
 Linux
Pocket Guide
ESSENTIAL COMMANDS

Daniel J. Barrett

3rd Edition

Daniel J. Barrett

Linux Pocket Guide
3RD EDITION

978-1-491-92757-1

[M]

Linux Pocket Guide
by Daniel J. Barrett

Copyright © 2016 Daniel Barrett. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Nan Barber
Production Editor: Nicholas Adams
Copyeditor: Jasmine Kwityn
Proofreader: Susan Moritz
Indexer: Daniel Barrett
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: Third Edition

Revision History for the Third Edition
2016-05-27: First Release
2016-07-22: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927571 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Linux
Pocket Guide, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491927571

Table of Contents

Linux Pocket Guide 1
What’s in This Book? 1
Practicing with This Book 10
Getting Help 11
Linux: A First View 13
The Filesystem 17
Shell Features 26
Basic File Operations 47
Directory Operations 52
File Viewing 55
File Creation and Editing 63
File Properties 69
File Location 81
File Text Manipulation 92
File Compression and Packaging 108
File Comparison 114
PDF and PostScript File Handling 120
Printing 124
Spellchecking 126

iii

Disks and Filesystems 128
Backups and Remote Storage 134
Viewing Processes 138
Controlling Processes 143
Scheduling Jobs 148
Logins, Logouts, and Shutdowns 154
Users and Their Environment 156
User Account Management 161
Becoming the Superuser 166
Group Management 167
Host Information 170
Host Location 174
Network Connections 179
Email 184
Web Browsing 188
Instant Messaging 193
Screen Output 198
Copy and Paste 204
Math and Calculations 206
Dates and Times 211
Graphics 215
Audio and Video 218
Installing Software 223
Programming with Shell Scripts 232
Final Words 248

Index 251

iv | Table of Contents

Linux Pocket Guide

Welcome to Linux! If you’re a new user, this book can serve as a
quick introduction, as well as a guide to common and practical
commands. If you have Linux experience, feel free to skip the
introductory material.

What’s in This Book?
This book is a short guide, not a comprehensive reference. We
cover important, useful aspects of Linux so you can work pro‐
ductively. We do not, however, present every single command
and every last option (our apologies if your favorite was omit‐
ted), nor delve into detail about operating system internals.
Short, sweet, and essential—that’s our motto.

We focus on commands, those pesky little words you type on a
command line to tell a Linux system what to do. Here’s an
example command that counts lines of text in a file, myfile:

wc -l myfile

We’ll cover the most important Linux commands for the aver‐
age user, such as ls (list files), grep (search for text), mplayer
(play audio and video files), and df (measure free disk space).
We touch only briefly on graphical windowing environments
like GNOME and KDE, each of which could fill a Pocket Guide
by itself.

1

We’ve organized the material by function to provide a concise
learning path. For example, to help you view the contents of a
file, we introduce many file-viewing commands together: cat
for short text files, less for longer ones, od for binary files, and
so on. Then we explain each command in turn, briefly present‐
ing its common uses and options.

We assume you have access to a Linux system and know how to
log in with your username and password. If not, get your hands
on a Linux “live” DVD, such as Ubuntu, Fedora, or Knoppix,
which you can boot on most computers to play around with
Linux.

What’s New in the Third Edition?
New commands

Technology changes quickly, and some commands that
made sense to cover in the first two editions are barely
used today. We’ve replaced these commands with new
ones that you’ll find immediately practical on a modern
Linux system.

Runnable examples
You can now download a set of files from the book’s web‐
site and run the book’s example commands as you read
them.

Goodbye, GUI applications
We no longer cover applications that have graphical user
interfaces, such as photo editors and web browsers, in
order to focus purely on commands. You can find these
applications yourself pretty easily these days just by
searching the Web.

What’s Linux?
Linux is a popular, open source operating system that competes
with Microsoft Windows and Mac OS X. Like these other oper‐
ating systems, Linux has a graphical user interface with win‐
dows, icons, and mouse control. However, the real power of

2 | Linux Pocket Guide

http://ubuntu.com/download
https://getfedora.org/
http://www.knopper.net/knoppix/index-en.html
http://linuxpocketguide.com/
http://linuxpocketguide.com/

Linux comes from its command-line interface, called the shell,
for typing and running commands like the preceding wc.

