6] This command
creates a buffer with a formatted manpage in it, which you can scroll
through (or copy from) using Emacs commands. Simply type: M-x man Enter
 Unix-command-name
 Enter.
For the Unix command name, you can use either a simple name, like
ls, or a manpage section name like
ttytab(5).
The advantage of using the man
command is that you can scroll through the manpage easier than you
can in some terminal applications or shell windows. Also, if you try
to view manpages in shell mode, they may come out garbled if the
settings aren’t right, whereas man gives you clean text.

[6] This feature works
on Linux, but not on Windows. To make it work on Mac OS X, set
shell-file-name to /bin/sh.

Using Time Management Tools

Emacs is a natural place to organize all your work. It
won’t replace your Palm or other handheld, but
ongoing work in this area may help you sync your favorite device with
your Emacs-based schedule. Here we cover the main features that Emacs
itself offers—the calendar and the diary.
Displaying the Calendar

To display the calendar,

 type
M-x calendar. Emacs displays a
calendar window with three months: last month, this month, and next
month.
	
 Type: M-x calendar

	

[image: image with no caption]

	
 Emacs puts the cursor on today’s date and displays
the date on the mode line. There’s no room to write
on the calendar; that’s what the diary is for, which
we’ll discuss shortly.

By default, weeks start
on Sunday. If you’d like
them to start on Monday instead, type M-x
set-variable calendar-week-start Enter 1 Enter. You enter
the calendar again to have this take effect. If
you’d like to have the calendar always start on
Monday, add this line to your .emacs file:
(setq calendar-week-start-day 1)
If you’d like to see the calendar each time you
start Emacs, you can add this line to your
.emacs file:
(calendar)
Moving in the calendar

When you’re in the calendar, Emacs

 sensibly
moves by day rather than by character. C-f moves you to the next day; C-b moves you to the previous day. C-n moves you to the same day of the next
week; C-p moves you back a week. The
arrow keys work the same way. M-}
and M-{ move forward and backward by
month, and C-x [and C-x] move forward and backward by year.
C-v scrolls forward by three months;
M-v scrolls back three months.
The movement commands just discussed move you relative to the cursor
position. If you’re on Tuesday and you press
C-n, you’ll move to
next Tuesday. If you’re on January 25 and press
M-} you’ll move to
February 25. If you’re on August 15, 2004 and press
C-x [, you’ll move
to August 15, 2003.
Other commands move to the beginning or the end of the week, month,
or year. C-a and C-e move to the beginning and end of the week,
M-a moves to the beginning of the
month, and M-< moves to the
beginning of the year. Table 5-4 summarizes these
calendar movement commands.
To go to a particular date, press g
d. Emacs asks for the year, then the month, and then the
day. Emacs moves you to the day selected (this command is well-suited
for answering that all-important question, “On what
day of the week does my birthday fall in 2020?”).
Table 5-4. Calendar movement commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 (none)
 Tools
 →
 Display Calendar

 	

 calendar

 	
 Display the calendar.

	
 .Goto
 →
 Today

 	

 calendar-goto-today

 	
 Move to today’s date.

	

 C-f

 	

 calendar-forward-day

 	
 Move forward a day.

	

 C-b

 	

 calendar-backward-day

 	
 Move backward a day.

	

 C-n

 	

 calendar-forward-week

 	
 Move forward a week.

	

 C-p

 	

 calendar-backward-week

 	
 Move backward a week.

	

 M-}

 	
 calendar-forward-month

 	
 Move forward one month.

	

 M-{

 	

 calendar-backward-month

 	
 Move backward a month.

	

 C-x]
 Scroll
 →
 Forward 1 Year

 	

 calendar-forward-year

 	
 Move forward a year.

	

 C-x [
 Scroll
 →
 Backward 1 Year

 	

 calendar-backward-year

 	
 Move backward a year.

	

 C-a
 Goto
 →
 Beginning of Week

 	

 calendar-beginning-of-week

 	
 Move to the beginning of the week.

	

 C-e
 Goto
 →
 End of Week

 	

 calendar-end-of-week

 	
 Move to the end of the week.

	

 M-a
 Goto
 →
 Beginning of Month

 	

 calendar-beginning-of-month

 	
 Move to the beginning of the month.

	

 M-e
 Goto
 →
 End of Month

 	

 calendar-end-of-month

 	
 Move to the end of the month.

	

 M-<
 Goto
 →
 Beginning of Year

 	

 calendar-beginning-of-year

 	
 Move to the beginning of the year.

	

 M->
 Goto
 →
 End of Year

 	

 calendar-end-of-year

 	
 Move to the end of the year.

	

 g d
 Goto
 →
 Other Date

 	

 calendar-goto-date

 	
 Go to the specified date.

	

 o

 	

 calendar-other-month

 	
 Put the specified month in the middle of the display.

	

 C-x <
 Scroll
 →
 Forward 1 Month

 	

 scroll-calendar-left

 	
 Scroll forward one month.

	

 C-x >
 Scroll
 →
 Backward 1 Month

 	

 scroll-calendar-right

 	
 Scroll backward one month.

	

 C-v
 Scroll
 →
 Forward 3 Months

 	

 scroll-calendar-left-three-months

 	
 Scroll forward three months.

	

 M-v
 Scroll
 →
 Forward 3 Months

 	

 scroll-calendar-right-three-months

 	
 Scroll backward three months.

	

 Space

 	

 scroll-other-window

 	
 Scroll another window.

Displaying holidays

Let’s move to a topic
everyone
 is interested in:
holidays. To display the holidays for the part of the calendar you
are looking at, type a (for
list-calendar-holidays) or select
3 Months from the Holidays menu.
	
 Type: a

	

[image: image with no caption]

	
 Emacs lists holidays for the time period shown.

As you can see, Emacs knows about a fairly wide variety of holidays
or, as it calls them, “notable
dates.” If you are somewhere else on the calendar
but want to see holidays surrounding the current month, type
M-x holidays. Emacs lists them. To
see whether today is a holiday, type h or select One
Day from the Holidays
menu.
Typing x marks holidays in a special
way, typically highlighting them in pink. If the display
doesn’t support this, Emacs puts an asterisk to the
right of the date. Typing u removes
the marks.
We have taught you only the bare bones of the calendar commands.
Emacs offers to tell you sunrise and sunset and phases of the moon.
You can choose other calendars, like the Islamic calendar, the Hebrew
calendar, the Mayan calendar, or even the French Revolutionary
calendar. But we will leave these for you to explore.
More calendar commands are used in the context of the diary,
discussed next.

Using the Diary

The diary, closely related to the calendar, allows you to make notes
about certain dates. You can enter a full daily schedule or just mark
major events. The level of detail is entirely up to you.
Creating a diary file

To use the diary, you

 must have a
diary file that contains notations about
important events or things to do. It can remind you to back up your
system every Thursday, that you get paid every two weeks, that
you’re on vacation during the first two weeks in
July, or that your mother’s birthday is August 6.
The file must be called diary and must exist in
your home directory. In this file, you insert lines—or have
Emacs write lines for you—that note dates you want to remember.
The diary file need not be all in one format and
need not be sorted in any particular order. Date formats can be
mixed: December 19, 2004 could be 12/19/04, Dec 19 04, or dec 19
2004. Here are a few lines from a diary file to
illustrate what we mean.
11/14 My birthday
July 17 2004 Company picnic
March 18 2004 Annual report due
January 8 2004 Hair appointment
&Saturday Tea with Queen Elizabeth
Friday Payday
If you don’t specify a year, Emacs assumes you want
to mark that date every year, as in birthdays. If you
don’t specify a date but only the day of the week
(as in tea with the queen on Saturday), Emacs displays the diary
entry every Saturday. Putting an ampersand (&) before an entry
tells Emacs not to mark it on the calendar (you
don’t want every Saturday marked, and you may not
want everyone to know that you hang around with the royal family).
Date formats can be mixed, but the choice to use European date format
(DD/MM/YYYY or 9 October 2004) versus the default American format
(MM/DD/YYYY or October 9, 2004) must be made before you create the
diary file. To specify European date format, add
this line to your .emacs file:

 (setq european-calendar-style 't)

 Adding diary entries

You can write your own
entries or have Emacs help you put
them in. To have Emacs help you, go to the calendar by typing
M-x calendar. Then press g d to specify the date you want to move to.
Press i d (for insert-diary-entry). Emacs moves you to the
diary window with the date written out. You can then make a diary
entry next to the date. If your entry spans more than one line, begin
the second and subsequent lines with a single space, so that Emacs
understands it’s a continuation. After you make the
notation about the date, Emacs leaves you in the
diary buffer so you can make more entries. Type
C-x b to move to another buffer.
The insert-diary-entry command
assumes you want to make a single, one-time entry. To create a
recurring entry, you need a few more commands. To insert a weekly
entry, type i w. Emacs moves you to
the diary buffer with the day of the week written
out. Type the weekly activity (such as a staff meeting), and save the
diary file. To insert an annual entry, type
i y. Emacs moves you to the
diary buffer with the day and month written out;
type the annual event. There is a more specific command for
anniversaries. Type i a to add an
anniversary; this entry includes the year (though we have not seen a
function that uses this information for any particular purpose, such
as counting which anniversary this is).
You can also put
 in cyclic diary
entries, entries that occur at regular intervals, like reminders to
change the oil in your car every three months. To do so, move to the
date you changed your oil last and type i
c. Emacs says, Repeat every how many
days: and you type the number of days between oil changes.
Emacs writes a Lisp function to handle this and puts it in the
diary buffer. You can then make a notation next to
the Lisp function, such as a note that tells you to change the oil.
The entry that Emacs inserts looks like this (we put the part about
changing the oil in ourselves):
%%(diary-cyclic 90 12 23 2004) Change the oil
The entry says that every 90 days, counting from the day we inserted
the entry, December 23, 2004, we should change the oil in our car.
You can mark a block of dates, as in the
case of a week-long conference or a vacation. Put the cursor on the
first date and press C-Space to set
the mark.[7] Move
(using calendar movement commands like C-f, C-n, and
so on) to the second date and press i
b. Emacs moves you to the diary buffer
and inserts an incantation that marks the week on your calendar. Make
a notation following the Lisp function Emacs inserts. The entry will
look something like this:
%%(diary-block 3 15 2004 3 20 2004) Trip to Alabama
This entry indicates that from March 15 to March 20,
we’ll go on a trip to Alabama.
What if you want to note that you have to file your expense report on
the fifteenth of every month? Emacs accepts the asterisk wildcard (*)
for the month, as you will see when you type i
m (for insert-monthly-diary-entry). Emacs inserts an
asterisk in place of the month, followed by the day, as in *
 15 for
something scheduled for the fifteenth of each month. As always, you
make a note following the entry.
Now that you see how Emacs constructs diary entries, you can try
writing some of your own based on what Emacs has done. After all, the
diary file is like any other Emacs file; you can
make changes, add lines, and delete lines at will. The only
requirement is that you save the file when you’re
through. Now let’s see how to display diary entries
on the appropriate dates.

 Displaying diary entries

If you want to review the

 diary entries for a given date, press
d from the calendar. In order to see
the whole diary file, press s from the calendar. If you want
today’s diary entries to display automatically when
you start Emacs, add this line to your .emacs
file:
(diary)
That way, when you start up Emacs on a day for which there is a diary
entry, the diary entry displays automatically. For example,
let’s say you marked your best
friend’s birthday some time ago, and today is the
day. When you start Emacs, the screen would look like this:
	
 You start Emacs.

	

[image: image with no caption]

	
 Emacs displays the diary entry for your friend’s
birthday.

If there are no diary entries for a given day, the diary is not
displayed. If you start Emacs with two files so that you are editing
in two windows, the diary is also not displayed.
If you have already put in a (calendar) entry in your
.emacs file to have the calendar displayed
automatically, the calendar supersedes the diary, and
you’ll have to remove the calendar if you prefer to
see the diary instead.
To mark dates with diary entries in red, press m from the calendar. To remove the marks,
press u. (This command removes
highlighting for diary entries as well as for holidays.)

 Table 5-5 summarizes the calendar and diary
commands.
Table 5-5. Holiday and diary commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 p d

 	

 calendar-print-day-of-year

 	
 Display the day of the year this is (for example, Day 364 of 365).

	

 p o

 	

 calendar-print-other-dates

 	
 Display information about this date for all calendars.

	

 Space

 	

 scroll-other-window

 	
 Scroll the other window.

	

 q

 	

 exit-calendar

 	
 Quit calendar.

	

 a
 Holidays
 →
 For Window

 	

 list-calendar-holidays

 	
 Display holidays for calendar period shown.

	

 h
 Holidays
 →
 For Cursor Date

 	

 calendar-cursor-holidays

 	
 In the minibuffer, display holiday information for the day the cursor
is on.

	

 x
 Holidays
 →
 Mark

 	

 mark-calendar-holidays

 	
 Display holidays in a different typeface, color, or with an asterisk
beside them.

	

 u
 Holidays
 →
 Unmark Calendar

 	

 calendar-unmark

 	
 Remove marks for holidays and diary entries (opposite of x command).

	

 i w
 Diary
 →
 Insert Weekly

 	

 insert-weekly-diary-entry

 	
 Add a weekly entry based on the day of the week.

	

 i y
 Diary
 →
 Insert Yearly

 	

 insert-yearly-diary-entry

 	
 Add an annual entry.

	

 i d
 Diary
 →
 Insert Daily

 	

 insert-diary-entry

 	
 Add an entry for a particular day.

	

 i m
 Diary
 →
 Insert Monthly

 	

 insert-monthly-diary-entry

 	
 Add an entry for the day of the month.

	

 i c
 Diary
 →
 Insert Cyclic

 	

 insert-cyclic-diary-entry

 	
 Add an entry to recur every n days.

	

 i a
 Diary
 →
 Insert Anniversary

 	

 insert-anniversary-diary-entry

 	
 Add an annual entry (the year is included for reference).

	

 i b
 Diary
 →
 Insert Block

 	

 insert-block-diary-entry

 	
 Add a block entry.

	

 m

 	

 mark-diary-entries

 	
 Display diary entries in a different typeface, color, or with a plus
sign beside them.

	

 d

 	

 view-diary-entries

 	
 Display diary entries for the current date.

	

 s
 Diary
 →
 Show All

 	

 show-all-diary-entries

 	
 Display diary file.

	

 M-=

 	

 calendar-count-days-region

 	
 Count the number of days in a region.

	

 M
 Moon
 →
 Lunar Phases

 	

 calendar-phases-of-moon

 	
 Display phases of the moon for a three-month period.

	

 S

 	

 calendar-sunrise-sunset

 	
 Given longitude and latitude, display sunrise and sunset times for
the current date.

	

 C-Space or C-@

 	

 calendar-set-mark

 	
 Mark regions by time rather than horizontally.

Problems You May Encounter

	
 In shell mode on Mac OS X, Emacs says,
“Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell." This
happens with the graphical version of Emacs, not

 with the version run from the Mac OS X
Terminal application. If you change to a different shell using the
instructions under “Which shell?”
earlier in this chapter, the error goes away.

	
 Some commands don’t work on
Mac OS X. The graphical version of Mac OS X fails to find
some operating system commands, especially when
invoking them through M-! (for
shell-command). Change to a
different shell; see “Which shell?”
earlier in this chapter for details. Another problem is that some
Unix commands are not available by default on Mac OS X. Try them in
the Mac Terminal application to see if they work at all before trying
them in shell mode. To increase Mac OS X’s Unix
functionality, use Fink (http://fink.sourceforge.net) to download a
wide variety of Unix commands and software for Mac OS X.

	
 Some commands don’t work on
Windows. This chapter describes many commands that have no
Windows equivalent. The Windows port of Emacs works well for most
Dired functions, the calendar, and the diary. To get Unix command
functionality under Windows, install Cygwin (http://cygwin.com).

	
 Printing does not work from Windows on USB
printers. Many USB printers do not support printing from
the command line. This problem is not specific to Emacs.

[7] If you normally use another binding for the
set-mark command or if you typically
spell out that command, you’ll run into a problem
marking regions in the calendar. In the calendar, C-Space and C-@ run calendar-set-mark rather than set-mark, so that regions are marked by time
rather than just across the screen. To mark regions correctly in the
calendar (linearly by time rather than simply across the screen), you
must type C-Space, C-@, or M-x
calendar-set-mark to set the mark.

Chapter 6. Writing Macros

What is a macro? In Emacs, a macro is
simply
a group of recorded keystrokes you can play back over and over again.
Macros are a great way to save yourself repetitive work. For example,
let’s say you want to delete the third column of a
table. Normally, you would go to the first line; move over to the
third column; delete it; then go to the second line; give the same
set of commands; and so on, until you finish, your fingers wear out,
or you get too bored. Emacs lets you record the keystrokes you used
to work on the first line of the table, and then
“play these back” repeatedly until
the job is done.[1]

Any command or action you do within Emacs, from typing text to
editing to switching buffers, can be done within a macro. The key to
using macros well is, not too surprisingly, recognizing when
you’re doing repetitive work: sensing that you have
pressed more or less the same sequence of keys several times in a
row. Once you learn to recognize repetitious work, you have a good
feel for when to use macros. The next talent that
you’ll need is, given that you’ve
recognized a cycle of “almost
identical” keystrokes, figuring out how to make that
cycle precisely identical—that is,
figuring out a set of keystrokes that, if repeated, will do exactly
what you want. Neither of these skills is particularly difficult;
with a little practice, you’ll be using macros all
the time.
If this sounds like lazy man’s programming, it is:
macros give you a simple way to do very complicated things without
learning Lisp and without learning any customization tricks. If the
task you build the macro for is something you have to do frequently,
you can save macros and load them when you want to use them. In this
way, you can build up a set of convenient macros that become your own
editing commands. Even if you don’t write Lisp,
you’re not limited to the commands Emacs gives you;
you can make your own!
What you use macros for will depend on the kind of work you do in
Emacs. We’ve used macros to:
	Mark up text for formatting.

	Copy headings from one buffer to another to create an outline.

	Perform complex search-and-replace type operations that query-replace
can’t quite handle.

	Create index entries.

	Reformat files that were imported from another application.

	Edit tables.

	Compile, run, and test the output from a program with a single
command.

	Manipulate and clean large datasets.

You’ll be able to think of many more things to do
with macros after you learn the few basic commands you need to use
them.
A Macro Revolution
In this book, we almost never emphasize which version of Emacs
we’re talking about. Macros, specifically changes to
macros in Emacs 21.3.5, have forced our hand. Macros underwent a
major overhaul in 21.3.5. Although some of the core key bindings
still work the same way, the keyboard macro functionality was
radically expanded. If you are running an earlier version of Emacs,
we encourage you to install the latest version (see Chapter 13) or go to the web site for this book,
http://www.oreilly.com/catalog/gnu3/, which includes a link to an earlier version
of this chapter.

[1] You could delete the third column of
a table by marking it as a rectangle, as described in Chapter 7. But bear with us for the sake of making
this point: when you find yourself doing repetitive work, macros are
the tool to remember.

Defining a Macro

To start defining a

 macro, press
F3 or C-x (.[2] The abbreviation
Def appears on the mode line, showing that you are
in macro definition mode. In this mode, Emacs records all the
keystrokes that you type, whether they are commands or literal text,
so that you can replay them later. To end the macro, press F4 or C-x);
you leave macro definition mode, and Emacs stops recording your
keystrokes. Emacs also stops recording your keystrokes automatically
if an error occurs or if you press C-g.
While you’re defining a macro, Emacs acts on
your keystrokes as well as recording
them: that is, anything you type while in macro definition mode is
treated as a regular command and executed. While
you’re defining a macro, you’re
doing completely normal editing. That way you can see that the macro
does exactly what you want it to, and you can cancel it (with
C-g) if you notice that the macro
isn’t really quite what you want.
To execute your

 macro, press F4 or C-x e.
Emacs then replays your keystrokes exactly. (You can see that
F4 has two different functions
relating to macros: to end a macro definition and, after
it’s defined, to execute the macro.)
This macro is referred to as the
“last” keyboard macro, with last
here meaning most recent. Only one macro is the last keyboard macro.
A macro ring, much like the kill ring, allows you to access a number
of macros during an Emacs session.

 Table 6-1 shows the steps required to define and
execute a macro. This macro takes a list of names in the ordinary
First Name Last Name order and changes it to the frequently needed
Last Name, First
Name order.
Table 6-1. Steps for creating name transposition macro
	
 Keystrokes

 	
 Action

	

 F3
 or
 C-x (

 	
 Start the macro; Def appears on the mode line.

	

 C-a

 	
 Move to the beginning of the current line.

	

 M-f

 	
 Move forward a word.

	
 ,

 	
 Type a comma.

	

 M-t

 	
 Transpose first and last.

	

 C-n

 	
 Move to the next line.

	

 F4
 or
 C-x)

 	
 End the macro definition.

	
 Define the macro using the keystrokes given in Table 6-1.

	

[image: image with no caption]

	
 In defining the macro, you transposed the names on the first line,
leaving the cursor on the second line.

Now let’s be brave and assume the macro works;
we’ll try repeating it five times by prefacing the
command to execute a macro with M-5.
Of course, in real life, you’d be better off trying
it once before doing anything so bold.
	
 Type M-5 F4 or M-5 C-x e

	

[image: image with no caption]

	
 Now we’ve done the first six lines: one by defining
the macro and five more by executing it.

The macro works well, so we can finish the rest of the buffer with
confidence: type M-100, then
C-x e or F4. Emacs stops automatically when you reach
the end of the buffer, so it doesn’t matter if you
repeat the

 macro
more times than necessary.
Here are a few points to remember:
	Don’t forget to press F4 or C-x)
when you’ve finished the macro. If you try to
execute a macro before it has been defined, Emacs complains and
forgets the macro’s definition.

	
 C-g terminates a macro, causing
Emacs to forget its definition.

	Virtually any error automatically terminates a macro. If Emacs beeps
at you, you have to start over.

	Emacs executes the keystrokes exactly as you
type them, with no intelligence whatsoever. Avoid making assumptions
like, “Of course I’ll be at the
beginning (or end) of the line when I execute the
macro.”

If you invoke a macro and it does the wrong thing, you can use
C-_ to undo it. Emacs is smart
enough to realize that “undo the last
command” means “undo the entire
macro” rather than “undo the last
command within the macro.” However, if you repeat a
macro multiple times using M-
 n, C-_ undoes only the last instance of the
macro, not all the instances.

[2] Mac OS X users may have bound F3 and F4,
used in defining and executing macros, to another key. These users
should press Option-F3 and Option-F4 to get the same
functionality.

Tips for Creating Good Macros

It’s easy to learn how to record and

 reuse your keystrokes. However, when
you’re starting out, you make a few mistakes: you
create a macro, use it, and then find out that it
doesn’t do exactly what you thought. With a little
care, it’s easy to make your macros more useful and
less vulnerable to mistakes.
Good macros work in all situations. Therefore, within a macro, you
should use commands that are absolute rather than relative. For
example, if you write a macro that puts a formatting string around
the word the cursor is on, you want the macro to work no matter how
long the word is. Therefore, you would use an absolute command such
as M-f (for forward-word) rather than a few C-fs to move forward one character at a time.
Similarly, commands such as C-e and
C-a are good for finding the
beginning or end of a line rather than moving the cursor forward or
backward.
Often, macros start with a search command that brings you to the
place in the file you want the macro to start. It’s
a good idea to type the search argument (as in C-s
 searchstring)
rather than using the command to repeat the last search (C-s C-s). You may have changed the search
string between the time you define the macro and the time you execute
it, and C-s C-s remembers only what
the last search string was.
It is often a good idea to add extra commands (typically C-a and C-e)
that aren’t strictly necessary, just to make sure
that you’re positioned correctly on the line. The
fewer assumptions that a macro makes, the better it works. So, if a
sequence of commands works correctly only if you start at the end of
the line, start the macro with C-e,
even if you already “know” that you
want to give the command only when you’re at the end
of the line.
Finally, while we’re reciting rules and cautions,
here’s one more: keep in mind that you probably want
to execute macros repeatedly. With a little foresight,
you’ll be able to create macros that can be executed
in long chains without problems.
In general, good macros have three parts:
	They find the place you want the macro to start working (often using
search).

	They do the work that needs to be done on the text.

	They prepare themselves to repeat.

How can a macro prepare itself to repeat? For example, assume that
you’re writing a macro to delete the third column of
a table. After deleting the column, the macro should position itself
at the beginning of the next line (or wherever it needs to be) so you
don’t have to reposition the cursor before reusing
it.
Here’s a slightly more complex example. If you start
a macro with a search, you have to make sure that the end of the
macro moves the cursor past the last spot you searched for. If you
don’t, the macro will keep finding the same place in
the file and never go on to the next occurrence of what
you’re searching for. As a general rule, if your
macro operates on a line of text, it should end by moving to the
beginning of the next line. Remember that your goal is to create a
sequence of keystrokes that can be executed many times in a row, with
no interruption.

A More Complicated Macro Example

Sometimes you may want to find all the references to a particular
topic in a file. Table 6-2 lists steps for creating a macro that
takes takes every sentence in the buffer that contains the word
Emacs and copies it to another buffer. If you
try this macro, you’ll need to type some text about
Emacs into a buffer. You can also get a test file to work with by
opening the Emacs NEWS file (using C-h n), then writing it to a file (C-x C-w
 NEWS). This buffer is in view mode by default;
change to text mode by typing M-x text-mode
Enter.
Table 6-2. Steps for macro that creates a buffer of Emacs references
	
 Keystrokes

 	
 Action

	

 F3
 or
 C-x (

 	
 Start macro definition; Def appears on the mode
line.

	

 C-s emacs

 	
 Find the word Emacs.

	

 Enter

 	
 Stop the search after it is successful; if the search is
unsuccessful, it rings the bell and stops the macro.

	

 M-a

 	
 Move to the beginning of the sentence.[3]

	

 C-Space

 	
 Set the mark.

	

 M-e

 	
 Move to the end of the sentence.

	

 M-w

 	
 Copy the sentence to the kill ring.

	

 C-x b emacsrefs Enter

 	
 Move to a buffer called emacsrefs.

	

 C-y

 	
 Insert the sentence.

	

 Enter

 	
 Start the next sentence on a new line.

	

 C-x b Enter

 	
 Move back to the original buffer.

	

 F4
 or
 C-x)

 	
 End the macro definition; Def is removed from the
mode line.

	[3]
 M-a’s definition of a
“sentence” is controlled by the
variable sentence-end, which is a
fairly complex regular expression. By default, a sentence ends with a
period, question mark, or exclamation mark, optionally followed by a
quotation mark or parenthesis (including brackets or braces), and
followed by two or more spaces or a newline.

Now, assume that you’ve already constructed the
macro outlined in Table 6-2 and that you can
invoke it with F4. The following
screen shows what happens when you run it five times and then display
the emacsrefs buffer.
	
 Type: M-5 F4 or M-5 C-x e, followed by
C-x b Enter

	

[image: image with no caption]

	
 By executing the macro repeatedly, we’ve created a
buffer that contains references to the Emacs editor.

As in the previous example, you can jump back and forth between an
unlimited number of buffers while defining a macro. Macros
don’t need to be confined to one buffer. Macros that
work with several buffers are more difficult to debug; when several
buffers are involved, it becomes harder for you to keep track of
where the cursor and the mark are. It is also easy to make mistaken
assumptions about what buffer you’re visiting;
hence, it’s a good idea to specify the buffer name
explicitly. However, after you get accustomed to working with macros
and multiple buffers, you’ll be amazed at how much
work you can do with almost no effort.
Windows are sometimes useful in macros, but, again, you have to watch
out. It’s better to start a macro with one window on
the screen, have the macro open other windows, and finally close all
but one window (C-x 1). If you write
a macro with two windows on the screen and later try to execute it
with four windows on the screen, the results will be unpredictable at
best! In general, moving to a named buffer, C-x
b
 buffername, is preferable to
moving to the “other” window using
C-x o (too vague to be generally
useful). The other window could be anything—a
Help buffer, *Completion*
buffer, *shell* buffer, and so on. Moving to a
named buffer always gets you to the right place, no matter how (or
whether) the buffer is displayed.

Editing a Macro

You can edit a macro and

 make
changes to it in a few different ways. For this example, we chose an
all-purpose editing command, edit-kbd-macro, which is bound to C-x C-k e. Several macro editing commands are
available, but this one works for all types of macros, so
it’s good to learn.
Our macro could use a bit of tweaking. First of all, finding
references to Emacs in our copy of the Emacs
NEWS file is pretty lame. Perhaps
we’re interested in using a mouse more frequently
with Emacs and would like to know about changes to that part of the
interface. We’ll edit the macro to search for the
word mouse. We’ll also modify
it so it marks a paragraph rather than a sentence since a sentence
doesn’t really provide enough context to be helpful.
Let’s start editing the macro.
	
 Type: C-x C-k e

	

[image: image with no caption]

	
 Emacs prompts you for the type of macro to edit.

Emacs asks you if you want to edit the last keyboard macro (C-x e), a named macro (M-x), the last 100 keystrokes as a macro,
termed “lossage” (C-h l), or keys (meaning the keystrokes you
bound a macro to). Yes, that’s a lot of choices, and
later in the chapter we describe named macros and binding macros to
keys (you can experiment on your own with creating a macro from
lossage). For now, just choose C-x e
to edit the last keyboard macro.
	
 Type: C-x e

	

[image: image with no caption]

	
 Emacs opens an *Edit Macro* buffer.

Notice two fields near the top of this buffer,
Command: and Key:. Right now,
Command: says last-kbd-macro.
If this were a named macro, the command would be the name you gave
your macro. Additionally, for frequent use, you can bind your macro
to a key, at which point the Key: field lists the
keystrokes to execute this macro. Right now it says
none because we haven’t defined
any keystrokes yet.
Note that Emacs inserts comments all through the macro.
It’s attempting to map keystrokes to commands. You
do not need to update these comments or add comments if you add
commands to your macro; Emacs does that itself.
To tweak our macro, we change the search string on the second line
from emacs to mouse. Note
that we can just press C-k to wipe
out the line and type mouse. Now change M-a to M-{
and M-e to M-}. We change the buffer name from
emacsrefs to mouseinfo.
	
 We’ve made the edits from the previous paragraph.
The screen looks like this:

	

[image: image with no caption]

	
 A modified macro that captures information about using a mouse in
Emacs.

To exit the macro editing buffer, we have to type C-c C-c and go back to our
NEWS buffer. Let’s do that and
then execute the macro again to see what happens.
	
 Type: C-c C-c C-x b Enter M-< M-5 F4 C-x b
Enter M-<

	

[image: image with no caption]

	
 The mouseinfo buffer shows paragraphs from our
copied NEWS file that mention the mouse.

The Macro Ring

Although our latest macro is interesting, it’s not
really a general purpose macro. It is a temporary solution to a
one-time problem. It saves you some work, but it
isn’t general enough to save and use again. On the
other hand, our macro to transpose names is generally useful.
We’d like to use it again. We’d
like to bind it to a key. But it is no longer the
“latest” keyboard macro.
As we mentioned earlier, Emacs has a macro ring much like the
infamous kill ring. It’s useful in the case
we’ve just described, but it’s also
useful because of the fragility of the macro definition process. You
create a macro and make a wrong move that rings the bell, and your
macro is canceled. It’s fairly easy to create a
macro that does nothing. Perhaps the macro that you just created was
wonderful, and this new nonfunctional nothing macro has supplanted
it. Again, the macro ring is the solution. To delete a macro from the
ring, type C-x C-k C-d (for
kmacro-delete-ring-head). This
deletes the most recently defined keyboard macro.
What if you want to swap the positions of two macros? Instead, type
C-x C-k C-t (for kmacro-swap-ring). This transposes macros 1
and 2.
In a more general sense, you can cycle to the previously defined
macro by typing C-c C-k C-p (for
kmacro-cycle-ring-previous). To move
the ring the other way, type C-x C-k C-n
(for kmacro-cycle-ring-next). The familiar
C-p for previous and C-n for next bindings are appended to the
general macro keyboard prefix C-x
C-k.
Before we can work with the transpose names macro, we must either
define it again or, if you’ve been working through
our examples, type C-x C-k C-p to
move to the previous macro.

Binding Your Macro to a Key

Binding a macro to a key

 is easy. The key sequences C-x C-k 0 through 9 and capital A through Z
are reserved for user macro bindings. You can choose one that strikes
you as mnemonic for your macro.
For example, to bind our transpose names macro to C-x C-k T, type C-x C-k
b. Emacs prompts for the key binding. Type C-x C-k T Enter. Emacs confirms,
Keyboard macro bound to C-x C-k T. Binding a macro
command to a key in this way works for only one session. We want to
keep this macro, so read on to find out how to make this binding
permanent.

Naming, Saving, and Executing Your Macros

In this section, we’ll describe

 how to save macros so that you can use
them in different editing sessions. To save a macro, bind it
permanently to a key, and load it in subsequent Emacs sessions,
follow these steps:
	Define the macro, if you haven’t already.

	Type C-x C-k n (for name-last-kbd-macro). Now type a name for
your macro and press Enter. A
non-Emacs sounding name is best so that Emacs
doesn’t confuse it with one of its own commands.
Once you’ve executed this command, Emacs remembers
the macro for the rest of the editing session. To use it again, type
the command M-x
 name (where name
is the name you’ve chosen). Emacs treats your named
macro like one of its own commands; it shows up in completion lists
if you press Tab after typing a few
letters of the name.

	If you want to save the macro definition permanently, you must insert
the macro definition into a file. This could be your
.emacs file or a macro file that you load
through your .emacs file. Type C-x C-f
 filename
 Enter to find the file into which to
insert the definition and move to the end of it by typing M->.

	Type M-x insert-kbd-macro Enter
 macroname
 Enter. Emacs inserts Lisp code that represents
your macro.

	Add a line to .emacs make the key binding
permanent. For example, if we called our macro transpose-names and bound it to C-x C-k T, we would add this line to our
.emacs file (or other macro definition file):
(global-set-key "\C-x\C-kT" 'transpose-names)

	If you save the macro in some other file, it won’t
be loaded automatically. For example, let’s say that
you have defined a macro called transpose-names and placed it in the file
html.macs, in the directory
~/macros. Add this line to your
.emacs file to load your macros automatically:
 (load-file "~/macros/html.macs")

	Save the .emacs file and, if different, the file
in which you inserted your macro. Exit and restart Emacs. You can now
execute this macro either by typing M-x
transpose-names Enter or by pressing C-x C-k T.

Building More Complicated Macros

So far, we’ve covered the basics of writing,
executing, and saving keyboard macros. Now let’s
discuss a couple of more advanced features Emacs lets you add to your
macros: pausing a macro for keyboard input and inserting a query in a
macro.
Pausing a Macro for Keyboard Input

Sometimes it’s

 useful to pause a macro briefly
so you can type something. For example, if you write a lot of
letters, you could have a macro that prints out a template and then
pauses for you to fill in variables (such as the date and the
recipient’s name). You can perform this task (and
similar tasks) by inserting a recursive edit into a macro. A
recursive edit is just a fancy way to say, “Stop and
let me type a while, then pick up the macro where I left
off.”
When you’re defining a macro, type C-u C-x q at the point where you want the
recursive edit to occur. Emacs enters a recursive edit. (You can tell
you’re in a recursive edit because square brackets
appear on the mode line; you’ll see them in the
screenshots later in this section.) Nothing you type during the
recursive edit becomes a part of the macro. You can type whatever you
want to and then press C-M-c to exit
the recursive edit. Notice how the square brackets disappear when you
type C-M-c. When the square brackets
are no longer on the screen, you have left the recursive edit.
Anything you type at this point becomes part of the macro. You can
put as many pauses in your macros as you want to.
Example

Here’s an example of a macro that puts a business
letter template on the screen and uses recursive edits to let you
type your return address, the recipient’s name and
address, and the date. Because the brackets on the mode line are a
pretty subtle clue to what you are going to type,
we’ll give the user of this macro explicit
instructions about what to type. Table 6-3
provides these instructions.
Table 6-3. Steps for creating a business letter macro
	
 Keystrokes

 	
 Action

	

 F3
 or
 C-x (

 	
 Start keyboard macro definition.

	

 M-5 Enter

 	
 Put in 5 blank lines.

	

 Type your address and press C-M-c

 	
 Display Type your address and press C-M-c on the screen.

	

 C-a

 	
 Move to the beginning of the line.

	

 C-u C-x q

 	
 Enter a recursive edit, during which the keystrokes you type are not
recorded as part of the macro.

	

 C-M-c

 	
 Exit the recursive edit.

	

 C-e

 	
 Move to the end of the line.

	

 M-5 Enter

 	
 Move the cursor down 5 lines.

	

 Type recipient name and address and press
C-M-c

 	
 Display Type recipient name and address and press C-M-c
 on the screen.

	

 C-a

 	
 Move to the beginning of the line.

	

 C-u C-x q

 	
 Enter a recursive edit.

	

 C-M-c

 	
 Exit the recursive edit.

	

 C-e

 	
 Move to the end of the line.

	

 M-5 Enter

 	
 Move the cursor down 5 lines.

	

 Type date and press C-M-c

 	
 Display Type date and press C-M-c on the screen.

	

 C-a

 	
 Move to the beginning of the line

	

 C-u C-x q

 	
 Enter a recursive edit.

	

 C-M-c

 	
 Exit the recursive edit.

	

 C-e

 	
 Move to the end of the line.

	

 M-5 Enter

 	
 Move the cursor down 5 lines.

	

 Dear Space

 	
 Display Dear on the screen.

	

 F4
 or
 C-x)

 	
 End keyboard macro definition.

The following screens show what the macro defined in Table 6-3 looks like when you run it.
	
 Type: F4

	

[image: image with no caption]

	
 The macro pauses so that you can type your address.

	
 Type your address and press: C-M-c

	

[image: image with no caption]

	
 The macro pauses so you can type the recipient’s
name and address.

	
 Type the recipient’s name and address and press:
C-M-c

	

[image: image with no caption]

	
 The macro pauses so you can type the date.

	
 Type the date and press: C-M-c

	

[image: image with no caption]

	
 The macro finishes by typing the opening for the letter.

Now the macro has finished editing; you can type the
recipient’s name and then the body of the letter,
and of course you can go back and edit any of the information
you’ve already filled in.

Adding a Query to a Macro

The more complex the task your

 macro performs, the more difficult it is
to make the macro general enough to work in every case. Although
macros can do a lot of things, they aren’t programs:
you can’t have if
statements, loops, and the other things you associate with a program.
In particular, a macro can’t get input from the user
and then take some action on the basis of that input.
However, one feature lets a macro get input, in a limited way, from
the user. You can create a macro that queries the user while it is
running; it works much like a query-replace. To create this kind of a
macro, type C-x q when you reach the
point in the macro definition where you want the macro to query the
user. Nothing happens immediately; go on defining the macro as you
normally would.
Things get interesting later, when you execute the macro. When it
gets to the point in the macro where you typed C-x q, Emacs prints a query in the minibuffer:
Proceed with macro? (y, n, RET, C-l, C-r)
The responses listed here are analogous to those in query-replace:
	Pressing y means to continue and go
on to the next repetition, if any.

	Pressing n means to stop executing
the macro but go on to the next repetition, if any.

	Pressing Enter means to stop
executing the macro and cancel any repetitions.

	Pressing C-r starts a recursive
edit, which lets you do any editing or moving around you may want to
and then resume the macro when you exit the recursive edit. To exit a
recursive edit, press C-M-c. Emacs
again asks if you want to proceed with the macro, and you type
y for yes or n or Enter
for no.

	Pressing C-l puts the line the
cursor is on in the middle of the screen (this is good for getting a
feel for the context). Similar to C-r, Emacs again asks if you want to proceed
with the macro, and you have to answer y, n, or
Enter.

	Pressing C-g (although not listed as
an option) cancels the query and the macro; it is similar to pressing
Enter.

Example

Let’s say that you write a macro that copies
comments from a program to another buffer. The comments in our
program are preceded by a slash, so you start the macro with a search
for a slash. However, not all comments are worth copying. Following
the search with a query lets you decide case by case whether the
search has found a comment you want to copy. Table 6-4 shows a macro to copy comments to another
buffer.
Table 6-4. Comment-copying macro with a query
	
 Keystrokes

 	
 Action

	

 F3

 	
 Start the macro definition.

	

 C-s /

 	
 Search for a slash.

	

 Enter

 	
 Stop the search when it is successful.

	

 C-x q

 	
 Insert a query in the macro; Emacs asks you if you want to proceed at
this point when you run the macro.

	

 M-f

 	
 Move forward one word.

	

 M-b

 	
 Move to the beginning of this word.

	

 C-Space

 	
 Set the mark.

	

 C-e

 	
 Move to the end of the line.

	

 C-f

 	
 Move forward one character.

	

 M-w

 	
 Copy the comment to the kill ring.

	

 C-x b comments

 	
 Move to a buffer called comments.

	

 C-y

 	
 Insert the comment in the buffer.

	

 C-x b

 	
 Move back to the original buffer.

	

 F4

 	
 End the macro definition.

Executing Macros on a Region

A special command

 lets you
execute a macro on each line in a region. How frequently do you
encounter an email with text that you want to yank, but that is
quoted several indentation levels? Of course, we can think of several
ways to delete the indentation quickly, but a line-oriented macro is
a quick approach too. You define the macro and execute it on a region
by typing C-x C-k r (for apply-macro-to-region-lines). Remember that
earlier we said that macros should set themselves up to repeat? This
command is different because it expects to work on one line at a
time. You don’t want to set it up to repeat by
moving to the next line; it does that automatically.

 Table 6-5 shows a quick line-oriented macro that
deletes indentation marks from text quoted in an email or
newsgroup message.
Table 6-5. Macro for deleting indentation marks
	
 Keystrokes

 	
 Action

	

 F3

 	
 Start the macro definition.

	

 C-a

 	
 Move to the beginning of the line.

	

 M-f

 	
 Move forward one word.

	

 M-b

 	
 Move to the beginning of this word.

	

 C-Space

 	
 Set the mark.

	

 C-a

 	
 Move to the beginning of the line.

	

 C-w

 	
 Delete the extraneous indentation characters.

	

 F4

 	
 End the macro definition.

	
 Initial state:

	

[image: image with no caption]

	
 Text indented at various levels (Mac OS X).

	
 Mark the text as a region, move to the beginning of the region, then
type: C-x C-k r

	

[image: image with no caption]

	
 Indentation is deleted (Mac OS X).

Beyond Macros

Macros are an important tool for streamlining repetitive editing.
They let you write your own commands for performing complex tasks
without needing to know anything more than you already know: the
basic Emacs commands for moving around and manipulating text. Even if
you’re an Emacs novice, you should be able to use
macros with little difficulty.
However, Emacs is almost infinitely flexible, and macros cannot do
everything. In many situations, there’s no
substitute for writing a Lisp function that does exactly what you
want. If you know Lisp or would like to learn some, you can write
your own Lisp functions to do more complex tasks than keyboard macros
can handle. Chapter 11 covers the basics of
writing Lisp functions.

 Table 6-6 summarizes

 macro
commands.
Table 6-6. Macro commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x (

 	

 kmacro-start-macro

 	
 Start macro definition.

	

 F3

 	

 kmacro-start-macro-or-insert-counter

 	
 Start macro definition. If pressed while defining a macro, insert a
counter.

	

 C-x)

 	

 kmacro-end-macro

 	
 End macro definition.

	

 F4

 	

 kmacro-end-or-call-macro

 	
 End macro definition (if definition is in progress) or invoke last
keyboard macro.

	

 C-x e

 	

 kmacro-end-and-call-macro

 	
 Execute last keyboard macro defined. Can type e to repeat macro.

	

 C-x C-k n

 	

 name-last-kbd-macro

 	
 Name the last macro you created (before saving it).

	
 (none)

 	

 insert-kbd-macro

 	
 Insert the macro you named into a file.

	
 (none)

 	

 macroname

 	
 Execute a named keyboard macro.

	

 C-x q

 	

 kbd-macro-query

 	
 Insert a query in a macro definition.

	

 C-u C-x q

 	

 (none)

 	
 Insert a recursive edit in a macro definition.

	

 C-M-c

 	

 exit-recursive-edit

 	
 Exit a recursive edit.

	

 C-x C-k b

 	

 kmacro-bind-to-key

 	
 Bind a macro to a key (C-x C-k
 0-9
and A-Z are reserved for macro bindings). Lasts for
current session only.

	

 C-x C-k Space

 	

 kmacro-step-edit-macro

 	
 Edit a macro while stepping through it (in our opinion, the interface
is overly complex).

	

 C-x C-k l

 	

 kmacro-edit-lossage

 	
 Turn the last 100 keystrokes into a keyboard macro. If any mouse
clicks are among the last 100 keystrokes, does not work.

	

 C-x C-k e

 	

 edit-kbd-macro

 	
 Edit a keyboard macro by typing C-x e for the last keyboard macro
defined, M-x for a named macro, C-h l for lossage, or keystrokes for
a macro bound to a key.

	

 C-x C-k Enter

 	

 kmacro-edit-macro

 	
 Edit the last keyboard macro.

	

 C-x C-k C-e

 	

 kmacro-edit-macro-repeat

 	
 Edit the last keyboard macro again.

	

 C-x C-k C-t

 	

 kmacro-swap-ring

 	
 Transpose last keyboard macro with previous keyboard macro.

	

 C-x C-k C-d

 	

 kmacro-delete-ring-head

 	
 Delete last keyboard macro from the macro ring.

	

 C-x C-k C-p

 	

 kmacro-cycle-ring-previous

 	
 Move to the previous macro in the macro ring.

	

 C-x C-k C-n

 	

 kmacro-cycle-ring-next

 	
 Move to the next macro in the macro ring.

	

 C-x C-k r

 	

 apply-macro-to-region-lines

 	
 Apply this macro to each line in a region.

Chapter 7. Simple Text Formatting and Specialized Editing

Emacs is fundamentally a text editor, rather than a word processor:
it is a tool that creates files containing exactly what you see on
the screen rather than a tool that makes text files look beautiful
when printed. However, Emacs does give you the capability to do the
following:
	Indent text using tabs and other indentation tricks.

	Center words, lines, and paragraphs of text.

	Hide and show portions of a document using outline mode, which gives
you a feel for a document’s overall structure.
Outline mode can make it easier to go from rough outline, to detailed
outline, to rough draft, to the final product.

	Edit by column rather than by line (especially helpful when you
create or change tables or work with column-oriented datasets),
referred to in Emacs as rectangle
 editing.

	Create simple pictures using keyboard characters or the mouse.

Much of this chapter, though, focuses on some fairly simple stuff:
tabs and indenting text. We describe Emacs’s
behavior in primarily two major modes: fundamental mode and text
mode. If you are a developer, you’ll probably want
to write code in a mode appropriate to the language
you’re using; see Chapter 9
for details. If you use a markup language like HTML, see Chapter 8 for additional relevant information.

Using Tabs

Tabs provide an easy way to

 do
some simple formatting. While we were revising this book, we found
that the way Emacs handles tabs has changed a great deal. This
section describes first how Emacs works by default and then discusses
what you can do to change the default behavior to meet your needs.
How Emacs 21 Handles Tabs by Default

If you open a new file in text mode,

 tabs
are set every eight spaces by default. (Programming modes have their
own indentation behavior; see Chapter 9 for
details.)
	
 Press Tab.

	

[image: image with no caption]

	
 Pressing Tab in text mode or
fundamental mode inserts a tab character that moves the cursor
forward eight columns by default.

Watch what happens when we type a sentence. The default tab stops
change automatically.
	
 Type: It was the best of times Enter Tab
Tab

	

[image: image with no caption]

	
 Pressing Tab twice moves the cursor
under the word was, clearly less than eight
columns.

Every time you press Tab, Emacs
moves the cursor under the next word. This is the behavior that many
people expect when writing code. Neatly lined up code is easier to
read.
As we experimented with this feature, we would tab across under each
word, and press Enter. What happens
next is surprising if you are not expecting it. Emacs considers that
newline to be the only character you typed on the line, so pressing
Tab on a subsequent line brings you
nearly to the end of the line.
	
 Press Tab repeatedly to the end of
the window, press Enter, then press
Tab once.

	

[image: image with no caption]

	
 Emacs moves the cursor to the column where you pressed Enter.

If you press Enter but
don’t press Tab at
all, the indentation level moves back to the left margin.
Changing tabs to align with each word can be helpful, if, for
example, you’re typing tables. However, the default
tab behavior may not be helpful to you in all situations. If you are
interested in changing the default behavior, read on and
we’ll describe how to get Emacs to do what you want
it to do.

Changing Tab Stops

By default (and if text is not lining up
with some previous line of text),
tabs are set every eight characters. Emacs allows you to change the
positions of the tab stops. To change the tab stops, type M-x
 edit-tab-stops. A *Tab
Stops* buffer appears.
	
 Type: M-x edit-tab-stops

	

[image: image with no caption]

	
 You now see a tab stop ruler; colons show the locations of tab stops.

The colons in the first line of
 the display show you where tab
stops are currently located. The next two lines form a ruler that
shows each character position on the line. To insert a tab, use
C-f to move to the desired column,
and then type a colon (:). To delete a tab, move to the desired
tab, and press Space. The
Tab Stops buffer is in overwrite mode, so these
changes won’t change the position of other tabs.
Make sure that you do all your editing in the first line of the
display. Changes made to the other lines won’t have
any effect.
When you’re satisfied with the tab stops, press
C-c
 C-c to install them. If you
don’t make any changes, press C-c
 C-c to
exit the buffer. If you make some changes and then decide you
don’t want them after all, kill the buffer by typing
C-x
 k
 Enter. The
default tab stops remain in effect.
If you press C-c C-c to install
them, the new tab settings affect all buffers that you create but
remain in effect for this Emacs session only.
Again, it may well appear to you that this feature
doesn’t work as you would expect. Because
Emacs’s default behavior tries to align with
preceding lines, changing tab stops really affects only the first
line of any buffer.
In this example, we set the first tab at column 51, pressed C-c C-c to install the tab stops, and started
a new buffer. Pressing Tab at the
beginning of the buffer moves the cursor immediately to column 51.
That works fine.
	
 Press Tab once.

	

[image: image with no caption]

	
 Cursor moves to column 51.

Now we press Tab a few more times,
followed by Enter to move to a new
line.
When we press Tab on the second
line, Emacs views the newline as the only item on the last line.
Pressing Tab moves us right to the
end of the line.
	
 Press Tab on the next line.

	

[image: image with no caption]

	
 Emacs moves to the end of the line.

As you can see, changing tab stops in this way is of limited efficacy
if you’re going to add blank lines between rows of
your table or whatever you’re typing.
You’d have to work around this by adding blank lines
after typing the whole table, perhaps using a macro as described in
Chapter 6.

What if You Want Literal Tabs?

Let’s say that all this tab

 finery is getting on your nerves. You
don’t want context-sensitive indenting; you
don’t even want to change tab stops. There is a way
to make Emacs treat tabs just like a regular old typewriter did,
moving over eight characters at a time.[1]

To insert rigid, typewriter-style tabs, press C-q Tab. In theory, this should insert a tab
character into the file, which would look like ^I.
In practice, it moves the cursor forward rigidly eight columns.
	
 Type: C-q Tab

	

[image: image with no caption]

	
 The cursor moves eight columns forward and does not align with the
text in the previous line.

 C-q Tab does in fact insert a tab
character in the file. You can check that by erasing it with a single
press of the Del key.

Changing Tab Width

One problem with tabs is
that
there is no universal definition of what a tab means. In
vi, the default tab width is four columns versus
eight columns in Emacs. Further, Unix generally favors eight columns
for tabs while some operating systems tend to use four spaces. Emacs
uses eight columns by default no matter what platform
it’s running on. If you view another
user’s file in Emacs, Emacs interprets the tabs as
eight columns each, throwing things off. For this reason, you might
want to set your tab default to four columns by adding this line to
your .emacs file:
 (setq-default tab-width 4)
You have to press C-q Tab to have
the modified tab width take effect.

Tabs and Spaces

Another characteristic
of
Emacs’s default behavior is the fact that it may
insert a combination of tabs and spaces when you press Tab. Try to erase a few
“tabs” and you’ll
see that often it isn’t one character, but the
equivalent number of spaces or a combination of tabs and spaces. Of
course, this largely depends on the tab stops compared to setting of
the tab-width variable. If you set tab stops that
are multiples of six while you have a tab-width of
4 or 8, Emacs is going to have to use a combination of tabs and
spaces to achieve the desired tab stops.
If you want Emacs to insert spaces for indentation rather than tab
characters, add this line to your .emacs file:
(setq-default indent-tabs-mode nil)
With this setting, Emacs inserts only spaces when you press Tab. Pressing C-q
Tab instead inserts a literal tab character.
It’s safe to say you won’t enter
tab characters accidentally with this setting.

Changing Tabs to Spaces (and Vice Versa)

We’ve just talked about a

 way to make sure that Emacs inserts
spaces instead of tabs. But what if you inherit a file and it has
tabs that you want to change to spaces?
Emacs provides a command to banish tabs from your files. You can use
tabs for editing and then convert all of the tabs to the appropriate
number of spaces so that the appearance of your file
doesn’t change. Unlike tabs, a space is almost
always well defined. The command for eliminating tabs is M-x
 untabify.
There’s a corresponding command to convert spaces
into tabs: tabify. However, we trust
that you’ll take our advice and forget about it.
The untabify command works on a
region. Therefore, to use it, you must put the mark somewhere in the
buffer (preferably at the beginning), move to some other place in the
buffer (preferably the end), and type M-x
 untabify
 Enter. The command C-x
 h (for
mark-whole-buffer) automatically
puts the cursor at the beginning of the buffer and the mark at the
end. It makes untabification a bit easier because you can do it all
at once with the simple sequence C-x
 h
 M-x
 untabify
 Enter.

 Table 7-1 shows the tab commands
we’ve covered in this section.
Table 7-1. Tab commands
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	

 edit-tab-stops

 	
 Open a buffer called *Tab Stops* where you can
change the tab settings.

	
 (none)

 	

 untabify

 	
 Change all tabs into the equivalent number of spaces.

	
 (none)

 	

 tabify

 	
 Change groups of three or more spaces to tabs where possible without
affecting the text placement.

[1] You
can’t change tab stops with this method, but you can
change tab width. We’ll cover this shortly.

Indenting Text

Emacs provides the ability

 to indent paragraphs, like a block
quote in a paper. It also allows you to use a paragraph style that
indents just the first line of a paragraph. This section describes
indentation-related commands, including how to change the margins for
the current session.
Before we start, make sure you’re in text mode. Look
at the mode line and, if the word Text is
displayed, you are in text mode. If not, type M-x
 text-mode
 Enter to enter text mode.
Indenting Paragraphs

Let’s say you’re writing

 a
paper and want to include some indented block quotes.
Emacs’s default behavior makes this a
no-brainer.[2] After you
finish your first paragraph, use tabs or spaces to indent to the
desired level and start typing the quote. Emacs automatically fills
the paragraph and the quote correctly, as shown in the following
screen.
	
 Some indented text:

	

[image: image with no caption]

	
 Emacs indents the text properly and fills it correctly in auto-fill
mode.

What if an indented quote has multiple paragraphs? You could just
press Enter and then Tab again at the beginning of subsequent
paragraphs or you could press C-j
(for newline-and-indent). Pressing
C-j twice gives you a blank line
between paragraphs.

Indenting the First Line of a Paragraph

Some people
prefer

 paragraphs in which the
first line is indented. Knowing about the intricacies of tabs, you
might be concerned that pressing Tab
to indent the opening line of your paragraph will incite
Emacs to indent the whole paragraph as you continue typing. And it
would, to be honest.
Emacs provides a special mode for this purpose: paragraph indent text
mode. It’s also available as a minor mode. Enter
either M-x
paragraph-indent-text-mode or M-x
paragraph-ident-minor-mode respectively. If you run the
major mode, Emacs displays Parindent on the mode
line.
When you press Tab to start a
paragraph, Emacs inserts a tab’s worth of space.
When you start a new paragraph, you don’t have to
skip a line in between and pressing Tab to start that second paragraph yields
again a tab’s worth of space, not aligning with the
second word of the previous line as Emacs would do in text mode or
fundamental mode.
Pressing M-q reformats paragraphs
without mushing them all together. If you prefer indented paragraphs,
this mode is exactly what you want. When you need to indent a block
quote, you may want to temporarily enter text mode to make it easier
and add your paragraph indentations manually.

Filling Indented Paragraphs

Let’s say you’ve got
a

paper with paragraphs indented at various levels. What if you edit
them and need to fill them again? Especially if there are no blank
lines in between paragraphs, M-q
munges all the text into one big (nonindented) paragraph. Instead of
M-q, mark the region in question and
use a special fill command: M-x
 fill-individual-paragraphs. Emacs
preserves each paragraph’s indentation.
Let’s contrast these two commands with an example.
We’ll use our previous Henry James example, but
delete the lines between paragraphs to show what happens if you use
M-q in this case. These paragraphs
need to be reformatted.
	
 Initial state:

	

[image: image with no caption]

	
 Some sample paragraphs from Henry James, in need of reformatting.

	
 Type: M-q

	

[image: image with no caption]

	
 Emacs munges it all into one large paragraph.

We’ll undo that command, mark the buffer as a
region, and use the fill-individual-paragraphs command.
	
 Type: C- _ C-x h M-x fill-individual-paragraphs
Enter

	

[image: image with no caption]

	
 Emacs refills the paragraphs properly.

Indenting regions

What if you have already typed your

 text
without indentation and want to indent it later? Two commands can
handle this, depending on how far you want to indent the region.
The indent-region command, bound to
C-M-\, can indent a region one level
easily. If you want to indent two levels, it is unpredictable. (This
command is designed for indenting code.)
Here’s an example. The second paragraph is marked as
a region.
	
 Type: C-M-\

	

[image: image with no caption]

	
 Emacs indents the paragraph one level.

You decide that’s not far enough.
	
 Type: C-M-\

	

[image: image with no caption]

	
 Emacs creates a stairstep hanging indent.

So you can see that this works fine if you’re
indenting one level. If you try this with multiple paragraphs of
different indentation levels, indent-region pulls them all to the right,
aligning them with the least indented paragraph, probably not what
you intended. If you write code, however, this command is great for
cleaning up messy indentation.
The other option is to mark the region and type C-x Tab (for indent-rigidly). By default, this command
indents only one space, so if you want to indent further, you need to
give it an argument. For example, to indent the previous paragraph 15
spaces:
	
 Mark the region then type: M-15 C-x
Tab

	

[image: image with no caption]

	
 Emacs indents the paragraph 15 spaces.

Although arguably it can be a pain to supply an argument, indent-rigidly uniformly indents text, leaving
indented paragraphs indented. If you find yourself wanting to indent
whole files, you may actually want to change the margin settings, as
described in the next section.

Other indentation tricks

Whenever you are using
indentation,
you can use M-m (for back-to-indentation) to move to the first
nonblank character on a line. On a line that’s not
indented, this command simply moves you to the beginning of the line.
In other words, M-m brings you to
the “logical” beginning of the
line, which is what you usually mean when you type C-a.
Another indentation

 command
is C-M-o (for split-line). You can use this command to
create a stairstep effect. Move the cursor to the text that you want
to put on the next line and press C-M-o. Note that there must be some text
following the cursor in order for this command to work properly; if
you try it at the end of a line, it does nothing.
	
 Initial state:

	

[image: image with no caption]

	
 We want to split this line.

	
 Type: C-M-o

	

[image: image with no caption]

	

 C-M-o splits the line at the cursor
position.

Changing Margins

Emacs is not a word processor,

 but
it does have a few commands that change left and right indentation
for a buffer for the current session. First, mark the whole buffer
using C-x h. You can then gchange
the indention using M-x followed by
one of the following commands:
	
 increase-left-margin

	
 decrease-left-margin

	
 increase-right-margin

	
 decrease-right-margin

These commands are also available through the Edit menu. Choose Edit
→ Text Properties → Indentation to see the options.
Unless you supply a numeric argument using C-u or M-
 n preceding these
commands, Emacs increases or decreases the margins by the number of
characters in the variable standard-indent, which defaults to 4. If
auto-fill mode is on, Emacs also reformats the paragraphs
automatically.
Margin settings remain in effect for the current session and the
current buffer only. Although the values don’t
persist to another session, any text that is indented using this
method remains indented when you reopen the file. If you open the
file again and add some text, however, it is not indented; you have
to set the margins again.
These commands work best in cases where you want to change the margin
for the whole buffer. If you define a smaller region, the commands
work but if you type more paragraphs, the margin settings persist
whether you want them to or not. These commands work fine if
you’ve completed the file and then decide to change
the indentation.
Alternatively, you can set and save margins using enriched mode, a
minor mode that allows Emacs to save text properties, including
margin settings and font changes. See Chapter 10
for more details on enriched mode.

Using Fill Prefixes

Fill prefixes are a way of

 putting a certain string of characters
at the beginning of each line in a paragraph or a file. Developers
will immediately think of comments as a potential fill prefix. When
writing email or newsposts, email programs often insert a string to
help readers distinguish the threads of a discussion. For those of us
writing text files, fill prefixes can be used to insert whitespace in
paragraphs or any relevant string of characters.
The term fill
 prefix comes
from the fact that Emacs calls word wrap
auto-fill
 mode; in other
words, a fill prefix is a string that Emacs should insert at the
beginning of each line (or “prefix”
each line with) when doing word wrap.
To use fill prefixes, it’s best to be in auto-fill
mode. If your mode line says Fill on it,
you’re already in auto-fill mode. If it
doesn’t, type M-x
 auto-fill-mode
 Enter.
Now let’s assume that you want to indent a letter.
For the first line of the letter, type your indentation by
hand—say, eight spaces. Then type C-x
. (for set-fill-prefix).
Emacs displays the message: fill prefix " " in the
minibuffer. Then start typing normally. Whenever you type past the
right margin and Emacs breaks a line for you, it automatically
inserts your eight-space indentation at the beginning of the line.
Here’s a slightly more exciting example.
There’s no reason that fill prefixes must to be
spaces; they can be anything you choose. Assume that
you’re sending an email message to your friends to
announce a unique event and you want an eye-catching fill prefix.
	
 Type: Elephant Riding Party!!! C-x .

	

[image: image with no caption]

	
 Type the prefix, then C-x . to set it.

Once you’ve set the prefix, you can type your
message normally.
	
 Type: The time . . . the zoo.

	

[image: image with no caption]

	
 Emacs inserts the fill prefix at the beginning of each line of the
message.

You had to type “Elephant Riding
Party!!!” only once; Emacs inserted the rest
automatically. Here are some things you might want to know about fill
prefixes:
	Emacs never applies the fill prefix to the first line of a paragraph.
You obviously can’t apply it to the first line of
the first paragraph (you have to type it somewhere). But Emacs
can’t apply it to the first line of
any paragraph. In other words, if the
“elephant riding” message had two
paragraphs, you’d have to type (or yank) the phrase
“Elephant Riding Party!!!” at the
beginning of the second paragraph.

	However, you don’t need to set the fill prefix
again. Emacs supplies your prefix for all lines but the first in
subsequent paragraphs. It just gets confused about the initial line
of any paragraph.

	Once you’ve started using a fill prefix, how do you
turn it off? There’s no special command. All you do
is put the cursor at the left margin and type C-x . to
define a new, empty fill prefix.

	You can edit paragraphs with fill prefixes, then reformat them with
M-q, as long as the fill prefix is
still defined. If you have cleared the fill prefix, Emacs reformats
the paragraph without regard to the fill prefix. If you need to
reformat your paragraphs later, after you’ve
canceled the fill prefix, define it again and then type M-q.

 Table 7-2 lists the indentation

 commands
we’ve discussed.
Table 7-2. Indentation commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-j

 	

 newline-and-indent

 	
 Move to the next line and indent to the current level.

	
 (none)

 	

 paragraph-indent-text-mode

 	
 A major mode for writing paragraphs with indented first lines and no
blank lines between paragraphs.

	
 (none)

 	

 paragraph-indent-minor-mode

 	
 The minor mode equivalent of paragraph-indent-text mode.

	
 (none)

 	

 fill-individual-paragraphs

 	
 Reformat indented paragraphs, preserving indentation.

	

 C-x Tab

 	

 indent-rigidly

 	
 Indent one column; preface with C-u
or M-n to specify multiple columns.

	

 C-M-\

 	

 indent-region

 	
 Indent a region to match the first line in the region.

	

 M-m

 	

 back-to-indentation

 	
 Move the cursor to the first non-whitespace character on a line.

	

 C-M-o

 	

 split-line

 	
 Split the line at the cursor position and indent it to the column of
the cursor position.

	
 (none)Edit
 →
 Text Properties
 →
 Indentation
 →
 Indent
More

 	

 increase-left-margin

 	
 Increase the left indentation level for the buffer by four characters
by default.

	
 (none)Edit
 →
 Text Properties
 →
 Indentation
 →
 Indent
Less

 	

 decrease-left-margin

 	
 Decrease the left indentation level for the buffer by four characters
by default.

	
 (none)Edit
 →
 Text Properties
 →
 ndentation
 →
 Indent Right
More

 	

 decrease-right-margin

 	
 Decrease the right indentation level for the buffer by four
characters by default.

	
 (none)Edit
 →
 Text Properties
 →
 Indentation
 →
 Indent Left
More

 	

 increase-right-margin

 	
 Increase the right indentation level for the buffer by four
characters by default.

	

 C-x .

 	

 set-fill-prefix

 	
 Use the information up to the cursor column as a prefix to each line
of the paragraph; typing this command in column 1 cancels the fill
prefix.

[2] Once upon a time, you had to enter
indented text mode explicitly to get the behavior we describe here.
Now it is on by default in text mode.

Centering Text

Another common formatting task is

 centering
text. For example, you might want to center the title of a document
or individual headings within a document. Emacs provides commands to
center lines, paragraphs, and regions.
In text mode, you can center a line by simply typing the line you want to
center (or moving anywhere on an existing line), and then pressing
M-s.
	
 Type: Annual Report

	

[image: image with no caption]

	
 You type the document’s title.

	
 Type: M-s

	

[image: image with no caption]

	
 Emacs centers the line.

You can also center paragraphs

 and
regions. In both cases, Emacs does line-by-line centering rather than
block centering. To center a paragraph, use the command M-S (for center-paragraph); to center a region, use
M-x
 center-region. For example,
let’s say you want to center the following
quotation.
	
 Type: M-S

	

[image: image with no caption]

	
 Text is now centered.

In this case, line-by-line
centering
looks rather artistic. But there are times when you might wish Emacs
did block centering. You can replicate this effect by using the
indent-rigidly command, discussed
earlier in this chapter. You just have to play with the indentation
to see how far the block of text should be indented to look centered.
There’s one more choice for centering. You can
change justification by choosing Edit→ Text
Properties→ Justification→ Center. This command
works on whatever text is selected.

 Table 7-3 lists the commands used to center text.
Table 7-3. Centering commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 M-s

 	

 center-line

 	
 Center the line the cursor is on.

	

 M-S

 	

 center-paragraph

 	
 Center the paragraph the cursor is on.

	
 (none)

 	

 center-region

 	
 Center the currently defined region.

	
 (none)Edit
 →
 Text
Properties
 →
 Justification
 →
 Center

 	

 set-justification-center

 	
 Center selected text.

Using Outline Mode

When you’re writing something,

 whether it’s a book, a
long paper, or a technical specification, getting a sense of
organization as you go along is frequently difficult. Without a sense
of structure, it is hard to expand an outline smoothly into a longer
paper or to reorganize a paper as you go along. The words get in the
way of your headings, making it hard to see the forest for the trees.
Outline mode provides a built-in solution to this problem. This mode
gives you the ability to hide or display text selectively, based on
its relationship to the structure of your document. For example, you
can hide all of your document’s text except for its
headings, thereby giving you a feel for the
document’s shape. When you’re
looking at the headings, you can focus on structure without being
concerned about individual paragraphs. When you’ve
solved your structural problems, you can make the text reappear.
Outline mode is more useful for documents with several levels of
headings (or for long programs) than for plain outlines containing
very little text. The longer a document is, the harder it is to get a
quick feel for the overall structure; it is in such a situation that
outline mode’s ability to hide and show portions of
the text comes in handy.
Outline mode requires you to follow some special conventions in your
outline or document. Figure 7-1 shows an outline in
traditional format and the same outline prepared for outline mode. On
the left, we show a “traditional”
outline; on the right, we show the same outline, after being prepared
for outline mode:
[image: Traditional Outline versus Outline Mode]

Figure 7-1. Traditional Outline versus Outline Mode

Whereas traditional outlines use a hierarchical scheme of Roman
numerals, uppercase letters, numbers, and lowercase letters for
heading levels 1 through 4, outline mode by default expects to see
one asterisk (*) for a first-level heading, two for a second-level
heading, and so on. Lines that don’t start with an
*, such as “This book is
all-inclusive,” are referred to as
body lines. Notice that Emacs expects to see the
asterisk in the first column. You can use traditional outline
indentation, provided that the asterisks start in the first
column.[3]

The sample outline has only two body lines. As we developed the book,
though, we’d gradually add more and more body:
“This book is all-inclusive” would
be replaced by a substantial chunk of the preface, and other body
lines later in the outline would turn into the text for Chapter 1. When used properly, outline mode removes
the distinction between outlining and writing. As your outline grows
and becomes more detailed, it can gradually become your paper.
Entering Outline Mode

To start outline
 mode,
type M-x
 outline-mode
 Enter. Outline appears on
the mode line. (Outline mode is also available as a minor mode;
we’ll discuss that later in this section.)
After you are in outline mode, you can use special commands to move
quickly from one part of the outline to another. C-c
 C-n moves
to the next heading or subheading; C-c
 C-p moves
to the previous one. C-c
 C-f moves to the next heading of the same
level, so you can use this command to move from one first-level
heading to another throughout the outline, or from one second-level
heading to another within a given entry. C-c
 C-b moves
backward to the previous heading of the same level. If you want to
move from a second-level heading to its first-level heading, up a
level in the outline structure, you type C-c
 C-u. (If
you are on a first-level heading already, C-c
 C-u beeps
because it can’t move to a higher level.) Figure 7-2 illustrates how these cursor commands would
work on our sample outline.
[image: Moving around in outline mode]

Figure 7-2. Moving around in outline mode

These commands make it easy to solve a lot of organizational
problems. If you often think, “I know
I’m writing about widgets, but I
can’t remember the bigger point I’m
trying to make,” type C-c
 C-u to
get to the next higher level of the outline. If you want to figure
out how widgets relate to the other topics within the section, use
C-c
 C-b and C-c
 C-f to move backward and forward to
your other headings.

Hiding and Showing Text

The most important feature of outline

 mode
is the ability to selectively hide or show different portions of your
text. The ability to see a skeletal view of a long document with
outline mode is its best feature; it’s much easier
to evaluate the structure of a document when you can hide everything
but the headings and see whether it is coherent or in need of some
reorganization.
Although it sounds like something out of a detective novel, the
hide-body command, C-c
 C-t,
hides all the body (or text) lines but leaves all the headings (lines
that begin with an asterisk) visible. Wherever Emacs hides text, it
places an ellipsis (...) on the corresponding heading line. The
ellipsis tells you that some hidden text is present. The buffer
itself is not modified; you’ll
notice, if you watch the left side of the mode line, that the
asterisks that indicate a modified buffer don’t
appear. If you save a file and exit while some text is hidden, Emacs
saves the hidden text along with what you see displayed; hiding text
in no way implies losing text. The next time you read the file, Emacs
shows all text that was hidden.
Using the hide-body command is a
good way to get a feel for the structure of a long document. You can
then type C-c
 C-t and see only the headings without the
text. For example, let’s start with the simple
outline we gave above and hide the body.
	
 Type: C-c C-t

	

[image: image with no caption]

	
 The body is hidden; ellipses show us where body lines are.

To show all the hidden text in a file, whether headings or body, type
C-c
 C-a (for show-all). These commands, hide-body and show-all, work on the outline as a whole. A
command similar to hide-body is
hide-sublevels, C-c C-q. This command shows only first-level
headers, giving you a feel for the major sections in the document
you’re working on.
	
 Type: C-c C-q

	

[image: image with no caption]

	
 Only first-level headers appear.

Editing While Text Is Hidden

Now that you know how to hide

 and show text, let’s
discuss some of the properties of hidden text. Editing a document
while some of it is hidden is often
useful—it’s a great way to make major changes
in document structure—but there are some dangers that you
should be aware of. Let’s say
you’ve hidden all text with outline mode and only
the headings are showing, giving you a true
“outline” of your document. If you
move a heading that has hidden text and headings associated with it,
everything that is hidden moves when you move the visible text.
Later, when you “show” all of the
document, the hidden text appears in its new
location—underneath the heading that you moved. Similarly, if
you delete a heading, you delete all hidden text as well.
This feature makes moving blocks of text easy. However, there are
some things to watch out for. If you delete the ellipsis following an
entry, Emacs deletes the hidden information as well. To its credit,
Emacs tries to keep you from doing this; it does not allow you to
delete the ellipsis using the Del
key or using normal cursor commands like C-b to move the cursor onto it. However, if
you’re persistent you can delete the ellipses (and
the text it represents) using, for example, C-k. If you do so, Emacs deletes the hidden
text. Typing C-y yanks the hidden
text that you killed when you deleted the ellipsis; the undo command, C-_, restores the ellipsis. Our advice is to
display text before deleting it so you can see what
you’re doing. On the other hand, when you are moving
sections of an outline around, it is helpful to do sowhile text is
hidden so you can keep the structure in mind.
Be careful when moving hidden text to a buffer
that’s not in outline mode. Let’s
say that your outline ends with a heading followed by an ellipsis.
When marking that section to move to another buffer, make sure the
region includes the newline following the ellipsis (for example, move
to the beginning of the next line). If you simply place the cursor
following the ellipsis, Emacs copies only the header, not the hidden
text. We’re not sure why. Moving past the newline
copies the body as well as the heading correctly, and pasting it into
a buffer in text mode shows all the hidden text.

Marking Sections of the Outline

When you’re moving

 text around, it’s
convenient to be able to mark a section of the outline and then move
it or promote or demote it a level, as we’ll discuss
next. To mark a section of the outline (the current heading and its
children), type C-c @ (for outline-mark-subtree). You can then cut or
paste the section you’ve marked. You might want to
type C-x C-x to verify that the
region is marked correctly.

Promoting and Demoting Sections

Often as you’re writing,
 you
find that a certain heading should really be promoted or demoted a
level. To promote a heading, type C-c
C-^. To demote it a level, C-c
C-v. (Note the clever attempt to make the key bindings
indicate that you’re moving headings up or down a
level using ^ and v.) This
automatically changes the markings for the heading in question. In
other words, promoting a second-level heading removes an asterisk,
making it a first-level heading. You’ll find the
commands to move to the next and previous headings, C-c C-n and C-c
C-p, helpful when you are promoting and demoting sections.
But what if you want to demote not just a heading but a subtree? Or
even the entire outline? At the moment, you’d have
to write a Lisp function to do that (or use someone
else’s). Several functions like this have been
written by gurus and posted online, but none are part of Emacs at
this writing. We hope this function is incorporated soon.

Using Outline Minor Mode

Outline mode is also
 available as a minor mode so that you
can use it subordinately to your favorite major mode. To start
outline mode as a minor mode, type M-x
 outline-minor-mode; Outl
appears on the mode line. In some ways, this mode is less convenient;
rather than the simple C-c prefix
you use for most outline mode commands, in outline minor mode, you
must preface all commands with C-c
 @ instead, to avoid interfering with
the usual C-c commands of the major
mode. So, if you want to move down to the next heading (the C-c
 C-n
command in outline mode), you would type C-c
 @
 C-n instead.
Please note that mixing outline major mode and outline minor mode is
not only redundant but can be dangerous. Turning on the minor mode
while the major mode is on can confuse Emacs. Exit outline mode, then
enter outline minor mode if you wish.

 Table 7-4 summarizes outline mode commands. In the
next section, we discuss another specialized editing method: editing
with rectangles.
Table 7-4. Outline mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	

 outline-mode

 	
 Toggle outline mode.

	

 C-c C-n
 Headings
 →
 Next

 	

 outline-next-visible-heading

 	
 Move to the next heading.

	

 C-c C-p
 Headings
 →
 Previous

 	

 outline-previous-visible-heading

 	
 Move to the previous heading.

	

 C-c C-f
 Headings
 →
 Next Same Level

 	

 outline-forward-same-level

 	
 Move to the next heading of the same level.

	

 C-c C-b
 Headings
 →
 Previous Same Level

 	

 outline-backward-same-level

 	
 Move to the previous heading of same level.

	

 C-c C-u
 Headings
 →
 Up

 	

 outline-up-heading

 	
 Move up one heading level.

	

 C-c C-t
 Hide
 →
 Hide Body

 	

 hide-body

 	
 Hide all body lines.

	

 C-c C-a
 Show
 →
 Show All

 	

 show-all

 	
 Show everything that’s hidden.

	

 C-c C-q
 Hide
 →
 Hide Sublevels

 	

 hide-sublevels

 	
 Display first level headers only.

	

 C-c C-o
 Hide
 →
 Hide Other

 	

 hide-other

 	
 Hide all text and headings outside the current subtree. First level
headers show.

	

 C-c @

 	

 outline-mark-subtree

 	
 Mark the current header and all sublevels.

	

 C-c C-^

 	

 outline-promote

 	
 Promote the current heading one level.

	

 C-c C-v

 	

 outline-demote

 	
 Demote the current heading one level.

	

 C-c C-d
 Hide
 →
 Hide Subtree

 	

 hide-subtree

 	
 Hide subheads and body associated with a given heading.

	

 C-c C-c
 Hide
 →
 Hide Entry

 	

 hide-entry

 	
 Hide the body associated with a particular heading (not subheads and
their bodies).

	

 C-c C-l
 Hide
 →
 Hide Leaves

 	

 hide-leaves

 	
 Hide the body of a particular heading and the bodies of all its
subheads.

	

 C-c C-s
 Show
 →
 Show Subtree

 	

 show-subtree

 	
 Show the subheads and text associated with a given heading.

	

 C-c C-e
 Show
 →
 Show Entry

 	

 show-entry

 	
 Show the body associated with a particular heading (not subheads and
their bodies).

	

 C-c C-k
 Show
 →
 Show Branches

 	

 show-branches

 	
 Show the body of a heading and bodies of all its subheads.

	

 C-c Tab
 Show
 →
 Show Children

 	

 show-children

 	
 Show the next level of subheads associated with a particular heading
(none of body text).

[3] Of course, after the document is complete,
you’ll want to remove the asterisks. You can use a
query-replace to change the asterisk-style headers into headers that
are appropriate for your preferred formatting style. Find the
lowest-level heading and do its replacement first. If you have
third-level headings, replace all occurrences of *** with the mark-up
for a third-level heading, then move on to second-level headings, and
finally first-level headings. Be careful on first-level headings,
though; there may well be asterisks in the file that are unrelated to
headings; preface the asterisk with C-q
C-j to ensure that you get an asterisk that starts on a
new line. Another approach is to use Eric Pement’s
awk scripts. The script at http://www.student.northpark.edu/pemente/awk/outline_classic11.awk.txt
converts an outline mode outline to a classic outline while the
script at http://www.student.northpark.edu/pemente/awk/outline_numbered11.awk.txt
converts to a numbered outline.

Rectangle Editing

When you mark regions to

 move or
delete, they always cover the full width of the window. Editing by
region is fine for most of the work that you do in Emacs. But what if
you wanted to edit a table? Regions cover the full width of the
window, so they can’t handle columns. Emacs offers
another way to define areas to delete, copy, and move around: using
rectangles. Rectangles are just what they sound
like: rectangular areas that you define and manipulate using special
rectangle editing commands. Editing with rectangles is useful
whenever you want to move or delete vertical columns of information;
for instance, moving a column of a table or rearranging fields in a
dataset.
For example, let’s say you want to edit the
following table, moving the “Hours”
column to the right side. There’s no way to do this
using regions, but it’s easy to do if you learn some
rectangle editing commands.
	
 Initial state:

	

[image: image with no caption]

	
 A flextime schedule.

You define a rectangle the same way you define a region; the commands
you use after marking the area tell Emacs whether you want to work
with a region or a rectangle. (This is a good time to let go of your
mouse and use keyboard commands for marking the text. Highlighting
remains horizontal when you’re working with
rectangles and will only confuse you as you begin to think
rectangularly. Of course, there’s nothing wrong with
using the mouse to move the cursor quickly; just
don’t use it to highlight text.)
Before we start working with these columns, select the buffer with
C-x h and untabify it by typing
M-x untabify. Rectangle editing
works best with files that do not contain tab characters.
To define a rectangle, move the cursor to the upper-left corner and
set the mark by pressing C-Space,
then move the cursor to the lower-right corner of the rectangle. Once
you’re at the lower-right corner of the rectangle,
move one character farther. Why move one character farther? Remember
that when you define a region, the character that the cursor is on
isn’t part of the region. (The
character that the mark is on is part of the
region.)
Let’s define a rectangle that covers the second
column of our table.
	
 Move to the H in Hours and type
C-Space

	

[image: image with no caption]

	
 The mark is set at the upper-left corner of the rectangle to be
moved.

	
 Move the cursor to the space following the bottom-right corner of the
rectangle, the c in chipmunk.

	

[image: image with no caption]

	
 The cursor follows the bottom-right corner of the rectangle.

Now that the rectangle is marked, we want to delete it and then move
it. The command to delete a rectangle so you can retrieve it
elsewhere is C-x
 r
 k (for
kill-rectangle).
	
 Type: C-x r k

	

[image: image with no caption]

	
 The rectangle is deleted; it’s in a special
rectangle kill buffer.

Once again, when you mark a rectangle, you put the cursor on the
upper-left corner, set the mark, then move to the lower-right corner
of the rectangle and over one more space. Emacs expects rectangles to
be rectangles. If necessary, it pads an area with spaces to make up
the straight line on the right side.
You can move anywhere on the screen and reinsert the rectangle last
killed with the yank-rectangle
command, C-x
 r
 y. To put
the “Hours” column on the right
side of the table, we move the cursor following the cell phone
column.
	
 Place the cursor following Cell and press
M-10
 Space to move to a good location to paste the
“Hours” column:

	

[image: image with no caption]

	
 Move the cursor to where we want to reinsert the rectangle.

	
 Type: C-x r y

	

[image: image with no caption]

	
 Emacs inserts the rectangle we killed earlier.

Emacs inserts the rectangle exactly where you tell it to. We moved
past the cell phone column and then added some space between the cell
phone and hours columns. Otherwise, Emacs would have blithely
inserted the hours column into the middle of the cell phone column.
Note that there’s no equivalent of the kill ring for
rectangles. You can yank only the most recent rectangle.[4]

Killing and yanking rectangles requires practice. Once you get the
hang of the procedure, it is an easy way to edit tables and other
column-dependent material.
A few other commands create blank rectangles. For example,
let’s say we want to put four more spaces between
the cell phone and hours columns. To do this, we set the mark, move
to the bottom of the column, move forward four spaces, then type
C-x
 r
 o (for
open-rectangle). This command
inserts a blank rectangle and pushes the remaining text to the right.
	
 Move the cursor to the H in
Hours and type C-Space

	

[image: image with no caption]

	
 Emacs sets the mark at the upper-left corner of the rectangle.

Now we need to define the amount of space we want to insert. Move
down to the bottom of the rectangle (the
“Alvin” line) and then move to the
hyphen between 6:00 and 3:00.
	
 Move the cursor following 6:00.

	

[image: image with no caption]

	
 The lower right corner of the rectangle is defined.

Finally, type C-x
 r
 o to add
the new space to the table.
	
 Type C-x r o

	

[image: image with no caption]

	
 Emacs inserts a blank rectangle that is four spaces wide. It moves
the rest of the table to the right.

The clear-rectangle command wipes
out text, leaving a blank rectangle in its place.
It’s just as though you had erased a column on a
blackboard. Like the blackboard column, the text column that is wiped
out is gone, not stored in the rectangle kill buffer. To continue
with our example, let’s say that after reviewing the
schedule, all those involved agreed that they’d
rather not have their cell phones listed.
	
 Move the cursor to the C in
Cell and type C-space.

	

[image: image with no caption]

	
 The upper-left corner of the rectangle to be cleared is marked.

	
 Move to the space following the last phone number and type: C-x r c

	

[image: image with no caption]

	
 The clear-rectangle command removes
the “Cell Phone” column and leaves
a blank space in its place.

As you can see, the spacing of our table still isn’t
perfect; you’d probably want to use the delete-rectangle command[5] to delete
the extra space between the second and the third columns. To delete
the blank space without storing it, start by moving the cursor to the
space following the longest email address and press C-Space to set the mark, then move to the
opposite corner of the box you want to delete and type C-x
 r
 d.
	
 On the header line, move to the column after the longest email
address and press C-Space

	

[image: image with no caption]

	
 The upper-left corner of the rectangle to be deleted is marked.

	
 Move a few spaces before 6:00 on the last line and type C-x r d

	

[image: image with no caption]

	
 The delete-rectangle command deletes
the blank space.

If you’re doing some really fancy table editing,
being able to store several rectangles is helpful. That way, you can
have every column as a rectangle, as well as having a rectangle for
the exact amount of blank space to put between each column. You can
store rectangles in registers by typing C-x r r
 r where
r is any alphanumeric character, including
punctuation. To insert a rectangle you’ve stored,
type C-x r i
 r. Registers
don’t persist between sessions.

 Table 7-5 lists rectangle

 commands.
Table 7-5. Rectangle commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x r k

 	

 kill-rectangle

 	
 Delete a rectangle and store it.

	

 C-x r d

 	

 delete-rectangle

 	
 Delete a rectangle and do not store it.

	

 C-x r y

 	

 yank-rectangle

 	
 Insert the last rectangle killed.

	

 C-x r c

 	

 clear-rectangle

 	
 Using spaces, blank out the area marked as a rectangle and do not
store it.

	

 C-x r o

 	

 open-rectangle

 	
 Insert a blank rectangle in the area marked.

	

 C-x r r r

 	

 copy-rectangle-to-register

 	
 Copy rectangle to register r (where
r is any character) .

	

 C-x r i r

 	

 insert-register

 	
 Insert rectangle from register r (where
r is any character).

	
 (none)

 	

 delete-whitespace-rectangle

 	
 If a rectangle includes initial whitespace, deletes it, narrowing
rectangle.

	

 C-x r t string Enter

 	

 string-rectangle

 	
 Change contents of marked rectangle to
string (if
string is narrower or wider than
rectangle, dimensions change accordingly).

	
 (none)

 	

 string-insert-rectangle

 	
 Prompts for string and inserts rectangle.

CUA Rectangle Editing

If you are familiar with CUA

 mode,
which is part of Emacs starting with 21.3.5, you may know that it
provides cut and paste key sequences familiar to Windows users, as in
C-x to cut and C-v to paste (see Chapter 13). The second most commonly touted feature
of CUA mode is its superior rectangle support.
We’ve just looked at a myriad of rectangle commands.
CUA’s rectangle support is far simpler. By learning
essentially one command, you can cut and paste rectangles in CUA
mode.
Unfortunately at present, CUA mode support is standard but not
nuanced on Emacs 21.3.5. You either take the whole enchilada or you
don’t. To turn it on, select C-x/C-c/C-v cut and
paste (CUA) from the Options menu. If you don’t
generally like to use the CUA keybindings for cut and paste, you
might turn this option on only when you are doing rectangle editing.
To select a rectangle, type Shift-Enter. Emacs starts to highlight in a
dark pink color by default. You extend the highlighting with normal
cursor movement keys (the mouse does not work at present).
	
 Move to the C in Cell and type:
Shift-Enter

	

[image: image with no caption]

	
 The upper-left corner of our rectangle is marked (Windows).

The minibuffer displays an array of CUA mode rectangle commands. For
now, we’ll just mark the rectangle and experiment
with one of these commands momentarily.
	
 Move the cursor to the last number in Alvin’s phone
number.

	

[image: image with no caption]

	
 The rectangle is marked (Windows).

Note that the marked rectangle isn’t strictly
rectangular in shape. The phone numbers form a true rectangle, but in
order to create a rectangle that includes the column header, we need
to ask CUA mode to “pad” the
rectangle using M-p, one of the
commands listed in the minibuffer earlier.
	
 Type: M-p

	

[image: image with no caption]

	
 The pad command makes this a true rectangle (Windows).

We can now cut or paste the rectangle using C-x or C-v
respectively. This is just a taste of the CUA mode rectangle
commands. You can explore more of them on your own. We thought you
should be aware of this method as an alternative to the more
keyboard-intensive rectangle commands that have been part of Emacs
for many years.

[4] You can, however, store rectangles in registers, providing the
effective equivalent of the kill ring. More on this shortly.

[5] Like
all Emacs delete commands, delete-rectangle doesn’t
store what you delete in the kill ring.

Making Simple Drawings

Emacs is not, by any
means, a graphics
package, but it does provide some limited drawing capabilities. Emacs
includes a picture mode that allows you to draw simple pictures using
keyboard characters; it also includes artist mode, which enables you
to draw quickly using the mouse.
Why would you want to draw with Emacs? Well, Emacs is useful for
inserting a quick drawing or diagram in a mail message, something
that most graphics packages can’t do.
It’s also good for making block diagrams, timing
diagrams (for electrical engineers), timelines, and other simple
drawings.
Don’t overlook this simple facility! We have seen
many papers that were carefully formatted with a simple star-and-bar
diagram dropped in the middle. Sure, you can use a graphics package
to create a much nicer drawing, but if that’s not
your area of expertise, an Emacs ASCII drawing might be just the
ticket.[6] We discuss picture
mode first and then artist mode.
Picture mode turns the area being edited into a kind of drawing board
consisting of columns and rows. In picture mode, you can create
simple pictures (such as the one in Figure 7-3)
using keyboard characters without having them
“rearranged” by the word-wrap
capabilities of auto-fill mode, for example.
[image: Drawing in picture mode]

Figure 7-3. Drawing in picture mode

To enter picture mode, type M-x
 edit-picture. The word
Picture appears on the mode line, followed by the
default drawing direction (more on that shortly). Typing C-c
 C-c exits
picture mode and returns you to whatever major mode you were in
before.
Drawing in Picture Mode

In picture mode, you can “draw”
with

 any character in any of eight directions.
Although you can draw in eight directions, only one direction is
available at a time; this direction is referred to as the
default
 direction. When you
first enter picture mode, the default direction is right, meaning
that if you press the hyphen key four times, you would draw a line to
the right, as follows: ——. The default direction is
displayed on the mode line, like this:
(Picture: right)
By typing special commands that change the default direction, you can
draw in seven other directions as well. For example, C-c
 \ makes
the default direction “southeast;”
the mode line would then read (Picture:
se). If you typed four hyphens in this direction,
they would look like stair steps:
-
 -
 -
 -

 Figure 7-4 illustrates the commands for setting
various directions as the default in picture mode.
[image: Moving around in picture mode]

Figure 7-4. Moving around in picture mode

Picture mode tries to make these commands easy to remember, and it
doesn’t do too badly: for example, C-c
 ^ points
upward, C-c-` arguably points to the
northwest, and so on. If you can come up with a good mnemonic device
for C-c . let us know! Maybe you can think of it as
“dot for down.”
After you set a default direction, pressing any character repeatedly
draws a line of characters in that direction. Give it a try in a
scratch buffer, using the commands in the figure to change the
default direction. Try drawing a box.[7]

	
 Type: M-x picture-mode

	

[image: image with no caption]

	
 Putting the buffer into picture mode, default direction
“right.”

	
 Type: Tab M-20 -

	

[image: image with no caption]

	
 Emacs draws a line to the right. Next, we’ll change
the default direction to down, and use | for the right side of the square.

	
 Type: C-c . M-5 |

	

[image: image with no caption]

	
 Emacs draws a line down. Now we’ll set the default
direction to “left,” then draw the
bottom of the square.

	
 Type: C-c < M-20 -

	

[image: image with no caption]

	
 Emacs draws a line to the left. Next, use C-c
 ^ to set
the default direction to “up,” and
then draw vertical bars back to the starting point.

	
 Type: C-c ^ M-5 |

	

[image: image with no caption]

	
 Emacs draws a line up that completes the box.

Editing in Picture Mode

By now, you should have a basic

 understanding of what picture mode can do
for you. It’s one of the more complicated minor
modes because it redefines what many of the major editing keys
do—and with good reason. The editing techniques you use for
most ASCII files just won’t work well for pictures.
You don’t really want to insert characters; the
standard insert mode would prevent you from editing effectively,
because any character you type distorts the rest of the line.
Therefore, picture mode implicitly changes to overwrite mode. Many
other features are redefined—some in insignificant ways, others
in more substantial ways.
Therefore, to do justice to picture mode, we have to revisit most of
the basic editing concepts. Please bear with us, or skip this section
if you aren’t interested in pictures.
Let’s start at the beginning: basic cursor motion.
Cursor motion in picture mode

Picture mode makes some

 small
but important changes in the basic cursor commands.
There’s an easy way to summarize these changes: in
picture mode the buffer becomes a grid of rows and columns. For
example, consider what C-f does in
most other modes: it moves forward through the file, one character at
a time. Typing C-f repeatedly moves
the cursor to the left, then at the end of the line, it jumps to the
first character on the next line. picture mode, C-f means “move to the
right.” When you reach the end of the line in
picture mode, C-f
doesn’t wrap to the next line; it continues adding
characters to the current line.

 C-p and C-n become vertical
“up” and
“down” commands, respectively. Try
editing some sample text, moving to the end of a line, and typing
C-p. Normally, as you type C-p, the cursor stays at the end of the line;
if the previous line is short, the cursor moves to the left when it
goes up. In picture mode, C-p and
C-n always move up (or down) in a
straight line.
You can get to every place you need to go with C-f, C-b,
C-p, and C-n. The arrow keys work too, but you may want
to know the cursor movement commands for moving in the default
direction as well, so you can also go sideways when
it’s faster. C-c
 C-f moves you forward in the default
direction (so “forward” here could
mean to the left, right, up, or down, as well as all directions in
between). C-c
 C-b moves you backward in the default
direction. (Moving “up” or
“down” relative to the default
direction isn’t defined.)
For example, let’s say you had drawn the house shown
in Figure 7-1 and you wanted to move the cursor
down the left side of the roof. You would set the default direction
to “southwest” by typing C-c
 /. If the
cursor were on the top shingle on the left side of the roof, typing
C-c
 C-f would move you down the left side of the
roof and typing C-f would move you
to the top-right shingle, as shown in Figure 7-5.
[image: Using the default direction versus typical cursor movement commands]

Figure 7-5. Using the default direction versus typical cursor movement commands

Inserting blank lines

As you continue to work in
 picture mode,
you’ll find a few more surprises. Pressing Enter in picture mode moves you to the
beginning of the next line, without inserting a blank line—on
the assumption that you probably don’t want to
change the relationship between lines. If you want to insert a new
line, type C-o; an empty line
appears beneath the current line, and the cursor does not move. For
example, the cursor is initially on the 0 in the first line. If we
want to open another line between the two, we type C-o.
	
 Initial state:

	

[image: image with no caption]

	
 Initial text; the cursor is on the 0 in the first line.

	
 Type: C-o

	

[image: image with no caption]

	

 C-o opens a new line but
doesn’t move the cursor.

One of the more difficult things to do in

 picture mode is to type a standard
carriage return that breaks a line in the middle. You can move to a
point in the middle of a line, type C-k to kill the right-hand portion, type
C-o to insert a blank line; type
Enter to move to the beginning of
this blank line, and type C-y to
yank the right-hand part of the line back. Or you can use the
split-line command (C-M-o), and then delete the blank space at the
beginning of the new line.
Deletion isn’t quite the
 same,
either. In picture mode C-c
 C-d is the delete character command
that you’re used to: it deletes the character under
the cursor and moves the rest of the line to the left. An unadorned
C-d deletes the character under the
cursor, replacing it with a space. Del deletes the character to the left of the
cursor, replacing it with a space.

 Table 7-6 contrasts the picture mode commands with
their normal text mode behavior.
Table 7-6. Picture mode v. text mode
	
 Keystrokes

 	
 In text mode

 	
 In picture mode

 	
 Picture mode alternative

	

 Enter

 	
 Insert a blank line.

 	
 Move the cursor to the beginning of the next line.

 	

 C-o inserts blank lines.

	

 C-d

 	
 Delete the character and move the text to left.

 	
 Replace the character with Space and
don’t move.

 	

 C-c
 C-d is like C-d in text mode.

	

 Space

 	
 Move the text to the right and insert a space.

 	
 Move the cursor to the right and delete any character you space over.

 	
 None; go back to text mode to insert blank spaces.

	

 C-k

 	
 Erase the text on the current line; pressing C-k twice deletes a line.

 	
 Erase the text on the current line; it doesn’t
delete the line.

 	
 To delete a line, go back to text mode or use delete-rectangle.

	

 Tab

 	
 Insert tabs and move the remaining
text to the right.

 	
 Move the cursor across the screen but don’t affect
the underlying text.

 	
 To insert a tab’s worth of space, go back to text
mode.

	

 C-n

 	
 Move to the next line.

 	
 Move down, staying in the same column.

 	
 (none)

	

 C-p

 	
 Move to the previous line.

 	
 Move up, staying in the same column.

 	
 (none)

	

 C-f

 	
 Move one character forward in the file.

 	
 Move one character to the right.

 	
 (none)

	

 C-b

 	
 Move one character backward in the file.

 	
 Move one character to the left; stop at the beginning of the line.

 	
 (none)

If you want to insert a block of blank space,
you can use a rectangle command such as
open-rectangle. See the discussion
of this command earlier in this chapter for more information. Also,
if you want to insert blank space at the end of a line, you can use
C-f.
To perform some tasks, you may find it easier to switch back
temporarily to the mode you’re used to. C-c
 C-c moves
you back to the mode you were in before you entered picture mode.
Make any necessary changes, then enter picture mode again by typing
M-x
 picture-mode.
If you want to move something you’ve drawn, the
easiest way is to use rectangles, as described earlier in this
chapter.
Tabs are also different in

 picture mode. By
default, picture mode interprets the following characters as tab
stops if they appear by themselves on a line: exclamation point (!),
hyphen (-) and tilde (~). If these characters appear on a line and
the user presses tab on the next line, these characters are presumed
to denote tab stops. You can change this behavior by setting the
variable picture-tab-chars to other
characters. If the characters appear with normal text, they are not
interpreted as tab stops. To use these characters as tab stops, press
Esc-Tab (for picture-tab-search).

 Table 7-7 summarizes the commands for editing in
picture mode.
Table 7-7. Picture mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	

 picture-modeoredit-picture

 	
 Enter picture mode.

	

 C-c C-c

 	

 picture-mode-exit

 	
 Exit picture mode and return to the previous mode.

	

 C-c ^

 	

 picture-movement-up

 	
 Set the default drawing direction to up.

	

 C-c .

 	

 picture-movement-down

 	
 Set the default drawing direction to down.

	

 C-c >

 	

 picture-movement-right

 	
 Set the default drawing direction to right.

	

 C-c <

 	

 picture-movement-left

 	
 Set the default drawing direction to left.

	

 C-c `

 	

 picture-movement-nw

 	
 Set the default drawing direction to northwest.

	

 C-c `

 	

 picture-movement-ne

 	
 Set the default drawing direction to northeast.

	

 C-c /

 	

 picture-movement-sw

 	
 Set the default drawing direction to southwest.

	

 C-c \

 	

 picture-movement-se

 	
 Set the default drawing direction to southeast.

	

 C-c C-f

 	

 picture-motion

 	
 Move the cursor forward in the default drawing direction.

	

 C-c C-b

 	

 picture-motion-reverse

 	
 Move the cursor backward in the default drawing direction.

	

 C-f

 	

 picture-forward-column

 	
 Move the cursor to the right one character.

	

 C-b

 	

 picture-backward-column

 	
 Move the cursor to the left one character.

	

 C-n

 	

 picture-move-down

 	
 Move the cursor down one character.

	

 C-p

 	

 picture-move-up

 	
 Move the cursor up one character.

	

 C-d

 	

 picture-clear-column

 	
 Blank out the character under the cursor; doesn’t
move remaining text to the left.

	

 C-c C-d

 	

 delete-char

 	
 Delete the character under the cursor and move the remaining text to
the left.

	

 C-k

 	

 picture-clear-line

 	
 Delete the text on the current line; the line is not deleted if used
twice.

	

 C-o

 	

 picture-open-line

 	
 Insert a blank line.

	

 C-c C-w
 r

 	

 picture-clear-rectangle-to-register

 	
 Clear the rectangle and save it in register
r.

	

 C-u C-c C-w
 r

 	

 picture-clear-rectangle-to-register

 	
 Delete the rectangle and save it in register
r.

	

 C-c C-x
 r

 	

 picture-yank-rectangle-from-register

 	
 Insert the rectangle saved in register r
at the cursor position.

	

 C-c C-r

 	

 picture-draw-rectangle

 	
 Draw a rectangle around current region.

	

 C-c C-y

 	

 picture-yank-rectangle

 	
 Paste rectangle.

	

 C-c C-k

 	

 picture-clear-rectangle

 	
 Erase rectangle.

	

 C-c Tab

 	

 picture-set-tab-stops

 	
 Set tab stops applicable only in picture mode (!, -, and ~ denote tab
stops by default).

	

 M-Tab

 	

 picture-tab-search

 	
 Move to the next picture mode tab.

Drawing with the Mouse Using Artist

We would be remiss if we didn’t

 introduce you to artist mode, an
easy way to create ASCII art using the mouse. (You can also use
keyboard commands, but trust us—you won’t want
to.)
Artist mode is a minor mode related to picture mode, so you use them
together. For example, you might draw using artist mode, then edit
the picture in picture mode. Or you might choose to use artist mode
alone for your creations.
We’re going to give you a taste of artist mode; you
can perfect your skills in your spare time. When you start artist
mode, picture mode starts automatically.
	
 Type: M-x artist-mode

	

[image: image with no caption]

	
 Artist appears on the mode line, as does Picture.

When you start artist mode, pen drawing is selected by default.
	
 Hold down the left mouse button and move around to scribble.

	

[image: image with no caption]

	
 A random scribble.

With the pen, you can draw freestyle. Hold down the middle mouse
button and a menu appears, with Drawing, Edit, and Settings submenus.
The Drawing menu offers a variety of shapes from which to choose. Now
that we’ve scribbled, let’s create
some graffiti using the spray can.
	
 Select Spray Can from the Drawing menu, then spray the screen by
holding down the left mouse button and moving the mouse.

	

[image: image with no caption]

	
 A random spray.

We aren’t going to go deep into artist mode, but we
would like to give you a flavor of the basic drawing choices. You can
draw rectangles (our personal favorite), ellipses, lines (which
strive to be straight), and poly-lines (which strive to be
polygon-angular). Figure 7-5 shows a representative
sample of shapes. With practice, you can create complex drawings and
edit them, either using the mouse or using standard picture mode
commands.
[image: A representative sample of artist shapes]

Figure 7-6. A representative sample of artist shapes

For rectangles, lines, and ellipses, hold down the left mouse and
pull them to the size and, in the case of lines, angle you prefer.
(Ellipses are made of straight lines, so use your imagination; this
is ASCII art after all.) For poly-lines, draw a line by holding down
the left mouse button, then release it. Move the mouse away from that
line to the next corner of the polygon and click. Emacs draws a line
connecting the two points. Poly-lines allow you to create polygons
quickly.

 Table 7-8 provides an overview of artist commands.
Artist works very well with the mouse and the middle-button mouse
menu; if you’re mouse-averse,
you’ll prefer picture mode.
Table 7-8. Artist mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	

 artist-mode

 	
 Enter artist mode.

	

 C-c C-c

 	

 artist-mode-off

 	
 Exit artist mode.

	

 C-f

 	

 artist-forward-char

 	
 Move to the right one character (at end of line, keep adding
characters to current line).

	

 C-b

 	

 artist-backward-char

 	
 Move to the left one character (at beginning of line, does nothing).

	

 C-n

 	

 artist-next-line

 	
 Move down a column (at end of buffer, keep adding lines to the
buffer).

	

 C-p

 	

 artist-previous-line

 	
 Move up a column (at first line of buffer moves to first position in
file, then does nothing).

	

 C-c C-a
C-o
 or
 Mouse-2

 	

 artist-select-operation

 	
 Select an operation (press Tab to see a list).

	

 C-c C-a
f`
 Artist menu
 →
 Edit
 →
 Flood-fill

 	

 artist-select-op-flood-fill

 	
 Select flood fill as the operation.

	

 C-c C-a C-k
 Artist menu
 →
 Edit
 →
 Cut

 	

 artist-select-op-cut-rectangle

 	
 Draw a rectangle around an area, then cut.

	

 C-c C-a M-w
 Artist
menu
 →
 Edit
 →
 Copy

 	

 artist-select-op-copy-rectangle

 	
 Draw a rectangle around an area, then copy.

	

 C-c C-a C-y
 Artist menu
 →
 Edit
 →
 Paste

 	

 artist-select-op-paste

 	
 Paste what you copied wherever you click the mouse.

	

 C-c C-a v
 Artist
menu
 →
 Drawing
 →
 Vaporize

 	

 artist-select-op-vaporize-line

 	
 Erase a line you select (literal line; not a line in the file).

	

 C-c C-a C-d
 Artist menu
 →
 Drawing
 →
 Erase

 	

 artist-select-op-erase-char

 	
 Set operation to erase (use the mouse as your eraser).

	

 C-c C-a S
 Artist
menu
 →
 Drawing
 →
 Spray-can

 	

 artist-select-op-spray-can

 	
 Set operation to spray can.

	

 C-c C-a e
 Artist
menu
 →
 Drawing
 →
 Ellipse

 	

 artist-select-op-ellipse

 	
 Draw ellipses.

	

 C-c C-a p
 Artist
menu
 →
 Drawing
 →
 Poly-line

 	

 artist-select-op-poly-line

 	
 Draws poly-lines

	

 C-c C-a r
 Artist
menu
 →
 Drawing
 →
 Rectangle

 	

 artist-select-op-rectangle

 	
 Draw rectangles.

	

 C-c C-a l
 Artist
menu
 →
 Drawing
 →
 Line

 	

 artist-select-op-line

 	
 Draw lines.

	

 C-c C-a C-r
 Artist menu
 →
 Settings
 →
 Rubber banding

 	

 artist-toggle-rubber-banding

 	
 If on (the default), show shape while stretching; if not, mark
end-points.

	

 C-c C-a C-l
 Artist menu
 →
 Settings
 →
 Set Line

 	

 artist-select-line-char

 	
 Select character to use when drawing lines (- is the default).

	

 C-c C-a C-f
 Artist
menu
 →
 Settings
 →
 Set Fill

 	

 artist-select-fill-char

 	
 Select character to fill shapes with (Space is the default).

Problems You May Encounter

	
 Artist mode says you can’t
change to another shape while drawing. Exit artist mode
and then reenter. Before drawing anything, click the
mouse’s middle button to display the pop-up menu and
select the desired shape from the Drawing menu.

[6] A number of online groups are dedicated to
ASCII art. Of course, all such art requires that you use a monospace
font for proper viewing. Newsgroups such as alt.ascii.art and web sites such as the Ascii
Art Dictionary (http://www.ascii-art.de/)
provide a good introduction.

[7] Other commands
can accomplish this task more quickly, but bear with us for the sake
of a simple example. For example, this little exercise could be
accomplished with a single mouse drag in artist mode. Picture mode
also offers a quick command for drawing a rectangle, C-c C-r.

Chapter 8. Markup Language Support

It’s true that many of the people who use Emacs are
developers, writing code, tweaking it, recompiling it, and just
generally enjoying the services of an amazingly extensible work
environment. A variety of people, including developers, need to
produce text for publication, whether internally, online, or in book
format. This chapter describes the markup language support that Emacs
offers, a topic relevant to both information publishers and
developers, as more and more development work uses variants of the
Extensible

 Markup
Language, XML.
Choosing a format for producing documents isn’t all
that straightforward these days, especially if you eschew Microsoft
Word. Some people write HTML, and Emacs offers a few options for
this. HTML gives you some control over formatting but displays
differently on various browsers. Of

 course,
it is important as the lingua franca of the
Web.
Other text publishing options

 include
the TEX family. TEX (pronounced
“tek”) is a formatter that was
developed by Donald Knuth for generating books. LATEX (pronounced
“lay-tek”) is a set of TEX commands
created by Leslie Lamport. With TEX and LATEX , you can produce very
precisely formatted text with equations, interesting fonts, graphics,
headers and footers, and the like. Whether using filters or features
of the program itself, you can publish TEX documents in a variety of
formats.
Another option for publishing text—as well as
programming—is XML. XML, when combined with a

 Document
Type Definition (DTD) or schema, enables you to write text once and
publish it in a variety of formats. Extensible Style Language (XSL)
is also important in this regard. Because the standards are still
being defined, organizations involved in document production may
choose an established XML dialect, such as DocBook, as their
publication format. XML at this point provides less precise control
over format, but maximizes flexibility.
XML bridges the programming and publishing worlds, and what you do
with XML will in part determine what tools you use and what support
you need. We discuss a few options for writing XML in Emacs,
including psgml mode and Jim Clark’s nxml mode,
which uses Relax NG schemas rather than DTDs for validation.
Some word processors and other tools integrate formatting and
editing. These tools are often called WYSIWYG (what you see is what
you get)
 tools. What’s the
advantage of using Emacs versus a WYSIWYG tool? Well, whether
you’re writing LATEX, XML, or HTML, you can be
crystal clear about what’s in the file and how
it’s structured if you use Emacs. Save a Microsoft
Word file as HTML and then open the resulting file in Emacs. Word
bloats the file with additional tags and formatting that is not
strictly required. In terms of output, the streamlined and
straightforward code you picture in your mind’s eye
when viewing a page is definitely not what you get, an ironic
consequence of using a WYSIWYG tool like Word to create markup files.
Chances are, if you’ve read this far,
you’re planning to use Emacs anyway, so we
won’t belabor the point.
In this chapter, we talk about these markup modes:
	For writing HTML, Emacs HTML mode (a subset of SGML mode) and the
add-on HTML helper mode are discussed.

	For writing XML, Emacs SGML mode and the add-on modes psgml mode and
nxml mode are described in brief.

	For writing LATEX documents, Emacs LaTeX mode is discussed.

These major modes help you insert formatting commands, or markup,
into your text. While the amount of help that Emacs offers varies,
using the mode designed for your text formatter will streamline your
work.
At this point we must insert a caveat. We provide a barebones
introduction to the markup modes described in this chapter. What we
say here will get you started, but not much more than that. Entire
books could be and have been written about using each of the markup
tools described here. Now that that’s out of the
way, let’s talk about a few features that are
important in all the modes: comment handling and font-lock mode.

Comments

All the modes described in this chapter share a

 feature with the programming
language modes such as Java mode and Lisp mode, which we discuss in
Chapter 9. All these modes understand comments
and use a single command, M-; (for
indent-for-comment) to insert the
appropriate comment syntax. Table 8-1 lists the
comment syntax for the tools in this chapter.
Table 8-1. Comments in markup modes
	
 If you type M-; in:

 	
 Emacs inserts:

	
 HTML mode

 	
 <!-- -->

	
 HTML helper mode

 	
 <!-- -->

	
 SGML mode

 	
 <!-- -->

	
 nxml mode

 	
 <!-- -->

	
 psgml mode

 	
 <!-- -->

	
 LaTeX mode

 	
 %% (on blank lines)

	
	
 % (on lines with content)

Font-Lock Mode

Font-lock mode is discussed

 primarily in Chapter 9; it’s designed for
coloring code to make it easier to read. But the fact is that it
works well in other modes too, like the Buffer List (Chapter 4), Dired (Chapter 5),
and in all the markup modes described in this chapter.
To turn on font lock mode, choose Syntax Highlighting from the
Options menu. If you decide you want to turn it on for every session,
select Save Options from the Options menu and Emacs writes your
.emacs file.
For more details on font-lock mode, see Chapter 9.

Writing HTML

Without doubt, the most commonly
 used markup language
today is hypertext markup language (HTML), used for creating web
pages. HTML consists of text with tags that define characteristics
about the text. HTML is not hard to write, and you could use Emacs or
any other editor to write the tags and the text. An HTML tag
generally looks like this:
<tagname>text being tagged</tagname>
For your convenience, several modes are

 available for writing HTML in Emacs,
including HTML mode, HTML helper mode, html menus, and a variety of
SGML[1] tools including sgml mode and psgml mode. Of these tools,
we’ve chosen to describe HTML mode, a variant of
sgml mode, which is included in GNU Emacs, and HTML helper mode,
which is a popular add-on. If you are writing XHTML, a stricter
version of HTML that can be validated, you should consider XHTML
mode, described briefly in this section, or psgml mode, covered later
in the XML section of this chapter.
Serious web developers may want to investigate some of the cutting
edge development going on to make Emacs even more powerful. Check out
HTMLModeDeluxe (http://www.emacswiki.org/cgi-bin/wiki/HtmlModeDeluxe)

 and the Emacs WebDev
Environment by Darren Brierton (http://www.dzr-web.com/people/darren/projects/emacs-webdev).
Both of these tools support mmm mode (where mmm stands for
“multiple major modes”). Using this
feature, the cursor changes major mode depending on the section of
the page you are editing. When you edit a script, the mode changes
automatically to support that type of authoring. Both are excellent
tools for building complex web pages.
In the following sections, we are not going to teach you to write
HTML. (For more information on writing HTML, see HTML and
XHTML: The Definitive Guide by Chuck Musciano and Bill
Kennedy, O’Reilly) Rather, we’re
going to teach you the rudiments of using HTML mode and HTML helper
mode to help you create HTML documents.
Using HTML Mode

To start HTML mode, type M-x
html-mode (or simply
 open an HTML
file). Most authors use a standard template when they write HTML. You
may already have one. If you don’t, HTML mode is
happy to supply one for you. Simply start by typing C-c C-t (for sgml-tag) or by selecting Insert Tag from the
SGML menu. If you enter the <html> tag that
signifies the start of an HTML document, Emacs inserts a basic
template in your buffer.
	
 Type: C-c C-t html Enter

	

[image: image with no caption]

	
 Emacs prompts for a title.

	
 Type: A Tale of Two Cities Enter

	

[image: image with no caption]

	
 Emacs inserts an HTML template.

Note that Emacs automatically

 creates a first-level header that is equal
to the title you entered. It also inserts a hyperlink so that readers
can email you. Depending on your spam tolerance, you may want to
delete that line. Also, Emacs is just guessing at your name and email
address. You can set these explicitly by adding two lines to your
.emacs file. Change Mr.
Dickens’ information to settings appropriate for
you.
(setq user-mail-address "cdickens@great-beyond.com")
(setq user-full-name "Charles Dickens")
You could approach HTML mode in a couple of ways. You could learn the
key bindings for various tags, or you could simply use the sgml-tag command for everything. It depends
how many bindings you want to learn. A mixed approach may be best,
where you learn keystrokes for the most common tags and use sgml-tag for less common tags.
Key bindings are

 intuitive in HTML mode. Like most
specialized editing modes, many functions are bound to C-c C-
 something.
We’ve seen C-c C-t
to insert a tag. You won’t be too surprised to find
that to move forward to the next tag you type C-c C-f and to move back to the previous tag
you type C-c C-b. To insert an
<href> tag, type C-c
C-h. You see what we mean.
HTML mode is designed for

 writing
HTML, not XHTML. XHTML is stricter, requiring all tags to have a
closing tag. The common <p> tag is a salient
example. HTML authors would never use the closing tag
</p> that XHTML requires. HTML mode inserts
a lone <p> tag even when given a command,
such as sgml-tag, that normally
inserts a tag pair. If you want to write XHTML, use XHTML mode
instead. Emacs starts this mode itself if your file contains a
reference to an XHTML document type definition. Other than completion
of tags, XHTML mode is very similar to HTML mode described
here.[2]

Being able to hide the tags is a

 helpful feature. To hide HTML tags, type
C-c Tab; use the same command to
display the tags again. Let’s say that
we’ve inserted some of our
dickens file into the dickens.html
file we were just working with.
	
 Initial state:

	

[image: image with no caption]

	

 dickens.html with tags showing.

	
 Type: C-c Tab

	

[image: image with no caption]

	
 Emacs hides the tags.

You can keep typing text, concentrating on what
you’re writing rather than being distracted by the
markup. Emacs protects you from deleting tags when
you’re writing by making hidden text read-only. If
you move the cursor onto a hidden tag, Emacs displays it in the
minibuffer.
Of course, the whole purpose of writing HTML is to display it in a
web browser. Typing C-c C-v (for
browse-url-of-buffer) opens the
default web browser to view the web page you’re
writing.
If you’d like to look at the file in a web browser
each time you save, you can turn on a function called html-autoview-mode, invoked by pressing
C-c C-s. When you save the file,
Emacs automatically opens it in the default browser.
Character encoding in HTML mode

What if you want to include

special characters or characters from other character sets in your
web page? The short answer is that you can enter a
character’s encoding explicitly. For example, to
enter a capital U with an umlaut, you can type
Ü. Many characters can also be
represented as named entities, which are certainly easier to remember
than numbers. For example, the named entity for a capital U with an
umlaut is Ü.
But HTML mode does provide more support than this.
We’ll take the simplest case first.
Let’s say you can create a character with your
keyboard; for a common case, take the ampersand, a character that
must be encoded since it has a special meaning in HTML. Type
C-c C-n & Enter. Emacs inserts
the entity for an ampersand, &. You can
insert entities for a wide variety of keyboard characters this way.
But let’s say that you are inserting characters that
are not on your keyboard. For example, perhaps you are in the U.S.
writing up a list of contributors from Europe and many of their names
have accent marks. The ISO Latin-1 character set will handle this.
If you have a keyboard that already emits Latin-1 characters and
Latin-1 is your default coding system for keyboard input, inserting
such characters is relatively straightforward. Simply press C-c 8 to turn on a minor mode called SGML name
entity mode. Emacs says sgml name entity mode is now
on.[3]
 C-c
8 toggles this state. Type Latin-1 characters as you
normally would and Emacs inserts the named entities associated with
those characters.
For those of us with other keyboard encodings, however,
there’s a bit more to do. To get bindings to insert
entities into your HTML file, we discuss two options. The first is
ISO accents mode. This mode provides support, as the name implies,
for accented text. Whether you’re typing umlauts,
cedillas, circumflexes, acute, or grave marks, ISO accents mode is up
to the task. The other option is to use the C-x
8 prefix to insert a wide range of entities, including
currency signs, mathematical symbols, and copyright signs (as well as
all the accented characters ISO accents mode supports).
Using ISO accents mode

To use ISO accents mode
 to insert
entities in your file, type C-c 8 to
turn on SGML name entity mode, then M-x
iso-accents-mode Enter to turn on that mode. In ISO
accents mode, certain characters (including /, ~, ', “, `, and ^) are
interpreted as prefixes to create accented characters. SGML name
entity mode captures these keystrokes and automatically inserts the
appropriate HTML entity. For example, typing 'a
produces the HTML entity for á,
á. For specific key bindings, see Table 8-2.

Using the C-x 8 prefix

You can also insert a wide range of entities using C-x 8 after you do some setup.[4] First enter SGML name entity mode by typing C-c 8. Next specify Latin-1 as your character
set by typing C-x Enter k latin-1
Enter. You can then enter a large number of entities by
typing commands prefixed with C-x 8.
For example, to insert the entity for a yen symbol, type C-x 8 Y. Watch the minibuffer. The literal
character will appear in the minibuffer as the entity is inserted.
Both ISO accents mode and the C-x 8
prefixes allow you to type a single undo command (C-_) to translate the entity back into the
literal character.

 Table 8-2 provides a list of accented characters
and the bindings that help insert them. Table 8-3
lists other named entities including punctuation marks and symbols.
Table 8-2. Bindings for inserting entities for accented characters[5]

	
 C-x 8 prefix

 keystrokes

 	
 ISO accents mode shortcut

 	
 Character entity

 	
 Character displayed in browser

	

 C-x 8 "

 	
 "

 	
 ´

 	
 ´

	

 C-x 8 ' a

 	
 ' a

 	
 á

 	
 á

	

 C-x 8 ‘A

 	
 'A

 	
 Á

 	
 Á

	
 C-x 8 ' e

 	
 ' e

 	
 é

 	
 é

	
 C-x 8 ' E

 	
 ' E

 	
 É

 	
 É

	
 C-x 8 ' i

 	
 ' i

 	
 í

 	
 í

	

 C-x 8 ' I

 	
 ' I

 	
 Í

 	
 Í

	
 C-x 8 ' o

 	
 ' o

 	
 ó

 	
 ó

	
 C-x 8 ' O

 	
 ' O

 	
 Ó

 	
 Ó

	
 C-x 8 ' u

 	
 ' u

 	
 ú

 	
 ú

	
 C-x 8 ' U

 	
 ' U

 	
 Ú

 	
 Ú

	
 C-x 8 ' y

 	
 ' y

 	
 ý

 	

[image: image with no caption]

	
 C-x 8 ' Y

 	
 ' Y

 	
 Ý

 	

[image: image with no caption]

	
 C-x 8 ` a

 	
 ` a

 	
 à

 	
 à

	

 C-x 8 ` A

 	

 ` A

 	
 À

 	
 À

	

 C-x 8 ` e

 	

 ` e

 	
 è

 	
 è

	

 C-x 8 ` E

 	

 ` E

 	
 È

 	
 È

	

 C-x 8 ` i

 	

 ` i

 	
 ì

 	
 ì

	

 C-x 8 ` I

 	

 ` I

 	
 Ì

 	
 Ì

	

 C-x 8 ` o

 	

 ` o

 	
 ò

 	
 ò

	

 C-x 8 ` O

 	

 ` O

 	
 Ò

 	
 Ò

	

 C-x 8 ` u

 	

 ` u

 	
 ù

 	
 ù

	

 C-x 8 ` U

 	

 ` U

 	
 Ù

 	

[image: image with no caption]

	

 C-x 8 ^ a

 	

 ^ a

 	
 â

 	
 â

	

 C-x 8 ^ A

 	

 ^ A

 	
 Â

 	
 Â

	

 C-x 8 ^ e

 	

 ^ e

 	
 ê

 	
 ê

	

 C-x 8 ^ E

 	

 ^ E

 	
 Ê

 	
 Ê

	

 C-x 8 ^ i

 	

 ^ i

 	
 î

 	
 î

	

 C-x 8 ^ I

 	

 ^ I

 	
 Î

 	
 Î

	

 C-x 8 ^ o

 	

 ^ o

 	
 ô

 	
 ô

	

 C-x 8 ^ O

 	

 ^ O

 	
 Ô

 	
 Ô

	

 C-x 8 ^ u

 	

 ^ u

 	
 û

 	
 û

	

 C-x 8 ^ U

 	

 ^ U

 	
 Û

 	
 Û

	

 C-x 8 " "

 	
 " "

 	
 ¨

 	
 ¨

	

 C-x 8 " a

 	
 " a

 	
 ä

 	
 ä

	

 C-x 8 " A

 	
 " A

 	
 Ä

 	
 Ä

	

 C-x 8 " e

 	
 " e

 	
 ë

 	
 ë

	

 C-x 8 " E

 	
 " E

 	
 Ë

 	
 Ë

	

 C-x 8 " i

 	
 " i

 	
 ï

 	
 ï

	

 C-x 8 " I

 	
 " I

 	
 Ï

 	
 Ï

	

 C-x 8 " o

 	
 " o

 	
 ö

 	
 ö

	

 C-x 8 " O

 	
 " O

 	
 Ö

 	
 Ö

	

 C-x 8 " u

 	
 " u

 	
 ü

 	
 ü

	

 C-x 8 " U

 	
 " U

 	
 Ü

 	
 Ü

	

 C-x 8 " s

 	
 " s

 	
 ß

 	
 ß

	

 C-x 8 " y

 	
 " y

 	
 ÿ

 	
 ÿ

	

 C-x 8 " Y

 	
 " Y

 	
 Ÿ

 	
 Ÿ

	

 C-x 8 ~ ~

 	
	
 ¬

 	
 ¬

	

 C-x 8 ~ a

 	

 ~ a

 	
 ã

 	
 ã

	

 C-x 8 ~ A

 	

 ~ A

 	
 Ã

 	
 Ã

	

 C-x 8 ~ d

 	

 ~ d

 	
 ð

 	

[image: image with no caption]

	

 C-x 8 ~ D

 	

 ~ D

 	
 Ð

 	

[image: image with no caption]

	

 C-x 8 ~ n

 	

 ~ n

 	
 ñ

 	
 ñ

	

 C-x 8 ~ N

 	

 ~ N

 	
 Ñ

 	
 Ñ

	

 C-x 8 ~ o

 	

 ~ o

 	
 õ

 	
 õ

	

 C-x 8 ~ O

 	

 ~ O

 	
 Õ

 	
 Õ

	

 C-x 8 ~ t

 	

 ~ t

 	
 þ

 	

[image: image with no caption]

	

 C-x 8 ~ T

 	

 ~ T

 	
 Þ

 	

[image: image with no caption]

	

 C-x 8 / /

 	
	
 ÷

 	
 ÷

	

 C-x 8 o

 	

 / /

 	
 ˚

 	
 °

	

 C-x 8 / a

 	

 / a

 	
 å

 	
 å

	

 C-x 8 / A

 	

 / A

 	
 Å

 	
 Å

	

 C-x 8 / e

 	

 / e

 	
 æ

 	
 æ

	

 C-x 8 / E

 	

 / E

 	
 Æ

 	
 Æ

	

 C-x 8 / o

 	

 / o

 	
 ø

 	
 ø

	

 C-x 8 / O

 	

 / O

 	
 Ø

 	
 Ø

	

 C-x 8 , ,

 	

 ~~

 	
 ¸

 	
 ¸

	

 C-x 8 , c

 	

 ~c

 	
 ç

 	
 ç

	

 C-x 8 , C

 	

 ~C

 	
 Ç

 	
 Ç

	[5] For instructions on making these bindings work properly, read this section carefully.

Table 8-3. Bindings for inserting entities for punctuation and symbols
	
 C-x 8 prefix keystrokes

 	
 Character entity

 	
 Character displayed in browser

	

 C-x 8 1 / 2

 	
 ½

 	

 1/2

	

 C-x 8 1 / 4

 	
 ¼

 	

 1/4

	

 C-x 8 3 / 4

 	
 ¾

 	

 3/4

	

 C-x 8 SPC

 	

 	
 nonbreaking space

	

 C-x 8 !

 	
 ¡

 	
 ¡

	

 C-x 8 $

 	
 ¤

 	
 ¤

	

 C-x 8 +

 	
 ±

 	
 ±

	

 C-x 8 -

 	
 ­

 	
 soft hyphen

	

 C-x 8 .

 	
 ·

 	
 ·

	

 C-x 8 <

 	
 «

 	
 «

	

 C-x 8 =

 	
 ¯

 	
 ¯

	

 C-x 8 >

 	
 »

 	
 »

	

 C-x 8 ?

 	
 ¿

 	
 ¿

	

 C-x 8 |

 	
 ¦

 	
 |

	

 C-x 8 c

 	
 ¢

 	
 ¢

	

 C-x 8 C

 	
 ©

 	
 ©

	

 C-x 8 L

 	
 £

 	
 £

	

 C-x 8 P

 	
 ¶

 	
 ¶

	

 C-x 8 R

 	
 ®

 	
 ®

	

 C-x 8 S

 	
 §

 	
 §

	

 C-x 8 u

 	
 µ

 	
 µ

	

 C-x 8 x

 	
 ×

 	
 ×

	

 C-x 8 Y

 	
 ¥

 	
 ¥

	

 C-x 8 ^ 1

 	
 ¹

 	

 1

	

 C-x 8 ^ 2

 	
 ²

 	

 2

	

 C-x 8 ^ 3

 	
 ³

 	

 3

	

 C-x 8 _ a

 	
 ª

 	

 a

	

 C-x 8 _ o

 	
 º

 	

 o

 Table 8-4 lists HTML mode commands.
Table 8-4. HTML mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 (none)

 	

 html-mode

 	
 Enter HTML mode.

	

 C-c C-t
 SGML
 →
 Insert Tag

 	

 sgml-tag

 	
 Inserts a tag, prompting for attributes. If you enter html as the tag name, inserts a template html
file.

	

 C-c Tab
 SGML
 →
 Toggle Tag Visibility

 	

 sgml-tags-invisible

 	
 Hides or shows the tags in the file.

	

 C-c C-v
 SGML
 →
 View Buffer Contents

 	

 browse-url-of-buffer

 	
 Display buffer in default browser.

	

 C-c C-s

 	

 html-autoview- mode

 	
 If this mode is on (this command toggles it), display file in browser
each time it is saved in Emacs.

	

 C-c 8

 	

 sgml-name-8bit-mode

 	
 If turned on, certain keystrokes for inserting Latin-1 characters are
captured and replaced with the appropriate entities. See
“Character encoding in HTML mode”
for details.

	

 C-c C-f
 SGML
 →
 Forward Tag

 	

 sgml-skip-tag-forward

 	
 Move forward to the next tag of the same level.

	

 C-c C-b
 SGML
 →
 Backward Tag

 	

 sgml-skip-tag-backward

 	
 Move backward to previous tag of the same level.

	

 C-c Del
 or
 C-c C-d
 SGML
 →
 Delete Tag

 	

 sgml-delete-tag

 	
 With cursor on or before a tag, deletes tag or tag pair.

	

 C-c 1

 	

 html-headline-1

 	
 Insert an <h1>.

	

 C-c 2

 	

 html-headline-2

 	
 Insert an <h2>.

	

 C-c 3

 	

 html-headline-3

 	
 Insert an <h3>.

	

 C-c 4

 	

 html-headline-4

 	
 Insert an <h4>.

	

 C-c 5

 	

 html-headline-5

 	
 Insert an <h5>.

	

 C-c 6

 	

 html-headline-6

 	
 Insert an <h6> (useful for footnote text) .

	

 C-c Enter

 	

 html-paragraph

 	
 Insert <p> tag.

	

 C-c C-c h
 HTML
 →
 Href Anchor

 	

 html-href-anchor

 	
 Insert a hyperlink.

	

 C-c C-c n
 HTML
 →
 Name Anchor

 	

 html-name-anchor

 	
 Insert an anchor so that a link can be created to the anchored part
of the page.

	

 C-c C-c u
 HTML
 →
 Unordered List

 	

 html-unordered-list

 	
 Create a bulleted list.

	

 C-c C-c o
 HTML
 →
 Ordered List

 	

 html-ordered-list

 	
 Create a numbered list.

	

 C-c C-c l
 HTML
 →
 List Item

 	

 html-list-item

 	
 Add an item to a list.

	

 C-c C-c i
 HTML
 →
 Image

 	

 html-image

 	
 Insert and position cursor for
you to enter filename of image.

	

 C-c C-j
 HTML
 →
 Line Break

 	

 html-line

 	
 Insert a line break (
).

	

 C-c C-c -
 HTML
 →
 Horizontal
Rule

 	

 html-horizontal-rule

 	
 Insert a horizontal rule (<hr>).

	

 C-c C-c r

 	

 html-radio-buttons

 	
 Insert a group of radio buttons. Emacs prompts for a name for the
group, then repeatedly for value, whether it should be checked, and
associated text. Press C-g to
complete the group.

	

 C-c C-c c
 HTML
 →
 Checkboxes

 	

 html-checkboxes

 	
 Insert a group of checkboxes. Emacs prompts for a name for the group,
then repeatedly for value, whether it should be checked, and
associated text. Press C-g to
complete the group.

	

 C-c ?
 SGML
 →
 Describe Tag

 	

 sgml-tag-help

 	
 Provide brief verbal description of tag at cursor position.

Using HTML Helper Mode

HTML helper mode, written by
 Nelson Minar and now maintained by Gian
Uberto Lauri, offers great flexibility in writing HTML. You can
enable various hand-holding features depending on your level of
expertise and preferences.
Why would you choose HTML helper mode over Emacs’s
own HTML mode? Although HTML mode makes it easy to write basic HTML,
it provides little support for programmatic, interactive web pages.
HTML helper mode supports ASP, JSP (and JDE, the Java Development
Environment, discussed in Chapter 9), and PHP,
to name a few more advanced features. If you’re
writing HTML in Emacs, you’re likely to be a
developer of such pages rather than a more text-oriented author. For
this reason, HTML helper mode continues to be popular among Emacs
users.
Html helper mode is not part of Emacs by default. You can download it
from its homepage at
http://www.nongnu.org/baol-hth. Download the
file into a directory such as ~/elisp, move to
that directory, and then type:
% tar xvzf html-helper-mode.tar.gz
The system unpacks the tar file for you. (Of
course, if you are installing on Windows, you can simply use WinZip
to decompress and unpack the file.) The tar file
contains several components, including:
	
 html-helper-mode.el—the Lisp file for HTML
helper mode

	
 hhm-changelog—changes that have been made

	
 hhm-config.el—a Lisp file that allows
Emacs customization to work[6]

Starting HTML helper mode

Before you can start HTML helper
 mode, you
have to load it into Emacs. (For a complete discussion of this topic,
see “Building Your Own Lisp
Library” in Chapter 11; we
describe it briefly here.) Begin by typing M-x
load-file Enter. Emacs asks which file to load and you
enter ~/elisp/html-helper-mode.el
and press Enter, adjusting the path
to reflect the location where you installed
html-helper-mode.el. You enter the mode by
typing M-x html-helper-mode Enter.
HTML helper appears on the mode line.
Making HTML helper mode part of your startup is easier. Put the
following lines in your .emacs file:
(setq load-path (cons "~/elisp " load-path))
(autoload 'html-helper-mode "html-helper-mode" "Yay HTML" t)
In the first line, insert the complete path for the directory in
which html-helper-mode.el is located in
quotation marks, replacing ~/elisp to the
correct value for your system. The second line tells Emacs to load
HTML helper mode automatically when you start Emacs.
If you want to use HTML helper mode for editing HTML files by
default, add this line to .emacs as well:
(setq auto-mode-alist (cons '("\\.html?$" . html-helper-mode)
auto-mode-alist))
If you edit other types of files with HTML helper mode, you may want
to add lines to include all the types of files you edit. Adding more
lines is the easiest way. For example, to make HTML helper mode the
default for PHP files, add this line to .emacs:
(setq auto-mode-alist (cons '("\\.php$" . html-helper-mode)
auto-mode-alist))

A brief tour of HTML helper mode

The main reason people like HTML helper mode is that it provides easy
menu access to a wide variety of options. Realizing that having a
crowded menu with many submenus could overwhelm new users, the
authors created an option called Turn on Novice Menu. Selecting this
option from the HTML menu provides a barebones menu, as shown in
Figure 8-1. Novice HTML writers can use these
options to create a basic HTML document without worrying about what
forms, JSPs, PHP, and the like mean.
[image: HTML helper mode’s Novice menu (Mac OS X)]

Figure 8-1. HTML helper mode’s Novice menu (Mac OS X)

Selecting Turn on Expert Menu from the HTML menu returns the larger
menu with its numerous submenus, as shown in Figure 8-2.
[image: HTML helper mode’s Expert menu (Mac OS X)]

Figure 8-2. HTML helper mode’s Expert menu (Mac OS X)

Inserting an HTML template

HTML helper mode inserts a

 template
for you every time you create a new HTML file.
	
 Type: C-x C-f new.html

	

[image: image with no caption]

	
 HTML helper mode inserts a template with all the basic elements
needed for a valid HTML document (Windows).

The template contains all the basic HTML elements. The entire
document is surrounded by
<html></html> tags. Then the head and
the body are separated. Following an <hr>
tag that tells the browser to insert a horizontal line, called a
horizontal rule, the <address> tag leaves a
place for the author to put in his or her email address. In these
days of spam, it’s unlikely you’ll
want to do that. (You can leave the
<address> tag blank or delete it.)
If you do want to include an email address, enter a line like this in
your .emacs file (substituting your own email
address, of course):
 (setq html-helper-address-string
 "Charles Dickens")
	
 Type: C-x C-f newfile.html

	

[image: image with no caption]

	
 Emacs inserts the HTML template, including the address.

Normally you begin filling out the template by entering title and a
level-one header (these are often the same). You can then begin
writing paragraphs of text. Before you start typing, press M-Enter. Emacs inserts
<p></p> and positions the cursor
between them. You can see from the ending paragraph tag that HTML
helper mode is working toward XHTML compliance.
	
 Type: M-Enter

	

[image: image with no caption]

	
 Emacs positions the cursor between <p> and
</p> so you can start insert text.

Putting tags around a region

When editing HTML files, you often spend a lot of time marking up
existing text. If you preface any of the tag commands with C-u, Emacs inserts the tags around a region
rather than putting them at the cursor position.[7] To demonstrate,
we’ll start a new HTML file and insert text from our
dickens file.
	
 Type: C-x C-f ataleoftwocities.html

	

[image: image with no caption]

	
 Emacs inserts the HTML template.

	
 Move the cursor past the <h1> pair and type
C-x C-i dickens.

	

[image: image with no caption]

	
 Emacs inserts the dickens text file, to which we
can add HTML tags.

If you were really doing this properly, you’d type
something like “A Tale of Two Cities, Chapter 1 as the title and the
first-level header. But for now, you just want to see how to mark up
a region of existing text. Begin by marking the Dickens paragraph as
a region and type C-u M-Enter.
	
 Type: M-h C-u M-Enter.

	

[image: image with no caption]

	
 Emacs inserts opening and closing paragraph tags.

Using completion

HTML helper mode

 supports
completion. You type the beginning of a tag and press M-Tab (for tempo-complete-tag).[8]
If there’s more than one possibility, a window of
possible completions appears. Let’s say you are
working on a bulleted list.
	
 Type: <olM-Tab

	

[image: image with no caption]

	
 Emacs inserts the tags to begin and end the list and the tag for one
list item.

Note, however, that completion is sometimes case-sensitive. For
example, typing <s M-Tab shows
the following completions:
<select <span class=
<span style = <strike>
 <samp>
Notice that the <script> tag is missing. But
if you try typing <S M-Tab, the
script tag and its attributes are inserted, as in:
<SCRIPT TYPE="text/javascript">
</SCRIPT>
The distinction between upper- and lowercase shows that HTML helper
mode is moving toward XHTML compliance, but hasn’t
quite arrived. XHTML requires that all tags be lowercase. On the
positive side, note that the attribute is in quotation marks, another
XHTML requirement.

Turning on prompting

Some HTML tags require you to input

 certain
attributes. For example, when you enter a hyperlink, you have to
specify the URL of the link and the text that the user will select.
If you type C-c C-a l (the lowercase
letter “L”) to enter a link, HTML
helper mode inserts:

with the cursor on the second quotation mark so you can type in the
URL. HTML helper mode offers additional help if you turn on
prompting. Add this line to your .emacs file:
(setq tempo-interactive t)
Note that HTML helper mode prompts only for required attributes; if
you want to input optional attributes, you have to add them by hand.
Whether you consider prompting useful or intrusive is a matter of
personal taste. If you are a beginning HTML author, prompting may
help you remember to enter all the necessary information for each
tag. If you find you don’t like it, simply delete
the line you added to the .emacs file.

Character encoding in HTML helper mode

HTML helper mode supports entry of

 only the most common character
entities. However, it does make it easy to insert these entities.
Simply type C-c before the character
in question. For example, type C-c
< to enter the escape code for a less-than sign
(<).
Character entities are also available by selecting HTML→
Insert Character Entities.

 Table 8-5 lists bindings for inserting character
entities in HTML helper mode.
Table 8-5. Inserting character entities in HTML helper mode
	
 Keystrokes

 	
 Command name

 	
 Character entity

 	
 Character rendered on web page

	

 C-c >

 	

 tempo-template-html-greater-than

 	
 >

 	
 >

	

 C-c <

 	

 tempo-template-html-less-than

 	
 <

 	
 <

	

 C-c &

 	

 tempo-template-html-ampersand

 	
 &

 	
 &

	

 C-c u

 	

 tempo-template-html-u`-(&ù)

 	
 ù

 	
 ù

	

 C-c i

 	

 tempo-template-html-i`-(&ì)

 	
 ì

 	
 ì

	

 C-c o

 	

 tempo-template-html-o`-(&ò)

 	
 ò

 	
 ò

	

 C-c E

 	

 tempo-template-html-e'-(&é)

 	
 é

 	
 é

	

 C-c e

 	

 tempo-template-html-e`-(&è)

 	
 è

 	
 è

	

 C-c a

 	

 tempo-template-html-a`-(&à)

 	
 à

 	
 à

	

 C-c SPC

 	

 tempo-template-html-nonbreaking-space

 	

 	
 nonbreaking space

	

 C-c -

 	

 tempo-template-html-soft-hyphen

 	
 ­

 	
 soft hyphen

	

 C-c @

 	

 tempo-template-html-copyright

 	
 ©

 	
 ©

	

 C-c $

 	

 tempo-template-html-registered

 	
 ®

 	
 ®

	

 C-c "

 	

 tempo-template-html-quotation-mark

 	
 "

 	
 "

	

 C-c #

 	

 tempo-template-html-ascii-code

 	
 Enter the 3-digit code for the desired character

 	
 specified character

 Table 8-6 lists the key bindings for HTML helper
mode. There are key bindings for advanced HTML features such as forms
as well as for some of the HTML 3.0 features. Some tags would
normally appear on different lines (for example, in the case of a
list); in this table, they are shown on one line.
Table 8-6. HTML helper mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-u

 	

 universal-argument

 	
 When used before any other tag command, insert tags around a region.

	

 M-Tab

 	

 tempo-complete-tag

 	
 Complete the current tag.

	

 C-c C-z v
 HTML
 →
 Load This Buffer in
Browser

 	

 browse-url-of-file

 	
 Display this file in the default browser.

	

 C-c C-z u
 HTML
 →
 Browse URL at Point

 	

 browse-url-default-browser

 	
 Load the URL at point in default browser.

	

 C-c M-h 1
 HTML
 →
 Insert Headers
 →
 Header 1

 	

 tempo-template-html-header-1

 	
 Insert <h1></h1>.

	

 C-c M-h 2
 HTML
 →
 Insert Headers
 →
 Header 2

 	

 tempo-template-html-header-2

 	
 Insert <h2></h2>.

	

 C-c M-h 3
 HTML
 →
 Insert Headers
 →
 Header 3

 	

 tempo-template-html-header-3

 	
 Insert <h3></h3>.

	

 C-c M-h 4
 HTML
 →
 Insert Headers
 →
 Header 4

 	

 tempo-template-html-header-4

 	
 Insert <h4></h4>.

	

 C-c M-h 5
 HTML
 →
 Insert Headers
 →
 Header 5

 	

 tempo-template-html-header-5

 	
 Insert <h5></h5>.

	

 C-c M-h 6
 HTML
 →
 Insert Headers
 →
 Header 6

 	

 tempo-template-html-header-6

 	
 Insert <h6></h6>.

	

 M-Enter
 HTML
 →
 Insert Text Elements
 →
 Paragraph

 	

 tempo-template-html-paragraph

 	
 Insert <p></p>.

	

 C-c C-a l
 HTML
 →
 Insert Hyperlinks
 →
 Hyperlink

 	

 tempo-template-html-hyperlink

 	
 Insert .

	

 C-c C-a n
 HTML
 →
 Insert Hyperlinks
 →
 Target

 	

 tempo-template-html-link-target

 	
 Insert .

	

 C-c Enter
 HTML
 →
 Insert Text Elements
 →
 Line Break

 	

 tempo-template-html-line-break

 	
 Insert a literal line break,
.

	

 C-c =
 HTML
 →
 Insert Text Elements
 →
 Horizontal Line

 	

 tempo-template-html-horizontal-line

 	
 Insert a horizontal rule, <hr>.

	

 C-c C-z t
 HTML
 →
 Insert Timestamp Delimiter

 	

 html-helper-insert-timestamp-delimiter-at-point

 	
 Insert timestamp delimiters.

	

 C-c C-h t
 HTML
 →
 Insert Structural Elements
 →
 Title

 	

 tempo-template-html-title

 	
 Insert <title></title>.

	

 C-c Tab a
 HTML
 →
 Insert Inlined Images
 →
 Image

 	

 tempo-template-html-image

 	
 Insert .

	

 C-c C-l u
 HTML
 →
 Insert List Elements
 →
 Unordered List

 	

 tempo-template-html-unordered-list

 	
 Insert .

	

 C-c C-l o
 HTML
 →
 Insert List Elements
 →
 Ordered List

 	

 tempo-template-html-ordered-list

 	
 Insert .

	

 C-c C-l t
 HTML
 →
 Insert List Elements
 →
 Definition Item

 	

 tempo-template-html-definition-item

 	
 Insert <dt><dd>.

	

 C-c C-l l
 HTML
 →
 Insert List Elements
 →
 List Item

 	

 tempo-template-html-item

 	
 Insert .

	

 C-c C-l d
 HTML
 →
 Insert List Elements
 →
 Definition List

 	

 tempo-template-html-definition-list

 	
 Insert <dl><dt><dd></dl>.

	

 C-c C-l m
 HTML
 →
 Insert List Elements
 →
 Menu List

 	

 tempo-template-html-menu-list

 	
 Insert
<menu></menu>.

	

 C-c C-l r
 HTML
 →
 Insert List Elements
 →
 Directory List

 	

 tempo-template-html-directorylist

 	
 Insert
<dir></dir>.

	

 C-c C-l i
 HTML
 →
 Insert List Elements
 →
 List Item

 	

 html-helper-smart-insert-item

 	
 Insert .

	

 C-c C-f z
 HTML
 →
 Insert Form Elements
 →
 Rest Form

 	

 tempo-template-html-reset-form

 	
 Insert <input type="RESET">.

	

 C-c C-f b
 HTML
 →
 Insert Form Elements
 →
 Button

 	

 tempo-template-html-button

 	
 Insert <input type="BUTTON">.

	

 C-c C-f m
 HTML
 →
 Insert Form Elements
 →
 Submit Form

 	

 tempo-template-html- submit-form

 	
 Insert <input type="SUBMIT">.

	

 C-c C-f s
 HTML
 →
 Insert Form Elements
 →
 Selections

 	

 tempo-template-html-selections

 	
 Insert <select><option></select>.

	

 C-c C-f o
 HTML
 →
 Insert Form Elements
 →
 Option

 	

 tempo-template-html-option

 	
 Insert <option>.

	

 C-c C-f v
 HTML
 →
 Insert Form Elements
 →
 Option with Value

 	

 tempo-template-html-option-with-value

 	
 Insert <option value="">.

	

 C-c C-f i
 HTML
 →
 Insert Form Elements
 →
 Image Field

 	

 tempo-template-html-input-image-field

 	
 Insert <input type="IMAGE">.

	

 C-c C-f r
 HTML
 →
 Insert Form Elements
 →
 Radiobutton

 	

 tempo-template-html-input-radiobutton

 	
 Insert <input type="RADIO">.

	

 C-c C-f c
 HTML
 →
 Insert Form Elements
 →
 Checkbox

 	

 tempo-template-html-checkbox

 	
 Insert <input type="CHECKBOX">.

	

 C-c C-f p
 HTML
 →
 Insert Form Elements
 →
 Text Area

 	

 tempo-template-html-text-area

 	
 Insert <textarea></textarea>.

	

 C-c C-f f
 HTML
 →
 Insert Form Elements
 →
 Form

 	

 tempo-template-html-form

 	
 Insert <form></form>.

	

 C-c C-f t
 `HTML
 →
 Insert Form
Elements
 →
 Text Field

 	

 tempo-template-html-text-field

 	
 Insert <input type="TEXT">.

	

 C-c C-f h
 HTML
 →
 Insert Form Elements
 →
 Hidden Field

 	

 tempo-template-html-hidden-field

 	
 Insert <input type="HIDDEN">.

	

 C-c M-l s
 HTML
 →
 Insert Logical Styles
 →
 Strong

 	

 tempo-template-html-strong

 	
 Insert .

	

 C-c M-l e
 HTML
 →
 Insert Logical Styles
 →
 Emphasized

 	

 tempo-template-html-emphasized

 	
 Insert .

	

 C-c M-l b
 HTML
 →
 Insert Logical Styles
 →
 Blockquote

 	

 tempo-template-html-blockquote

 	
 Insert <blockquote></blockquote>.

	

 C-c M-l p
 HTML
 →
 Insert Logical Styles
 →
 Preformatted

 	

 tempo-template-html-preformatted

 	
 Insert <pre></pre>.

	

 C-c C-p s
 HTML
 →
 Insert Physical Styles
 →
 Strikethru

 	

 tempo-template-html-strikethru

 	
 Insert <s></s>.

	

 C-c C-p f
 HTML
 →
 Insert Physical Styles
 →
 Fixed

 	

 tempo-template-html-fixed

 	
 Insert <tt></tt>.

	

 C-c C-p u
 HTML
 →
 Insert Physical Styles
 →
 Underline

 	

 tempo-template-html-underline

 	
 Insert <u></u>.

	

 C-c C-p i
 HTML
 →
 Insert Physical Styles
 →
 Italic

 	

 tempo-template-html-italic

 	
 Insert <i></i>.

	

 C-c C-p b
 HTML
 →
 Insert Physical Styles
 →
 Bold

 	

 tempo-template-html-bold

 	
 Insert .

	

 C-c C-p c
 HTML
 →
 Insert Physical Styles
 →
 Center

 	

 tempo-template-html-center

 	
 Insert <center></center>.

	

 C-c C-p l
 HTML
 →
 Insert Physical Styles
 →
 Spanning Class

 	

 tempo-template-html-spanning-class

 	
 Insert .

	

 C-c C-p 5
 HTML
 →
 Insert Physical Styles
 →
 Spanning Style

 	

 tempo-template-html-spanning-style

 	
 Insert .

	

 C-c C-s a
 HTML
 →
 Insert Logical Styles
 →
 Address

 	

 tempo-template-html-address

 	
 Insert <address></address>.

	

 C-c M-l d
 HTML
 →
 Insert Logical Styles
 →
 Definition

 	

 tempo-template-html-definition

 	
 Insert <dfn></dfn>.

	

 C-c M-l v
 HTML
 →
 Insert Logical Styles
 →
 Variable

 	

 tempo-template-html-variable

 	
 Insert <var></var>.

	

 C-c M-l k
 HTML
 →
 Insert Logical Styles
 →
 Keyboard Input

 	

 tempo-template-html-keyboard

 	
 Insert <kbd></kbd>.

	

 C-c M-l r
 HTML
 →
 Insert Logical Styles
 →
 Citation

 	

 tempo-template-html-citation

 	
 Insert <cite></cite>.

	

 C-c M-l x
 HTML
 →
 Insert Logical Styles
 →
 Sample

 	

 tempo-template-html-sample

 	
 Insert <samp></samp>.

	

 C-c M-l c
 HTML
 →
 Insert Logical Styles
 →
 Code

 	

 tempo-template-html-code

 	
 Insert <code></code>.

	

 C-c C-h b
 HTML
 →
 Insert Structural Elements
 →
 Base

 	

 tempo-template-html-base

 	
 Insert <base href="">.

	

 C-c C-h l
 HTML
 →
 Insert Structural Elements
 →
 Link

 	

 tempo-template-html-link

 	
 Insert <link href="">.

	

 C-c C-h m
 HTML
 →
 Insert Structural Elements
 →
 Meta Name

 	

 tempo-template-html-meta-name

 	
 Insert <meta content="">.

	

 C-c C-h n
 HTML
 →
 Insert Structural Elements
 →
 Nextid

 	

 tempo-template-html-nextid

 	
 Insert <nextid>.

	

 C-c C-h i
 HTML
 →
 Insert Structural Elements
 →
 Isindex

 	

 tempo-template-html-isindex

 	
 Insert <isindex>.

	

 C-c C-h B
 HTML
 →
 Insert Structural Elements
 →
 Body

 	

 tempo-template-html-body

 	
 Insert <body></body>.

	

 C-c C-h H
 HTML
 →
 Insert Structural Elements
 →
 Head

 	

 tempo-template-html-head

 	
 Insert <head></head>.

	

 C-c C-t t
 HTML
 →
 Insert Tables
 →
 Table

 	

 tempo-template-html-table

 	
 Insert <table></table>.

	

 C-c C-t p
 HTML
 →
 Insert Tables
 →
 html table caption

 	

 tempo-template-html-html-table-caption

 	
 Insert <caption></caption>.

	

 C-c C-t d
 HTML
 →
 Insert Tables
 →
 Table Data

 	

 tempo-template-html-table-data

 	
 Insert <TD></TD>.

	

 C-c C-t h
 HTML
 →
 Insert Tables
 →
 Table Header

 	

 tempo-template-html-table-header

 	
 Insert <TH></TH>.

	

 C-c C-t r

 HTML
 →
 Insert Tables
 →
 Table Row

 	

 tempo-template-html-table-row

 	
 Insert <TR></TR>.

[1] SGML stands for standardized general markup
language. Both XML and HTML are descendants of SGML.

[2] At this writing, there is no way to enter XHTML
mode explicitly. If your file looks like an XHTML file, Emacs puts
you in that mode automatically.

[3] Pay no attention to the fact that this
is called SGML versus HTML name entity mode. Since HTML mode is
derived from SGML mode, many commands that work with HTML have sgml
in their names. Also, note that the command is called sgml-name-8bit-mode, a clear discrepancy with
the minibuffer message.

[4] For some reason, perhaps the way SGML name entity mode is
programmed, you can insert these entities only using key bindings.
The mode fails to trap the equivalent commands and translate them
into entities. For this reason, we focus on key bindings.

[6] The version we downloaded
in August 2004 marked this file as alpha code, so
don’t be surprised if you find bugs. Visit the file
to see if its status has changed.

[7] For
this to work, you must invoke the command through the keyboard,
either using its key binding or its command name. Using a menu option
doesn’t work.

[8] If
M-Tab is trapped by the operating
system to switch between applications (it is on Red Hat Linux), type
Esc Tab instead.

Writing XML

Writing XML involves entering structured
 information
that complies with a document type definition or schema. Even within
Emacs, the XML support you receive varies. At the low end of the
spectrum, there is plain vanilla Fundamental mode. It provides simply
a screen where you type. Specialized modes like SGML mode provide
support for entering tags, as we saw earlier in our discussion of
HTML mode, a derivative of SGML mode. But neither of these approaches
help you parse or validate XML (SGML mode has a command for
validating, but it is tricky to set up correctly). More advanced Lisp
packages, though currently not included in Emacs, are available to
provide these functions. These add-on packages provide validation
against DTDs or schemas, parsing capabilities, and, typically, an
array of standard DTDs and schema definitions. In Emacs, these tools
primarily work in conjunction with one of two major modes. psgml mode
validates XML (and SGML) against DTDs. The newer nxml mode validates
against RELAX NG schemas. We cover both of these options in this
section. Before we go into detail on those modes, however,
let’s look briefly what Emacs has built-in with SGML
mode.
Writing XML with SGML Mode

Emacs’s own SGML mode
provides

 support for entering tags. We covered much
of this earlier under HTML mode, so we provide just one brief example
here. Inserting, hiding, and showing tags are especially helpful
features provided by SGML mode.
Let’s look at a chapter on enumerated types by
Java in a Nutshell author David Flanagan. This
chapter uses the DocBook DTD.
	
 Initial state:

	

[image: image with no caption]

	
 Editing a document that uses the DocBook DTD (Mac OS X).

Note that Emacs displays XML on the mode line. XML mode in this
context is a subset of SGML mode. Actually, despite this name, all
the commands in this mode start with sgml, not xml. The menu of
relevant commands is called SGML as well. Emacs
doesn’t pretend to have extensive XML support.
We want to insert a paragraph before the first paragraph.
	
 Add a blank line following the title and type: C-c C-t

	

[image: image with no caption]

	
 Emacs inserts an open angle bracket and prompts for the tag name (Mac
OS X).

	
 Type: para Enter

	

[image: image with no caption]

	
 Emacs inserts opening and closing paragraph tags (Mac OS X).

Note that Emacs is not following our indentation style. We can
correct it by moving to the beginning of the line and pressing
Tab. See Table 8-4 earlier in this chapter for details on SGML
mode commands.

TEI Emacs: XML Authoring for Linux and Windows

The Text Encoding Initiative (TEI)
 wanted an XML authoring
environment for Emacs, so it created (the somewhat misleadingly
named) TEI Emacs.[9] Despite its name, TEI Emacs does not include
Emacs itself. Rather, it creates an authoring environment for writing
XML using nxml mode or psgml mode. It incorporates XSLT tools, along
with most of the standard DTDs, such as the three forms of XHTML DTDs
(strict, frameset, and transitional), DocBook DTDs, and more.
Naturally, the TEI’s own DTDs and schemas are also
included.
The active development of this tool and its careful packaging led us
to describe this tool despite the fact that it is limited to Linux
and Windows at this writing.[10] You should have Emacs 21.3 already installed
before you install this tool. Installing TEI Emacs is trivial. The
Windows version has an installer, and Linux users follow simple
instructions at http://www.tei-c.org/Software/tei-emacs/, the
web site for downloading TEI Emacs.

Writing XHTML Using nxml Mode

James Clark, an XML pioneer,

 wrote
nxml mode to provide Emacs support for his schema standard RELAX NG.
For details on the standard, visit http://www.relaxng.org/ or pick up a copy of
RELAX NG by Eric van der Vlist
(O’Reilly). The important thing about nxml mode is
that it validates text as you type instead of making validation and
debugging separate steps.
If you did not install TEI Emacs, you can download nxml mode and its
schemas from http://thaiopensource.com/download/. If you
decide to become an active nxml mode user, you may want to join a
related Yahoo Group discussion list (see http://groups.yahoo.com/group/emacs-nxml-mode/).
In this section, we change our running HTML example to XHTML, first
using a RELAX NG schema and nxml mode. Open
dickens.html, then enter nxml mode.
	
 Type: C-x C-f dickens.html Enter M-x nxml-mode
Enter

	

[image: image with no caption]

	
 Editing dickens.html in nxml mode.

nxml mode tells you what schema it is using in the minibuffer.
It’s smart enough to know that its XHTML schema is
best for this purpose.
The mode line tells us that this file is currently invalid. Emacs
highlights errors with red underscores. Let’s deal
with these errors one at a time.
	
 Move the cursor to the red underscore at the end of the html tag.

	

[image: image with no caption]

	
 The minibuffer describes what’s missing.

Editing XHTML with a schema requires a namespace definition in the
<html> tag. nxml mode knows what we need.
This is a good time to use nxml’s completion feature
to let it supply the details for us. C-Enter completes the current tag.
	
 Type: Space
 xmlns=" C-Enter

	

[image: image with no caption]

	
 Emacs inserts the rest of the namespace declaration.

The mode line tells us that this file is still invalid. Moving to the
underlined address tag gives us a fairly cryptic reason; it says,
Element not allowed in this context.
Let’s move down to the closing body tag to see if
that error provides any more insight into the problem.
	
 Move to </body>.

	

[image: image with no caption]

	
 The minibuffer says Missing end-tag "p" .

This message provides a clue. Although HTML authors are not
accustomed to adding closing tags to paragraphs, XHTML requires them.
Let’s insert a closing tag after our paragraph.
	
 Move to the line following the Dickens paragraph and type: </

	

[image: image with no caption]

	
 Emacs inserts a closing tag.

Note that just typing </ was
adequate to insert a closing tag for the current element. We
don’t need to type C-Enter to invoke completion.
That’s because in nxml mode, slash is bound to
nxml-electric-slash. It
automatically completes the nearest open element, another shortcut
for us.
A similar command is C-c C-f (for
nxml-finish-element). With C-c C-f, you don’t have to
type anything; it inserts the relevant closing tag for you.
Look at the mode line now. It says valid. Using nxml mode,
it’s not too tough to take an HTML file and change
it to valid XHTML.
Validating text as you type it is a key feature of nxml mode.
It’s validating against a schema. To specify a
different schema, type C-c C-s (for
rng-set-schema-and-validate). The
minibuffer prompts for the file where the schema resides. A number of
schemas can be found online at http://www.relaxng.org/#schemas. You can also
convert DTDs to schemas using tools listed on that page.
Your menus vary depending on whether you install nxml mode directly
or whether you use TEI’s version. TEI provides
support for encoded characters using the UniChar menu. It also
provides extensive XSLT support. TEI’s NXML menu
includes some TEI skeletons as well as nxml mode options. Nxml mode
installed from thaiopensource.org includes an
XML menu with options for setting the schema and customizing the
mode. Table 8-7 lists some of the commands
available in nxml mode.
Table 8-7. Nxml mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-Enter

 	

 nxml-complete

 	
 Complete the current tag.

	

 /

 	

 nxml-electric-slash

 	
 Add a closing tag for the last open element.

	

 C-c C-n

 	

 rng-next-error

 	
 Move to the next error.

	

 C-c C-l

 	

 rng-save-schema-location

 	
 Creates (or updates) a file called schemas.xml
in your home directory. This file associates schemas with files.

	

 C-c C-s

 	

 rng-set-schema-and-validate

 	
 Set the schema and validate against it.

	

 C-c C-a

 	

 rng-auto-set-schema

 	
 Set the schema automatically according to the contents of the file.

	

 C-c C-w

 	

 rng-what-schema

 	
 Show in the minibuffer the current schema associated with this file.

	

 C-c C-v

 	

 rng-validate-mode

 	
 Toggles whether the mode line indicates that the file is valid or
invalid.

	

 C-c C-u

 	

 nxml-insert-named-char

 	
 Insert a named character; press Tab
to see a list.

	

 (none)

 	

 nxml-insert-xml-declaration

 	
 Insert an XML declaration at the beginning of the file.

	

 C-c Tab

 	

 nxml-balanced-close-start-tag-inline

 	
 Insert the ending tag for the starting tag you are typing, putting
the ending tag on the current line.

	

 C-c C-b

 	

 nxml-balanced-close-start-tag-block

 	
 Insert the ending tag for the starting tag you are typing, putting
the ending tag on a separate line.

	

 C-c C-f

 	

 nxml-finish-element

 	
 Finish the current element.

	

 M-h

 	

 nxml-mark-paragraph

 	
 Mark the current paragraph.

	

 M-}

 	

 nxml-forward-paragraph

 	
 Move forward one paragraph.

	

 M-{

 	

 nxml-backward-paragraph

 	
 Move back one paragraph.

	

 C-M-p

 	

 nxml-backward-element

 	
 Move back one element.

	

 C-M-n

 	

 nxml-forward-element

 	
 Move forward one element.

	

 C-M-d

 	

 nxml-down-element

 	
 Move down one element (if nested).

	

 C-M-u

 	

 nxml-backward-up-element

 	
 Move up one element (if nested).

Using psgml Mode

Lennart Stafflin’s psgml mode has been

 around for a while. It is more robust
than Emacs’s own SGML mode, but, like any add-on,
you have to install it in order to use it. Either install TEI Emacs
as described earlier or download psgml mode from http://www.lysator.liu.se/projects/about_psgml.html
and follow the installation instructions there. TEI Emacs includes a
functioning psgml mode, so if you’ve installed TEI
Emacs, your setup work is done.
psgml mode consists of two parts: sgml-mode for writing SGML and
xml-mode for writing XML (and in our case XHTML).
	
 To start psgml mode to edit our XHTML file, type M-x xml-mode.

	

[image: image with no caption]

	
 XML appears on the mode line and an *SGML LOG*
window opens. If you are using TEI Emacs, XSLT appears on the mode
line along with XML.

The *SGML LOG* window displays messages about this
session. (If it doesn’t appear immediately, click on
the first character in the file.) The log buffer complains that it
could not find an external entity called html. This file has been
changed to work with the XHTML RELAX NG schema. psgml mode expects it
to conform to an XHTML DTD. To get started with the (minimal) work
needed to undertake the transformation from a schema-based file to a
DTD-based file, we ask psgml to normalize the buffer.
	
 Type: M-x sgml-normalize or select
Normalize from the Modify menu

	

[image: image with no caption]

	
 psgml mode eliminates the namespace declaration in the
<html> tag.

More needs to be done, however. The first statements in an XHTML file
include an XML statement and a DOCTYPE entry that identifies the DTD
this document should be validated against. One of the nice things
about TEI Emacs is that it includes a variety of DTDs. (Users of
standard psgml mode don’t have this feature;
sorry.[11])
	
 At the beginning of the file, select DTD→ Insert
DTD→ XHTML Transitional.

	

[image: image with no caption]

	
 Emacs inserts the two required elements for us.

That’s all it takes to make this file a well-formed
XHTML file. psgml mode allows for validation against the DTD.
Let’s validate it using C-c
C-v to make sure it’s okay.
	
 Type: C-c C-v

	

[image: image with no caption]

	
 psgml mode inserts the default validate command in the minibuffer;
press Enter to run it.

	
 Press Enter and type y to save the buffer when prompted

	

[image: image with no caption]

	
 The *compilation* buffer indicates (somewhat
cryptically) that the document is valid.

Of course, typical documents are far more complex than this one.
Options on the View menu provide selective hiding and showing of
elements, including an option to hide all tags, allowing you to focus
on the content of the file instead.
psgml mode also offers numerous options. If you are running TEI
Emacs, you’ll find the File Options and User Options
submenus on the XML/SGML menu. If you’ve installed
psgml mode standalone, you’ll find them on the SGML
menu. Table 8-8 summarizes some of the psgml
commands.
Table 8-8. Bindings in psgml mode
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-M-Space

 	

 sgml-mark-element

 	
 Mark the current element.

	

 M-Tab

 	

 sgml-complete

 	
 Complete the current tag.

	

 C-M-t

 	

 sgml-transpose-element

 	
 Transpose two elements.

	

 C-M-h

 	

 sgml-mark-current-element

 	
 Mark the current element.

	

 C-M-k
 Modify
 →
 Kill Element

 	

 sgml-kill-element

 	
 Delete the current element (and any child elements).

	

 C-M-u
 Move
 →
 Backward Up Element

 	

 sgml-backward-up-element

 	
 Move up to the parent element for this element.

	

 C-M-d
 Move
 →
 Down Element

 	

 sgml-down-element

 	
 Move down to the next child element.

	

 C-M-b
 Move
 →
 Backward Element

 	

 sgml-backward-element

 	
 Move to the previous element.

	

 C-M-f
 Move
 →
 Forward Element

 	

 sgml-forward-element

 	
 Move to the next element.

	

 C-M-e
 Move
 →
 End of Element

 	

 sgml-end-of-element

 	
 Move to the end of the current element.

	

 C-M-a
 Move
 →
 Beginning of Element

 	

 sgml-beginning-of-element

 	
 Move to the beginning of the current element.

	

 C-c C-w
 SGML
 →
 What Element

 	

 sgml-what-element

 	
 Similar to sgml-position but describes hierarchy in terms of tags
versus content (for example, start-tag in title in head in html).

	

 C-c C-v
 SGML
 →
 Validate

 	

 sgml-validate

 	
 Insert validation command in the minibuffer so you can modify it if
necessary before pressing Enter to execute it.

	

 C-c C-t
 SGML
 →
 List Valid Tags

 	

 sgml-list-valid-tags

 	
 List tags that are valid in the current context.

	

 C-c C-q
 Modify
 →
 Fill Element

 	

 sgml-fill-element

 	
 Fill element according to the mode’s indentation
rules.

	

 C-c C-o
 Move
 →
 Next Trouble Spot

 	

 sgml-next-trouble-spot

 	
 Find the next problem spot and display the problem in the minibuffer.

	

 C-c C-n
 Move
 →
 Up Element

 	

 sgml-up-element

 	
 Move to the parent element.

	

 C-c Enter

 	

 sgml-split-element

 	
 Split current element.

	

 C-c C-l
 SGML
 →
 Show/Hide Warning Log

 	

 sgml-show-or-clear-log

 	
 Display or delete the SGML LOG buffer (menu option
name is misleading).

	

 C-c C-k
 Modify
 →
 Kill Markup

 	

 sgml-kill-markup

 	
 Delete current tag.

	

 C-c /
 Markup
 →
 End Current Element

 	

 sgml-insert-end-tag

 	
 Insert closing tag for current tag.

	

 C-c -
 Modify
 →
 Untag Element

 	

 sgml-untag-element

 	
 Delete the current tag pair.

	

 C-c #
 Modify
 →
 Make Character Reference

 	

 sgml-make-character-reference

 	
 Change character under the cursor to the equivalent entity.

	

 C-c C-f C-e
 View
 →
 Fold Element

 	

 sgml-fold-element

 	
 Hide the current element and its children if any.

	

 C-c C-u C-e
 View
 →
 Unfold Element

 	

 sgml-unfold-element

 	
 Show the current element and its children if any.

	

 C-c C-f C-s
 View
 →
 Fold Subelement

 	

 sgml-fold-subelement

 	
 Hide subelements.

	

 C-c C-f C-r
 View
 →
 Fold Region

 	

 sgml-fold-region

 	
 Hide the region.

	

 C-c C-u C-a
 View
 →
 Unfold All

 	

 sgml-unfold-all

 	
 Show all hidden tags and text.

[9] We’d like to
thank Emacs guru Eric Pement for pointing out TEI Emacs to
Deb.

[10] We sincerely hope that
this support will be extended to Mac OS X as well, providing
developers and writers on that platform the benefits of this
tool’s capabilities. Meanwhile, Mac users may want
to install nxml mode from http://thaiopensource.com/download/ and psgml
mode from http://www.lysator.liu.se/projects/about_psgml.html.

[11] A straightforward introduction to setting up a
complete environment for psgml mode can be found at http://openacs.org/doc/openacs-5-0-0/psgml-mode.html.

Marking up Text for TEX and LATEX

GNU Emacs provides excellent support for marking up TEX files. Most
people today use LATEX , which is written in TEX and provides more
control over formatting. As a result, we’ll talk
about LaTeX mode here.
Before we launch into this discussion, we assume that you have set up
LATEX on your platform. On Red Hat Linux, it’s set
up by default. Windows and Mac OS X users must install and configure
LATEX before proceeding.[12]

Emacs attempts to guess whether you’re editing a TEX
or LATEX file and enter the appropriate mode. You can force LaTeX
mode if Emacs doesn’t enter it automatically by
typing M-x latex-mode Enter.
Matching Braces

LATEX commands often take

 the form
\keyword{text}. LaTeX mode
doesn’t try to figure out if you’re
using the “right” keywords since
the language is extensible and you may have defined your own
keywords. It does, however, provide support for avoiding the most
common error: mismatched curly braces and dollar signs.
In LATEX , curly braces ({}) and dollar signs ($$)

 should always appear in pairs;
Emacs checks to make sure that each opening brace or dollar sign has
a counterpart. When you type a closing brace or dollar sign, the
cursor moves quickly to its counterpart (provided that it is on the
screen; it shows the context in the minibuffer if it is not), then
back again.
Emacs generates braces in matching pairs. The command C-c { inserts opening and closing braces and
positions the cursor for typing between the braces.
Typing C-c } moves you past the
right brace. It always finds the correct closing brace, given your
current position. If there is no closing brace, you get an error
message that says Scan error: Unbalanced
parentheses. You also get this error message if you type
C-c } while the cursor is in a
section that is not surrounded by braces, which can be a little
confusing.
To check for mismatched curly braces and dollar signs, type M-x tex-validate-buffer Enter. This command
checks the entire buffer for unbalanced parentheses, curly braces,
dollar signs, and the like. (If you have a large file, you might want
to validate a region instead using M-x
tex-validate-region Enter). If it finds any errors, Emacs
displays an *Occur* buffer with
Mismatches: at the top and a list of lines on
which it found errors. You can then easily move to each line that
contains an error with M-x
goto-line.
Sometimes a mismatched parenthesis early in the buffer can start a
chain reaction of “errors” through
the rest of the file. If you suspect that one of the corrections you
make may have fixed most of the remaining errors, simply run
tex-validate-buffer again.
When you’re stepping through errors, C-c } provides a good way to check where the
closing brace for a given opening brace is. Position the cursor right
after the opening brace and press C-c
}.

Quotation Marks and Paragraphing

LaTeX mode also has features for

 handling quotation marks and
paragraph separation. Typing a quotation mark (“) causes Emacs to
simulate left and right quotation marks. Left quotation marks are
represented as two backtick characters (``) while right quotation
marks are represented as two apostrophes (' '). (Left and right
quotation marks are not part of the standard ASCII character set.) If
you need to type a literal quotation mark for any reason, simply use
the quote-character command preceding the quotation mark, like this:
C-q “.