Windows and Mac OS X computers can be operated by com‐
mand line as well (Windows with its cmd and PowerShell com‐
mand tools, and OS X with its Terminal application), but most
of their users can get along fine without typing commands. On
Linux, the shell is critical. If you use Linux without the shell,
you are missing out.

What’s a Distro?
Linux is extremely configurable and includes thousands of pro‐
grams. As a result, different varieties of Linux have arisen to
serve different needs and tastes. They all share certain core
components but may look different and include different pro‐
grams and files. Each variety is called a distro (short for “distri‐
bution”). Popular distros include Ubuntu Linux, Red Hat
Enterprise Linux, Slackware, and Mint among others. This
book covers core material that should apply to every distro.

What’s a Command?
A Linux command typically consists of a program name fol‐
lowed by options and arguments, typed within a shell, like this:

wc -l myfile

The program name (wc, short for “word count”) refers to a pro‐
gram somewhere on disk that the shell will locate and run.
Options, which usually begin with a dash, affect the behavior of
the program. In the preceding command, the -l option tells wc
to count lines and not words. The argument myfile specifies
the file that wc should read and process.

Commands can have multiple options and arguments. Options
may be given individually:

wc -l -w myfile Two individual options

or combined after a single dash:

What’s in This Book? | 3

wc -lw myfile Same as -l -w

though some programs are quirky and do not recognize com‐
bined options. Multiple arguments are also OK:

wc -l myfile myfile2 Count lines in two files

Options are not standardized. They may be a single dash and
one character (say, -l), two dashes and a word (--lines), or
several other formats. The same option may have different
meanings to different programs: in the command wc -l, the
option -l means “lines of text,” but in ls -l it means “longer
output.” Two programs also might use different options to
mean the same thing, such as -q for “run quietly” versus -s for
“run silently.” Some options are followed by a value, such as
-s 10, and space between them might not be required (-s10).

Likewise, arguments are not standardized. They usually repre‐
sent filenames for input or output, but they can be other things
too, like directory names or regular expressions.

Commands can be more interesting than just a single program
with options:

• Commands can run several programs at a time, either in
sequence (one program after another) or in a “pipeline”
with the output of one command becoming the input of
the next. Linux experts use pipelines all the time.

• The Linux command-line user interface—the shell—has a
programming language built in. So instead of a com‐
mand saying “run this program,” it might say, “run this
program, write its output to a file of my choosing, and if
any errors occur, send me an email with the results.”

Shell prompts
Before you can type a command, you must wait for the shell to
display a special symbol, called a prompt. A prompt means, “I
am waiting for your next command.” Prompts come in all

4 | Linux Pocket Guide

shapes and sizes, depending on how your shell is configured.
Your prompt might be a dollar sign:

$

or a complex string of text containing your computer name,
username, and possibly other information and symbols:

myhost:~smith$

or various other styles. All these prompts mean the same thing:
the shell is ready for your commands.

In this book, we’ll use the unique symbol → to indicate a shell
prompt, so you won’t mistakenly type it as part of a command.
Here is a prompt followed by a command:

→ wc -l myfile

Some commands will print text on the screen as they run. To
distinguish your command (which you type) from its printed
output (which you don’t), we’ll display the command in bold
like this:

→ wc -l myfile The command you type
18 myfile The output it produces

Some commands in this book can be run successfully only by
an administrator, a special user with permission to do anything
on the system. (Such a user is also called a superuser or root.) In
this case, we precede the command with sudo:

→ sudo superuser command goes here

We’ll discuss sudo fully in “Becoming the Superuser” on page
166, but for now, all you need to know is that sudo gives you
superpowers and sometimes will prompt for your password.
For example, to count lines in a protected file called /etc/
shadow, with and without sudo, you could run this command:

→ wc -l /etc/shadow This will fail
wc: /etc/shadow: Permission denied
→ sudo wc -l /etc/shadow Now with sudo

What’s in This Book? | 5

Password: *******
51 /etc/shadow It worked!

Command-line warm-up
To give you a feel for Linux, here are 10 simple commands you
can try right now. You must type them exactly, including capital
and small letters, spaces, and all symbols after the prompt.

Display a calendar for April 2017:

→ cal apr 2017
 April 2017
Su Mo Tu We Th Fr Sa
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

List the contents of the /bin directory, which contains many
commands:

→ ls /bin
bash less rm
bunzip2 lessecho rmdir
busybox lessfile rnano
...