Command Pairs

LaTeX mode provides support for
 inserting command pairs. To insert a
command pair, type C-c C-o (for
latex-insert-block). Emacs prompts
for the block name, and then for associated options. For example,
type C-c C-o Enter
 document Enter Enter (the second Enter indicates no options). Emacs inserts the
command pair and positions the cursor between them:
\begin{document}

\end{document}
You can use this command to mark up a text file after you write it.
If you mark a region, you can type C-c
C-o to wrap a command pair around that region.
A related command is C-c C-e (for
latex-close-block). In this case,
you type an opening command, press C-c
C-e, and Emacs inserts the corresponding closing command.
These commands work with any keyword, regardless of what it is. Emacs
can’t check to make sure that it’s
a valid LATEX keyword or even that it’s been
defined. For example, if you type \begin{eating} C-c C-e, Emacs inserts
\end{eating}. It’s
up to you to make sure you use valid keywords.

Processing and Printing Text

In addition to marking up files

 for LATEX
, you can process files, see your errors (if any), and invoke a
viewer, all without leaving Emacs. To process a file, just type
C-c C-f (for tex-file).[13] Emacs saves the file
before processing it. Messages that would appear on screen are
channeled to a buffer called *tex-shell*, which
Emacs displays on your screen. If the buffer isn’t
on the screen, typing C-c C-l (for
tex-recenter-output-buffer)
automatically displays it.
To demonstrate, let’s try processing
dickens.tex, a very basic file indeed.
	
 Type: C-c C-f

	

[image: image with no caption]

	
 Processing a LATEX file displays a special
tex-shell buffer.

This command generates a .dvi file, which is an
intermediate, device-independent file. You can view the resulting
file by typing C-c C-v. On Linux,
the default viewer is xdvi. Pressing C-c C-v displays the output in an
xdvi window.
	
 Type: C-c C-v

	

[image: image with no caption]

	
 Output displayed by xdvi.

To print the .dvi file, give the command
C-c C-p (for tex-print); this formats the
.dvi file and sends it to your default printer.
C-c C-q (tex-show-print-queue) displays the print queue
so you know when to go to the printer to look for your processed
output.
Two important variables tell Emacs how to print a TEX , file. You
need to know about them if C-c C-p
or C-c C-q doesn’t
work correctly; if these commands don’t work, the
configuration of TEX , on your system may be nonstandard, or the
print and print queue commands are slightly different. The variable
tex-dvi-print-command determines the
command that is used to print a .dvi file; its
default is lpr -d. For print queues,
the command used to show the print queue is controlled by the
tex-show-queue-command variable. By
default, tex-show-queue-command is
set to lpq.

 Table 8-9 summarizes TeX and LaTeX

 mode commands.
Table 8-9. TeX and LaTeX mode commands
	
 Keystrokes

 	
 Command name

 	
 Action

	

 (none)

 	

 tex-mode

 	
 Enter TeX or LaTeX mode according to file’s contents.

	

 (none)

 	

 plain-tex-mode

 	
 Enter TeX mode.

	

 (none)

 	

 latex-mode

 	
 Enter LaTeX mode.

	

 C-j

 	

 tex-terminate-paragraph

 	
 Insert two hard returns (standard end of paragraph) and check syntax
of paragraph.

	

 C-c {

 	

 tex-insert-braces

 	
 Insert two braces and put cursor between them.

	

 C-c }

 	

 up-list

 	
 If you are between braces, position the cursor following the closing
brace.

	

 (none)TeX
 →
 Validate
Buffer

 	

 tex-validate-buffer

 	
 Check buffer for syntax errors.

	

 (none)TeX
 →
 Validate
Region

 	

 tex-validate-region

 	
 Check the region for syntax errors.

	

 C-c C-f
 TeX
 →
 TeX File

 	

 tex-file

 	
 Saves the current file, then processes it.

	

 C-c C-b
 TeX
 →
 TeX Buffer

 	

 tex-buffer

 	
 Process buffer.[14]

	

 C-c C-l
 TeX
 →
 TeX Recenter

 	

 tex-recenter-output-buffer

 	
 Put the message shell on the screen, showing (at least) the last
error message.

	

 C-c C-k
 TeX
 →
 TeX Kill

 	

 tex-kill-job

 	
 Kill processing.

	

 C-c C-p
 TeX
 →
 TeX Print

 	

 tex-print

 	
 Print output.

	

 C-c C-q
 TeX
 →
 Show Print Queue

 	

 tex-show-print-queue

 	
 Show print queue.

	

 C-c C-e

 	

 latex-close-block

 	
 Provide closing element of a command pair.

	

 (none)

 	

 tex-close-latex-block

 	
 Provide closing element of a command pair.

	

 C-c
Tab`
 TeX
 →
 BibTeX File

 	

 tex-bibtex-file

 	
 Process the current file using BibTeX, a system for creating
bibliographies automatically.

	

 C-c C-v
 TeX
 →
 TeX View

 	

 tex-view

 	
 View .dvi output.

	

 (none)TeX
 →
 TeX Print (alt
printer)

 	

 tex-alt-print

 	
 Print .dvi file using an alternative printer
defined by the variable tex-alt-dvi-print-command.

	

 C-c C-o

 	

 latex-insert-block

 	
 Insert a block (prompts for block name and options).

	

 C-c C-u

 	

 tex-goto-last-unclosed-latex-block

 	
 Look backward in the file to find the nearest unclosed block and move
the cursor there.

	

 M-Enter

 	

 latex-insert-item

 	
 Insert \item.

	

 (none)

 	

 latex-split-block

 	
 Insert an end to the current block and the beginning of a new one.

	
 "

 	

 tex-insert-quote

 	
 Insert TeX-style quotation marks.

	[14] Using tex-buffer gives the resulting .dvi
file a long and strange filename that includes your domain
name. We recommend using C-c C-f
(for tex-file) instead.

[12] TEI Emacs, mentioned
earlier in this chapter, automatically sets up the environment for
you and adds more features including Auctex, a complete authoring
environment that supports many TEX variants as well as bibcite/bibtex
for generating bibliographies. However, LaTeX mode under TEI Emacs
appears to be a different beast from Emacs LaTeX mode, and we do not
describe it here.

[13] If you
don’t have your TEX environment set up properly (and
it isn’t by default on Mac OS X, for example), this
command hangs or crashes Emacs (pressing C-g may help; in one author’s
case it did and in another’s it
didn’t). Try the latex command
at a shell prompt to see if the command exists before attempting to
process a file using Emacs.

Chapter 9. Computer Language Support

As many programmers know, the task of programming usually breaks down
into a cycle of think-write-debug. If you have used Unix (or various
other operating systems) for programming, you have probably become
accustomed to using separate tools for each phase of the cycle, for
example, a text editor for writing, a compiler for compiling, and the
operating system itself for running programs. You would undoubtedly
find an environment much more productive if the boundaries between
the cycle phases—and the tools that support them—were
erased.
Emacs provides considerable support for writing, running, and
debugging programs written in a wide variety of languages, and it
integrates this support into a smooth framework. You never have to
leave Emacs when developing programs, so you will find it easier to
concentrate on the actual programming task (i.e., the
“think” part of the cycle) because
you won’t have to spend lots of time going from one
tool to another.
When you write code, you can

 use one of Emacs’s
programming language modes; these turn Emacs
into a spiffy syntax-directed or language-sensitive editor that knows
about the syntax of the language. That makes it easier for you to
write code in a uniform, easy-to-read, customizable style. Language
modes exist for several different programming languages.
Emacs also supports running and debugging programs. Shell mode (see
Chapter 5) and multiple windows (see Chapter 4) allow you to run your code while editing
it. Emacs has a powerful facility for interfacing to many compilers
and the Unix make command: Emacs can
interpret compilers’ error messages and visit files
where errors occur at the appropriate line number. Indeed, many tools
(such as the Java build tool, ant)
include command-line options to format their output in an
Emacs-friendly way.
In this chapter, we cover the features of language modes in general
such as compiling and debugging programs, comments, indentation, and
syntax highlighting. We also spend a bit of time upfront looking at
the etags facility, which is a great help to
programmers who work on large, multifile projects. These features
apply to all language modes. We then delve into
Emacs’s support for various languages, including C,
C++, Java, Perl, SQL, and Lisp.

Emacs as an IDE

Emacs provides a number of features that appeal to
developers. You can edit code quickly with font support and
auto-completion of function and variable names; you can compile the
program and even run a debugger all without leaving your
“editor.” While you
don’t have some of the graphical tools commonly
found in commercial integrated development environments (IDEs),
almost every other feature of those IDEs can be found in
Emacs—for every language you could imagine working in.
Of course, there will always be occasions when you need to view your
documents without the bells and whistles some language modes attach.
You can always switch to plain text (M-x
text-mode) or, more to the point, fundamental mode
(M-x fundamental-mode).
Compiling and Debugging

As mentioned at the

 beginning of this chapter,
Emacs’s support for programmers does not end when
you are done writing the code. A typical strategy for using Emacs
when working on a large programming project is to log in, go to the
directory where your source files reside, and invoke Emacs on the
source files (e.g., emacs Makefile
myproj*.[ch] for C programmers). While you are editing
your code, you can compile it using the commands described
later—as you will see, you need not even worry about saving
your changes. You can also test your compiled code in a shell using
shell mode (see Chapter 5). The bottom line is
that you should rarely—if ever—have to leave Emacs
throughout your session.
Emacs provides an interface

 to compilers and the Unix make utility that is more direct and powerful
than shell mode. At the heart of this facility is the command
M-x compile Enter. This command
causes a series of events to occur. First, it prompts you for a
compilation command. The default command is make -k,[1] but if you type another command, that
new command becomes the default for subsequent invocations during
your Emacs session. You can change the default by setting the
variable compile-command in your
.emacs file. For example, to use the Java build
tool ant as your default compile
command, just add this line:
(setq 'compile-command "ant -emacs")
After you have typed the command, Emacs offers to save all unsaved
file buffers, thus relieving you of the responsibility of making sure
your changes have been saved. It then creates a buffer called
compilation and an associated window. It runs
the compilation command (as a subprocess, just like the shell in
shell mode), with output going to the
compilation buffer. While the command runs, the
minibuffer says Compiling: run; it says
exit when the compile job finishes.
Now the fun begins. If the compilation resulted in an error, you can
type C-x ` (for next-error; this is a backquote, not a single
quote). Emacs reads the first error message, figures out the file and
line number of the error, and visits the file at that line number.
After you have corrected the error, you can type C-x ` again to visit subsequent error
locations. Each time you type C-x `,
Emacs scrolls the *compilation* window so that the
current error message appears at the top.
To start at the first error message again, type C-x ` with a prefix argument (i.e., C-u C-x `). A nice thing about C-x ` is that you can use it as soon as an
error is encountered; you do not have to wait for the compilation to
finish.
The mode of the *compilation* buffer (compilation
mode) supports a few other useful commands for navigating through the
error messages as summarized in Table 9-1.
Table 9-1. Compilation mode commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x `

 	

 next-error

 	
 Move to the next error message and visit the corresponding source
code.

	

 M-n

 	

 compilation-next-error

 	
 Move to the next error message.

	

 M-p

 	

 compilation-previous-error

 	
 Move to the previous error message.

	

 C-c C-c

 	

 compilation-goto-error

 	
 Visit the source code for the current error message.

	

 Space

 	

 scroll-down

 	
 Scroll down one screen.

	

 Del

 	

 scroll-up

 	
 Scroll up one screen.

 Space and Del are handy screen-scrolling commands found
in various read-only Emacs modes.
Note that M-n and M-p do not visit the source code corresponding
to the error message; they simply allow you to move easily through
error messages that may take up more than one line each. However, you
can visit the source code from any error message by typing C-c C-c.
How does Emacs interpret
 the
error message? It uses the variable compilation-error-regexp-alist, which is a
list of regular expressions designed to match the error messages of a
wide variety of C and C++ compilers and the lint C code checking program.[2] It should also work
with compilers for languages for which Emacs has language modes, such
as Java, Fortran, Ada, and Modula-2. Emacs tries to parse (analyze)
an error message with each of the regular expressions in the list
until it finds one that extracts the filename and line number where
the error occurred.
There is a chance that the error
 message parser won’t
work with certain compilers, especially if you are using Emacs on a
non-Unix system. You can find out by trying M-x
compile on some code that you know contains an error; if
you type C-x `, and Emacs claims
that there are no more errors, the next-error feature does not work with your
compiler.
If the parser doesn’t work for you, you may want to
try adding a regular expression to compilation-error-regexp-alist that fits your
compiler’s error message format.
We’ll show you an example of this in Chapter 11.
The compile package also
includes
similar support for the Unix grep
(search files) command, thus effectively giving Emacs a multifile
search capability. If you type M-x
grep, you are prompted for arguments to send to grep—that is, a search pattern and
filename(s). Emacs runs grep with
the -n option, which tells it to
print filenames and line numbers of matching lines.[3] The same
happens as with M-x compile; you can
type C-x ` to have Emacs visit the
next matched line in its file.

[1] The -k option overrides make’s default of stopping
after a job returns an error. Instead, make continues on branches of the dependency
tree that do not depend on the branch where the error
occurred.

[2] Unfortunately, Emacs won’t understand error
messages generated by make itself,
such as those due to syntax errors in your
Makefile.

[3] If grep -n is run on only one
file, it just prints line numbers; Emacs forces it to print the
filename as well in this case by appending the dummy file
/dev/null to the grep command.

Writing Code

We have already seen various examples of Emacs modes, including text
mode (see Chapter 2) and shell mode (see Chapter 5). Special functionality like the buffer
list (see Chapter 4) and Dired (see Chapter 5) are actually modes as well. All modes have
two basic components: an Emacs Lisp package that
implements the mode and a function that invokes
it.
Language Modes

The version of Emacs on

 which

 this book is based (21.3.5) comes with
language modes for Ada, assembly, awk, C, C++, Common Lisp, Fortran,
ICON, Java, Lisp, MIM, Modula-2, Objective-C, Pascal, Pike, Perl,
PROLOG, Python, Scheme, SGML, Simula, and SQL; future versions will
undoubtedly add more. Many—but not all—of the language
modes are “hooked” into Emacs so
that if you visit a file with the proper filename suffix, you will
automatically be put in the correct mode. To find out whether Emacs
does this for the language you use, look up your language in the
table of Emacs Lisp packages in Appendix B. If one or more suffixes
is listed in the right-hand column, Emacs invokes the mode for files
with those suffixes.
However, if no suffix is listed (or if your compiler supports a
different suffix than the ones listed), you can set up Emacs to
invoke the mode automatically when you visit your source files. You
need to do two things: first, look again at the right-hand column in
the package table entry for your language, and you will find the name
of the function that invokes the mode (e.g., ada-mode, modula-2-mode). Second, you insert code in
your .emacs file that tells Emacs to
automatically load the proper package whenever you visit a file with
the suffix for the language in question.
You need to write two lines of code for this customization. The first
uses the autoload function, which
tells Emacs where to look for commands it doesn’t
already know about. It sets up an association between a function and
the package that implements the function so that when the function is
invoked for the first time, Emacs loads the package to get the code.
In our case, we need to create an association between a function that
invokes a language mode and the package that implements the mode.
This shows the format of autoload:
(autoload 'function "filename" "description" t)
Note the single quote preceding function and the
double quotes around filename and
description; for more details on this Lisp syntax,
see Chapter 11. If you are a PHP programmer, for
example, you can grab the latest Emacs PHP mode from http://sourceforge.net/projects/php-mode/
online. You would then put the following line in your
.emacs file:
(autoload 'php-mode "php-mode" "PHP editing mode." t)
This tells Emacs to load the PHP package when
the function php-mode is invoked for
the first time.
The second line of code completes the picture by creating an
association between the suffix for source files in your language and
the mode-invoking function so that the function is automatically
invoked when you visit a file with the proper suffix. This involves
the Emacs global variable auto-mode-alist, covered in Chapter 10; it is a list of associations that Emacs
uses to put visited files in modes according to their names. To
create such an association for PHP mode so that Emacs puts all files
with the suffix .php in that mode, add this line
to your .emacs file:
(setq auto-mode-alist (cons '("\\.php$" . php-mode) auto-mode-alist))
This Lisp code sets up the following chain of events when you visit a
file whose suffix indicates source code in your programming language.
Let’s say you visit the file
pgm.php. Emacs reads the file, then finds an
entry corresponding to the .php suffix in the
auto-mode-alist and tries to invoke
the associated function php-mode. It
notices that the function php-mode
doesn’t exist, but that there is an autoload association between it and the
PHP package. It loads that package and, finding
the php-mode command, runs it. After
this, your buffer is in PHP mode.
For some interpreted languages like Perl and Python, you will also
want to update the interpreter-mode-alist
global variable:
(setq interpreter-mode-alist
 (cons '("python" . python-mode)
 interpreter-mode-alist))
If your script file begins with the Unix interpreter prefix #!, Emacs checks that line to determine what
language you are using. That can be especially helpful when the
script file does not have a telltale extension like
.py or .pl.
Syntax

Although language modes differ in exact

 functionality, they all support
the same basic concepts. The most important of these involves
knowledge of the syntax of the language in
question—its characters, vocabulary, and certain aspects of its
grammar. We have already seen that Emacs handles some syntactic
aspects of human language. When you edit regular text, Emacs knows
about words, sentences, and paragraphs: you can move the cursor and
delete text with respect to those units. It also knows about certain
kinds of punctuation, such as parentheses: when you type a right
parenthesis, it “flashes” the
matching left parenthesis by moving the cursor there for a second and
then returning.[4] This is a convenient way of ensuring that your
parentheses match correctly.
Emacs has knowledge about programming language syntax that is
analogous to its knowledge of human language syntax. In general, it
keeps track of the following basic syntactic elements:
	
 Words, which correspond to
identifiers and numbers in
most programming languages.

	
 Punctuation, which includes such things as
operators (e.g., +, -,
<, and >) and statement
separators (e.g., semicolons).

	
 Strings, which are strings of characters to be
taken literally and surrounded by delimiters
(such as quotation marks).

	
 Parentheses, which can include such things as
square brackets ([and]) and curly braces ({ and }) as
well as regular parentheses.

	
 Whitespace, such as spaces and tabs, which are
to be ignored.

	
 Comments, which are

 strings of characters to be ignored and
surrounded by delimiters that depend on the language (e.g., /* and */ for
C, // and a newline for C++ and
Java, or semicolon (;) and a newline
for Lisp).

Emacs keeps this information internally in the form of
syntax tables; like keymaps (as described in
Chapter 10), Emacs has a
global syntax table used for all buffers, as
well a local table for each buffer, which varies
according to the mode the buffer is in. You can view the syntax table
for the current buffer by typing C-h
s (for describe-syntax).
In addition, language modes know about more advanced
language-dependent syntactic concepts like statements, statement
blocks, functions, subroutines, Lisp syntactic expressions, and so
on.

Comments

All programming

 languages
have comment syntax, so Emacs provides a few features that deal with
comments in general; these are made language-specific in each
language mode. The universal comment command for all language modes
is M-; (for indent-for-comment).[5] When you type M-;, Emacs moves to a column equal to the
value of the variable comment-column; if the text on the line goes
past that column, it moves to one space past the last text character.
It then inserts a comment delimiter (or a pair of opening and closing
delimiters, as in /* and */ for C) and puts the cursor after the
opening delimiter.
For example, if you want to add a comment to a statement, put the
cursor anywhere on the line containing that statement and type
M-;. The result is
 result += y; /* */
You can then type your comment in between the delimiters. If you were
to do the same thing on a longer line of code, say,
 q_i = term_arr[i].num_docs / total_docs;
the result would be
 q_i = term_arr[i].num_docs / total_docs; /* */
You can customize the variable comment-column, of course, by putting the
appropriate code in your .emacs file. This is
the most useful way if you want to do it permanently. But if you want
to reset comment-column temporarily
within the current buffer, you can just move the cursor to where you
want the comment column to be and type C-x
; (for set-comment-column). Note that this command
affects only the value of comment-column in the current buffer; its
value in other buffers—even other buffers in the same
mode—is not changed.
When you are typing a comment and want to continue it on the next
line, M-j (for indent-new-comment-line) does it. This command
starts a new comment on the next line (though some language modes
allow you to customize it so that it continues the same comment
instead). Say you have typed in the text of the comment for this
statement, and the cursor is at the end of the text:
 result += y; /* add the multiplicand */
You want to extend the comment to another line. If you type M-j, you get the following:
 result += y; /* add the multiplicand*/
 /* */
You can type the second line of your comment. You can also use
M-j to split existing comment text
into two lines. Assume your cursor is positioned like this:
 result += y; /* add the multiplicand */
If you type M-j now, the result is:
 result += y; /* add the */
 /* multiplicand */
If you want to comment out a section of your code, you can use the
comment-region command (not bound to
keystrokes except in certain language modes). Assume you have code
that looks like this:
 this = is (a);
 section (of, source, code);
 that += (takes[up]->a * number);
 of (lines);
If you define a region in the usual way and type M-x comment-region, the result is:
/* this = is (a); */
/* section (of, source, code); */
/* that += (takes[up]->a * number); */
/* of (lines); */
You can easily get rid of single-line comments
by typing M-x kill-comment Enter,
which deletes any comment on the current line. The cursor does not
have to be within the comment. Each language mode has special
features relating to comments in the particular language, usually
including variables that let you customize commenting style.

Indenting Code

In addition to syntactic knowledge,
 Emacs language modes contain
various features to help you produce nicely formatted code. These
features implement standards of indentation, commenting, and other
aspects of programming style, thus ensuring consistency and
readability, getting comments to line up, and so on. Perhaps more
importantly, they relieve you of the tiresome burden of supplying
correct indentation and even of remembering what the current
indentation is. The nicest thing about these standards is that they
are usually customizable.
We have already seen that, in text mode, you can type C-j instead of Enter, at the end of a line, and Emacs indents
the next line properly for you. This indentation is controlled by the
variable left-margin, whose value is
the column to indent to. Much the same thing happens in programming
language modes, but the process is more flexible and complex.
As in text mode, C-j indents the
next line properly in language modes. You can also indent any line
properly after it has been typed by pressing Tab with the cursor anywhere on the line.
Some language modes have extra functionality attached to characters
that terminate statements—like semicolons or right curly
braces—so that when you type them, Emacs automatically indents
the current line. Emacs documentation calls this behavior
electric. Most language modes also have sets of
variables that control indentation style (and that you can
customize).

 Table 9-2 lists a few other commands relating to
indentation that work according to the rules set up for the language

 in question.
Table 9-2. Basic indentation commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-M-\

 	

 indent-region

 	
 Indent each line between the cursor and mark.

	

 M-m

 	

 back-to-indentation

 	
 Move to the first nonblank character on the line.

	

 M-^

 	

 delete-indentation

 	
 Join this line to the previous one.

The following is an example of what C-M-\ does. This example is in C, and
subsequent examples refer to it. The concepts in all examples in this
section are applicable to most other languages; we cover analogous
Lisp and Java features in the sections on modes for those languages.
Suppose you have the following C code:
int times (x, y)
int x, y;
{
int i;
int result = 0;

for (i = 0; i < x; i++)
{
result += y;
}
}
If you set mark at the beginning of this code, put the cursor at the
end, and type C-M-\, Emacs formats
it like this:
int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}

 C-M-\ is also handy for indenting an
entire file according to your particular indentation style: you can
just type C-x h (for mark-whole-buffer) followed by C-M-\.

 M-m is handy for moving to the
beginning of the actual code on a line. For example, assume your
cursor is positioned like this:
 int result = 0;
If you type M-m, it moves to the
beginning of the int:
 int result = 0;
As an example of M-^,
let’s say you want the opening curly brace for the
for statement to appear on the same
line as the for. Put the cursor
anywhere on the line with the opening curly brace, type M-^, and the code looks like this:
 for (i = 0; i < x; i++) {
 result += y;
 }
Language modes usually provide additional indentation commands that
relate to specific features of the language. Having covered the
general language mode concepts, we want to show you a few other
general utilities: etags and
font-lock mode. The etags facility
helps programmers who work on large, multifile programs. All language
modes can also take advantage of font-lock mode to make development
more efficient.

etags

Another general feature of
Emacs that applies to
programmers is the etags
facility.[6]
 etags works with code in many other languages
as well, including Fortran, Java, Perl, Pascal, LATEX,, Lisp, and
many assembly languages. If you work on large, multifile projects,
you will find etags to be an
enormous help.

 etags is basically a multifile
search facility that
knows about C and Perl function definitions as well as searching in
general. With it, you can find a function anywhere in an entire
directory without having to remember in which file the function is
defined, and you can do searches and query-replaces that span
multiple files. etags uses
tag tables, which contain lists of function
names for each file in a directory along with information on where
the functions’ definitions are located within the
files. Many of the commands associated with etags involve regular expressions (see Chapter 11) in search strings.
To use etags, you must first invoke
the separate etags program in your
current directory to create the tag table. Its arguments are the
files for which you want tag information. The usual way to invoke it
is etags *.[ch], that is, building a
tag table from all files ending in .c or
.h. (That’s for you C
programmers; other languages would use their appropriate extensions,
of course.) You can run etags from
shell mode or with the command M-!
(for shell-command). The output of
etags is the file
TAGS, which is the tag table. When you are
writing code, you can update your tag table to reflect new files and
function definitions by invoking etags again.
After you have created the tag table, you need to make it known to
Emacs. To do this, type M-x visit-tags-table
Enter. This prompts you for the name of the tag table
file; the default is TAGS in the current
directory, as you would expect. After you execute this step, you can
use the various Emacs tags commands.
The most important tag command is M-. (for find-tag). This command prompts you for a
string to use in searching the tag table for a function whose name
contains the string. Supply the search string, and Emacs visits the
file containing the matching function name in the current window and
goes to the first line of the function’s definition.
A variation of M-. is C-x 4 . (for find-tag-other-window), which uses another
window instead of replacing the text in your current window.
A nice feature of M-. is that it
picks up the word the cursor is on and uses it as the default search
string. For example, if your cursor is anywhere on the string
my_function, M-. uses my_function as the default. Thus, when you are
looking at a C statement that calls a function, you can type
M-. to see the code for that
function.
If you have multiple functions with the same name, M-. finds the function in the file whose name
comes first in alphabetical order. To find the others, you can use
the command M-, (for tags-loop-continue) to find the next one (or
complain if there are no more). This feature is especially useful if
your directory contains more than one program, that is, if there is
more than one function called main. M-, also has other uses, as we will see.
You can use the tag table to search for more than just function
definitions. The command M-x tags-search
Enter prompts for a regular expression; it searches
through all files listed in the tag table (such as, all
.c and .h files) for any
occurrence of the regular expression, whether it is a function name
or not. This capability is similar to the grep facility discussed earlier in this
chapter. After you have invoked tags-search, you can find additional matches
by typing M-,.
There is also an analogous query-replace capability. The command
M-x tags-query-replace Enter does a
regular expression query-replace (see Chapter 3) on all files listed in the tag table. As
with the regular query-replace-regexp command, if you precede
tags-query-replace with a prefix
argument (i.e., C-u M-x tags-query-replace
Enter), Emacs replaces only matches that are whole words.
This feature is useful, for example, if you want to replace
occurrences of printf without
disturbing occurrences of fprintf.
If you exit a tags-query-replace
with Esc or C-g, you can resume it later by typing
M-,.
The command M-x tags-apropos rounds
out the search facilities of etags.
If you give it a regular expression argument, it opens a
Tags List buffer that contains a list of all
tags in the tag table (including names of files as well as functions)
that match the regular expression. For example, if you want to find
out the names of output routines in a multiple-file C program, you
could invoke tags-apropos with the
argument print or write.
Finally, you can type M-x list-tags
Enter to list all the tags in the table—that is, all
the functions—for a given C file. Supply the filename at the
prompt, and you get a *Tags List* buffer showing
the names of functions defined in that file along with their return
types (if any). Note that if you move your cursor to this list, you
can use M-. to look at the actual
code for the function. M-. picks up
the word the cursor is on as the default function name, so you can
just move the cursor to the name of the function you want to see and
press M-. followed by Enter to see it.

Fonts and Font-lock Mode

There’s one last common feature

 to mention. The use of fonts to help
present code is very popular—so popular, in fact, that it is
now universal. Unlike the indentation and formatting supported by the
various language modes, nothing in the code itself changes. But when
you’re in font-lock mode, your program certainly
looks different.
You can turn on this feature for any language mode with M-x font-lock-mode to see for yourself.
Keywords get a particular color; comments get a different color and
are often italicized; strings and literals get yet another color. It
can aid quick browsing of code. Many people come to depend on it much
the way they rely on proper indentation. If you become one of those
people, you’ll want to make it the default for all
language sessions. You can add the following line to your
.emacs file to achieve this aim:
;; Turn on font-locking globally
(global-font-lock-mode t)
The colors and styles used are customizable if you
don’t like the defaults. M-x
list-faces-display produces a list of the named faces
Emacs knows about. You’ll see something similar to
the screen shown in Figure 9-1.
[image: Fonts available for customization in Emacs]

Figure 9-1. Fonts available for customization in Emacs

Of course, in real life, the colors and bold and whatnot should be
more pronounced. You’ll also see quite a few more
faces. You can modify any of those faces with either M-x modify-face (a simple prompted
“wizard” approach) or M-x customize-face (the big fancy interactive
approach). You can also add lines to your .emacs
file for your favorite customizations. Here’s an
example:
 '(font-lock-comment-face
 ((((class color) (background light))
 (:foreground "Firebrick" :slant italic)))))
Note that not all displays support all of the possible variations of
bold, italic, underline, colors, and so on. This is a classic case of
“your mileage may vary.” Still,
with the ability to customize it all yourself, you should be able to
find a combination that works well on your system.
The remaining sections in this chapter deal with several of the
language-specific modes including JDEE, a suite of packages devoted
to the world of Java development in Emacs.
You need not read all of these sections if you are interested in only
one or two of the languages. If you program in another language for
which Emacs has a mode, you may want to read one of the following
sections to get the “flavor” of a
language mode; all language modes have the same basic concepts, so
this should get you off to a good start. Indeed, many language modes
use another mode as a base. For example, Java mode is really just an
extension of C mode.

[4] Actually, there is a limit to how far
back (in characters) Emacs searches for a matching open parenthesis:
this is the value of the variable blink-matching-paren-distance, which defaults
to 25,600. The duration of the
“flash” is also configurable:
it’s the value (in seconds) of blink-matching-delay, whose default value is
1.

[5] The key
binding is mnemonic for Lisp programmers because comments in Lisp
start with semicolons.

[6]
 etags is
also a platform-specific feature. The etags facility is available on Unix platforms,
including Mac OS X.

C and C++ Support

Emacs automatically enters C mode

 when you visit a file whose
suffix is .c, .h,
.y (for yacc
grammars), or .lex (lex specification files). Emacs invokes C++
mode when you visit a file whose suffix is .C,
.H, .cc,
.hh, .cpp,
.cxx, .hxx,
.c++, or .h++. You can also
put any file in C mode manually by typing M-x
c-mode Enter. Similarly, you can use c++-mode to put a buffer into C++ mode.
Both C and C++ modes are implemented in the same Emacs Lisp package,
called cc-mode,[7] which
also includes a mode for the Objective-C language used in Mac OS X. C
mode understands both ANSI C and the older Kernighan and Ritchie C
syntax. We describe C mode functions, but you should assume that
everything also applies to C++ mode. C++ mode has a small number of
additional features, which we describe at the end of this section.
We should also note that the Emacs mode for Perl is derived from an
older version of C mode. If you program in Perl, you will find that
virtually all of the motion, indentation, and formatting commands in
C mode apply equally to Perl mode, with perl- replacing c- in their names. Emacs invokes Perl mode on
files with suffix .pl. (However, to be honest we
prefer CPerl mode, discussed later in this chapter.)
In C mode, Emacs understands the syntax elements described earlier in
this chapter. The characters semicolon (;), colon (:), comma (,)
curly braces ({ and }), and pound sign (#, for C preprocessor
commands) are all electric, meaning that Emacs automatically indents
the current line when you type them. It also actively uses the font
options when you have font-lock mode turned on.
Motion Commands

In addition to the standard

 Emacs
commands for words and sentences (which are mainly useful only inside
multiline comments), C mode contains advanced commands that know
about statements, functions,[8] and
preprocessor conditionals. A summary of these commands appears in
Table 9-3.
Table 9-3. Advanced C motion commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 M-a

 	

 c-beginning-of-statement

 	
 Move to the beginning of the current statement.

	

 M-e

 	

 c-end-of-statement

 	
 Move to the end of the current statement.

	

 M-q

 	

 c-fill-paragraph

 	
 If in comment, fill the paragraph, preserving indentations and
decorations.

	

 C-M-a

 	

 beginning-of-defun

 	
 Move to the beginning of the body of the function surrounding the
point.

	

 C-M-e

 	

 end-of-defun

 	
 Move to the end of the function.

	

 C-M-h

 	

 c-mark-function

 	
 Put the cursor at the beginning of the function, the mark at the end.

	

 C-c C-q

 	

 c-indent-defun

 	
 Indent the entire function according to indentation style.

	

 C-c C-u

 	

 c-up-conditional

 	
 Move to the beginning of the current preprocessor conditional.

	

 C-c C-p

 	

 c-backward-conditional

 	
 Move to the previous preprocessor conditional.

	

 C-c C-n

 	

 c-forward-conditional

 	
 Move to the next preprocessor conditional.

Notice that the statement motion commands have the same key bindings
as backward-sentence and forward-sentence, respectively. In fact, they
act as sentence commands if you use them within a C comment.
Similarly, M-q is normally the
fill-paragraph command; C mode
augments it with the ability to preserve indentations and decorative
characters at the beginnings of lines. For example, if your cursor is
anywhere in this comment:
/* This is
 * a
 * comment paragraph with wildly differing right
 * margins.
 * It goes on for a while,
 * then stops.
 */
typing M-q has this result:
/* This is a comment paragraph with wildly differing right margins.
 * It goes on for a while, then stops. */
You will find that the preprocessor conditional motion commands are a
godsend if you have to slog through someone else’s
voluminous code. Especially if you’re faced with
code built to run on a variety of systems—like Emacs
itself—often the most important question you need answered is,
“What code is actually compiled?”
With C-c C-u, you can tell instantly
what preprocessor conditional governs the code in question. Consider
this code block:
#define LUCYX
#define BADEXIT -1

#ifdef LUCYX
 ...
 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return BADEXIT;
 ...
#else
 ...
 fprintf (stderr, "You can't do that on this system!");
 ...
#endif
Imagine that the ellipses (. . .) represent hundreds of lines of
code. Now suppose you are trying to determine under what conditions
the file /dev/ptc is opened. If your cursor is
on that line of code, you can type C-c
C-u, and the cursor moves to the line #ifdef LUCYX—telling you that the code
is compiled if you’re on a LUCYX system. If you want
to skip the code that would not be compiled and go directly to the
end of the conditional, type C-c
C-n. We will see another command that is useful for
dealing with C preprocessor code later in this section.
C statement and statement block delimiter characters are bound to
commands that, in addition to inserting the appropriate character,
also provide proper indentation. These characters are {, },
;, and : (for labels and switch cases). For example, if you are closing
out a statement block or function body, you can press C-j (or Enter) and type }, and Emacs lines it up with its matching
{. This eliminates the need for you
to scroll back through the code to find out what column the { is in.
Because } is a parenthesis-type
character, Emacs attempts to
“flash” a matching { when you type }. If the matching { is outside of the text displayed in your
window, Emacs instead prints the line containing the { in the minibuffer. Furthermore, if only
whitespace (blanks or tabs) follows the { on its line, Emacs also prints a ^J (for C-j)
followed by the next line, thus giving a better idea of the context
of the {.
Recall the “times” example earlier
in this chapter. Let’s say you are typing in a
} to end the function, and the
{ that begins the function body is
off-screen. There is no code on the line following the beginning
{, so you see the following in the
minibuffer after you type }:
Matches {^J int i;

Customizing Code Indentation Style

Coding style in C—or any programming

 language for that
matter—is a very personal thing. C programmers learn from
various books or by referring to various different pieces of other
people’s code; eventually they evolve a personal
style that may or may not conform to those that they learned from.
C mode provides a rich set of features for customizing its
indentation behavior that mirrors this way of learning the language.
At the simplest level, you can choose a coding style by name. Then,
if you’re not satisfied, you can customize your
chosen style or even create your own from scratch. The latter tasks,
however, require a fair amount of Emacs Lisp programming knowledge
(see Chapter 11) and perhaps a bit of bravery.
You can choose a named coding style with the command M-x c-set-style. This command prompts you for
the name of the style you want. The easiest thing to do at this point
is to type Tab, the completion
character (see Chapter 14), which brings up a
Completions window that lists all of the
choices. Type one of them and press Enter to select it.
By default, Emacs comes loaded with the styles shown in Table 9-4.
Table 9-4. Built-in cc-mode indentation styles
	

 Style

 	

 Description

	
 bsd

 	
 Style used in code for BSD-derived versions of Unix.

	
 cc-mode

 	
 The default coding style, from which all others are derived .

	
 ellemtel

 	
 Style used in C++ documentation from Ellemtel Telecommunication
Systems Laboratories in Sweden .

	
 gnu

 	
 Style used in C code for Emacs itself and other GNU-related programs .

	
 java

 	
 Style used in Java code (the default for Java mode).

	
 k&r

 	
 Style of the classic text on C, Kernighan and
Ritchie’s The C Programming
Language .

	
 linux

 	
 Style used in C code that is part of the Linux kernel.

	
 python

 	
 Style used in python extensions.

	
 stroustrup

 	
 C++ coding style of the standard reference work, Bjarne
Stroustrup’s The C++ Programming
Language .

	
 user

 	
 Customizations you make to .emacs or via Custom
(see Chapter 10). All other styles inherit these
customizations if you set them.

	
 whitesmith

 	
 Style used in Whitesmith Ltd.’s documentation for
their C and C++ compilers .

To show how some of these styles work, let’s start
with the C function example from earlier in this chapter:
int times (x, y)
int x, y;
{
int i;
int result = 0;

for (i = 0; i < x; i++)
{
result += y;
}
}
If you define a region around this code and you type C-M-\ (for indent-region), Emacs reformats the code in
the default style like this:
int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}
If you type C-c . (for c-set-style), enter k&r, and then repeat the reformatting, the
code looks like this:
int times (x, y)
int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}
Or, if you want to switch to GNU-style indentation, choose the style
gnu and reformat. The result is:
int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}
Once you decide on a coding style, you can set it up permanently by
putting a line in your .emacs file that looks
like this:
(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")))
Unfortunately, we’ll have to wait until Chapter 11 to understand exactly what this code does.
For now, make sure that you insert a single quote (') before the
(lambda in the second line.
Each coding style contains subtleties that makes it nontrivial for
Emacs to implement. Older versions of Emacs did this by defining
several variables that controlled various indentation levels; these
were not easy to work with and, frankly, did not really cover 100
percent of the nuances of each style. The current version of C mode,
in contrast, uses a considerably larger set of variables—too
large, in fact, for anyone other than hardy Emacs Lisp hackers to
deal with.
Therefore, C mode keeps track of groups of these variables and their
values under named styles. One huge variable, called c-style-alist, contains all of the styles and
their associated information. You can customize this beast either by
changing values of variables within existing styles or by adding a
style of your own. For further details, look in the file
cc-mode.el in your system’s
Emacs Lisp directory (see Chapter 11).

Additional C and C++ Mode Features

C mode contains a number of other useful features, ranging from the
generally useful to the arcanely obscure. Perhaps the most
interesting of these are two ways of adding additional electric
functionality

 to certain keystrokes,
called auto-newline and
hungry-delete-key.[9]

When auto-newline is enabled, it causes Emacs to add a newline
character and indent the new line properly whenever you type a
semicolon (;), curly brace ({ or }), or, at certain times, comma (,)
or colon (:). These features can save you some time and help you
format your code in a consistent style.
Auto-newline is off by default. To turn it on, type C-c C-a for c-toggle-auto-state. (Repeat the same command
to turn it off again.) You will see the (C) in the mode line change to (C/a) as an indication. As an example of how
it works, try typing in the code for our times()
function. Type the first two lines up to the y on the second line:
int times (x, y)
int x, y
Now press the semicolon; notice that Emacs inserts a newline and
brings you down to the next line:
int times (x, y)
int x, y;
Type the opening curly brace, and it happens again:
int times (x, y)
int x, y;
{
Of course, the number of spaces Emacs indents after you type the {
depends on the indentation style you are using.
The other optional electric feature, hungry-delete-key, is also off by default. To
toggle it on, type C-c C-d (for
c-toggle-hungry-state). You will see
the (C) on the mode line change to
(C/h), or if you have auto-newline turned on, from (C/a) to (C/ah).
Turning on hungry-delete-key
empowers the Del key to delete all
whitespace to the left of the point. To go back to the previous
example, assume you just typed the open curly brace. Then, if you
press Del, Emacs deletes everything
back to the curly brace:
int times (x, y)
int x, y;
{
You can toggle the states of both auto-newline and hungry-delete-key with the command C-c C-t (for c-toggle-auto-hungry-state).
If you want either of these features on by default when you invoke
Emacs, you can put lines like the following in your
.emacs file:
(add-hook 'c-mode-hook
 '(lambda ()
 (c-toggle-auto-state)))
If you want to combine this customization with another C mode
customization, such as the indentation style in the previous example,
you need to combine the lines of Emacs Lisp code as follows:
(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")
 (c-toggle-auto-state)))
Again, we will see what this hook construct means in
“Customizing Existing Modes” in
Chapter 11.
C mode also provides support for comments; earlier in the chapter, we
saw examples of this support. There is, however, another feature. You
can customize M-j (for indent-new-comment-line) so that Emacs
continues the same comment on the next line instead of creating a new
pair of delimiters. The variable comment-multi-line controls this feature: if
it is set to nil (the default),
Emacs generates a new comment on the next line, as in the example
from earlier in the chapter:
result += y; /* add the multiplicand */
 /* */
This outcome is the result of typing M-j after multiplicand, and it shows that the cursor is
positioned so that you can type the text of the second comment line.
However, if you set comment-multi-line to t (or any value other than nil), you get this outcome instead:
result += y; /* add the multiplicand
 */
The final feature we’ll cover is C-c C-e, (for c-macro-expand). Like the conditional
compilation motion commands (e.g., C-c
C-u for c-up-conditional), c-macro-expand helps you answer the often
difficult question, “What code actually gets
compiled?” when your source code contains a morass
of preprocessor directives.
To use c-macro-expand, you must
first define a region. Then, when you type C-c
C-e, it takes the code within the region, passes it
through the actual C preprocessor, and places the output in a window
called *Macroexpansion*.
To see how this procedure works, let’s go back to
the code example from earlier in this chapter that contains C
preprocessor directives:
#define LUCYX
#define BADEXIT -1

#ifdef LUCYX
 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return BADEXIT;
#else
 fprintf (stderr, "You can't do that on this system!");
#endif
If you define a region around this chunk of code and type C-c C-e, you see following the message:
Invoking /lib/cpp -C on region...
followed by this:
done
Then you see a *Macroexpansion* window that
contains this result:
 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return -1;
If you want to use c-macro-expand
with a different C preprocessor command, instead of the default
/lib/cpp -C (the -C option means “preserve
comments in the output”), you can set the variable
c-macro-preprocessor. For example,
if you want to use an experimental preprocessor whose filename is
/usr/local/lib/cpp, put the following line in
your .emacs file:
(setq c-macro-preprocessor "/usr/local/lib/cpp -C")
It’s highly recommended that you keep the -C option for not deleting comments in your
code.

C++ Mode Differences

As we mentioned before, C++ mode uses the same Emacs Lisp package as C
mode. When you’re in C++ mode, Emacs understands C++
syntax, as opposed to C (or Objective-C) syntax. That results in
differences in how some of the commands discussed here behave, but in
ways that are not noticeable to the user.
There are few apparent differences between C++ and C mode. The most
important is the Emacs Lisp code you need to put in your
.emacs file to customize C++ mode: instead of
c-mode-hook, you use c++-mode-hook. For example, if you want C++
mode’s indentation style set to Stroustrup with automatic newlines instead of
the default style, put the following in your
.emacs file:
(add-hook 'c++-mode-hook
 '(lambda ()
 (c-set-style "Stroustrup")
 (c-toggle-auto-state)))
Notice that you can set hooks for C mode and C++ mode separately this
way, so that if you program in both languages, you can set up
separate indentation styles for each.
C++ mode provides an additional command: C-c
: (for c-scope-operator).
This command inserts the C++ double colon (::) scope operator.
It’s necessary because the colon (:) is normally
bound to electric functionality that can reindent the line when you
don’t want that done. The scope operator can appear
virtually anywhere in C++ code whereas the single colon usually
denotes a case label, which requires special
indentation. The C-c : command may
seem somewhat clumsy, but it’s a necessary
workaround to a syntactic clash in the C++ language.
Finally, both C and C++ mode contain the commands c-forward-into-nomenclature and c-backward-into-nomenclature, which
aren’t bound to any keystrokes by default. These are
like forward-word and backward-word, respectively, but they treat
capital letters in the middle of words as if they were starting new
words. For example, they treat ThisVariableName
as if it were three separate words while the standard forward-word and backward-word commands treat it as one word.
ThisTypeOfVariableName is a style used by C++
programmers, as opposed to
this_type_of_variable_name, which is somehow
more endemic to old-school C code.
C++ programmers may want to bind c-forward-into-nomenclature and c-backward-into-nomenclature to the keystrokes
normally bound to the standard word motion commands. We show you how
to do this in “Customizing Existing
Modes” in Chapter 11.
We’ve covered the main features of C and C++ modes,
but actually these modes include many more features, most of them
quite obscure or intended only for hardcore Emacs Lisp-adept
customizers. Look in the Emacs Lisp package cc-mode.el—and the ever-expanding list
of cc- helper packages—for
more details.

[7] We
know! There is no M-x cc-mode. It
can be confusing. Just try to remember that the modes are named
directly after the language they support.

[8] The function commands
have “defun” in their names because
they are actually adaptations of analogous commands in Lisp mode; a
defun is a function definition in Lisp.

[9] These emulate
electric-c-mode in the old Gosling
Emacs.

Java Support

As we mentioned earlier, recent versions of Emacs come with support
for Java built-in (Java mode is based on cc-mode).
We’ll explore Java mode briefly and then take a more
in-depth look at the Java Development
Environment for Emacs (JDEE).
Java Mode

Java mode shares all of the
 formatting and
font features mentioned above, but understands the Java language
specifically. You get thrown into Java mode when opening any
.java file.
When working in Java mode, you have exactly the same features
available as you do in C mode. Syntax highlighting handles Java
keywords and syntax when font-lock
mode is turned on. You can navigate Java commands using
M-a and M-e. When commenting out a region, it uses the
C++ style // comments.
You’ll notice a small augmentation in the indent
alignment commands if you choose to spread your throws or extends clauses over multiple lines. For
example, consider the following method declaration:
public Object getNetResource(String host, int port, String resName)
throws IllegalArgumentException,
IOException,
SQLException,
FileNotFoundException
{
If you mark the region and run M-C-\
to indent the region, it uses a special alignment for the exception
list:
public Object getNetResource(String host, int port, String resName)
 throws IllegalArgumentException,
 IOException,
 SQLException,
 FileNotFoundException
{
It all works like it is supposed to—just with Java as the
language at the core of the action. However, for more than casual
Java editing, you should read the next section on the JDEE.

The Java Development Environment for Emacs (JDEE)

While you can certainly get started right away
with the built-in Java mode, if you do more than occasional Java
programming, you might want to venture into the world of Paul
Kinnucan’s Java Development Environment for Emacs
(JDEE). It takes Emacs into the realm of Java IDE. You
won’t find a GUI builder, but everything else is in
place and ready to roll.
Getting Started

You can pick up the latest version of the JDEE online from
http://jdee.sunsite.dk/.[10] This site is essential to getting the JDEE up and
running. You’ll find all sorts of tips and tricks
and full user documentation on all of the bells and whistles is
available.
Before you can install the JDEE, you’ll need the
following components:
	Collection of Emacs Development Environment Tools (CEDET)
	Available on SourceForge (http://cedet.sourceforge.net/) or by
following the links from the JDEE home page. This collection is quite
popular as a foundation for more interesting programmer tools. You
may already have a sufficient version installed, but
it’s best to get the latest release.

	The JDEE Emacs Lisp library package
	Available as a separate download from the JDEE site.

	One or more JDKs
	While technically not required for editing files in Emacs, a JDK is
required to take advantage of any of the compilation or debugging
features of the JDEE. You’ll also have to register
each JDK you plan to use, but more on that later.

Installing CEDET

Installing CEDET is
 fairly straightforward if you
have a make command available. (For
Windows users, you’ll want to have the Cygnus Unix
Distribution installed. It gives you access to a large subset of Unix
tools which will come in handy far beyond the installation of the
JDEE.)
After you download the CEDET distribution from SourceForge, unpack it
wherever you want it to reside. Open a terminal window (or start a
Cygwin bash terminal on Windows) and change to the directory where
you unpacked the distribution. From there you should be able to run
the following command:
shell$ make EMACS=

/path/to/emacs

That process will probably take a few minutes to complete. The Lisp
files will be compiled for you.
When the make command completes, you
should be in good shape. The last step for CEDET is to update your
.emacs file:
;; Turn on CEDET's fun parts
(setq semantic-load-turn-useful-things-on t)
;; Load CEDET
(load-file "/path-to-cedet/common/cedet.el")

Installing the ELisp Library

Installing the ELisp library package
 from the JDEE site is
also straightforward. Unpack the downloaded file wherever you like,
but before you run the make command,
you’ll need to edit the
Makefile and configure the entries outlined in
Table 9-5 to match your system.
Table 9-5. JDEE Makefile entries
	
 Makefile entry

 	
 Example

 	
 Description

	
 prefix

 	
 /usr/local

 	
 The top-level directory for any shared or info directories.

	
 datadir

 	
 $(prefix)/share

 	
 The directory where your main Emacs directory is located.

	
 locallisppath

 	
 $(datadir)/emacs/site-lisp

 	
 The directory where any local Lisp files should be installed.

	
 ELIBDIR

 	
 $(locallisppath)/elib

 	
 The directory where the elib Lisp files will go.

	
 EMACS

 	
 /usr/bin/emacs

 	
 The command to start Emacs. This can be a fully qualified path or
simply “emacs” to reach the default
version found on your system.

Run the make command with the
install option to get everything set
up:
shell$ make install
The last step for the ELisp library is to make sure the Emacs
defaults acknowledge the new package. You simply need to add the new
directory to your load-path
variable, as described next.
The ELisp library actually provides a simple template file that
matches where you installed the package. After the make process completes, you should have an
elib_startup.el file in the directory where you
ran the make command. That file
contains the line you’ll need to add to your
.emacs file or you can merge it with the system
default.el file for everyone to use. (The
default.el file is often found in your
site-lisp directory. Chapter 11 has more details.)

Installing the JDEE

Five basic steps are required to

 install
the JDEE on your system:
	Get the necessary prerequisites downloaded and installed.

	Update the load path (.emacs).

	Set theJDEE to load at startup (.emacs).

	Compile JDEE .el files (optional).

	Register your JDKs (optional).

The previous section covered the first step. Make sure you take care
of those prerequisites before continuing. The next steps can be
handled in your .emacs file. The JDEE site
proposes the following entries as a minimal setup; we excerpt them
here (with one or two small tweaks) for easy reference.
;; This .emacs file illustrates the minimal setup
;; required to run the JDEE.

;; Set the debug option to enable a backtrace when a
;; problem occurs.
(setq debug-on-error t)

;; Update the Emacs load-path to include the path to
;; the JDEE and its require packages. This code assumes
;; that you have installed the packages in the
;; /usr/local/emacs/site-lisp directory. Adjust appropriately.
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/jde/lisp"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/semantic"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/speedbar"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/eieio"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/elib"))

;; If you want Emacs to defer loading the JDEE until you open a
;; Java file, edit the following line
(setq defer-loading-jde nil)
;; to read:
;;
;; (setq defer-loading-jde t)
;;

(if defer-loading-jde
 (progn
 (autoload 'jde-mode "jde" "JDE mode." t)
 (setq auto-mode-alist
 (append
 '(("\\.java\\'" . jde-mode))
 auto-mode-alist)))
 (require 'jde))

;; Set the basic indentation for Java source files
;; to two spaces.
(add-hook 'jde-mode-hook
 '(lambda ()
 (setq c-basic-offset 2)))

;; Include the following only if you want to run
;; bash as your shell.

;; Set up Emacs to run bash as its primary shell.
(setq shell-file-name "bash")
(setq shell-command-switch "-c")
(setq explicit-shell-file-name shell-file-name)
(setenv "SHELL" shell-file-name)
(setq explicit-sh-args '("-login" "-i"))
(if (boundp 'w32-quote-process-args)
 (setq w32-quote-process-args ?\")) ;; Include only for MS Windows.
Of course, you’ll need to make sure the paths in the
add-to-list 'load-path lines
match the actual directories you’re using.
Compiling the JDEE Lisp files is not required, but as noted in
“Byte-Compiling Lisp Files” in
Chapter 11, it’s a good idea
and speeds up several operations including general startup times. The
JDEE makes this step simple. After you have it installed, start Emacs
and run M-x jde-compile-jde. You run
this command only once, so it is definitely worthwhile.

Registering Your Java Tools

The last step we need
 to cover is registering your Java
development kits. This is not strictly necessary, but you
don’t want to skip this step. It is especially handy
if you work in an environment where you have to test multiple
versions of the JDK. With all of your kits registered in the JDEE,
you can switch between versions with a simple variable change.
To register a JDK, use the M-x
customize-variable command. The variable you need to
customize is jde-jdk-registry. That
will land you in the interactive customization screen. You can select
the INS (insert) button to add the
version number and path of your JDK. You can repeat that process for
as many JDKs as you want to register. See Figure 9-2 for a list of such entries on a Mac OS X
system.
[image: Inserting JDK entries in a Custom list]

Figure 9-2. Inserting JDK entries in a Custom list

Be sure to hit the State button and save this state for future
sessions. You can click the Finish button when
you’re done or just close the buffer.
After you have your JDKs registered, you can switch to the active
version using that same M-x
customize-variable command. This time, edit the jde-jdk variable. You’ll be
prompted to choose one of the registered versions. You may or may not
want to save this decision for future sessions. In any case, this
variable can be edited at any time.
JDK tools.jar problems

The compilation feature requires access to the
tools.jar file (or the equivalents built-in to
some JDKs). If the JDEE compile command fails with an error message
about not being able to find the tools.jar file,
your best bet is to customize the JDEE variable jde-global-classpath. Make sure that variable
includes the tools.jar file.
For some systems that do not have a tools.jar
file[11], you can steal that file from another machine, but
usually you just need to get your classpath and registry entries set
up correctly. Customizing the variables in Table 9-6 should get you compiling and running without
too much effort.
Table 9-6. JDEE variables to customize
	
 JDEE variable

 	
 Sample values

	

 jde-global-classpath

 	
 /usr/local/j2se:.

	

 jde-jdk-registry

 	
 Version = 1.4.2
Path = /usr/local/j2se

Whew! That was a lot of work. But the good news is that once
you’ve made it through the installation process, you
have all the spiffy features of the JDEE forever at your command. So
let’s get on with the features!

Editing with the JDEE

First off, you’re still in Emacs, so

 the usual motion commands described for
Java mode (and C mode) still apply. But the JDEE adds two really
great features to your editing cycle: command completion and class
browsing.
The idea behind command completion is that the JDEE can (usually)
predict which methods and variables are valid choices to make at
certain points in your Java program. For example, if you start typing
System. in your program, there are a
finite number of choices for what follows that period. JDEE can
display a list of those choices.
The command to show your list of completions is C-c C-v C-. (for jde-complete), which defaults to showing you a
menu of completions. (You can change that behavior by customizing the
jde-complete-function variable.) The
completions are generated by looking at all of the classes listed in
the jde-global-classpath variable
(or the CLASSPATH environment variable if no global classpath was
defined).
The class browser can be accessed quickly from the JDE menu and
launches a BeanShell browser for the class your cursor was on.
It’s like a context-sensitive documentation tool,
but a bit more powerful. Figure 9-3 shows what you
get when starting the browser while your cursor is on the word
System.
[image: The BeanShell class browser launched from the JDEE]

Figure 9-3. The BeanShell class browser launched from the JDEE

You can also launch the class browser with the M-x jde-browse-class-at-point command.
One other edit-time feature worth pointing out is the Code Generation
item in the JDE menu. It has some great timesavers built-in, as shown
in Table 9-7.
Table 9-7. Code Generation menu options
	
 Keystrokes

 	
 Menu option

 (M-x command)

 	
 Action

	

 C-c C-v C-l (lowercase L)

 	
 Println Wizard(jde-gen-println)

 	
 Prompts for the contents to print and inserts a complete
System.out.println() method for you.

	

 C-c C-v C-z

 	
 Import Class(jde-import-find-and-import)

 	
 Prompts for the (simple) class name to import and automatically adds
the proper import line to the top of your file.

	

 C-c C-v i

 	
 Implement Interface(jde-wiz-implement-interface)

 	
 Prompts you for the name of the interface to implement. Adds any
missing import statements (including dependent imports, such as
imports required for method arguments). Provides commented skeletons
for each of the methods in the interface.

Other helpers are available from the JDE menu. Generate Get/Set Pairs
in particular is great for working with JavaBeans design patterns.
Just create your list of attributes and then run the wizard. It even
checks to see if you already have an existing get/set pair. If you
do, it notes that get/set pair as
“existing” and keeps on trucking so
you can use the wizard to update existing classes.

Compiling and Running with the JDEE

Compiling the current buffer

 can be done
quickly with the C-c C-v C-c
command. Any errors show up in the compilation buffer. That
compilation buffer also allows you to navigate quickly to any errors
that the compiler finds. Simply move your cursor to the error in
question (using the normal motion commands) and hit Enter. You’ll find yourself
in the right file on the right line number. Very handy indeed.
Note that you can also run ant
builds with M-x jde-ant-build. Check
out the JDEE documentation or the help for various jde-ant variables for more information.
Running a simple program that has its own main()
method is easy: just press C-c C-v
C-r. That command executes the current buffer (by opening
an execution buffer named
*
 fully.qualified.ClassName
 *).
Any output from the program shows in the buffer. You can move around
in the buffer just as you would in a normal text buffer.
Of course, if you are working on anything other than a simple test
class, you’ll probably be in a package.
Java’s use of the classpaths rarely leaves room for
being at the “bottom” of a package
hierarchy. For example, in the package
com.oreilly.demo, you want to start execution from
the same directory that contains the com
directory, not from the demo directory that
contains the actual Java files. Regrettably, the
demo directory is the default.
You can edit the following variables to make executing in larger
projects a bit more convenient:
	
 jde-run-working-directory

	The directory in which execution starts

	
 jde-run-application-class

	The fully qualified name of the class that contains the
main() method to execute

With those values set, you should be able to run your application
from any buffer, regardless of what directory the file
you’re editing happens to be in.
Another fun note about running your application through the JDEE: if
any stack traces appear because of exceptions, you can navigate those
traces by using the C-c C-v C-[and
C-c C-v C-] commands (up and down,
respectively). Again, Emacs makes it possible to manage quite a large
portion of a development project all from one interface.

Debugging with the JDEE

A crucial element in any good IDE is its
 debugger. The JDEE allows you to stay in
the Emacs realm while interacting with the jdb process. The JDEE also comes with its own
debugger, the JDEbug application. JDEbug is more powerful but
requires more setup effort.
Warning
Before we touch anything, you need to make sure that your classes are
compiled with support for debugging. Otherwise, many things will
appear broken when you run the debugger.
To add debug support when you compile, you run the javac command with the -g option. With the JDEE you can also use the
variable jde-compile-option-debug to
hold all the variations for debugging you like. If you customize this
variable through Custom (see Chapter 10), just
choose the “all” option for which
debugging information to include. (Optionally, you can be more
specific and select from the three types of debug information: Lines,
Variables, and Source.)

We’ll look at the jdb route just to get you started. You can
start the debug session by typing M-x
 jde-jdb.
The same variables that control the starting directory and main
application class are used for debugging purposes.
After you have launched the debugger, you can control the debug
process in a number of ways.
	Interact directly with the jdb
process in the *debug* buffer. Here you can type
any command that you would normally give when running jdb.

	Use the Jdb menu. You have all the usual debug options available:
step into/over, continue, toggle breakpoint, and so on. This is a bit
more limited than the first approach, but easier to manage if
you’re new to jdb.

	Use keyboard commands while you’re in your source
buffer. These commands are even more limited than the menu options,
but give you really quick access to the most common tasks (namely
stepping and break points). Table 9-8 shows the
commands that are available while you’re in a source
buffer.

Table 9-8. JDEE debugger controls
	
 Keystrokes

 	
 Menu item

 	
 JDB command

	

 C-c C-a C-s

 	
 Step Into

 	
 step

	

 C-c C-a C-n

 	
 Step Over

 	
 next

	

 C-c C-a C-c

 	
 Continue

 	
 cont

	

 C-c C-a C-b

 	
 Toggle Breakpoint

 	
 stop in/stop at/clear

	

 C-c C-a C-p

 	
 Display Expression

 	
 print

	

 C-c C-a C-d

 	
 Display Object

 	
 dump

 Figure 9-4 shows a simple application running in
debug mode. Notice the small black triangle to the left of the Java
source code in the upper buffer. That’s the debug
cursor that lets you know where you are in the file. It tracks the
commands you issue, whether by directly entering jdb commands, by menu option, or through the
keyboard.
[image: Debugging a Java application with jdb]

Figure 9-4. Debugging a Java application with jdb

Learning More about the JDEE

Clearly, there is a lot more to
the JDEE than we can cover here. The package you download comes with
some good documentation and several user guides for the basic JDEE
and various options like the debuggers. The JDEE web site, at
http://jdee.sunsite.dk, is a
great source of information, too. As you would expect from an Emacs
package, you can customize everything. Those customizations are
stored in your .emacs file so you can tweak them
by hand (or at least peek at them).
The best approach is to install the JDEE and start coding with it. If
you find yourself saying “There should be a way to
do X,” get out the documentation. Chances are there
is a way to do X—usually with more options than you could hope
for!

[10] Before we take you through the installation process, we should
mention two caveats. XEmacs has the JDEE built-in, though it is often
out-of-date. TEI-Emacs, an add-on for Linux and Windows described in
Chapter 8, also includes the JDEE.

[11] For Mac OS X users, the classes normally found
in tools.jar are already a permanent part of the
standard classes.jar so they are always
available—even though tools.jar
isn’t in any of the library locations.

Perl Support

Emacs has Perl support. Indeed,
 much like Perl
itself, there are multiple ways to get things done—in this
case, multiple Perl modes: the classic Perl mode (which comes up by
default) and the more popular CPerl mode.
You should have a version of CPerl mode
built right in, but you can also pick up the latest
release from CPAN (the Comprehensive Perl Archive Network)

 online at
http://www.cpan.org.
You can add one of the following pairs of lines to your
.emacs file to make sure CPerl mode is invoked
rather than Perl mode
;; load cperl-mode for perl files
(fset 'perl-mode 'cperl-mode)

;; or maybe use an alias
(defalias 'perl-mode 'cperl-mode)
CPerl mode is mostly like cc-mode
with respect to motion and other programming language features. It
also includes fun debug operations. You can start the debugger with
M-x cperl-db.
You’ll be prompted to verify the debugger command
and then be dropped into a split-screen mode. One buffer allows you
to drive the normal perldb
environment with all the regular commands you’re
accustomed to using in the Perl debugger.
The other buffer shows your script and follows along as you work
through the debugger. It tracks the line you’re
about to execute as you issue commands in the other buffer.
It’s amazing how quickly you grow to depend on
having such tools available while you’re developing
scripts. It is worth trying out if you’ve never done
it before.
Perl Caveats

A big reason we wanted to mention Perl mode here is to highlight a
few caveats. Perl is an amazingly expressive language much more akin
to the idioms found in human languages than just about any other
computer language out there. That expressiveness can cause
problems—especially when considering the expressiveness of
regular expressions.
Perl supports all sorts of “funny”
variable names like $' and
$/. CPerl mode boasts the use of a syntax
table to help understand most of Perl’s odd and
occasionally disruptive verbiage. The older Perl mode has no such
trick up its sleeves and suffers under many circumstances in the
font-lock and indentation realms. This is one of the main reasons to
make the leap into CPerl mode.
Even with that syntax table, though, you’ll probably
find some combinations of variables and strings that give Emacs
headaches. Sometimes restructuring your code will help, sometimes
not. The important thing to remember is that it
won’t harm your program at all. It might make things
a bit less readable, but the script itself should run just fine. And
if it doesn’t, you can always launch the debugger to
find out why!
Here are some parting .emacs thoughts for you
Perl programmers. These lines select cperl-mode as the default and make sure the
syntax highlighting is turned on. These lines also turn on
folding (outline-minor-mode in the snippet below).
Folding allows you to “hide” chunks
of your code, such as functions where the body of the function is
“folded” into the name. That can
make it easier to get a grip on everything that is going on in the
file. Try it—it can become addictive!
;; Turn on highlighting globally
(global-font-lock-mode t)

;; automatically load cperl-mode for perl files
(fset 'perl-mode 'cperl-mode)

;; show only the toplevel nodes when loading a file
(add-hook 'cperl-mode-hook 'hide-body)

;; outline minor mode with cperl
(add-hook 'cperl-mode-hook 'outline-minor-mode)

;; Change the prefix for outline commands from C-c @ to C-c C-o
(setq outline-minor-mode-prefix "\C-co")

(load-file "cperl-mode.el")

SQL Support

For you database folks out
 there, you can even
run interactive SQL sessions through Emacs. You can navigate through
your SQL command history using normal motion commands and even create
complex SQL statements in any buffer and then shuttle them off to the
interactive area for debugging.
Prerequisites

Before we get started with SQL queries, you do need to have a few
things in place. Most of the SQL interaction modes require an actual
client application for their particular database. For example, we use
the MySQL server. We have to install the MySQL client programs
(mysql, at a minimum) on any system where we want
to use SQL mode. Even though the MySQL version of SQL mode is
built-in, we still need access to a real client. This is true for
every type of database you expect to access.
And speaking of communicating with the database, you must also have
the basics of communication taken care of. You need to have network
access to the server in question. You also need to have a valid
username and password for connecting to that server. A good rule
before jumping into SQL mode in Emacs is to make sure you can connect
and interact with your database server from your machine. If it works
from a terminal window or other client application, you can make it
work in Emacs.
One last thing to remember: the various SQL modes in Emacs are just
helpers, so you can’t do anything with them that you
couldn’t do with your normal database client. You
won’t magically have access to that restricted table
with everyone’s salaries. Sorry. Even so,
it’s just more convenient to stay in Emacs when
possible, so let’s forge ahead.

Modes of Operation

You’ll find two modes

 of operation for dealing with SQL. The
interactive mode lets you communicate directly with a database server
and run commands and view their output immediately. The editing mode
allows you to build up (and edit) more complex commands. If you want,
you can have the editing buffer send parts of itself to the
interactive session for testing and verification.
Interactive mode

Start the interactive mode by typing M-x
sql-mysql (or rather, your own variant of the interactive
modes shown in Table 9-9).
Table 9-9. Commands for entering database-specific SQL modes
	

 sql-db2

 	

 sql-linter

 	

 sql-postgres

	

 sql-informix

 	

 sql-ms (Microsoft)

 	

 sql-solid

	

 sql-ingres

 	

 sql-mysql

 	

 sql-sqlite

	

 sql-interbase

 	

 sql-oracle

 	

 sql-sybase

You’ll be prompted for things like your username and
password, the database or catalog to use, and the server to contact.
Remember the prerequisites, though; many modes require that you have
a normal command-line client available. The mode simply supplies an
intelligent layer on top of those clients.
After you get connected, just type normal SQL commands that your
server understands. Most interactive clients have some type of
“end-of-line” marker to let the
system know when to send a completed command. In MySQL, for example,
you can end statements with a semicolon (;) or the \g sequence.
Emacs keeps these commands in a history buffer for you so that you
can revisit them. M-p and M-n allow you navigate to previous and next
commands respectively. (C-p and
C-n simply allow you to move around
in the buffer as you would expect.)

Editing mode

You can also put a buffer

 directly into SQL mode with M-x sql-mode. This provides some assistance
for motion and composition of SQL statements, but mostly
it’s there to let you build complex statements and
then ship them to the interactive buffer for execution. Table 9-10 shows how to send various segments of the
buffer to the database.
Table 9-10. SQL mode send commands
	
 Keystroke

 	
 Command name

 	
 Action

	

 C-c C-c

 	
 sql-send-paragraph

 	
 Send the paragraph the cursor is on. A paragraph is defined by the
particular database client. For the sql-mysql process, for example, a paragraph
begins with a statement like select or update and ends with a
semicolon. Any number of lines can intervene.

	

 C-c C-r

 	
 sql-send-region

 	
 Send the marked region.

	

 C-c C-b

 	
 sql-send-buffer

 	
 Send the entire buffer.

The output of all of these send commands shows up in your interactive
buffer. Nothing changes in the editing buffer so you should feel free
to experiment. That’s what these modes are here for!

The Lisp Modes

Emacs has three Lisp modes, listed
 here by
their command names:
	
 emacs-lisp-mode

	Used for editing Emacs Lisp code, as covered in Chapter 11 (filename .emacs or
suffix .el).

	
 lisp-mode

	Used for editing Lisp code intended for another Lisp system (suffix
.l or .lisp).

	
 lisp-interaction-mode

	Used for editing and running Emacs Lisp code.

All three modes have the same basic functionality; they differ only
in the support they give to running Lisp code.
All three Lisp modes understand the basic syntax elements common to
all language modes. In addition, they have various commands that
apply to the more advanced syntactic concepts of S-expressions,
lists, and defuns. An S-expression (or syntactic
expression) is any syntactically correct Lisp expression, be it an
atom (number, symbol, variable, etc.), or parenthesized list.
Lists are special cases of S-expressions, and
defuns (function definitions) are special cases
of lists. Several commands deal with these syntactic concepts; you
will most likely become comfortable with a subset of them.

 Table 9-11 shows the commands that

 handle S-expressions.
Table 9-11. S-expression commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-M-b

 	

 backward-sexp

 	
 Move backward by one S-expression.

	

 C-M-f

 	

 forward-sexp

 	
 Move forward by one S-expression.

	

 C-M-t

 	

 transpose-sexps

 	
 Transpose the two S-expressions around the cursor.

	

 C-M-@

 	

 mark-sexp

 	
 Set mark to the end of the current S-expression; set the cursor to
the beginning.

	

 C-M-k

 	

 kill-sexp

 	
 Delete the S-expression following the cursor.

	
 (none)

 	

 backward-kill-sexp

 	
 Delete the S-expression preceding the cursor.

Since an S-expression can be a wide variety of things, the actions of
commands that handle S-expressions are determined by where your
cursor is when you invoke them. If your cursor is on a (or on a space preceding one, the
S-expression in question is taken to be the list that starts with
that (. If your cursor is on some
other character such as a letter or number (or preceding whitespace),
the S-expression is taken to be an atom (symbol, variable, or
constant).
For example, suppose your cursor is in this position:
(mary bob (dave (pete)) ed)
If you type C-M-f, the cursor moves
like this:
(mary bob (dave (pete)) ed)
That is, the cursor moves forward past the S-expression (dave (pete)), which is a list. However, say
your cursor is positioned like this:
(mary bob (dave (pete)) ed)
When you type C-M-f, it moves here:
(mary bob (dave (pete)) ed)
In this case, the S-expression is the atom bob.
The commands moving in lists are shown in Table 9-12.
Table 9-12. Commands for moving in lists
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-M-n

 	

 forward-list

 	
 Move forward by one list.

	

 C-M-p

 	

 backward-list

 	
 Move backward by one list.

	

 C-M-d

 	

 down-list

 	
 Move forward and down one parenthesis level.

	
 (none)

 	

 up-list

 	
 Move forward out of one parenthesis level.

	

 C-M-u

 	

 backward-up-list

 	
 Move backward out of one parenthesis level.

As a mnemonic device, you can think of lists as analogous to lines
and S-expressions as analogous to characters; thus, C-n and C-p
appear in list motion commands, whereas C-f and C-b
appear in S-expression motion commands. C-M-n and C-M-p work similarly to C-M-f and C-M-b, respectively, except that you must
position the cursor so that there is a list in front or back of it to
move across—that is, there must be an opening or closing
parenthesis on, after, or before the cursor. If there is no
parenthesis, Emacs signals an error. For example, if your cursor is
positioned like this:
(fred bob (dave (pete)) ed)
and you type C-M-n, Emacs complains
with the message:
Containing expression ends prematurely
However, if your cursor is here:
(fred bob (dave (pete)) ed)
the “next list” is actually
(dave (pete)), and the cursor ends
up like this if you type C-M-n:
(fred bob (dave (pete)) ed)
The commands for moving up or down lists enable you to get inside or
outside them. For example, say your cursor is here:
 (fred bob (dave (pete)) ed)
typing C-M-d moves the cursor here:
(fred bob (dave (pete)) ed)
This is the result because fred is
the next level down after its enclosing list. Typing C-M-d again has this result:
(fred bob (dave (pete)) ed)
You are now inside the list (dave
(pete)). At this point, typing C-M-u does the opposite of what C-M-d does: it moves the cursor back and
outside of the two lists. But if you type M-x
up-list Enter, you will move forward as well as out,
resulting in this:
(fred bob (dave (pete)) ed)
The commands for defuns listed in Table 9-13 are
more straightforward.
Table 9-13. Commands for working with functions
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-M-a

 	

 beginning-of-defun

 	
 Move to the beginning of the current function.

	

 C-M-e

 	

 end-of-defun

 	
 Move to the end of the current function.

	

 C-M-h

 	

 mark-defun

 	
 Put the cursor at the beginning of the function, put the mark at the
end.

These commands work properly only when the (defun that starts the current function is at
the beginning of a line.
Indentation in Lisp Modes

The Lisp modes provide “flashing”

 of
matching left parentheses; if the matching parenthesis is outside of
the current window, the line it is on appears in the minibuffer. The
Lisp modes also provide indentation via the Tab key and C-j for newline-and-indent (except in Lisp interaction
mode, described later in this chapter). The indentation style
supported by the Lisp modes “knows”
a lot about Lisp keywords and list syntax; unfortunately, it is not
easily customized.[12]

Here is an example, a Lisp equivalent of the
“times” C function shown earlier in
the chapter, that illustrates the indentation style:
(defun times (x y)
 (let ((i 0)
 (result 0))
 (while (< i x)
 (setq result (+ result y)
 i (1+ i)))
 result))
The basic indentation value is 2; this value is used whenever code on
the next line goes down a level in nesting. For example, the body of
the function, after the line containing defun, is indented by 2. The (while... and result)) lines are indented by 2 with respect
to the let because they are the body
of the block let introduces.
Things like defun, let, and while are function calls, even though they act
like keywords. The indentation convention for function calls is that
if there are arguments on lines after the line where the function
name and first argument appear, the additional arguments line up with
the first one. In other words, this has the form:
(function-name arg1
 arg2
 arg3
 ...)
The multiple arguments to setq in
the preceding function provide another example of this.
However, the indentation of the line (result
0) shows that something a bit different happens with lists
that are not function calls. The list in question is actually
((i 0) (result 0)), which is a list
with two elements (both of which are also lists). The indentation
style supported by the Lisp modes lines up these two elements.
Even though keyword-like terms such as let and while
are actually function calls, the Lisp modes
“understand” these functions to the
extent that special indentation conventions are set up for them. For
example, if we were to put the condition for the while-loop on a
separate line and press Tab to
indent it properly, the result would be:
 (while
 (< i x)
 (setq result (+ result y)
 i (1+ i)))
Similar things happen with if and
cond control structures; Chapter 11 contains properly indented examples.
Another remark about indentation conventions: the Lisp modes are
geared toward a style in which multiple right parentheses are put on
the same line immediately following each other, instead of on
separate lines. For example, the line i (1+
i))) contains right parentheses that close off the
1+ function, the setq, and the while respectively. If you prefer, you can put
your closing parentheses on separate lines, but if you press
Tab to indent them, they
won’t line up properly with their matching open
parentheses; you have to indent them manually.
In addition to the Tab and C-j commands for indentation, the Lisp modes
support the command C-M-q (for
indent-sexp), which indents every
line in the S-expression just following the cursor. You can use this
command, for example, to indent an entire function definition: just
put the cursor right before the defun and type C-M-q.

Comments in Lisp Modes

Comments in the Lisp modes are handled

 by
the universal comment command M-;,
which indents out to comment-column
(or, if there is text at that column, one space past the last
character), inserts a semicolon, and puts the cursor just past it. If
you want a comment to occupy an entire line (or to start anywhere
other than at comment-column), you
must move to where you want the comment to start and type the
semicolon yourself. Note that if you press Tab on any line that contains only a comment,
the comment moves out to comment-column. To get around this, use two or
more semicolons; doing so causes Tab
to leave the comments where they are. The Lisp modes also support the
other comment commands discussed earlier in the chapter, including
M-j to extend a comment to another
line and M-x kill-comment Enter to
get rid of a single-line comment. These features are common to all
three Lisp modes; next, we discuss the features unique to each.

Emacs Lisp Mode Differences

Emacs Lisp mode was designed to be
used with code meant to run within Emacs itself, so it facilitates
running the code you type. Lisp is an interpreted (as opposed to
purely compiled) language, so it is possible to blur the line between
the write and run/debug phases of Lisp programming; Emacs Lisp mode
takes some advantage of this opportunity, whereas Lisp interaction
mode goes even further, as we’ll see later. In Emacs
Lisp mode, the command C-M-x
(eval-defun) picks up the function
definition around or after the cursor and evaluates it, meaning that
it parses the function and stores it so that Emacs
“knows” about the function when you
invoke it.
Emacs Lisp mode also includes the command M-Tab (for lisp-complete-symbol),[13] which performs
completion on the symbol (variable, function name, etc.) preceding
the cursor, as described in Chapter 14. Thus,
you can type the shortest unambiguous prefix for the symbol, followed
by M-Tab, and Emacs tries to
complete the symbol’s name for you as far as it can.
If it completes the symbol name, you can go on with whatever you are
doing. If it doesn’t, you haven’t
provided an unambiguous prefix. You can type more characters (to
disambiguate further), or you can type M-Tab again, and a help window showing the
choices pops up. Then you can type more characters and complete the
symbol yourself, or you can try for completion again.

Lisp Mode Differences

Lisp mode (as opposed to Emacs Lisp mode) is meant for use with Lisp
processors other than the Emacs Lisp interpreter. Therefore it
includes a couple of commands for interfacing to an external Lisp
interpreter. The Lisp mode command C-c
C-z (run-lisp) starts up
your system’s Lisp interpreter as a subprocess and
creates the *lisp* buffer (with an associated
window) for input and output.[14] If a Lisp subprocess
already exists, C-c C-z uses it
rather than creating a second one. You can send function definitions
to the Lisp subprocess by putting the cursor anywhere within a
function’s definition and using C-M-x, which in this case stands for lisp-send-defun. This procedure causes the
functions you define to become known to the Lisp interpreter so that
you can invoke them later.

Working with Lisp Fragments

Emacs Lisp mode is probably the best

 thing to use if you are editing entire
files of Emacs Lisp code, for example, if you are programming your
own mode (as described in Chapter 11) or
modifying an existing one. However, if you are editing
“little” pieces of Lisp code (for
example, making additions or modifications to your
.emacs file), Emacs has more powerful features
you can use that further blur the line between writing and running
code.
Commands for evaluating a line of Lisp

The first of these is the command M-: (for eval-expression). This command enables you to
type a one-line Lisp expression of any kind in the minibuffer; the
expression is evaluated, and the result is printed in the minibuffer.
This is an excellent, quick way to check the values of Emacs
variables and to experiment with
“internal” Emacs functions that
aren’t bound to keys or that require arguments. You
can use the symbol completion command M-Tab while you are using eval-expression.
Unfortunately (or fortunately, depending on your point of view),
Emacs doesn’t normally let you use eval-expression. If you try pressing M-:, you will see the message loading
novice . . . in the minibuffer. Then a window pops up with
a message on the order of, “You
didn’t really mean to type that, did
you?” You get three options: press Space to try the command only once, y to try it and enable it for future use with
no questions asked, or n to do
nothing.
If you want to use eval-expression,
type y. This command actually
results in the following line being put in your
.emacs file:
(put 'eval-expression 'disabled nil)
If you are a knowledgeable Lisp programmer, you will understand that
this addition sets the property disabled of the symbol eval-expression to nil. In other words, Emacs considers certain
commands to be verboten to novice users and thus allows commands to
be disabled. If you want to skip this entire procedure and just use
eval-expression, simply put the
above line in your .emacs file yourself (make
sure you include the single quotes).
Another feature that helps you exercise Emacs Lisp code is C-x C-e (for eval-last-sexp). This command runs the line of
Lisp that your cursor is on and prints its value in the minibuffer.
C-x C-e is handy for testing single
lines of code in an Emacs Lisp file.

Using Lisp interaction mode

An even more powerful feature is

 Lisp interaction mode. This is the mode the
default buffer *scratch* is in. Filenames with no
suffixes normally cause Emacs to go into Lisp interaction mode,
though you can change this using the variable auto-mode-alist, described earlier in this
chapter and in more detail in Chapter 10. You
can also put any buffer in Lisp interaction mode by typing M-x lisp-interaction-mode Enter; to create an
extra Lisp interaction buffer, just type C-x
b (for switch-to-buffer),
supply a buffer name, and put it in Lisp interaction mode.
Lisp interaction mode is identical to Emacs Lisp mode except for one
important feature: C-j is bound to
the command eval-print-last-sexp.
This command takes the S-expression just before point, evaluates it,
and prints the result in the buffer. To get the usual newline-and-indent functionality attached to
C-j in other modes, you must press
Enter, followed by Tab.
Remember that an S-expression is any syntactically valid expression
in Lisp. Therefore, you can use C-j
in Lisp interaction mode to check the values of variables, enter
function definitions, run functions, and so on. For example, if you
type auto-save-interval and press
C-j, the value of that variable (300
by default) appears. If you type a defun and press C-j after the last right parenthesis, Emacs
stores the function defined (for future invocation) and prints its
name; in this case, C-j is similar
to C-M-x (for eval-defun) except that the cursor must be
after (as opposed to before or in the middle of) the function being
defined. If you invoke a function, Emacs evaluates (runs) the
expression and responds with whatever value the function returns.

 C-j in Lisp interaction mode gives
you an excellent way to play with, incrementally develop, and debug
Emacs Lisp code, and since Emacs Lisp is
“true” Lisp, it is even useful for
developing some bits of code for other Lisp systems.

[12] The indentation style is bound up
in the Emacs Lisp code for Lisp mode. If you are an experienced Lisp
hacker, you can examine the code for lisp-mode.el in the Emacs Lisp directory and
determine how to customize indentation the way you wish. A good place
to start looking is the function lisp-indent-line.

[13] This
key binding may not work on all platforms. If it is intercepted by
the operating system (as it is on Red Hat Linux), type Esc Tab instead (remember to release Esc before you press Tab).

[14] This Lisp mode command
(run-lisp) was designed to run with
the franz Lisp system on BSD Unix systems, though it should work with
other Lisp interpreters.

Chapter 10. Customizing Emacs

As you have probably noticed throughout this book, Emacs is very
powerful and very flexible. You can take advantage of that power and
flexibility to configure Emacs to match your work style and
preferences. We’ll look at several of the most
common customization tasks and also look at a few resources for more
in-depth coverage than we can provide here.
You can customize Emacs in

 three ways: using Custom, the interactive
interface; using the Options menu, which is really a backdoor to
Custom; and directly by adding lines of Lisp to

 your .emacs file.
This chapter covers all three of these methods.
No matter what method you use, though, the
.emacs startup file is modified. Custom modifies
it for you when you save settings through that interface. The Options
menu invokes Custom behind the scenes; when you choose Save Options,
Custom again modifies .emacs. Throughout the
book, we have been providing lines for you to add to
.emacs directly so you could adjust Emacs to
your preferences.
Before we get started, we should say that the very easiest way to
customize Emacs is by selecting an option from the Options menu and
choosing Save Options. This menu is designed to provide easy access
to changing frequently used options. For example, you may not like
the Toolbar and its icons, feeling that such graphical codswallop is
beneath an Emacs user. You can hide the toolbar through the Show/Hide
option on the Options menu. Choosing Save Options modifies
.emacs so the toolbar is hidden every time you
start Emacs. And if you miss the toolbar someday, you can get it back
the very same way.
After describing customization methods, this chapter goes on to
discuss several generic issues relating to customization, including
how to change fonts and colors, modify your key bindings, set Emacs
variables, find Lisp packages to load, start modes automatically
based on file suffixes, and inhibit any global customization files
that may be interfering with your own .emacs
settings.

Using Custom

Emacs now ships with a quirky
 graphical-but-not interface that
allows you to customize most aspects of Emacs without knowing the
gory details. This feature, known as Custom, can be accessed by
typing M-x custom or by clicking the
tools icon on the toolbar.
	
 Type: M-x custom Enter

	

[image: image with no caption]

	
 Emacs displays the startup buffer for Custom (Mac OS X).

Navigating Custom

You can move around in a

 given Custom screen much the way you
do in any other part of Emacs. All of the basic cursor movement
commands like C-n and C-p work just as they should. But
that’s only part of the story in Custom. To
accomplish anything useful, you need to activate special words and
phrases. Those bits of text in grey boxes that look like buttons are
the words and phrases in question.
To activate one of these buttons, click on the button with the mouse
or position your cursor inside its borders and press Enter. Figure 10-1 highlights
these options.
[image: Custom button activation using the mouse cursor (top) and the keyboard cursor (bottom) (Mac OS X)]

Figure 10-1. Custom button activation using the mouse cursor (top) and the keyboard cursor (bottom) (Mac OS X)

When you finish looking at a screen, if you are not interested in
changing anything, you can type C-x
k to kill the current buffer and go back to the previous
screen. You can also activate the Finish button in the common header
set discussed next.

Common Options

At the top of each page
 in
Custom is a common set of buttons shown in Figure 10-2. These options affect the entire buffer.
[image: The actions common to all pages in Custom (Mac OS X)]

Figure 10-2. The actions common to all pages in Custom (Mac OS X)

From here you can perform any of the following tasks:
	Set for Current Session
	Make immediate changes
 that last for the duration of
this session but will be reset the next time you start Emacs.

	Save for Future Sessions
	Make immediate changes that last for the duration of this session and
will also be in place the next time you start Emacs. These changes
are stored in your .emacs file.

	Reset
	Switch back to the previous
 values (previous to your
current changes, anyway).

	Reset to Saved
	Switch back to the previously saved values. In this case,
“saved” means saved for future
sessions. If you haven’t made (and subsequently
saved) any customizations to a variable, this option has no effect.

	Erase Customization
	This option pretty much

 does what it says. Any
customizations made by Custom, whether for this or future sessions,
are removed. Your own personal entries in your
.emacs file should remain intact, but
it’s always a good idea to make a backup before
deleting any information.

	Finish
	Close this buffer and return to the previous customization buffer or
back to the buffer from which you launched Custom. Note that you can
also press the q key to activate
Finish from anywhere in a Custom buffer.

These options are useful when you modify more than one option on a
page and want to save them all at once (and in the same way).
Custom corrals options into customization groups, which are set up in
a hierarchy of parent and child groups. To go to the parent group for
the group you’re looking at, choose the button for
the parent group in question following the Go to parent
group: prompt. To make it easier to find things, a group
might have more than one parent. For example, the I18n
(internationalization) group has two parents,
Environment and Editing, as
shown in Figure 10-3.
[image: Custom’s Go to parent group prompt]

Figure 10-3. Custom’s Go to parent group prompt

Choosing Go to parent group is much like choosing
Finish but without closing the buffer. It’s a useful
option if you’re just poking around looking for
related variables. We’ll show you better ways to
find particular features to customize later in this chapter.

Customizing with Custom

After you learn your way around, you can tackle customizing Emacs.
Each screen of Custom lists variables and other settings. You can
edit the value of any variable in the grey text field to the right of
variable’s name. The current value should be listed.
Just delete the current value and type the new value.
Changing a value, however, is not the last step you have to take. You
need to save the change before it will take effect. You use the State
button to save the change (as mentioned earlier, to save all the
values on a page in the same way, you can use the options near the
top of the screen). As with other parts of Custom, you can use your
mouse or the keyboard. Clicking the left mouse button on State should
bring up the list shown in Figure 10-4. Depending on
the variable and the change you made (if any), you may or may not
have all of the options available.
[image: Using the mouse to save or reset an option (Mac OS X)]

Figure 10-4. Using the mouse to save or reset an option (Mac OS X)

Of course, you can also activate

 the
State button by placing your cursor on it and pressing Enter. That should create a second window with
effectively the same options you get when using the mouse. Figure 10-5 shows the options you see using the Enter key to select State. This list is
dynamic, showing only options that are available to you. (It
won’t show any options if you
haven’t changed anything yet, but it beeps with an
error.)
[image: Using the keyboard to save or reset an option (Mac OS X)]

Figure 10-5. Using the keyboard to save or reset an option (Mac OS X)

When using the mouse, simply select the desired choice from the list.
When using the text approach, type the number (or other character)
corresponding to your desired choice. The options available are
similar to those that apply to the entire buffer.
You’ll see the familiar save and reset options along
with a few new ones:
	Set for Current Session
	Same as the global option. Saves the
 new value for the duration of
this session.

	Save for Future Sessions
	Same as the global option. Applies this value immediately and updates
your .emacs file so the new value is used
whenever you start Emacs.

	Reset to Current
	Goes back to the current value for the variable. Any unsaved changes
are thrown out, but changes saved—even just for this
session—count as “current”
changes.

	Erase Customization
	Same as the global option. Any changes to the variable are removed
and .emacs is updated if needed.

	Use Backup Value
	Goes back to the value saved before the
“current” value was set. In other
words, revert to the value replaced by the most recent save.

	Add Comment
	You can add your own comments
 to the variable to help you remember
why you made this change. Comments last as long as the saved change.
Changes made only for the current session keep the comment only for
the current session (not often useful). Comments added to changes
that you save for future sessions show up on this screen in those
future sessions. Erasing the customized value also erases comments.

If you make a mistake or supply a value that is not appropriate for
the variable, you get a brief error message in the minibuffer. As
with other utilities that grew up in the world of Unix, no news is
good news. If you don’t see any error messages, your
change was successfully saved.

An Abbrev Mode Example

Word abbreviation mode
 is a wonderful way to correct typos on the
fly. But it can’t work that way unless it is turned
on. Let’s use Custom to turn on word abbreviation
mode (discussed in Chapter 3).
	
 Type: M-x custom Enter

	

[image: image with no caption]

	
 Main customization screen.

	
 Click on the Go to Group button next to Editing group

	

[image: image with no caption]

	
 The Editing group.

	
 Click on the Go to Group button next to Abbreviations group

	

[image: image with no caption]

	
 The Abbreviations group.

	
 Click on the Go to Group button next to Abbrev Mode group

	

[image: image with no caption]

	
 The Abbrev Mode group.

Finally, we’re at a screen where we can set the
option! Notice that the first content line, Abbrev Mode group, says
next to the State button visible group members are all at
standard settings. Also note that Abbrev Mode, near the
bottom of the screen, says this option is unchanged from its
standard setting.
We’ll turn on the Abbrev Mode option by pressing the
Toggle button.
	
 Click Toggle next to Abbrev Mode

	

[image: image with no caption]

	
 Abbrev mode is set to on.

The text near Abbrev Mode group now says, You have edited
something in this group, but not set it. The text near the
Abbrev Mode option says, you have edited the value as text,
but you have not set the option. These are clear hints that
we must take one more step to set this option. And if those
weren’t hints enough, the minibuffer explicitly
instructs, To install your edits, invoke [State] and choose
the Set operation. We could click on the State button next
to the option, but it’s just as convenient (if not
more convenient) to click on the Save For Future Sessions option near
the top of the screen. This saves all options we’ve
changed in the buffer, which in our case is just one option.
	
 Near the top of the screen, click on Save for Future Sessions

	

[image: image with no caption]

	
 Emacs tells you that it wrote the .emacs file.

Next to the Abbrev Mode group it now says, something in this
group has been set and saved. Next to the Abbrev Mode
option it says, this option has been set and
saved. Note also that Abbrev appears on
the mode line now; we have indeed successfully turned on word
abbreviation mode. Click Finish repeatedly to kill all the Custom
buffers.
Congratulations; you’re on your way to customizing
Emacs. You should spend some time wandering around in the various
groups Custom offers to get a sense of the things you can control.
We’ll look at the popular topics of customizing
fonts, colors, and keyboard mappings in later sections. But Custom
offers a much wider variety of areas to tweak. Don’t
be afraid to look around. You can always use the Reset option to undo
something that doesn’t behave the way you
 expected or wanted.

The Options Menu

You can also access Custom through a

 bit of a back door: the Options menu. Figure 10-6 shows the Options menu. There are three key
entries at this top level:
[image: The Options menu (Windows)]

Figure 10-6. The Options menu (Windows)

	Show/Hide
	Allows you to turn on (and off) several
 features of Emacs including the menu bar
and toolbar.

	Save Options
	A quick shortcut to saving any changes you

 make to Emacs through the
Options menu.

	Customize Emacs
	A submenu that allows you to tweak common items such as fonts and
variables as well as helping you browse and search through the
options available to Custom.

A Dired Example

Let’s tackle another Custom example

 with the help of the Options menu.
Dired (discussed in Chapter 5) has many
customizable features. One such feature is the dired-view-command-alist variable. This is a
list of helper applications that allow you to open various kinds of
files. This feature can be quite handy for viewing binary files such
as images or PDF files. This list of helper applications is tailored
to Linux. If you want to use other applications or
you’re on a Windows or Mac system,
you’ll need to customize this variable.
Before you customize this option, you need to open a directory or
simply type C-x d to enter Dired.
Next, from the Options → Customize Emacs menu, select the
Specific Option item.
	
 Choose Options→ Customize Emacs→ Specific Option

	

[image: image with no caption]

	
 The minibuffer prompts for a specific option to customize (Windows).

The minibuffer prompts for an option name. We want to customize
dired-view-command-alist.
	
 Type: dired-view-command-alist
 Enter

	

[image: image with no caption]

	
 Editing a list entry in Custom (Windows).

You should see the familiar Custom options for saving and resetting
the values along with the value of the dired-view-command-alist variable. For this
particular variable, we have a list of entries for common file types
including PostScript files, PDF documents, and images. To alter one
of the existing entries, simply move to the String
line and edit the text in grey to launch the application you would
like to use. (You can also alter the filename pattern by editing the
text in the Regexp line.) For example, PDF
documents can be viewed with the open command in Mac OS X, so we
could change that line as shown in Figure 10-7. In
fact, on Mac OS X, you can use the generic open command for just
about every type of file. On Windows it is even easier. Simply enter
%s as the string, and Windows uses
its default application to open that file type.
[image: Editing a list entry in Custom (Mac OS X)]

Figure 10-7. Editing a list entry in Custom (Mac OS X)

If you don’t use DVI documents, you can get rid of
that association using the DEL button shown in Figure 10-8.
[image: Deleting a list entry in Custom (Mac OS X)]

Figure 10-8. Deleting a list entry in Custom (Mac OS X)

You can also add new document types and viewers by clicking on any of
the INS buttons. (The order of the associations
isn’t important for this particular variable, but it
might matter for other lists.) To insert a new association
before the PDF entry, activate the INS button to
the left of the PDF entry.
	
 Click on INS to the left of the PDF entry.

	

[image: image with no caption]

	
 The first step in adding a new item to a list in Custom (Windows).

Now you can add an association for playing MP3 files on a PC by
editing both the Regexp and
String lines. Note that you’d
have to supply a path to your helper application (winamp in this
example) that matched your system. As mentioned earlier, if winamp
was already the default helper application for MP3s, you could simply
type %s for the
String instead of the complete path to winamp.
	
 Type [.]mp3\' for the
Regexp and c:\apps\media\winamp.exe %s for the
String:

	

[image: image with no caption]

	
 The second step in adding a new item (Windows).

You may have noticed the Save Changes option in the Options menu.
This menu item saves changes you make through the Options menu. For
example, you can modify such settings as whether or not the toolbar
is visible or the Save Place in Files between Sessions option. It
does not save changes you have made through Custom—even if you
launched Custom from one of the Options → Customize Emacs
submenu items. You’ll still need to use the normal
Custom options to save those changes.
For our Dired variable example, then, you’ll need to
select one of the Save options available. In this case,
we’ll save it for the current session only.
	
 Click on Set for Current Session

	

[image: image with no caption]

	
 Saving changes for this session only (Windows).

When you’re done saving your changes, you can exit
the buffer as usual by clicking the Finish button, typing q, or typing C-x
k to kill the buffer.

But Where Is the Variable I Want?

One of the biggest stumbling blocks to
 using Custom is knowing where
a particular variable is located. Custom has a lot of groups and
subgroups—and they aren’t always intuitive.
There are two quick ways to
“search” for a specific variable.
You can press Tab to use the
completion feature in the minibuffer or you can browse through the
entire Custom hierarchy.
To use the completion
approach, type M-x customize-option or select
Options→ Customize Emacs→ Specific Option.
You’ll see Customize Option: in
the minibuffer. You can type a string like font
and then hit the Tab key to see what
variables start with that string.
You can also create a custom buffer with options matching a regular
expression with M-x
customize-apropos (or Options→ Customize
Emacs→ Options Matching Regexp). You can type in a regular
expression (or a simple string) and Custom builds a new buffer with
all groups containing matching options.
If you want to browse the hierarchy to see the related groups of
variables in a reasonably compact view, select Options →
Customize Emacs → Browse Customization Groups. That should
land you on a screen similar to Figure 10-9.
[image: Browsing customization groups (Mac OS X)]

Figure 10-9. Browsing customization groups (Mac OS X)

You can activate the [+] and [-] buttons just like you do other
Custom buttons (click on them with your mouse or move the keyboard
cursor to them and press Enter.)
This allows you to browse the entire set of Custom groups and
subgroups. After you find the variable you’re
looking for, click on the Option button next to the variable or click
on the Group button for the variable’s parent group
if you want to edit multiple variables in the group.

Modifying the .emacs File Directly

It’s possible to customize Emacs in just about any
way you can imagine. Almost everything you see on the screen, every
command, keystroke, message, and so on, can be changed. As you may
imagine, most customizations involve the Emacs startup file
.emacs.
Custom Versus .emacs

The previous section
 discussed the interactive customization
tool, Custom, but left out some of the details on what happens any
time you “save for future
sessions.” Custom places the configuration
information in your .emacs file. Some things
simply cannot be done through Custom (yet). Once you get familiar
with the types of statements that go into your
.emacs file, you may also just find it easier to
add a line or two directly.
We should emphasize that using Custom or editing
.emacs by hand is not an either-or proposition.
When you save options via Custom, it adds its settings to the end of
your .emacs file and warns you not to edit them
by hand. Despite this prohibition, you can easily add your own
customizations to the beginning of that file. To illustrate this,
Example 10-1 shows a sample
.emacs file for Mac OS X that shows edits made
directly by the user as well as sections added by Custom (shown in
bold)
Example 10-1. A .emacs file for Mac OS X with lines added by the user and by Custom
(setq mac-command-key-is-meta nil)
(diary)
(setq load-path (cons "~/elisp" load-path))
(autoload 'html-helper-mode "html-helper-mode" "Yay HTML" t)
(setq html-helper-build-new-buffer t)
(setq auto-mode-alist (cons '("\.html$" . html-helper-mode) auto-mode-alist))
(setq-default indent-tabs-mode nil)
(setq-default tab-width 15)
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)
(fset 'boldword
 [?\C- escape ?f ?\C-x ?\C-x ?< ?b ?> ?\C-x ?\C-x ?< ?/ ?b ?>])
(fset 'italword
 [?\C- escape ?f ?\C-x ?\C-x ?< ?e ?m backspace backspace ?i ?>
 ?\C-x ?\C-x ?< ?/ ?i ?>])
(global-set-key "\C-x\C-kI" 'italword)
(setq shell-file-name "/bin/zsh")
(add-hook 'comint-output-filter-functions
 'comint-watch-for-password-prompt)
(custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(global-font-lock-mode t nil (font-core))
 '(text-mode-hook (quote (turn-on-auto-fill text-mode-hook-identify))))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)

Will the real .emacs please stand up?

You might have a bit of trouble finding the right
.emacs file to work with when
you’re first starting out. Emacs actually looks for
a variety of startup files. In order, they are:
	
 .emacs.elc

	The byte-compiled Lisp version or your startup file. This is not
editable, but can make startup quicker if you have a big, complex
startup file.

	
 .emacs.el

	The more formal name for your startup file. You can use Lisp commands
to customize and initialize your entire Emacs environment.

	
 .emacs

	The common name for the startup file. Exactly like the
.emacs.el file, just without the
.el extension. Both are editable.

As soon as Emacs finds one of these files, that’s
it; then it’s on to the next step in startup. You
can’t have a .emacs.elc for the
big customizations and then a separate .emacs
for the last few. Sorry!
For all you Emacs users on Microsoft Windows-based systems, you might
bump into a variation of this file that begins with an underscore (_
) rather than a dot (.). In the past, the Windows filesystem
required something before the first dot, so
.emacs was an invalid filename. Consequently,
_emacs was adopted. The same order and notes
about the .elc and .el
variants applies. In modern versions of Windows,
.emacs is a valid filename and the dot
variations take precedence over the underscore versions.

Basic .emacs Statements

Some changes require a
 knowledge
of Emacs Lisp programming (see Chapter 11);
others are simple enough without such knowledge. In this chapter, we
cover a variety of useful customizations that require no programming
knowledge. For now, however, you need to know this: every Emacs

 command corresponds to a Lisp
function, which has the form:
(function-name arguments
)
For example, if you want to move the cursor forward by a word, you
type M-f. What you are actually
doing is running the Lisp function:
(forward-word 1)
Caveat editor

Two important comments concerning .emacs files
are in order. First, if you are inserting code into your
.emacs file, you may end up putting in something
that causes Emacs to fail or behave strangely. If this happens, you
can invoke Emacs without running your .emacs
file: simply invoke Emacs with the command-line option -q, and Emacs will not run your
.emacs file. (Chapter 13
gives instructions for starting Emacs from the command-line on
Windows and Mac OS X.) You can then examine the file to figure out
what went wrong.
The other comment is perhaps the most important piece of advice we
can give you concerning customizing your Emacs environment:
steal mercilessly from other users. In
particular, if you are dealing with a messy situation involving a
configuration problem or a subtle point about some specialized mode,
it is possible that some other user has solved the problem(s)
already. This is not dishonest or subversive in any way; rather, it
is encouraged by the makers of GNU Emacs, who
would rather software be shared than kept to oneself. Emacs even
provides an easy way to try out other users’
.emacs files: invoke Emacs with the option
-u
 username,
and username’s
.emacs file will run instead of yours. (Of
course, this works only with users on multiuser systems.)
In fact, numerous example .emacs files are
available on the Web. (Check out “the very
unofficial” .emacs site,
http://www.dotemacs.de/.)

A Sample .emacs File

Here’s a quick example of a (very) simple
.emacs file:
;; Turn on font-lock mode to color text in certain modes
(global-font-lock-mode t)

;; Make sure spaces are used when indenting code
(setq-default indent-tabs-mode nil)
The lines beginning with two

 semicolons
are comments. They’re meant to help you understand
what is being configured. Sometimes they also list possible values or
the previous value. You can say anything you want in a
comment—as long as it fits on one line. If you need to spill
over onto a second or third line, just begin each successive line
with ;;.
Blank lines are ignored. Every other line (that’s
not blank or a comment) is considered part of a Lisp program that is
executed to configure your Emacs session. In this example, we first
call the global-font-lock-mode
function with an argument of t
(true, or “on”). Next we make sure
that using the Tab key when writing
code doesn’t actually insert a tab character but
uses spaces instead. (This is a good thing to do when writing
code—otherwise your code can come out very messy on systems
that use a different tab width.) We use the setq-default function to assign the indent-tabs-mode a nil (false or
“off”) value. Using setq-default has the advantage of setting the
default value only—modes that choose to override this value may
still do so.
If you’re a seasoned Lisp programmer, you can do
anything you would normally have access to in Lisp. There are
certainly particular functions and variables you need to know about
to be effective, but it is just a Lisp program.
For the rest of us, this file mostly consists of blocks of Lisp found
on the Internet or on a colleague’s computer. You
edit in your personal values and hope it all works. Really. If you
use Custom to manage all of your configuration changes, you
don’t even have to look at
.emacs unless you want to add your own lines at
the beginning of the file or look at what Custom has done.
Editing .emacs

The great thing about
 configuring a text editor is that you can
use the editor itself to make the changes. You can visit the
.emacs file just as you would any other file.
The only thing to watch out for is where you are. Some folks put
backup copies of this file in strange places. You want to edit the
file that came from your home directory. If you’re
unsure of where you are, you can use the full name
~/.emacs which Emacs translates to the proper
directory.
Note also that .emacs is not required. If you
haven’t had any reason to customize Emacs, it might
not exist. But you should feel free to create it when
you’re ready to start tailoring your environment.
(Making your first change via Custom will also create
.emacs if it doesn’t exist.)
The best way to deal with this file really is to find an example file
and make small changes to it. Use those ;; comments liberally. If
you’re going to change a line in your
.emacs file, make a copy of it first:
;; Turn off font-lock
;;(global-font-lock-mode t)
(global-font-lock-mode nil)
That way you can easily get back to a known, working version of your
.emacs file. If things get really bad, just
start over. Rename your current .emacs file and
then copy and paste small chunks of it at a time.
For changes required by modules and other packages, the documentation
for those modules usually includes example lines for insertion into
your .emacs. For example, the JDEE site includes
a sample .emacs file that can be used as-is or
appended to an existing file. (And if you want to get fancy, you can
leave the JDEE sample in a separate file and simply include a
load-file call from your
.emacs file. More on load-file can be found in the Elisp
documentation.)

Saving .emacs

You save
 your
.emacs just as you normally save any file. To
test any changes you’ve made, though,
you’ll have to do one of two things. The sure-fire
method is to quit Emacs and launch it again. If everything comes up
the way you expected, you’re good to go.
You can also run M-x load-file.
You’ll be prompted for the name of the file. Just
type in ~/.emacs Enter and you
should be able to check your changes.
Tip
Be careful here: it’s entirely possible that
something in your current session will interact with your new
.emacs file. For example, if you have already
set a default value for a variable, commenting out that line of your
.emacs file will not remove the value unless you
also remove the default value by hand. If you’ve got
a fairly simple configuration, though, you should be fine. Reloading
.emacs is certainly faster that restarting
Emacs!

Either way, once you have verified that your configuration works the
way you want, you can forget about this file. Until you want to make
more changes, of course!

Modifying Fonts and Colors

Emacs on certain platforms (Windows, Mac OS X, and Unix) can display
text in multiple fixed-width fonts. It doesn’t yet
handle proportional-spacing fonts well, although future releases are
expected to address that issue. Emacs can display text in as many
combinations of foreground and background colors as your system
supports. We’ll take a look at your options for
changing fonts. You can make quick, interactive changes in any
buffer. You can also customize the fonts and colors used by automatic
highlight features such as Isearch and font-lock mode.
And just in case you want to use Emacs to edit rudimentary
styled-text documents, we’ll also look at how to
save and load files that have font and color enriched text.
Changing Fonts Interactively

Both Custom and the Edit menu in
Emacs provide you with a way to
change the current font and color by picking a new one from the Text
Properties menu.
To understand the Text Properties menu, you’ll find it useful
to know that Emacs thinks internally
 in
terms of faces. A face is a font and color
combination. The Text Properties menu presents you with a small set
of premixed faces and the option to specify others by name.
We’ll go into more detail about faces, how to name
them, and the related Lisp programming constructs later in this
chapter. For now, consider simply that every character in a buffer
may have a different face invisibly associated with it (though in
practice it would be quite surprising if face changes were that
frequent!).
Holding down the Shift key while
clicking the left mouse button takes you to a menu of fonts.
Selecting one of these instantly changes the Emacs font for the
current frame and redisplays the frame. This is an easy way to
experiment with different fonts to see how well they trade screen
space for readability on your display.

Automatic Highlighting and Coloring

A number of modules

 in
Emacs feature text highlighting and syntax coloring. The various
programming and markup language modes (Lisp mode, Java mode, HTML
mode, and so on) have such highlighting. How you customize those
fonts and colors depends heavily on the individual module.
Isearch

The Isearch facility in
 Emacs has undergone a few changes as it
has matured. It uses font faces and coloring to highlight a document
when you search for words or expressions. You may find the default
choices a bit, well, stark. You can customize the group by typing
M-x customize-group Enter isearch-faces Enter to change them.
Incidentally, you might just try changing the face it uses to
highlight the secondary matches, so that it’s less
intrusive.

Buffer highlighting

The easiest way to use

 fonts and colors is to load the
Lisp package font-lock.el (included with the
Emacs distribution). This mode tries to highlight interesting
features of your text buffers using color and different faces. As an
example, try picking out comments in C and Lisp buffers, and painting
them in a color that contrasts with the basic black of the code.
;; Turn on font lock mode every time Emacs initializes a buffer
;; for Lisp or C.
;;
(add-hook 'emacs-lisp-mode-hook 'turn-on-font-lock)
(add-hook 'c-mode-hook 'turn-on-font-lock)
Font-lock mode tends to be especially helpful for colorizing
programming language code or outline mode text but also gives useful
results for HTML files and Dired buffers. In fact, we find it useful
in so you may want to turn it on globally instead, as we did in
“A Sample .emacs
file” earlier in this chapter. If you
want more examples using font-lock mode, refer back to Chapter 9 on some of the various programming language
modes supported by Emacs.

Customizing Fonts Through Custom

Now that you know how to

 work
with Custom, you can also go that route to edit and alter fonts and
colors. The easy way to get started in Custom is to run M-x customize-group and enter faces for the group name. (Figure 10-10 shows a sample of the groups
you’ll see.)
[image: Font face groups available in Custom (Mac OS X)]

Figure 10-10. Font face groups available in Custom (Mac OS X)

Changing Colors

But what if you just want to change
the
default foreground and background colors? Well, that turns out to be
quite simple. You can use the M-x
set-foreground-color and M-x
set-background-color commands to pick simple colors (based
on their names such as black, white, yellow, blue, red, etc.). Be
careful, though, because Emacs has no qualms about letting you set
these values to garish—or even impossible—combinations!
While black text on a black background may provide some level of
security from anyone peeking over your shoulder,
it’s not the most productive combination in the long
run.
To see the range of colors available, run M-x
set-foreground-color. When it prompts you for a color,
just press Tab to get a completion list of the possible
colors—you should get quite a few! These names can also be
typed into the foreground and background fields (or any other
color-based field) in Custom.
You can also use Custom to control all aspects (including the
foreground and background colors) of the
“default” font. Figure 10-11 shows the Custom screen for just that font
after switching the colors to green and black.
[image: Changes to the default font colors effectively set the foreground and background colors for Emacs (Mac OS X)]

Figure 10-11. Changes to the default font colors effectively set the foreground and background colors for Emacs (Mac OS X)

You can go through the usual channels discussed previously to
customize this face, or come here directly with M-x customize-face and then enter default at the prompt.
Changing the cursor color

Don’t forget about the cursor! You can

 also
use set-cursor-color to change the
color of the cursor. That can be especially useful if you want a
black background—the default black cursor can easily get lost.

Saving Font- and Color-Enriched Text

The astute reader will have noticed that,

 although the highlighting machinery
allows us to set up enriched text in a buffer, we
haven’t shown a way to save text properties along
with text between sessions. This is a significant issue. As long as
there is no way to save properties along with text, all the font and
color machinery remains little more than a display hack, good for
decorating buffers but adding little to Emacs’s
editing power.
What’s needed to remedy this situation is a way for
text properties to be saved in an expanded text-markup form and
restored into text properties when the file is next edited.
At the time of this writing, experimental code to support this is
included with Emacs. A library called
enriched-mode

 supports saving text properties into the
MIME enriched-text format specified by the Internet standards
document RFC 1896, and can parse files in that format into Emacs
buffers with equivalent text and text properties.
Although this mode is quite usable as is, much design and development
still needs to be done before the capabilities enriched mode supports
are mature and well integrated with other Emacs modes. By the time
you read this, there may be several such libraries, each supporting a
different enriched format such as HTML. Eventually modes like these
should enable Emacs to support WYSIWYG and even multimedia editing.
To enter enriched mode, type M-x
enriched-mode. Enriched appears on the
mode line. Emacs may ask if you want to make newlines between
paragraphs hard. (This is because Emacs reformats the paragraphs when
you change margin settings.) Type y.
You can use several font commands to decorate your text. Most begin
with the M-g prefix. Table 10-1
lists some of the more common options. If you like using the menus,
you can also select

 the options in Table 10-1 using the Edit → Text Properties
→ Face menu.
Table 10-1. Enriched mode font commands
	
 Command

 	
 Font selected

	

 M-g d

 	
 default

	

 M-g b

 	
 bold

	

 M-g i

 	
 italic

	

 M-g l

 	
 bold-italic

	

 M-g u

 	
 underline

	

 M-g o

 	
 other (allows you to pick a font face by name)

The commands listed in Table 10-1 apply to the
currently marked text. We used a number of these commands to produce
the simple text example shown in Figure 10-12.
[image: An enriched text example (Mac OS X)]

Figure 10-12. An enriched text example (Mac OS X)

Saving enriched text

When you save enriched text, Emacs
 marks up the document with XML-like
tags. Emacs will happily read the document back in, although not many
other applications will know what to do with the tags. Still, as you
can see below, the tags are straightforward and would allow custom
applications such as CGI scripts for the Web to parse them quickly.
Content-Type: text/enriched
Text-Width: 70

<x-color><param>blue</param>Testing</x-color>

This is a quick test of the

<x-color><param>red</param>enriched</x-color> mode in Emacs.

<bold>Not sure what's gonna happen.</bold>

Looks good from here.
But, you can’t rely too much on enriched mode yet.
For example note the Testing title line. It
doesn’t appear to contain any information about the
size of the font—which is definitely larger if you look at
Figure 10-11. Sure enough, killing the buffer and reloading the file
loses the size value. The text is still blue and the content is
available, but some of the formatting has been lost.
The moral is a classic one: be careful. If you have serious enriched
text needs, Emacs is probably not the tool to use (at least not yet).
Many of the various word processors out there will do a much better
job. But if you just need some basic enhancements to documents that
only you or other Emacs users will view, enriched mode is just the
ticket.

Customizing Your Key Bindings

Perhaps the most common things

 that
Emacs users want to customize are the keystrokes that cause commands
to run. Keystrokes are associated with commands via key
bindings.
Actually, every keystroke runs a command in Emacs. Printable
character keys (letters, numerals, punctuation, and spaces) run the
self-insert-command, which merely
causes the key just pressed to be inserted at the cursor in the
current buffer. (You could play a nasty April Fool’s
joke on a naïve Emacs user by changing the bindings of
their printable characters.)
The default set of key bindings is adequate for most purposes, of
course, but there are various cases in which you may want to add or
change key bindings. Emacs contains literally hundreds of commands,
only some of which have key bindings. As you know, you can access
those that don’t have bindings by typing M-x
 command-name
 Enter.
If, however, you intend to use an unbound command often, you may want
to bind it to a keystroke sequence for convenience. You may want to
set special keys, such as arrow, numeric keypad, or function keys, to
perform commands you use often.
The other important concept you need to know now is that of a
keymap, which is a collection of key bindings.
The most basic default key bindings in Emacs are kept in a keymap
called global-map. There is also the
concept of a local keymap, which is specific to
a single buffer. Local keymaps are used to implement commands in
modes (like C mode, text mode, shell mode, etc.), and each such mode
has its own keymap it installs as the local map when invoked. When
you type a key, Emacs first looks it up in the current
buffer’s local map (if any). If it
doesn’t find an entry there, it looks in global-map. If an entry for the key is found,
its associated command is run.
What happens with commands that are bound to multiple keystrokes, as
in C-x k for kill-buffer? The answer is that the keys
C-x, Esc, and C-c
are actually bound to special internal functions that cause Emacs to
wait for another key to be pressed and then to look up that
key’s binding in another map; they also cause
messages like C-x- to appear in the
minibuffer if more than a second passes before the next key is
pressed. The additional keymaps for C-x and Esc
are called ctl-x-map and
esc-map,[1]
respectively; C-c is reserved for
local keymaps associated with modes like C mode and shell mode.
For example, when you type Esc d or
M-d, Emacs looks it up in the
buffer’s local keymap. We will assume it
doesn’t find an entry there. Then Emacs searches
global-map; there it finds an entry
for Esc with a special function
(called ESC-prefix) that waits for
the next keystroke and uses esc-map
to determine which command to execute. When you type d, ESC-prefix
looks up the entry for d in
esc-map, finds kill-word, and runs it.
You can create your own key bindings by adding entries in keymaps (or
overriding existing ones). Three functions are available for doing
this: define-key, global-set-key, and local-set-key. Their forms are:
(define-key keymap "keystroke" 'command-name
)
(global-set-key "keystroke" 'command-name)
(local-set-key "keystroke" 'command-name)
Notice the double quotes around keystroke and
the single quote preceding command-name. This is
Lisp syntax; for more details, see Chapter 11.
The keystroke is one or more characters, either
printable or
special characters. For the latter, use the conventions in Table 10-2.
Table 10-2. Special character conventions
	
 Special character

 	
 Definition

	

 \C-x

 	

 C-x (where x is any letter)

	

 \C-[or \e

 	

 Esc

	

 \M

 	

 Meta

	

 \C-j or \n

 	

 Newline

	

 \C-m or \r

 	

 Enter

	

 \C-i or \t

 	

 Tab

Thus, the string abc\C-a\ndef is
equal to abc, C-a, newline,
and def, all concatenated into one
string. Note that control characters are case-insensitive—that
is, \C-A is the same thing as
\C-a. However, the characters that
follow control characters may be case-sensitive; \C-ae could be different from \C-aE, for example.
The function define-key is the most
general because it can be used to bind keys in any keymap. global-set-key binds keys in the global map
only; since there is only one global-map, (global-set-key ...) is the same as (define-key global-map ...). The function
local-set-key binds keys in the
local map of the current buffer; it is useful only for specifying
temporary key bindings during an Emacs session.
Here is an example of a simple keyboard customization.
Let’s say you are writing code in a programming
language. You compile it and get error messages that contain the line
number of the error, and you want to go to that line in the source
file to correct the error.[2] You would want to use the goto-line command, which is not bound by
default to any keystroke. Say you want to bind it to C-x l. The command to put into your
.emacs file is
(global-set-key "\C-xl" 'goto-line)
This binds the l slot in ctl-x-map to the function goto-line globally—that is, in all
modes. Alternatively, you can use either of the following:
(define-key global-map "\C-xl" 'goto-line)
(define-key ctl-x-map "l" 'goto-line)
These commands have the same effect but aren’t
really any more efficient or better. And really, you
shouldn’t have to know that the keymap for C-x is called ctl-x-map. We’ll stick to
showing the global-set-key approach
for the remaining examples, but remember that you have define-key available for situations where
setting the global key is not appropriate, such as when adding a
mode-specific keystroke.
Other examples of key rebindings include binding C-x ? to help-command and C-h to backward-char. These key rebindings are shown
below:
(global-set-key "\C-x?" 'help-command)
(global-set-key "\C-h" 'backward-char)
Notice that these could also be done as
(define-key ctl-x-map "?" 'help-command)
(define-key global-map "\C-h" 'backward-char)
After you put a key binding (or any other code) in your
.emacs file, you need to
“run” (or evaluate) the file for
the change to take effect. The command for this is M-x eval-current-buffer Enter. Even better,
you could press C-x C-e, which (as
we will see in the next chapter) causes only the single line of Lisp
code that your cursor is on to run. If you don’t do
either of these, the changes won’t take effect until
the next time you invoke Emacs.
Special Keys

A more complicated keyboard

 customization task is binding
commands to special keys, such as arrow, numeric keypad, or function
keys, on your keyboard. This level of customization takes some work,
but if you like using special keys, it is well worth the effort.
Most of the special keys have reasonable names, but using them with
the set key functions discussed above requires using a slightly
different syntax. The name of the key appears inside square brackets
rather than inside double quotes. For example, you could bind the
goto-line command to the function
key F5 like this:
 (global-set-key [f5] 'goto-line)
And you can certainly use modifiers with your special keys.
Control-Alt-F5 can be bound like this:
 (global-set-key [C-A-f5] 'goto-line)

 Table 10-3 lists the names of some common special
keys.
Table 10-3. Special key ELisp names
	
 ELisp Name

 	
 Key

 	
	
 ELisp Name

 	
 Key

	
 DEL or backspace

 	
 Backspace

 	
	
 kp-0 .. kp-9

 	
 Keypad numbers 0 through 9

	
 delete

 	
 Delete key

 	
	
 kp-enter

 	
 Enter key on the number pad

	
 down

 	
 Down arrow key

 	
	
 left

 	
 Left arrow key

	
 end

 	
 End key

 	
	
 next

 	
 Page Down

	
 f1 .. f35

 	
 Function keys F1 through F35

 	
	
 prior

 	
 Page Up

	
 home

 	
 Home key

 	
	
 right

 	
 Right arrow key

	
 help

 	
 Help key

 	
	
 up

 	
 Up arrow key

Unsetting Key Bindings

You can also remove a particular
key binding with the global-unset-key and define-key commands. For example, the
following lines will both remove the goto-line command bindings from our previous
examples:
(global-unset-key [f5])
(define-key ctl-x-map "l" nil)
Of course, you don’t need to unset any bindings if
you plan to replace them with something else. But this can be useful
if you have a common “typo” key
that you don’t want firing off when you type it by
mistake.

[1] You can use
Meta in place of Esc, but the bindings are still stored in the
esc-map.

[2] There is a better way of
dealing with this situation, which we will cover in the next
chapter.

Setting Emacs Variables

Now we will get into
ways
to affect Emacs’ behavior—not just its user
interface. The easiest way to do so is by setting variables that
control various things. We already saw examples of this like
auto-save-interval in Chapter 2. To set the value of a variable, use the
setq function in your
.emacs, as in:
(setq auto-save-interval 800)
Although auto-save-interval takes an
integer (number) value, many Emacs variables
take true or false values, called Boolean in
computer parlance. In Emacs Lisp, t
is the true value, and nil is the
false value, although in most cases, anything other than nil is taken to mean true. Emacs variables can
take other types of values, and here is how to specify them:
	
 Strings of characters are

 surrounded
by double quotes. We saw examples of strings in the arguments to key
binding commands earlier in this chapter.

	
 Characters are specified like

 strings
but with a ? preceding them, and
they are not surrounded by double quotes. Thus, ?x and ?\C-c
are character values x and C-c, respectively.

	
 Symbols are given by a single

 quote
followed by a symbol name—for example, 'never (see the variable version-control in Appendix A).

A list of useful Emacs variables, grouped by category, appears in
Appendix A, with descriptions and default values. Emacs has more than
2,500 variables—many more than are covered in Appendix A. If
there is something about Emacs that you want to customize, a variable
probably controls the feature (especially if what you want to change
involves a number or a true-or-false condition). To find out whether
any variables relate to what you want to do, you can use the
apropos-variable command described
in Chapter 14 to look for variables and their
descriptions.
Several Emacs variables can have different values for each buffer
(local values, in Emacs parlance) as well as a
default value. Such variables assume their
default values in buffers where the local values are not specified. A
common example is starting a new text document. The local value for
the left-margin variable has not
been set, so Emacs uses the default value for left-margin. You can change the local value in
this buffer if you like. But start a new document in a new buffer and
you’ll find that left-margin is back to the default
value—because the second buffer’s local value
has not been set.
As you might expect, you can set both the default and local values of
such variables. When you set the value of a variable such as
left-margin or case-fold-search with setq, you are actually setting the local
value. The way to set default values is to use setq-default instead of setq, as in:
(setq-default left-margin 4)
Unfortunately, there is no general way to tell whether a variable has
just one global value or has default and local values (except, of
course, by looking at the Lisp code for the mode). Therefore the best
strategy is to use a plain setq,
unless you find from experience that a
particular variable doesn’t seem to take on the
value you setq it to—in which
case you should use setq-default.
For example, if you put the line:
(setq case-fold-search nil)
in your .emacs file, you will find that Emacs
still ignores case differences in search commands as if this variable
were still t; instead, you should
use setq-default.

Finding Emacs Lisp Packages

Emacs contains lots of Lisp code; in fact, as

 we will see in Chapter 11, the majority of Emacs’
built-in functionality is written in Lisp. Emacs also comes with
several extra Lisp packages (also known as
libraries) that you can bring in (or
load) to add more features. Lisp packages are
being added to Emacs all the time, and sometimes your system
administrator will add packages obtained from sources other than the
Free Software Foundation.
Appendix B lists the most useful built-in Lisp
packages, along with explanations of how to use them. You can also
get information about which packages are available on your system by
typing C-h p (for finder-by-keyword). Briefly, the built-in
packages do the following kinds of things:
	Support programming in C, Lisp, Perl, Java, and several other
languages (see Chapter 9).

	Support text processing with TEX, LATEX, XML, and HTML (see Chapter 8).

	Emulate other editors (vi, EDT, and Gosling Emacs).

	Interface to operating system utilities, such as the shell (see Chapter 5).

	Provide editing support functions, such as spell checking (see Chapter 3) and outline editing (see Chapter 7) as well as text sorting, command history
editing, Emacs variable setting (see Appendix A), and much more.

	Play various games and provide other forms of amusement.

See Appendix B for more details.

Starting Modes via Auto-Mode Customization

The tables in Appendix B list

 several major modes that are automatically
invoked when you visit a file whose name ends in the appropriate
suffix. Look for “suffix” in the
right-hand columns of the tables to see many of the associations
between filename suffixes and major modes that Emacs sets up by
default. These associations are contained in the special Emacs
variable auto-mode-alist. auto-mode-alist is a list of pairs
(regexp . mode), where
regexp is a regular expression (see
Chapter 3 and Chapter 11)
and mode is the name of a function that invokes
a major mode. When Emacs visits a file, it searches this list (from
the beginning) for a regular expression that matches the
file’s suffix. If it finds one, it runs the
associated mode function. Notice that any part
of a file’s name—not just its suffix—can
actually be associated with a major mode.
You can add your own associations to auto-mode-alist, although the syntax is weird
if you are not used to Lisp (see Chapter 11 for
the gory details). If you are programming in the Ada language, and
your Ada compiler expects files with suffix
.ada, you can get Emacs to put your files in Ada
mode whenever you visit them by putting the following line in your
.emacs file:
(setq auto-mode-alist (cons '("\\.ada$" . ada-mode) auto-mode-alist))
Make sure you include the single quote after the term
cons and the dot between "\\.ada$" and ada-mode. The
notation '(x . y) is just Lisp syntax for
“make x and y a pair.” The string
"\\.ada$" is a regular expression that means
“anything with .ada at the end
of it,” that is, $ matches the
end of the string (as opposed to the end of the line, which is what
it matches during regular expression search and replace). The entire
line of Lisp basically means “add the pair
("\\.ada$", 'ada-mode) to the front of the
auto-mode-alist.” Note that, because Emacs searches
auto-mode-alist from the beginning
and stops when it finds a match, you can use the above cons construct to override existing mode
associations.[3]

As another example, let’s say you save certain mail
messages in files whose names begin with msg-,
and you want to edit these files in text mode. Here is the way to do
it:
(setq auto-mode-alist (cons '("^msg-" . text-mode) auto-mode-alist))
Notice that in this case we are matching the
beginning, rather than the end, of the filename.
The regular expression operator (^)
means beginning of string, so the entire regular expression means
“anything beginning with msg-.”
Finally, if the name of a file you are editing does not match any of
the regular expressions in auto-mode-alist, Emacs puts it into the mode
whose name is the value of the variable default-major-mode. This mode is normally
fundamental mode, a basic mode without special functionality.
However, many people like to set their default mode to text mode,
accomplished by adding a line like this to
.emacs:
(setq default-major-mode 'text-mode)
Although we have covered many useful ways to customize Emacs in this
chapter, we have really only scratched the surface. To find out more,
turn to Chapter 11 and find out about Lisp
programming, the key to getting Emacs to do just about anything you
want.

[3] Lisp programmers will understand that
there are other ways to add to auto-mode-alist, such as append.

Making Emacs Work the Way You Think It Should

Emacs not only has per-user customizations; it can also have sitewide
customizations. If Emacs isn’t doing what you expect
it to, you might want to try inhibiting any global customization file
by starting Emacs with no customization.
You can do that by using
one
of these command-line options when you invoke Emacs.
	
 --no-init-file, -q
 load neither ~/.emacs nor default.el

	
 --no-site-file
 do not load
site-start.el

If you normally start Emacs from an icon, it’s
helpful to learn how to start it from the command-line for cases like
this. (You may also want to use the -debug option
sometime to help you figure out what’s wrong with
your .emacs file if it is messed up following a
change.) Chapter 13 describes how to start Emacs
from the command-line for Mac OS X and Windows users.
You can also inhibit global initialization by creating a one-line
.emacs file in your home directory. It should
look exactly like this:
(setq inhibit-default-init t) ; no global initialization
Start Emacs again. This file prevents Emacs from reading its global
initialization file.
There’s still one awkward situation: what if
you’re sitting down at someone
else’s system? You start Emacs, and all of a sudden
you’re faced with someone else’s
“private” key bindings and
features. Even in this situation, there’s a
solution:
	Try using the command emacs -q. The
-q option tells Emacs not to read
the user’s .emacs file before
starting. By doing this, you’ll avoid the
user’s private customizations.

	Let’s say that after this step, you still
don’t have your own customizations. If you want to
make Emacs read your .emacs file, even when
you’re using someone else’s
account, give the command emacs -u
 yourname. For example: emacs -u deb starts Emacs with the user
Deb’s initialization file
(/home/deb/.emacs).

The -u option may not work unless
you’re on a network where users have a shared home
directory structure. It assumes either that you have the same home
directory on every system, or that you have a different home
directory on every system and an up-to-date
.emacs file in all of your home directories.
If all that fails, fear not. You have more options.
Let’s take the worst case scenario:
you’re on someone else’s system and
you can’t start Emacs from the command line. Go
ahead and start Emacs. You can temporarily overwrite the other
user’s key bindings by loading up your own key
bindings file in a buffer and running it with M-x eval-buffer.
You probably should make a separate file with key bindings and other
variable options rather than using your .emacs
file. That’s because many times your
.emacs file will have requests to load libraries
that exist on a path that works only from your own system. If you
find yourself jumping to a lot of different machines,
it’s worth the effort to create a portable
“rebinding” file and put it
somewhere accessible like a web page or a shared file server. Then
you can evaluate it manually from your current Emacs.

Chapter 11. Emacs Lisp Programming

If you have been using Emacs for a
 while and have been taking advantage of
some of its more advanced features, chances are that you have thought
of something useful that Emacs doesn’t do. Although
Emacs has hundreds of built-in commands, dozens of packages and
modes, and so on, everyone eventually runs into some functionality
that Emacs doesn’t have. Whatever feature you find
missing, you can program using Emacs Lisp.
Before you dive in, however, note that this chapter is not for
everyone. It is intended for people who have already become
comfortable using Emacs and who have a fair bit of programming
experience, though not necessarily with Lisp per
se. If you have no such experience, you may want to skip
this chapter; if there is something specific you would like Emacs to
do, you might try to find a friendly Emacs Lisp hacker to help you
write the necessary code. Or, if you’re a little
adventurous, you could skim enough to find the file-template example
and learn how to install it—it gives you some useful features.
Readers who are building their Lisp skills but don’t
necessarily want to read the whole chapter might also want to look
for the “Treasure Trove of
Examples” section in the middle for a useful tool
that can help jumpstart their exploration of the Emacs libraries.
Note that we do not cover Lisp in its entirety in this chapter. That
would require another large, dense book. Instead, we cover the basics
of the language and other features that are often useful in writing
Emacs code. If you wish to go beyond this chapter, refer to the
GNU Emacs Lisp Reference Manual, distributed
with Emacs (choose Help→ More Manuals→ Introduction
to Lisp and Emacs Lisp Reference) for details about the specific Lisp
features in Emacs. You may also turn to any of the various Lisp
textbooks[1] available for a solid grounding in the
language itself.
Emacs Lisp is a full-blown Lisp implementation;[2] thus it is
more than the usual macro or script language found in many text
editors. (One of the authors has written a small expert system
entirely in Emacs Lisp.) In fact, you could even think of Emacs
itself as a Lisp system with lots of built-in functions, many of
which happen to pertain to text manipulation, window management, file
I/O, and other features useful to text editing. The source code for
Emacs, written in C, implements the Lisp interpreter, Lisp
primitives, and only the most basic commands for text editing; a
large layer of built-in Lisp code and libraries on top of that
implements the rest of Emacs’s functionality. A
current version of Emacs comes with close to 250,000 lines of Lisp.
This chapter starts with an introduction to the aspects of Lisp that
resemble common programming languages like Java and Perl. These
features are enough to enable you to write many Emacs commands. Then
we deal with how to interface Lisp code with Emacs so that the
functions you write can become Emacs commands. We will see various
built-in Lisp functions that are useful for writing your own Emacs
commands, including those that use regular expressions; we give an
explanation of regular expressions that extends the introduction in
Chapter 3 and is oriented toward Lisp
programming. We then return to the basics of Lisp for a little while,
covering the unique features of the language that have to do with
lists, and show how this chapter’s concepts fit
together by presenting a file template system you can install and use
in your own programming or writing projects.
Finally we show you how to program a simple major mode, illustrating
that this “summit” of Emacs Lisp
programming isn’t so hard to scale. After that, you
will see how easy it is to customize Emacs’s
built-in major modes without having to change (or even look at) the
code that implements them. We finish the chapter by describing how to
build your own library of Lisp packages.

[1] We recommend Lisp by
Patrick Henry Winston and Berthold Klaus Paul Horn (Addison
Wesley).

[2] Experienced Lisp programmers should note that Emacs Lisp most
closely resembles MacLisp, with a few Common Lisp features added.
More complete Common Lisp emulation can be had by loading the package
cl (see Appendix B).

Introduction to Lisp

You may have heard of Lisp as a
language
for artificial intelligence (AI). If you aren’t into
AI, don’t worry. Lisp may have an unusual syntax,
but many of its basic features are just like those of more
conventional languages you may have seen, such as Java or Perl. We
emphasize such features in this chapter. After introducing the basic
Lisp concepts, we proceed by building up various example functions
that you can actually use in Emacs. In order to try out the examples,
you should be familiar with Emacs Lisp mode and Lisp interaction
mode, which were discussed in Chapter 9.
Basic Lisp Entities

The basic elements

 in
Lisp you need to be familiar with are functions, variables, and
atoms. Functions are the only program units in
Lisp; they cover the notions of procedures, subroutines, programs,
and even operators in other languages.

 Functions are defined as lists of the above
entities, usually as lists of calls to other, existing functions. All
functions

 have return
values (as with Perl functions and non-void Java methods);
a function’s return value is simply the value of the
last item in the list, usually the value returned by the last
function called. A function call within another function is
equivalent to a statement in other languages,
and we use statement interchangeably with function call in this
chapter. Here is the syntax for function:
(function-name
 argument1
 argument2 ...)
which is equivalent to this:
 method_name (argument1, argument2, ...);
in Java. This syntax is used for

 all
functions, including those equivalent to arithmetic or comparison
operators in other languages. For example, in order to add 2 and 4 in
Java or Perl, you would use the expression 2 + 4, whereas in Lisp you
would use the following:
(+ 2 4)
Similarly, where you would use 4 >= 2 (greater than or equal to),
the Lisp equivalent is:
(>= 4 2)

 Variables in Lisp are

 similar
to those in any other language, except that they do not have
types. A Lisp variable can assume any type of
value (values themselves do have types, but variables
don’t impose restrictions on what they can hold).

 Atoms are values of
 any
type, including integers, floating point (real) numbers, characters,
strings, Boolean truth values, symbols, and special Emacs types such
as buffers, windows, and processes. The syntax for various kinds of
atoms is:
	
 Integers are what you would

 expect: signed whole numbers in
the range -227 to
227-1.

	
 Floating point numbers are real
numbers that you can represent with
decimal points and scientific notation (with lowercase
“e” for the power of 10). For
example, the number 5489 can be written 5489, 5.489e3, 548.9e1, and
so on.

	
 Characters are preceded by a
question mark, for example,
?a. Esc,
Newline, and Tab are abbreviated \e,
\n, and \t respectively; other
control characters are denoted with the prefix
\C-, so that (for example) C-a is denoted as
?\C-a.[3]

	
 Strings are surrounded by
double quotes;
quote marks and backslashes within strings need to be preceded by a
backslash. For example, "Jane said, \"See
 Dick run.\"" is a legal string.
Strings can be split across multiple lines without any special
syntax. Everything until the closing quote, including all the line
breaks, is part of the string value.

	
 Booleans use t
for true and nil for false,
though
most of the time, if a Boolean value is expected, any
non-nil value is assumed to mean true.
nil is also used as a null or nonvalue in various
situations, as we will see.

	
 Symbols are names of things in Lisp,
for example, names of variables or
functions. Sometimes it is important to refer to the
name of something instead of its value, and this
is done by preceding the name with a single quote
('). For example, the define-key function, described in Chapter 10, uses the name of the
command (as a symbol) rather than the command itself.

A simple example that ties many of these basic Lisp concepts together
is the function setq.[4] As you may have figured out from previous
chapters, setq is a way of assigning
values to variables, as in
(setq auto-save-interval 800)
Notice that setq is a function,
unlike in other languages in which special syntax such as
= or := is used for assignment.
setq takes two arguments: a variable
name and a value. In this example, the variable auto-save-interval (the number of keystrokes
between auto-saves) is set to the value 800.

 setq can actually be used to assign
values to multiple variables, as in
(setq thisvar thisvalue
 thatvar thatvalue
 theothervar theothervalue
)
The return value of setq is simply
the last value assigned, in this case
theothervalue. You can set the values of
variables in other ways, as we’ll see, but setq is the most widely applicable.

Defining Functions

Now it’s time for
 an
example of a simple function definition. Start Emacs without any
arguments; this puts you into the *scratch*
buffer, an empty buffer in Lisp interaction mode (see Chapter 9), so that you can actually try this and
subsequent examples.
Before we get to the example, however, some more comments on Lisp
syntax are necessary. First, you will notice that the dash
(-) is used as a
“break” character to separate words
in names of variables, functions, and so on. This practice is simply
a widely used Lisp programming convention; thus the dash takes the
place of the underscore (_) in languages like C
and Ada. A more important issue has to do with all of the parentheses
in Lisp code. Lisp is an old language that was
designed before anyone gave much thought to language syntax (it was
still considered amazing that you could use any language other than
the native processor’s binary instruction set), so
its syntax is not exactly programmer-friendly. Yet
Lisp’s heavy use of lists—and thus its heavy
use of parentheses—has its advantages, as
we’ll see toward the end of this chapter.
The main problem a programmer faces is how to keep all the
parentheses balanced properly. Compounding this problem is the usual
programming convention of putting multiple right parentheses at the
end of a line, rather than the more readable technique of placing
each right parenthesis directly below its matching left parenthesis.
Your best defense against this is the support the Emacs Lisp modes
give you, particularly the Tab key
for proper indentation and the flash-matching-parenthesis feature.
Now we’re ready for our example function. Suppose
you are a student or journalist who needs to keep track of the number
of words in a paper or story you are writing. Emacs has no built-in
way of counting the number of words in a buffer, so
we’ll write a Lisp function that does the job:
1 (defun count-words-buffer ()
2 (let ((count 0))
3 (save-excursion
4 (goto-char (point-min))
5 (while (< (point) (point-max))
6 (forward-word 1)
7 (setq count (1+ count)))
8 (message "buffer contains %d words." count))))
Let’s go through this function line by line and see
what it does. (Of course, if you are trying this in Emacs,
don’t type the line numbers in.)
The defun on line 1 defines the
function by its name and arguments. Notice that defun is itself a function—one that,
when called, defines a new function. (defun returns the name of the function
defined, as a symbol.) The function’s arguments
appear as a list of names inside parentheses; in this case, the
function has no arguments. Arguments can be made
optional by preceding them with the keyword
&optional. If an argument is
optional and not supplied when the function is called, its value is
assumed to be nil.
Line 2 contains a let construct,
whose general form is:
(let ((var1 value1) (var2 value2) ...)
 statement-block)
The first thing let does is define
the variables var1, var2, etc.,
and set them to the initial values value1,
value2, etc. Then let executes the statement
block, which is a sequence of function calls or values,
just like the body of a function.
It is useful to think of let as
doing three things:
	Defining (or declaring) a list of variables

	Setting the variables to initial values, as if with setq

	Creating a block in which the variables are known; the let block is known as the
scope of the variables

If a let is used to define a
variable, its value can be reset later within the let block with setq. Furthermore, a variable defined with
let can have the same name as a
global variable; all setqs on that
variable within the let block act on
the local variable, leaving the global variable undisturbed. However,
a setq on a variable that is not
defined with a let affects the
global environment. It is advisable to avoid using global variables
as much as possible because their names might conflict with those of
existing global variables and therefore your changes might have
unexpected and inexplicable side effects later on.
So, in our example function, we use let to define the local variable count and initialize it to 0. As we will see,
this variable is used as a loop counter.
Lines 3 through 8 are the statements within the let block. The first of these calls the
built-in Emacs function save-excursion, which is a way of being
polite. The function is going to move the cursor around the buffer,
so we don’t want to disorient the user by jumping
them to a strange place in their file just because they asked for a
word count. Calling save-excursion
tells Emacs to remember the location of cursor at the beginning of
the function, and go back there after executing any statements in its
body. Notice how save-excursion is
providing us with capability similar to let; you can think of it as a way of making
the cursor location itself a local variable.
Line 4 calls goto-char. The argument
to goto-char is a (nested) function
call to the built-in function point-min. As we have mentioned before,
point is Emacs’s internal name
for the position of the cursor, and we’ll refer to
the cursor as point throughout the remainder of this chapter.
point-min returns the value of the
first character position in the current buffer, which is almost
always 1; then, goto-char is called
with the value 1, which has the effect of moving point to the
beginning of the buffer.
The next line sets up a while loop;
Java and Perl have a similar construct. The while construct has the general form
 (while condition
 statement-block)
Like let and save-excursion, while sets up another statement block.
condition is a value (an atom, a
variable, or a function returning a value). This value is tested; if
it is nil, the condition is considered to be
false, and the while loop
terminates. If the value is other than nil, the
condition is considered to be true, the statement block gets
executed, the condition is tested again, and the process repeats.
Of course, it is possible to write an infinite loop. If you write a
Lisp function with a while loop and
try running it, and your Emacs session hangs, chances are that you
have made this all-too-common mistake; just type C-g to abort it.
In our sample function, the condition is the function
<, which is a less-than function with two
arguments, analogous to the < operator in Java or Perl. The first
argument is another function that returns the current character
position of point; the second argument returns the maximum character
position in the buffer, that is, the length of the buffer. The
function < (and other relational functions)
return a Boolean value, t or
nil.
The loop’s statement block consists of two
statements. Line 6 moves point forward one word (i.e., as if you had
typed M-f). Line 7 increments the
loop counter by 1; the function 1+ is shorthand
for (+ 1 variable-name). Notice that the third
right parenthesis on line 7 matches the left parenthesis preceding
while. So, the while loop causes Emacs to go through the
current buffer a word at a time while counting the words.
The final statement in the function uses the built-in function
message to print a message in the
minibuffer saying how many words the buffer contains. The form of the
message function will be familiar to
C programmers. The first argument to message is a format string, which contains
text and special formatting instructions of the form
%
 x, where
x is one of a few possible letters. For
each of these instructions, in the order in which they appear in the
format string, message reads the next argument and
tries to interpret it according to the letter after the percent sign.
Table 11-1 lists meanings for the letters in the
format string.
Table 11-1. Message format strings
	
 Format string

 	
 Meaning

	

 %s

 	
 String or symbol

	

 %c

 	
 Character

	

 %d

 	
 Integer

	

 %e

 	
 Floating point in scientific notation

	

 %f

 	
 Floating point in decimal-point notation

	

 %g

 	
 Floating point in whichever format yields the shortest string

For example:
(message "\"%s\" is a string, %d is a number, and %c is a character"
 "hi there" 142 ?q)
causes the message:
"hi there" is a string, 142 is a number, and q is a character
to appear in the minibuffer. This is analogous to the C code:
printf ("\"%s\" is a string, %d is a number, and %c is a character\n",
 "hi there", 142, 'q');
The floating-point-format characters are a bit more complicated. They
assume a certain number of significant digits unless you tell them
otherwise. For example, the following:
(message "This book was printed in %f, also known as %e." 2004 2004)
yields this:
This book was printed in 2004.000000, also known as 2.004000e+03.
But you can control the number of digits after the decimal point by
inserting a period and the number of digits desired between the
% and
 the e,
f, or g. For example, this:
(message "This book was printed in %.3e, also known as %.0f." 2004 2004)
prints in the minibuffer:
This book was printed in 2.004e+03, also known as 2004.

Turning Lisp Functions into Emacs Commands

The count-words-buffer function

 that we’ve
just finished works, but it still isn’t as
convenient to use as the Emacs commands you work with daily. If you
have typed it in, try it yourself. First you need to get Emacs to
evaluate the lines you typed in, thereby actually defining the
function. To do this, move your cursor to just after the last closing
parenthesis in the function and type C-j
(or Linefeed)—the
“evaluate” key in Lisp interaction
mode—to tell Emacs to perform the function definition. You
should see the name of the function appear again in the buffer; the
return value of the defun function
is the symbol that has been defined. (If instead you get an error
message, double check that your function looks exactly like the
example and that you haven’t typed in the line
numbers, and try again.)
Once the function is defined, you can execute it by typing (count-words-buffer) on its own line in your
Lisp interaction window, and once again typing C-j after the closing parenthesis.
Now that you can execute the function correctly from a Lisp
interaction window, try executing the function with M-x, as with any other Emacs command. Try
typing M-x count-words-buffer Enter:
you will get the error message [No match]. (You
can type C-g to cancel this failed
attempt.) You get this error message because you need to
“register” a function with Emacs to
make it available for interactive use. The function to do this is
interactive, which has the form:
(interactive "prompt-string")
This statement should be the first in a function, that is, right
after the line containing the defun
and the documentation string (which we will cover shortly). Using
interactive causes Emacs to register
the function as a command and to prompt the user for the arguments
declared in the defun statement. The
prompt string is optional.
The prompt string has a special format: for each argument you want to
prompt the user for, you provide a section of prompt string. The
sections are separated by newlines (\n). The first
letter of each

 section is a code for
the type of argument you want. There are many choices; the most
commonly used are listed in Table 11-2.
Table 11-2. Argument codes for interactive functions
	

 Code

 	

 User is prompted for:

	

 b

 	
 Name of an existing buffer

	

 e

 	
 Event (mouse action or function key press)

	

 f

 	
 Name of an existing file

	

 n

 	
 Number (integer)

	

 s

 	
 String

	
	

 Most of these have uppercase variations

	

 B

 	
 Name of a buffer that may not exist

	

 F

 	
 Name of a file that may not exist

	

 N

 	
 Number, unless command is invoked with a prefix argument, in which
case use the prefix argument and skip this prompt

	

 S

 	
 Symbol

With the b and f options, Emacs signals an error if the
buffer or file given does not already exist. Another useful option to
interactive is r, which we will see later. There are many
other option letters; consult the documentation for function
interactive for the details. The
rest of each section is the actual prompt that appears in the
minibuffer.
The way interactive is used to fill
in function arguments is somewhat complicated and best explained
through an example. A simple example is in the function goto-percent, which we will see shortly. It
contains the statement
(interactive "nPercent: ")
The n in the prompt string tells Emacs to prompt
for an integer; the string Percent: appears in the
minibuffer.
As a slightly more complicated example, let’s say we
want to write our own version of the replace-string command.
Here’s how we would do the prompting:
(defun replace-string (from to)
 (interactive "sReplace string: \nsReplace string %s with: ")
 ...)
The prompt string consists of two sections, sReplace
string: and sReplace string
 %s
with:, separated by a Newline. The initial
s in each means that a string is expected; the
%s is a formatting operator (as in the previous
message function) that Emacs
replaces with the user’s response to the first
prompt. When applying formatting operators in a prompt, it is as if
message has been called with a list
of all responses read so far, so the first formatting operator is
applied to the first response, and so on.
When this command is invoked, first the prompt Replace
string: appears in the minibuffer. Assume the user types
fred in response. After the user presses
Enter, the prompt Replace
fred with: appears. The user types the replacement string
and presses Enter again.
The two strings the user types are used as values of the function
arguments from and to (in that order), and the command runs to
completion. Thus, interactive
supplies values to the function’s arguments in the
order of the sections of the prompt string.
The use of interactive does not
preclude calling the function from other Lisp code; in this case, the
calling function needs to supply values for all arguments. For
example, if we were interested in calling our version of replace-string from another Lisp function that
needs to replace all occurrences of
“Bill” with
“Deb” in a file, we would use
(replace-string "Bill" "Deb")
The function is not being called interactively in this case, so the
interactive statement has no effect;
the argument from is set to
“Bill,” and to is set to
“Deb.”
Getting back to our count-words-buffer command: it has no
arguments, so its interactive
command does not need a prompt string. The final modification we want
to make to our command is to add a documentation
string (or doc string for short),
which is shown by online help facilities such as describe-function (C-h
f). Doc strings are normal Lisp strings; they are optional
and can be arbitrarily many lines long, although, by convention, the
first line is a terse, complete sentence summarizing the
command’s functionality. Remember that any double
quotes inside a string need to be preceded by backslashes.
With all of the fixes taken into
 account, the complete function looks
like this:
(defun count-words-buffer ()
 "Count the number of words in the current buffer;
print a message in the minibuffer with the result."
 (interactive)
 (save-excursion
 (let ((count 0))
 (goto-char (point-min))
 (while (< (point) (point-max))
 (forward-word 1)
 (setq count (1+ count)))
 (message "buffer contains %d words." count))))

[3] Integers are also allowed
where characters are expected. The ASCII code is used on most
machines. For example, the number 65 is interpreted as the character
A on such a machine.

[4] We hope that Lisp purists will forgive us for calling setq a function, for the sake of simplicity,
rather than a form, which it technically
is.

Lisp Primitive Functions

Now that you’ve seen how to

 write a working command,
we’ll discuss Lisp’s primitive
functions. These are the building blocks from which
you’ll build your functions. As mentioned above,
Lisp uses functions where other languages would use operators, that
is, for arithmetic, comparison, and logic. Table 11-3 shows some Lisp primitive functions that are
equivalent to these operators.
Table 11-3. Lisp primitive functions
	

 Arithmetic

 	

 +, -, *,
/

	
	

 % (remainder)

	
	

 1+ (increment)

	
	

 1- (decrement)

	
	

 max, min

	

 Comparison

 	

 >, <,
>=, <=

	
	

 /= (not equal)

	
	

 = (for numbers and characters)

	
	

 equal (for strings and other complex objects)

	

 Logic

 	

 and, or, not

All the arithmetic functions except 1+,
1-, and % can take arbitrarily
many arguments, as can and and
or. An arithmetic function returns floating point
values only if at least one argument is a floating point number, so
for example, (/ 7.0 4) returns 1.75, and
(/ 7 4) returns 1. Notice that integer division
truncates the remainder.
It may seem inefficient or syntactically ugly to use functions for
everything. However, one of the main merits of Lisp is that the core
of the language is small and easy to interpret efficiently. In
addition, the syntax is not as much of a problem if you have support
tools such as Emacs’s Lisp modes to help you.
Statement Blocks

We have seen that a

 statement block can be defined
using the let function. We also saw
that while and save-excursion include statement blocks. Other
important constructs also define statement blocks: progn and other forms of let.

 progn, the most basic, has the form:
 (progn
 statement-block)

 progn is a simple way of making a
block of statements look like a single one, somewhat like the curly
braces of Java or the begin and
end of Pascal. The value returned by progn is the value returned by the last
statement in the block. progn is
especially useful with control structures like if (see the following discussion) that, unlike
while, do not include statement
blocks.
The let function has other forms as
well. The simplest is:
 (let (var1 var2
 ...)
 statement-block)
In this case, instead of a list of
(
 var
value
) pairs, there is simply a list
of variable names. As with the other form of let, these become local
variables accessible in the statement block. However, instead of
initializing them to given values, they are all just initialized to
nil. You can actually mix both forms within
the same let statement, for example:
 (let (var1 (var2 value2) var3 ...)
 statement-block)
In the form of let we saw first, the
initial values for the local variables can be function calls
(remember that all functions return values). All such functions are
evaluated before any values are assigned to variables. However, there
may be cases in which you want the values of some local variables to
be available for computing the values of others. This is where
let*, the final version of let, comes in. let* steps through its assignments in order,
assigning each local variable a value before moving on to the next.
For example, let’s say we want to write a function
goto-percent that allows you to go
to a place in the current buffer expressed as a percentage of the
text in the buffer. Here is one way to write this function:
(defun goto-percent (pct)
 (interactive "nGoto percent: ")
 (let* ((size (point-max))
 (charpos (/ (* size pct) 100)))
 (goto-char charpos)))
As we saw earlier, the interactive
function is used to prompt users for values of arguments. In this
case, it prompts for the integer value of the argument pct. Then the let* function initializes size to the size of the buffer in characters,
then uses that value to compute the character position charpos that is pct (percent) of the buffer’s
size. Finally, the call of goto-char
causes point to be moved to that character position in the current
window.
The important thing to notice is that if we had used let instead of let*, the value of size would not be available when computing the
value of charpos. let* can also be used in the
(
 var1 var2
...
) format, just like let, but there wouldn’t be
any point in doing so.
We should also note that a more efficient way to write goto-percent is this:
(defun goto-percent (pct)
 (interactive "nPercent: ")
 (goto-char (/ (* pct (point-max)) 100)))

Control Structures

We already saw that the while
function

 acts as a control
structure like similar statements in other languages. There are two
other important control structures in Lisp: if and cond.
The if function has the form:
 (if condition
 true-case
 false-block)
Here, the condition is evaluated; if it is non-nil, true-case is
evaluated; if nil,
false-block is evaluated. Note that
true-case is a single statement whereas
false-block is a statement block;
false-block is optional.
As an example, let’s suppose we’re
writing a function that performs some complicated series of edits to
a buffer and then reports how many changes it made.
We’re perfectionists, so we want the status report
to be properly pluralized, that is to say “made 53
changes” or “made 1
change.” This is a common enough programming need
that we decide to write a general-purpose function to do it so that
we can use it in other projects too.
The function takes two arguments: the word to be pluralized (if
necessary) and the count to be displayed (which determines whether
it’s necessary).
(defun pluralize (word count)
 (if (= count 1)
 word
 (concat word "s")))
The condition in the if clause tests
to see if count is equal to 1. If
so, the first statement gets executed. Remember that the
“true” part of the if function is only one statement, so
progn would be necessary to make a
statement block if we wanted to do more than one thing. In this case,
we have the opposite extreme; our
“true” part is a single variable,
word. Although this looks strange,
it is actually a very common Lisp idiom and worth getting used to.
When the condition block is true, the value of word is evaluated, and this value becomes the
value of the entire if statement.
Because that’s the last statement in our function,
it is the value returned by pluralize. Note that this is exactly the
result we want when count is 1: the
value of word is returned unchanged.
The remaining portion of the if
statement is evaluated when the condition is false, which is to say,
when count has a value other than 1.
This results in a call to the built-in concat function, which concatenates all its
arguments into a single string. In this case it adds an
“s” at the end of the word
we’ve passed in. Again, the result of this
concatenation becomes the result of the if statement and the result of our pluralize function.
If you type it in and try it out, you’ll see results
like this:
 (pluralize "goat" 5)
"goats"

(pluralize "change" 1)
"change"
Of course, this function can be tripped up easily enough. You may
have tried something like this already:
 (pluralize "mouse" 5)
"mouses"
To fix this, we’d need to be able to tell the
function to use an alternate plural form for tricky words. But it
would be nice if the simple cases could remain as simple as they are
now. This is a good opportunity to use an optional parameter. If
necessary, we supply the plural form to use; if we
don’t supply one, the function acts as it did in its
first incarnation. Here’s how we’d
achieve that:
(defun pluralize (word count &optional plural)
 (if (= count 1)
 word
 (if (null plural)
 (concat word "s")
 plural)))
The “else” part of our code has
become another if statement. It uses
the null function to check whether
we were given the plural parameter
or not. If plural was omitted, it
has the value nil and the null function returns t if its argument is nil. So this logic reads “if
b was missing, just add an s to word;
otherwise return the special plural
value we were given.”
This gives us results like this:
 (pluralize "mouse" 5)
"mouses"
(pluralize "mouse" 5 "mice")
"mice"
(pluralize "mouse" 1 "mice")
"mouse"
A more general conditional control structure is the cond function, which has the following form:
 (cond
 (condition1
 statement-block1)
 (condition2
 statement-block2)
 ...)
Java and Perl programmers can think of this as a sequence of
if then else if then else if . . . , or as a
kind of generalized switch statement. The conditions are evaluated in
order, and when one of them evaluates to non-nil,
the corresponding statement block is executed; the cond function terminates and returns the last
value in that statement block.[5]

We can use cond to give a more
folksy feel to our hypothetical status reporter now that
it’s pluralizing nicely. Instead of reporting an
actual numeric value for the number of changes, we could have it say
no, one,
two, or many as
appropriate. Again we’ll write a general function to
do this:
(defun how-many (count)
 (cond ((zerop count) "no")
 ((= count 1) "one")
 ((= count 2) "two")
 (t "many")))
The first conditional

 expression introduces a new
primitive Lisp function, zerop. It
checks whether its argument is zero, and returns t
(true) when it is. So when count is
zero, the cond statement takes this
first branch, and our function returns the value no. This strange function name bears a little
explanation. It is pronounced
“zero-pee” and is short for
“zero predicate.” In the realm of
mathematical logic from which Lisp evolved, a predicate is a function
that returns true or false based on some attribute of its argument.
Lisp has a wide variety of similar predicate functions, with
structurally related names. When you run into the next one,
you’ll understand it. (Of course, you might now
expect the null function we
introduced in the previous example to be called
"nilp" instead.
Nobody’s perfectly consistent.)
The next two conditional expressions in the cond statement check if count is 1 or 2 and cause it to return
“one” or
“two” as appropriate. We could have
written the first one using the same structure, but then
we’d have missed out on an opportunity for a
digression into Lisp trivia!
The last conditional expression is simply the atom t (true), which means its body is executed
whenever all the preceding expressions failed. It returns the value
many. Executing this function gives
us results like these:
 (how-many 1)
"one"
(how-many 0)
"no"
(how-many 3)
"many"
Combining these two helper functions into a mechanism to report the
change count for our fancy command is easy.
(defun report-change-count (count)
 (message "Made %s %s." (how-many count) (pluralize "change" count)))
We get results like these:
 (report-change-count 0)
"Made no changes."
(report-change-count 1)
"Made one change."
(report-change-count 1329)
"Made many changes."

[5] Statement blocks are
actually optional; some programmers like to omit the final statement
block, leaving the final
“condition” as an
“otherwise” clause to be executed
if all of the preceding conditions evaluate to
nil. If the statement block is omitted, the value
returned by cond is simply the value of the
condition.

Useful Built-in Emacs Functions

Many of the Emacs functions that

 exist and that you may write involve
searching and manipulating the text in a buffer. Such functions are
particularly useful in specialized modes, like the programming
language modes described in Chapter 9. Many
built-in Emacs functions relate to text in strings and buffers; the
most interesting ones take advantage of Emacs’s
regular expression facility, which we introduced in Chapter 3.
We first describe the basic functions relating to buffers and strings
that don’t use regular expressions. Afterwards, we
discuss regular expressions in more depth than was the case in Chapter 3, concentrating on the features that are
most useful to Lisp programmers, and we describe the functions that
Emacs makes available for dealing with regular expressions.
Buffers, Text, and Regions

 Table 11-4 shows some basic

 Emacs functions relating to buffers,
text, and strings that are only useful to Lisp programmers and thus
aren’t bound to keystrokes. We already saw a couple
of them in the count-words-buffer
example. Notice that some of these are predicates, and their names
reflect this.
Table 11-4. Buffer and text functions
	

 Function

 	

 Value or action

	

 point

 	
 Character position of point.

	

 mark

 	
 Character position of mark.

	

 point-min

 	
 Minimum character position (usually 1).

	

 point-max

 	
 Maximum character position (usually size of buffer).

	

 bolp

 	
 Whether point is at the beginning of the line (t or nil).

	

 eolp

 	
 Whether point is at the end of the line.

	

 bobp

 	
 Whether point is at the beginning of the buffer.

	

 eobp

 	
 Whether point is at the end of the buffer.

	

 insert

 	
 Insert any number of arguments (strings or characters) into the
buffer after point.

	

 number-to-string

 	
 Convert a numerical argument to a string.

	

 string-to-number

 	
 Convert a string argument to a number (integer or floating point).

	

 char-to-string

 	
 Convert a character argument to a string.

	

 substring

 	
 Given a string and two integer indices start and
end, return the substring starting after
start and ending before
end. Indices start at 0. For example,
(substring "appropriate" 2 5) returns
"pro“.

	

 aref

 	
 Array indexing function that can be used to return individual
characters from strings; takes an integer argument and returns the
character as an integer, using the ASCII code (on most machines). For
example, (aref "appropriate" 3)
returns 114, the ASCII code for r.

Many functions not included in the previous table deal with buffers
and text, including some that you should be familiar with as user
commands. Several commonly used Emacs functions use
regions, which are areas of text within a
buffer. When you are using Emacs, you delineate regions by setting
the mark and moving the cursor. However, region-oriented functions
(such as kill-region, indent-region, and shell-command-on-region—really, any
function with region in its name) are actually
more flexible when used within Emacs Lisp code. They typically take
two integer arguments that are used as the character positions of the
boundaries for the region on which they operate. These arguments
default to the values of point and mark when the functions are called
interactively.
Obviously, allowing point and mark as interactive defaults is a more
general (and thus more desirable) approach than one in which only
point and mark can be used to delineate regions. The r option to the interactive function makes it possible. For
example, if we wanted to write the function translate-region-into-German, here is how we
would start:
(defun translate-region-into-German (start end)
 (interactive "r")
 ...
The r option to interactive fills in the two arguments
start and end when the function is called interactively,
but if it is called from other Lisp code, both arguments must be
supplied. The usual way to do this is like this:
(translate-region-into-German (point) (mark))
But you need not call it in this way. If you wanted to use this
function to write another function called translate-buffer-into-German, you would only
need to write the following as a
“wrapper”:
(defun translate-buffer-into-German ()
 (translate-region-into-German (point-min) (point-max)))
In fact, it is best to avoid using point and
mark within Lisp code unless doing so is really necessary; use local
variables instead. Try not to write Lisp functions as lists of
commands a user would invoke; that sort of behavior is better suited
to macros (see Chapter 6).

Regular Expressions

Regular expressions (regexps) provide

 much more powerful ways of dealing
with text. Although most beginning Emacs users tend to avoid commands
that use regexps, like replace-regexp and re-search-forward, regular expressions are
widely used within Lisp code. Such modes as Dired and the programming
language modes would be unthinkable without them. Regular expressions
require time and patience to become comfortable with, but doing so is
well worth the effort for Lisp programmers, because they are one of
the most powerful features of Emacs, and many things are not
practical to implement in any other way.
One trick that can be useful when you are experimenting with regular
expressions and trying to get the hang of them is to type some text
into a scratch buffer that corresponds to what
you’re trying to match, and then use isearch-forward-regexp (C-M-s) to build up the regular expression. The
interactive, immediate feedback of an incremental search can show you
the pieces of the regular expression in action in a way that is
completely unique to Emacs.
We introduce the various features of regular expressions by way of a
few examples of search-and-replace situations; such examples are easy
to explain without introducing lots of extraneous details. Afterward,
we describe Lisp functions that go beyond simple search-and-replace
capabilities with regular expressions. The following are examples of
searching and replacing tasks that the normal search/replace commands
can’t handle or handle poorly:
	You are developing code in C, and you want to combine the
functionality of the functions read and
readfile into a new function called
get. You want to replace all references to these
functions with references to the new one.

	You are writing a troff document using outline
mode, as described in Chapter 7. In outline
mode, headers of document sections have lines that start with one or
more asterisks. You want to write a function called remove-outline-marks to get rid of these
asterisks so that you can run troff on your
file.

	You want to change all occurrences of program in
a document, including programs and
program’s, to
module/modules/module’s,
without changing programming to
moduleming or programmer to
modulemer.

	You are working on documentation for some C software that is being
rewritten in Java. You want to change all the filenames in the
documentation from <filename>.c to
<filename>.java, since
.java is the extension the
javac compiler uses.

	You just installed a new C++ compiler that prints error messages in
German. You want to modify the Emacs compile package so that it can parse the error
messages correctly (see the end of Chapter 9).

We will soon show how to use regular expressions to deal with these
examples, which we refer to by number. Note that this discussion of
regular expressions, although more comprehensive than that in Chapter 3, does not cover every feature; those that
it doesn’t cover are redundant with other features
or relate to concepts that are beyond the scope of this book. It is
also important to note that the regular expression syntax described
here is for use with Lisp strings only; there is an important
difference between the regexp syntax for Lisp strings and the regexp
syntax for user commands (like replace-regexp), as we will see.
Basic operators

Regular expressions

 began
as an idea in theoretical computer science, but they have found their
way into many nooks and crannies of everyday, practical computing.
The syntax used to represent them may vary, but the concepts are much
the same everywhere. You probably already know a subset of regular
expression notation: the wildcard characters used by the Unix shell
or Windows command prompt to match filenames. The Emacs notation is a
bit different; it is similar to those used by the language Perl,
editors like ed and vi and
Unix software tools like lex and
grep. So let’s start with the
Emacs regular expression operators that resemble Unix shell wildcard
character, which are listed in Table 11-5.
Table 11-5. Basic regular expression operators
	
 Emacs operator

 	
 Equivalent

 	
 Function

	
 .

 	

 ?

 	
 Matches any character.

	

 .*

 	

 *

 	
 Matches any string.

	

 [abc]

 	

 [abc]

 	
 Matches a, b, or
c.

	

 [a-z]

 	

 [a-z]

 	
 Matches any lowercase letter.

For example, to match all filenames beginning with
program in the Unix shell, you would specify
program*. In Emacs, you would say
program.*. To match all filenames beginning with
a through e in the shell,
you would use [a-e]* or
[abcde]*; in Emacs, it’s
[a-e].* or [abcde].*. In other
words, the dash within the brackets specifies a
range of characters.[6] We will provide more on ranges and
bracketed character sets shortly.
To specify a character that is used as a regular expression operator,
you need to precede it with a double-backslash, as in
* to match an asterisk. Why a double backslash?
The reason has to do with the way Emacs Lisp reads and decodes
strings. When Emacs reads a string in a Lisp program, it decodes the
backslash-escaped characters and thus turns double backslashes into
single backslashes. If the string is being used as a regular
expression—that is, if it is being passed to a function that
expects a regular expression argument—that function uses the
single backslash as part of the regular expression syntax. For
example, given the following line of Lisp:
(replace-regexp "fred*" "bob*")
the Lisp interpreter decodes the string fred* as
fred* and passes it to the replace-regexp command. The replace-regexp command understands
fred* to mean fred followed by
a (literal) asterisk. Notice, however, that the second argument to
replace-regexp is not a regular
expression, so there is no need to backslash-escape the asterisk in
bob* at all. Also notice that if you were to
invoke the this as a user command, you would not need to double the
backslash, that is, you would type M-x
replace-regexp Enter followed by fred* and bob*. Emacs decodes strings read from the
minibuffer differently.
The * regular expression operator in Emacs (by
itself) actually means something different from the
* in the Unix shell: it means
“zero or more occurrences of whatever is before the
*.” Thus, because
. matches any character, .*
means “zero or more occurrences of any
character,” that is, any string at all, including
the empty string. Anything can precede a *: for
example, read* matches
“rea” followed by zero or more
d’s; file[0-9]* matches
“file” followed by zero or more
digits.
Two operators are closely related to *. The first
is +, which matches one or more occurrences of
whatever precedes it. Thus, read+ matches
“read” and
“readdddd” but not
“rea,” and
file[0-9]+ requires that there be at least one
digit after “file.” The second is
?, which matches zero or one occurrence of
whatever precedes it (i.e., makes it optional).
html? matches
“htm” or
“html,” and
file[0-9]? matches
“file” followed by one optional
digit.
Before we move on to other operators, a few more comments about
character sets and ranges are in order. First, you can specify more
than one range within a single character set. The set
[A-Za-z] can thus be used to specify all
alphabetic characters; this is better than the nonportable
[A-z]. Combining ranges with lists of characters
in sets is also possible; for example, [A-Za-z_]
means all alphabetic characters plus underscore, that is, all
characters allowed in the names of identifiers in C. If you give
^ as the first character in a set, it acts as a
“not” operator; the set matches all
characters that aren’t the characters after the
^. For example, [^A-Za-z]
matches all nonalphabetic characters.
A ^ anywhere other than first in a character set
has no special meaning; it’s just the caret
character. Conversely, - has no special meaning if
it is given first in the set; the same is true for
]. However, we don’t recommend
that you use this shortcut; instead, you should
double-backslash-escape these characters just to be on the safe side.
A double backslash preceding a nonspecial character usually means
just that character—but watch it! A few letters and punctuation
characters are used as regular expression operators, some of which
are covered in the following section. We list “booby
trap” characters that become operators when
double-backslash-escaped later. The ^ character
has a different meaning when used outside of ranges, as
we’ll see soon.

Grouping and alternation

If you want to get *, +, or
? to

 operate on more than one character,
you can use the \\(and \\)
operators for grouping. Notice that, in this case (and others to
follow), the backslashes are part of the operator. (All of the
nonbasic regular expression operators include backslashes so as to
avoid making too many characters
“special.” This is the most
profound way in which Emacs regular expressions differ from those
used in other environments, like Perl, so it’s
something to which you’ll need to pay careful
attention.) As we saw before, these characters need to be
double-backslash-escaped so that Emacs decodes them properly. If one
of the basic operators immediately follows \\), it
works on the entire group inside the \\(and
\\). For example, \\(read\\)*
matches the empty string, “read,”
“readread,” and so on, and
read\\(file\\)? matches
“read” or
“readfile.” Now we can handle
Example 1, the first of the examples given at the beginning of this
section, with the following Lisp code:
(replace-regexp "read\\(file\\)?" "get")
The alternation operator \\| is a
“one or the other” operator; it
matches either whatever precedes it or whatever comes after it.
\\| treats parenthesized groups differently from
the basic operators. Instead of requiring parenthesized groups to
work with subexpressions of more than one character, its
“power” goes out to the left and
right as far as possible, until it reaches the beginning or end of
the regexp, a \\(, a \\), or
another \\|. Some examples should make this
clearer:
	
 read\\|get matches
“read” or
“get”

	
 readfile\\|read\\|get matches
“readfile”,
“read,” or
“get”

	
 \\(read\\|get\\)file matches
“readfile” or
“getfile”

In the first example, the effect of the \\|
extends to both ends of the regular expression. In the second, the
effect of the first \\| extends to the beginning
of the regexp on the left and to the second \\| on
the right. In the third, it extends to the backslash-parentheses.