Count the number of visible items in your home directory
(represented here by a special variable HOME that we’ll discuss
later):

→ ls $HOME | wc -l
8

See how much space is used on a partition of your hard disk:

→ df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/sdb1 78G 30G 48G 61% /

6 | Linux Pocket Guide

Watch the processes running on your computer (type “q” to
quit):

→ top -d1

Print the file /etc/hosts, which contains names and addresses of
computers, on your default printer if you have one set up:

→ lpr /etc/hosts

See how long you’ve been logged in:

→ last -1 $USER
smith pts/7 :0 Tue Nov 10 20:12 still logged in

Download a file sample.pdf from this book’s website to your
current directory, without needing a web browser:

→ wget http://linuxpocketguide.com/sample.pdf

Display information about your computer’s IP address:

→ ip addr show eth0
...
inet 192.168.1.47

See who owns the domain name oreilly.com (press the space bar
to move forward page by page, and type “q” to quit):

→ whois oreilly.com | less
Domain Name: OREILLY.COM
Registrar: GODADDY.COM, LLC
...

Finally, clear the window:

→ clear

OK, that was more than 10 commands…but congratulations:
you are now a Linux shell user!

Reading This Book
We’ll describe many Linux commands in this book. Each
description begins with a standard heading about the com‐

What’s in This Book? | 7

mand; Figure 1 shows one for the ls (list files) command. This
heading demonstrates the general usage in a simple format:

ls [options] [files]

which means you’d type “ls” followed, if you choose, by options
and then filenames. You wouldn’t type the square brackets “[”
and “]”: they just indicate their contents are optional; and
words in italics mean you have to fill in your own specific val‐
ues, like names of actual files. If you see a vertical bar between
options or arguments, perhaps grouped by parentheses:

(file | directory)

this indicates choice: you may supply either a filename or
directory name as an argument.

Figure 1. Standard command heading

The special heading in Figure 1 also includes six properties of
the command printed in black (supported) or gray (unsuppor‐
ted):

stdin
The command reads from standard input (i.e., your key‐
board), by default. See “Input and Output” on page 15.

stdout
The command writes to standard output (i.e., your
screen), by default. See “Input and Output” on page 15.

- file
When given a dash (-) argument in place of an input file‐
name, the command reads from standard input; and like‐
wise, if the dash is supplied as an output filename, the
command writes to standard output. For example, the fol‐

8 | Linux Pocket Guide

lowing wc command line reads the files myfile and myfile2,
then standard input, then myfile3:

wc myfile myfile2 - myfile3

-- opt
If you supply the command-line option “--” it means “end
of options”: anything appearing later on the command line
is not an option. This is sometimes necessary to work with
a file whose name begins with a dash, which otherwise
would be (mistakenly) treated as an option. For example,
if you have a file named -dashfile, the command
wc -dashfile will fail because -dashfile will be treated as
an (invalid) option. wc -- -dashfile works. If a command
does not support “--”, you can prepend the current direc‐
tory path “./” to the filename so the dash is no longer the
first character:

wc ./-dashfile

--help

The option --help makes the command print a help mes‐
sage explaining proper usage, then exit.

--version

The option --version makes the command print its ver‐
sion information and exit.

Keystrokes
Throughout the book, we use certain symbols to indicate key‐
strokes. Like many other Linux documents, we use the ^ sym‐
bol to mean “press and hold the Control (Ctrl) key,” so for
example, ^D (pronounced “control D”) means “press and hold
the Control key and type D.” We also write ESC to mean “press
the Escape key.” Keys like Enter and the space bar should be
self-explanatory.

What’s in This Book? | 9

Your friend, the echo command
In many of our examples, we’ll print information to the screen
with the echo command, which we’ll formally describe in
“Screen Output” on page 198. echo is one of the simplest com‐
mands—it merely prints its arguments on standard output,
once those arguments have been processed by the shell:

→ echo My dog has fleas
My dog has fleas
→ echo My name is $USER Shell variable USER
My name is smith

Long command lines
Sometimes, a command will be too lengthy to fit on one line in
the book. In these cases, we’ll split the command onto multiple
lines that end with a backward slash character:

→ echo This is a long command that doesn't fit on \
 one line
This is a long command that doesn't fit on one line

This is not merely a helpful notation: the backslash character
actually serves this purpose in the Linux shell, as a “line contin‐
uation” character. Of course, if your terminal is wider than this
page, you can omit the backslash and just type the whole com‐
mand on one line.