Context

Another important category of regular

 expression operators has to do with
specifying the context of a string, that is, the
text around it. In Chapter 3 we saw the
word-search commands, which are
invoked as options within incremental search. These are special cases
of context specification; in this case, the context is
word-separation characters, for example, spaces or punctuation, on
both sides of the string.
The simplest context operators for regular expressions are
^ and $, two more basic
operators that are used at the beginning and end of regular
expressions respectively. The ^ operator causes
the rest of the regular expression to match only if it is at the
beginning of a line; $ causes the regular
expression preceding it to match only if it is at the end of a line.
In Example 2, we need a function that matches occurrences of one or
more asterisks at the beginning of a line; this will do it:
(defun remove-outline-marks ()
 "Remove section header marks created in outline-mode."
 (interactive)
 (replace-regexp "^*+" ""))
This function finds lines that begin with one or more asterisks (the
* is a literal asterisk and the
+ means “one or
more”), and it replaces the asterisk(s) with the
empty string “”, thus deleting them.
Note that ^ and $
can’t be used in the middle of regular expressions
that are intended to match strings that span more than one line.
Instead, you can put \n (for Newline) in your
regular expressions to match such strings. Another such character you
may want to use is \t for Tab. When
^ and $ are used with regular
expression searches on strings instead of buffers, they match
beginning- and end-of-string, respectively; the function string-match, described later in this chapter,
can be used to do regular expression search on strings.
Here is a real-life example of a complex regular expression that
covers the operators we have seen so far: sentence-end, a variable Emacs uses to
recognize the ends of sentences for sentence motion commands like
forward-sentence (M-e). Its value is:
"[.?!][]\"')}]*\\($\\|\t\\| \\)[\t\n]*"
Let’s look at this piece by piece. The first
character set, [.?!], matches a period, question
mark, or exclamation mark (the first two of these are regular
expression operators, but they have no special meaning within
character sets). The next part, []\"')}]*,
consists of a character set containing right bracket, double quote,
single quote, right parenthesis, and right curly brace. A
* follows the set, meaning that zero or more
occurrences of any of the characters in the set matches. So far,
then, this regexp matches a sentence-ending punctuation mark followed
by zero or more ending quotes, parentheses, or curly braces. Next,
there is the group \\($\\|\t\\| \\), which matches
any of the three alternatives $ (end of line),
Tab, or two spaces. Finally, [
\t\n]* matches zero or more spaces, tabs, or newlines. Thus
the sentence-ending characters can be followed by end-of-line or a
combination of spaces (at least two), tabs, and newlines.
There are other context operators besides ^ and
$; two of them can be used to make regular
expression search act like word search. The operators
\\< and \\> match the
beginning and end of a word, respectively. With these we can go part
of the way toward solving Example 3. The regular expression
\\<program\\> matches
“program” but not
“programmer” or
“programming” (it also
won’t match
“microprogram”). So far so good;
however, it won’t match
“program’s” or
“programs.” For this, we need a
more complex regular expression:
\\<program\\('s\\|s\\)?\\>
This expression means, “a word beginning with
program followed optionally by apostrophe s or
just s.” This does the trick as far as matching the
right words goes.

Retrieving portions of matches

There is still one piece
 missing: the ability to replace
“program” with
“module” while leaving any
s or 's untouched. This leads
to the final regular expression feature we will cover here: the
ability to retrieve portions of the matched string for later use. The
preceding regular expression is indeed the correct one to give as the
search string for replace-regexp. As
for the replace string, the answer is module\\1;
in other words, the required Lisp code is:
(replace-regexp "\\<program\\('s\\|s\\)?\\>" "module\\1")
The \\1 means, in effect,
“substitute the portion of the matched string that
matched the subexpression inside the \\(and
\\).” It is the only
regular-expression-related operator that can be used in replacements.
In this case, it means to use 's in the replace
string if the match was
“program’s,”
s if the match was
“programs,” or nothing if the match
was just “program.” The result is
the correct substitution of
“module” for
“program,”
“modules” for
“programs,” and
“module’s” for
“program’s.”
Another example of this feature solves Example 4. To match filenames
<filename>.c and replace them with
<filename>.java, use the Lisp code:
(replace-regexp "\\([a-zA-Z0-9_]+\\)\\.c" "\\1.java")
Remember that \\. means a literal dot
(.). Note also that the filename pattern (which
matches a series of one or more alphanumerics or underscores) was
surrounded by \\(and \\) in
the search string for the sole purpose of retrieving it later with
\\1.
Actually, the \\1 operator is only a special case
of a more powerful facility (as you may have guessed). In general, if
you surround a portion of a regular expression with
\\(and \\), the string
matching the parenthesized subexpression is saved. When you specify
the replace string, you can retrieve the saved substrings with
\\
 n, where
n is the number of the parenthesized
subexpression from left to right, starting with 1. Parenthesized
expressions can be nested; their corresponding
\\
 n numbers are
assigned in order of their \\(delimiter from left
to right.
Lisp code that takes full advantage of this feature tends to contain
complicated regular expressions. The best example of this in
Emacs’s own Lisp code is compilation-error-regexp-alist, the list of
regular expressions the compile
package (discussed in Chapter 9) uses to parse
error messages from compilers. Here is an excerpt, adapted from the
Emacs source code (it’s become much too long to
reproduce in its entirety; see below for some hints on how to find
the actual file to study in its full glory):
(defvar compilation-error-regexp-alist
 '(
 ;; NOTE! See also grep-regexp-alist, below.

 ;; 4.3BSD grep, cc, lint pass 1:
 ;; /usr/src/foo/foo.c(8): warning: w may be used before set
 ;; or GNU utilities:
 ;; foo.c:8: error message
 ;; or HP-UX 7.0 fc:
 ;; foo.f :16 some horrible error message
 ;; or GNU utilities with column (GNAT 1.82):
 ;; foo.adb:2:1: Unit name does not match file name
 ;; or with column and program name:
 ;; jade:dbcommon.dsl:133:17:E: missing argument for function call
 ;;
 ;; We'll insist that the number be followed by a colon or closing
 ;; paren, because otherwise this matches just about anything
 ;; containing a number with spaces around it.

 ;; We insist on a non-digit in the file name
 ;; so that we don't mistake the file name for a command name
 ;; and take the line number as the file name.
 ("\\([a-zA-Z][-a-zA-Z._0-9]+: ?\\)?\
\\([a-zA-Z]?:?[^:(\t\n]*[^:(\t\n0-9][^:(\t\n]*\\)[:(][\t]*\\([0-9]+\\)\
\\([) \t]\\|:\\(\\([0-9]+:\\)\\|[0-9]*[^:0-9]\\)\\)" 2 3 6)

;; Microsoft C/C++:
 ;; keyboard.c(537) : warning C4005: 'min' : macro redefinition
 ;; d:\tmp\test.c(23) : error C2143: syntax error : missing ';' before
 'if'
 ;; This used to be less selective and allow characters other than
 ;; parens around the line number, but that caused confusion for
 ;; GNU-style error messages.
 ;; This used to reject spaces and dashes in file names,
 ;; but they are valid now; so I made it more strict about the error
 ;; message that follows.
 ("\\(\\([a-zA-Z]:\\)?[^:(\t\n]+\\)(\\([0-9]+\\)) \
: \\(error\\|warning\\) C[0-9]+:" 1 3)

;; Caml compiler:
 ;; File "foobar.ml", lines 5-8, characters 20-155: blah blah
 ("^File \"\\([^,\" \n\t]+\\)\", lines? \\([0-9]+\\)[-0-9]*, characters? \
\\([0-9]+\\)" 1 2 3)

;; Cray C compiler error messages
 ("\\(cc\\| cft\\)-[0-9]+ c\\(c\\|f77\\): ERROR \\([^,\n]+, \\)* File = \
\\([^,\n]+\\), Line = \\([0-9]+\\)" 4 5)

;; Perl -w:
 ;; syntax error at automake line 922, near "':'"
 ;; Perl debugging traces
 ;; store::odrecall('File_A', 'x2') called at store.pm line 90
 (".* at \\([^ \n]+\\) line \\([0-9]+\\)[,.\n]" 1 2)

 ;; See http://ant.apache.org/faq.html
 ;; Ant Java: works for jikes
 ("^\\s-*\\[[^]]*\\]\\s-*\\(.+\\):\\([0-9]+\\):\\([0-9]+\\):[0-9]+:[0-9]\
+:" 1 2 3)

 ;; Ant Java: works for javac
 ("^\\s-*\\[[^]]*\\]\\s-*\\(.+\\):\\([0-9]+\\):" 1 2)
)
This is a list of elements that have at least three parts each: a
regular expression and two numbers. The regular expression matches
error messages in the format used by a particular compiler or tool.
The first number tells Emacs which of the matched subexpressions
contains the filename in the error message; the second number
designates which of the subexpressions contains the line number.
(There can also be additional parts at the end: a third number giving
the position of the column number of the error, if any, and any
number of format strings used to generate the true filename from the
piece found in the error message, if needed. For more details about
these, look at the actual file, as described below.)
For example, the element in the list dealing with Perl contains the
regular expression:
".* at \\([^ \n]+\\) line \\([0-9]+\\)[,.\n]"
followed by 1 and 2, meaning that the first parenthesized
subexpression contains the filename and the second contains the line
number. So if you have Perl’s warnings turned
on—you always do, of course—you might get an error
message such as this:
syntax error at monthly_orders.pl line 1822, near "$"
The regular expression ignores everything up to
at. Then it finds
monthly_orders.pl, the filename, as the match to
the first subexpression "[^
\n]+" (one or more nonblank, nonnewline
characters), and it finds 1822, the line number, as the match to the
second subexpression
"[0-9]+" (one or
more digits).
For the most part, these regular expressions are documented pretty
well in their definitions. Understanding them in depth can still be a
challenge, and writing them even more so! Suppose we want to tackle
Example 5 by adding an element to this list for our new C++ compiler
that prints error messages in German. In particular, it prints error
messages like this:
Fehler auf Zeile linenum in filename: text of error message
Here is the element we would add to compilation-error-regexp-alist:
("Fehler auf Zeile \\([0-9]+\\) in \\([^: \t]+\\):" 2 1)
In this case, the second parenthesized subexpression matches the
filename, and the first matches the line number.
To add this to compilation-error-regexp-alist, we need to put
this line in .emacs:
(setq compilation-error-regexp-alist
 (cons '("Fehler auf Zeile \\([0-9]+\\) in \\([^: \t]+\\):" 2 1)
 compilation-error-regexp-alist))
Notice how this example resembles our example (from Chapter 9) of adding support for a new language mode
to auto-mode-alist.

Regular expression operator summary

 Table 11-6 concludes

 our discussion of regular
expression operators with a reference list of all the operators
covered.
Table 11-6. Regular expression operators
	

 Operator

 	

 Function

	
 .

 	
 Match any character.

	

 *

 	
 Match 0 or more occurrences of preceding char or group.

	

 +

 	
 Match 1 or more occurrences of preceding char or group.

	

 ?

 	
 Match 0 or 1 occurrences of preceding char or group.

	

 [...]

 	
 Set of characters; see below.

	

 \\(

 	
 Begin a group.

	

 \\)

 	
 End a group.

	

 \\|

 	
 Match the subexpression before or after \\|.

	

 ^

 	
 At beginning of regexp, match beginning of line or string.

	

 $

 	
 At end of regexp, match end of line or string.

	

 \n

 	
 Match Newline within a regexp.

	

 \t

 	
 Match Tab within a regexp.

	

 \\<

 	
 Match beginning of word.

	

 \\>

 	
 Match end of word.

	

 The following operators are meaningful within character
sets:

 	

	

 ^

 	
 At beginning of set, treat set as chars not to match.

	

 -
 (dash)

 	
 Specify range of characters.

	

 The following is also meaningful in regexp replace
strings:

 	

	

 \\
 n

 	
 Substitute portion of match within the nth
\\(and \\), counting from left
\\(to right, starting with 1.

Finally, the following characters are operators (not discussed here)
when double-backslash-escaped: b,
B, c, C,
w, W, s,
S, =, _,
', and `. Thus, these are
“booby traps” when
double-backslash-escaped. Some of these behave similarly to the
character class aliases you may have encountered in Perl and Java
regular expressions.

A Treasure Trove of Examples

As mentioned above, the full auto-mode-alist has a lot more entries and
documentation than fit in this book. The
compile.el module in which it is defined also
contains functions that use it. One of the best ways to learn how to
use Emacs Lisp (as well as discovering things you might not have even
realized you can do) is to browse through the implementations of
standard modules that are similar to what you’re
trying to achieve, or that are simply interesting. But how do you
find them?
The manual way is to look at the value of the variable load-path. This is the variable Emacs consults
when it needs to load a library file itself, so any library
you’re looking for must be in one of these
directories. (This variable is discussed further in the final section
of this chapter.) The problem, as you will see if you look at the
current value of the variable, is that it contains a large number of
directories for you to wade through, which would be pretty tedious
each time you’re curious about a library. (An easy
way to see the variable’s value is through
Help’s “Describe
variable” feature, C-h
v.)
One of the authors wrote the command listed in Example 11-1 to address this problem and uses it regularly
to easily snoop on the source files that make much of Emacs run. If
you don’t want to type this entire function into
your .emacs by hand, you can download it from
this book’s web site, http://www.oreilly.com/catalog/gnu3.
Example 11-1. find-library-file
(defun find-library-file (library)
 "Takes a single argument LIBRARY, being a library file to search for.
Searches for LIBRARY directly (in case relative to current directory,
or absolute) and then searches directories in load-path in order. It
will test LIBRARY with no added extension, then with .el, and finally
with .elc. If a file is found in the search, it is visited. If none
is found, an error is signaled. Note that order of extension searching
is reversed from that of the load function."
 (interactive "sFind library file: ")
 (let ((path (cons "" load-path)) exact match elc test found)
 (while (and (not match) path)
 (setq test (concat (car path) "/" library)
 match (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path)))
 (setq path (cons "" load-path))
 (or match
 (while (and (not elc) path)
 (setq test (concat (car path) "/" library ".elc")
 elc (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path))))
 (setq path (cons "" load-path))
 (while (and (not match) path)
 (setq test (concat (car path) "/" library ".el")
 match (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path)))
 (setq found (or match elc))
 (if found
 (progn
 (find-file found)
 (and match elc
 (message "(library file %s exists)" elc)
 (sit-for 1))
 (message "Found library file %s" found))
 (error "Library file \"%s\" not found." library))))

Once this command is defined, you can visit any
library’s implementation by typing M-x find-library file Enter
 libraryname
 Enter. If you use it as often as this author
does, you too may find it worth binding to a key sequence. We
won’t present a detailed discussion of how this
function works because it goes a bit deeper than this chapter, but if
you’re curious about what some of the functions do,
you can put your cursor in the function name in a Lisp buffer and use
the Help system’s “Describe
function” (C-h f)
feature to get more information about it.
If you find that most of the time when you ask for a library, you end
up with a file containing a lot of cryptic numeric codes and no
comments, check if the filename ends in .elc. If
that is usually what you end up with, it means that only the
byte-compiled versions of the libraries (see the discussion at the
end of this chapter) have been installed on your system. Ask your
system administrator if you can get the source installed;
that’s an important part of being able to learn and
tweak the Emacs Lisp environment.

Functions That Use Regular Expressions

The functions re-search-forward,
re-search-backward, replace-regexp, query-replace-regexp, highlight-regexp, isearch-forward-regexp, and isearch-backward-regexp are all user

 commands
that use regular expressions, and they can all be used within Lisp
code (though it is hard to imagine incremental search being used
within Lisp code). The section on customizing major modes later in
this chapter contains an example function that uses re-search-forward. To find other commands that
use regexps you can use the
“apropos” help feature (C-h a regexp Enter).
Other such functions aren’t available as user
commands. Perhaps the most widely used one is looking-at. This function takes a regular
expression argument and does the following: it returns
t if the text after point matches the regular
expression (nil otherwise); if there was a match,
it saves the pieces surrounded by \\(and
\\) for future use, as seen earlier. The function
string-match is similar: it takes
two arguments, a regexp and a string. It returns the starting index
of the portion of the string that matches the regexp, or
nil if there is no match.
The functions match-beginning and
match-end can be used to retrieve
the saved portions of the matched string. Each takes as an argument
the number of the matched expression (as in
\\
 n in replace-regexp replace strings) and returns
the character position in the buffer that marks the beginning (for
match-beginning) or end (for
match-end) of the matched string.
With the argument 0, the character position that
marks the beginning/end of the entire string matched by the regular
expression is returned.
Two more functions are needed to make the above useful: we need to
know how to convert the text in a buffer to a string. No problem:
buffer-string returns the entire
buffer as a string; buffer-substring
takes two integer arguments, marking the beginning and end positions
of the substring desired, and returns the substring.
With these functions, we can write a bit of Lisp code that returns a
string containing the portion of the buffer that matches the
nth parenthesized subexpression:
(buffer-substring (match-beginning n (match-end n)))
In fact, this construct is used so often that Emacs has a built-in
function, match-string, that acts as
a shorthand; (match-string
 n
) returns the same
result as in the previous example.
An example should show how this capability works. Assume you are
writing the Lisp code that parses compiler error messages, as in our
previous example. Your code goes through each element in compilation-error-regexp-alist, checking if
the text in a buffer matches the regular expression. If it matches,
your code needs to extract the filename and the line number, visit
the file, and go to the line number.
Although the code for going down each element in the list is beyond
what we have learned so far, the routine basically looks like this:
 for each element in compilation-error-regexp-alist
 (let ((regexp the regexp in the element
)
 (file-subexp the number of the filename subexpression)
 (line-subexp the number of the line number subexpression))
 (if (looking-at regexp)
 (let ((filename (match-string file-subexp))
 (linenum (match-string line-subexp)))
 (find-file-other-window filename)
 (goto-line linenum))
 (otherwise, try the next element in the list)))
The second let extracts the filename
from the buffer from the beginning to the end of the match to the
file-subexp-th subexpression, and it extracts the
line number similarly from the line-subexp-th
subexpression (and converts it from a string to a number). Then the
code visits the file (in another window, not the same one as the
error message buffer) and goes to the line number where the error
occurred.
The code for the calculator mode later in this chapter contains a few
other examples of looking-at,
match-beginning, and match-end.

Finding Other Built-in Functions

Emacs contains
 hundreds
of built-in functions that may be of use to you in writing Lisp code.
Yet finding which one to use for a given purpose is not so hard.
The first thing to realize is that you will often need to use
functions that are already accessible as keyboard commands. You can
use these by finding out what their function names are via the
C-h k (for describe-key) command (see Chapter 14). This gives the
command’s full documentation, as opposed to
C-h c (for describe-key-briefly), which gives only the
command’s name. Be careful: in a few cases, some
common keyboard commands require an argument when used as Lisp
functions. An example is forward-word; to get the equivalent of typing
M-f, you have to use
(forward-word 1).
Another powerful tool for getting the right function for the job is
the command-apropos (C-h a) help function. Given a regular
expression, this help function searches for all commands that match
it and display their key bindings (if any) and documentation in a
Help window. This can be a great help if you are
trying to find a command that does a certain
“basic” thing. For example, if you
want to know about commands that operate on words, type C-h
 a followed by
word, and you will see documentation on
about a dozen and a half commands having to do with words.
The limitation with command-apropos
is that it gives information only on functions that can be used as
keyboard commands. Even more powerful is apropos, which is not accessible via any of
the help keys (you must type M-x apropos
Enter). Given a regular expression, apropos displays all functions, variables, and
other symbols that match it. Be warned, though: apropos can take a long time to run and can
generate very long lists if you use it with a general enough concept
(such as buffer).
You should be able to use the apropos commands on a small number of
well-chosen keywords and find the function(s) you need. Because, if a
function seems general and basic enough, the chances are excellent
that Emacs has it built-in.
After you find the function you are interested in, you may find that
the documentation that apropos
prints does not give you enough information about what the function
does, its arguments, how to use it, or whatever. The best thing to do
at this point is to search Emacs’s Lisp source code
for examples of the function’s use.
“A Treasure Trove of Examples”
earlier in this chapter provides ways of finding out the names of
directories Emacs loads libraries from and an easy way of looking at
a library once you know its name. To search the contents of the
library files you’ll need to use
grep or some other search facility to find
examples, then edit the files found to look at the surrounding
context. If you’re ambitious you could put together
the examples and concepts we’ve discussed so far to
write an extension of the find-library-file command that searches the
contents of the library files in each directory
on the load path! Although most of Emacs’s built-in
Lisp code is not profusely documented, the examples of function use
that it provides should be helpful—and may even give you ideas
for your own functions.
By now, you should have a framework of Emacs Lisp that should be
sufficient for writing many useful Emacs commands. We have covered
examples of various kinds of functions, both Lisp primitives and
built-in Emacs functions. You should be able to extrapolate many
others from the ones given in this chapter along with help techniques
such as those just provided. In other words, you are well on your way
to becoming a fluent Emacs Lisp programmer. To test yourself, start
with the code for count-words-buffer
and try writing the following functions:
	
 count-lines-buffer

	Print the number of lines in the buffer.

	
 count-words-region

	Print the number of words in a region.

	
 what-line

	Print the number of the line point is currently on.

[6] Emacs uses
ASCII codes (on most machines) to build ranges, but you
shouldn’t depend on this fact; it is better to stick
to dependable things, like all-lowercase or all-uppercase alphabet
subsets or [0-9] for digits, and
avoid potentially nonportable items, like [A-z] and ranges involving punctuation
characters.

Building an Automatic Template System

You’re probably starting to

 see how all these tools can be
put together in really powerful ways. Most of the rest of the chapter
consists of examples of building relatively real and useful new
features for Emacs. You can use them as learning tools for how to
build your own, and you may be able to use them as-is, or with a
little tweaking, in your own daily work.
The example we’re about to look at is something that
one of the authors developed over a decade ago to help with the
tedium of creating new files in development projects where a certain
amount of structure and standard documentation were always needed.
Many coding and writing projects have this characteristic; each file
needs some boilerplate, but it needs to be adjusted to the details of
the file. Emacs turned out to be very much up to the task of
automating a lot of the drudge work, and this template system has
been heavily used ever since.
Most of the code in this example should already make sense to you. A
couple of aspects that will be explained more thoroughly in the next
section about programming a major mode. In particular,
don’t worry too much yet about exactly what a
“hook” function is, or funcall. For now it’s
sufficient to know that the file-not-found-hook allows us to run code when
the user uses find-file to open a
file that doesn’t exist yet (exactly the time at
which we’d like to offer our template services).
Before launching into the code, it’s worth looking
at an example of it in action. You’d set up your
template by creating a file named
file-template-java at the

 top level of a Java project directory
hierarchy, containing something like the code shown in Example 11-2.
Example 11-2. file-template-java
/* %filename%
 * Created on %date%
 *
 * (c) 2004 MyCorp, etc. etc.
 */

%package%

import org.apache.log4j.Logger;

/**
 * [Documentation Here!]
 *
 * @author %author%
 * @version $Id: ch11.xml,v 1.4 2004/12/17 16:10:05 kend Exp $
 *
 **/
public class %class% {

 /**
 * Provides access to the CVS version of this class.
 **/
 public static final String VERSION =
 "$Id: ch11.xml,v 1.4 2004/12/17 16:10:05 kend Exp $";

 /**
 * Provides hierarchical control and configuration of debugging via
 * class package structure.
 **/
 private static Logger log =
 Logger.getLogger(%class%.class);

}

The template system shown in Example 11-3 causes an
attempt to find a nonexistent Java source file within this project
hierarchy (for example, via C-x C-f
src/com/mycorp/util/FooManager.java) to result in the
prompt Start with template file?
 (y or
n) in the minibuffer, and if you answer y, you’ll see your
FooManager.java buffer start out with contents in
the
 following example.
Example 11-3. FooManager.java
/* FooManager.java
 * Created on Sun Nov 9 20:56:12 2003
 *
 * (c) 2004 MyCorp, etc. etc.
 */

package com.mycorp.util;

import org.apache.log4j.Logger;

/**
 * [Documentation Here!]
 *
 * @author Jim Elliott
 * @version $Id: ch11.xml,v 1.4 2004/12/17 16:10:05 kend Exp $
 *
 **/
public class FooManager {

 /**
 * Provides access to the CVS version of this class.
 **/
 public static final String VERSION =
 "$Id: ch11.xml,v 1.4 2004/12/17 16:10:05 kend Exp $";

 /**
 * Provides hierarchical control and configuration of debugging via
 * class package structure.
 **/
 private static Logger log =
 Logger.getLogger(FooManager.class);

}

The template has been used to populate the buffer with the standard
project header comments and a basic Java class skeleton, with proper
contextual values filled in (such as the current time, the person
creating the file, the file and class name, and so on). Even the Java
package statement has been inferred by examining
the directory path in which the source file is being created. The
Logger declaration will look familiar to anyone
who uses the excellent log4j system to add
logging and debugging to their Java projects. (The strange version
numbers in "$Id"
strings are managed by the CVS version control system and will be
updated to the proper file and version information when
it’s checked in. This topic is discussed in Chapter 12.)
To make this work, the template system needs to be able to do a
couple of things:
	Intercept the user’s attempt to find a nonexistent
file.

	Check whether there is an appropriate template file somewhere in a
parent directory.

	If so, offer to use it, and populate the buffer with the contents of
the template file.

	Scan the template file for special placeholders (such as
%filename%) and replace them with information
about the file being created.

Let’s look at the source code that makes this all
happen! (As always, if you don’t want to type the
code listed in Example 11-4 yourself, you can
download it from this book’s web site.[7])
Example 11-4. template.el
;;;;;;;;;;;;;;;;;;;;;;;;;;; -*- Mode: Emacs-Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;
;; template.el --- Routines for generating smart skeletal templates for files.

(defvar template-file-name "file-template"
 "*The name of the file to look for when a find-file request fails. If a
file with the name specified by this variable exists, offer to use it as
a template for creating the new file. You can also have mode-specific
templates by appending \"-extension\" to this filename, e.g. a Java specific
template would be file-template-java.")

(defvar template-replacements-alist
 '(("%filename%" . (lambda ()
 (file-name-nondirectory (buffer-file-name))))
 ("%creator%" . user-full-name)
 ("%author%" . user-full-name)
 ("%date%" . current-time-string)
 ("%once%" . (lambda () (template-insert-include-once)))
 ("%package%" . (lambda () (template-insert-java-package)))
 ("%class%" . (lambda () (template-insert-class-name)))
)
 "A list which specifies what substitutions to perform upon loading a
template file. Each list element consists of a string, which is the target
to be replaced if it is found in the template, paired with a function,
which is called to generate the replacement value for the string.")

(defun find-template-file ()
 "Searches the current directory and its parents for a file matching
the name configured for template files. The name of the first such
readable file found is returned, allowing for hierarchical template
configuration. A template file with the same extension as the file
being loaded (using a \"-\" instead of a \".\" as the template file's
delimiter, to avoid confusing other software) will take precedence
over an extension-free, generic template."
 (let ((path (file-name-directory (buffer-file-name)))
 (ext (file-name-extension (buffer-file-name)))
 attempt result)

 (while (and (not result) (> (length path) 0))
 (setq attempt (concat path template-file-name "-" ext))
 (if (file-readable-p attempt)
 (setq result attempt)
 (setq attempt (concat path template-file-name))
 (if (file-readable-p attempt)
 (setq result attempt)
 (setq path (if (string-equal path "/")
 ""
 (file-name-directory (substring path 0 -1)))))))
 result))

(defun template-file-not-found-hook ()
 "Called when a find-file command has not been able to find the specified
file in the current directory. Sees if it makes sense to offer to start it
based on a template."
 (condition-case nil
 (if (and (find-template-file)
 (y-or-n-p "Start with template file? "))
 (progn (buffer-disable-undo)
 (insert-file (find-template-file))
 (goto-char (point-min))

 ;; Magically do the variable substitutions
 (let ((the-list template-replacements-alist))
 (while the-list
 (goto-char (point-min))
 (replace-string (car (car the-list))
 (funcall (cdr (car the-list)))
 nil)
 (setq the-list (cdr the-list))))
 (goto-char (point-min))
 (buffer-enable-undo)
 (set-buffer-modified-p nil)))
 ;; This is part of the condition-case; it catches the situation where
 ;; the user has hit C-g to abort the find-file (since they realized
 ;; that they didn't mean it) and deletes the buffer that has already
 ;; been created to go with that file, since it will otherwise become
 ;; mysterious clutter they may not even know about.
 ('quit (kill-buffer (current-buffer))
 (signal 'quit "Quit"))))

; Install the above routine
(or (memq 'template-file-not-found-hook find-file-not-found-hooks)
 (setq find-file-not-found-hooks
 (append find-file-not-found-hooks '(template-file-not-found-hook)))
)

 (defun template-insert-include-once ()
 "Returns preprocessor directives such that the file will be included
only once during a compilation process which includes it an
abitrary number of times."
 (let ((name (file-name-nondirectory (buffer-file-name)))
 basename)
 (if (string-match ".h$" name)
 (progn
 (setq basename (upcase (substring name 0 -2)))
 (concat "#ifndef _H_" basename "\n#define _H_" basename
 "\n\n\n#endif /* not defined _H_" basename " */\n"))
 "" ; the "else" clause, returns an empty string.
)))

(defun template-insert-java-package ()
 "Inserts an appropriate Java package directive based on the path to
the current file name (assuming that it is in the com, org or net
subtree). If no recognizable package path is found, inserts nothing."
 (let ((name (file-name-directory (buffer-file-name)))
 result)
 (if (string-match "/\\(com\\|org\\|net\\)/.*/$" name)
 (progn
 (setq result (substring name (+ (match-beginning 0) 1)
 (- (match-end 0) 1)))
 (while (string-match "/" result)
 (setq result (concat (substring result 0 (match-beginning 0))
 "."
 (substring result (match-end 0)))))
 (concat "package " result ";"))
 "")))

(defun template-insert-class-name ()
 "Inserts the name of the java class being defined in the current file,
based on the file name. If not a Java source file, inserts nothing."
 (let ((name (file-name-nondirectory (buffer-file-name))))
 (if (string-match "\\(.*\\)\\.java" name)
 (substring name (match-beginning 1) (match-end 1))
 "")))

(provide 'template)

You’ll notice that this code makes heavy use of the
regular expression facilities, which is no surprise. The first
section sets up some variables that configure the operation of the
template system. template-file-name
determines the file name (or prefix) that is used to search for
templates; the default value of file-template is probably fine. template-replacements-alist sets up the
standard placeholders, and the mechanism by which they get replaced
by appropriate values. Adding entries to this list is one way to
extend the system. Each entry consists of the placeholder to be
replaced, followed by the Lisp function to be executed to produce its
replacement. The way this function can be stored in a list and
executed when appropriate later is one of the great things about Lisp
and is discussed in more depth in the calculator mode example in the
next section. The placeholders supported are:
	
 %filename%

	Gets replaced by the name of the file being created.

	
 %creator%, %author%

	These are synonyms; both get replaced by the name of the user
creating the file.

	
 %date%

	Turns into the current date and time when the file is created.

	
 %once%

	Expands into boilerplate code for the C preprocessor to cause a
header file to include itself only once, even if
it’s been included multiple times by other header
files. (This sort of thing has been taken care of in more modern
environments like Objective C and Java but can still be handy when
working with traditional C compilers.)

	
 %package%

	Is replaced by the Java package which contains the file being created
(assuming the file is a Java class). This package is determined by
examining the directory structure in which the file is being placed.

	
 %class%

	Becomes the name of the Java class being defined in the file,
assuming it’s a Java source file.

The first function, find-template-file, is responsible for
searching the directory hierarchy above the file being created,
looking for a file with the right name to be considered a file
template (if template-file-name has
been left at its default value, this looks for either a file named
file-template or
file-template-ext where ext
is the extension at the end of the name of the file being created).
It just keeps lopping the last directory off the path in which
it’s looking, starting with the location of the new
file, and seeing if it can read a file with one of those names in the
current directory, until it runs out of directories.
The function template-file-not-found-hook is the
“main program” of the template
system. It gets “hooked in” to the
normal Emacs find-file process, and
called whenever find-file
doesn’t find the file the user asked for (in other
words, a new file is being created). It uses condition-case (a mechanism similar to
exception handling in C++ and Java) to make sure it gets a chance to
clean up after itself if the user cancels the process of filling in
the template file. It checks whether the template file can be found,
asks users if they want to use it, and (if they do) loads it into the
new buffer and performs the placeholder substitutions. For an
explanation of the list manipulation and funcall code that makes the substitutions
work, read the discussion of Calculator mode in the next section.
Finally, it jumps to the beginning of the new buffer and marks it as
unchanged (because, as far as users are concerned,
it’s a brand new buffer on which
they’ve not yet had to expend any effort).
Immediately after the function definition is the chunk of code that
hooks it into the find-file
mechanism. The file-not-found-hooks
is a variable that Emacs uses to keep track of things to do when a
requested file is not found. (Giving you opportunities to change or
enhance normal behavior through
“hooks” is a wonderful trait of
Emacs that is discussed in more depth following the Calculator mode
example later in this chapter.) Our code checks to make sure
it’s not already hooked up (so you
don’t end up having it run twice or more if you
re-load the library file during an Emacs session), and then installs
our hook at the end of the list if it’s not there.
The rest of the file is helper functions to handle the more complex
placeholders. template-insert-java-package figures out the
value that should replace %package%, while
template-insert-class-name figures
out the Java class name that replaces %class%.
The last function call in the file, (provide
'template), records the fact that a
“feature” named
“template” has been loaded
successfully. The provide function
works with require to allow
libraries to be loaded just once. When the function
(require 'template) is
executed, Emacs checks whether the feature
“template” has ever been provided.
If it has, it does nothing, otherwise, it calls load-library to load it. It’s
a good practice to have your libraries support this mechanism, so
that they can be gracefully and efficiently used by other libraries
through the require mechanism.
You’ll find this pattern throughout the Emacs
library sources.

[7] The version presented in this example is simplified for reasons
of space and clarity. The full version, which adds the ability to
insert templates for function definitions and process arbitrary Emacs
Lisp functions within template files, is also available for
download.

Programming a Major Mode

After you get comfortable

 with
Emacs Lisp programming, you may find that that
“little extra something” you want
Emacs to do takes the form of a major mode. In previous chapters, we
covered major modes for text entry, word processor input, and
programming languages. Many of these modes are quite complicated to
program, so we’ll provide a simple example of a
major mode, from which you can learn the concepts needed to program
your own. Then, in the following section, you will learn how you can
customize existing major modes without changing any of the Lisp code
that implements them.
We’ll develop Calculator mode, a major mode for a
calculator whose functionality will be familiar to you if you have
used the Unix dc (desk calculator) command. It
is a Reverse Polish (stack-based) calculator of the type made popular
by Hewlett-Packard. After explaining some of the principal components
of major modes and some interesting features of the calculator mode,
we will give the mode’s complete Lisp code.
Components of a Major Mode

A major mode has various

 components
that integrate it into Emacs. Some are:
	The symbol that is the name of

 the function that implements the mode

	The name of the mode that appears in the mode
line in parentheses

	The local
 keymap that
defines key bindings for commands in the mode

	
 Variables and constants
known only within the Lisp code for the mode

	The special buffer the mode may use

Let’s deal with these in order. The mode symbol is
set by assigning the name of the function that implements the mode to
the global variable major-mode, as
in:
(setq major-mode 'calc-mode)
Similarly, the mode name is set by assigning an appropriate string to
the global variable mode-name, as in:
(setq mode-name "Calculator")
The local keymap is defined using functions discussed in Chapter 10. In the case of the calculator mode, there
is only one key sequence to bind (C-j), so we use a special form of the
make-keymap command called make-sparse-keymap that is more efficient with
a small number of key bindings. To use a keymap as the local map of a
mode, we call the function use-local-map, as in:
(use-local-map calc-mode-map)
As we just saw, variables can be defined by using
setq to assign a value to them, or by using
let to define local variables within
a function. The more “official” way
to define variables is the defvar
function, which allows documentation for the variable to be
integrated into online help facilities such as C-h v (for describe-variable). The format is the
following:
(defvar varname initial-value "description of the variable")
A variation on this is defconst, with which you
can define constant values (that never change). For example:
(defconst calc-operator-regexp "[-+*/%]"
 "Regular expression for recognizing operators.")
defines the regular expression to be used in searching for arithmetic
operators. As you will see, we use the calc- as a prefix for the names of all
functions, variables, and constants that we define for the calculator
mode. Other modes use this convention; for example, all names in C++
mode begin with c++-. Using this convention is a
good idea because it helps avoid potential name clashes with the
thousands of other functions, variables, and so on in Emacs.
Making variables local to the mode is also desirable so that they are
known only within a buffer that is running the mode.[8] To do this,
use the make-local-variable
function, as in:
(make-local-variable 'calc-stack)
Notice that the name of the variable, not its value, is needed;
therefore a single quote precedes the variable name, turning it into
a symbol.
Finally, various major modes use special buffers that are not
attached to files. For example, the C-x
C-b (for list-buffers)
command creates a buffer called *Buffer
 List*. To create a buffer in a new window, use the
pop-to-buffer function, as in:
(pop-to-buffer "*Calc*")
There are a couple of useful variations on pop-to-buffer. We won’t use
them in our mode example, but they are handy in other circumstances.
	
 switch-to-buffer

	Same as the C-x b command covered in
Chapter 4; can also be used with a buffer name
argument in Lisp.

	
 set-buffer

	Used only within Lisp code to designate the buffer used for editing;
the best function to use for creating a temporary
“work” buffer within a Lisp
function.

More Lisp Basics: Lists

A Reverse Polish Notation

 calculator uses a
data structure called a stack. Think of a stack
as being similar to a spring-loaded dish stack in a cafeteria. When
you enter a number into a RPN calculator, you
push it onto the stack. When you apply an
operator such as plus or minus, you pop the top
two numbers off the stack, add or subtract them, and push the result
back on the stack.
The list, a fundamental concept of Lisp, is a
natural for implementing stacks. The list is the main concept that
sets Lisp apart from other programming languages. It is a data
structure that has two parts: the head and
tail. These are known in Lisp jargon, for purely
historical reasons, as car and
cdr respectively. Think of these
terms as “the first thing in the
list” and “the rest of the
list.” The functions car and cdr,
when given a list argument, return the head and tail of it,
respectively.[9] Two functions are often used for making lists. cons (construct) takes two arguments, which
become the head and tail of the list respectively. list takes a list of elements and makes them
into a list. For example, this:
(list 2 3 4 5)
makes a list of the numbers from 2 to 5, and this:
(cons 1 (list 2 3 4 5))
makes a list of the numbers from 1 to 5. car applied to that list would return
1, while cdr
would return the list (2 3 4 5).
These concepts are important because stacks, such as that used in the
calculator mode, are easily implemented as lists. To push the value
of x onto the stack calc-stack, we can just say this:
(setq calc-stack (cons x calc-stack))
If we want to get at the value at the top of the stack, the following
returns that value:
(car calc-stack)
To pop the top value off the stack, we say this:
(setq calc-stack (cdr calc-stack))
Bear in mind that the elements of a list can be anything, including
other lists. (This is why a list is called a
recursive data structure.) In fact (ready to be
confused?) just about everything in Lisp that is not an atom is a
list. This includes functions, which are basically lists of function
name, arguments, and expressions to be evaluated. The idea of
functions as lists will come in handy very soon.

The Calculator Mode

The complete Lisp code for the

 calculator mode appears at the end of this
section; you should refer to it while reading the following
explanation. If you download or type the code in, you can use the
calculator by typing M-x calc-mode
Enter. You will be put in the buffer
Calc. You can type a line of numbers and
operators and then type C-j to
evaluate the line. Table 11-7 lists the three
commands in calculator mode
Table 11-7. Calculator mode commands
	
 Command

 	
 Action

	

 =

 	
 Print the value at the top of the stack.

	

 p

 	
 Print the entire stack contents.

	

 c

 	
 Clear the stack.

Blank spaces are not necessary, except to separate numbers. For
example, typing this:
4 17*6-=
followed by C-j, evaluates (4 * 17)
- 6 and causes the result, 62, to be printed.
The heart of the code for the calculator mode is the functions
calc-eval and calc-next-token. (See the code at the end of
this section for these.) calc-eval
is bound to C-j in Calculator mode.
Starting at the beginning of the line preceding C-j, it calls calc-next-token to grab each
token (number, operator, or command letter) in
the line and evaluate it.

 calc-next-token uses a cond construct to see if there is a number,
operator, or command letter at point by using the regular expressions
calc-number-regexp, calc-operator-regexp, and calc-command-regexp. According to which
regular expression was matched, it sets the variable calc-proc-fun to the name (symbol) of the
function that should be run (either calc-push-number, calc-operate, or calc-command), and it sets
tok to the result of the regular expression match.
In calc-eval, we see where the idea
of a function as a list comes in. The funcall function reflects the fact that there
is little difference between code and data in Lisp. We can put
together a list consisting of a symbol and a bunch of expressions and
evaluate it as a function, using the symbol as the function name and
the expressions as arguments; this is what funcall does. In this case, the following:
(funcall calc-proc-fun tok)
treats the symbol value of calc-proc-fun as the name of the function to
be called and calls it with the argument tok. Then
the function does one of three things:
	If the token is a number, calc-push-number pushes the number onto the
stack.

	If the token is an operator, calc-operate performs the operation on the top
two numbers on the stack (see below).

	If the token is a command, calc-command performs the appropriate command.

The function calc-operate takes the
idea of functions as lists of data a step further by converting the
token from the user directly into a function (an arithmetic
operator). This step is accomplished by the function read, which takes a character string and
converts it into a symbol. Thus, calc-operate uses funcall and read in combination as follows:
(defun calc-operate (tok)
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (calc-push (funcall (read tok) op2 op1))))
This function takes the name of an arithmetic operator (as a string)
as its argument. As we saw earlier, the string tok
is a token extracted from the *Calc* buffer, in
this case, an arithmetic operator such as + or
*. The calc-operate function pops the top two
arguments off the stack by using the pop function, which is similar to the use of
cdr earlier. read
converts the token to a symbol, and thus to the name of an arithmetic
function. So, if the operator is +, then funcall is called as here:
(funcall '+ op2 op1)
Thus, the function + is called with
the two arguments, which is exactly equivalent to simply (+ op2 op1). Finally, the result of the
function is pushed back onto the stack.
All this voodoo is necessary so that, for example, the user can type
a plus sign and Lisp automatically converts it into a plus function.
We could have done the same thing less elegantly—and less
efficiently—by writing calc-operate with a cond construct (as in calc-next-token), which would look like this:
(defun calc-operate (tok)
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (cond ((equal tok "+")
 (+ op2 op1))
 ((equal tok "-")
 (- op2 op1))
 ((equal tok "*")
 (* op2 op1))
 ((equal tok "/")
 (/ op2 op1))
 (t
 (% op2 op1)))))
The final thing to notice in the calculator mode code is the function
calc-mode, which starts the mode. It
creates (and pops to) the *Calc* buffer. Then it
kills all existing local variables in the buffer, initializes the
stack to nil (empty), and creates the local
variable calc-proc-fun (see the
earlier discussion). Finally it sets Calculator mode as the major
mode, sets the mode name, and activates the local keymap.

Lisp Code for the Calculator Mode

Now you should be able

 to
understand all of the code for the calculator mode. You will notice
that there really isn’t that much code at all! This
is testimony to the power of Lisp and the versatility of built-in
Emacs functions. Once you understand how this mode works, you should
be ready to start rolling your own. Without any further ado, here is
the code:
;; Calculator mode.
;;
;; Supports the operators +, -, *, /, and % (remainder).
;; Commands:
;; c clear the stack
;; = print the value at the top of the stack
;; p print the entire stack contents
;;

(defvar calc-mode-map nil
 "Local keymap for calculator mode buffers.")

; set up the calculator mode keymap with
; C-j (linefeed) as "eval" key
(if calc-mode-map
 nil
 (setq calc-mode-map (make-sparse-keymap))
 (define-key calc-mode-map "\C-j" 'calc-eval))

(defconst calc-number-regexp
 "-?\\([0-9]+\\.?\\|\\.\\)[0-9]*\\(e[0-9]+\\)?"
 "Regular expression for recognizing numbers.")

(defconst calc-operator-regexp "[-+*/%]"
 "Regular expression for recognizing operators.")

(defconst calc-command-regexp "[c=ps]"
 "Regular expression for recognizing commands.")

(defconst calc-whitespace "[\t]"
 "Regular expression for recognizing whitespace.")

;; stack functions
(defun calc-push (num)
 (if (numberp num)
 (setq calc-stack (cons num calc-stack))))

(defun calc-top ()
 (if (not calc-stack)
 (error "stack empty.")
 (car calc-stack)))

(defun calc-pop ()
 (let ((val (calc-top)))
 (if val
 (setq calc-stack (cdr calc-stack)))
 val))

;; functions for user commands:
(defun calc-print-stack ()
 "Print entire contents of stack, from top to bottom."
 (if calc-stack
 (progn
 (insert "\n")
 (let ((stk calc-stack))
 (while calc-stack
 (insert (number-to-string (calc-pop)) " "))
 (setq calc-stack stk)))
 (error "stack empty.")))

(defun calc-clear-stack ()
 "Clear the stack."
 (setq calc-stack nil)
 (message "stack cleared."))

(defun calc-command (tok)
 "Given a command token, perform the appropriate action."
 (cond ((equal tok "c")
 (calc-clear-stack))
 ((equal tok "=")
 (insert "\n" (number-to-string (calc-top))))
 ((equal tok "p")
 (calc-print-stack))
 (t
 (message (concat "invalid command: " tok)))))

(defun calc-operate (tok)
 "Given an arithmetic operator (as string), pop two numbers
off the stack, perform operation tok (given as string), push
the result onto the stack."
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (calc-push (funcall (read tok) op2 op1))))

(defun calc-push-number (tok)
 "Given a number (as string), push it (as number)
onto the stack."
 (calc-push (string-to-number tok)))

(defun calc-invalid-tok (tok)
 (error (concat "Invalid token: " tok))

(defun calc-next-token ()
 "Pick up the next token, based on regexp search.
As side effects, advance point one past the token,
and set name of function to use to process the token."
 (let (tok)
 (cond ((looking-at calc-number-regexp)
 (goto-char (match-end 0))
 (setq calc-proc-fun 'calc-push-number))
 ((looking-at calc-operator-regexp)
 (forward-char 1)
 (setq calc-proc-fun 'calc-operate))
 ((looking-at calc-command-regexp)
 (forward-char 1)
 (setq calc-proc-fun 'calc-command))
 ((looking-at ".")
 (forward-char 1)

 (setq calc-proc-fun 'calc-invalid-tok)))
 ;; pick up token and advance past it (and past whitespace)
 (setq tok (buffer-substring (match-beginning 0) (point)))
 (if (looking-at calc-whitespace)
 (goto-char (match-end 0)))
 tok))

(defun calc-eval ()
 "Main evaluation function for calculator mode.
Process all tokens on an input line."
 (interactive)
 (beginning-of-line)
 (while (not (eolp))
 (let ((tok (calc-next-token)))
 (funcall calc-proc-fun tok)))
 (insert "\n"))

(defun calc-mode ()
 "Calculator mode, using H-P style postfix notation.
Understands the arithmetic operators +, -, *, / and %,
plus the following commands:
 c clear stack
 = print top of stack
 p print entire stack contents (top to bottom)
Linefeed (C-j) is bound to an evaluation function that
will evaluate everything on the current line. No
whitespace is necessary, except to separate numbers."
 (interactive)
 (pop-to-buffer "*Calc*" nil)
 (kill-all-local-variables)
 (make-local-variable 'calc-stack)
 (setq calc-stack nil)
 (make-local-variable 'calc-proc-fun)
 (setq major-mode 'calc-mode)
 (setq mode-name "Calculator")
 (use-local-map calc-mode-map))
The following are some possible extensions to the calculator mode,
offered as exercises. If you try them, you will increase your
understanding of the mode’s code and Emacs Lisp
programming in general.
	Add an operator ^ for
“power” (4 5
^ evaluates to 1024). There is no
built-in power function in Emacs Lisp, but you can use the built-in
function expt.

	Add support for octal (base 8) and/or hexadecimal (base 16) numbers.
An octal number has a leading “0,”
and a hexadecimal has a leading
“0x”; thus, 017 equals decimal 15,
and 0x17 equals decimal 23.

	Add operators \+ and * to
add/multiply all of the numbers on the stack,
not just the top two (e.g., 4 5 6 \+ evaluates
to 15, and 4 5 6 *
evaluates to 120).[10]

	As an additional test of your knowledge of list handling in Lisp,
complete the example (Example 5) from earlier in this chapter that
searches compilation-error-regexp-alist for a match to
a compiler error message. (Hint: make a copy of the list, then pick
off the top element repeatedly until either a match
is found or the list is exhausted.)

[8] Unfortunately, because such variables are defined before they
are made local to the mode, there is still a problem with name
clashes with global variables. Therefore, it is still important to
use names that aren’t already used for global
variables. A good strategy for avoiding this is to use variable names
that start with the name of the mode.

[9] Experienced Lisp programmers should
note that Emacs Lisp does not supply standard contractions like
cadr, cdar, and so on.

[10] APL programmers
will recognize these as variations of that
language’s “scan”
operators.

Customizing Existing Modes

Now that you understand
 some
of what goes into programming a major mode, you may decide you want
to customize an existing one. Luckily, in most cases, you
don’t have to worry about changing any
mode’s existing Lisp code to do this; you may not
even have to look at the code. All Emacs major modes have
“hooks” for letting you add your
own code to them. Appropriately, these are called
mode-hooks. Every built-in major mode in Emacs
has a mode hook called mode-name
 -hook, where
mode-name is the name of the mode or the
function that invokes it. For example, C mode has c-mode-hook, shell mode has shell-mode-hook, etc.
What exactly is a hook? It is a variable whose value is some Lisp
code to run when the mode is invoked. When you invoke a mode, you run
a Lisp function that typically does many things (e.g., sets up key
bindings for special commands, creates buffers and local variables,
etc.); the last thing a mode-invoking function usually does is run
the mode’s hook if it exists. Thus, hooks are
“positioned” to give you a chance
to override anything the mode’s code may have set
up. For example, any key bindings you define override the
mode’s default bindings.
We saw earlier that Lisp code can be used as the value of a Lisp
variable; this use comes in handy when you create hooks. Before we
show you exactly how to create a hook, we need to introduce yet
another Lisp primitive function: lambda. lambda is very much like defun in that it is used to define functions;
the difference is that lambda
defines functions that don’t have names (or, in Lisp
parlance, “anonymous functions”).
The format of lambda is:
(lambda (args)
 code)
where args are arguments to the function
and code is the body of the function. To
assign a lambda function as the value of a variable, you need to
“quote” it to prevent it from being
evaluated (run). That is, you use the form:
(setq var-name
 '(lambda ()
 code))
Therefore, to create code for a mode hook, you could use the form:
(setq mode-name-hook
 '(lambda ()
 code for mode hook))
However, it’s quite possible that the mode you want
to customize already has hooks defined. If you use the
setq form, you override whatever hooks already
exist. To avoid this, you can use the function
add-hook instead:
(add-hook 'mode-name-hook
 '(lambda ()
 code for mode hook))
The most common thing done with mode hooks is to change one or more
of the key bindings for a mode’s special commands.
Here is an example: in Chapter 7 we saw that
picture mode is a useful tool for creating simple line drawings.
Several commands in picture mode set the default drawing direction.
The command to set the direction to
“down,” picture-movement-down, is bound to C-c . (C-c
followed by a period). This is not as mnemonic a binding as C-c < for picture-movement-left or C-c ^ for picture-movement-up, so let’s
say you want to make C-c v the
binding for picture-movement-down
instead. The keymap for picture mode is, not surprisingly, called
picture-mode-map, so the code you
need to set this key binding is this:
(define-key picture-mode-map "\C-cv" 'picture-movement-down)
The hook for picture mode is called edit-picture-hook (because edit-picture is the command that invokes
picture mode). So, to put this code into the hook for picture mode,
the following should go into your .emacs file:
(add-hook 'edit-picture-hook
 '(lambda ()
 (define-key picture-mode-map "\C-cv" 'picture-movement-down)))
This instruction creates a lambda
function with the one key binding command as its body. Then, whenever
you enter picture mode (starting with the next time you invoke
Emacs), this binding will be in effect.
As a slightly more complex example, let’s say you
create a lot of HTML pages. You use HTML mode (see Chapter 8), but you find that there are no Emacs
commands that enter standard head and
title tags, despite the fact that the help text
reminds you of their importance. You want to write your own functions
to insert these strings, and you want to bind them to keystrokes in
HTML mode.
To do this, you first need to write the functions that insert the tag
strings. The simplest approach would just be to insert the text:
(defun html-head ()
 (interactive)
 (insert "<head></head>"))

(defun html-title()
 (interactive)
 (insert "<title></title>"))
Remember that the calls to (interactive) are
necessary so that Emacs can use these functions as user commands.
The next step is to write code that binds these functions to
keystrokes in HTML mode’s keymap, which is called
html-mode-map, using the techniques
described in Chapter 10. Assume you want to bind
these functions to C-c C-h (head)
and C-c C-t (title). C-c is used as a prefix key in many Emacs
modes, such as the language modes we saw in the last chapter. Again,
this is no problem:
(define-key html-mode-map"\C-c\C-h" 'html-head)
(define-key html-mode-map"\C-c\C-t" 'html-title))
Finally, you need to convert these lines of Lisp into a value for
html-mode-hook. Here is the code to
do this:
(add-hook 'html-mode-hook
 '(lambda ()
 (define-key html-mode-map"\C-c\C-h" 'html-head)
 (define-key html-mode-map"\C-c\C-t" 'html-title)))
If you put this code in your .emacs file,
together with the earlier function definitions, you get the desired
functionality whenever you use HTML mode.
If you try using these functions, though, you’ll
find they have some noticeable drawbacks compared to the other tag
insertion commands in HTML mode. For one thing, while the other
helper commands leave your cursor in between the opening and closing
tags, our insertions leave the cursor after the closing tag, which is
not only inconsistent, but it’s much less helpful.
Also, while the other tags you insert can be customized in terms of
your preferred capitalization, or wrapped around existing content in
the document, our simple-minded insert calls give us no such capabilities.
Luckily, it’s not hard to add the smarts we want. It
turns out that HTML mode is defined in the file
sgml-mode.el (we learned this by applying
help’s handy describe-function command, C-h f, to the mode-defining function HTML
mode. Armed with this knowledge, it was an easy matter to pull up and
study the Lisp code that makes it work using the find-library-file utility shown in
“A Treasure Trove of Examples”
earlier in this chapter. A little quick hunting to find a parallel
example revealed that the tag support is implemented using a skeletal
function generator. Without going into too much detail, it turns out
that the code we want to use is this:
(define-skeleton html-head
 "HTML document header section."
 nil
 "<head>" _ "</head>")

(define-skeleton html-title
 "HTML document title."
 nil
 "<title>" _ "</title>")
The define-skeleton function sets up the skeletal HTML code to be
inserted, and it does this by writing a Lisp function based on the
template you pass it. Its first argument is the name of the Lisp
function to define, and the next is a documentation string for that
function explaining what it inserts. After that comes an optional
prompt that can be used to customize the content to be inserted. We
don’t need any customization, so we leave it as
nil to skip the prompt. Finally comes the list of
strings to be inserted, and we mark where we want the cursor to end
up with "_“. (To
learn more about the way this skeleton system works, invoke describe-function on insert-skeleton.)
With these changes, our new commands work just like the other
insertion tools in HTML mode. Even more than the specific Lisp code
that came out of this example, the technique we
used to create it is worth learning. If you can develop the skills
and habits involved in tracking down an example from the built-in
libraries that is close to what you want, and digging into how it
works just enough to come up with a variant that solves your problem,
you’ll be well on your way to becoming the friendly
Emacs Lisp guru your friends rely on when they need a cool new trick.
Here is a third example. Let’s say you program in C,
and you want a Lisp function that counts the number of C function
definitions in a file. The following function does the trick; it is
somewhat similar to the count-lines-buffer example earlier in the
chapter. The function goes through the current buffer looking for
(and counting) C function definitions by searching for
{ at the beginning of a line (admittedly, this
simplistic approach assumes a particular and rigid C coding style):
(defun count-functions-buffer ()
"Count the number of C function definitions in the buffer."
 (interactive)
 (save-excursion
 (goto-char (point-min))
 (let ((count 0))
 (while (re-search-forward "^{" nil t)
 (setq count (1+ count)))
 (message "%d functions defined." count))))
The re-search-forward call in this
function has two extra arguments; the third (last) of these means
“if not found, just return nil,
don’t signal an error.” The second
argument must be set to nil, its default, so that
the third argument can be supplied.[11]

Now assume we want to bind this function to C-c
f in C mode. Here is how we would set the value of
c-mode-hook:
(add-hook 'c-mode-hook
 '(lambda ()
 (define-key c-mode-map "\C-cf" 'count-functions-buffer)))
Put this code and the function definition given earlier in your
.emacs file, and this functionality will be
available to you in C mode.
As a final example of mode hooks, we’ll make good on
a promise from the previous chapter. When discussing C++ mode, we
noted that the commands c-forward-into-nomenclature and c-backward-into-nomenclature are included as
alternatives to forward-word and
backward-word that treat
WordsLikeThis as three words instead of one, and
that this feature is useful for C++ programmers. The question is how
to make the keystrokes that normally invoke forward-word and backward-word invoke the new commands instead.
At first, you might think the answer is simply to create a hook for
C++ mode that rebinds M-f and
M-b, the default bindings for
forward-word and backward-word, to the new commands, like this:
(add-hook 'c++-mode-hook
 '(lambda ()
 (define-key c++-mode-map "\ef"
 'c-forward-into-nomenclature)
 (define-key c++-mode-map "\eb"
 'c-backward-into-nomenclature)))
(Notice that we are using c++-mode-map, the local keymap for C++ mode,
for our key bindings.) But what if those keys have already been
rebound, or what if forward-word and
backward-word are also bound to
other keystroke sequences (which they usually are anyway)? We need a
way to find out what keystrokes are bound to these functions, so that
we can reset all of them to the new functions.
Luckily, an obscure function gives us this information, where-is-internal. This function implements
the “guts” of the where-is help command, which we will see in
Chapter 14. where-is-internal returns a list of keystroke
atoms that are bound to the function given as an argument. We can use
this list in a while loop to do all
of the rebinding necessary. Here is the code:
(add-hook 'c++-mode-hook
 '(lambda ()
 (let ((fbinds (where-is-internal 'forward-word))
 (bbinds (where-is-internal 'backward-word)))
 (while fbinds
 (define-key c++-mode-map (car fbinds)
 'c-forward-into-nomenclature)
 (setq fbinds (cdr fbinds)))
 (while bbinds
 (define-key c++-mode-map (car bbinds)
 'c-backward-into-nomenclature)
 (setq bbinds (cdr bbinds))))))
The two lines in the top of the let
statement get all of the key bindings of the commands forward-word and backward-word into the local variables
fbinds and bbinds, respectively.
After that, there are two while
loops that work like the print-stack
function of the calculator mode shown earlier in this chapter. This
use of while is a very common Lisp
programming construct: it iterates through the elements of a list by
taking the first element (the car),
using it in some way, and deleting it from the list
((setq
 list
 (cdr
 list
)). The
loop finishes when the list becomes empty (nil),
causing the while test to fail.
In this case, the first while loop
takes each of the bindings that where-is-internal found for forward-word and creates a binding in C++
mode’s local keymap, c++-mode-map, for the new command c-forward-into-nomenclature. The second
while loop does the same for
backward-word and c-backward-into-nomenclature.
The surrounding code installs these loops as a hook to C++ mode, so
that the rebinding takes place only when C++ mode is invoked and is
active only in buffers that are in that mode.
One final word about hooks: you may have noticed that some of the
mode customizations we have shown in previous chapters include hooks
and others do not. For example, the code in the previous chapter to
set your preferred C or C++ indentation style included a hook:
(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")
 (c-toggle-auto-state)))
whereas the code that sets an alternative C preprocessor command name
for the c-macro-expand command did
not:
(setq c-macro-preprocessor "/usr/local/lib/cpp -C")
Why is this? Actually, the correct way to customize any mode is
through its hook—for example, the preceding example should
really be:
(add-hook 'c-mode-hook
 '(lambda ()
 (setq c-macro-preprocessor "/usr/local/lib/cpp -C")))
If you merely want to set values of variables, you can get away
without a hook, but a hook is strictly required if you want to run
functions like c-set-style or those
used to bind keystrokes. The precise reason for this dichotomy takes
us into the murky depths of Lisp language design, but
it’s essentially as follows.
Variables that are local to modes, like c-macro-preprocessor, do not exist if you
don’t invoke the mode in which they are defined. So,
if you aren’t editing C or C++ code, then c-macro-preprocessor doesn’t
exist in your running Emacs, because you haven’t
loaded C mode (see below). Yet if your .emacs
file contains a setq to
set this variable’s value, then you call the
variable into existence whether or not you ever use C mode. Emacs can
deal with this: when it loads C mode, it notices that you have
already set the variable’s value and does not
override it.
However, the situation is different for functions. If you put a call
to a mode-local function like c-set-style in your .emacs
file, then (in most cases) Emacs complains, with the
message Error in init file, because it does not
know about this function and thus cannot assume anything about what
it does. Therefore you must attach this function to a hook for C
mode: by the time Emacs runs your hook, it has already loaded the
mode and therefore knows what the function does.
These examples of hooks are only the briefest indication of how far
you can go in customizing Emacs’s major modes. The
best part is that, with hooks, you can do an incredible amount of
customization without touching the code that implements the modes. In
exchange, you should remember, when you do write your own modes, to
think about useful places to put hooks so others can
 take advantage of
them.

[11] The second
argument to re-search-forward—and other search
functions—gives a bound to the search: if given an integer
value n don’t search past
character position n. A value of
nil, the default, means don’t
give the search a bound.

Building Your Own Lisp Library

After you have become

 proficient at Emacs Lisp programming,
you will want a library of Lisp functions and packages that you can
call up from Emacs at will. Of course, you can define a few small
functions in your .emacs file, but if you are
writing bigger pieces of code for more specialized purposes, you will
not want to clutter up your .emacs
file—nor will you want Emacs to spend all that time evaluating
the code each time you start it up. The answer is to build your own
Lisp library, analogous to the Lisp directories that come with Emacs
and contain all of its built-in Lisp code. After you have created a
library, you can load whatever Lisp packages you need at a given time
and not bother with the others.
Creating a library requires two simple steps. First, create a
directory in which your Lisp code will reside. Most people create a
elisp subdirectory of their home directory. Lisp
files are expected to have names ending in .el
(your .emacs file is an exception). The second
step is to make your directory known to Emacs so that when you try to
load a Lisp package, Emacs knows where to find it. Emacs keeps track
of such directories in the global variable load-path, which is a list of strings that are
directory names.
The initial value for load-path is
populated with the names of the Lisp directories that come with
Emacs, e.g., /usr/local/emacs/lisp. You will
need to add the name of your own Lisp directory to load-path. One way to make this addition is to
use the Lisp function append, which
concatenates any number of list arguments together. For example, if
your Lisp directory is ~<yourname>/lisp,
you would put the following in your .emacs file:
(setq load-path (append load-path (list "~yourname/lisp")))
The function list is necessary
because all of the arguments to append must be lists. This line of code must
precede any commands in your .emacs file that
load packages from your Lisp directory.
When you load a library, Emacs searches directories in the order in
which they appear in load-path;
therefore, in this case, Emacs searches its default Lisp directory
first. If you want your directory to be searched first, you should
use the cons function described
earlier instead of append, as
follows:
(setq load-path (cons "~yourname/lisp" load-path))
This form is useful if you want to replace one of the standard Emacs
packages with one of your own. For example, you’d
use this form if you’ve written your own version of
C mode and want to use it instead of the standard package. Notice
that the directory name here is not surrounded by a call to list because cons’s first argument can be
an atom (a string in this case). This situation is similar to the use
of cons for pushing values onto
stacks, as in the calculator mode described earlier.
If you want Emacs to search the directory you happen to be in at any
given time, simply add nil to load-path, either by prepending it via
cons or by appending it via
append. Taking this step is
analogous to putting . in your Unix PATH
environment variable.
After you have created a private Lisp library and told Emacs where to
find it, you’re ready to load and use the Lisp
packages that you’ve created. There are several ways
of loading Lisp packages into Emacs. The first of these should be
familiar from Chapter 10:
	Type M-x load-library Enter as a
user command; see Chapter 10.

	Put the line (load
"package-name")
within Lisp code. Putting a line like this into your
.emacs
 file makes Emacs
load the package whenever you start it.

	Invoke Emacs with the command-line option "-l
 package-name
 ". This
action loads the package package-name.

	Put the line (autoload
'function
"filename")
within Lisp code (typically in your
.emacs
 file), as described
in Chapter 10. This action causes Emacs to load
the package when you execute the given
function.[12]

Byte-Compiling Lisp Files

After you have created

 your Lisp directory, you can make
loading and running your Lisp files more efficient by
byte-compiling them, or translating their code
into byte code, a more compact, machine-readable
form. Byte-compiling the Lisp file filename.el
creates the byte code file filename.elc. Byte
code files are typically 40 to 75 percent of the size of their
non-byte-compiled counterparts.
Although byte-compiled files are more efficient, they are not
strictly necessary. The load-library
command, when given the argument filename,
first looks for a file called
<filename>.elc. If that
doesn’t exist, it tries
<filename>.el, that is, the
non-byte-compiled version. If that doesn’t exist, it
finally tries just <filename>. Thus, you
can byte-compile your .emacs file, which may
result in faster startup if your
.emacs
 is large.
You can byte-compile a single function in a buffer of Lisp code by
placing your cursor anywhere in the function and typing M-x compile-defun. You can byte-compile an
entire file of Lisp by invoking M-x
byte-compile-file Enter and supplying the filename. If you
omit the .el suffix, Emacs appends it and asks
for confirmation. If you have changed the file but have not saved it,
Emacs offers to save it first.
Then you will see an entertaining little display in the minibuffer as
the byte-compiler does its work: the names of functions being
compiled flash by. The byte-compiler creates a file with the same
name as the original Lisp file but with c
appended; thus, <filename>.el becomes
<filename>.elc, and
.emacs becomes .emacs.elc.
Finally, if you develop a directory with several Lisp files, and you
make changes to some of them, you can use the byte-recompile-directory command to recompile
only those Lisp files that have been changed since being
byte-compiled (analogously to the Unix make utility). Just type M-x byte-recompile-directory
 Enter and supply the name of the Lisp
directory or just press Enter for
the default, which is the current directory.

[12] There is also
the option "-f
 function-name
 "
which causes Emacs to run the function
function-name at startup, with no
arguments.

Chapter 12. Version Control

The Uses of Version Control

If you write either large programs or long documents, you have
probably been caught at least once in a situation where
you’ve made changes that turned out to be a bad
thing, only to be confused and stymied because you
weren’t sure exactly how to reverse them and get
back to a known good
state. Or, perhaps you’ve released a program or
document to someone else, then gotten a bug fix or a comment that you
couldn’t integrate properly because you
couldn’t recover the old version that person was
working with. Perhaps you’re a member of a
development or documentation team and have felt the need for some way
to keep change histories, indicating who was responsible for each
change.
These common kinds of problems can be addressed with a
version control system. A version control system
gives you automated help at keeping a change history for a file or
group of files. It allows you to recover any stage in that history,
and it makes getting reports on the differences between versions
easy.
Today a variety of version control systems are widely available on
machines that run Emacs. Some are commercial, but there are a wealth
of free, open, and powerful choices, and it seems appropriate for our
discussion to focus on these. Historically, Emacs evolved largely in
a Unix environment alongside the SCCS and RCS systems, and its
built-in support for version control reflects their approach and
terminology. Today the most popular by far is CVS (which builds on
RCS, giving it more flexibility and power), and there is a new system
called Subversion that is starting to catch on. Preliminary support
for working with Subversion shipped with Emacs 21.3.5; its
documentation suggests you check the Subversion site, http://subversion.tigris.org/, for updates.
Given that when you need version control, you generally need it very
badly (and you have enough other challenges to occupy your mind),
it’s not surprising that most integrated development
environments today offer automated support for these tools. And if
any other IDE does it, by now you can certainly predict that Emacs
does too!
In this chapter, we’ll introduce you to the Emacs
facility called VC, an Emacs Lisp minor mode that makes using version
control systems very easy. VC runs all version control commands for
you (using Emacs’ subprocess facilities in the same
way that compiler modes do). VC hides almost all the details of their
interfaces from you; instead, you can trigger most basic version
control operations with a single command, with Emacs correctly
deducing what needs to be done next.
As noted above, the VC architecture was designed with the behavior of
RCS in mind. So as we explain VC, we’ll explain the
RCS terminology and behavior as Emacs presents it. Where needed,
we’ll point out key differences in the way CVS
behaves. Subversion, in turn, is being designed as a more modern
version of CVS, and acts like CVS with respect to its interactions
with Emacs.

Version Control Concepts

Each file under version control has a change history that consists of
an initial version and a series (or sometimes a
branching tree) of subsequent revisions.
To make a file version-controlled, you

 must
register it; that is, you must tell the version
control system to treat the file contents you’re
starting with as an initial version and begin maintaining a change
history for it.[1]

To change a registered file, in the old days you’d
have to check out the file. Doing so notifies
the version control system that you’re modifying it.
Under SCCS and RCS, this would lock the file so that no one else
could check it out until you were done (anyone else could still look
at it, though). This limitation was one of the major motivations for
the development of CVS, the Concurrent Versions System, which
doesn’t make locks. Instead, it tries to reconcile
any concurrent changes at the time that they are committed, as
described below. Even so, some developers prefer to configure CVS to
keep files locked at the OS level until they consciously decide they
want to make changes to one of them; this largely mimics the RCS
experience, albeit on a voluntary basis.
In a system like SCCS or RCS that uses locking, you may sometimes
find that you can’t check out a file because someone
else has
 it
locked already. Perhaps that person checked it out and wandered away,
so that the lock is stale. You may want to steal the
lock—that is, seize control of the work file with
whatever changes the other person has made and take responsibility
for checking in a clean set of changes yourself.
(It’s bad practice to do this casually!) Again, this
hasn’t generally been an issue since CVS made
concurrent edits a practical option—recall that the
“C” in CVS stands for
“concurrent.”
While making changes to
 your
work file (the working copy
you’ve checked out) and experimenting with them, you
may decide at any time to revert the work
file—that is, to throw away your changes and undo the check-out
operation. After you’ve made changes to your file
that you want to keep, you must check in those
changes. Doing so adds them permanently to the saved change history
as a new revision of the file. Under RCS and SCCS, it also removes
the lock on your work file, so that other people can check it out and
edit it. Under CVS and Subversion, the file was never locked;
instead, the version control system tries to reconcile your changes
with any other changes that might have been made since check-out time
and yells for help (manual intervention) if it finds conflicts.
Because you never really checked the file out in a concurrent system,
the standard term for integrating your changes back into such a
repository is commit rather than check
in. The CVS interface also allows you to call it checking
in, to accommodate people who are used to older systems, and
that’s what Emacs calls it too.
The register, check-out, revert, and check-in operations are the
basic ones. But you may want to do other things as well. You can also
retrieve any saved revision, get a difference report between any two
saved versions or any saved version and your (possibly modified) work
file, or even completely remove saved revisions that you want to
throw away (though this is rare).
If conflicts are reported during a check-in operation, Emacs offers
to help you resolve them by launching an Ediff session (described at
the end of this chapter). If you decide against Ediff, you will see
the conflicts as represented within the file by the version control
system and you can address them manually or use whatever other tools
you find convenient. If you later decide you do want help from Ediff
after all, you can use M-x
 vc-resolve-conflicts
 Enter while you’re editing
the conflicted file.
Most version control systems (and all the ones we’re
talking about here) associate change comments
with

 each revision. So
each time you check in a registered file, you can add an explanation
of the change to the change history, which won’t be
part of the file itself. Each revision
 has a revision
number, which identifies its place in the history. The
base revision in SCCS, RCS, and CVS is 1.1. If the history is a
linear sequence of changes (which is typical for small projects),
sequence numbers are two numeric fields separated by a dot.
Subversion uses a simpler revision numbering scheme with which
you’re undoubtedly familiar: The first revision is
numbered 1, the one that comes after it is 2 . . . subtle, eh?
It is possible to start branches so that variant versions of files
can be maintained in parallel. In such cases, the main trunk still
has two-field revision numbers, but branches have more fields. The
exact naming conventions for branches are arcane and different
between SCCS and RCS or CVS; if you need to know about them in
detail, consult the documentation for your version control system.
Once again, this is a whole lot simpler in Subversion, which versions
the entire source tree as a unit and supports efficient copies of
parts of the tree. In Subversion, a branch is just another directory.
There is a lot more to know about version control systems than we go
into here, and two excellent O’Reilly books on the
topic are: Essential CVS by Jennifer Vesperman
and Version Control with Subversion by Ben
Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.

[1] You don’t need to
have registered a file from VC to use VC on it. VC works just fine on
a preexisting tree of version-controlled files.

How VC Helps with Basic Operations

Historically, you had to know three or four different shell commands
to do the basic operations of version control (registration, check
in, check out, and revert), and you had to do each one outside your
editor (or in an editor subshell). This procedure was complicated and
annoying, or at best a distraction from the flow of working on your
code and changes.
VC’s interface is much simpler. The simplicity comes
from noticing that whatever state your version-controlled file is in,
there is normally just one logical thing to do next. Here are the
rules:
	If your file isn’t under version control, the next
logical thing to do is register it and (where relevant) check out a
modifiable copy for you.

	If it’s registered, but not checked out by anyone,
the next thing you generally want to do is check it out so you can
edit it (again, where relevant, such as if you’re
using CVS in a “keep files read-only unless I say I
want to edit them” mode).

	If you have made changes to the file, the next logical thing is to
check it back in, which may involve reconciling your changes with
those made by someone else.

	Much more rarely, if you’re using one of the pre-CVS
systems, if someone else has a file checked out, you may want to
steal the lock (notifying the lock owner that you’ve
done so).

Indeed, VC mode has just
 one basic command: C-x v v (for vc-next-action), which you can think of as
“do the next logical thing to this
file” or, more precisely: “take the
currently visited file to the next normal version control
state.” It follows the arrows in Figure 12-1, which describes the traditional version
control cycle.[2] This command is available
in every Emacs since 19; when you invoke it, it automatically fetches
the rest of VC and does its job.
[image: The traditional version control cycle]

Figure 12-1. The traditional version control cycle

There’s a little more to it than that, of course.
For one thing, when you check in a set of changes to a file, VC pops
up a buffer for you to enter a change comment. Similarly, if
you’re in an older version control environment, when
you steal a lock, VC pops up a buffer requesting an explanation. This
explanation is mailed to the lock owner.
VC gives you a revert operation as well: C-x v
u (for vc-revert-buffer).
Actually, the function that implements vc-next-action checks to see if the buffer is
unmodified since check-out time; if so, it offers to revert the
buffer and unlocks the work file rather than checking in an empty
change.
Although it’s worth understanding this traditional
flow because it’s how VC is designed, working with
today’s concurrent version control systems is
slightly different. Luckily, it’s even a little
simpler. Because there is no need to obtain a lock in order to edit a
document, one of the VC steps is missing (or, if you prefer, you can
think of it as implicit). This is illustrated in Figure 12-2.
[image: The concurrent version control cycle]

Figure 12-2. The concurrent version control cycle

The transition from the unmodified state to the modified state (with
respect to the version in the repository) is shown as a dotted line,
because you no longer perform a VC operation here. You just start
editing the file you want to work with. Whenever you tell VC you want
the “next action”
it’s able to tell whether the document is modified
or not. If it is, the current version is committed
(“checked in,” if you will) and
you’re prompted for the change comments. If the file
is registered but unmodified, VC simply displays a message in the
minibuffer telling you that the buffer is up to date.
If you prefer to configure CVS to give you read-only versions of
files until you explicitly choose to edit them, your workflow will
remain that of Figure 12-1.

[2] Minor tricky detail: your very first
vc-next-action on a new work file
normally takes you from
“unregistered” through
“registered, unlocked,” and then to
“locked, editable.” Why make you do
two commands for those two steps when one will cover the typical
case? If you want to register a file but not check it out, use
C-x v i (for vc-register). With the advent of CVS, this
point becomes largely moot as you’ll see in Figure 12-2.

Editing Comment Buffers

In VC mode, three operations

 typically pop up a buffer to
accept comment or notification text: check in, lock stealing, and
(under circumstances to be explained later in the chapter) file
registration. In each case, the operation is on hold until you type
C-c C-c to commit the comment
buffer. You can enter a comment right away and finish the operation,
or you can go off and do something else. VC waits patiently to commit
until you are ready. If you delete the pop-up buffer, the operation
is quietly scrubbed.
The comment buffer is a plain-text buffer. However, each time you
commit a comment buffer, the contents are saved to a new slot in a
ring of comment buffers. You can cycle backwards in the ring with
M-p and forward with M-n, or you can search for text backwards in
the ring with M-r and forward with
M-s. By design, these are the same
keys you can use to navigate an Emacs minibuffer command history. By
far the most commonly used of these commands is M-p. Being able to recall and edit the last
change comment is often useful since it’s common to
make a series of related changes.

VC Command Summary

To give you the flavor of the other things VC can do for you, Table 12-1 provides a summary of VC commands. Each one
will be explained in detail, but you can probably guess some of their
actions from
 the command names.
Table 12-1. VC commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-x v v

 	

 vc-next-action

 	
 Go to the next logical version control state.

	

 C-x v d

 	

 vc-directory

 	
 Show all registered files beneath a directory.

	

 C-x v =

 	

 vc-diff

 	
 Generate a version difference report.

	

 C-x v u

 	

 vc-revert-buffer

 	
 Throw away changes since the last checked-in revision.

	

 C-x v ~

 	

 vc-version-other-window

 	
 Retrieve a given revision in another window.

	

 C-x v l

 	

 vc-print-log

 	
 Display a file’s change comments and history.

	

 C-x v i

 	

 vc-register

 	
 Register a file for version control.

	

 C-x v h

 	

 vc-insert-headers

 	
 Insert version control headers in a file.

	

 C-x v r

 	

 vc-retrieve-snapshot

 	
 Check out a named project snapshot.

	

 C-x v s

 	

 vc-create-snapshot

 	
 Create a named project snapshot.

	

 C-x v c

 	

 vc-cancel-version

 	
 Throw away a saved revision.

	

 C-x v a

 	

 vc-update-change-log

 	
 Update a GNU-style ChangeLog file.

These commands are ordered in the table roughly by decreasing
frequency of use. This is also the order in which
we’ll describe them in the following sections. All
VC commands have the common prefix C-x
v. Your fingers will learn this prefix quickly, and all
you usually have to remember is the single command suffix. Two minor
commands, vc-rename-file and
vc-clear-context, are not bound to
keys. They are explained later on.

VC Mode Indicators

VC grabs a bit of the mode line for each
buffer visiting a registered file and tries to use it to keep you
informed of the version control state of that file.
You’ll notice that when a buffer is visiting a
version-controlled file, the mode tags part of the mode line (shown
in parentheses) shows the name of your version control system and a
revision number for the file.
When those two parts are separated by a dash, the file is not yet
checked out; when they’re separated by a colon, the
file has been checked out, and the revision number is the one the
file had when you checked it out. Note that since most people use
concurrent version control systems these days, in which you
don’t check files out or obtain locks, you can think
of the dash as meaning unmodified, while the colon means there have
been changes that are not yet committed to the repository.
If you don’t see these indicators, the file
isn’t registered yet. These three states are
illustrated in Figure 12-3.
[image: Mode lines showing a file that is not under version control, one that is unchanged with respect to the repository, and one that has had changes saved but not yet committed.]

Figure 12-3. Mode lines showing a file that is not under version control, one that is unchanged with respect to the repository, and one that has had changes saved but not yet committed.

Which Version Control System?

We said earlier that VC uses any of a number of version control
systems (more may be added in the future). It chooses which to use
for any given file by looking for a corresponding master
file—that is, a file containing a change history.
If you’re using RCS, each of your project
directories usually has a subdirectory in which RCS masters live. If
you’re using SCCS, there are
SCCS subdirectories. CVS is a little trickier;
your project directory has a CVS subdirectory
with control information in it, but CVS masters are typically kept in
one central repository directory, the location of which is typically
given by the CVSROOT environment variable, and will likely be on
another machine completely, using the pserver network protocol.
Subversion, too, uses a separate server machine to store the revision
repository; it generally uses WebDAV over HTTP for its transactions.
Your local Subversion master files are kept in a subdirectory named
.svn.
If VC can’t find a master in any of these special
directories, it looks for a master in the same directory as your work
file (so you don’t have to create SCCS or RCS
directories if you don’t mind your work directories
being cluttered with masters). VC checks each of these possibilities
(so you can actually use more than one system in the same directory,
although we don’t recommend it).
If VC can’t find a master anywhere, it looks for an
RCS, SCCS,
CVS, or .svn directory. The
order in which these are attempted is controlled by the variable
vc-handled-backends, described in
“Customizing VC” later in this
chapter. The first one it finds tells it which version control system
to register new files with. If it can’t find any of
these directories, and you tell it to register a file, it assumes you
want to use RCS and creates the master right alongside your work
file.
To find out which of SCCS, RCS, CVS, or Subversion is available on
your system, simply execute the commands comb, rcs,
cvs, and svn respectively, with no arguments. If you
see an error or usage message, the corresponding system is ready to
use; if you see command not found,
it’s not.

Individual VC Commands

We’ve already explained what the main command,
vc-next-action, does. Now
we’ll describe each of VC’s other
commands in detail. We have chosen the order of these descriptions to
take you from frequently used and simpler commands to rarer and more
complex ones.
You can, accordingly, read to the end of chapter or bail out at any
point if you think you’ve learned all you need to.
But try to persevere because you may find that the descriptions of
the less common commands give you some new ideas about how to track
and organize your project files.
Working with Groups and Subtrees of Files

Usually, the projects you

 want to put
under version control have more than one file; it’s
normal for them to contain all the files under a specific directory
and subdirectory. Therefore, seeing a list of all version-controlled
files beneath the current working directory is often useful. Being
able to perform an operation on all of them en
masse is even more useful.
VC mode supports this directly. The command C-x
v d (for vc-directory)
puts you in a buffer running a customized Dired (directory editing)
mode, which lists all registered files under the current directory,
indicating which, if any, are checked out and who has locked them.
The status field in this listing is automatically kept up to date by
check-in and check-out operations.
If you mark several files in this Dired buffer (with the ordinary
Dired mark command described in Chapter 5) and
then perform either a vc-next-action
or vc-revert-buffer, VC performs
that operation on all the marked files. The most common case in which
you’ll perform this procedure is when you want to
check in changes to several files simultaneously. VC helps you out:
it pops up a buffer for only one change comment, which it then
applies to every revision the check-in creates.
The vc-revert-buffer design is a bit
more conservative; normally, it prompts you once for each file to
make sure you really want to discard its changes.
Some Dired commands are rebound in VC Dired to run version-control
commands. The = keystroke, for
example, runs vc-diff on the current
file rather than a Dired diff. And
g refreshes all the VC status fields
in the directory.

Difference Reports

Earlier, we mentioned

 that version control systems help you
generate difference reports between versions. VC’s
command for this is C-x v = (for
vc-diff). This command normally
shows you the difference between your work file and the last revision
you checked in so that you can see exactly what changes
you’ll be committing if you check in again.
If you give this command a prefix argument, C-u
C-x v =, it prompts you for a file name and two revision
numbers and reports the difference between those revisions of the
file. If the older revision number is empty (that is, you simply
press Enter at that prompt), it
defaults to the last checked-in revision. If the newer revision is
empty, it defaults to the work file. So pressing Enter twice compares the work file with what
was last checked in to the repository, a very common task.
It’s also possible to get a difference report for a
whole tree of project files. If the filename you give C-u C-x v = is actually a directory,
you’ll see the differences between your specified
versions for every registered file underneath that directory.
By design, such a difference report can be shipped and mechanically
applied as a patch using Larry Wall’s patch utility (available on all modern
Unixes). This is a tremendous help when you’re
cooperating on a software project by email; you can download sources,
register them, make modifications—and then, with one command,
generate a complete patch set of your changes to mail to your
collaborators.
The exact format of these reports varies somewhat between version
control systems because VC uses each system’s native
difference reporter.[3] Generally, the
output resembles that of the Unix
diff command. We’ll see how to customize
the report later in this chapter. Finally, the last section of the
chapter introduces Ediff, an alternate and powerful way to compare
and resolve differences between multiple files or versions.

Retrieving Old Revisions

You can use the
 command C-x v ~ (for vc-version-other-window) to retrieve any saved
revision of a file. The revision is retrieved into a work file with
the same name as your file, except for a suffix that identifies its
revision number (the suffix is actually a dot, followed by a tilde,
followed by the revision number, followed by another tilde). So you
can retrieve several revisions, and they won’t step
on each other. This command is useful when you want to eyeball the
entire old version of a file, as opposed to just its changes from
previous versions or its differences from later ones.
The version suffix format is very close to what Emacs generates for
saved versions if you set the global Emacs Lisp variable version-control (which VC has made pretty much
obsolete). For example, if you’re visiting a file
named foo.html and you retrieve version
1.3 by typing C-x v ~ 1 . 3 Enter,
you will now be visiting a file named
foo.html.~1.3~ (and because it ends with a
tilde, Dired’s command to flag backup files will
mark it, as discussed in Chapter 5).

Viewing Change Histories

If you use C-x v l (for vc-print-log) on a
 registered file, VC pops up a buffer
containing that file’s change history. This command
is most useful for viewing the change comments associated with each
revision.

Registering a File

Normally, registering a file for
 version control with C-x v v (for vc-next-action) with a nonconcurrent version
control system also checks out an editable copy. Occasionally
it’s useful to be able to just register a file
without checking it out. The command C-x v
i (for vc-register) does
this. With modern concurrent version control systems, this
distinction is fading away.

Inserting Version Control Headers

Most version control systems
 encourage you to embed in your file
one or more magic strings that get automatically updated at check-in,
check-out, and revert time. The purpose of these strings is to carry
automatically inserted information about the current revision number
of the file, who last modified it, and when it was last checked in.
These header strings largely duplicate within the file the version
information that VC puts on the mode line—and the rest of that
information you can get with C-x v l
(for vc-print-log). This feature
might not seem very useful, but (in particular) embedding a version
string can make it possible to mine version-control information out
of a compiled binary program.
Further, you may frequently view version-controlled files through
something other than Emacs. If so, you won’t have an
Emacs mode line displaying version control information, and there is
some value in having the magic headers visible in the file.
Accordingly, VC provides you with a command to insert them. (Note
that what VC inserts are correctly formatted placeholders for the
headers; the actual values get filled in by the underlying version
control system each time you commit the file.)
If you type C-x v h (for vc-insert-headers) while visiting a registered
and editable file, VC tries to determine from the syntax of the file
how to insert the version control header(s) as a comment and then do
so. VC knows about C and Java code, and nroff/troff/groff
code especially, and can usually deduce the right thing from
Emacs’ comment-start and comment-end global variables (set by each
major mode) so it can insert HTML comments, for example. It falls
back to #-to-\n comments (like those
used by shell, awk, Perl, tcl, and many other Unix languages) if it
can’t figure out anything better to do. This command
is also smart enough to notice if you already seem to have version
control headers present in the file and will ask you for confirmation
before inserting a redundant set.
One special behavior with respect to C code is worth mentioning. C
files don’t actually get version headers put in
comments by default. Instead, Emacs generates a string initialization
for a static dummy variable called vcid. This action is taken so the header will
actually be generated into the corresponding object file as a string,
and you can use the strings command (if
you’ve got a Unix-like environment) to see which
versions of its sources a binary was generated from.

Making and Retrieving Snapshots

A snapshot of a project is a set of

 revisions
of the project files treated as a unit. Typically, releases are
associated with points at which the project’s
product goes to a customer or other outside evaluator.
When you’re working with a subtree of project files
and want to define a release of a document or program, you may find
it tedious to have to do it by remembering or storing long lists of
file revision numbers. Accordingly, most version control systems give
you the ability to associate a symbolic release name with all the
revisions that make up a release, and then to use that symbolic name
later on when naming revisions for retrieval or difference reports.
Bare RCS and CVS both provide this capability. Bare SCCS does not,
but VC includes code to simulate it under SCCS. In practice, the
difference between native symbolic names and VC’s is
next to invisible. The only drawback of VC’s
simulation is that the SCCS tools won’t know about
symbolic names when you call them outside VC. (Note that this concept
doesn’t really apply to Subversion, because in that
environment every revision is a snapshot of the
files and directories comprising the entire module.)
The C-x v s (for vc-create-snapshot) prompts you for a symbolic
name. VC then associates this name with the current revision level of
every registered file under the current directory.
The symbolic names you create with vc-create-snapshot are also valid arguments to
any other VC command that wants a revision number. Symbolic names are
especially useful with vc-diff; it
means you can compare named releases with each other or with your
checked-out work files. The C-x v r
(for vc-retrieve-snapshot) command
takes a symbolic name and checks out every registered file underneath
the current working directory at the revision level associated with
the name.
Both the snapshot commands will fail, returning an error and not
marking or retrieving any files, if any registered file under the
current directory is checked out by anyone. The vc-create-snapshot command fails in order to
avoid making a snapshot that, when retrieved later,
won’t restore the current state completely. It also
fails in order to avoid stepping on your work file changes before
you’ve had the chance to check them in or revert
them out.

Updating ChangeLog Files

The command C-x v a (for vc-update-change-log) helps VC work with some
project-management

 conventions used by the Free
Software Foundation. FSF projects generally have in each directory a
file called ChangeLog that is supposed to
contain timestamped modification comments for every file in that
directory. The ChangeLog, historically, provided
the change history, or audit trail, for which VC uses change
comments.
Rather than make you enter every change comment twice (!), VC
provides a hook that copies recent change comments out of masters
beneath the current directory and appends them to a
ChangeLog in the approved format.

Renaming Version-Controlled Files

Renaming version-controlled files

 can be tricky. In RCS or SCCS, you
have to rename not just the work file but its associated master.
Under CVS, for reasons too arcane to go into here,
it’s hard to do at all without breaking something.
The vc-rename-file tries to insulate
you from the details and to catch and inform you about various error
conditions that can arise. It simply prompts for old and new
filenames, tries to do the right thing, and tells you if it cannot.
Warning
Renaming interacts badly with the simulated symbolic-name feature
under SCCS. This is one of the better reasons to use RCS or CVS. And,
actually, if you think you might need to rename or move files,
you’re best off investigating Subversion since one
of its major design goals was to be the first version control system
in which this task is straightforward.

When VC Gets Confused

The filesystem operations required to determine a file’s
version control state can be expensive and slow, especially in an NFS
or other networked environment. VC goes to some pains to compensate
(unless, as we’ll see later on, you tell it not to).
It has two major methods: (1) caching per-file information (such as
the locking user and current revision number) in memory rather than
running version control utilities to parse it out of the relevant
master every time, and (2) assuming that it can deduce a registered
file’s version control state from its write
permissions. Specifically, VC assumes that a registered file that is
writable is in the checked-out-and-locked state and that a registered
file that is not writable is
not a checked-out version being edited.
Multiuser environments being what they are, VC’s
cached information and assumptions about permissions occasionally
lead it down the wrong path. This situation almost always occurs
because someone has manually changed a file’s
permissions behind VC’s back.
If you think that this situation has occurred, call vc-clear-context. This command forces VC to
throw away all its cached-in-memory assumptions about the version
control state of the files you are working with.
It is also theoretically possible for VC to get confused by a race
condition between two or more VCs, or between VC and someone running
the bare SCCS, RCS, or CVS utilities. This is not just a VC problem;
the same sort of race is possible (though less likely) between two or
more people running the bare utilities. However, this kind of race is
very rare even in VC; the authors haven’t heard of
any instance in hundreds of thousands of programmer-hours in which
it’s known to have happened.
If you’re concerned about this issue, the VC source
code (vc.el in your Emacs Lisp source directory)
includes a comment giving a careful and extensive analysis of
potential multiuser conflict and race situations. VC is exactly as
safe from them as the underlying utilities can be.

[3] This is a slight
oversimplification. VC actually has its own script as a wrapper
around SCCS’s sccsdiff, in order to give it a calling
sequence more like RCS’s rcsdiff.

Customizing VC

Some of the rules we’ve described earlier in

 the chapter for VC’s
behavior can be changed by setting certain Emacs variables related to
VC mode. We’ll go over a few of the most important
here.
	
 vc-handled-backends

	This variable controls the set of version control systems used by VC,
and the order in which they are found in the list controls the order
in which they are attempted. It defaults to (RCS CVS SVN
MCVS SCCS). If you remove values from the list, they
won’t be considered valid version control systems to
use. If the list is empty, VC is disabled entirely.

	
 vc-display-status

	This variable displays a file’s revision number and
status on the mode line of each buffer visiting it, if this is
non-nil. To avoid expensive queries
of the master file, you may want to turn this variable off if you are
running VC over very slow network links.

	
 vc-
 backend
 -header

	These variables provides lists of the headers to be inserted by
vc-insert-headers when using the
specified version control system. For example, the headers for CVS
are in the variable vc-cvs-header.
You can customize these lists if you like a different format for your
version number headers.

	
 vc-keep-workfiles

	Normally, VC leaves a read-only copy of the work file in place
whenever it performs a check-in. This feature is convenient because
it means make and other tools always
find work files where they expect to. If you’re very
tight on disk space, you can turn it off, but then you have to
execute an explicit check-out every time a tool other than VC needs
the work file. (Emacs itself knows about version control through a
piece of VC code that’s always resident; its visit
commands perform a check-out if necessary, without locking the file.)

	
 vc-mistrust-permissions

	This variable is normally nil. Make
it t to tell VC not to trust a
file’s permissions or ownership as indicators of its
version control state. This change slows VC down a lot, but it may be
necessary if (for example) your development group is working in
several different directories and accessing work files via symbolic
links. In such a case, the permissions and ownership of the link
convey nothing about the state of the work file.

	
 vc-suppress-confirm

	This variable defaults to nil. If it
is non-nil, it suppresses the
confirmation prompt vc-revert-buffer
normally gives you before discarding changes.

	
 vc-initial-comment

	Most version control systems allow (but do not require) you to enter
an initial comment when you register a file—a lead-off for the
change history. If this variable is non-nil, VC pops up a buffer for this comment at
registration time just as it normally does for change comments at
check-in time.

	
 diff-switches

	The Emacs diff.el mode takes command-line
switches from this global variable to pass to diff when generating a change report. VC uses
it the same way. It defaults to the single switch -c to force context-diff format; -u for unified-diff format is also fairly popular.

A number of other, less important global variables are fully
documented in the Emacs online help system.

Extending VC

VC was designed from the beginning to be usable

 as a
front-end for multiple version control systems. The code that
actually runs the version control tools is carefully isolated from
the user-level package logic in such a way that plugging in new
systems is not very hard. VC’s author originally
wrote it to handle SCCS and RCS; CVS support was added later, by a
different person, without much difficulty, and Subversion support was
an even simpler variant of the CVS code.
There are a couple of extensions to Emacs for users of ClearCase, a
popular commercial project-management system. Whether this code is
accepted into the GNU Emacs distribution, considering the
FSF’s hostile attitude towards non-freeware, is
another question. So far they have not been, but you can obtain the
packages over the internet. At the time of this writing, the best
choice appears to be clearcase.el. The author of
the first implementation, VC-ClearCase, has even
stated that he’s switched over to
clearcase.el. The current download site is
http://members.verizon.net/~vze24fr2/EmacsClearCase/.
If it’s moved by the time you read this, hopefully a
Google search will steer you in the right direction.
By the time you read this book, then, your VC may well handle
additional systems besides the ones we have described here (though
CVS and Subversion are likely to remain the most popular ones for the
foreseeable future). If you are a skilled Emacs Lisp programmer (or
would like to become one) and have your own favorite version control
system, by all means hack the source code—extend VC to use it,
and share your results so that everyone benefits.

What VC Is Not

VC is not a total solution to the project-management problem.
Although it assists single-author programming or document maintenance
greatly and can give vital help on small- to medium-scale projects
involving several developers, it’s not necessarily
adequate by itself for large multiple-component, multiple-directory
projects. The following are some of its more obvious deficiencies for
larger projects:
	It is not integrated with a change request or problem-report system.

	Its only way of grouping project files is by directory subtree. This
limitation may create problems for large, multiple-directory
projects, especially when two or more need to share a common library
or subtree.

You can work around these deficiencies on small projects. Variant
versions might be handled with compile-time conditions, like
#ifdefs in C code. Change requests
can be kept separately in some kind of database (such as the
FSF’s GNATS system, or Mozilla’s
Bugzilla). Programmers can carry around in their heads the state
needed to do renames without disruption.
As projects scale up in size and intricacy, however, such
ad hoc measures increasingly fail to prevent
damaging friction and lead to death by accumulated details.
Complexity control for very large projects requires a fundamentally
stronger (and, unfortunately, more constraining and complex) support
environment that goes beyond version control—a full
project-management system.
For more on the design issues in project-management systems, see the
latter half of the book Applying SCCS and RCS by
Don Bolinger and Tan Bronson (O’Reilly).

Using VC Effectively

We urge those of you with prior version control experience to heed
the following maxim: to use VC effectively, check in your
changes early and often! Of course, when you are working
as part of a team of developers, you do need to take care to check in
only a consistent and working set of files each time.
There’s nothing quite equal to the frustration of
discovering that you can no longer compile and test your own code
because someone else has checked in a fragmentary or broken piece of
theirs.
If you’re used to version control interfaces that
are as clumsy and difficult as bare SCCS, RCS, or—to a lesser
extent—CVS, your reflexes may prevent you from getting the most
leverage out of VC. You probably won’t commit often;
you’re not used to being able to instantly get
status reports on a whole subtree of files.
It’s worth a little thought and effort to reeducate
yourself. You’ll find that, instead of being an
irritating minor chore, version control under VC can be tremendously
liberating. By checking changes in often, you’ll
find you can afford to experiment more, because
you’ll know how to revert to a known good state
quickly if need be.

Comparing with Ediff

In working with any version control
 system,
you sometimes want to compare different revisions of a file. Often
you’re interested in what’s changed
in the current working revision, but sometimes
you’re after more historical information. The most
challenging situation arises when an optimistic strategy like CVS is
proved wrong, and you need to merge incompatible changes made by
multiple developers to the same section of a file.
We’ve already described vc-diff, VC’s built-in
facility for helping with these tasks. We would be remiss, however,
if we did not introduce you to Ediff, an even more powerful facility
that is available in current releases of GNU Emacs. Ediff is
extremely rich; it almost feels like another program that
“takes over” your Emacs session for
a while. Full coverage would require an entire chapter, or perhaps
even its own handbook, but this introduction will get you started and
point you at the built-in manual if you want to delve deeper.
Starting Ediff

For the most part, you launch
Ediff
as an independent entity rather than having it invoked automatically
by the version control interface. The exception (as mentioned above)
is if you ask Emacs for help resolving conflicts when they occur
during a check-in operation or manually invoke vc-resolve-conflicts while visiting a buffer
containing such conflicts.
If you want to use Ediff to compare two nonconflicting revisions of a
file, choose Tools → Compare (Ediff) → File with
revision, or type M-x
 ediff-revision
 Enter. Ediff prompts you for the file
you’d like to compare (defaulting to the file
associated with the current buffer), and the revision(s)
you’d like to compare, defaulting to the version
last checked in and the current state of the buffer. (Ediff can also
be used for many tasks outside the context of version control
systems; you might want to explore the options on the Compare (Ediff)
menu on a rainy day.)
The first time you invoke Ediff, you will probably find it
disorienting. In addition to the expected pair of buffers showing you
the two files or revisions being compared, it pops open a small
“control window” (see Figure 12-4) in which you type commands. In its default
configuration, this is a separate operating system window (or what
Emacs refers to as a “frame”). For
Ediff commands to work, this window must have keyboard focus (must
show as being the currently active window as far as the operating
system is concerned). This is different from almost any other
situation in Emacs, in that you’re looking at and
manipulating content in one frame while a second frame has focus.
[image: The Ediff control window in its default state (Mac OS X)]

Figure 12-4. The Ediff control window in its default state (Mac OS X)

In its default configuration, the control window is designed to be
small enough not to get in the way on smaller displays. The problem
is that you might not even notice it, let alone realize what
it’s for! In addition to being the place you type
Ediff commands, this small window shows you where you are in the
difference list (in this case, before the first of seven
differences), and reminds you that you can type ? to get some more help. As a new Ediff user,
we strongly recommend that you type ? each time you fire it up to expand the
control window into the larger, Quick Help mode, shown in Figure 12-5.
[image: The Ediff control window showing Quick Help (Mac OS X)]

Figure 12-5. The Ediff control window showing Quick Help (Mac OS X)

In addition to the control window, you’ll see the
differences between the files you’re comparing
inside the frame you were previously using for editing. If
you’re looking at a large file, none of the
differences might be visible initially. You can jump to the first
difference by typing n or pressing
the space bar, as suggested by the quick help window. (Remember that
for any of the Ediff commands to work, the control/quick help window
must have keyboard focus.) The displayed
differences will look something like Figure 12-6.
[image: Differences displayed by Ediff]

Figure 12-6. Differences displayed by Ediff

Ediff centers the difference regions within each buffer, and marks
the changed lines with color, further emphasizing the specific
portions of the lines which have changed to help attract visual
attention to the differences. This is much more helpful than the
traditional diff mode, making it worthwhile learning the strange new
interface.

Using Ediff

The basic way to use Ediff is to scroll through the buffers, seeing
what has changed between them. The normal Emacs
“browsing” keys (Space to move forward, Del to move backward) are bound in the control
window to take you through the differences one by one. Pressing
n (next) and p (previous) has the same effect. If you want
to go to a specific difference, you can type a number followed by
j (jump) to move immediately to that
difference. To scroll up or down by pages rather than by differences
you can use v to move forward and
V to move backward. If your buffers
contain wide lines, you can also type < and >
to scroll left and right. If you’d like to view the
buffers side by side rather than one above the other, type | (vertical bar). Typing this a second time
returns to showing the buffers vertically. To reduce the need to
scroll horizontally, you can make the comparison window as wide as
possible by typing m (this is also a
toggle; typing it again returns the window to its previous width).
This command might cause the control window to lose focus, forcing
you to click back into it before issuing the next Ediff command. (See
“Recovering from Confusion” later
in this chapter.) Important

 commands
available in Ediff are summarized in Table 12-2.
Table 12-2. Ediff commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 Space or n

 	

 ediff-next-difference

 	
 Move to the next difference between the files.

	

 Del or p

 	

 ediff-previous-difference

 	
 Move to the preceding difference between the files.

	

 j

 	

 ediff-jump-to-difference

 	
 Go to the difference specified as a numeric prefix argument.

	

 v or C-v

 	

 ediff-scroll-vertically

 	
 Move forward one page in both buffers.

	

 V or M-v

 	

 ediff-scroll-vertically

 	
 Move backward one page in both buffers.

	

 <

 	

 ediff-scroll-horizontally

 	
 Scroll each buffer to the left.

	

 >

 	

 ediff-scroll-horizontally

 	
 Scroll each buffer to the right.

	

 | (vertical bar)

 	

 ediff-toggle-split

 	
 Switch between viewing the buffers one above the other and
side-by-side.

	

 m

 	

 ediff-toggle-wide-display

 	
 Toggle between normal frame size and making it as wide as possible.

	

 a

 	

 ediff-copy-A-to-B

 	
 Copy the version of the current difference found in buffer A to
buffer B.

	

 b

 	

 ediff-copy-B-to-A

 	
 Copy the version of the current difference found in buffer B to
buffer A.

	

 r a or r
b

 	

 ediff-restore-diff

 	
 Restore the current difference in buffer A (or B) to the way it was
before copying from the other buffer.

	

 A or B

 	

 ediff-toggle-read-only

 	
 Switch the specified buffer into (or out of) read-only mode.

	

 g a or g
b

 	

 ediff-jump-to-difference-at-point

 	
 Recenter the comparison buffers on the difference nearest to your
current location (point) in the specified buffer.

	

 C-l

 	

 ediff-recenter

 	
 Restore the comparison display so that the highlighted regions of all
buffers being compared are visible; useful if you’ve
been doing something else and want to get back to comparing.

	

 !

 	

 ediff-update-diffs

 	
 Recalculate and redisplay the highlighted regions; useful if
you’ve manually made extensive changes to a buffer.

	

 w a or w
b

 	

 ediff-save-buffer

 	
 Save the specified buffer to disk.

	

 E

 	

 ediff-documentation

 	
 Open the manual for Ediff.

	

 z

 	

 ediff-suspend

 	
 Close the Ediff control window, but leave the session active so you
can resume it later.

	

 q

 	

 ediff-quit

 	
 Close the Ediff window and end this comparison session.

Making Changes

In addition to simply
viewing the differences between files, you will sometimes want to
resolve or merge them (especially if you’ve entered
Ediff as the result of conflicts that occurred while checking in a
file revision). Several commands help with this, and they generally
require you to choose which buffer you want to work from. As you
might have noticed in Figure 12-5, Ediff assigns each file or
revision buffer a letter to identify it: A,
B and sometimes C if you are
comparing three things. A number of Ediff commands work with these
buffer identifiers—the letter X is used to
stand for these labels in the quick help window for most commands
that use them.
To copy the version of the current difference found in one buffer to
the other buffer, type the letter assigned to the buffer with the
“right” version. For example, to
copy A’s version to
B, type a. Ediff
makes this change but keeps track of the old value in the buffer you
changed. Following along in our example, if after changing buffer
B like this, you change your mind and want to
restore its old state, you can type r
 b (for
“restore buffer
B“). These changes are kept track
of on a difference-by-difference basis, so you don’t
have to change your mind right away; you can jump back to that
difference and restore it at a later time, as long as
you’re still in the same Ediff session.
Of course, to make changes to a buffer, it cannot be in read-only
mode. If you are comparing a current file with a historical revision,
the buffer representing the older version is read-only because you
can’t change the past. If you want to avoid
accidentally changing a file while browsing differences, you can
cause its buffer to become read-only by typing Shift and the buffer’s letter
label. (Shift-b to make buffer
B read-only). This is a toggle, so doing it again
makes a read-only buffer editable. If you do this to a buffer
representing a historical revision, although Emacs will then let you
edit the buffer, you’re not actually affecting the
revision within the version control system. So unless
you’re trying to confuse
yourself, we’d suggest avoiding this practice.
If you’re whipping through the buffers, making many
changes by selecting appropriate versions to use within the Ediff
control window, you may find yourself wanting to save one or the
other of your difference buffers. While you can certainly click over
to the difference window, move into that buffer, and use the standard
C-s command to save, Ediff offers a
more convenient alternative. Simply press w (write) followed by the
buffer’s letter label to save that buffer without
leaving the control window.

Quitting Ediff

When you’re done comparing
the
files, the quickest way to close the control window and get back to
the “normal” Emacs world is to type
q to quit your Ediff session. After
confirming that you really want to do this, Ediff closes the control
window and cleans up after itself. You can also suspend the session
temporarily by typing z for suspend.
This closes the Ediff control window, but Ediff remembers that you
were in the middle of a session, to which you can return later
whenever you’d like. The easiest way to do this is
to view the list of active Ediff sessions by choosing Tools
→ Ediff Miscellanea → List Ediff Sessions. When you
actually quit an Ediff session, it no longer appears in this list.

Recovering from Confusion

If you’ve been cruising along in Ediff and suddenly
find your commands aren’t working,
you’ve probably accidentally clicked on the
differences window and are typing in one of the buffers directly, or
perhaps you used an Ediff command that switched the window focus on
you unexpectedly. Make sure to undo the stray characters
you’ve typed into the comparison buffer, then click
on the control window and start issuing commands again.
Of course, you may want to intentionally jump over to edit one of the
buffers as you notice changes you’d like to make.
You can do that at any time; just remember to switch back to the
control window when you want move to other differences or use other
Ediff commands. If, after editing one of the comparison buffers for a
while, you’d like to return to viewing differences,
starting with the difference nearest to your edit location, click in
the control window and type g
followed by the letter assigned to the buffer in which
you’re interested (as discussed earlier in
“Making Changes”).
If you’ve made substantial changes by editing the
buffer directly, you may find that the difference region highlights
have drifted out of synch with the actual location of differences. To
fix this, once the control window has focus, type ! to cause Ediff to recalculate and redisplay
the differences.
If you’ve reconfigured the buffers
you’re looking at (perhaps you wanted to look up
some help text, or engage in a side task, which Emacs certainly
encourages) you can restore the window configuration for Ediff by
clicking on the control window and typing C-l (recenter). This sets up the comparison
window to display the files you’re comparing and
centers the current difference in each buffer. You may find that it
also causes the comparison window to get keyboard focus, so be sure
to click on the control window if necessary before you try to issue
any Ediff commands.

Learning More

As noted, there is a whole lot more to Ediff than we can discuss
here. When you want to explore it, a good starting place is the
built-in Ediff manual. You can get to this by typing E (Shift-e,
the capitalization matters) in the Ediff control window. If
you’re not already inside Ediff, you can choose
Tools → Ediff Miscellanea → Ediff Manual, or you
can invoke Info, the Emacs documentation browser, by typing C-h
 i, and
choose Ediff from the main menu of topics. (Typing m for menu, followed by e
 d
 Enter is enough to complete
“Ediff” and jump to its manual.)
For more task-specific help, you can click on any of the commands in
the quick help window using your middle mouse button to get help
describing what it does. (If you lack a three button mouse, you can
click on the command with your regular mouse button and then press
Enter.)

Customizing Ediff

By now it should come

 as
no surprise that you can change many details about the way that Ediff
works so it better fits your way of thinking and working. After
you’ve got a good grasp of the basics, you can use
the Custom facility described in Chapter 10 to tweak the way Ediff
works by choosing Tools → Ediff Miscellanea →
Customize Ediff. If the use of a separate operating system window
(frame) for the control window is driving you batty, you can toggle
that behavior right away by choosing Tools → Ediff
Miscellanea → Toggle use of separate control buffer frame.

Invoking Ediff Automatically

If Ediff is so powerful, why isn’t it the default
mode used by the vc-diff command?
The most likely explanation is historical; vc-diff has been around longer than Ediff, and
it would have been disruptive to long-standing users of Emacs if a
strange new interface was unexpectedly foisted on them. It seems
people are writing patches to integrate Ediff more tightly with VC,
but they are not (yet?) part of the Emacs distribution. If
you’re interested in the current state of any of
these efforts, try a Google search for “vc
ediff.”

Chapter 13. Platform-Specific Considerations

In this chapter, we describe installing Emacs on Unix, Mac OS
X, and Windows as well as some of the subtleties of running Emacs on
the latter two platforms.
Emacs 21 runs on free Unix systems including Linux and BSD variants
as well as on commercial Unix versions such as AIX, Solaris,
SunOS,` and Ultrix. It runs on Mac OS X (currently a
separate fork, but due to be folded into the main distribution
starting with 21.4). It runs on Windows and even on MS-DOS. You can
still get ports for Mac OS 8/9 and Amiga (to name only a few). Emacs
is truly a multiplatform editor.
We cover installing Emacs on Unix, Mac OS X, and Windows. For Windows
and Mac OS X, prebuilt binaries are available. You may want to build
Emacs from source in order to obtain the latest version. However, we
have found up-to-date binaries online for Windows and Mac OS X; you
just have to scout around on the Net to find them. By the time you
read this, the sources for the binaries that we cite may be out of
date. Check out this book’s web site for updated
links in that case (http://www.oreilly.com/catalog/gnu3).
A related issue is where to get Emacs. The Free Software Foundation
(FSF) is the official source for Emacs, but like most
software organizations, official releases
are few and far between. Often, building Emacs from CVS sources is
the best way to get a leading-edge version. Only you can decide
whether you would rather have the latest features—along with
some bugs—or download the tried-and-true version from the
FSF’s site.

Emacs and Unix

Emacs was originally built

 on a Unix system and continues to run
on the multitude of Unix variants out there. We’re
going to download the latest source and show you how to build Emacs
from scratch. It’s not really that hard and it has
the salutary effect of keeping you up-to-date with future releases.
Where to Get Emacs?

If you can’t wait, the primary source

 for
downloading Emacs is http://ftp.gnu.org/pub/gnu/emacs/.
Alternatively, you can use CVS to nab the absolute latest build. But
more on that in a minute.
Downloading Emacs from the Web

You can get Emacs from any one

 of many
sites—as long as your Internet connection is fast enough to
transfer a 20 MB file easily. You must also have at least 120 MB of
disk space free; this number will certainly grow in future Emacs
releases.
The Free Software Foundation maintains a definitive list of all
mirror sites. The FSF is the principal sponsor of the GNU Project and
it is housed at their site. If you want to look around a bit,
http://www.gnu.org/ is the place
to start. Or as mentioned earlier, you can just jump directly to the
directly listing for Emacs at http://ftp.gnu.org/pub/gnu/emacs/. You should
see a list similar to Figure 13-1.
[image: The emacs directory at gnu.org]

Figure 13-1. The emacs directory at gnu.org

Look for the latest version of Emacs (21.3 in Figure 13-1) and download it.

Where to Put Emacs?

Regardless of where you go to get

 the
source, where you put the files you download is really up to you. For
our Unix-based systems, we downloaded everything into
/usr/local/install. This is a fine place to
start, but if you have a favorite download/development area, feel
free to use that. In fact, you can even put everything in your home
directory while you’re building things.
The only thing to remember is that the build process involves a lot
of files that you won’t need after
everything’s done. Make sure you put things
somewhere that’s easy to clean up when all is said
and done.
As for the final destination of the executable,
that’s also up to you. Most Unix systems (including
Mac OS X) will do well to use the /usr/local
hierarchy. That directory is both common and the default choice in
the build scripts. If you’re not on a machine that
you have complete control over, though, you can certainly install
Emacs into your home directory (or a subdirectory you keep for you
own software).
One quick note on using your home directory for the executable
version of Emacs: it does make it easy to back up Emacs or transfer
it to another machine if you upgrade your system (we know from
experience!). However, it can limit who has access to Emacs. If
another user works on the same machine and you both want to use
Emacs, installing to a common directory (like
/usr/local) is definitely the way to go.

Uncompressing and Unpacking

Now that you have the file, you need

 to
do two things to it before you can actually build Emacs: uncompress
and unpack. You can use the tar
command to do both. Make sure you are in the directory where you
downloaded the Emacs file. Type the following command (changing the
n to the version number that matches the
file you downloaded), and you will see a list of files.
$ tar xvzf emacs-21.n
 .tar.gz
x emacs-21.3, 0 bytes, 0 tape blocks
x emacs-21.3/AUTHORS, 77854 bytes, 153 tape blocks
x emacs-21.3/FTP, 8950 bytes, 18 tape blocks
x emacs-21.3/INSTALL, 42841 bytes, 84 tape blocks
x emacs-21.3/README, 4046 bytes, 8 tape blocks
x emacs-21.3/BUGS, 1042 bytes, 3 tape blocks
x emacs-21.3/move-if-change, 129 bytes, 1 tape blocks
x emacs-21.3/ChangeLog, 161418 bytes, 316 tape blocks
x emacs-21.3/Makefile.in, 25461 bytes, 50 tape blocks
. . .
This list of created files goes on for quite a while—over 2500
files for Emacs 21.3. If you don’t want to see the
list, omit the v (verbose option) from the tar command. When this command completes, you
have all of the files for Emacs.
Now that any necessary preparations are out of the way, you can go
through the steps to build and install Emacs itself.

Downloading Emacs from CVS

As we mentioned earlier,

 you can also use
CVS to pull the source files. The
big advantage with CVS is that you get the absolute latest version.
	Create or switch to a directory where your Emacs build can remain.
Don’t do this in a temporary directory unless you
don’t plan on keeping Emacs around. Once there, set
up the CVS_RSH environment variable:
% setenv CVS_RSH ssh

	If the setenv command is not
recognized, you’re probably running bash instead of a csh-derived shell. In that case, use the
following command for the environment variable.
$ export CVS_RSH="ssh"

	Use the cvs command to grab the
source code.
% cvs -z3 -d:ext:anoncvs@savannah.gnu.org:/cvsroot/emacs co emacs
The authenticity of host 'savannah.gnu.org (199.232.41.3)' can't be established.
RSA key fingerprint is 80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5.
Are you sure you want to continue connecting (yes/no)?

	Verify that the public key matches this key:
80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5

	That just makes sure you actually got connected to the right system
and aren’t being fed some malicious alternative.

	If the keys match, type yes and
press Enter.
Warning: Permanently added 'savannah.gnu.org,199.232.41.3'
(RSA) to the list of known hosts.
cvs server: Updating emacs
U emacs/.cvsignore
U emacs/AUTHORS
U emacs/BUGS
U emacs/COPYING
U emacs/ChangeLog
U emacs/FTP
U emacs/INSTALL
...

You’ll see thousands of filenames flying by. If you
have a slow network connection, this process could take a while. Hang
in there, though—you’re on your way to
building the absolute latest version of Emacs!

Building Emacs

Unless you get a
 prebuilt
version of Emacs that is right for your system, you will need to
build and install the many executable components of Emacs from source
code before you can use it. At this point, it
doesn’t matter how you got the source code (HTTP or
CVS), you just need to compile it! Here is some information to get
you started on this task.
Your source code has a top-level directory with a name like
emacs-21.3. In this directory, you will find
files called INSTALL and
README. Examine README
first; it contains useful general information as well as last-minute
release notes that may be important for you to read before
proceeding. Then read INSTALL, which gives
step-by-step instructions for building Emacs. Even if you
aren’t a Unix expert, you should be able to follow
these instructions. (For convenience, we provide a procedure you can
follow later in this section.)
The FSF’s standard installation procedure gets more
comprehensive and bulletproof all the time. Still, the actual ease of
building Emacs depends primarily on what combination of hardware and
software you have. The FSF’s installation script
includes a program called configure
that examines your system, figures out what hardware and software you
are running, and configures Emacs accordingly.

 configure is likely to guess
correctly if you have a popular combination (such as a Sun SPARC CPU
and a recent release of Solaris). If this is true, you should be able
to build Emacs without lots of tweaking or technical expertise.
However, if you have an unusual setup—a wildly obsolete
computer or operating system version, an unusual hardware/software
combination, or unconventional system configuration—then you
will have no choice but to tweak the software.
That’s beyond the scope of this book, but those
README and INSTALL files
that come with the source distribution are a great place to start
when dealing with uncommon setups.
Here’s a procedure for building Emacs that you can
use as a guide:
	Change to the directory where you uncompressed and unpacked Emacs.
For example, if you placed it in the
/usr/local/install directory:
$ cd /usr/local/install/emacs-21.3

	Run the configure utility.[1] You should see quite
a bit of output that shows what parts of the system the build script
is looking for.
$./configure
creating cache ./config.cache
checking host system type... sparc-sun-solaris2.9
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking whether ln -s works... yes
checking how to run the C preprocessor... gcc -E

	If configure is successful, you
should see a handy summary message similar to the following:
Configured for `sparc-sun-solaris2.9'.

 Where should the build process find the source code? /usr/local/install/emacs-21.3
 What operating system and machine description files should Emacs use?
 `s/sol2-5.h' and `m/sparc.h'
 What compiler should emacs be built with? gcc -g -O2
 Should Emacs use the GNU version of malloc? yes
 Should Emacs use a relocating allocator for buffers? yes
 Should Emacs use mmap(2) for buffer allocation? no
 What window system should Emacs use? x11
 What toolkit should Emacs use? LUCID
 Where do we find X Windows header files? Standard dirs
 Where do we find X Windows libraries? Standard dirs
 Does Emacs use -lXaw3d? no
 Does Emacs use -lXpm? yes
 Does Emacs use -ljpeg? no
 Does Emacs use -ltiff? no
 Does Emacs use -lungif? no
 Does Emacs use -lpng? no
 Does Emacs use X toolkit scroll bars? no
If the configuration process fails for any reason,
you’ll want to go back and consult the
INSTALL document. It has several tips and tricks
for particular systems and situations.

	If everything is properly configured, you can go ahead and compile
Emacs with the make utility. This
may take a while, so start it before you head out for lunch.
$ make
if [! -f /usr/local/install/emacs-21.3/lisp/abbrev.elc]; then \
 make bootstrap; \
fi
cd lib-src; make all \
 CC='gcc' CFLAGS='-g -O2' CPPFLAGS='' \
 LDFLAGS='' MAKE='make'
gcc -DHAVE_CONFIG_H -I. -I../src -I/usr/local/install/emacs-21.3/lib-src
-I/usr/local/install/emacs-21.3/lib-src/../src -g -O2 -o test-distrib
/usr/local/install/emacs-21.3/lib-src/test-distrib.c
./test-distrib /usr/local/install/emacs-21.3/lib-src/testfile
gcc -DHAVE_CONFIG_H -I. -I../src -I/usr/local/install/emacs-21.3/lib-src
-I/usr/local/install/emacs-21.3/lib-src/../src -g -O2 /usr/local/install/
emacs-21.3/lib-src/make-docfile.c -lsocket -lnsl -lkstat -o make-docfile
...

	When that completes, the INSTALL document
recommends testing your newly built Emacs with the following command:
$ src/emacs -q
Emacs should run and you should get an introduction screen similar to
Figure 13-2.
[image: Emacs test after building on a Linux system]

Figure 13-2. Emacs test after building on a Linux system

	If you see the Emacs splash screen,[2]
you’re in good shape, so go ahead and install it:
$ sudo make install
or, if you su‘d to root
earlier, simply:
$ make install
You’ll be prompted for your password. After the
install completes, you should be all set to use Emacs.
Congratulations!

[1] Depending on your system
and its permissions, you may have to switch to the root user using
su to install Emacs. In that case,
you won’t need to preface the final make command with sudo.

[2] One of the
authors was not able to see the splash screen, but the install worked
fine nonetheless. We say forge ahead even if you
don’t see it.

Emacs and Mac OS X

As you may have picked up
 reading other parts of this book, we
treat Mac OS X as a Unix variant for many tasks. We do that with good
reason, of course. Mac OS X is based on Unix. For example, you could
more or less follow the CVS and Unix build instructions in the
previous sections and come away with a full installation of
Emacs.[3] However, as
you know, Mac OS X can be a little different in some ways; it
doesn’t have all the Unix utilities by default (see
the section on installing Ispell for one example of this). This
section covers installing Emacs on Mac OS X as well as other issues
such as running Emacs from the command line, changing the location of
your Meta key, and installing Ispell. And if you do want to build
Emacs from scratch using CVS, we have a few notes on that, too.
“But I Already Have Emacs”

Mac OS X comes with a version
of
Emacs installed: 21.2.1 with Panther (10.3.2) and 21.1.1 with Jaguar
(10.2.8). To start this version, use the Terminal application in your
Utilities folder (which is inside the
Applications folder) and just type emacs.

 Figure 13-3 shows the built-in Emacs running in the
Terminal application.
[image: The Terminal-based Emacs built into Mac OS X]

Figure 13-3. The Terminal-based Emacs built into Mac OS X

But you should be aware that although it is built-in and certainly
the easiest to start using, this version of Emacs has a few
shortcomings:
	It runs, well, you know, in a Terminal.

	It does not have any of the graphical user interface features such as
icons or expected mouse behavior.

	The Terminal application often supercedes Emacs when handling things
like the scrollbars and some key bindings.

If you can live with those restrictions—or have no
choice—then feel free to skip the next section on installing
Emacs and get on with using the version you have. The vast majority
of information in this book still applies.

Installing Prebuilt Emacs on Mac OS X

What if you want the latest

 version of
Emacs but don’t want to build it yourself? After
all, not every Mac OS X user is an old Unix hack! Mac systems made a
name for themselves by providing some of the best user interface
conventions around in a single, good-looking package. That
hasn’t changed. If you’re not a big
fan of do-it-yourself application building, you can download a nifty
application bundle and just drag-and-drop your way to a recent build
of Emacs.
Downloading Alex Rice’s application bundle of Emacs 21.3.5

Most Mac users will want to grab a prebuilt binary version of Emacs
that’s all ready to go. Alex Rice created just such
a build. It can be found online (for free![4]) at:
http://mindlube.com/products/emacs/index.html.
You can download directly from that page, but be sure to grab the
correct version. You can pick from the Jaguar (Mac OS X 10.2) version
or the Panther (Mac OS X 10.3) version.
You’ll be downloading a .dmg
file which is the Mac disk image format. It should automatically
unpack and mount itself, but if it doesn’t for some
reason, just double-click on the .dmg file after
it is completely downloaded.
As it launches, you’ll need to read and agree to the
license. After you do that, you should have a new
“disk” mounted and
you’ll see the Emacs application all ready to drag
and drop. (See Figure 13-4.)
[image: The mounted disk image for Emacs on Mac OS X (Panther)]

Figure 13-4. The mounted disk image for Emacs on Mac OS X (Panther)

Drag the big gnu to your Applications folder and
off you go. That really is all there is to it. Many, many thanks to
Alex Rice and Mindlube! (And feel free to eject the mounted image
once you have copied Emacs to your hard drive.)

Building Emacs from Source on Mac OS X

While Mac OS X is

 based (very squarely) on Unix, as of
build 21.3.5, your best bet for building Emacs is still to go with a
slightly modified build process. (The Mac build should join up with
the normal build in version 21.4.) Until 2004, that separate process
was maintained by Andrew Choi and made available to the public at
http://members.shaw.ca/akochoi-emacs/.
Fortunately, it is still available there, although Andrew is no
longer the Mac maintainer.
Tip
Full instructions on the build can also be found at
Andrew’s site. While the build is essentially the
same as it is for other Unix systems (you run configure and then make), retrieving the source code is best done
through CVS to get the latest version. If you have installed the Mac
Developer Tools CD, you’ll have CVS. If you
haven’t installed the Mac Developer Tools (usually
available on a separate CD that came with your Mac or with your copy
of Mac OS X), you must; the Developer Tools are required to build
version 21.3 from source.

Before you build

For the 21.3 build, Andrew Choi has posted the steps required to
retrieve and build Emacs at http://members.shaw.ca/akochoi-emacs/stories/obtaining-and-building.html.
If you plan to go this route on Panther (Mac OS X 10.3), just follow
Andrew’s instructions. Alternatively, you can follow
the Unix build instructions from the previous section. If
you’re still running Jaguar, you’ll
need to do a bit of preparatory work. Read on.
Jaguar (Mac OS X 10.2) preparation

The first
 of the extra
notes is that you should upgrade to Panther (10.3) if you
aren’t there already. Seriously. There are lots of
benefits. But if that’s just not in the cards for
you, you do need to take a small detour before installing Emacs.
Mac OS X 10.2 lacks a piece of software required for Emacs: texinfo. (That tool comes preinstalled on
10.3.) It’s not hard to install; you just have to
remember to do it. You basically install the texinfo package as you would if any other Unix
package. You can look back at the previous section for more details,
but here are the basics.
You’ll need to perform these commands from the
Terminal application. By default,
Terminal starts you out with a C-Shell variant, so
we’ll use the % character for the
prompt in the commands for this section.
	Pull the texinfo package from the
/pub/gnu/texinfo folder at
ftp.gnu.org. The compressed archive file will be
called something like texinfo-4.7.tar.gz. Grab
the latest version available.

	Unpack the archive.
% tar xvzf texinfo-4.7.tar.gz
If you downloaded texinfo through a
browser, chances are the browser uncompressed it for you. Some of
them might even have unpacked it as well. If you have a.
tar file sitting on your desktop, you can unpack it like
this:
% tar xvf texinfo-4.7.tar

	Move to the texinfo-4.7 directory and configure
your build.
% ./configure

	Assuming that all goes well, you can build everything:
% make

	And assuming that went well, you can install it. But
you’ll have to do that as an administrator.
Fortunately that’s easy to do in the Terminal
window. Just run this command:
% sudo make install

You’ll be prompted for your password. Type it in and
everything should go well. If you aren’t allowed to
administer your own machine, you’ll need the help of
someone who does have admin privileges.
Now that you’ve installed texinfo, you’ll need to
download, unpack, and install Emacs, either by following Andrew
Choi’s instructions or ours in the
“Emacs and Unix” section earlier in
this chapter.
Your Mac build should end up creating a double-clickable icon that
you can drag and drop into your Applications
folder just like the prebuilt download.

Starting Emacs from the Command Line on Mac OS X

On Mac OS X, you have Emacs preinstalled, but

 as we
know, it is an older version of Emacs. Let’s say
that you have installed the graphical version and want to start it
with some command-line arguments. For example, you might want to
run emacs —debug-init to debug
your .emacs file. The Mac OS X Gnu icon
certainly should be a permanent fixture on your Dock, but at times
the command line is the way to go.
We learned this trick from Andrew Choi’s Mac OS X
FAQ, and we share it here, slightly tweaked, for convenience. Check
out his page at http://members.shaw.ca/akochoi-emacs/stories/faq.html.
Essentially, you replace the binary that comes with Mac OS X with a
shell script that runs the new version of Emacs you installed. You
might want to simply rename the old binary so that you can on
occasion use it instead.
Here’s the procedure.
	To be sure which Emacs runs when you type emacs, type which
emacs in the Terminal application.
% which emacs
/usr/bin/emacs

	Rename or delete /usr/bin/emacs.
% sudo mv /usr/bin/emacs /usr/bin/oldemacs

	You’ll be prompted for your password.

	Create a file called emacs with the following
two lines:
#!/bin/sh
/Applications/Emacs.app/Contents/MacOS/Emacs "$@"
If you installed Emacs into a different folder, adjust the second
line accordingly.

	Move the file you created to /usr/bin:
% sudo mv emacs /usr/bin

	Change /usr/bin/emacs to be executable by the
world:
% chmod +x /usr/bin/emacs
Now you can invoke graphical Emacs from the terminal window simply by
typing emacs, with or without
command-line arguments.[5]

Mac OS X and the Meta Key

This book has mentioned

 using the
Command key for Meta on Mac OS X. By default, the Command key (sometimes called the Open Apple key, or more simply xxxMacSymxxx)
is Meta. But in fact you have a
choice. The variable mac-command-key-is-meta can be used to select
which key you want to use.
As the variable name implies, setting mac-command-key-is-meta to t means that you use xxxMacSymxxx
as the Meta key. So you can type the
M-x combination as xxxMacSymxxxx.
The alternative (setting mac-command-key-is-meta to nil) sets the Option (or Alt) key to be your Meta key. You might do this if you want to
continue using the Command key for
Mac functions or if you find that Option is simply easier to reach. Of course,
it’s not quite that simple. Emacs still traps the
Command key. That trapping is
supposed to be turned off with one more variable: mac-pass-command-to-system, but to be honest,
we never got that to work.

Installing Ispell

As mentioned in Chapter 3, Emacs uses

 Ispell for its spell-checking
functionality. However, despite voluminous hooks to it, the Ispell
executable is not part of Emacs and is not installed by default on
Mac OS X. You must therefore install Ispell to get spell-checking to
work properly.
We took the easy path to doing this: downloading and installing Fink
(see http://fink.sourceforge.net
for instructions). Fink is an all-purpose Mac OS X installer that
enables you to install Unix software on your Mac easily.
After installing Fink, installing Ispell was completely painless:
 % fink install ispell
Just one further step is required so that Emacs finds Ispell without
tweaking. Create a symbolic link between the location where Fink
installs Ispell (/sw/bin/ispell) and where Emacs
expects Ispell to be
(/usr/bin/ispell).[6]

% sudo ln -s /sw/bin/ispell /usr/bin/ispell
Voilà. Emacs spell-checking with Ispell now works as
described in Chapter 3.

[3] We say “more or
less” because at the time we went to press, you
still needed to grab the source from a separate site. That difference
should eventually disappear as well.

[4] A donation
to defray hosting costs would certainly be appreciated; the site
includes a link for contributions.

[5] You can still run this new
Emacs as a plain Terminal app with the -nw command-line argument (type emacs -nw.)

[6] We found this
hint on John Schneider’s web page called
“Getting Mac OS X.3 to Behave Almost Like My Linux
Boxes” (http://www.eecs.wsu.edu/~schneidj/mac-os-x-10.3.html).

Emacs and Windows

You can also download and install Emacs 21.3 for the various Windows
platforms (Win95, Win98, Win2K, WinXP, and so on). As most Windows
machines do not ship with the tools required to build Emacs from
scratch, we’ll look at downloading and installing
prebuilt executables.[7]

Installing Emacs

As with all platforms, you

 have choices when installing Emacs
on Windows. You can install a binary hosted by the FSF (likely to be
older, but certainly stable). You can find a more recent binary
online (we’ll point you to the one we prefer). You
could also build Emacs from CVS, but if you’re doing
that on Windows, chances are you are not reading this book. Windows
comes with no default compilers.
Installing the latest binaries: Nqmacs

Our source for the latest binaries is
Nqmacs (http://sourceforge.net/projects/nqmacs/).
This is simply a build of the latest version of GNU Emacs from CVS
sources, not a separate version of Emacs as the name may imply.
Windows binaries are posted here on a regular basis, giving Windows
users access to the latest version without having to build it
themselves.
To install on Windows, simply download the latest binaries, unpack
into a new folder using WinZip or Windows own decompression
utilities, go to the bin subfolder and
double-click on runemacs.exe. By right-clicking
on the icon, you can send a copy of the icon to the desktop.

Installing Emacs from the FSF

As we mentioned, the binaries

 at the FSF are stable but
generally older. For example, at this writing, the Nqmacs site
provides binaries built on 7/25/04 while the FSF’s
site provides binaries from 3/10/2004.
To download Emacs from the FSF, simply point your browser at
http://ftp.gnu.org/pub/gnu/emacs/. Scroll
down to find the windows folder. In there, you
should find several downloads. The binaries come in three flavors:
	
 bare (barebin)—the bare
minimum you need to get going

	
 standard (bin)—what most folks
need to get running

	
 full (fullbin)—the full meal
deal; everything and then some

Grab the one you want and download it. You can use WinZip
(http://www.winzip.com) to unpack
it. If you have the Cygwin utilities installed, you can also use
gunzip and tar as we discussed in the Unix installation
section.
Warning
Be careful! The README.W32 file notes that you
may run into some small problems if you unpack your Emacs
distribution into a path where one or more of the directory names
contains spaces. For example, don’t unpack Emacs in
the Program Files directory. If you
don’t like adding things directly to your C: drive,
create an Applications folder or something
similar and unpack Emacs in that folder.

After that’s unpacked, you’re 99
percent of the way there. The latest versions of Emacs need nothing
else, actually; you just double-click on runemacs.exe
(in the bin directory of your Emacs folder) and off you
go! If you like, you can create shortcuts in your Start menu or on
the desktop. Just point them at runemacs.exe and
you should be set.

Where to Put Your .emacs File

Probably the single biggest Windows consideration
is the location of the .emacs file. This file
goes in your “home” directory. We
use quotes there because the Windows world doesn’t
have a strictly defined home directory the way some other operating
systems like Unix and Mac OS X do. By default, Emacs assumes that the
C:\ folder is your home directory. You can put
your .emacs file there, but you can also modify
your home directory using the Windows environment variable called
HOME. To change this environment variable on Windows XP, select
System from the Control Panel. A System Properties window displays.
Choose the Advanced tab, then choose Environment Variables. HOME is
probably not listed; click on New, then type HOME and the path to
your desired home directory. Emacs will now look for the
.emacs file in this directory.
Because of naming compatibility issues, older Windows versions of
Emacs used the _emacs file rather than the
.emacs file for customization and configuration.
This file is still a valid option. However, if both
_emacs and .emacs are found
in the home directory, only .emacs is used.

Starting Emacs from the Command Line

The Emacs bin folder includes two related

 files,
each sporting a Gnu icon: emacs.exe and
runemacs.exe. Typically you’ll
use runemacs.exe; this runs Emacs graphically
without opening a console window. The other file,
emacs.exe, can be used to run Emacs from the
command line as described next.
To run Emacs from the command line, cd to the directory where you installed Emacs
and type emacs -nw (or whatever
command-line argument you wanted to use; -nw runs Emacs in the console window). You can
also do this by choosing Start→ Run, then selecting Browse
to locate emacs.exe. Add any command-line
arguments you wish, and then click OK to invoke Emacs using these arguments.

Making Emacs Act like Windows: CUA Mode

CUA stands for common

 user
access, a standard originally developed by IBM. CUA mandates that
certain keys should always perform certain functions. In Windows, for
example, C-c copies and C-v pastes from one application to another. As
you know, Emacs uses these key bindings for its own purposes.
That’s where Kim Storm’s CUA mode
comes in. This mode was so popular that it is now part of
Emacs.[8] It allows standard Windows key
bindings, like C-x for cut and
C-v for paste, to work properly
within Emacs. It’s quite clever—these keys cut
and paste only when an active selection exists. That leaves the
normal functionality of multistroke commands like C-c C-f in fine shape.
To turn on CUA mode, select C-x/C-c/C-v cut-and-paste (CUA) from the
Options menu. If you decide you want to use CUA mode for multiple
sessions, select Save Options to have Custom (discussed in Chapter 10) automatically add it to your
.emacs file.
As you can see from the option name, in this mode, C-x is used for cutting text, C-c is used for copying text, and C-v is used for pasting text. What is not so
apparent is that C-z runs undo
rather than minimizing the window (in CUA mode, you can minimize
using C-x C-z).
What if you’re used to confirming a region before
you cut it using C-x C-x? You can
type C-c C-x C-x in this case. This
works in part because C-c cancels
the active region. Remember that C-x
would normally cut.
Strictly speaking, C-x C-x
doesn’t immediately cut text, if you type it fast
enough. Cut is really bound to C-x
<timeout>. In other words, Emacs is watching to see
if you type something else really quickly. If you have a region
highlighted and type C-x C-s to save
the buffer, Emacs does the right thing. But if you pause after
C-x, you’ll cut
text. This is true of C-c as well.
If you immediately type another sequence after C-c, Emacs uses C-c as a prefix. If you pause, it copies the
highlighted text.
CUA mode has a few other interesting behaviors. It has highly
advanced rectangle support. (Rectangle editing is described in Chapter 7.) It also has the common behavior of
replacing highlighted text. If you select a region and start typing,
the highlighted text is replaced. Taking this one step further, you
can do a quick and dirty search and replace in this way.
Let’s say that the text you typed over is just the
first of several identical instances where you want to replace text.
Typing M-v (for cua-repeat-replace-region) replaces the next
instance. Repeat this command to continue making replacements. If
there is no string to replace, M-v
does nothing.
For example, let’s take our classic Dickens passage
and replace the word times with
rhymes:
	
 Highlight the word times.

	

[image: image with no caption]

	
 The word times is highlighted.

	
 Type: rhymes

	

[image: image with no caption]

	
 Emacs replaces times with
rhymes.

	
 Type: M-v

	

[image: image with no caption]

	
 Emacs replaces the next instance of times with
rhymes.

You may love CUA mode or you may hate it; the only way to see if your
fingers are ready for this option is to try it out. If
you’ve used Emacs for years, you may find CUA mode
keeps doing unexpected things. Your finger habits are set to
Emacs’s ways. On the other hand,
it’s hard to move back and forth between
applications and change your finger habits all the time. If you have
not yet gotten used to the Emacs key bindings, you may well love CUA
mode, as many people do.

 Table 13-1 lists CUA mode
 commands.
Table 13-1. CUA mode commands
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-c C-x C-x

 	

 cua-exchange-point-and-mark

 	
 Exchange location of cursor and mark.

	

 C-c

 	

 copy-region-as-kill

 	
 Copy the region.

	

 C-x
 or
 C-w
 or
 S-Delete

 	

 kill-region

 	
 Delete the region.

	

 C-v
 or
 C-y
 or
 S-Insert

 	

 cua-paste

 	
 Paste most recently killed or copied text.

	

 M-v

 	

 cua-repeat-replace-region

 	
 After highlighting and replacing a string, find the next string and
replace it the same way.

	

 PgUp

 	

 cua-scroll-up

 	
 Scroll up one page (or to the beginning of the buffer).

	

 PgDown

 	

 cua-scroll-down

 	
 Scroll down one page (or to the end of the buffer).

	

 M-y

 	

 cua-paste-pop

 	
 After C-v, pastes earlier deletion.

	

 C-z
 or
 C-x u

 	

 cua-undo

 	
 Undoes the last change.

	

 C-x C-z

 	

 iconify-frame

 	
 Minimize the current frame (what C-z
does outside CUA mode).

Installing Ispell

Installing Ispell on Windows can

 be tricky. Emacs 20 and beyond
includes features like Flyspell and earlier versions of Ispell
won’t handle that functionality. Many Windows users
do not compile their own software, and even if they did, the very
newest Ispell also doesn’t work with Emacs.
We found the version we describe here in a post by Raymond Zeitler
(http://lists.nongnu.org/archive/html/help-emacs-windows/2004-06/msg00023.html),
and we thank him heartily for it. The only downside to this version
is that it is designed for English speakers. It may well work with
other languages, but you’d have to find the
<language>.hash file appropriate for your
language.
The first step is to download a Windows binary of Ispell
3.1.20.[9]

Open a command window. On Windows XP, you open it using Start
→ Run, then typing command
and clicking OK.
Create a temporary directory and move there (you can substitute
another name for tmp).
C:\> mkdir tmp
C:\> cd tmp
FTP to gatekeeper.dec.com.
C:\tmp> ftp gatekeeper.dec.com
Type anonymous as your username and your email address as your
password.
Move to the /pub/GNU/windows/emacs/contrib
directory.
C:\tmp> cd /pub/GNU/windows/emacs/contrib
Type bin to change to binary mode.
C:\tmp> bin
Download ispell.zip.
C:\tmp> get ispell.zip
Type bye to close your ftp session,
then exit to close the MS-DOS
window.
Unzip the archive with WinZip or Windows’ own
decompression utility. We need to move a few files around to make
Ispell work properly with Emacs.
Move ispell.exe to Emacs’
bin folder. For example, if you called the
folder where you installed Emacs nqmacs, you
would place the file in nqmacs\bin.
Move english.hash to your home directory (either
C: or the one you defined earlier as
the location for your .emacs file). Now copy
english.hash to
american.hash (both files must exist for Ispell
to work properly). We suspect but cannot verify that this would not
be necessary for users of systems expecting British English
dictionaries.
There’s a lot more to the world of Emacs in Windows.
We encourage you to check out the frequently asked questions and
documentation available online at http://www.gnu.org/software/emacs/windows/.

[7] Okay, okay. If you want to
build it on Windows, you certainly can. We suggest grabbing the
various development tools like make
and gcc from the Cygwin project
(http://www.cygwin.com) and then following the
Unix build instructions.

[8] If you are running an older version of Emacs
and want this functionality, visit http://www.cua.dk/emacs.html to download and
install CUA mode.

[9] This binary is also available from this
book’s web site, http://www.oreilly.com/catalog/gnu3.

Chapter 14. The Help System

Emacs has the most comprehensive help facility of any text
editor—and one of the best such facilities of any program at
all. In fact, the Emacs help facilities probably cut down the time it
took for us to write this book by an order of magnitude, and they can
help you immeasurably in your ongoing quest to learn more about
Emacs.
In this chapter, we describe Emacs help in the following areas:
	The tutorial.

	The help key (C-h) and Help menu,
which allow you to get help on a wide variety of topics.

	The help facilities of complex commands like query-replace and dired.

	Navigating Emacs manuals and using the info documentation
reader.

	
 Completion, in which Emacs helps you finish
typing names of functions, variables, filenames, and more. Completion
not only saves you time and helps you complete names of functions you
know about but can help you discover new commands and variables.

Using the Tutorial

If you are just starting out

 with Emacs, check out the
tutorial by typing C-h t (for
help-with-tutorial), which deletes
all extra windows (leaving just one) and starts up a learn-by-doing
tutorial. Actually, it displays a file called
TUTORIAL in the window. The tutorial is
currently available in 21 languages. The tutorial provides an
introduction to the following Emacs features:
	Basic cursor motion

	Delete and yank

	Visiting and saving files

	Buffers

	Text and auto-fill modes

	Incremental search

	Basic help commands

You might want to use the tutorial along with Chapter 1 and Chapter 2. The
tutorial is helpful, but of necessity it covers only the most basic
information.

Help Commands

Emacs has many help

 commands,
which are available as standard Emacs commands or as options to the
C-h help key. They can be used to
find information about commands, keystrokes, variables, modes, and
various things about Emacs in general. The most basic help command is
C-h C-h (help-for-help). C-h
? also invokes help-for-help. This command causes Emacs to
open a *Help* buffer in a window with descriptions
of all the help commands. You can type any one of these help keys,
or, if you press Space, the
Help window scrolls down as if you pressed
C-v. Any other key aborts the whole
process. If you scroll to the bottom of the help documentation, you
can type a help key or any other key to abort.
The keys listed in the *Help* are those that, when
appended to your help key, run Emacs help commands at any time. Help
commands fall into two general categories: those that provide answers
to specific questions and those that give general information about
Emacs.
You will find the help commands in the former category to be
invaluable after you have become comfortable with Emacs. Because it
is so large and functionally rich, there will be times when you need
to look up a detail such as a keystroke or command name or when you
need to do something with Emacs that you don’t know
exactly how to do. As we’ve repeated again and again
throughout this book, Emacs probably does what you want; you just
need to figure out how. The help commands let you find these things
out immediately, without leaving Emacs and without being a slave to
your reference manual (or even this book).
Detail Information

Let’s start with the help commands
that
are useful when you need to look up a specific detail.
You’ll probably use the commands listed in Table 14-1 most often.
Table 14-1. Detail information help commands
	
 Keystrokes

 	
 Command name

 	
 Question answered

	

 C-h c

 	

 describe-key-briefly

 	
 What command does this keystroke sequence run?

	

 C-h k
 Help
 →
 Describe
 →
 Describe Key

 	

 describe-key

 	
 What command does this keystroke sequence run, and what does it do?

	

 C-h f
 Help
 →
 Describe
 →
 Describe Function

 	

 describe-function

 	
 What does this function do?

	

 C-h v
 Help
 →
 Describe
 →
 Describe Variable

 	

 describe-variable

 	
 What does this variable mean, and what is its value?

	

 C-h m
 Help
 →
 Describe
 →
 Describe Buffer Modes

 	

 describe-mode

 	
 Tell me about the modes the current buffer is in.

	

 C-h b
 Help
 →
 Describe
 →
 List Key Bindings

 	

 describe-bindings

 	
 What are all the key bindings for this buffer?

	

 C-h w

 	

 where-is

 	
 What is the key binding for this command?

	

 C-h s

 	

 describe-syntax

 	
 What is the syntax table for this buffer?

	

 C-h l

 	

 view-lossage

 	
 What are the last 100 characters I typed?

	

 C-h e

 	

 view-echo-area-messages

 	
 What messages have appeared in the minibuffer during this session?

What if you press the wrong key, and something happens to your
buffer—but you’re not sure what? Usually, the
safest thing to do is to press C-_
or C-x u (undo). But sometimes this command
won’t help, for example, a runaway replace-string. If you remember what you
typed, you can use C-h c (for
describe-key-briefly) to see what
command was run; just retype the offending keystroke(s) at the
prompt, and Emacs responds with the name of the command bound to the
key(s) in the minibuffer. If the command name alone
doesn’t help, C-h k
(for describe-key) pops up a
Help window with a description of the command as
well as its name and key binding. (C-h
k and C-h c also help you
find out what command a toolbar icon or menu item runs.)
However, if you don’t know what keys you pressed,
you can type C-h l (for view-lossage). This pops up a
Help window showing the last 100 keystrokes you
typed; the offending ones are likely near the end, and you can use
C-h c or C-h
k with those keystrokes.
Now suppose you want information on a command that
isn’t bound to keystrokes. Type C-h f (for describe-function) and enter the name of the
command at the prompt; Emacs responds with a
Help window containing the documentation for
that command. If you remember the name of a command but forget its
binding, type C-h w (for where-is). This is the
“opposite” of C-h c; it shows the key binding for a given
command in the minibuffer, or the message
command-name
 is not on any
keys if the command has no binding.
You may forget a detail that involves the value of a variable. For
example, will Emacs respect or ignore case during a search (the
variable case-fold-search)? How
often are my buffers being auto-saved (the variable auto-save-interval)? If you type C-h v (for describe-variable) followed by the name of the
variable, Emacs puts its value as well as its documentation in a
Help window. C-h
f, C-h w, and C-h v all allow you to use completion when
typing command or variable names. C-h
f and C-h v are also
especially useful to Emacs Lisp programmers; note that C-h f gives you information on
all functions, not just those bound to
keystrokes as commands.
Another common help situation arises when you use a special mode,
such as shell mode or a mode for a programming language or text
processor, and you forget a command specific to that mode or some
other characteristic such as indentation conventions. If you type
C-h m (for describe-mode) in a buffer running the mode,
Emacs pops up a *Help* window showing the
mode’s documentation. Documentation for a mode
usually includes all of its local key bindings (for example, all the
commands special to the mode and their associated keystrokes),
customization variables, and other interesting characteristics.
What if you want to find out all the keyboard commands available in a
given mode? C-h b (for describe-bindings) gives you a
Help window showing all key
bindings active in the current buffer, including local
(buffer-specific) as well as global ones. It also lists all bindings
for mouse actions, menu options, and function keys.

 C-h b produces quite a lot of
output. If you want to limit this output to only those key bindings
with a particular prefix, type that prefix followed by C-h. For example, typing C-x C-h produces a *Help*
window listing all key bindings that begin with C-x.

 C-h s (for describe-syntax) is a more specialized
command, designed for Lisp programmers. It produces a
Help window with a description of the
syntax table (see Chapter 9) active in the current buffer.

Apropos Commands

Another type of help command applies

 when you want Emacs to do
something, but you’re not sure exactly what command
to use or what variable to set. These are apropos commands, which resemble a rudimentary
information retrieval system of the type found at many libraries. The
apropos command has several forms,
shown in Table 14-2.
Table 14-2. Apropos commands
	
 Keystrokes

 	
 Command name

 	
 Question answered

	

 C-h a
 Help
 →
 Search Documentation
 →
 Find Commands by Name

 	

 apropos-command

 	
 What commands include this word?

	
 (none)
Help
 →
 Search
Documentation
 →
 Find Options by
Name

 	

 apropos-variable

 	
 What variables include this regular expression?

	
 (none)
Help
 →
 Search
Documentation
 →
 Find Options by
Value

 	

 apropos-value

 	
 What variables are set to this regular expression?

	
 (none)
Help
 →
 Search
Documentation
 →
 Search Documentation
Strings

 	

 apropos-documentation

 	
 Where is this regular expression mentioned in the documentation?

	
 (none)
Help
 →
 Search
Documentation
 →
 Find Any Object by
Name

 	

 apropos

 	
 What functions and variables involve this regular expression?

All apropos commands prompt for
regular expressions (an ordinary text string will work, but you can
create more powerful searches using regular expressions; see Chapter 11 for details). When you type C-h a followed by a regular expression, Emacs
finds all the commands that match it; it displays their key bindings
(if any) and the first lines of their documentation in an
Apropos window that is in Apropos mode. This
mode displays hyperlinked help. If you click on a bolded item using
your middle mouse button or move the cursor there and press Enter, Emacs displays more information.
As always, if you are leery of using regular expressions, use regular
search strings as long as you stick to nonspecial characters. For
example, if you want to know what replace commands Emacs supports,
press C-h a and then type replace; Emacs displays a list of information
on the following commands:
	
 dired-do-query-replace

	
 ebrowse-tags-query-replace

	
 ethio-replace-space

	
 map-query-replace-regexp

	
 query-replace

	
 query-replace-regexp

	
 query-replace-regexp-eval

	
 replace-buffer-in-windows

	
 replace-rectangle

	
 replace-regexp

	
 replace-string

	
 tags-query-replace

If you have ever used an information retrieval system, you already
know that some skill is needed to use such a system effectively. You
need to choose your concepts (search strings) carefully, so that they
aren’t too general (too much output to wade through)
or too specific (too little output, making it less likely that you
get the information you want). This problem is compounded when you
use the apropos command, which is
the same as apropos-command except
that it reports on all functions (including
internal Emacs functions) and variables as well as commands.
If you type in a search string that is too general, Emacs produces an
enormous buffer of help information. For example, invoking apropos-command with the argument
“buffer” results in output listing
well over two hundred Emacs commands. In general, you may have to
invoke the apropos commands a few
times to get the information you want (in terms of size as well as
relevance).
The apropos command itself is
usually overkill, unless you are a Lisp programmer who needs
information on noncommand functions (see Chapter 11 for details on this use of apropos). Use a more specific command when
possible. For example, to get information on variables, use apropos-variable. To find out about variables
related to auto-saving, type M-x
apropos-variable Enter auto-save Enter. Emacs responds
with information about the variables auto-save-default, auto-save-file-format, auto-save-file-name-transforms, auto-save-interval, auto-save-list-file-prefix, auto-save-timeout, auto-save-visited-file-name, and delete-auto-save-files. To find the value and
full description of one of these variables, move to the
Apropos window and either click with the middle
mouse button or move to the desired variable and press Enter.

Help with Complex Emacs Commands

Many of the more

 complicated Emacs commands include
their own sets of help keystrokes. These commands often have their
own help functionality, but help is invoked with ? rather than the standard help key. Here is a
summary of some popular complex commands and what ? does within each of them:
	
 dired (C-x d)
	You see a list of the most frequently used commands in the
minibuffer. This list is far from complete. Type
C-h m (for describe-mode) for more comprehensive
documentation and C-h b (for
describe-bindings) for all the key
bindings available to you.

	
 query-replace (M-%)
	You see a *Help*
window listing the available commands. Typing C-h does the same thing. This also works with
query-replace-regexp.

	
 save-some-buffers (C-x s)
	Behavior is similar to query-replace
just described.

	
 list-buffers (C-x C-b)
	You see a *Help* window giving information on
buffer menu mode. This command has the same effect as typing
C-h m (for describe-mode).

	
 Completion

	When you are responding to a minibuffer prompt with the name of
something on which Emacs can do completion, typing ? at any time gives you a
Completions window with the choices available at
that point. Completion is explained in detail later in this chapter.

Navigating Emacs Documentation

Once upon a time, to get access to

 Emacs documentation, you ordered
manuals from FSF. You can still do so if you like printed
documentation (as we do) and would like to support the FSF, but most
of the documentation you will ever want or need is at your fingertips
right in Emacs.
Using Info to Read Manuals

Most GNU documentation (including Emacs documentation) is in texinfo
format and designed to be read in the Info documentation reader.
Typing C-h i (for info) puts you at the top-level of the Info
tree. You’ll see that Emacs is just one choice of
many. In Info, documentation is organized as
trees of information called
nodes. If you want information on a topic, you
can select its tree; the nodes of the tree contain information on
subtopics, subsubtopics, etc., organized hierarchically.
When you type C-h i, you see a
read-only buffer containing the directory node
of the Info system in a window in
Info mode. If you press h while in
Info, you get a tutorial on
Info analogous to the one described
earlier for basic Emacs commands.
You’re probably better off typing C-h r, which sends you directly to the Emacs
manual.
	
 Type: C-h r

	

[image: image with no caption]

	
 Emacs displays the table of contents for the Emacs manual.

Note that the icons are almost completely different in Info mode.
Later in this section, Table 14-3 lists them, along
with the keystrokes needed for navigating in this mode.
Info is relatively simple, yet complex enough to have its own
tutorial. Typing h sends you through
a tutorial to acquaint you with the main commands.
To select a menu option (you see a *
next to these), move to that option. Obviously, moving with the mouse
is one method; you then select the option using the middle mouse
button. Alternatively, move to the option by pressing Tab, and then press Enter.
	
 Move to Minibuffer (you’ll need to scroll down), and
then press Enter.

	

[image: image with no caption]

	
 The Minibuffer topic appears.

If you want to read through the whole topic, you can press Space to scroll down. Space is helpful for continuous reading
because after you complete a topic, it moves you to the next node at
this level. If you read all of this topic, you’ll
learn more about the minibuffer than you ever thought possible.
If you press u twice (to move up a
level), you’ll move back to the Emacs table of
contents. The up arrow icon on the toolbar does the same thing. To
accomplish this with a single keystroke, type t (for Info-top-node) or click on the house toolbar
icon. That command takes you to the top level in one move, no matter
how far down the Info tree you’ve traveled.
To search for a particular topic, type i or click on the toolbar icon that shows a
finger pointing at a piece of paper.
	
 Type: i

	

[image: image with no caption]

	
 Emacs prompts for an index topic.

	
 Type: macro Enter

	

[image: image with no caption]

	
 Emacs brings up the first topic related to macros.

	
 Type a comma: ,

	

[image: image with no caption]

	
 Emacs moves to the next macro-related topic in the index.

As you step through index entries in this way, it’s
helpful to look at the top of the screen to see what topic
you’re in. You might want to move up a node (or to
the previous or next node) to get a better view of the topic at hand
rather than navigating to the next index entry by typing another
comma.
Navigating through Info can take some practice. For example, one
might think that the command p (for
Info-prev)[1] would behave rather like a web browser back
button (especially given that the toolbar icon for this command looks
like one). Previous in this case means relative to the Info
documentation tree, not to your session (though it may appear that
way sometimes). It means that you want to move to the previous item
at this level. To move back to the previous screen in your session,
use l (for Info-last), shown on the toolbar with a curved
arrow icon (like the icon for undo in other modes). This command
behaves like a web browser back button.
The commands C-h F (for Info-goto-emacs-command-node) and C-h K (for Info-goto-emacs-key-command-node) let you use
Info in a more focused way. They are
essentially the Info equivalents of
C-h f (for describe-function) and C-h k (for describe-key), respectively: they start up the
Info system and go directly to the
documentation for the command (for C-h
F) or the keystroke(s) (for C-h
K) you give as an argument.
Table 14-3. Info commands
	
 Keystrokes

 	
 Toolbar icon

 	
 Command name

 	
 Action

	

 Tab

 	
	

 Info-next-reference

 	
 Move to the next menu item or cross-reference.

	

 Space

 	
	

 Info-scroll-up

 	
 Scroll the screen; move to the next topic at this level when finished.

	

 Del
 or
 PgUp

 	
	

 Info-scroll-down

 	
 Scroll backward.

	

 p

 	

[image: image with no caption]

 	

 Info-prev

 	
 Move to the previous topic at this level (not like a browser back
button). If there is no previous topic, move up a level.

	

 u

 	

[image: image with no caption]

 	

 Info-up

 	
 Move up a level.

	

 n

 	

[image: image with no caption]

 	

 Info-next

 	
 Move to the next topic at this level.

	

 i

 	

[image: image with no caption]

 	

 Info-index

 	
 Search the index for a topic.

	
 ,

 	
	

 Info-index-next

 	
 Go to the next topic in the index.

	

 m

 	
	

 Info-menu

 	
 Select a menu item through the keyboard.

	

 q

 	

[image: image with no caption]

 	

 Info-exit

 	
 Quit info.

	

 s

 	

[image: image with no caption]

 	

 Info-search

 	
 Search for a regular expression.

	

 g

 	

[image: image with no caption]

 	

 Info-goto-node

 	
 Go to a specified node.

	

 t

 	

[image: image with no caption]

 	

 Info-top-node

 	
 Go to the top node.

	

 l

 	

[image: image with no caption]

 	

 Info-last

 	
 Go to the last node you visited (like a browser back button).

	

 h

 	
	

 Info-help

 	
 Start the info tutorial.

FAQ, News, and Antinews

To display the Frequently Asked Questions (FAQ) file, type C-h f. This file is in Info format.
Perhaps the most important of the remaining Emacs
help commands for hard-core users and customizers is C-h n (for view-emacs-news), which visits the
NEWS file that comes with Emacs. This file
contains a history of changes made to Emacs since the last major
version; for example, all changes in Version 20.1 and following up to
the latest minor version (which in our case is Version 21.3.5, though
the file says 21.4). This can be a very long file if there have been
several minor releases since the last major version—in our
case, the file is 12,886 lines long. If you want to look through it
for changes to a specific aspect of Emacs, use an appropriate search
command. But if you just want to skim it, note that this file was
intended for use with outline mode: topics are introduced on lines
beginning with *, and subtopics are
introduced on lines beginning with **. Use outline mode commands to skim the
file; see Chapter 7 for information. The
outline mode command hide-body
displays the main topics and hides the text; show-all redisplays all the text as well.
An entertaining approach to learning about the latest release is
Antinews. This file takes the viewpoint that Emacs has been
downgraded, in our case from 21.4 to 21.3. It takes you through all
the features that have been ripped from Emacs 21.4 to create Emacs
21.3. Antinews is a menu item on the first page of the Emacs manual
you reach via C-h r.

 Table 14-4 summarizes commands relating to reading
documentation, getting general information about Emacs, and language
encoding issues.
Table 14-4. Documentation, general information, and encoding options
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-h t
 Help
 →
 Emacs Tutorial

 	

 help-with-tutorial

 	
 Run the Emacs tutorial.

	

 C-h i

 	

 info

 	
 Start the Info documentation reader. If prefaced with C-u, reads an Info file of your choice.

	

 C-h r
 Help
 →
 Read the Emacs Manual

 	

 info-emacs-manual

 	
 Opens the Emacs manual.

	

 C-h F
 Help
 →
 More Manuals
 →
 Find Command in Manual

 	

 Info-goto-emacs-command-node

 	
 Start Info documentation reader at the node that discusses this
command.

	

 C-h K
 Help
 →
 More Manuals
 →
 Find Key in Manual

 	

 Info-goto-emacs-key-command-node

 	
 Start Info documentation reader at the node that discusses this key
sequence.

	

 C-h n
 or
 C-h C-n
 Help
 →
 Emacs News

 	

 view-emacs-news

 	
 View news about recent changes in Emacs.

	

 C-h C-f
 Help
 →
 Emacs FAQ

 	

 view-emacs-FAQ

 	
 View a file of frequently asked questions and their answers about
Emacs.

	
 (none)
Help
 →
 Search
Documentation
 →
 Emacs
Terminology

 	

 search-emacs-glossary

 	
 Open a glossary of Emacs terms.

	
 (none)
Help
 →
 Search
Documentation
 →
 Look Up Subject in User
Manual

 	

 emacs-index-search

 	
 Search the index of the Emacs user manual.

	
 (none)
Help
 →
 Search
Documentation
 →
 Look Up Subject in
ELisp Manual

 	

 elisp-index-search

 	
 Search the index of the Emacs Lisp manual.

	

 C-h Enter
 Help
 →
 More Manuals
 →
 Ordering Manuals

 	

 view-order-manuals

 	
 Displays information about ordering print manuals.

	

 C-h p

 	

 finder-by-keyword

 	
 Invoke a menu that lets you get information about Emacs Lisp packages
available on your system.

	

 C-h C-c
 Help
 →
 Copying Conditions

 	

 describe-copying

 	
 View the General Public License (GPL).

	

 C-h C-d
 Help
 →
 Getting New Versions

 	

 describe-distribution

 	
 View information on ordering Emacs from FSF.

	

 C-h C-p

 	

 describe-project

 	
 View information on the GNU project. (See the Preface.)

	

 C-h C-w
 Help
 →
 (Non)Warranty

 	

 describe-no-warranty

 	
 View the (non-)warranty for Emacs. Emacs doesn’t
provide a warranty, hence the name here.

	

 C-h C-t

 	

 view-todo

 	
 If you’re a programmer looking to contribute to the
Emacs code base, use this command to view a list of what needs to be
done.

	

 C-h C-e
 Help
 →
 Emacs Known Problems

 	

 view-emacs-problems

 	
 Displays the PROBLEMS file, which includes a
list of known problems.

	

 C-h h

 	

 view-hello-file

 	
 View the HELLO file, which displays the word
“hello” in numerous languages.

	

 C-h L
 Help
 →
 Describe
 →
 Describe Language Environment

 	

 describe-language-environment

 	
 Prompts for either default (current environment) or lists possible
completions. Menu option shows these choices.

	

 C-h I
 or
 C-h C-\
 Help
 →
 Describe
 →
 Describe Input Method

 	

 describe-input-method

 	
 Shows current input method (the default) or, with completion, a list
of possible input methods.

	

 C-h C
 Help
 →
 Describe
 →
 Describe Coding System

 	

 describe-coding-system

 	
 Shows current coding system (the default) or, with completion, lists
all available coding systems.

[1] These
command names are case-sensitive. For example, completion
won’t find them if you type them with a lowercase
i.

Completion

We saw an
example
of Emacs’s completion facility in Chapter 1. Completion is more than just a feature: it
is a general principle in the design of Emacs. It can be articulated
as follows:
If you have to type in the name of something, and that name is one of
a finite number of possibilities, Emacs should figure out what you
mean after the smallest possible number of keystrokes.

In other words, you can type in the shortest unambiguous
prefix and tell Emacs to figure out the rest of the name.
By “shortest unambiguous prefix,”
we mean “enough of the name, starting from the
beginning, to distinguish it from the other
possibilities.” Several important things in Emacs
have names that are chosen from a finite number of possibilities,
including the following:
	Commands

	Files in a given directory

	Buffers

	Emacs variables

Most of the time, completion is available when you are prompted for a
name of something in the minibuffer. While you are typing in the
name, you can use three keys to tell Emacs to help complete it for
you: Tab, Space, and question mark (?). Their functions are shown in Table 14-5.
Table 14-5. Completion keys
	
 Keystroke

 	
 Action

	

 Tab

 	
 Completes the name as far as possible.

	

 Space

 	
 Completes the name out to the next punctuation character.

	

 ?

 	
 Lists the choices at this point in a *Completions*
window.

You will probably find Tab to be the
most useful.
As a running example, assume you have typed C-x
C-f to visit a file, and the file you want to visit is a C
program called program.c. Let’s
say you type pro and press Tab; Emacs responds by completing the name to
the full program.c. If you press Space, Emacs completes only as far as
program. After Emacs completes the name, you can
press Enter to visit the file.
How much of the name do you need to type in before you can use
completion? That depends on the other possible choices in the given
situation. If program.c were the only file in
your directory, you could just type p and press Tab.[2] If there were
other files in your directory and none of them has a name beginning
with p, you could do the same thing.
But if you had a file called problem.c, you
would have to type prog before you
pressed Tab; in this case, prog is
the shortest unambiguous prefix. If you just type in pro and press Tab, Emacs responds with a
Completions window containing a list of the
completion choices, in this case program.c and
problem.c, and returns your cursor to the
minibuffer so that you can finish typing the filename. The same thing
happens if you typed a question mark instead of Tab. At this point, you can type g and press Tab again; Emacs completes the name to
program.c.
As another example, let’s say you have documentation
for your C program in the file program.txt, and
you want to visit it. You press C-x
C-f and type prog at the
prompt, followed by Tab. Emacs
completes out to program.. At this point, you
can type t and press Tab again; Emacs completes the entire
program.txt. In other words, you can use
completion repeatedly when specifying a name.
Finally, let’s say you also have a file in your
directory called simply program, which is the
result of compiling your C file, but you still want to visit the
documentation file. You type prog
and press Tab; Emacs completes out
to program. (including the period). At this
point, Tab and Space do different things. If you press
Tab again, Emacs responds with the
message [Complete, but not unique] in the
minibuffer, but if you press Space,
Emacs assumes you aren’t interested in the file
program and attempts to complete further.
Because you have the files program.c and
program.txt, Emacs only completes out to
program., and you have to type t and press Tab again.
Completion works the same way with buffer names, for example, when
you type C-x b to switch to another
buffer in the current window. It also works with command names when
you type M-x—but with one
added feature. Notice that when you specify a file or buffer name, it
is possible that the file or buffer you want doesn’t
yet exist (for example, when you want to create a new file). In this
case, of course, you must type in the entire file or buffer name and
press Enter. But when you type
M-x for a command, there is no
possibility of the command not existing. Therefore, Emacs
automatically attempts to do completion on command names when you
press Enter.
For example, if you want to put a buffer for a text file in auto-fill
mode (see Chapter 2), you can type M-x auto-f and press Enter instead of typing the entire M-x auto-fill-mode. If you type in a nonunique
(ambiguous) prefix of a command name—for example, if you type
M-x aut—and press Enter, then Enter acts just like Tab; in this case, it completes out to
auto. If you press Enter again, Emacs responds with a
Completions window listing the choices. To get
auto-fill-mode, you have to type
f and press Enter again.
Completion on command names with Enter is very convenient.
After you have used Emacs for a while, you will become familiar with
the shortest unambiguous prefixes for commands you use often, and you
can save a considerable amount of typing by using these prefixes
instead of the full names.[3]

Emacs can also do completion on the names of Emacs variables. In
Chapter 2, and elsewhere, we saw how you can
use M-x set-variable to change the
values of Emacs variables. The Enter
feature just described works on variables as well as commands;
therefore, you can use completion, including Enter, when doing M-x
set-variable. Actually, commands and variables are both
special kinds of Emacs Lisp symbols, and Emacs
can do completion with Enter on all
kinds of Lisp symbols. Completion on Lisp symbols comes in handy when
you are using some of the help commands described earlier in this
chapter.
Customizing Completion

If you have read Chapter 10 and are

 comfortable
with setting Emacs variables, you should know that a few variables
can customize the way Emacs does completion. The variable completion-auto-help determines whether a
Completions window automatically appears when
you try to use Space or Tab on an ambiguous prefix. Its default is
t, meaning that such windows
automatically appear. If you set it to nil, instead of a
Completions window appearing, Emacs just
displays the message [Next
 char not
unique] for a couple of seconds in the minibuffer.
If you are a programmer or if you use text formatters like LATEX ,
you will create files that are not meant for humans to read, such as
object files created by compilers and print files created by text
formatters. Ideally, you wouldn’t want Emacs to
bother with these files when you are doing completion; for example,
if you have the files program.c and
program.o (object-code output from the
compiler), you want Emacs to recognize only the former. Emacs does
have a feature that deals with this; indeed, you may already have
noticed that in this kind of situation, if you type program and press Tab, Emacs ignores
program.o and completes out to
program.c. The variable completion-ignored-extensions controls this;
it is a list of filename suffixes that Emacs ignores during filename
completion. By default, the list includes tilde
(~) for Emacs backup files,
.o for programmers, various suffixes for users,
.elc (byte-compiled Emacs Lisp) for Emacs
customizers, and others. (Of course, if you really want to look at
these files, you can type their names manually.)
You can add your own “ignored”
suffix to the list by putting a line of this form in your
.emacs file:
(setq completion-ignored-extensions
 (cons "suffix" completion-ignored-extensions))
For example, let’s say you are doing text processing
with a printer that prints PostScript, and your text processor
produces print files with the suffix .ps. If you
don’t want to look at these files, put the following
line in your .emacs file:
(setq completion-ignored-extensions
 (cons ".ps" completion-ignored-extensions))
Finally, you can tell Emacs to ignore case distinctions when doing
completion by setting the variable completion-ignore-case to t (or any value other than nil). Its default value is nil, meaning that Emacs respects case
distinctions.

[2] You
can’t just press Tab without typing the p because the current and parent directories,
named . and ..,
respectively, are also file choices. Normally, Emacs runs dired when you visit a file
that’s a directory.

[3] For example, if you make
changes to your .emacs file regularly, you will
appreciate that M-x eval-c is an
acceptable prefix for M-x
eval-current-buffer.

Appendix A. Emacs Variables

This appendix lists some Emacs variables. We chose them for their
general usefulness and for their applicability to subjects in this
book.
The variables below are grouped by category, and their default values
are shown (where practical to do so). For more details on specific
variables, see the chapters referred to at the beginning of each
table. For

 information on variables used in
programming language modes, see Chapter 9.
Table A-1. Backups, auto-save, and versioning (Chapter 2, Chapter 12)
	
 Variable

 	
 Default

 	
 Description

	

 make-backup-files

 	

 t

 	
 If t, create a backup version of the
current file before saving it for the first time.

	

 backup-by-copying

 	

 nil

 	
 If t, create backup files by
copying rather than
renaming the file being saved to a backup
version. The default is renaming, which is more efficient. Copying
can yield different results, especially when you’re
editing files owned by another user, and in operating systems that
allow “hard links” to files
(alternate names that are associated with the physical file). There
are a raft of variables that can tweak this behavior based on
context; check the online help for make-backup-files for the details.

	

 version-control

 	

 nil

 	
 If t, create numbered versions of
files as backups (with names of the form
filename~N~). If nil, only do this for files that have numbered
versions already. If 'never (note
the leading single quote), never make numbered versions.

	

 kept-new-versions

 	

 2

 	
 Number of latest versions of a file to keep when a new numbered
backup is made.

	

 kept-old-versions

 	

 2

 	
 Number of oldest versions of a file to keep when a new numbered
backup is made.

	

 delete-old-versions

 	

 nil

 	
 If t, delete excess versions (not
those kept according to the above variables) without asking for
confirmation first. If nil, ask for
confirmation first. If any other value, don’t delete
excess versions.

	

 auto-save-default

 	

 t

 	
 If t, do auto-saving of every file
visited.

	

 auto-save-visited-file-name

 	

 nil

 	
 If t, auto-save to the file being
visited rather than to a special auto-save file.

	

 auto-save-interval

 	

 300

 	
 Number of keystrokes between auto-saving; if 0, turn off auto-saving.

	

 auto-save-timeout

 	

 30

 	
 Length of time of inactivity after which Emacs auto-saves. If
nil or 0, turn off this feature.

	

 delete-auto-save-files

 	

 t

 	
 Non-nil means delete auto-save files
whenever the “real” file is saved.

	

 buffer-offer-save

 	

 nil

 	
 Non-nil means offer to save the
current buffer when exiting Emacs, even if the buffer is not a file.

	

 vc-handled-backends

 	

 (RCS CVS SVN SCCS Arch MCVS)

 	
 Version control systems used with the vc package. The order in which they appear in
this list controls the order in which they will be attempted when
working with a new file.

	

 vc-display-status

 	

 t

 	
 If non-nil, display the version
number and the locked state in the mode line.

	

 vc-keep-workfiles

 	

 t

 	
 If non-nil, do not delete work files
after you register changes with the version control system.

	

 vc-mistrust-permissions

 	

 nil

 	
 If non-nil, do not assume that a
file’s owner ID and permission flags reflect version
control system’s idea of file’s
ownership and permission; get this information directly from version
control system.

	

 vc-suppress-confirm

 	

 nil

 	
 If non-nil, do not ask for
confirmation before performing version control actions.

	

 vc-initial-comment

 	

 nil

 	
 If non-nil, prompt for an initial
comment when registering a file with version control system.

	

 vc-make-backup-files

 	

 nil

 	
 If non-nil, make standard Emacs
backups of files registered with version control.

	

 diff-switches

 	

 -c

 	
 Command-line switches used to control the format of change reports by
VC as well as diff.el.

Table A-2. Searching and replacing (Chapter 3)
	
 Variable

 	
 Default

 	
 Description

	

 case-fold-search

 	

 t

 	
 If non-nil, treat upper- and
lowercase letters as the same when searching.

	

 case-replace

 	

 t

 	
 If non-nil, preserve the original
case of letters when doing replaces (even if case-fold-search is on).

	

 search-upper-case

 	
 'not-yanks

 	
 If non-nil, uppercase letters in
search strings defeat case-fold-search (i.e., force search to be
case-sensitive). The symbol 'not-yanks means convert uppercase letters in
yanked text to lowercase.

	

 search-exit-option

 	

 t

 	
 If non-nil, any control character
other than those defined in incremental search (Del, C-j,
C-q, C-r, C-s,
C-w, C-y) exits search.

	

 search-highlight

 	

 t

 	
 If non-nil, highlight partial search
matches.

	

 query-replace-highlight

 	

 t

 	
 If non-nil, highlight matches in
query-replace mode.

Table A-3. Display (Chapter 2, Chapter 4)
	
 Variable

 	
 Default

 	
 Description

	

 next-screen-context-lines

 	

 2

 	
 Retain this many lines when scrolling forward or backward by
C-v or M-v.

	

 scroll-step

 	

 0

 	
 When moving the cursor vertically out of the current window, scroll
this many lines forward or backward. If 0, scroll enough lines to
place the cursor at the center of the window after scrolling.

	

 hscroll-step

 	

 0

 	
 When moving the cursor horizontally out of the current window, scroll
this many columns left or right. If 0, scroll enough lines to place
the cursor at the center of the window after scrolling.

	

 tab-width

 	

 8

 	
 Width of tab stops; when set, it becomes local to the current buffer.

	

 left-margin

 	

 0

 	
 Number of columns to indent when typing C-j in fundamental mode and text mode.

	

 standard-indent

 	

 4

 	
 The number of columns to indent when using commands that increase or
decrease margins.

	

 truncate-lines

 	

 nil

 	
 If non-nil, do not wrap long lines;
instead, truncate them and use arrows to show that the line continues
off-screen. (Nongraphical versions of Emacs use $ instead to show where the line extends.)

	

 truncate-partial-width-windows

 	

 t

 	
 If non-nil, truncate long lines (as
above) in all windows that are not the full width of the display.

	

 window-min-height

 	

 4

 	
 Minimum allowable height of windows (in lines).

	

 window-min-width

 	

 10

 	
 Minimum allowable width of vertically split windows (in columns).

	

 ctl-arrow

 	

 t

 	
 Non-nil means display control
characters using ^X, where
X is the letter being
“controlled.” Otherwise, use octal
(base 8) ASCII notation for display—for example, C-h appears as \010 in octal.

	

 display-time-day-and-date

 	

 nil

 	
 If non-nil, M-x display-time Enter will also show the day
and date.

	

 line-number-mode

 	

 t

 	
 If non-nil, display the line number
on the mode line.

	

 line-number-display-limit

 	

 nil

 	
 Maximum size of buffer (in characters) for which line numbers should
be displayed. A value of nil means
no limit.

	

 column-number-mode

 	

 nil

 	
 If non-nil, display the column
number on the mode line.

	

 visible-bell

 	

 nil

 	
 If non-nil,
“flash” the screen instead of
beeping when necessary.

	

 track-eol

 	

 nil

 	
 If non-nil, whenever the cursor is
at the end of the line, “stick” to
the end of the line when moving the cursor up or down; otherwise,
stay in the column where the cursor is.

	

 blink-matching-paren

 	

 t

 	
 If non-nil, blink matching open
parenthesis-type character when a corresponding close parenthesis is
typed.

	

 blink-matching-paren-distance

 	

 25600

 	
 Maximum number of characters to search through to find a matching
open parenthesis character when a close parenthesis is typed.

	

 blink-matching-delay

 	

 1

 	
 Number of seconds to pause when blinking a matching parenthesis.

	

 echo-keystrokes

 	

 1

 	
 Echo prefixes for unfinished commands (e.g., C-) in minibuffer after user pauses for this
many seconds; 0 means don’t do echoing at all.

	

 insert-default-directory

 	

 t

 	
 If non-nil, insert the current
directory in the minibuffer when asking for a filename.

	

 highlight-nonselected-windows

 	

 nil

 	
 If non-nil, highlight regions in
windows other than the one currently selected; applies to GUI
displays and others that support highlighting.

	

 mouse-scroll-delay

 	

 0.25

 	
 Delay, in seconds, between screen scrolls when mouse is clicked and
dragged from inside a window to beyond its borders. 0 means scroll as
fast as possible.

	

 mouse-scroll-min-lines

 	
 1

 	
 Scroll at least this many lines when mouse is clicked and dragged up
or down beyond a window.

Table A-4. Modes (Chapter 2, Chapter 5, Chapter 7)
	

 Variable

 	

 Default

 	

 Description

	

 major-mode

 	

 fundamental-mode

 	
 Default mode for new buffers, unless set by virtue of the filename;
when setting this variable, remember to precede the mode name with a
single quote (the value is a symbol).

	

 default-major-mode

 	

 fundamental-mode

 	
 The major mode for new buffers.

	

 auto-mode-alist

 	
 (see Chapter 10
)

 	
 List of associations between filenames and major modes.

	

 interpreter-mode-alist

 	
 (see Chapter 9
)

 	
 A list similar to auto-mode-alist,
but for interpreted languages like Perl and Python.

	

 indent-tabs-mode

 	

 t

 	
 If non-nil, allow the use of tab
characters (as well as spaces) when indenting with C-j. This can really drive other developers
mad, so you should probably disable this if you are working on a
team.

	

 dired-kept-versions

 	

 2

 	
 When cleaning a directory in Dired, keep this many versions of files.

	

 dired-garbage-files-regexp

 	
 “\\.\\(?:aux\\|bak\\|dvi\\|log\\|orig\\|rej\\|toc\\)\\’”

 	
 Defines what file types are marked when selecting garbage files in
Dired.

	

 dired-listing-switches

 	
 "-al"

 	
 Options passed to the ls command for
generating dired listings; should
contain at least "-l“.

	

 dired-view-command-alist

 	
 (see Chapter 10)

 	
 Defines helper applications for Dired to invoke when opening certain
types of files.

	

 shell-file-name

 	

 varies

 	
 Filename of shell to run with functions that use one, such as
list-directory, dired, and compile; taken from value of the Unix
environment variable SHELL.

	

 load-path

 	
	
 List of directories to search for Lisp packages to load (see Chapter 11); often set to lisp
subdirectory of directory where Emacs source code is installed on
your system.

	

 lpr-switches

 	

 nil

 	
 Defines command-line options to pass to lpr

	

 calendar-week-start-day

 	

 0

 	
 Day defined as first day of the week. 0 is Sunday, 1 is Monday and so
on.

	

 picture-tab-characters

 	
 "!-~"

 	
 Characters interpreted as tab stops in picture mode if they appear on
a line of their own.

Table A-5. Text editing (Chapter 2, Chapter 3, Chapter 7, Chapter 8)
	

 Variable

 	

 Default

 	

 Description

	

 sentence-end

 	
 (see Chapter 13
)

 	
 Regular expression that matches ends of sentences.

	

 sentence-end-double-space

 	

 t

 	
 If non-nil, do not treat single
spaces after periods as ends of sentences.

	

 paragraph-separate

 	
 "[\t\f]*$"

 	
 Regular expression that matches beginnings of lines that separate
paragraphs.

	

 paragraph-start

 	
 "\f\\|[\t]*$"

 	
 Regular expression that matches beginnings of lines that start or
separate paragraphs.

	

 page-delimiter

 	
 "^\f"

 	
 Regular expression that matches page breaks.

	

 tex-default-mode

 	
 'latex-mode

 	
 Mode to invoke when creating a file that could be either TEX or LATEX.

	

 tex-run-command

 	
 "tex"

 	
 Character string used as a command to run in a subprocess on a file
in mode.

	

 latex-run-command

 	
 "latex"

 	
 String used as a command to run LATEX in a subprocess.

	

 slitex-run-command

 	
 "slitex"

 	
 String used as a command to run SliTEX in a subprocess.

	

 tex-dvi-print-command

 	
 "lpr -d"

 	
 Character string used as a command to print a file in tex mode with
C-c C-p.

	

 tex-alt-dvi-print-command

 	
 "lpr -d"

 	
 Command to direct .dvi files to a secondary
printer.

	

 tex-dvi-view-command

 	

 (if (eq window-system ‘x) “xdvi” “dvi2tty * |
cat -s”)

 	
 Character string used as command to view a .dvi
output file with C-c C-v; this
expression yields xdvi on X Window systems, and
a terminal-based alternative on others. This will only work if a
Unix-like operating environment is present (such as Mac OS X, or
Cygwin under Windows).

	

 tex-offer-save

 	

 t

 	
 If non-nil, offer to save any
unsaved buffers before running TEX.

	

 tex-show-queue-command

 	
 "lpq"

 	
 Character string used as command to show the print queue with
C-c C-q in Tex mode.

	

 tex-directory

 	
 "."

 	
 Directory for TEX to put temporary files in; default is the current
directory.

	

 outline-regexp

 	
 "[*\f]+"

 	
 Regular expression that matches heading lines in outline mode.

	

 outline-heading-end-regexp

 	
 "\n"

 	
 Regular expression that matches ends of heading lines in outline mode.

	

 selective-display-ellipses

 	

 t

 	
 If t, display “...” in place of
hidden text in outline mode; otherwise don’t display
anything.

Table A-6. Programming (Chapter 9)
	

 Variable

 	

 Default

 	

 Description

	

 compile-command

 	
 “make -k”

 	
 Default compilation command to use when compiling files via Emacs
language modes. For example, to set ant as the default compilation
tool, set this to "ant -emacs“.

	

 compilation-error-regexp-alist

 	
 (very long regular expression)

 	
 Regular expression designed to match error messages from all the
compilers supported by Emacs.

	

 comment-column

 	

 32

 	
 The column at which Emacs should insert comments. If code reaches
this column, inserts comment one space beyond code.

	

 comment-multi-line

 	

 nil

 	
 If t, continue comment on the next
line. If nil, start a new comment on
the next line.

	

 c-style-alist

 	
 (see Chapter 9
)

 	
 The code indentation style to use. Many are available; see Chapter 9.

	

 debug-on-error

 	

 nil

 	
 If non-nil, emacs will go into debug
mode when an error occurs in evaluating Lisp code. This can be handy
when you’re trying out a new function, but you
probably want to read the debugger’s help first to
learn your way around.

	

 c-macro-preprocessor

 	
 “/lib/cpp -C”

 	
 Defines which command is used to invoke C preprocessor when you type
C-c C-e.

	

 stack-trace-on-error

 	

 nil

 	
 If non-nil, Emacs displays a stack
trace when an error occurs in evaluating Lisp code. This is useful in
similar situations as debug-on-error
and might give you enough information without having to learn the
debugger interface.

Table A-7. Completion (Chapter 14)
	

 Variable

 	

 Default

 	

 Description

	

 completion-auto-help

 	

 t

 	
 If non-nil, provide help if a
completion (via Tab or Enter in minibuffer) is invalid or ambiguous.

	

 completion-ignored-extensions

 	
 (see Chapter 14
)

 	
 List of filename suffixes Emacs ignores when completing filenames
(for example, ~).

	

 completion-ignore-case

 	

 nil

 	
 If non-nil, ignore case distinctions
when doing completion.

Table A-8. Miscellaneous
	

 Variable

 	

 Default

 	

 Description

	

 kill-ring-max

 	

 60

 	
 Keep n pieces of deleted text in the kill ring
before deleting oldest kills.

	

 require-final-newline

 	

 nil

 	
 If a file being saved is missing a final newline: nil means don’t add one;
t means add one automatically;
otherwise ask whether to add a newline.

	

 next-line-add-newlines

 	

 nil

 	
 If non-nil, next-line (C-n or down arrow) inserts newlines when at
the end of the buffer, rather than signaling an error.

	

 undo-limit, undo-strong-limit

 	

 20000, 30000

 	
 These two variables jointly control how much space Emacs is willing
to allocate to supporting the undo
command. If you ever find yourself wanting to undo more than past
what Emacs remembers, you might want to investigate increasing these
limits; with today’s memory sizes they can probably
comfortably be much larger.

	

 mac-command-key-is-meta

 	

 t

 	
 If t, the Mac Command key is used for Meta; if nil,
the Option key is Meta instead.

Appendix B. Emacs Lisp Packages

The tables in this appendix list the most useful Lisp packages that
come with Emacs. All Lisp packages are typically located in the
directory emacs-source/lisp, where
emacs-source is the directory in which you
placed the Emacs source distribution. We have omitted all of the
packages that provide “basic” Emacs
support; likewise, we have omitted many packages

 whose functionality is obsolete or
unspeakably obscure.
While some of these packages are described in some detail in this
book, most aren’t; you will have to rely on GNU
Emacs’ help for precise descriptions of what the
package does. See Chapter 14 for details about
help; the most important help commands you will need for finding out
about the functionality of Lisp packages are C-h p (for finder-by-keyword), C-h
f (for describe-function), and C-h m (for describe-mode).

 C-h p is especially helpful. It lets
you navigate through a hierarchy of information about all packages
available on your system, from general areas of functionality, like
those in the tables in this appendix, to the C-h m information about each individual mode.
Unfortunately, the detailed information is sometimes incomplete and
also lists many packages that could not possibly be interesting to
anyone other than hard-core Emacs customizers.
Wherever it is reasonable, the tables in this appendix give commands
that “start” the package. This
startup information has the following meanings:
	If the package implements a major mode, the startup command is the
function that puts Emacs into this major mode.

	If the package implements a major mode that is automatically loaded
when you visit a file with a certain suffix, we list
“suffix
suffixname" in addition
to the startup command.

	If the package implements a minor mode, the startup command is the
function that puts Emacs into this minor mode.

	If the package implements a set of general-purpose functions,
we’ve tried to pick the most
“typical” of these functions. For
example, the studly package
implements three commands. We arbitrarily picked studlify-region as one way to invoke this
package. If there isn’t any reasonable choice, we
list “many.”

Finally, a word on using the packages. Some packages are
automatically loaded when Emacs starts; some are loaded when you
visit a file with the appropriate suffix (such as many of the modes
for programming languages); some are automatically loaded whenever
you give the appropriate command (for example, M-x shell Enter loads the package
shell.el for shell-mode); and some are never automatically
loaded. So how do you know which is which?
You don’t really have to concern yourself with this
issue. In the tables, the Startup column tells you what command (or
commands) put the package to work. Start Emacs, and give this command
(M-x
 startup-command
 Enter). If Emacs complains no match, the package wasn’t
loaded automatically and you need to load the package
“by hand.” To do so during an Emacs
session, use the command M-x
load-library
 name
 Enter, where the package’s
“name” is given in the first column
of the table. You can also tell Emacs to load packages automatically
at startup time by putting lines in your .emacs
file that have this form:
(load-library "name")
Finally, if you’re interested in looking at the
source code of
the libraries, which can be a great way
to pick up techniques as you develop skills in programming Emacs
Lisp, check out the find-library-file function presented in Chapter 11.
Now, without further ado, here are the tables of Lisp packages.
Table B-1. Support for Java, C, and C++ programming
	
 Package

 	
 Description

 	
 Startup

	
 cc-mode

 	
 Major mode for editing Java, C, C++ and Objective-C source files

 	

 java-mode, c-mode, c++-mode, objc-mode, suffixes
.java, .c,
.h, .y,
.lex, .cc,
.hh, .C,
.H, .cpp,
.cxx, .hxx,
.c++, .h++

	
 cmacexp

 	
 Function for using cpp to expand macros in C source code

 	

 c-macro-expand

	
 hideif

 	
 Minor mode for hiding code within C preprocessor commands

 	

 hide-ifdef-mode

	
 cpp

 	
 Major mode for highlighting and hiding code within C preprocessor
conditionals; takes advantage of graphical displays

 	

 cpp-parse-edit

Table B-2. Support for Lisp programming
	
 Package

 	
 Description

 	
 Startup

	
 lisp-mode

 	
 Major modes for Lisp, Emacs Lisp and Lisp interaction

 	

 lisp-mode, emacs-lisp-mode, lisp-interaction-mode, suffixes
.l, .lisp,
.lsp, .ml,
.el, and others[1]

	
 scheme

 	
 Major mode for editing Scheme source files

 	

 scheme-mode, suffixes
.scm, .stk,
.ss, .sch,
.oak

	
 cl

 	
 Functions and macros for Emacs Lisp compatibility with Common Lisp

 	
 many

	
 debug

 	
 Major mode for debugging Emacs Lisp programs

 	

 debug, automatically invoked if an
error occurs running code when debug-on-error is not nil

	
 edebug

 	
 Emacs Lisp debugging functionality, implemented as a minor mode

 	

 edebug

	
 disass

 	
 Function to disassemble compiled Emacs Lisp code

 	

 disassemble

	
 elp

 	
 Code profiler for Emacs Lisp

 	

 elp-instrument-package, elp-instrument-function

	
 trace

 	
 Produces function call traces for Emacs Lisp

 	

 trace-function

	[1] Emacs Lisp mode
is also invoked for files named .emacs or
_emacs. In the default configuration, Lisp
Interaction mode is used by the initial *scratch*
buffer.

Table B-3. Support for other programming tasks and languages
	
 Package

 	
 Description

 	
 Startup

	
 gud

 	
 Major mode for working with many different debuggers including
jdb, gdb,
sdb, dbx,
xdb, perldb,
pdb (Python), and bash

 	

 jdb, bashdb, gdb,
and many others

	
 perl-mode

 	
 Major mode for working with Perl source

 	

 perl-mode, suffixes
.pl, .pm,
.perl, .al, and capitalized
variants

	
 cperl-mode

 	
 Major mode for working with Perl source, which many prefer to the
older Perl mode

 	

 cperl-mode, suffixes
.pl, .pm,
.perl, .al, and capitalized
variants

	
 python

 	
 Major mode for editing Python source files

 	

 python-mode, suffix
.py

	
 tcl

 	
 Major mode for editing TCL source files

 	

 tcl-mode, suffixes
.tcl, .exp,
.itcl, .itk

	
 sql

 	
 Major mode for editing SQL queries

 	

 sql-mode, suffix
.sql

	
 ada-mode

 	
 Major mode for editing Ada source files

 	

 ada-mode, suffixes
.ada, .adb,
.ads, .adb.dg,
.ads.dg

	
 pascal

 	
 Major mode for editing Pascal source files

 	

 pascal-mode, suffixes
.p, .pas

	
 modula2

 	
 Major mode for editing Modula-2 source code

 	

 modula-2-mode

	
 fortran

 	
 Major mode for editing Fortran source files

 	

 fortran-mode, suffixes
.f, .F,
.for

	
 f90

 	
 Major mode for editing source code in the Fortran 90 dialect

 	

 f90-mode, suffixes
.f90, .f95

	
 asm-mode

 	
 Major mode for editing assembly language source code

 	

 asm-mode, suffixes
.s, .S,
.asm

	
 awk-mode

 	
 Major mode for editing awk code

 	

 awk-mode, suffix
.awk

	
 m4-mode

 	
 Major mode for editing m4 macro source

 	

 m4-mode, suffixes
.m4, .mc

	
 ps-mode

 	
 Major mode for editing PostScript code

 	

 ps-mode, suffixes
.ps, .eps, with any
capitalization

	
 compile

 	
 Major mode for compiling programs (often through make or ant)
and allowing easy access to the source lines on which errors are
reported

 	

 compile

Table B-4. Support for Text Processing
	
 Package

 	
 Description

 	
 Startup

	
 text-mode

 	
 Major mode for editing unprocessed text files

 	

 text-mode, suffixes
.txt, .text,
.article, .letter, and
files starting with /tmp/Re,
Message and a digit (mail),
/tmp/fol (news)

	
 sgml-mode

 	
 Major mode for editing structured documents (including HTML and
XML)[2]

 	

 html-mode, xml-mode, sgml-mode, suffixes .htm,
.html, .shtml,
.xml, .xsl,
.dtd, .sgm,
.sgml

	
 tex-mode

 	
 Major mode for editing TEX and LATEX files

 	

 tex-mode, latex-mode, suffixes
.tex, .ins,
.TeX, .ltx,
.sty, .cls,
.clo, .bbl

	
 bibtex

 	
 Major mode for editing bibliography files

 	

 bibtex-mode, suffix
.bib

	
 refbib

 	
 Convert bibliography files in refer
format to bibtex format

 	

 r2b-convert-buffer

	
 nroff

 	
 Major mode for editing nroff and
troff text files

 	

 nroff-mode, suffixes
.mm, .me,
.ms, .man, or any digit
following a period (manual page source)

	
 scribe

 	
 Major mode for editing Scribe text files

 	

 scribe-mode, suffix
.mss

	[2] See Chapter 8 for an
extensive discussion of working with markup languages in
Emacs.

Table B-5. Emulations for other editors
	
 Package

 	
 Description

 	
 Startup

	
 vi

 	
 Major mode for emulating the vi
editor

 	

 vi-mode

	
 vip

 	
 Another major mode for emulating vi

 	

 vip-mode

	
 edt

 	
 Function to set key bindings to emulate the VAX/VMS EDT editor

 	

 edt-emulation-on

Table B-6. Interfaces to operating system utilities[3]

	
 Package

 	
 Description

 	
 Startup

	
 shell

 	
 Major mode for interacting with the command-line shell.

 	

 shell-mode

	
 find-dired

 	
 Run the find command and use
dired on the resulting list of
files.

 	

 find-dired

	
 tar-mode

 	
 Access files inside a tar archive
through a dired-like interface.

 	

 tar-mode, suffix
.tar

	
 arc-mode

 	
 Access files in several other archive formats through a dired-like interface.

 	

 archive-mode, suffixes
.arc, .zip,
.lzh, .zoo,
.ear, .jar,
.war, as well as capitalized variants;
.sxd, .sxm,
.sxi, .sxc,
.sxw

	
 lpr

 	
 Print the contents of a buffer or region.

 	

 lpr-buffer, print-buffer, lpr-region, print-region

	
 sort

 	
 Sort the contents of a buffer.

 	

 sort-columns, sort-fields, sort-lines, sort-numeric-fields, sort-paragraphs, sort-regexp-fields

	
 spell, ispell

 	
 Various tools for checking spelling.

 	
 See Chapter 3

	
 diff, ediff

 	
 Tools to help in comparing files.

 	
 See Chapter 12

	[3] Some of these will be useful on Windows only if you’ve installed a Unix compatibility package like Cygwin (see http://www.cygwin.com).

Table B-7. Networking support
	
 Package

 	
 Description

 	
 Startup

	
 ange-ftp

 	
 Provides transparent access to remote files via FTP

 	
 most standard file-handling commands

	
 url

 	
 Functions for retrieving the contents of documents through URLs

 	
 Invoked from Lisp code, not interactively

	
 quickurl

 	
 Functions for looking up and adding URLs to documents

 	
 many commands beginning with quickurl

	
 talk

 	
 A multi-user talk package that runs in Emacs

 	

 talk-connect

	
 eudc

 	
 A unified directory client for looking up address information from
LDAP, BBDB, CCSO PH/QU and other directory servers

 	

 eudc-mode

	
 net-utils

 	
 Provides access to common network utility programs (ping, traceroute,
netstat, etc.

 	

 ping, traceroute, netstat, etc.

Table B-8. Games and amusements
	
 Package

 	
 Description

 	
 Startup

	
 animate

 	
 Draws animated text.

 	

 animate-birthday-present

	
 blackbox

 	
 Major mode to play the Blackbox game.

 	

 blackbox-mode

	
 decipher

 	
 Major mode to cryptanalyze monoalphabetic substitution ciphers (break
simple codes).

 	

 decipher

	
 dissociate

 	
 Randomly scramble text.

 	

 dissociated-press

	
 doctor

 	
 Major mode for playing the famous
“psychoanalyst” game.

 	

 doctor

	
 dunnet

 	
 Major mode for playing an adventure game.

 	

 dunnet

	
 gomoku

 	
 Major mode for playing Gomoku.

 	

 gomoku

	
 hanoi

 	
 Solve the Towers of Hanoi puzzle for you.

 	

 hanoi

	
 life

 	
 Explore cellular automata using John Conway’s
“life” game rules.

 	

 life

	
 mpuz

 	
 Generate a random multiplication puzzle.

 	

 mpuz

	
 snake

 	
 Steer an animated snake towards food without hitting yourself or the
walls.

 	

 snake

	
 solitaire

 	
 Play the peg solitaire game.

 	

 solitaire

	
 studly

 	
 Randomly capitalize letters for that polished, professional look.

 	

 studlify-region

	
 tetris

 	
 Guide falling tiles to complete rows.

 	

 tetris

	
 yow

 	
 Print a random quotation from Zippy the Pinhead.

 	

 yow

	
 zone

 	
 Rearrange your buffer in a hypnotic way.

 	

 zone

Again, this is only a sampling of some available packages, to give
you a sense of the breadth and depth of capabilities that ship with
Emacs. The list isn’t close to complete even with
respect to what’s available at this time, and new
features are always being added. Your best bet is to explore for
yourself using the tools mentioned at the beginning of this appendix.
And don’t forget to search the Web for nonstandard
additions that might be just what you need for your own environment
and projects!

Appendix C. Bugs and Bug Fixes

There are no perfect programs. GNU Emacs is very thoroughly debugged,
but it is certainly possible to find things that
don’t work correctly.
The Free Software Foundation (FSF) welcomes problem reports. However,
they need to be real problem

 reports; simple differences of opinion
about how something should work are not bugs. If you think that a
certain command should work differently, remember that Emacs has been
around for a long time and has many users; it can’t
be changed to satisfy a single user. (On the other hand, in most
cases, you could write some Lisp to change it yourself.) In the
GNU Emacs Manual, the FSF publishes some
excellent guidelines for reporting bugs, which we’ll
summarize very quickly:
	Before you report a bug, see if it’s on the list of
known problems. You can view this list by typing C-h C-e.

	You most certainly have a bug if you run into some kind of system
error (Emacs dumps core, terminates with a segmentation fault,
crashes, hangs, or does something else antisocial).

	When reporting bugs, be as specific as possible. A few commands will
help you report exactly what was happening when things went awry.
C-h l (for view-lossage) reports the last 100 or so
keystrokes you made; M-x
 open-dribble-file
 filename saves every keystroke you type in the
specified filename.

	The FSF discourages you from trying to interpret bugs in the bug
report. “I did thus-and-such and this
happened” is useful, particularly if the problem is
repeatable; “I think there’s a
problem with font handling” doesn’t
give any useful information at all.

	Always report which version of Emacs you are using. The command
M-x emacs-version gives you the
relevant information.

	Always report the contents of the file you were editing (if it makes
a difference), the contents of your .emacs file,
which mode you were in, and any Lisp libraries (custom or otherwise)
that you have to load in order to create the problem.

We will add one very important guideline:
	Although we have taken every effort to write a book that is accurate,
we are far from perfect. With that in mind, please do
not cite this book as an authority when reporting a bug.
Although we haven’t asked, the Free Software
Foundation would be completely justified in rejecting any bug reports
based on a third-party publication. If you suspect a bug, use the
GNU Emacs Manual or the help facility to find
out what the command that’s giving you trouble is
really supposed to do. In doing so, you may find out that this book
is incorrect; if you do, please report the problem to
booktech@oreilly.com.

If you do have a bug to report, type M-x
report-emacs-bug to send it from within Emacs.
You’ll be prompted for a subject line and dropped
into Emacs’ interface for sending mail. If mail from
Emacs isn’t set up properly, you can email
emacs-pretest-bug@gnu.org
using your preferred mail client. Be sure to include an
informative subject line that summarizes the problem.

Appendix D. Online Resources

This appendix includes some helpful Emacs web sites. Some of those
listed describe add-on packages for Emacs. In some cases, the sites
have been stable for years and are likely to remain that way. In
other cases, web sites come and go and URLs change. If you find
errors in this list or have suggestions for additions, please email
us at booktech@oreilly.com.
Table D-1. Emacs web sites
	
 Web site

 	
 URL

	
 The Free Software Foundation

 	

 http://www.fsf.org/

	
 The official web site for GNU Emacs

 	

 http://www.gnu.org/software/emacs/

	
 The GNU General Public License

 	

 http://www.gnu.org/copyleft/gpl.html

	
 The web site for this book

 	

 http://www.oreilly.com/catalog/gnu3/

	
 The very unofficial dotemacs home (great collection of
.emacs files to aid you in creating your own)

 	

 http://www.dotemacs.de/

	
 Dotfiles.com (includes dot files for other applications as well as
Emacs)

 	

 http://www.dotfiles.com/

	
 The Emacs Wiki

 	

 http://www.emacswiki.org/cgi-bin/wiki /

	
 Emacs Haiku

 	

 http://www.dina.dk/~abraham/religion/haiku-2.txt

	
 Emacs implementations

 	

 http://www.finseth.com/~fin/emacs.html

	
 David Wheeler’s essay arguing for a GPL-compatible
license for open source projects

 	

 http://www.dwheeler.com/essays/gpl-compatible.html

Table D-2. Platform and accessibility-related web sites
	
 Web site

 	
 URL

	
 FSF’s download site for Emacs for Unix and Windows

 	

 http://ftp.gnu.org/pub/gnu/emacs/

	
 Andrew Choi’s Mac OS X FAQ and build instructions

 	

 http://members.shaw.ca/akochoi-emacs/

 http://members.shaw.ca/akochoi-emacs/stories/obtaining-andbuilding.html

	
 Alex Rice’s Mac OS X build

 	

 http://mindlube.com/products/emacs/index.html

	
 Fink, a Unix software installer for Mac OS X

 	

 http://fink.sourceforge.net/

	
 John Schneider’s “Getting Mac OS
X.3 toBehave Almost Like My Linux Boxes”

 	

 http://www.eecs.wsu.edu/~schneidj/mac-osx-10.3.html

	
 Nqmacs, a Windows Emacs binary

 	

 http://sourceforge.net/projects/nqmacs/

	
 Cygwin: Unix commands for Windows

 	

 http://www.cygwin.com/

	
 Ngai Kim Hoong’s page relating to Emacs and Cygwin
(even Emacs and Palm Pilots)

 	

 http://www.khngai.com/emacs/

	
 Kim Storm’s CUA mode

 	

 http://www.cua.dk/emacs.html/

	
 Emacspeak (an audio interface to Emacs)

 	

 http://emacspeak.sourceforge.net/

Table D-3. Text-related sites
	
 Web site

 	
 URL

	
 Ispell FAQ

 	

 http://www.kdstevens.com/~stevens/ispell-faq.html

	
 Raymond Zeitler’s post pointing to the right version
of Ispell for Windows

 	

 http://lists.nongnu.org/archive/html/help-emacs-windows/2004-06/msg00023.html

	
 Eric Pement’s “Understanding GNU
Emacs and Tabs” page

 	

 http://www.student.northpark.edu/pemente/emacs_tabs.htm

	
 Eric Pement’s awk scripts for converting to outline
mode outlines to classical outline formats

 	

 http://www.student.northpark.edu/pemente/awk/outline_classic11.awk.txt

 http://www.student.northpark.edu/pemente/awk/outline_numbered11.awk.txt

	
 ASCII art (fun with picture mode)

 	

 http://www.ascii-art.de/

Table D-4. Programming languages, version control, and customization sites
	
 Web site

 	
 URL

	
 CPAN (the Comprehensive Perl Archive Network)

 	

 http://www.cpan.org/

	
 Collection of Emacs Development Environment Tools (CEDET)

 	

 http://cedet.sourceforge.net/

	
 JDEE site

 	

 http://jdee.sunsite.dk/

	
 PHP mode

 	

 http://sourceforge.net/projects/php-mode/

	
 Subversion

 	

 http://subversion.tigris.org

	
 Clearcase extensions (clearcase.el)

 	

 http://members.verizon.net/~vze24fr2/EmacsClearCase/

Table D-5. Markup language-related sites
	
 Web site

 	
 URL

	
 psgml mode

 	

 http://www.lysator.liu.se/projects/about_psgml.html

	
 psgml setup instructions from OpenACS

 	

 http://openacs.org/doc/openacs-5-0-0/psgml-mode.html

	
 Norm Walsh’s DocBook site

 	

 http://www.docbook.org/

	
 TEI Emacs (also includes JDEE for Linux and Windows)

 	

 http://www.tei-c.org/Software/tei-emacs/

	
 Jim Clark’s nxml mode

 	

 http://thaiopensource.com/download/

	
 Nxml mode mailing list

 	

 http://groups.yahoo.com/group/emacs-nxml-mode/

	
 RELAX NG

 	

 http://www.relaxng.org/

	
 HTML helper mode

 	

 http://www.nongnu.org/baol-hth/

	
 HTMLModeDeluxe

 	

 http://www.emacswiki.org/cgi-bin/wiki/HtmlModeDeluxe/

	
 Darren Brierton’s Emacs WebDev Environment

 	

 http://www.dzr-web.com/people/darren/projects/emacs-webdev/

Appendix E. Quick Reference

This quick reference is arranged topically, in roughly the same order
as the commands were treated in the text. Unfortunately, it’s
impossible to be both “quick” and
thorough, particularly with an editor as large and comprehensive as
GNU Emacs. We’ve tried to take a middle road between
completeness and quickness; we’ll confess that, if
we’ve erred, we’ve erred on the
side of quickness.
Table E-1. File-handling commands (Chapter 1)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x C-f
 File
 →
 Open File

 	

 find-file

 	
 Find file and read it in a new buffer.

	

 C-x C-v

 	

 find-alternate-file

 	
 Read an alternate file, replacing the one read with C-x C-f.

	

 C-x i
 File
 →
 Insert File

 	

 insert-file

 	
 Insert file at cursor position.

	

 C-x C-s
 File
 →
 Save (current buffer)

 	

 save-buffer

 	
 Save file.

	

 C-x C-w
 File
 →
 Save Buffer As

 	

 write-file

 	
 Write buffer contents to file.

	

 C-x C-c
 File
 →
 Exit Emacs

 	

 save-buffers-kill-emacs

 	
 Exit Emacs.

Table E-2. Cursor movement commands (Chapter 2)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-f

 	

 forward-char

 	
 Move forward one character (right).

	

 C-b

 	

 backward-char

 	
 Move backward one character (left).

	

 C-p

 	

 previous-line

 	
 Move to previous line (up).

	

 C-n

 	

 next-line

 	
 Move to next line (down).

	

 M-f

 	

 forward-word

 	
 Move one word forward.

	

 M-b

 	

 backward-word

 	
 Move one word backward.

	

 C-a

 	

 beginning-of-line

 	
 Move to beginning of line.

	

 C-e

 	

 end-of-line

 	
 Move to end of line.

	

 M-e

 	

 forward-sentence

 	
 Move forward one sentence.

	

 M-a

 	

 backward-sentence

 	
 Move backward one sentence.

	

 C-v

 	

 scroll-up

 	
 Move forward one screen.

	

 M-v

 	

 scroll-down

 	
 Move backward one screen.

	

 M-<

 	

 beginning-of-buffer

 	
 Move to beginning of file.

	

 M->

 	

 end-of-buffer

 	
 Move to end of file.

	
 (none)

 	

 goto-line

 	
 Go to line n of file.

	
 (none)

 	

 goto-char

 	
 Go to character n of file.

	

 M-
 n

 	

 digit-argument

 	
 Repeat the next command n times.

	

 C-u
 n

 	

 universal-argument

 	
 Repeat the next command n times (four times if
you omit n).

Table E-3. Deleting, yanking, region, and clipboard commands(Chapter 2)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-d

 	

 delete-char

 	
 Delete character under cursor.

	

 Del

 	

 delete-backward-char

 	
 Delete previous character.

	

 M-d

 	

 kill-word

 	
 Delete next word.

	

 M-Del

 	

 backward-kill-word

 	
 Delete previous word.

	

 C-y
 Edit
 →
 Paste Most Recent

 	

 yank

 	
 Restore what you’ve deleted.

	

 C-w
 Edit
 →
 Cut

 	

 kill-region

 	
 Delete a marked region (see next section).

	

 C-@
 or
 C- Space

 	

 set-mark-command

 	
 Mark the beginning (or end) of a region.

	

 C-x C-x

 	

 exchange-point-and-mark

 	
 Exchange location of cursor and mark.

	

 C-w

 	

 kill-region

 	
 Delete the region.

	

 C-y

 	

 yank

 	
 Paste most recently killed or copied text.

	

 M-w

 	

 kill-ring-save

 	
 Copy the region (so it can be pasted with C-y).

	

 C-x h

 	

 mark-whole-buffer

 	
 Mark buffer.

	

 M-y

 	

 yank-pop

 	
 After C-y, pastes earlier deletion.

	

 (none)

 	

 clipboard-kill-region

 	
 Cut region and place both in kill ring and on system clipboard.

	

 (none)

 	

 clipboard-yank

 	
 Paste text from clipboard.

	

 (none)

 	

 clipboard-kill-ring-save

 	
 Copy text to clipboard.

Table E-4. Text filling and reformatting commands (Chapter 2)
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none) Options
 →
 Word Wrap in Text Modes

 	

 auto-fill-mode

 	
 Toggle auto-fill mode, in which Emacs formats paragraphs as you type
them.

	

 M-q

 	

 fill-paragraph

 	
 Reformat paragraph.

	
 (none) Edit
 →
 Fill

 	

 fill-region

 	
 Reformat individual paragraphs within a region.

Table E-5. Stopping and undoing commands (Chapter 2)
	

 Keystrokes

 	

 Command name

 	

 Action

	

 C-g

 	

 keyboard-quit

 	
 Abort current command.

	

 C-x u

 	

 advertised-undo

 	
 Undo last edit (can be done repeatedly).

	

 C-_
 Edit
 →
 Undo

 	

 undo

 	
 Undo last edit.

	
 (none)

 	

 revert-buffer

 	
 Restore buffer to the state it was in when the file was last saved
(or auto-saved).

Table E-6. Search and replace commands (Chapter 3)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-s
 Edit
 →
 Search
 →
 Incremental Search
 →
 Forward
String

 	

 isearch-forward

 	
 Start incremental search forward; follow by search string. Also, find
next occurrence (forward) of search string.

	

 C-r
 Edit
 →
 Search
 →
 Incremental Search
 →
 Backward
String

 	

 isearch-backward

 	
 Start incremental search backward; follow by search string. Also,
find next occurrence (backward) of search string.

Table E-7. Regular expression search commands (Chapter 3)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-M-s Enter
 Edit
 →
 Search
 →
 Regexp Forward

 	

 re-search-forward

 	
 Search for a regular expression forward.

	

 C-M-r Enter
 Edit
 →
 Search
 →
 Regexp Backwards

 	

 re-search-backward

 	
 Search for a regular expression backward.

	

 C-M-s
 Edit
 →
 Search
 →
 Incremental Search
 →
 Forward
Regexp

 	

 isearch-forward-regexp

 	
 Search incrementally forward for a regular expression.

	

 C-M-r
 Edit
 →
 Search
 →
 Incremental Search
 →
 Backward
Regexp

 	

 isearch-backward-regexp

 	
 Search incrementally backward for a regular expression.

	

 C-M-%
 Edit
 →
 Replace
 →
 Replace Regexp

 	

 query-replace-regexp

 	
 Query-replace a regular expression.

Table E-8. Spell-checking commands (Chapter 3)
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none) Tools
 →
 Spell Checking
 →
 Spell-Check
Buffer

 	

 ispell-buffer

 	
 Check spelling of the buffer.

	
 (none) Tools
 →
 Spell Checking
 →
 Spell-Check
Comments

 	

 ispell-comments-and-strings

 	
 Checks spelling of comments and strings in a program.

	
 (none)
Tools
 →
 Spell
Checking
 →
 Automatic Spell-Checking (Flyspell)

 	

 flyspell-mode

 	
 Enter the flyspell minor mode, in which incorrectly spelled words are
highlighted.

	
 (none)

 	

 flyspell-buffer

 	
 Spell-check the current buffer, underlining all misspelled words. Use
middle mouse button to correct.

Table E-9. Buffer commands (Chapter 4)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x b
 Buffers
 →
 Select Named Buffer

 	

 switch-to-buffer

 	
 Move to the buffer specified.

	

 C-x →

 Buffers
 →
 Next Buffer

 	

 next-buffer

 	
 Move to the next buffer in the buffer list.

	

 C-x
 Buffers
 →
 Previous Buffer

 	

 previous-buffer

 	
 Move to the previous buffer in the buffer list.

	

 C-x C-b
 Buffers
 →
 List All Buffers

 	

 list-buffers

 	
 Display the buffer list.

	

 C-x k

 	

 kill-buffer

 	
 Delete the buffer specified.

	

 (none)

 	

 kill-some-buffers

 	
 Ask about deleting each buffer.

Table E-10. Windows and frames (Chapter 4)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x 2
 File
 →
 Split Window

 	

 split-window-vertically

 	
 Divide current window into two windows, one above the other.

	

 C-x 3

 	

 split-window-horizontally

 	
 Divide current window into two side-by-side windows.

	

 C-x o

 	

 other-window

 	
 Move to the other window; if there are several, move to the next
window.

	

 C-x 0

 	

 delete-window

 	
 Delete the current window.

	

 C-x 1
 File
 →
 Unsplit Windows

 	

 delete-other-windows

 	
 Delete all windows but this one.

	

 C-x 4 f

 	

 find-file-other-window

 	
 Find a file in the other window.

	

 C-x 4 b

 	

 switch-to-buffer-other-window

 	
 Select a buffer in the other window.

	
 (none) Tools
 →
 Compare (Ediff)
 →
 This Window
and Next Window

 	

 compare-windows

 	
 Compare this window with the next window and show the first
difference.

	

 C-x 5 o
 Buffers
 →
 Frames

 	

 other-frame

 	
 Move to other frame.

	

 C-x 5 0
 File
 →
 Delete Frame

 	

 delete-frame

 	
 Delete current frame.

	

 C-x 5 2
 File
 →
 New Frame

 	

 make-frame

 	
 Create a new frame on the current buffer.

	

 C-x 5 f

 	

 find-file-other-frame

 	
 Find file in a new frame.

	

 C-x 5 r

 	

 find-file-read-only-other-frame

 	
 Finds a file in a new frame, but it is read-only.

	

 C-x 5 b

 	

 switch-to-buffer-other-frame

 	
 Make frame and display other buffer in it.

Table E-11. Shell mode commands (Chapter 5)
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	

 shell

 	
 Enter shell mode.

	

 C-c C-c
 Signals
 →
 BREAK

 	

 comint-interrupt-subjob

 	
 Interrupt current job; equivalent to C-c.

	

 C-c C-z
 Signals
 →
 STOP

 	

 comint-stop-subjob

 	
 Suspend or stop a job; C-z in Unix
shells.

	

 M-p
 In/Out
 →
 Previous Input

 	

 comint-previous-input

 	
 Retrieve previous commands (can be repeated to find earlier
commands).

	

 M-n
 In/Out
 →
 Next Input

 	

 comint-next-input

 	
 Retrieve subsequent commands (can be repeated to find more recent
commands).

	

 Enter

 	

 comint-send-input

 	
 Send input on current line.

	

 Tab

 	

 comint-dynamic-complete

 	
 Complete current command, filename, or variable name.

Table E-12. Dired commands (Chapter 5)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x d
 File
 →
 Open Directory

 	

 dired

 	
 Start Dired.

	

 C
 Operate
 →
 Copy to

 	

 dired-do-copy

 	
 Copy file.

	

 d
 Mark
 →
 Flag

 	

 dired-flag-file-deletion

 	
 Flag for deletion.

	

 D
 Operate
 →
 Delete

 	

 dired-do-delete

 	
 Query for immediate deletion.

	

 f

 	

 dired-advertised-find-file

 	
 Find (so you can edit).

	

 g
 Immediate
 →
 Refresh

 	

 revert-buffer

 	
 Reread the directory from disk.

	

 m or * m
 Mark
 →
 Mark

 	

 dired-mark

 	
 Mark with *.

	

 Q
 Operate
 →
 Query Replace in Files

 	

 dired-do-query-replace

 	
 Query replace string in marked files.

	

 R
 Operate
 →
 Rename to

 	

 dired-do-rename

 	
 Rename file.

	

 s

 	

 dired-sort-toggle-or-edit

 	
 Sort the Dired display by date or by filename (toggles between
these).

	

 t
 Mark
 →
 Toggle Marks

 	

 dired-toggle-marks

 	
 Toggle marks on files and directories; pressing t once marks all unmarked files and
directories; pressing t again
restores original marks.

	

 u
 Mark
 →
 Unmark

 	

 dired-unmark

 	
 Remove mark.

	

 +
 Immediate
 →
 Create Directory

 	

 dired-create-directory

 	
 Create a directory.

	

 * ! or M-Del
 Mark
 →
 Unmark
All

 	

 dired-unmark-all-files

 	
 Remove all marks from all files.

Table E-13. Macro commands (Chapter 6)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x (

 	

 kmacro-start-macro

 	
 Start macro definition.

	

 F3

 	

 kmacro-start-macro-or-insert-counter

 	
 Start macro definition. If pressed while defining a macro, insert a
counter.

	

 C-x)

 	

 kmacro-end-macro

 	
 End macro definition.

	

 F4

 	

 kmacro-end-or-call-macro

 	
 End macro definition (if definition is in progress) or invoke last
keyboard macro.

	

 C-x e

 	

 kmacro-end-and-call-macro

 	
 Execute last keyboard macro defined. Can type e to repeat macro.

	

 C-x C-k n

 	

 name-last-kbd-macro

 	
 Name the last macro you created (before saving it).

	

 C-x C-k e

 	

 edit-kbd-macro

 	
 Edit a keyboard macro by typing C-x e for the last keyboard macro
defined, M-x for a named macro, C-h l for lossage, or keystrokes for
a macro bound to a key.

	

 C-x C-k Enter

 	

 kmacro-edit-macro

 	
 Edit the last keyboard macro.

Table E-14. Outline mode commands (Chapter 7)
	
 Keystrokes

 	
 Command name

 	
 Action

	
 (none)

 	
 outline-mode

 	
 Toggle outline mode

	
 C-c C-t Hide
 →
 Hide
Body

 	
 hide-body

 	
 Hide all body lines.

	
 C-c C-a Show
 →
 Show
All

 	
 show-all

 	
 Show everything that’s hidden.

Table E-15. Compilation mode commands (Chapter 9)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x `

 	

 next-error

 	
 Move to the next error message and visit the corresponding source
code.

	

 M-n

 	

 compilation-next-error

 	
 Move to the next error message.

	

 M-p

 	

 compilation-previous-error

 	
 Move to the previous error message.

	

 C-c C-c

 	

 compilation-goto-error

 	
 Visit the source code for the current error message.

Table E-16. Basic indentation commands (Chapter 7 and Chapter 9)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-M-\

 	

 indent-region

 	
 Indent each line between the cursor and mark.

	

 M-m

 	

 back-to-indentation

 	
 Move to the first nonblank character on the line.

	

 M-^

 	

 delete-indentation

 	
 Join this line to the previous one.

Table E-17. C motion commands (Chapter 9)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 M-a

 	

 c-beginning-of-statement

 	
 Move to the beginning of the current statement.

	

 M-e

 	

 c-end-of-statement

 	
 Move to the end of the current statement.

	

 M-q

 	

 c-fill-paragraph

 	
 If in comment, fill the paragraph, preserving indentations and
decorations.

	

 C-M-a

 	

 beginning-of-defun

 	
 Move to the beginning of the body of the function surrounding the
point.

	

 C-M-e

 	

 end-of-defun

 	
 Move to the end of the function.

	

 C-M-h

 	

 c-mark-function

 	
 Put the cursor at the beginning of the function, the mark at the end.

	

 C-c C-q

 	

 c-indent-defun

 	
 Indent the entire function according to indentation style.

	

 C-c C-u

 	

 c-up-conditional

 	
 Move to the beginning of the current preprocessor conditional.

	

 C-c C-p

 	

 c-backward-conditional

 	
 Move to the previous preprocessor conditional.

	

 C-c C-n

 	

 c-forward-conditional

 	
 Move to the next preprocessor conditional.

Table E-18. SQL mode commands (Chapter 9)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-c C-c

 	
 sql-send-paragraph

 	
 Send the paragraph the cursor is on. A paragraph is defined by the
particular database client. For the sql-mysql process, for example, a paragraph
begins with a statement like select or update and ends with a
semicolon. Any number of lines can intervene.

	

 C-c C-r

 	
 sql-send-region

 	
 Send the marked region.

	

 C-c C-b

 	
 sql-send-buffer

 	
 Send the entire buffer.

Table E-19. Lisp commands (Chapter 9)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-M-b

 	

 backward-sexp

 	
 Move backward by one S-expression.

	

 C-M-f

 	

 forward-sexp

 	
 Move forward by one S-expression.

	

 C-M-t

 	

 transpose-sexps

 	
 Transpose the two S-expressions around the cursor.

	

 C-M-@

 	

 mark-sexp

 	
 Set mark to the end of the current S-expression; set the cursor to
the beginning.

	

 C-M-k

 	

 kill-sexp

 	
 Delete the S-expression following the cursor.

	
 (none)

 	

 backward-kill-sexp

 	
 Delete the S-expression preceding the cursor.

	

 C-M-n

 	

 forward-list

 	
 Move forward by one list.

	

 C-M-p

 	

 backward-list

 	
 Move backward by one list.

	

 C-M-d

 	

 down-list

 	
 Move forward and down one parenthesis level.

	
 (none)

 	

 up-list

 	
 Move forward out of one parenthesis level.

	

 C-M-u

 	

 backward-up-list

 	
 Move backward out of one parenthesis level.

	

 C-M-a

 	

 beginning-of-defun

 	
 Move to the beginning of the current function.

	

 C-M-e

 	

 end-of-defun

 	
 Move to the end of the current function.

	

 C-M-h

 	

 mark-defun

 	
 Put the cursor at the beginning of the function, put the mark at the
end.

Table E-20. VC commands (Chapter 12)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-x v v

 	

 vc-next-action

 	
 Go to the next logical version control state.

	

 C-x v d

 	

 vc-directory

 	
 Show all registered files beneath a directory.

	

 C-x v =

 	

 vc-diff

 	
 Generate a version difference report.

	

 C-x v u

 	

 vc-revert-buffer

 	
 Throw away changes since the last checked-in revision.

	

 C-x v ~

 	

 vc-version-other-window

 	
 Retrieve a given revision in another window.

	

 C-x v l

 	

 vc-print-log

 	
 Display a file’s change comments and history.

	

 C-x v i

 	

 vc-register

 	
 Register a file for version control.

	

 C-x v h

 	

 vc-insert-headers

 	
 Insert version control headers in a file.

	

 C-x v r

 	

 vc-retrieve-snapshot

 	
 Check out a named project snapshot.

	

 C-x v s

 	

 vc-create-snapshot

 	
 Create a named project snapshot.

	

 C-x v c

 	

 vc-cancel-version

 	
 Throw away a saved revision.

	

 C-x v a

 	

 vc-update-change-log

 	
 Update a GNU-style ChangeLog file.

Table E-21. Ediff commands (Chapter 12)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 Space or n

 	

 ediff-next-difference

 	
 Move to the next difference between the files.

	

 Del or p

 	

 ediff-previous-difference

 	
 Move to the preceding difference between the files.

	

 j

 	

 ediff-jump-to-difference

 	
 Go to the difference specified as a numeric prefix argument.

	

 a

 	

 ediff-copy-A-to-B

 	
 Copy the version of the current difference found in buffer A to
buffer B.

	

 b

 	

 ediff-copy-B-to-A

 	
 Copy the version of the current difference found in buffer B to
buffer A.

	

 r a or r
b

 	

 ediff-restore-diff

 	
 Restore the current difference in buffer A (or B) to the way it was
before copying from the other buffer.

	

 A or B

 	

 ediff-toggle-read-only

 	
 Switch the specified buffer into (or out of) read-only mode.

	

 g a or g
b

 	

 ediff-jump-to-difference-at-point

 	
 Recenter the comparison buffers on the difference nearest to your
current location (point) in the specified buffer.

	

 !

 	

 ediff-update-diffs

 	
 Recalculate and redisplay the highlighted regions; useful if
you’ve manually made extensive changes to a buffer.

	

 w a or w
b

 	

 ediff-save-buffer

 	
 Save the specified buffer to disk.

	

 z

 	

 ediff-suspend

 	
 Close the Ediff control window, but leave the session active so you
can resume it later.

	

 q

 	

 ediff-quit

 	
 Close the Ediff window and end this comparison session.

Table E-22. CUA mode commands (Chapter 13)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-c C-x C-x

 	

 cua-exchange-point-and-mark

 	
 Exchange location of cursor and mark.

	

 C-x
 or
 C-w
 or
 S-Delete

 	

 kill-region

 	
 Delete the region.

	

 C-v
 or
 C-y
 or
 S-Insert

 	

 cua-paste

 	
 Paste most recently killed or copied text.

	

 C-c

 	

 copy-region-as-kill

 	
 Copy the region.

	

 M-v

 	

 cua-repeat-replace-region

 	
 After highlighting and replacing a string, find the next string and
replace it the same way.

	

 M-y

 	

 cua-paste-pop

 	
 After C-v, pastes earlier deletion.

	

 C-z
 or
 C-x u

 	

 cua-undo

 	
 Undoes the last change.

	

 C-x C-z

 	

 iconify-frame

 	
 Minimize the current frame (what C-z
does outside CUA mode).

Table E-23. Help commands (Chapter 14)
	
 Keystrokes

 	
 Command name

 	
 Question answered

	

 C-h k
 Help
 →
 Describe
 →
 Describe Key

 	

 describe-key

 	
 What command does this keystroke sequence run, and what does it do?

	

 C-h f
 Help
 →
 Describe
 →
 Describe Function

 	

 describe-function

 	
 What does this function do?

	

 C-h v
 Help
 →
 Describe
 →
 Describe Variable

 	

 describe-variable

 	
 What does this variable mean, and what is its value?

	

 C-h m
 Help
 →
 Describe
 →
 Describe Buffer Modes

 	

 describe-mode

 	
 Tell me about the modes the current buffer is in.

	

 C-h b
 Help
 →
 Describe
 →
 List Key Bindings

 	

 describe-bindings

 	
 What are all the key bindings for this buffer?

	

 C-h a
 Help
 →
 Search Documentation
 →
 Find Commands by Name

 	

 apropos-command

 	
 What commands include this word?

	
 (none)
Help
 →
 Search
Documentation
 →
 Find Options by
Name

 	

 apropos-variable

 	
 What variables include this regular expression?

	
 (none)
Help
 →
 Search
Documentation
 →
 Find Any Object by
Name

 	

 apropos

 	
 What functions and variables involve this regular expression?

Table E-24. Documentation help commands (Chapter 14)
	
 Keystrokes

 	
 Command name

 	
 Action

	

 C-h t
 Help
 →
 Emacs Tutorial

 	

 help-with-tutorial

 	
 Run the Emacs tutorial.

	

 C-h i

 	

 info

 	
 Start the Info documentation reader. If prefaced with C-u, reads an Info file of your choice.

	

 C-h r
 Help
 →
 Read the Emacs Manual

 	

 info-emacs-manual

 	
 Open the Emacs manual.

	

 C-h K
 Help
 →
 More Manuals
 →
 Find Key in Manual

 	

 Info-goto-emacs-key-command-node

 	
 Start Info documentation reader at the node that discusses this key
sequence.

	
 (none)
Help
 →
 Search
Documentation
 →
 Look Up Subject in
User Manual

 	

 emacs-index-search

 	
 Search the index of the Emacs user manual.

	

 C-h p

 	

 finder-by-keyword

 	
 Invoke a menu that lets you get information about Emacs Lisp packages
available on your system.

Table E-25. Important modes
	
 Mode

 	
 Function

	
 fundamental-mode

 	
 The default mode

	
 text-mode

 	
 Major mode for writing text (Chapter 2)

	
 outline-mode

 	
 Major mode for writing outlines (Chapter 7)

	
 picture-mode

 	
 Major mode for creating ASCII drawings using the keyboard (Chapter 7)

	
 html-mode

 	
 Major mode for writing HTML (Chapter 8)

	
 sgml-mode

 	
 Major mode for writing SGML and XML (Chapter 8)

	
 latex-mode

 	
 Major mode for formatting files for TEX and LATEX (Chapter 8)

	
 c-mode, c++-mode

 	
 Major mode for writing C and C++, and Java programs (Chapter 9)

	
 java-mode

 	
 Major mode for writing Java programs (Chapter 9)

	
 perl-mode, cperl-mode

 	
 Major modes for writing Perl programs (Chapter 9)

	
 sql-mode

 	
 Major mode for interacting with databases using SQL (Chapter 9)

	
 emacs-lisp-mode

 	
 Major mode for writing Emacs Lisp functions (Chapter 9 and Chapter 11)

	
 lisp-mode

 	
 Major mode for writing Lisp programs (Chapter 9 and Chapter 11)

	
 lisp-interaction-mode

 	
 Major mode for writing and evaluating Lisp expressions (
Chapter 9 andChapter 11)

	
 auto-fill-mode

 	
 Minor mode that enables word wrap (Chapter 2)

	
 overwrite-mode

 	
 Minor mode that replaces characters as you type instead of inserting
them (Chapter 2)

	
 flyspell-mode

 	
 Minor mode for flyspell spell-checker (Chapter 3)

	
 flyspell-prog-mode

 	
 Minor mode for spell-checking programs with flyspell (Chapter 3)

	
 abbrev-mode

 	
 Minor mode for word abbreviations (Chapter 3)

	
 artist-mode

 	
 Minor mode for creating ASCII drawings using the mouse (Chapter 7)

	
 font-lock-mode

 	
 Minor mode for highlighting text in colors and fonts (Chapter 9)

	
 vc-mode

 	
 Minor mode for using version control systems (Chapter 12)

About the Authors
Debra Cameron is president of Cameron Consulting. In addition to her love for Emacs, Deb researches and writes about emerging technologies and their applications. Her latest book, Optical Networking: A Wiley Tech Brief, published in 2002 by John Wiley & Sons, covers the practical applications of optical networking and was written in the hope that true broadband will be more widely deployed. Deb also edits OReilly titles, including DNS and Bind, DNS on Windows 2000, TCP/IP Network Administration, HTML and XHTML: The Definitive Guide, Java Security, Java Swing, Learning Java, and Java Performance Tuning. She has presented numerous videos for WatchIT.com, covering security and networking as well as e-business topics. She has moderated roundtables on PlanetIT on advanced networking and intranet design. Deb resides in Gaithersburg, Maryland with her husband Jim and their three children, Meg, David, and Bethany.
James Elliott is a senior software engineer at Singlewire Software, with two decades of professional experience as a systems developer. He started designing with objects well before work environments made it convenient, and has a passion for building high-quality Java tools and frameworks to simplify the tasks of other developers.
Marc Loy is a trainer and media specialist in Cincinnati, OH. When he's not working with digital video and DVDs, he's programming in Java-land. (In the interest of full disclosure, he does vacation in Ruby-world.) He can still be found teaching the odd Perl and Java course out in Corporate America, but even on the road he'll have his MacBook Pro and a video project with him.
Eric Raymond is an Open Source evangelist and author of the highly influential paper "The Cathedral and the Bazaar".
Bill Rosenblatt is president of GiantSteps/Media Technology Strategies, a consulting firm in New York City. Before founding GiantSteps, Bill was CTO of Fathom, an online content and education company associated with Columbia University and other scholarly institutions. He has been a technology executive at McGraw-Hill and Times Mirror, and head of strategic marketing for media and publishing at Sun Microsystems. Bill was also one of the architects of the Digital Object Identifier (DOI), a standard for online content identification and DRM.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially dry subjects.
The animal on the cover of Learning GNU Emacs, Third Edition is a gnu (or wildebeest). Gnus are African antelopes that inhabit the Serengeti Plains. Male gnus (bulls) reach up to 52 inches in height and 500 pounds inweight, and have the most lethal horns of any of the antelopes. Bulls are very territorial and tend to remain alone. The females and young generally live in small herds. However, they may congregate in the tens of thousands during migration. Gnus are the favorite prey of lions.
Jamie Peppard was the production editor and proofreader for Learning GNU Emacs Third Edition. Nancy Reinhardt was the copyeditor . Adam Witwer and Claire Cloutier provided quality control. Mary Agner provided production assistance. Johnna VanHoose Dinse wrote the index.
Edie Freedman designed the cover of this book using a 19th-century engraving from the Dover Pictorial Archive. Clay Fernald produced the cover layout with Quark Express 4.1 using Adobe’s ITC Garamond font. Emma Colby produced the Quick Reference card with Adobe InDesign CS using the fonts Linotype Birka and Adobe Myriad Condensed.
Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe Photoshop CS.
The online edition of this book was created by the Safari
production group (John Chodacki, Ken Douglass, and Ellie Cutler)
using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Learning GNU Emacs, 3rd Edition

Debra Cameron

James Elliott

Marc Loy

Eric S. Raymond

Bill Rosenblatt

Editor
Mike Loukides

Editor
Deb Cameron

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T14:19:06-07:00

OEBPS/httpatomoreillycomsourceoreillyimages100231.png
Flle Edt Optons Bufiers Tools Help

DExHdBE B REXT

i

+= moalreport AL (1,41}
iig

‘sl Reportl]

(ext pa).

OEBPS/httpatomoreillycomsourceoreillyimages100233.png
R Trome/deb/centeredare
File Edt Optons Bufers Tools Help

DExEH@ES $DBRS XA

o Te vos the bese ot anes

it uas the age of visdon,
565 tho sg0-of Toulishnsss,

S"vms the dhoch of heiser
it vas the epoch F tncredulisy

7
o

OEBPS/httpatomoreillycomsourceoreillyimages100215.png
Flle Za1 Optons Euters Tols Help

OExEHBS $ BHRSXE

5 5 secnd corcospmien, 213 3 o, wnis ne e £ollovi

el T -
e 30 ot oo, e st sl tha of 3w £ty
e e e s ot oy i
S R

e ©2m g e

OEBPS/httpatomoreillycomsourceoreillyimages100027.png
emac s localhost localdomain-
Fil Edt Optins Bufers Tools Help

DBExHEs s0HREXE
-

¥
b
nethod

ML (Text PiLL Tasarch)oeee

OEBPS/httpatomoreillycomsourceoreillyimages100071.png
emacsdlocalhostlocaldomain
File Edt Options Bufers Tools Help

DeExHdBAS R aBREXE

1 Tooush sone eofec to then o spineless sertabeates o Facdy
Cntacusting, and somerines deliciove Life forms. incerecringl

it P30 -

ot imvertebrates A1112

OEBPS/httpatomoreillycomsourceoreillyimages99993.png
emacsBlocalhostlocaldomain
Flle €t Optons Bufers Tools Holp

DExlB@» s HBREXE
Ll

OEBPS/httpatomoreillycomsourceoreillyimages100195.png
File_Edt Optons Bufers Tools Help

DExEdBS 0BRE XA

Tt vas the best of tanes

OEBPS/httpatomoreillycomsourceoreillyimages100249.png
Wb ko o000 i = = %

Fie ot Optons Buters Toot Help |

DExE@s s RRE X |

o Schodule
yone Eanil ceny
reed pre—— 09-010-1037
Shiuis Sliasconcistost 09840784
Feicole aaciaeise con 770570 767

Mein Bifmmiiyivecon 410705120

OEBPS/httpatomoreillycomsourceoreillyimages99974.png
menobar {7 £ optons Bsers Toas o, I

et xHAS XTHRSXT
B B ST R R e T
|
ot ot
nome dsplayed
o
R

nemumber majormode

OEBPS/httpatomoreillycomsourceoreillyimages100247.png
e Optons Gus oo Hep 1

DExLBS R EBRE XA |

o Schodule
yone Houza aail oot
reed 730420 o 03-61-1897
Shiuis et ettt ee 06040780
Feicole 1000700 Inciaeise con 70370 7678
Mein i Bripmmiassoncon 4107057031

ML 83 (ret FD-

OEBPS/httpatomoreillycomsourceoreillyimages100287.png
il G Optons Gutrs Too Hopp [

DBXEKQQ KE][EJ@&%.

Pr—

OEBPS/httpatomoreillycomsourceoreillyimages100358.png
DExEdBEs sDHRS XY

ol vormon 100>
| <IDDGNPE Roxl PULIG *-/¥3//0m AL 1.0 Tr
e/ ocal TEL/ - amac'/ sl dt xtm ht

A 7ale of 2o citaas
1

e dicensbial Top 01,6)
& Brcarral eniicy hond ot foumd.

0

R L) (rondamensa) =
17 Vairinte Sexmond milint --noaut -valid diekens. henll]

OEBPS/httpatomoreillycomsourceoreillyimages99979.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages100151.png
T emacs GFREAVARY (BEX]
e Eot ogtes s Tooh Cpets VK Reowp rmedots S 1o

OB xBRSXT

e 4 omer oot ol 2]
corore L omer roer Budgestorron. »

B iome e 3400 201
0+ My Documents 7% LA1e (bared by nawe) -

OEBPS/httpatomoreillycomsourceoreillyimages100175.png
emacs@localliostlocaldomain
File_Edt Optons Buters Tools Help

DeExBHROXa

T Comand lastkbd-mace
Koy, none.

sseaceh-forvad
31f Snsoct-command * §
fevling

backvacd-sentence
R
Forvard-sentence
JiLiorang save
Swith-ta-buffec

1 Snsact command + 0
neoline

hevtine
St ta-bugtar
neuline

e 19’ " (Bt Macro)-

OEBPS/httpatomoreillycomsourceoreillyimages100370.png
000 BeansShell Class Browser

ks @ Ty
T = abarormescef [ravcops i Bt k. o O
- Ot ot s O
> Gim P ——
S B o e ——
B o it s s, e i)
B e ecoiragry
< Rime ot o)
= Roimecsceion | | oy malng ing
o [imaremsion || Seiopeny g vin, v ng s
o Wb | oot 15
rimanase | || ey .
DO s
. Shutdown Constructors.
> B b StackOverflowError
- Stack TraceElement
3 m oo
G g
G St
G Srngcadng
e | srmgingerosortoss
P |

1. 100 st (5m o
B /System/Library/Franeworks /JavaVi. franework/Versions/1.4.1/Classes /classes.

5 s paing Ot
s by

OEBPS/httpatomoreillycomsourceoreillyimages100378.png
806 Emacs@Spike.local
EERRICY=F 30]

s s o custamaation buffer for groua 1L .
Raised"buttars show dctive FLelds; e FET or click muse-1
onon e FLeld £ Lrvale L& scrion, EdLting n opton value
Ehanges he.text 1n the hutfer: ke ihe Stata btton and
Crance the Sat cperation o st the Sption vaise.
Invave felg for rore srfemation.

Operote on everymng 1o s bureer:
Setfor Current Seceian Save for Future Sessions
Resat fezet 1o Saued raze Costamzation Fimeh

o 0 parent craup: Edicing

TR o
IR ——
Inéenang ord ullung tert.
See a0 Hanual

Fil rofix: Hide Volue] Value Mend are

Statel s option s unchanged From 13 standord sesing
String For ALling t vrsers o Frone of rew Tine, on 1 for rone

‘Auto Pl nhibit Regexp: Hide Valus| Volue e tone

Statel: his option 15 unchangas From 185 standord seteing
Fegecp 4o match Tines nhich snould ot be suto-Filled

Sentence End Double Space: Hids Veluel Togglel on Cron-ril)
Statel s option 15 unchanges 7rom 145 standord setsing
Hon-. L reons o single space dozs nok end o sentence. Morel
RIS Tl (st
Creotng o zotn e ane

OEBPS/httpatomoreillycomsourceoreillyimages100081.png
Fll Eon_ Optons Buers Tools Holp

DeE x |
A
—

It s the Best of tinss, 3t vas the vorat of tinas

BHRoBREXY

it ons e s

QS S S e e

igms ™ Ml et Pt
[But cleur-hesded Telemahos ceplied

J “Antinnoos. con T benish sgsinst hee vill
B mather vk hoce ap 30 Tock oacs o na?
N Eather 45 cithas sk ac for sver
B Beary 1 Shouis pay for this
erioy hands, i fuer T sent hec hack.
2o 08 e Fall)

o

OEBPS/httpatomoreillycomsourceoreillyimages100418.png
s 5 0 custamzatian uffer
Rotsed” butiors. shom ceave Fields; type BET or click nuse-1
on'on v £Le1d 5 Lrvoke |8 scsion, Edicing n option value
Changes th. toxt un e Buffers snvoke ine State sutton and
cranie he Sat sparatior <o sat the Syt valie.

Irvake [T for more srfemotion.

Oparots on everyihing in ths bfer:

You rove st #na Foce, bus nok saved 3¢ for Futire seasions.
o oce
parert groms
Atiributes: Fone Fams
o st [ANRE weovn
o v [T oo 1 11
L. .. [
PEE.. .
3 et ve: RN e
o 0veeti e (RN v
o Strike-raign
0 Box around text

o Forsgroun:
5 oo

OEBPS/httpatomoreillycomsourceoreillyimages100277.png
e

2%

L4

.

o

2

OEBPS/httpatomoreillycomsourceoreillyimages100281.png
L3 /home/deb/boxey
il G Optons Guters Too Hopp [

DExEHBE ROBREXY

OEBPS/httpatomoreillycomsourceoreillyimages100057.png
L4 emacs@localhiostiocaldomain
File_Eqit Optors Buers Toals Help

DExEHE s BR&EXT

[T ot clear-headed Tolenakhos replied

Antinogos, can 1 banish against her will
cha aokiatvho bocs ne and 5ok cars of Re?
Futher 15 sither dead ot Taf av

B Searly T Should pay for_his
St Thariol hands, if bees T sent hec back,
e pouets of dacknses weuld Toquite it tao,
T abeRar s parting cres WAACeLL hel's Fribs
5 pumish ne, slang vath the Seorn o nen
§o:TT ean meer” g5 the wed.For.this

WL rens pia
ey repiscing wiid vith vanld (1 £or

OEBPS/httpatomoreillycomsourceoreillyimages100093.png
L4 emacs@localhostlocaldomain

Fllo_Ed Optons Buters Tooks Holp

OBx L@ 0BRSS XA

o
H ne exman

I uas the Dest of bixes, it vas the vorst of bixss, it vas the age of
7 wiadon 6 433 the age of footashmasa: it 5 o
T e TR L et Fikd)

wiodan, V% UR3 i Sgu oF Foolianmess, it was the spoch oF Belisky it
L e e e e T s e
oo o SR et

OEBPS/httpatomoreillycomsourceoreillyimages100330.png
Rg home/debjataleofzcities html = D | %]

i o1 Optos Buts To ST ey

Ao $ODRESXA

It a0 the hest of tines. 3t vas the worat of tames. it vas the oo of
wision, It s the Sgo of Feolidhmess: 1t as the.spoch of Belish, it
"3 tho epech of incradulity, 1t vas he season of Lighe, it %5 the
ocnoF Datidiass Lt vas Lhe spring OF hoge i1 vas. tho Vinter of

BSpal: ve had svecyihing before ue, ve had nothing befors ia. ve

£ eERaTE oing alracl o Hesven, ve wero all Soiny dizect the othar
oo ataleotBcitios henl Top (5.0) (. helper Fiil)-

17 “Fontifying atelsstocitios Meal . (Attribites)

OEBPS/httpatomoreillycomsourceoreillyimages100390.png
[———
Sugistres wis s ma
e

i e v e s o i st s

B

OEBPS/httpatomoreillycomsourceoreillyimages100125.png
806 Emacs@Debra-Camerons-Computer.local

DExEHRAS {EERS X
= 0

Your hare directory has gotten completaly out of contral. Take o Tonk st ths:

Botat 10515
vae sher 75 30l 03 enurers
Dieb seoff 63312 Jul 13:15 echickenst
Dieb swrr 0 130ec 203 eden tark
T ST 71029 Jon 04:48 ichens hs
Ldb sefr 30329 din 05:25 dotemcsprerragastonflyspells
Do seorr L1 10 bor 03:43 Fenam ants
Ldeh et 212 Feb 2003 sfeameich -

CEmcs sysadm Topls Clect FL

OEBPS/httpatomoreillycomsourceoreillyimages99978.png

OEBPS/httpatomoreillycomsourceoreillyimages100197.png
File_Edt Optons Bufers Tools Help

DBXBQ LRl o= 30)]

Tt vas the best of tanes

OEBPS/httpatomoreillycomsourceoreillyimages99995.png
emacsBlocalhostlocaldomain
Flle €t Oplons Bufers Tooks Minout Help

BxHEY s DBREXA
0

OEBPS/httpatomoreillycomsourceoreillyimages100089.png
R emacs@localhostlocaldomain =0 %}

i Edit Optons Bufers Tooks Holp

DeExlBs «0BRS XY

i Top L (et Pl

It e the best of tixes, 1t vas the vorst of tixes. it vas the sgo of
wiotin, "% WR2 i S5t Fooltihmens, it weo the spoch oF belier
o3 Ehe apoch of inotedulity, it vas tho season oF Light. it vas tho

23500 e had svcrything befort vs, e hag nothing before s, e
SRR Sn it e v et S e et s

OEBPS/httpatomoreillycomsourceoreillyimages100201.png
Fll €t Optons Buflrs Tools Holp

DExHdBY $DBREXE
1

OEBPS/httpatomoreillycomsourceoreillyimages100109.png
806 Emacs@Alacrity.local

DeExEBA s TERSXE

ane o
i

AL CRundanantal):

soven AU

AL

AL

OEBPS/httpatomoreillycomsourceoreillyimages100207.png
B4 home/deb/Titeratiire/james

Flle €t Optons Buters Tools Holp

DExHBAYBHRSXE

My socond corcespendent, also » wonan, sends xe the folloving
atennt

ed BSEESCOLE to me at one tixe. T uas olueys breaki
had severah sttacks of vhet 59 calisd necvess
preskeation. vih sereibls snsoania

Here 32 snother case, more concrete, alan that of a wonn. 1 oad you
Ehose cases without comsent.they sxpress o5 sany Tarieties of the
frotad g g

janes M8 e

OEBPS/httpatomoreillycomsourceoreillyimages99983.png

OEBPS/httpatomoreillycomsourceoreillyimages99975.png

OEBPS/httpatomoreillycomsourceoreillyimages100155.png
T emacs SFREAWAR
Tl o Optns s Toss Opmss ik ooy mdots S b

OB xBRSXT

e @ omer oot 4536 2000729 swoixls A
e domer e 169860 2002 0117 bgettorron. s

110% wy Documents 7% LAl (baed by name) -

OEBPS/httpatomoreillycomsourceoreillyimages100462.png

OEBPS/httpatomoreillycomsourceoreillyimages99984.png

OEBPS/httpatomoreillycomsourceoreillyimages100169.png
emacs@local

il Ean_ optons auters oo
DeExdBES $ OB X

Gmecon, Dob
£ilioee, s
Loy, Mate
Fapnona, Eric
Criven, mufey
Dick. Kevan
it muciey
BiL1 Roserblate
Fran Harrell
/ Beth Eavias
= names Top 11

OEBPS/httpatomoreillycomsourceoreillyimages100203.png
Flle €t Optons Buflrs Tools Holp

DExHdBY $DBREXE

OEBPS/httpatomoreillycomsourceoreillyimages100145.png
806

Emacs@Debra-Camerons-Computer.local

DBX%@aX@

wrr Ld stoff 40 18 dug 109
Twrro Lo swre 162 0t 053 fone
Tarl Lam e lem e
Trr L steff 20145 10 flr 030 prgslanfo. et
Twrr Lo swfe 47 S Fob 2003 redlmace
TR L wfe 50025 Jin 0508 renilemacs
Trr L et 03 2 0503
Trn L stfe 2029 ey 203 repessedindentiotionor
csanelevel
T L st 14329 S 203 ruler 0
Twrr Lo tofe eslm 0w 203 senselitec
Twrl L e ceim Lo e <
Lo cuaft 641717 iy 2003 somlrodebundings .
£5% 211 (Dired by nam):

Cohell command succeeded with no output)

OEBPS/httpatomoreillycomsourceoreillyimages100314.png

OEBPS/httpatomoreillycomsourceoreillyimages100001.png
R4 emacs@localhostocaldomain

Fil £t Oplons Burs Tools Holp

DeExl@» s 0HREXE

(]

It vas the hest of tines, it vas the vorst of tines. it vis the oge of
vision, ‘St vaa the age of Eooliammess, it vas the spoch of belief, it
a2 the apoth of inciadulity, 16 vas the sesson of Light. it vas the
Somse o Bakmesa 3% vms The tpring of hope” 51 aa-the vinie of
3Epeic, 'we had sverything befors ue. we had rothing hefors . ve
vech 211 going dikect to Heven. ve vere all going direct the other
ayo-in sfre; the peciod vas 5o Fac Like the present period. that.

J S Rt e e e el o
SR P T L2
T D ter

OEBPS/httpatomoreillycomsourceoreillyimages100091.png
R4 emacs@localhostlocaldomain

Fllo_Ed Optons Buters Tooks Holp

OBx L@ 0BRSS XA

a
H ne erman

I uas the Dest of bixes, it vas the vorst of bixss, it vas the age of
7 wiaon 6 433 the age of footashmass: 3t 5 o
T e TR L et Fikd)

wiodan, V% UR3 i Sgu oF Foolianmess, it was the spoch oF Belisky it
L e e e e T e e
oo o SR et

OEBPS/httpatomoreillycomsourceoreillyimages100426.png
Auu

lintro_himl_Top U (512

Intro il _Top U__ (511,28

OEBPS/httpatomoreillycomsourceoreillyimages100181.png
‘emacs@ocalhostlocaldomain
Flle €t Optons Bufers Tools Holp

DExEdBs s HBREXE

Bpe sour sddess and pross G

OEBPS/httpatomoreillycomsourceoreillyimages100297.png
e e e
]

Flle €t Optons Butlrs Tools Holp

De*0@s Y 0DRE XS |

© scribble Bot1SS (Picture right Actist/line FilL)-----

Ty w—

OEBPS/httpatomoreillycomsourceoreillyimages100328.png
i B4t Cptors Bt Tove ALt]

DBxBHQxEB@ES&@ |

SbJataleoRwocItes RmI = [B]%)

OEBPS/httpatomoreillycomsourceoreillyimages99968.png
ptans Bufers Tacls Help

DexlB@s s 0BhREXE
1

M

- wpile
iy £312)

OEBPS/httpatomoreillycomsourceoreillyimages100374.png
T-T-1 S

Dex Ra%9

sz et
T T e
T e

frosci it o -

OEBPS/httpatomoreillycomsourceoreillyimages100011.png

OEBPS/httpatomoreillycomsourceoreillyimages100019.png
Dbxamexmﬂ@axu

a:h;)m:l'v;- ettty 'E’.Q!.;",f

s aeasthregon

asarsrttie
‘ndaiernn
beded

OEBPS/httpatomoreillycomsourceoreillyimages100153.png
T macs SFREAWAR
Tl o Optns ffers Tods b b

DBExEE s TBRSEXE

pimT dmm mL iy

e —— B7% LA1e (bared by name)
eate directory: ci/bell/Cameron/G disk/Ny Documenta/]|

OEBPS/httpatomoreillycomsourceoreillyimages99980.png

OEBPS/httpatomoreillycomsourceoreillyimages100279.png
N Wi o i =~ %
I

il Et Optons buters Toos Help
OexiBs bR axa
L

i
TF ype ek e in this bubfer to reruen e v Tome pode

OEBPS/httpatomoreillycomsourceoreillyimages100283.png
L4 /home/deb/boxey
File_Edit Optons Bufrs Tools Help

DBXEKQQ K@E}@&ﬁ&.

OEBPS/httpatomoreillycomsourceoreillyimages100336.png
Emacs File Edit Options Buffers Tools SGML Help

606 S =

DoxEBs »OPREXE \
o e T . 0
e tmvaroed Tpes/ 81

In previous chapters, we've seen the
Keyhord used to define closs yoes, and the

<t Antenfoced 1 trcl Leynord used 0 define interface ypes.

Tris chapter niroduces the <1 torcloanuma/ s cerols keyword, ARLEh

15 used <o deFure on enuneroted tyoe Cunforratly called on enun).

Enumarated tipes e nen in Java 1.5, and she Features descrrbed

here-cannot e usee (althogh ey can be partially simloted) prior s
5 thot release i
Erocs emums. il Topll QOL dsbren

alsclosslsterels

OEBPS/httpatomoreillycomsourceoreillyimages99989.png
Terminal — emacs — 80x24
TIis turfer 1= for rotes you cent vt to 2aye, ord for Lizp ovaluacion-

I you et U5 create 5 flle, visit thot file with Cx C-1,

Pross Pagel Yoy €5 Feoen thiS butfer fron the mnibutfer -
Altermatively, you con use Up/Dowm keys (oF your History Keys) to change
the Lten (0 the ninGuffer, ond press FET uhen you are dore, or press the

sarked lotters to pick up your cholce. T C-g or ESC ESC ESE to conc
In this Bufer, type SET to select the conpletion neor potnt.

Possible complations ore:

ers G (vordam o changey POl to nena)s fomar 116

OEBPS/httpatomoreillycomsourceoreillyimages100229.png
Flle Edit Optons Bufiers Tools Help

DExHdBES B REXT

[Aovusd Reporth

)
ot anmalreport AL (1,13)
iog

(ext pi).

OEBPS/httpatomoreillycomsourceoreillyimages100015.png
Fia_Ean Optors Buters Tools Hop

Daxmn‘axm&‘j = 30}

S g TR
Vel e e period vas 50 hepredent pertod. that
Toka of 165 mesbiont Seheritisy insistod on 158 belng Tobolred for
Goud ¢ foF SuiL IR the soperiacivs dsgree of conparison cnly

o Gdes mpm el
=

OEBPS/httpatomoreillycomsourceoreillyimages100388.png
s m i s it
U B e s
e,

it e e

I

L e

S wese
| A ——

OEBPS/httpatomoreillycomsourceoreillyimages100452.png
R emacsOlocalhost localdomain 444

Fie o Optans Euts Tools Mmeur Help

ODeExHHs DRREXA

Mt yw. peev. Basse, Uy Top

T P

The Minibuffer

The oninibutor o the facility veed by mecs comnds o o
pri oy Sy g N o R i gt vy
g e e g

Ll b b s Ry
ST 3 ot Wch sops vhot Kund of drpee v haxia supply
o it s BeWEen "okten i ronpt 1o dorioed ron che ront oF the
Coman e st o Fot.| B piont ekl s 1 5

59 vinfor (aace) MimsboEtes Top L (Ino Ay Naree)-

OEBPS/httpatomoreillycomsourceoreillyimages100117.png
B4 emacslocalhostlocaldomain
Fll EALprons Buters Tooks Minbar Help

DExEHE $DBEROXE

Beately. plip Buck walligen cone fron the stasshend, bescing & boul
J G Tathac”on hich a nireds and 3 rocac day crossed. A yeilot

Gtastinggomn. Ungicalad, s Susteined gently heband Hik By e nild
et S e e e

- Intsoibo ad sltare Dei
7

< g men e,

OEBPS/httpatomoreillycomsourceoreillyimages100253.png
Wb o o000 i = = %

Fie ot Optons Buters Toot Help |

DBXHE]Q%@LE\@E$<© |

Schodule
yone Eanil ceny

reed pre—— 09-010-1037
Shiuis Sliasconcistost 09840784
Feicole faciaeise con 770570 767

Mein ipmmiiivacon AL0BETER 0L

OEBPS/httpatomoreillycomsourceoreillyimages100382.png
66 Emacs@fred.loyinc.pvt

This 12 o custom zotion bufFer for group Indent.
Ratsed buttons show oceive Frelds; e FET o click mouse-1
onon active Feld 5 inole 1bs action, L ting on cplton velue
changes the_text in the buffer; Lnvoke the State button and
choose the Set operation € set the optLon volue.

Trvoke Hell for nore \nfometion.

Operate on everything in s bufFer:
Set for Current Sessior Save For Future Sessions.
Reset] fazet to Saved Eroce Costamzotion Famer|

Go to porent: group: Editing

/- Indent group:

St you hove edited sanething n s group, but not set 1t
Indentation comands

a indent: Hde Volue 2

“Operation on Standard ndent [D0t Y0 ave 10 set e aptn.

stanas

Save for Future Sessions.

s Resetto Cument

Contry Erase Customization
S4 Add Comment

Show Intal Lisp expression

- et group eng —-rwe e

s *Customze Group: Tndents 411 L19

OEBPS/httpatomoreillycomsourceoreillyimages100259.png
Edit Optons Buers Tools Help

DExERS REBREXE |

o Schodule
yone Eanil ooy [
reed pre—— mesgnen 13042
Shiuis linascocistosr ALONOT 300800
Feicole faciaeise con TSI 1000700

] Dipmmkigivecon ATEMER b60a'00

e flestine ML (S (et miib-

g

OEBPS/httpatomoreillycomsourceoreillyimages99981.png

OEBPS/httpatomoreillycomsourceoreillyimages100364.png
Xavir dickens”

Aatn
el

Reread

OEBPS/httpatomoreillycomsourceoreillyimages100396.png

OEBPS/httpatomoreillycomsourceoreillyimages100265.png
Wb ko o000 0000 = X
File Edit Optons Bufers Tools Holp |

DExERS REBREXE |

o Schodule
yone Eanil [Houes
Shiuis Sliuisconeist.net 5006 20
Feicole faciaeise con 10°00:7.00

Mein Ripmkigivecon 565370

OEBPS/httpatomoreillycomsourceoreillyimages100179.png
R4 emacs@localhostiocaldomain
File Eat_Optons Buflers Tools Help

DEx @ $OBHRE X

it

[}
%, ew connans a1apiay-tocel belp: displags any Loca help st poine
in the ccho aren TE i howd t0 0o " Tt Rormsily dioplayd the
same String that would be disployed an novse-over usind the
helpecho” property, but, in certsin cases, St can display 8 nore
Kaytoard orioniad altermative

+* Undor X, nouso-vhesl-node 15 tucned on by default.

¥'kew display €astore. focus follovs the sause frm ono Ensos vindew
ks o Frane.. TF you see the Vatiahis
Vinios 5o oncriL valae, ‘noving The Acise to &
£ Rt Faacs vindow L1 selact that vindow (nsmabuéter vindow can
T —
e mer

OEBPS/httpatomoreillycomsourceoreillyimages100442.png
¥ emacs SFREAWARY
o o it o8

Dex0Rs XOERSXE

OEBPS/httpatomoreillycomsourceoreillyimages100416.png
-Xe1:] Emacs@fred.loyinc.pvt
et Selection grow: Go ta Graug :

Tofluencing foce Font selection.

Bosic Faces group: Go to Groug

The standord faces of Eracs.

Flacemenu group: Ga to Group

Creats o foce renu for nteractuvely adding fonts o text

Font Lock grou: Go & Grous

Font Lok mode tect Mghlightung pockage.

Widget Faces group: Go_ta Groug|

Foces used by the maget Library.

Custon Faces grow: Go b Grous

Foces used by custom ze.

Speedbar Faces group: Go to Grou
Foces used i spesdiar.

PS Faces group: Ga to Graus|

Foces custom zataon

Whitespace Faces group: 6o to Grou
Foces used i whtesgare.

Cuarn group: G ta Graug

Highlight suspicious C ond Crs constructions.

Gnus Visual group: Go to Graug

Optaons controling the visual FLUFF.

Message Faces grop: Go to Groug
- uie for escone comosir

OEBPS/httpatomoreillycomsourceoreillyimages99972.png
Fis_Edt Optons Buters Tools Hop

OeExHA» $BhREXT
I

'Z\‘v’

o can 2 i a0 i e s b s 10 b g i ot

o

Contox olound by Corv)
Ricow Session Recotar s you et caling bfore ¢rasn

10U i 213501 (58 g o, X 8)

OEBPS/httpatomoreillycomsourceoreillyimages100446.png
¥ emacs SFREAWARY
o o it o

Dexd@s R DBERS XA

OEBPS/httpatomoreillycomsourceoreillyimages100041.png
R emacsElocathostiocaldomain -Bx

lo €t Optons Buters Toas Holp

DExHdES $DBRS XA

Lot Hesltadudlielo you smprove yous qualsty of Life Vmsceser your
e ot hosteTous con end rndders by caasl of Solk pime. text
Ressage roniiding you Go.taka nedscation. srareiss, drink 64 sunces of
atar, of vork a Joue stress level fou ser the Freguency of
Texinders, "and 1ot Haalihbug spor you on o neet. Four GonLo

1 eep youe vew voacs cessiutions vieh Beslenmug)
st PRdescription MLLL (Tet Fill)-
T Query Feploring Bug vith Bot. (¢ For help)

OEBPS/httpatomoreillycomsourceoreillyimages100350.png
R /home/deb/dickens. html = O X]

Flo Zat Oplons Bufers Taok NXML UniCrar XSLT Help

DExEdB S s 0BHRS X

REnL L= B /.3 053/ A998 AL
8 e ot o it

15 s the best of tines, 5t v the st Gf taes, St s the 30 of
o 3% Va2 e 130 GE Foolishnana, i1 was the spash oF Dalie
3"t ol oF Taatedulity, 1t vas che ssason of Lighe. 1¢ ves the
Sensn:of Daskassa, 15 ves Fhe sprina of boper Lt ves thb vinker of
Il e v 5o Far Lake che proiect porsod. ohae
T o I8 rossiask sudhoriics Sasisted on ihs heing Fecesved. for

390305 167 SoiL I the svperiacius dsgres of conparison ondy

SheCi met1eo cdickensdgrest-beyend.con' Charles Dickens: /=

OEBPS/httpatomoreillycomsourceoreillyimages100356.png
Fis Edt Optons Gufers Toois XMLISGML Maafy Mave Markup View DD XSLT Hep

DExEdBRs s DHRS X

[ol verssons1 07y
| CITCTIPE nond PURLLC -//436//0TD DAL 1.0 Tranoitscmal /N
s ocal FEL e -amacs Al deds AbtaL /<hend 1 Eranoieionad ded
i,
,Ii & Tele of Tuo cities: eitle

S

feer el a1 D) (ronamencan)
¥ “meru-bor 464 ansert dtd mhtal tronostionel

OEBPS/httpatomoreillycomsourceoreillyimages100267.png
Wb o o000 000 = = %

Fie ot Optons Buters Toot Help |

DExE@s s BRE X |

o Schodule
yone Eanil Boucs
Shiuis Slimasconcistoer 8.006.00
Feicole faciaeise con 1000:7:00
Mein ipmmiiivacon | 600300

7
e flestine ML) (et il

i

OEBPS/httpatomoreillycomsourceoreillyimages100239.png
Fle Eat Optons Buters Tols Headigs Show Hide Help]

DEx A YEBRREXRE

OEBPS/httpatomoreillycomsourceoreillyimages100037.png
R cmacs@iocalhostiocaldomain -Bx

File Edt Optons Bufers Tools Help

DeExEd@ES $DBRS XA

Lot Hesdtidug help you smprove yous qualsty of Life Vmsceser your
B et soatey SeieiToluiin, sonk vendodets by ensal o Geld phune text
essage roninding you o8 taka nedscation. srareiss, drink 64 sunces of
atar, of vork a Jouc strass level fou ser the Freguency of
Texinders, and 1at VRiriigia spor you on o neet your $onLo

Keep your Nau Taar's cesolutions vith Whirligigl

“* Phiescription ALLLZ (Tert riil-
‘Query teplacing hitligi vith Reslthoug. (

OEBPS/httpatomoreillycomsourceoreillyimages100463.png

OEBPS/httpatomoreillycomsourceoreillyimages100312.png

OEBPS/httpatomoreillycomsourceoreillyimages99997.png
EEEEEFEY EEEEETS) |

’: 1
v nevtile (Pundanent e
V‘K “Find file ~/vhc>uml o =

OEBPS/httpatomoreillycomsourceoreillyimages100113.png
Flls Edt Opbons Buters Tooks Holp

OexBRaxa

* Booknack

Bs of vo osties hono b Livazavuce/dickans
Rairess teapiate gy

“TastSTiation ssseion for 21 one/dabsyeata/zi 3 Sinatall
etz T /dab L esttneaea i ipen. jove
Boririat of o Loty T aan i tazstuce e

Sionabats Thana dab ptogzanesc strongbad

Thi e contiqure step Time/dab/Ayesin/ - Sinatatt

e s ateceary Thana aas sysaan/o1-3 Sinarall

ML onimark Hem)

OEBPS/httpatomoreillycomsourceoreillyimages100310.png

OEBPS/httpatomoreillycomsourceoreillyimages100273.png
Home
ey Si00-3100
i oleesme auie

DExEHRAS s OBRS XY

s

xeaeen.ora
Oiviageoncast et
nelad e con

g ava.com

“Undo

OEBPS/httpatomoreillycomsourceoreillyimages100141.png
-JaX:] Emacs@Debra-Camerons-Computer.local

DExBRE8XE \

Tde ot 415 16 Oce 2003 osnes
Tdeo toff % 10 Aug 10:40 poras
Tae stoft 3014 g 10:3 ')

e o el ovn e
Tde e Lk 05 .
T o s do v

02 psgnluno. it 4
5

s

BIIL 215-420- 8764,
Chontal 212-215.6325

Fortasquo 212-463-5315 f
Grorgin 512-340-0058 &

“SheTl Command Outputs Top L1 (Fundarental

OEBPS/httpatomoreillycomsourceoreillyimages100245.png
e Optons Gus oo Hep 1

DExHBS R EBRE XA |

o Schodule
yone Boues il oot
reed 730420 o 03-61-1897
Shiuis et ettt ee 06040780
Feicole 1000700 Icaaeise con 70370 7678
Mein i Do con 40705180

Hlextive

OEBPS/httpatomoreillycomsourceoreillyimages100167.png
Rq emacs@localhiostiocaldomain
File Edt Optons Bufiers Tooks Help

DeExdBEs $BRaeXT

Gmecon, Dob
o
sare Loy
Eric Rayond
Dutfy Ciaven
Fevan gk
Lot Huriey
BiL1 Roserblate
Fran Harrell
/ Beth Eavias
- names Top 12
T Hegbored nacro defaned

OEBPS/httpatomoreillycomsourceoreillyimages100340.png
Emacs File Edit Options Buffers Tools SGML Help
006 R

Dexd@ &« TERE XE

craptar wirm > 0

Shaptar.
s tnmratad Typeserti s
e iy

ure

T previaus chopters, e've seen the <11 teralaclasse/titeral>

Vemerd uaad s derine closs sypes, md the

ST intartocecs | tors 1 kepard veed o define interfoce types

T’ chapter Anirodices the <1\ ro e orols Keyord, ARLEn

£ used o define on enunerated type Cunforolly called an enun.

Eruneroted Sipes ore nea 1 Jova 1.5, ord the Featunes described :
here comt e used (olthough they cin'be partially sumsiaeed) prioe .
+-Emcs enums.xml Top L5 OM. Abbre):

OEBPS/httpatomoreillycomsourceoreillyimages100261.png
e Optons Gus oo Hep 1

DExER REBRSXE |

o Schodule

yone Eanil B Houes
reed pre—— meegnen 13042
Shiuis linascocistosr ALONOT 300800
Sescote TSI 1000700

Mein HESTERE

OEBPS/httpatomoreillycomsourceoreillyimages100394.png
omy e et s

[——

OEBPS/httpatomoreillycomsourceoreillyimages100420.png
806

Testing

Ths 15 8 quuck test of the
e un Erocs.

Not sure what"s gonna happen.

Looks good from here.|

Emcs testrtf ALY

Emacs@ired.loyinc.pvt

CFundanental. Enriched]

OEBPS/httpatomoreillycomsourceoreillyimages100432.png
DexdBs s HEREXE

+ longer used. T helps pages Lo for mare qunchly on bectntosn braneers.

Funcison ottlbpplecO) ¢
5 ALIGICBITERYou ney chaose n oloum by yping
PLET ARV Jore/ S aniC it o, Jor 4/ gt .
code=“org/epocalypse/iasiant appless CanglacsngDrsply.closs”
W0 b ghe 28 IRISCHIPT AL TAL WIDOLE™>
Vour bronser does ot sugport Jav, Avich 15 needed for s
<PARRY S Sab1e” VALLE=" s> .
AR ol VALLE= e .
BTk Eracs bums.php.~T. 15 T LIS2 (Fundassral)
* Tongen used. This helps pages Lood For mare quLchly on Hectneosh bransers.

Funcison ostitbumippletO) ¢

CENTER™ o0 mey choase on olum by typing
PLET ATCHTVES30ra/ S antC11 et Jor/3er/ et v, Jor
code-“org/epocolypse/<iaslantapples Canglacs gt sply.closs”
W40 htghe 25 IRISCAIPT AL TOL WIDOLE™>
Tour bronser does ot support Jav, Aich 15 needad for this Lnterface

16" VALLE= ol .
S L V5120 CFandamensal):

OEBPS/httpatomoreillycomsourceoreillyimages100412.png
TR

ot o T G
O>xbRaEXa

S et s e nioevmnsens

ey e e)

Base Pess o S Teaae Comtomitaion Tinisk

v ————
FA e
a8 s T
S s
R X S —

o e

o
e o e

S Satamire devions b

OEBPS/httpatomoreillycomsourceoreillyimages100326.png
. =B %)
i B4t Cptors s Tove ALt]

Dbxmqu@m@ax@ |

OEBPS/httpatomoreillycomsourceoreillyimages100320.png
File Edit Options Buffers Tools JCINTH Help

Insert Form Elements
. nsert Scipts
rodyy hts |

600 mcgou et .
CExE@s & {0
“<IDOCTTPE HIW. PUBLIC Insert Logical Styles. » 1
1 Insert Structural Elements >

:

nsert Timestamp Delimiter_(C-c C-20)
Browse URLat point_(C-cC-2u)
Load this Buffer I Browser (C-¢ C-2)
“Turm on Novice Menu
Narrow © ASP (C-c C-23)
Narrow to PHP (C-CC-2p)
Narrow to VBScript (¢ C-2b)
Narrow to Javascript (€€ C-2.)
Use asP
Use J57

M

OEBPS/httpatomoreillycomsourceoreillyimages100039.png
R emacs@iocalhostiocaldomain -Bx

File Edt Optons B Tools Minout Help

DexHEs $BREXE

© Hiealthiug helg oo snpeove youe ualaty of Life Unatever your
Bty HosCeTous son send ndders by caasl of Sobk pime. text

nessage soniading you Go taka medication, sxarciss, Grirk 61 sunses of
atar, of vork a Joue stress level fou ser the Freguency of
Texinders, "and 1ot Haalihbug spor you on o neet. Four GonLo

B e —————
P T ey

P T R i M R X]
g o gy

OEBPS/httpatomoreillycomsourceoreillyimages100334.png
. PR = [B]%)
i Bt Optone Bt Tove Ao]

Dbxmqu@m@ax@ |

OEBPS/httpatomoreillycomsourceoreillyimages99982.png

OEBPS/httpatomoreillycomsourceoreillyimages100129.png
[XeXs) Emacs@Debra-Camerons-Computer.local
Dex i REXE \

Let us hunk of then s year at the Christnas Fire, ond ot forget
hen when 1+ 15 burnt ous,

\endidocunent} x

End oF The Praject Gutanberg Eters of Sone Christnas Staries by Dickens
H '8
Oebra-Conerons.-Computer’ more éckensims. te] f

“Enocs Yshell® Bot L2372 (hellzrun
History Ltem: 1

OEBPS/httpatomoreillycomsourceoreillyimages100177.png
emacs@localliostlocaldomain
File_Edt Optons Buters Tools Help

DexBHRaXa

T Comand lastkbd-maceo
Koy, none.

s sseaceh-forvad
RT nevling

we(backuard-secence
s R
= Foryard-sentence
) JiLiorang save
S Switeh-ta-buffe
nouseictoll

ReT nevline

hevtine
St ta-bugtar
neuline

Bor 117’ " (Bt Macro)

OEBPS/httpatomoreillycomsourceoreillyimages99986.png

OEBPS/httpatomoreillycomsourceoreillyimages100043.png
R emacs@localhostiocaldomain -Bx

File Edt Optons Bufers Tools Help

DExEHES 0BRSS XA

13 help you smprove your quality of Life Vhstever your

Eeete Ty son senh Feniasers by smkil of oLk P text
nessage umfm; Jou o ki Redication, exircise, Orisk G ounces of
atar, of vork a Joue stress level fou ser the Freguency of
Texinders, "and 1ot Haalihbug spor you on o neet. Four GonLo

Keep your Nau Taar's cesolutions vith Haslehougl

st PRdescription MLLL [(Text FilL))-

OEBPS/httpatomoreillycomsourceoreillyimages100157.png
T emacs GFREAVARU &
i e ot s ol L 4

DB @B DBHRISXQ

e 4 ower e 64864 20010517 budgesforcch.® 2]

115y Docments ot

OEBPS/httpatomoreillycomsourceoreillyimages100460.png

OEBPS/httpatomoreillycomsourceoreillyimages100295.png
J [
¥
Lg

t scribble MLI& (Picture right Actist/pene FiLl)----

OEBPS/httpatomoreillycomsourceoreillyimages100448.png
v
e - Opsors o Ton it 1

xeo 0 2EOE

Mot Bteh pees- (@0, Op: (0
T Ble onscs, Node! 1o

" The Emacs Editor

Evscs 1o the oxcensible, coscamizable, seltdocunentiog ceol-tine
aisplay eiiece” “Tots Tngs, elle daserines Hov o siit vich Busce

Foc snforaation on exanding Easce,

Enace Lisp(eLiop)

e e s 5o pecaseion

"hat thare 15 o vacesnty

TRy — i et iminearien
= U308 ERRES i MET00E (cthervise bnowm s “KS-000).
I T T e st s

g R e

o s

OEBPS/httpatomoreillycomsourceoreillyimages100047.png
fd emacs@localhiostiocaldomain
File_Eqit Optors Bufrs Toals Help

DExEHE s BR&E XY

[1 0 migmeee @ Tlovenrs @) Telmackeecs
03] Tocinakers (d) Tolemachos's (5] Telscons
|7 (6) Teleeters (T) steelnaker's () Toolnaker's
L <Choicess o word Teimmakise

[T but clear-headed Telenabhoslieplicd

TEmanT e,
EEE SR

T3 "c-h ot 7 for nore opeions; 520 to leave unchanged, o

|7 6to replace word

OEBPS/httpatomoreillycomsourceoreillyimages100217.png
Fie o o Dt Toos v

SADRRE XA

OEBPS/httpatomoreillycomsourceoreillyimages100025.png
emacs@localhost localdomai

File Eat Options Bufers Tools Halp

DBXD.@X@E&@BXO

It vas che bost of tines, [t ves che age of
iadon, 1t vas the ag0 oF Foclishmsse, ic ¥as the apoch of beliof, it
03 Che spoch of incradulicy, 1t vas the season of Light. it vas he
Sosaon of Ducess, St vaa the sprang of fopo: 3¢ vas the vinker of
B3R e had suecytiing befort us. ve hel rothing befocs ue, ve
GerE a1l josng durect o Hesuen, vo vere olL Going diract the other
Vayo-in share. the peried wis so far Lika tha present pariod. that
Soha oF 65 noisiest authoritics iasisted on its being socerved, for
008 o for owil. in the sspeciative dsgeee of conparisen oLy

dickens Top 11 (rest L),

OEBPS/httpatomoreillycomsourceoreillyimages100313.png

OEBPS/httpatomoreillycomsourceoreillyimages100211.png
Fle S Oplons Buters Toos e

D LB A 0DRE XA |

A P T s ol pe

OEBPS/httpatomoreillycomsourceoreillyimages100161.png
‘emacsPlocalhostiocaldomain’

Fie Otons Buters Tooe Scrol Goto Halidays Diay oo g

DeExBRISXG

B ot ot s gocectory 20716 st ooz
HES 922 a0 a8 1S
N =
EREE NN
Sudidd s
ehlihi
BT
i i i
. %,

(sbres_sets
12
674881
Sugih
EEE
3 5 5 30
" ox

OEBPS/httpatomoreillycomsourceoreillyimages100444.png
¥ emacs SFREAWARY
o o it o8

DexEdBS XDERS XE@

OEBPS/httpatomoreillycomsourceoreillyimages100301.png
OExUB xBRS XA

\
{ | ctiipee of soces

\
h
|

 shape wade of poly-Lines
actistoample Top (LO) (Picruce:cight Arvist/pens FAL)

OEBPS/httpatomoreillycomsourceoreillyimages100123.png
I emacs aFREAWARU (8 =%)
Fle Edt Optons Buffers Toos Heb

Cexd@as smbhaée X

Liam (703)555-2112
Alrred (212)555-7012
Denise (904) 555-0332
Yerzin (814)555-7878
==\ phonelist AL (Fundamental)
Hifrea (212)555-7812
Denise (904)555-0332
Liam (703)555-2112
Yerzin (814)555-7878

-1\%% 4Shell Command Outputs ALl L1 (Fundamental)

OEBPS/httpatomoreillycomsourceoreillyimages100185.png
R emacs@localhostiocaldomain
Flle €t Optons Bufers Tools Holp

DExHdBA Y DRSS XE

755 South averus
Pluinfiele W D709

Orsula andcess
75 8L Sy Tersace
L2 vogas, W 13321

Brpe date snd press C-ec

o letter ALs [(rexe riI)--

OEBPS/httpatomoreillycomsourceoreillyimages100424.png

OEBPS/httpatomoreillycomsourceoreillyimages100189.png
806 Emacs@Debra-Camerons-Computer.local
OExEBs ¥ B REXT

STF you haven'® seen 1¢ yet, check cut the Lust Skeleson of Cadovra
ZCarmter

g, apole. con/tros Lera/som.gictures/Most.sheletan)). The
Sdiotoq 15 beyond MeLcuTous and s6 13 the acting. HeT1 aarth o
Zrentat far P1an 9 and £ oo fone

>>The srailer doesn'€ do this Flick Justice, THO, though 1¢ gives a sense
ZZihat you're nat goung 0 have to hink 503 hard st 1a.Taughing your
a0y through this sncependent Fn Farce

x
S55T'm mish the critics on this one; thought Lt aes horrile, y over
e top. dsmospheruini 71 :

ceittEcs skeleton Top LIz CText FiTD)-

OEBPS/httpatomoreillycomsourceoreillyimages100456.png
.

Et Optons Bulens Toms 1o e

x

a9 RPOR

B

gy Dolets, Op: © oo
41 8 gacagraph, handling o and bes coments (c-EilL pacagesgh)
e e e e
hsS okmand £111% the couasne of the parsorsgh of 1t thsk point
eyttt b ek S i

[et

i o s debogging © cods that vaes maceon. sonetings 3 is
R e e e S e
Comnand, 930 Gone Bave ta Figure 1% e you Gon seo the
Sipanarind

OEBPS/httpatomoreillycomsourceoreillyimages100067.png
© 06O Emacs@Debra-Camerons-Computer.Jocal

DExEBBRs $BHREX

But clear-headed Telenakhos replie:

“Antinnoos, can T banish ogatnst her will
the mother who bore e nd took care of ne?
Wy father 15 o1 ther dead or Far oway,

but dearly I should poy for this

at Tkarios’ hands, 17 ever 1 sent he back.
The peers of darkness ./ reqiite 14, foo,

my mother's parting € ~ Tries
T o ;oo ¢ _ crse (o]
oM

Cree

Save word

Accept Gsession)
jyssaydl Accept (buffen) peeFinn):

OEBPS/httpatomoreillycomsourceoreillyimages100165.png
‘emacs®localhost.local comain = 8

e =d1 Optons Euters Toos ol

DeExiBs sbDRSXE

|§ Ry s, 204 s ey
:

Sunday, Bzt 15, 20

OEBPS/httpatomoreillycomsourceoreillyimages100115.png
K4 emacsFiocalhost localdomain
Fll E Optons Guters Toos rep

DeEx B $BBRS XA

T+ Bookmack

013 2ele of 1v0 cities home/deb/Liecstuce dickens
Adbressfampiage Phimeaeh ot e se. b
“ineallarion seasion for 21 hove/deb spesn 21 3 Siretall
riipn Thima/deb ook e/ Sova mateipan. Jova

Foreihit of a ety e ettt
Shosmack Livts g 11 (Bogianch News]
e srnnration For bossan A Tals o Tws Cities’ hece
Linas which Seact vith & 18 viLL be SeLeved
e 2 O e dore

Buthoc. Deb camecn <deblocalbost. Locsldonai>
e PR R T ST

“Bookoark evotation et st sockasck armatation 24

OEBPS/httpatomoreillycomsourceoreillyimages100316.png

OEBPS/httpatomoreillycomsourceoreillyimages100318.png
File Edit Options Buffers Tools Help

0060 EmacsgDebrs nsert Paragraph (M-RET)

Insert Hyperlink (C-cC-a)
Insert g Header (C-cM-h 2)

e nsr Unorered st (e Colw»
<html> <head> Insert List ltem (C-c C-11) |
|| oot mived e

[Sieed Turn on Expert Menu

iy Lo Tis e mbrowsr_(C-cC-2)
s

Ll

St

Thndy s

OEBPS/httpatomoreillycomsourceoreillyimages100061.png
f4 emacs@localhostlocaldoms -

File_Edt Optons Buters Tools Help

DExEBs a8 XA

JT) occur (1) occucred (2) occurrence (3) cocurcence
T e B

F T cogeet the uafoctanats occurl

e datter Lz e il
©-h oc 2 for nore options; SPO o lasve Unchanged, Character 3
Sto caplace word

OEBPS/httpatomoreillycomsourceoreillyimages100243.png
Edit Optons Buers Tools Help

DExLBS REBRE XA |

o Schodule
yone Boues il oot
reed 730420 o 03-61-1897
Shiuis et ettt ee 06040780
Feicole 1000700 Icaaeise con 70370 7678
Mein i Do con 40705180

Hlextive

OEBPS/httpatomoreillycomsourceoreillyimages100257.png
~ Ml S

Flle Et Optons Butes Tools iy

OB xEBE s %

DEREXE

i Schedile
- Bl ce e
e Chivistcomcist net 240-05-0704 5,00-6,00
Selicle mchaelie com TS0 10,0070

J g Cipmajelcn AL TEL T 500500

S fletme AL e rall)

OEBPS/httpatomoreillycomsourceoreillyimages100143.png
Emacs@Debra-Camerons-Computer.local

85 X EERE XD
1deb stoff Mézélu\ aS!&Ehnne
o e
AT

OEBPS/httpatomoreillycomsourceoreillyimages99987.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages100095.png
L4 emacs@localhostlocaldomain

Fllo Edt Optons Buters Tooks Holp

OBx L@ 0BRSS XA

ock o Hock on Voleaiee Rovsaesy
j fook om ek on IR

Tou thtow tho sand against. th vind
ok Bt 2 e

e, AT et

wiodan, V% UR3 i Sgu oF Foolianmess, it was the spoch oF Belisky it
L e e e e T s e
S che At

OEBPS/httpatomoreillycomsourceoreillyimages100368.png
806 Emacs@fred.loyinc.pvt

EERRICY=F 30

This < o custamsation uffer.
Fotsed” butiors. show cetuve Fields; e FET an click nouse-1
on'an ocstve Freld @ Lrvole 15 oction. Edicang on option value
Changes he.text 1n the butfer: ke ihe Stata btton and
Crance the Sat cperation o st the Sption vaLse.

Tnvake felg for more srfemotion.

Operate on everything tn ths bubr:
Set for Current Seseian Save for Future Sessions
Resat fezet 1o Saued raze Costamzation Fime

B
s 0g

oo 142

o gty raeorka/ I Frnemrk ersions/ 14,2
s 08y

st 1131

S sty ok o Franork Aerstors/1.3.1

o o roe e te

have nat st the option

Specifies the versions ond locations of the T3 snstalled on your fide Rest
systan. For soch DK to be ragistared, entar ne verston nnber.

GEg. LA o she T un e Version FLeld. Entar the poth oF ne

0% it diricory Ce.g., ¢ga 51 or SIVAMNE) ' she Putn

Fetd. Socting thie voridbte dediorines She chovces offurd by ra

-3 varioble, You should trerefore custom e s variabte

Arik

Porant groups: 3 Proer

feefaocs Customze Option: Jde Jok Regstry® ALY Custon)

OEBPS/httpatomoreillycomsourceoreillyimages100147.png
606

Emacs@Debra-Camerons-Computer.local

DExBREXE

Taeh
1aeh
1deh
T
1ae
1deh
T
1ae
1deh
T
1ad
I
ik

staff
Stofr
Storr
Ztaft
Storr
Storr
Ztart
Storr
Storr
Staft
Storr
Starf
R

a0
k)
35
a6
H

W
145
13
145
E
ans
s
03

8351213 Dired by name):

4 05:23
25 Jun 05:54 olddotanacs

i Fab 2003 oldenacs.

1306 2003 oshes

14 o 10:80 pors

14 Aug 1o:

35093 e

15 hug O7:41 phonesarted

25 3t 0529)
10 flar 03:04 psgntanto. trt

5 Feb 2003 realorace

25 Jun 05:08 refi leracs <
2 Jun 0503 &

OEBPS/httpatomoreillycomsourceoreillyimages99970.png

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages100097.png
Fllo_Edt Optons Buters Tooks Holp

O0exEdBE s 0BRSS XA

ek on Nock on £12 311 30 vman
B o b e petnat G wind
J A0 e i bove 16 Back agein

s bae ALEL et paLn
[T Mook on Nock an Valtaire Roussemn
&

[]

£ 1€ s the host of tises, it ma the worat of ixes, 3t v he ago of
o s Top L3 et L)

OEBPS/httpatomoreillycomsourceoreillyimages99985.png

OEBPS/httpatomoreillycomsourceoreillyimages100205.png

OEBPS/httpatomoreillycomsourceoreillyimages100223.png
File_Edt Optors Buters Tools Help

OBx @ ROBREXE

Tt vas the Best of canes,
i it vss the worst of tines

7
o dicns PO PR oy T

OEBPS/httpatomoreillycomsourceoreillyimages100209.png
e
o S0t ot et o vy 1

DexdBs s BHRSXE

Ty socomd coccespandant, s1so e sends 2 th folloviza
L S e oF e E
TS I el pesstation, vith
Tertibe Tratmls.

oy express 30 any waraetics of the

T

Janes T undmeneat)

OEBPS/httpatomoreillycomsourceoreillyimages100083.png
| emacs@iocalhostlocaldomain
Fll_Edt_Oplions Bufers Tools Minbur Hop

DB xHEs R 0BRE8 X9

]

23 Mo spoch of inccadulity, 1t ves he
Season of Dagkness, 1t was the sprang of hope, 3¢ vas:tho winter of
3espanc: ve-hod svecyihing before us. we h nothing before ua, e
GerEaTL Gosng direct o Hevven, vo vere ol1 Going direct the other
Sy ark” S pckad s o B ke the

T3 (Tt il
St butfer Tt sscrmea sorell

OEBPS/httpatomoreillycomsourceoreillyimages100149.png
T emacs oFREAWAR
i o Optns ffers Tods b b

DB @B DBRISXQ

110wy Documents Bih L4tz (bared by nae) -

OEBPS/httpatomoreillycomsourceoreillyimages100348.png
R /home/deb/dickens. html = O X]

Flo Zat Opions Bufers Taok NXML UniCrar XSLT Help

DExEHdBS R0DHRS X

REnL L= B /. ¥3. 053/ A998 AL
8 e ot o it

15 s the best of tines, 5t v the st Gf taes, St s the 30 of
o 3% Va2 e 130 GE Foolishnana, i1 was the spash oF Dalie
3"t ol oF Taatedulity, 1t vas che ssason of Lighe. 1¢ ves the
Sensn:of Daskassa, 15 ves Fhe sprina of boper Lt ves thb vinker of
Il e v 5o Far Lake che proiect porsod. ohae
T o I8 rossiask sudhoriics Sasisted on ihs heing Fecesved. for
3993 06 o7 SorL i the svperiacius dsgres of conparison only

SheCE met1eo cdickenstgrest-beyend.con' Charles Dickans: /=
[

OEBPS/httpatomoreillycomsourceoreillyimages99976.png

OEBPS/httpatomoreillycomsourceoreillyimages100035.png
R emacsEiocalhostiocaldomain -Bx

File Edt Optons Bufers Tools Help

DeExl@s sDBRS XA

Lot WricTagaalhelp you smpeose youe unlats of Lfe. Uontever youe
Bl becith poate MeniriLat con scnd rendters:by snasl of cell phons.text
B rexinaing yob fo tha Resicieion. exkiclse Gk o ies ot
atar, o vork a Jouc stress level fou ser the Freguency of
Texinders, and 1at VRiriigia spor you on o neet your $onLo

Keep your Nau Taar's cesolutions vith Whirligigl

Phiescription ALLLL (Text rill)-
Query replacing Vhirligig with heslthoug (

OEBPS/httpatomoreillycomsourceoreillyimages100384.png
06 Emacs@fred.loyinc.pvt
Interval betoeen pollang for input during Lisp execution. Bore|

Help Char: Hide Volugl 4

Sl you hove e tad the valus o text, but you hve not sst th option

Character to recognize os neaning Help. bere

Help Event List: Shaw Volue
Stoter idden, Tnvere "Show” n the previous Tine o shon.

List of nput events o recogm ze as neaning Help. More|
Suggest Key Bindings: fide Valuel Vol Mensf on

Stotel: s option 15 unchanged Fron 155 seandord setking
Non-iL means show the equivalent key-binding when H-x comand has one. More|

Keypad Setup: Hids Volue Velue Men Keep extsting binéings
Stotsl: s oprion 15 unchonged Fron 155 seandord secting
Spectfies the keypod setup For unsh Fiad keypod Keys when llock 15 off. Sbre

See also heypod.e1. L

s

5 = Set For Current Sesston
17 Sove for Future Sessions
2 esat 1o Current

Erose Customzotion

CCFundomnea L)

OEBPS/httpatomoreillycomsourceoreillyimages100033.png
R emacs@localhostiocaldomain -Bx
File Edt Optons Bufers Tools Help

DeExEd@ES $DBRS XA

et Wnirling belg o snpeose your qulity of Life. Whatever youe

I Lottt aals? BesteToy con send roniasers by smail of Seid pis et
nessage soniading you Go taka medication, sxarciss, Grirk 61 ounes of
atar, of vork a Joue stress level fou ser the Freguency of
Texinders, "and 1ot Haalihbug spor you on o neet. Four GonLo

1 eep youe wew vears cesolions vieh seslasmusl

et Pdescription MLLT (Tet rill)-
1. S T T "

OEBPS/httpatomoreillycomsourceoreillyimages100077.png
¥ materialstequest

Fie € Gpons Bufers 1006 Heb

Cex08 >RSI E?

2\tt matersalsreguest A1l (1,53

You uill receive the materials you requesced shorely.l|

Tex anrev £all)

= |
|
|

=

OEBPS/httpatomoreillycomsourceoreillyimages100309.png
il Edt Optons Buters Toos HTML SGML Help

DExEdBEs sHRS XY
5

A Tale of 1vo cities
t

72 tho bost. of tineo S5 s the vt of tines, it 1 ho age of
LAt g A gt i g i
SRS S ot Srctecutsty i vas the semson 3 LA, 1t v e
o it 35 vas S i 5 hope v b i o
T o M il ety o e
ekt S0 o et s s

g shorts the peciod v 45 fuc Lake the predent periad. chat
Toh oR It messeot Mathoritias insisted on 14 being. received, for
7 Gom o For seil. an the svperiative depres of it

oo ikens b T (120) G, Pl

OEBPS/httpatomoreillycomsourceoreillyimages100213.png
R SacsETocatRosTIocaldomann"

Fle S0 Oplons Buters Toos e

DeExd@s s OBREXT

[B oo corcependnt
Gown, 5 i SeSeEAL SeEscks of ohat 0 Saliad merde
prosteation vith tefeibls tnseness

Horo 1o Enuther caso, noce concrote, sise that of & voman T sead you
S

Pp— A =
- (Eondanental)

OEBPS/httpatomoreillycomsourceoreillyimages100372.png
806 Testjava
7 Test jova

Tt
4 moinGstring orasD>
= e HelgerO;
Lprintin e
TprintinG b
“Ecs Test.jova CDE E1Doc S/plugin/Job30:-Lite-ALL=- D]

Set uncought Java. Long. Thronable
Set Geferred uncaight Jove. ang. Throvable
Intializing 36

i Startes: o Fromes on the current coll stock
(1] (1] rtn(1) step

Step completed: “threodnai

. dero. Test.ainO), Linesio biicd

1 e W e el
oo mext

Step conpleted: “threodencun, dano.Test.penn), Lne-Ll beses

117 T e out prneinC status: 8 ho007]
oot 1 K

+-Eics.*debugdems. Test® 8ot 1% [(Comntirun]-

OEBPS/httpatomoreillycomsourceoreillyimages100049.png
L4 emacs@localhiostiocaldomain
File_Eqit Optors Bufrs Toals Help

DeExEHE s BR&XT

’3 o) atin's () Antonio’s (D) antencas (3 Antang's

) Aatons” (€) Antemma's (5) Antoni's (1) ntonino s

S <thoicess - word Antimcos
[Bu cleas-hesded Telenakhos replied

|| ool con 1 venon suine e vt
the mother who hoce me snd sk cace of o7
By Eather 15 sither desd o Far ey
Eh doacly T Shouls pay £or b
/2t Tkarioy hands, iF suer I 5

G-hoc 7 For nore opaons; SP0 to 1esve Unchanged, O
7 §to replace word

OEBPS/httpatomoreillycomsourceoreillyimages100289.png
e £ cpon i oo

DaxBqu@@@B%l

OEBPS/httpatomoreillycomsourceoreillyimages100159.png
T emacs SFREAWAR &
Flo o Optons s Tosh Opms koo amdots S b

O0BxBRS XY

e 4 omer oot 4536 2000720 swoixls A
cerore 1 omer vear 169860 2002 0117 bgettorron. s
P ooz oss B
et omer oot 54336 2000-07-20 _checkbook.x1z =]

1107y Documents 5% 1410 (bared by nawe) - =

OEBPS/httpatomoreillycomsourceoreillyimages100119.png
Fie a1 Optors Butlrs Tools Holp

DEx U@ $BHRSXT

[§ Bately. phimy bk Wi cme fron e staschesd Smncig a bl
I} E(.m,;;u: ﬁ‘f.&;u:”ujxnl:ﬁwgu: o By e s

- ESTRR S Nt—

i Blaces, ping sk mltsgencon fron the stsicasd, bescng s bonk

L SSuateny. sustee muck mligen cans fron the staishead, bescing a bovl

4t eIl ot s LI (sl < Bl 11

OEBPS/httpatomoreillycomsourceoreillyimages100352.png
THoe/deb/ickensHan
e Eak Opors Sutas T XULISGML Mty Mo Mt Ve OTD XsLT Hal |

EEEFT-EEEEIEEYS

e
B 0% rale of Two catiesc/nirle
K mate of v ities:

- Gidemedl T (LD G T B
Extermal entity head rot found

1
Lo wsmeton Lo Gl

7 pontitying | done

OEBPS/httpatomoreillycomsourceoreillyimages100344.png
R /home/deb/dickens. html = O X]
o ot Optons Guter Tads XML Unichar KSLT e

OExHB xDBRSXE

8 e ot o it

15 s the best of tines, 5t v the wnrst GF taes, St a8 the 30 of
o 3% Ve a1t o Foolisnnasa, 31 v the spach oF DelieE it
3"t ol oF Taatedulity, 1t vas che ssason of Lighe. 1¢ ves the
Sensn:of Daskassa, 15 ves Fhe sprina of boper Lt ves thb vinker of

Il e v 5o Far Lake che proiect porsod. ohae
T o I8 rossiask sudhoriics Sasisted on ihs heing Fecesved. for
3993 06 o7 SorL i the svperiacius dsgres of conparison only

35212 ani1be: coickanstgrent-beyond. con'sCharles Dickana</:

OEBPS/httpatomoreillycomsourceoreillyimages100085.png
emacsBlocalhostlocaldomain
Flle €t Optors Bufers Tools Holp

DExlB@s s HBREXE
Ll

]

weeopee MIL (rexe i

I

OEBPS/httpatomoreillycomsourceoreillyimages100332.png
Rg home/debjataleofzcities html = D | %]

Fll_Ean Optons Bufers Tools HTM. Holp

DExHBE $ IDRE XT

3 o

)1t vas the bast of tines, it vas the vocst of tines, St vas che 108 of
T2t S5k of inciadulity, 1t wes the sason of Light, it vas the
o Bbmass (L Toe Speinn o hope s wes i viar o

L ve b svacytiing hefurt ;v hah pothir bafocs we ve
i e ool e, e 21 e e o ke
ot S beriad Poo oo Tc e he pessent peviod, thup
GF 305 mospiest mohoritizs nsisted on i5s heing reeeives foz
G Tor oL She Superiative. Beptes of Congaciamn smy

1
et ataleofZcities.benl 125 (GO.6T) OMU helpec ill)-
[T “Fontifying atelsstocities htal . (Atribites o)

OEBPS/httpatomoreillycomsourceoreillyimages99991.png
EmacsBlocalhostlocaldomain
Flle €t Oplons Bufers Tools Minout Help

IBxEHESY s DBREXA

OEBPS/httpatomoreillycomsourceoreillyimages100414.png
806 Emacs@spike homeportal 2wire.net
EERRICY=F 30

Sqvre brackets shon active islés; s AET or click mause-1
Tt T el oo o g am €1 0 coll it
Invols e firol, (Fecel ov Bpeion] Futeons el o <6t
Shen ke s

L gt

- Grog vty
3 Grmg erert
£~ G Coversece
EI1\ rug ragroming
- G Lorones

11 E3 o Tt
1 €3 sl o
E- G Rstcotions
E- Grug Doetomnt
E- Grug Eviromant
£ Gra oo

Bl
Bl
Bl
[Group Hypemedio
B
=
-
-

x Ceustan)-
Lovirg it et o Lol e, done

OEBPS/httpatomoreillycomsourceoreillyimages100031.png
R emacs@localhostiocaldomain -Bx

File Edt Optons Bufers Tools Help

Dexl@s sDHBRS XA

Lot Wnclagadlpelp you smprove yous qualsty of Life Vmceser your
B Lot soaTa N Tu Tl oo seed sty caa ot SeLL pems tent
Ressage ronsding you fo. taka nedscation. sreiss, drink 64 sunges of
atar, o vork a Jouc stress level fou ser the Freguency of
Texinders, and 1at VRiriigia spor you on o neet your $onLo

Keep your Nau Taar's cesolutions vith Whirligigl

- Phdoscription ML (Text Fill)-

OEBPS/httpatomoreillycomsourceoreillyimages100398.png
RR—
Fi et Gt s 1ok 1.

D i
acveegon ki
1 [ty
[P ——

i T s
G esie s
el mipe (6
U s s e s
Sovehct it S
reiter—
et ror
e e ke
b s Eronment)
srours
o
S ot

[Er—

=0

s, t vas che age of
Shoch of beliet, it
Ligne, 10 s the
as the winer of

OEBPS/httpatomoreillycomsourceoreillyimages100017.png
emac s localhost localdomain-

Fil Edt Optins Bufers Tools Help

DExEHdBES $DHBERE XA

It vas the bost of tines, Lt oo the orat of taes, it was tho 390 of
iadn, 1t vas the ag0 oF foclistmsse, it ¥a5 the apoch of BelioF, it
Bo5 e spoch of incradulicy, 1t vas the season of Light. it vy he
Sosaon of Duckness. St vas the sprung of hopo: 3¢ vas the vinker of
3035 e had suecytiing befort us. ve hel rothing befocs ue, ve
GerE a1l josng durect o Hesuen, vo vere olL Going diract the other
Vayo-in share. the peried wis so far Lika tha present pariod. that
Soha oF 65 noisiest authoritics iasisted on its being socerved, for
008 o for owil. in the sspeciative dsgeee of conparisen oLy

| a— PR ——
[T Mack set o

OEBPS/httpatomoreillycomsourceoreillyimages100408.png
e TR L=)
ot o T G

O>xbRaEXa

-t rven sesse e s ue sestons
oo e o s s coomiccton e

OiredView Commnd it s vl

e e S T
i

o s e

= -
I cstamize tptions B View Comand Alssts T 135

ug

OEBPS/httpatomoreillycomsourceoreillyimages100410.png
TR >
ot o T G

O>xbRaEXa

-t rven sessen e s ue sestons
oo e o s o coomiccton e

Oied view Commana st s vats

e e e LI
oo
oo e e e

= K
T ctamize tptions b View Comand Alssts T 116

L8

OEBPS/httpatomoreillycomsourceoreillyimages100430.png
DOEL praviows AiFF || verthoris salis | la/h copy 43's region 0 Bk

M e e 1 n Cisanang 17 “rebtore bur 13 210 it
3 ot FF |8 cutorefinmne | ¢ recine curent region
g 0t 15 gotntl |1 Clpdote GuFF regions

L ecenser * 1 s -vgnore abntespace |

Y Sserall vavn | #5/eh focua g regons | e -save baf

2 T Wt 1Y Creadonty tn BF X | v -aave 0 FF output
D verants | mwde ey

F oshon resisiny | = compare regions | W -shaw session grop
D AP pus | | F browas EAPE manunll G -aend hug repors
¥ Shatwe nfa |7 Chelp aff i

 sspend/nt

For hels an & specific comend: Click Buttan 2 over 141 or
Put e curaor over 14 o by FET

EALFF Control Panels At stort of 7 aiffs quc felp

OEBPS/httpatomoreillycomsourceoreillyimages100235.png
aou e U
Lhnfas
Ksapeotbonk
Tre ok sl nclsve
Binendedaierce
e dulers
. Gaper
Rinhersebascs

Sopsofosk
okl e
et e
Uniese el
a1
“lhesebass

OEBPS/httpatomoreillycomsourceoreillyimages100029.png
File Edt Optins Bufers Tools Help

DeExlB s DHBEREXE

OEBPS/httpatomoreillycomsourceoreillyimages100457.png

OEBPS/httpatomoreillycomsourceoreillyimages100133.png
fd emacs@localhostlocaldomain 0 ECIE)

il ot Optons Buters Tols Oprat Mtk Regusy inmesiato Suoar Holp

ODEx@BR&EX

B Gt uesd in d‘u’:ctary Js wuhhl: 10080472

b) 058 g 14 16,09

din et
I R N
i G20 1 % 1108 Biokans
i . 54 g 14 12 05 e
i@ da
iao@ N

OEBPS/httpatomoreillycomsourceoreillyimages100291.png
R Tromerdeb/alphanumeric it il - o %

e 2ot Optens Bt Tale 11 I

DexdB@s saBR8XA

abodetoh lnapgcsuveryBIZ346 T890ABCOEP L TLINGP QRSTUWEY
J e T S s orowatt

ot dlpbammeric AL (L35 (@icture cighe L)

OEBPS/httpatomoreillycomsourceoreillyimages100285.png
il G Optons Gutrs Too ol 1

DExEHBE ROBREXY

OEBPS/httpatomoreillycomsourceoreillyimages100073.png
emacsdlocalhostiocaldomain
File Edt Options Bufers Tools Help

DeExHdAS R P REXE

1 Thoush some rofec to then o spineless, sertabeates o b
intozasting, and soaotines delicious Lifo forms Invertabrate

OEBPS/httpatomoreillycomsourceoreillyimages100386.png

OEBPS/httpatomoreillycomsourceoreillyimages100227.png
B4 /home/deb/elephant
Flle €t Options Buters Tools Holp

DExHdBAY Y BHRSXE

(3 S s g et o the sl elopane i oty

ELEPHANT RIDIND PBRIY| 132 nesily upon ua. PLan to be st the S
ECERHNT RIDIND BARTY| | IDisge 508 o6 3:30 on Saturday, Junt 10. &
ELEGHAVT RIDIND oARTY| 1615700 denation pet elophant Fids 1o
ELEGHAVT RIDING ZARITY1 | oquested 1o berbfit tho 265

e clapant A1) (re Il

OEBPS/httpatomoreillycomsourceoreillyimages100183.png
File_ €t Optons Bufers Tools Help

DExEdBS s HBEREXE

785 South hwore
Slainfiela W br09

Brve cecipiont nane snd addzess snd press C-c

| — 2
T it done

OEBPS/httpatomoreillycomsourceoreillyimages100346.png
i it = O X]

Flo Zat Oplons Bufors Taok NXML UniCrar XSLT Help

DexEdB S s 0BHRS X

REnL e B /. ¥3. 059/ 1998 L B
8 e ot o it

15 s the best of tines, 5t v the st Gf aes, St a8 the w0 of
o 3% Va2 e 130 GE Foolishnana, i1 was the spash oF Dalie
3"t ol oF Taatedulity, 1t vas che ssason of Lighe. 1¢ ves the
Sensn:of Daskassa, 15 ves Fhe sprina of boper Lt ves thb vinker of
Il e v 5o Far Lake che proiect porsod. ohae
T o I8 rossiask sudhoriics Sasisted on ihs heing Fecesved. for
3993 06 o7 SorL i the svperiacius dsgres of conparison only

SheCE met1eo cdickensdgrest-beyend.con' Charles Dickens: /=

OEBPS/httpatomoreillycomsourceoreillyimages100241.png
Fle Eat Optons Buters Tools Headigs Show Hide Help]

DEx LAY ERREXRE

OEBPS/httpatomoreillycomsourceoreillyimages100171.png
Rq emacs@localhiostiocaldomain

File Edt Optons Bufiers Tooks Help

ODBx B $0BeXT

[I O Bnace NEVS - histocy of user-vasible changes
Plaase send Enacs bug Teporcs o bug-gru. exacaigm ocg.
e Fila oS
You can narrow nevs to the specific version by calling
Giew-enacs-nevs’ Tith 3 prefix srqunent of by t7ping C-u O-h oo
<Testaliation Changes in'Ewacs 214
“"Eanes inciadss now suppare for Loading inage Libraries on deasnd

8 Bulgarian translation of the Enacs Tutorisl 19 available

emacsrefs ALLI0 (next il

OEBPS/httpatomoreillycomsourceoreillyimages100434.png
8086 Jdex of jgenjemacs - Moziia Firahird

@B B0 momamorsnms: Q
D mie Bwacon Cireses () oy trmkst

2gan2000 09021 6%

il

amcazlLtana
mcazlzana

20 G o O W W o o o o o o o G o o |

OEBPS/httpatomoreillycomsourceoreillyimages100324.png
. B
i B4t Cptors s Tove ALt]

Dbxmqu@m@ax@ |

OEBPS/httpatomoreillycomsourceoreillyimages100063.png
o Edh Optom Butors oo Hob 1

DE*EHRS A DOBREXT

[I cegeet the unfortumate ccourcencell
7
e dotter LR s 1T | —)

OEBPS/httpatomoreillycomsourceoreillyimages100173.png
R4 emacs@localhost localdomain
Flle_Eat Opton: Eufers Tools Halp

DExLBEAs xBDREXA

+a Bulgarian translation of the Exscs Tutorisl is svailsble,

]

ute emacsrefs ot 110 (Temt ill)-
J¥ reyboard macro to edit (c-x e, N-x. C-h 1 or keys): Il

OEBPS/httpatomoreillycomsourceoreillyimages100307.png
il Edt Optons Buters Toos HTML SGML Help

DExEdBEs s0HRS XY

3 o
R Tl of oo eiesc/ios
: !;tha(munx/h

s
B e the oot ot tines 3t s the ot of nes. 3t v th age of
Viomim, T8 WEaehe soe-of Eooliahess, it ves the spoch of beliet:
V23T spethof netsdulity, 1t wes the sason of LLGRE, A vas the
on of Datkaesa, 3t vas the prang of hoge, 3t ves.the vinter of
27 e LB rothing efocs v, ve
“sacs 311 goang dscact. the other
Toh oR It messeot Mathoritias insisted on 14 being. received, for
7 Gom or For seil. an the swperiative deptes of it
densihtl Top (2.0 0N, FiLY)

OEBPS/httpatomoreillycomsourceoreillyimages100360.png
Jhome/debdickens. htmi
Gl Oplors Bufers Toos XMUSGML Modiy Move Marhup View OTO XSLT Help

DeExiBs sbDRSX

FELRENI KD -/ von/om e, 1.0 messitionst 7o
|| ool s mac el e e bt ticnal 4 (1>

e
PO
Ge: i Top 00 oo v e
T ”
Bt ety
i
b et L L0 oA 01

OEBPS/httpatomoreillycomsourceoreillyimages100392.png
ony v e et s

[——

OEBPS/httpatomoreillycomsourceoreillyimages100199.png
Fll €t Optons Bufers Tooks Hol

DExHBAYBHRSR

1 2 5 4 s ‘ 73
1234560901248 TS TBO 12345 TS0 1Z U ETSOD1 23456 T89012345678901 5

To inatall changes, Eype Ooc Ot

OEBPS/httpatomoreillycomsourceoreillyimages100436.png
806 N\ xterm

T —

et help Ch (old downs CTRL and prass)
oo chsee Cxu Bt Easce e
Gota tutorial Tt Uss nfo toresd dees Ch i

(rdorins ransle Ch T
Betivats nembar FI0 e ESC or -

(T o e the LTRL e, - means use the Vet (or f) ke,

1F uou havs i Meta ket U ey inseess tupe ESC Followed by the character.)

U s 21,5.1 (1855-pe-lnussrw)
5 2004-02-51 on Losen
Copuright. (€) 2001 Free Seftuare Foundation, Tnc.

U s cones uith RESILUTELY ND WINTY tups C-h (v For full chtaila.
Easce 1+ Fres Softusror-Free 32 in Fresdon—<o-god con redistributs copios
of Enacs and nadiéy 117 tige L L= 1o sue the corditiirs.
Tape T £d for infornation on tving the Latest version.

T oot m 1
For infornation abost the CHU Project and 165 goals, tupe Ch Cp.

OEBPS/httpatomoreillycomsourceoreillyimages100251.png
Wb o o000 0 i = = %

Fie ot Optons Buters Toot Help |

DExE@s s aBRE X |

o Schodule
yone Eanil ooy]
reed pre—— 09-010-1037
Shiuis Sliasconcistost 09840784
Feicole faciaeise con 770570 767

] ipmmkiyivecon 410785100

e flestine MLES) (et il

i

OEBPS/httpatomoreillycomsourceoreillyimages100101.png
Fin €3t Optane s Tok b

Fie £ Optors s Tols

DeExEdBs s DBRE XY

Flo £t Opton Guthes Toon i

Dexaqum&nexu

OEBPS/httpatomoreillycomsourceoreillyimages100013.png
R rmm——]

Fia_Ean Optors Buters Tools Hop

DExEEY $BHRS XY

s L e

Gl vl mwmu‘., befors us. ue kel nothing befoce s, ve
i G

o Saswen, v vais 211 going Surace. ths sthac
Fac e e pradent porieh. thay

St B e

E cive digces of congariasn enly

S A

Ee e peciod s

OEBPS/httpatomoreillycomsourceoreillyimages100187.png
emacslocalhostiocaldomain

File Et Options Bufers Tools Halp

DExEHdBS s DHBERE XA

755 South hwormn
Pluinfueld W0 07098

Greula dndcoss
76 ELe Sy Terzace
L ogan, W 19361

octabar 20, 2005

e detter ML (ress i,

OEBPS/httpatomoreillycomsourceoreillyimages99999.png
R4 emacs@iocalhostlocaldomain

Fil £t Oplons Burs Tools Holp

DexEA@

L DBEREXE

i

It vas the best of tines, 1t wss the uocst of tines. St vas the age of
wisdan, 3% ua3'she sge of foulishess, it et the spoch of Belisf, it
aa tho spoch of snefedulity, it sas the season of Light, it sas the
Sossonof Darimoss, 3t vas She wprang of Hope, 1 vas the vintac of
A e Rt Scytining befort we, we had nothing before us, ve
VL Al Going darech to Hesven. va wers a1l going diract the othar
aye-in short, he poriod vas o5 Far Like tho present period, that
Sote of 16 moanea® mhorities insasted on 2 beiny taceived for
T ickane P Fundanental) o .

E ol

OEBPS/httpatomoreillycomsourceoreillyimages100271.png
DExHR s DBRS XY

s

xeaeen.ora
Oiviageoncast et
nelad e con

g ava.com

OEBPS/httpatomoreillycomsourceoreillyimages100127.png
B4 emacsTlocalhost localdomair
File Edt Options Buflers Tools Camp

D xBREX

wou snas oo |

o

7

Lie sspemns
X

ene Emacs@Debra-Camerans-ComputerJocsl
DEx RE8X

Debra: Carerons:Canputers |

»
AU Cshettinun--

o Frocs Sshell

macs FREAWARU

B[]

e it opers s Tode Corgite IO
DeEx@mREXE

Microsofe Windows P [Version 5.1.2600) 7]
1€) copyright 1985-2001 Microsot Corp.

Cives sshenns

auis (sheL1szun) -

OEBPS/httpatomoreillycomsourceoreillyimages100005.png
L4 emacsPlocalhost localdomain =8/%]

Fil Edt Optons Bufers Tools Hob

DeoxEdB S # DD REXE

5% T 500 o ool ilhnass, 1t Foe G spach of beLiof. it - the epoc oF 3
Shrceiuiiny 1 vee B Seaagh of LAGhe, it vas the ssasen oF Dackaess: Lt vas 8
Sehe Sorins’or hope, Lt vas the Uintet of despare, ue had. sverything befere bs. 8
¥ berece the Shher vop-an Shore. the piried was oo for Like Hhe present pecicd 3
A% Some of 365 Teliest mathorstacs insistad on 155 bring sachieed, for gosds
S8 R I Rt daates OF conpariarn oy

15 (o

e00 Terminal — emacs-21.2.1 — 91x12

e reriog

v the best of tines, 1t v the worst of tines, 1t v the age ofwriskn, it s the |
o0 o ool aneee L i e cpoch o DELLETs 1t 5 the Spoch of rereaut1hy, L1 uas 1\
et of Ligne, 1 v t1e sesean of Dorined 1 ot ohe spri of nape, 1 et tna w1\
R f Rspai s b sveEyRG Tors Us, ue P08 rathing sfors e, ue s atl Guiry \
direct o Heoner, v ers ol going direct the otrer Ly-_in Short. tra perlos s <o for \
s o

OEBPS/httpatomoreillycomsourceoreillyimages100105.png
i e

oty
matedrsoing

OEBPS/httpatomoreillycomsourceoreillyimages100293.png
R Fromerdeb/alphanumeric it i - o %

e 2ot Optens Bt Tadle 11 .
BeexBEY Y HEBEXD

S B o O s LG
[s

ot dlpbammeric AL (L35 (@icture cighe L)

OEBPS/httpatomoreillycomsourceoreillyimages100255.png
e Optons Gus oo Hep 1

DExERS REBRSXE |

o Schodule

yone Eanil ooy Boues
reed pre—— 0361707 7204

Shiuis Sliviasconcistose AADOM0764 d.00-8.00
Sescote 5707678 10.00.7.00

Mein Ao Haaa

OEBPS/httpatomoreillycomsourceoreillyimages100055.png
f4 emacs@localhostlocaldomain

File_Eqit Oplons Bufrs Toals Minkouf Help

LDExHEs y0BREXE

©Wlde (1) el (8) wled () walds

E schgiosst < word: vl
Tather 15 olther desd or far aw
(B DGeari T Shouta poy for_his
St Thariol hands, if buer 1 sent hec hack,
J e povets of dacknss widreqite. 16, 100,

00y e @) et @ vl O veld @ yod
) vilds

y Wikher s pacting erse wila cail hel's fries
£ punish e, along wach the scom of nen

OEBPS/orm_front_cover.jpg
A Guide to the World’s Most Extensible,
Customizable Editor

5 ® Debra Cameron, James Elliott,
O REILLY Marc Loy, Eric Raymond & Bill Rosenblatt

OEBPS/httpatomoreillycomsourceoreillyimages100053.png
f4 emacs@localhostlocaldomain

File_Eqit Optors Bufrs Toals Help

DeExEHE s BRE XD

[00 vld () vould (2) vald (%) veld (@) yold
{76 e ok T eks 6 e’ 6 i
“Choiosst - word wild
My Father is either dead or Far avay,

B S el G,
S AR g bk
B R et T,
T poere of Setioens midemate s
i g S e b
P ey ey
; ot et paan -
T vors e, Seo s Lo et 0
¥ ot coprace wore

0

OEBPS/httpatomoreillycomsourceoreillyimages100342.png
i it = O X]
Flo Zat Opions Bufers Taok NXML UniCrar XSLT Help

DExHB BRSO X

Lo
8 e ot o it

I5 s the best of tines, 5t v the st Gf aes, 5t a8 the 30 of
o 3% Ve a1t o Foolisnnasa, 31 v the spach oF DelieE it
3"t ol oF Taatedulity, 1t vas che ssason of Lighe. 1¢ ves the
Sensn:of Daskassa, 15 ves Fhe sprina of boper Lt ves thb vinker of
Il e v 5o Far Lake che proiect porsod. ohae
T o I8 rossiask sudhoriics Sasisted on ihs heing Fecesved. for
3993 06 o7 SorL i the svperiacius dsgres of conparison only

ShecE met1eo cdickenstgrest-beyend con' Charles Dickens.

OEBPS/httpatomoreillycomsourceoreillyimages100458.png

OEBPS/httpatomoreillycomsourceoreillyimages100400.png
 emacs SFREAWARL 1ol
P o ot s Tk S T

DBxEEs DERE X8

o dom 9 b e v

OEBPS/httpatomoreillycomsourceoreillyimages100065.png
© 0O Emacs@Debra-Camerons-Computer.local
e = m e
@ \

Bt cleor-headsd Telenakhos replied:

antumocs, con 1 barish agatnst her w1l
the nother who bore 12 ond. <00l cara of ne?
My Father 15 evther dead or far anay,

bt dearly 1 should pay For_this

at Tuarios' hands, 1 ever T serliher back.

The peers of darkness w1 reqiite 1t, too,

ny mother s parting call Fries

o punish ne, along w.th the scorn of men.

No:'T con the il for this. .

Emcs _odys: Top L7 (Text Fill):
Spell Checkung completed.

OEBPS/httpatomoreillycomsourceoreillyimages100311.png

OEBPS/httpatomoreillycomsourceoreillyimages100402.png
5 omacs SFREAWARU
Pl Optons s To%s Guton 1ok

DexBbHRE&XE

e peseoce Soos Sovive Sieids e AET 9 oLIGK mouse-d
Tovoe Bali for mce tntormtion

Opecate on everyehing in this buss
Sec for Current Sesason Save for Future Seassons|
Resse] Reser vo saved Erase Cusvomizscion Finis

Dired View Command Al wids vasas
08 D11 Regusrt (11 (omIpn_pmgemk epsu "

s o meort e
P

s o eyt (o

String: xavi -eidemargin 0.5 ~topmrain 1 v

s
“iit+ scastemtze Gption: Dised View Commnd Altsts Top 11 (custonyt

OEBPS/httpatomoreillycomsourceoreillyimages100219.png
O0exWJdBAY sDBREXE

[ty sscond coccospondo. 1o 3 vonan, sends o e Gllovied

OEBPS/httpatomoreillycomsourceoreillyimages100428.png.jpg
6 0 Okt
17 -quck help
4

OEBPS/httpatomoreillycomsourceoreillyimages100007.png
{pesusoe)
o o
oatwar- -
dance))
I

(nentte)

OEBPS/httpatomoreillycomsourceoreillyimages100051.png
L4 emacs@localhiostiocaldomain
File_Eqit Optors Bufrs Toals Help

DExHEA ROBREXT

’g 00 povers (1) povers (2) pevees (3) pover’s (4) peers
7

() piors (5) poers (1) owers (&) powss's (9) peres

“choicess < word puers
Father 15 either dasd or fac avay,
B deacly 1 should pay for this
2 Tiariod hands, iF sver T sent hec back.
The oecollof darkiess wiid zequite ot coo
By WARer s parting ersé wild call nel's fries
£ punish e, along wach the scom of nen
Mo 7T can nves giv.the ved for this.
Bt 18 (Temt PiLL)-
G-hac 7 For nore oprions; SP0 to 1esve Unchanged, O
7 §to replace word

OEBPS/httpatomoreillycomsourceoreillyimages100299.png
Fie B optons outers Toos ep

OexEBs OB RSXE

o grRFRN Top (5,55 (Pacture Tight Actist/sprag-can FiLL)

OEBPS/httpatomoreillycomsourceoreillyimages100009.png
T el
e
e
g e
mmm e e
eI L L
T e e s i
st
e

OEBPS/httpatomoreillycomsourceoreillyimages100450.png
R emacsOlocalhost localdomain 444

Fie Eon Optans Evts Tools o Hap

xenpdopPIOR

iLe” e, Yode. mitimtler

The Minibuffer

The oninibutor o the facility veed by mecs comnds o o
I e e e, T4rp Bt ra, oscs eopaend
g e e g

Ll b b s Ry
ST 3 ot Wch sops vhot Kund of drpee v haxia supply
v w01 B uaed " OFten Ehis prompe 3 deckved Fron che nang of e
Coman e st o Fot.| B piont ekl s 1 5

) cotom

[e () Minntice Top L (i dbres Noren)

OEBPS/httpatomoreillycomsourceoreillyimages100237.png
ALl about the Universe

*Preface~

**Scope of the Book
ccf, This book is all inclusive o
»+*Intended audience
Universe dwellers
*Chapter 1+
»**niverse basics

cecn cep

e

OEBPS/httpatomoreillycomsourceoreillyimages100003.png
Eit Optons Bufers Tools Holp

DeExl@» $0HBHREXE |
L]

It vas the best of tines, 1t wss the uocst of tines. St vas the age of
7 widon, ‘3% vaa'the sae of foclishuss, it wes the spoch of Belisf, it
tickens i

ot fume the comand nsert-fiie
"Vhich 1s sn interective somptled Lisp fumction in *Filss'
U xe B50und 1 TGS R SR
Ginaace-filo Felanans)

Insest contents of Fils filenane into buffer after point.
L eyt f ke fulenvae into but
1% “Iype 6o 1 to cenove help window | O-H-v to soroll the help

OEBPS/httpatomoreillycomsourceoreillyimages100059.png
L4 emacs@localhiostiocaldomain
File_Eqi Optors Bufrs Toals Help

DExHA ROBREXT

’3 00 couse (1) curse (3) Case (3 Cres () case
7

() Geeos (5) cazes (1) cores (&) cries (9) suces

“Choicese - word crse

Father 15 either dasd or fac avay,
B deacly 1 should pay for this
2% Tiarios' hands, iF sver T sent hec back.
The povess of dackness vasld fequite it oo
. mother s pacting ceselould call hel's Fries
£ punish e, along wach the scom of nen
No 7T can nves giv.the ve for this.

Bt 18" (Temt i)~

G-hoc 7 For nore oprions; SP0 to 1eeve Unchanged, O
7 §to replace word

OEBPS/httpatomoreillycomsourceoreillyimages100023.png
emac s localhost localdomain-

File Edt Options Bufers Tools Halp

DExEHdBES $HBERE XA

It vas the bost of tines, Lt oo the vorac of taes, Bt was tho ag0 of
iadon, 1t vas the ag0 oF foclishmsse, it ¥as the apoch of BelioF, it
03 Che spoch of incradulity, 1t vas the season of Light. it vy he
Sosaon of Ducess, St vaa the sprang of fopo: 3¢ vas the vinker of
B3R e had suecytiing befort us. ve hel rothing befocs ue, ve
GerE a1l josng durect o Hesuen, vo vere olL Going diract the other
Vayo-in share. the peried wis so far Lika tha present pariod. that
Soha oF 65 noisiest authoritics iasisted on its being socerved, for
008 o for owil. in the sspeciative dsgeee of conparisen oLy

e dickems Top 11 (rest L),

OEBPS/httpatomoreillycomsourceoreillyimages100099.png

OEBPS/httpatomoreillycomsourceoreillyimages100380.png
806 Emacs@spike.local

D x HRE XE

s < o custamzotion e for groum L

Fovced” bairs. shon cctive Feles; type AE7 o cluck muse-d
or'an aciva Foeld 13 Sriole 16 sciion, Eniang o sphan salue
Changes sh. toxt 1n he Bufrer: Lnioe ihe Stace utton ond
chaoie the Sat speration o set the option valus.

Tnuske HeTp for more srfomasion.

Opercte on everything in this bubFer:
- for Current Sastion Saue for Futre Sessierd
Resat oot <o Saued Erose Costamzstion Fimen

77 180 grow
state: nsible oo
Internatianolzotian and aliern

See atso el
Ut Mime Language String: Shon Valus|

Skate: idben, smoke -Shon' in the privious Tine o show.

set suppane.

£z *Customze Gre

OEBPS/httpatomoreillycomsourceoreillyimages100322.png
FemacsorROWARG o)
Fie Gt optees e Todk HIL e

DExEdBES *TBREXET

s>

<aadress></ataress>
<Ibody> </ntmi>

s\er new.nemy Allts (L melper)

OEBPS/httpatomoreillycomsourceoreillyimages100221.png
File_Edit Optors Buters Tools Help

OBx A ROBREXE

[I It was the bost of cines, Jc vas the worst of times

7
wr dickens PO Aoy T
g

OEBPS/httpatomoreillycomsourceoreillyimages100366.png
806 Emacs@ired.Joyine.on
D& x (=3

Use amouse-2- or C-c C-c on o foce nane o cussam e 1t 2
o on v sl sert for desripiion of e Face ‘

urfer oce abcderghiJklanopars tuvwsyz ATCDETGHLXLINOPORST!
U515 abcderghi)k Lanopars tuvesyz AICDEFGHLXLMNOPOFST!
bold-1{a0s¢ gbeder gh 2k Lemopirs covms s ABCDEFGHT KLNOPDEST >
Sariar
atien pbcsstom 1 Imaparstuvetys AUCOE U DN Dy
nntrstons o o ShcdeFaR T RO o ABCOCTHL R OFORST
Ehanae-on-ackron ssqemert- ace
Ehande-og-cont siona 5 Face 3
Chanis: og-dote-Foce
chanae- Too-smm1-face
Chanae-Tog 7T Face cbedergn JKmorarscavme)2 ABDEFGHT KLMEPGRSTANZ
chonie-{og-torceion facs
Ehange Tog- 1ot Foce i
Ehange Tog- e foce
o ne QT Ghe it abedeFgh) lmnapars tuvweyz ABCDEFGHTKLINOPQRST>
R RIGh LG gramgt abcderon I Imerareovnty EDEFCHTIMEPORSTIVNAY
Conpora-w o Foce obedar] mopar st ARDEFGHT KLMEPGRSTI

commilotion o foce 5
congr o noem:face 3

Camploctonscomnpart abcdafoh mepaescovndy: ACOEFGHLKUNEPORSTNTNZ

B T e

E— Top L [Gietp e

OEBPS/httpatomoreillycomsourceoreillyimages100404.png
806 Emacs@spike.homeportal.2wire.net
Dex RS X

This < o custamsation uffer.
Botsed” butiors. show cetuve Fields; e FET an click nouse-1
on'an ocstve Freld @ Lrvole 15 ockion. Edicang on option value
Ehanges he.text 1n the buffer: ke ihe Stata btton and
Crance the Sat cperaticn o st the Sption el

Tnvave falg for more srfomotion.

Operate on everything in ths bubr:

Set for Current Seceian Save for Future Sessions
Rezet feset o Sme Erace Customzotion Fumen

Dired View Command Alst: Hids Volue
DI DEL Pegeca: [I\(os\Ips.poges\lepst)\"

Strung: v -spurtan —cator -notch 3
D O Regeo: £ Jpdr\"

Siring: o
1 OB Pagers: LN\ A Ipra VN’

Chrung: g 3¢
11 OB Pegery: L3dm\'

String: 1 -sudemarain 0.5 -toporain 1 %
By

St you nave edtted the value

set the option.

st spectFyirg how 20 en special types of Files Hide Rest
Each elavent hos e forn CEGEIP . SELL COUID).

When the FLle rane masches FEGEP, durad viow FLLe"

okes: SHELL CMAID o en sne LS, processing Lt sheaugh Foreot
Use 35" 1n SHELL-COMAD 0 specLFy whore <o put the File rare.
Parent groups: Dired

Parent. documentation: Mansal

ieefracs *Customze Option: Dired View Commond Alists A1l UG (Custon

OEBPS/httpatomoreillycomsourceoreillyimages100111.png
R emacsOlocalhost localdomal 44

Fie Ed8 Optans Buters Toos Holo

DeExdAs Y 0BRSS X
T

Seaerat sesaiks of shat 19 colled norecis Fio
i e,

i cha e i
SR SRR R

i
v ogmes amum e
(T

that of 5 vonan. 1
SNy veriseise of

OEBPS/httpatomoreillycomsourceoreillyimages100087.png
806 Emacs@Debra-Camerons-Computer.local

DExEdB s xR REX
1

e PRI

Y sutter menu

L was <he worst of e, 1t vas the age of
Foolishness, 1t was the epoch of beief, 1t

W_ Fundamental

& Others. > dickens [Users/deb/dickens
o Joyce /Users/debljoyce
Sara oF ts nolstest outn odyssey /Users/deb/odyssey

cood or for oL, in the ! paras /Users/deb/paras

Emce dickens AL (et L

OEBPS/httpatomoreillycomsourceoreillyimages100193.png
File_Edt Optons Bufers Tools Help

DExEdBS 0BRE XA

OEBPS/httpatomoreillycomsourceoreillyimages100075.png
T e hmaterialsrequest M=)
o £ ovirs s Tk o

Cex08°>@IP?

You will recieve

S1\tt materialerequest

AL (1,16) (Texe wprev FiL

OEBPS/httpatomoreillycomsourceoreillyimages100121.png
I emacs SFREAWARU BEX]
Pl £t optons Bufers Toe MnbdFelp

DB xE@AS YTBHREXA |

Bim o0 ss5-2112
Afred (212)555-7812
Denize (904) 535-0932
Yarzin (514)555-7678

~-\%% phonelist AL (Fundamental) ==
Shell command on regi

OEBPS/httpatomoreillycomsourceoreillyimages100438.png
CXaXs) Terminal — tesh (ttypd)

P ———

oot ol € (Hola doun CTRL ar pross)
o crorgee Coru Bt Eaoos exce
Gt titorial Cn b Use Info to read decs Ch o

Drdariv naels € BET
oo neons use the CTRL key.H-" neans e th et or ALE) key.
1 you v s et ke, v ey instaad e ES folloves by tre charocter.)

If on Ewocs session croshed recently, type Nex recover-session RET
to racover the files you vers editivg

W0 Erocs 21.2.1 (poverpe-cpple-darvin.a)
of 2085.40-17 on Localhoet
Gopriant. (C) 201 Free Sortuore Feundaticn, Inc

For \AFGINaEAGn Sbot the- GR) Project i 115 oats, type C-n Cp-

OEBPS/httpatomoreillycomsourceoreillyimages100079.png
Fils Eon Optons uters Toos Holp

DExUBAY Y RPRS XA

o

Fllo_Ei Optons Buters Tools Holp

DExUE» DD XY

e clear-hoaded Telenskhos repliod

tha ReTer vha bace ne nd Saok cars of a7
et iy

Bie Bearly T Shouia pay for thae
S Tiariol hands, (F boat 1 3ent
e precs of dacvers wid regvit
Bl ST T T e e
53 punih ne: along vich the scorn of nun

o Feon T i the wxd o this

OEBPS/httpatomoreillycomsourceoreillyimages100440.png

OEBPS/httpatomoreillycomsourceoreillyimages100338.png
Emacs File Edit Options Buffers Tools Minibuf Help

006 EmacsaDebra-Camerons-Computer.Jocal
DexEdE s s TERQE8 XE

cpan Jim > 0

Schaptar.
s tnmaatad Typesersi s

ure

Tn previaus chopters, e've seen the k1 teralaclosse/titeral>

Veymerd uaad s define class sypes, and the

ST intartocec)| ot 1 keprd veed o define interfoce types.

T’ chapter Anirodices the <1\ ro e orols Keyuord, aRLEn

55 used o define on enunerated type Cunforlly called an enun).

Eruneroted Sipes ore nea 1 Jova 1.5, ord the Featunes described :
here comat e used (olthough they can'be partially sumsiaeed) prioe .
Eacs Top s OM. Abbren-

i

OEBPS/httpatomoreillycomsourceoreillyimages99977.png

OEBPS/httpatomoreillycomsourceoreillyimages100135.png
T o oFREAVARY ol
ot oo e o o ik oo e S8 10

DexmRSXE

Som o oo 2]

OEBPS/httpatomoreillycomsourceoreillyimages100406.png
Obred View Command Aust: (SIS
IS DEL Regesp: £.1\(ps\Ipspagesleps\O\"
g o g sta ok s
5 0 vy Eape
g o 3
D5 06 e LT A RN
)
¥

String: . ~sugemrgin 0.5 -togmargin 1 %

Sttt optuan vs uncranged fram 165 stondre secting

OEBPS/httpatomoreillycomsourceoreillyimages100139.png
806 Emacs@Debra-Camerons-Computer.local

IR EEREXE

Taeh
1aeh
1deh
T
1ad
1deh
T
1ad

1
1ad
1 deb
L

stoft
Storr
Storr
Ztaff
Storr
Storr
Ztart
Storr

staff
Kart
Storr
e

1w
]
517

6417

14 fug
2
2
10 il
5 i
2 Jin
2 un
= s

2 sep
106
et
17 i

¥ L1

10:3
05:30 fihane.

05:29

08:64 psglanfo. e

2003 redlorace

05:08 rofillenacs

05:03

2003 rapeotedindentiotionord

2003 ruter]
2003 Senseiie. tex

3002 :
e —— 5

ured by nare).

OEBPS/httpatomoreillycomsourceoreillyimages100422.png
check out

=

i Ghago commens
(optona, butyou shouk)

OEBPS/httpatomoreillycomsourceoreillyimages100315.png

OEBPS/httpatomoreillycomsourceoreillyimages100305.png
R4 Thome/deb/dickens.hitml
File_Edit Optons Bufers Tools HTML SGML_ Help

DExEB XOBERS X

A Tale of Two citiesc/i1>

Codde
>tharles Dickensc/a>

.

s

<minly

dickens henl 211 (1.0

OEBPS/httpatomoreillycomsourceoreillyimages100137.png
T o oFREAVARY |
Tt oo e Toh L 6

DeExEEs 0BR8XE

S22 2001

o 0715 12134 Coorics
B e

iiee messtiomss aiui (russamenal -
Delete D [3 files) (ves or no)

OEBPS/httpatomoreillycomsourceoreillyimages100461.png

OEBPS/httpatomoreillycomsourceoreillyimages100103.png
R cmacsElociThostlocaldomain

Fllo_Eat Optons Buors Tols lp

OBx B $ BRI X

(5 e o1 going dicet oo Sewen v vece oL g Gcect e st
Lo S ittt semnoriciss aneisted on b heing ceieibed for
B8 6 oz ol e " SCpecTelve Sogres”of conparioon endy.

S e v,

S
=

56 T itecsture sk
= e

1 T e Rucersomes
20680 Tired by omse)
Top 1 (Butter Moy

OEBPS/httpatomoreillycomsourceoreillyimages100269.png
emacs G FREAVAR

e € cpors S Tk o
OExE@ $DBHRESXEG

OEBPS/httpatomoreillycomsourceoreillyimages100303.png
Fle Eat Optons Suters Tools Miabut Help]

DExHEss Y ERREXE

heal>
hends
<itiof

OEBPS/httpatomoreillycomsourceoreillyimages100454.png
Fie_Ean Optans Butes Tools o Help

x 5 5RQPDOE

Mare: Keyheacs oseo Fang. Up: Reyboard Waecos

“Hox stk aaceo:
ThSert i the Dugter o Keyboard naceo's dofinition. a0 Lisp cods

o ook o
S peaviously defined kaghosed sacro edit-Mod-aaceo')

Run the Laat keyboard naceo on each canplete line in the cesion
[e e i)

o stact dafining o keghoncd macro. type the 6ox (- command
e e)
et T e P S AR T e
e o) o (octo st 1 teicates ta
Sefimition (athout hecaning PRES of 1817 For svanple

Sox (0t foo 0ox)
ciniae

8145 (anto ambrey Maszow
o rertere Linae ia et Tt L eie it

OEBPS/httpatomoreillycomsourceoreillyimages100107.png
Fie_Ed8 Optans Buters Toos Holo

OeExAsx0BREXE
L]

g aitsty 1wy

Tt of batbaass 15 s The Springs T Sy

e e eyt ekl e Tad srerytring befort a3
i S AR

G S TR

OEBPS/httpatomoreillycomsourceoreillyimages100191.png
8606 SRAGACKE Chnarate-Conptcioa

Dexd@s8BHRE X

17 you haven't seen < yet, check aut the Lost Sheleton of Cadawra
araltir ot

Hekp: . gl coms s/ sony._pic tures/Lose_skeletan). The
uatog 15 beyond ridiculous ond £ 13 the acting. Hell worth o
Fentat Far Plan 3 ond Fd Waog Fors.

The tratler doesn’t do this Flick Justice, DD, though Lt glves o sense
Ehat you're not aunng 0 have to Sk 0o hord Wit Lo louaning sour
Wy through s ndependent Filn force.

T th the crisics on dhes one; aught 12 nas horrible, say over
ane o, Atmasherium 71 s
1

Emcs skeleton Tepl3 (Tt AID-

OEBPS/httpatomoreillycomsourceoreillyimages100376.png
806 Emacs@fred.loyinc.pvt

“Ws 15 0 customzation bufFer For group Enocs.
Rased buttons show oceive Frelds; e FET or click mouse-1
onon active Feld 5 inole 1 bs action, L ting on cpiton velue
changes the_text in the buffer; Lnvoke the State button and

choo operation o set the optaon volue
Ilmt are wnformecion.
Operaty o7 Frerything in this buffer:

Set for Current Sessior Save For Future Sessions.
Reset Reset to Saued Erose Customzotion Fimen

7- Emacs group: -
Statal: visible growp menbors ore o1l o stondand seteings
Custom otion of the One True Edvtor.
Ses also Mool

eoe Emacsaired oyinc.pvt

T 12 o custom zation buffer for group Eracs.

Rotsed" buttons show octive FLelds; type RET or click muse-1
on'on ociive Fela o tnvoke 145 ackion, EGiting on cpron value
Chnges the text 1n the buffer; tnuoke ine State button snd

oot operation o set the option volue.
o m or nore 1nfornation.
Operate on everything in this buffer:

Set for Current Sessior Save for Futurs Sessions
Resett Roset & Soved Erose Costumzonion Fumsh

/- Emacs growp: -
Statal: visiole grovp menbers ore oll ot stondard settings
Custom otion of the One True Ecttor.

See olso Honial.

OEBPS/httpatomoreillycomsourceoreillyimages100045.png
R emacs@iocalhostiocaldomain -Bx

lo €1 Optons Buters Toas Holp

DeExEd@Es 0BRSS XA

Lot Hesltsdudloelo you smprove yous qualsty of Life Wmsceser your
e poats hosteTous con end rndaders by caasl of Sobl Beine test
essage roniading you fo.taka Redication. reiss, drink
atar, of vork a Joue stress level fou ser the Freguency of
Texinders, "and 1ot Haalihbug spor you on o neet. Four GonLo

1 eep youe vew voacs cessiutions vieh Beslenmug)
st PRdescription ML (Tet Fill)-
T Query Feploring bug vith Bot. (¢ for help)

OEBPS/httpatomoreillycomsourceoreillyimages100021.png
emac s localhost localdomain-

Fil Edt Optins Bufers Tools Help

DExEHdBES $HBERE XA

It vas the bost of tines, It oo the vorac of ties, it was tho 390 of
iadon, 1t vas the ag0 oF Foclishmass, it ¥a5 the apoch of BelioF, it
03 Che spoch of incradulicy, 1t vas the season of Light. it vy he
Sosaon of Ducess, St vaa the sprang of fopo: 3¢ vas the vinker of
B3R e had suecytiing befort us. ve hel rothing befocs ue, ve
GerE a1l josng durect o Hesuen, vo vere olL Going diract the other
Vayo-in share. the peried wis so far Lika tha present pariod. that
Soha oF 65 noisiest authoritics iasisted on its being socerved, for
008 o for owil. in the sspeciative dsgeee of conparisen oLy

| e— R ——
[T Mack set o

OEBPS/httpatomoreillycomsourceoreillyimages100263.png
Wb o o000 000 = = %

Fie ot Optons Buters Toot Help |

DExEBs s aRRE X |

o Schodule
yone Eanil Bouss
Shiuis Sliuisconeist.net 5006 20
Feicole faciaeise con 10°00:7.00
Mein Dk 565370

7
e flestine M3 (et il

i

OEBPS/httpatomoreillycomsourceoreillyimages100275.png
g

il E¢ Euters Toas Halp

DExHEAY REBREXRT

Luee draing AL (1,56 (@actuce: dovn Owet PALL) -

OEBPS/httpatomoreillycomsourceoreillyimages100069.png
© O O Emacs@Debra-Camerons-Computer.local

i =0 i mEEa
o) |

Bt cleor-headsd Telenakhos replied:

Antncos, con 1 bantsh agaunst her 1l
he mother sho bore me a0 Goo core of 167
Wiy Focher 12 esher deackar o avay.

but dearly T shoutd pay for s

ot Tuarior” hands, \F sver T sant he back.
The peers.of darkhess w4 reqnte 1, 120,

iy mother’s parting curdle < call fries
o punish ne, along m.&n the scorn of ren.
o' T can the ! for this. .

Emcs Top 19 (Text AL

OEBPS/httpatomoreillycomsourceoreillyimages100163.png
R cmacsolocalhostlocaldomain —==

Fie Otons Buters Tooe Scrol Goto Halitays Dray oo Flp

DExDREXT

J Briy Bhr g N e W

) Vel Syt 2 00t Favinon 12 29pn ()
Sneiiny segbanpee 25, 2004 tom Fappuc

Wetabls Dates rom July to Septanber, 2004

R 120 %
s80daEid s 7§ ual
whiEbE Blusebh
MELXEDE BhEBRui

OEBPS/httpatomoreillycomsourceoreillyimages100225.png
Flle €t Optons Buters Tools Holp

DExHdBY $DBRE XE

ELERHANT RIDINO PARTY 1

" a0 e
Fall-prefix ELEPRANT AIDING PARTHI| 1

OEBPS/httpatomoreillycomsourceoreillyimages100362.png
Rq macsElocathostiocatdomain
Fie Eot Optom Buters Tos T e |

DExLBs s aBRE XA |

Rocumentcloss [12pt] article)

\beginidocument)

A
A of o caties
2 aons.

Output veitten o dickens dvi (1 page, 1176 byees)
| Teataceipe wrieha on eiokens. Log
g

cui D‘u»—-hell' Bot L13 {TeX-Shell run Shell-Conpile)
T Poreing seeor nesseges

OEBPS/httpatomoreillycomsourceoreillyimages100459.png

OEBPS/httpatomoreillycomsourceoreillyimages100131.png
606 Emacs@Debra-Camerons -Computer.local

DB x RS XE \

v Lo st 4 A LU vk
e Comrors-Camtar 1 -1a

ek Fped oo X

Detra-Conerans Carpuser]

*-Erocs shell® Bot 12624 (ShelLzrun):

OEBPS/httpatomoreillycomsourceoreillyimages100354.png
Jhome/dek
Flle S Oplons Bufers Toos XMLUSGML Mady Move Marup View DTD XSLT Help

ExHdBEs s D8 X

heat

PR Tale of oo Civiesc/eie
s
ey
K Tate of o Gitisc/hl>
ks

| RS

o ks Top 0.0) Gow wsr v
Extermal sntity head rot found

w0y