Practicing with This Book
This book comes with a collection of files for practicing with
Linux. If you download these files and install them on any
Linux machine, then you can run most of the example com‐

10 | Linux Pocket Guide

1 Alternatively, you can download the example files from https://
github.com/oreillymedia/linux_pocket_guide.

mands in this book verbatim. To download these files for the
first time, run these commands:1

→ cd
→ wget http://linuxpocketguide.com/LPG-stuff.tar.gz
→ tar -xf LPG-stuff.tar.gz

These commands create a directory named linuxpocketguide in
your home directory. Any time you see an example command
in this book, simply visit this new directory:

→ cd ~/linuxpocketguide

and run the example command.

As you practice, if you’d like to re-download and install the
examples (say, if you’ve modified some example files and want
a fresh start), simply run the reset-lpg script located in the
linuxpocketguide directory:

→ cd ~/linuxpocketguide
→ bash reset-lpg

If you have placed the examples somewhere other than your
home directory (implying that you are already comfortable
with Linux directories), supply that directory name as an argu‐
ment to the reset-lpg command:

→ bash reset-lpg /tmp/examples

This command would create or refresh the examples in the
directory /tmp/examples/linuxpocketguide.

Getting Help
If you need more information than this book provides, there
are several things you can do.

Getting Help | 11

https://github.com/oreillymedia/linux_pocket_guide
https://github.com/oreillymedia/linux_pocket_guide

Run the man command
The man command displays an online manual page, or
manpage, for a given program. For example, to learn about
counting words in a file with wc, run:

→ man wc

To search for manpages by keyword for a particular topic,
use the -k option followed by the keyword (shown here
piped into the command less to display the results one
screenful at a time; press the space bar to continue and q
to quit):

→ man -k database | less

Run the info command
The info command is an extended, hypertext help system
covering many Linux programs.

→ info ls

While info is running, some useful keystrokes are:

• To get help, type h
• To quit, type q
• To page forward and backward, use the space bar

and Backspace key, respectively
• To jump between hyperlinks, press Tab
• To follow a hyperlink, press Enter

If info has no documentation on a given program, it dis‐
plays the program’s manpage. For a listing of available
documentation, type info by itself. To learn how to navi‐
gate the info system, type info info.

Use the --help option (if any)
Many Linux commands respond to the option --help by
printing a short help message. Try:

→ wc --help

12 | Linux Pocket Guide

If the output is longer than the screen, pipe it into the less
program to display it in pages (press q to quit):

→ wc --help | less

Examine the directory /usr/share/doc
This directory contains supporting documents for many
programs, usually organized by program name and ver‐
sion. For example, files for the text editor emacs, version
24, are likely found (depending on distro) in /usr/
share/doc/emacs24.

Distro-specific websites
Most Linux distros have an official site that includes docu‐
mentation, discussion forums for questions and answers,
and other resources. Simply enter your distro name (e.g.,
“Ubuntu”) into any popular search engine to find its web‐
site.

Linux help sites
There are many websites that answer Linux questions,
including http://www.linuxquestions.org, http://unix.stack
exchange.com, http://www.linuxhelp.net, and http://
www.linuxforums.org.

Web search
To decipher a specific Linux error message, copy and paste
the message into a web search engine, verbatim, and you
will likely find helpful results.

Linux: A First View
Linux has four major parts:

The kernel
The low-level operating system, handling files, disks, net‐
working, and other necessities we take for granted. Most
users rarely notice the kernel.

Linux: A First View | 13

http://www.linuxquestions.org
http://unix.stackexchange.com
http://unix.stackexchange.com
http://www.linuxhelp.net
http://www.linuxforums.org
http://www.linuxforums.org

Supplied programs
Thousands of programs for file manipulation, text editing,
mathematics, web browsing, audio, video, computer pro‐
gramming, typesetting, encryption, DVD burning…you
name it.

The shell
A user interface for typing commands, executing them,
and displaying the results. Linux has various shells: the
Bourne shell, Korn shell, C shell, and others. This book
focuses on bash, the Bourne-Again Shell, which is often
the default for user accounts. However, all these shells
have similar basic functions.

X
A graphical system that provides windows, menus, icons,
mouse support, and other familiar GUI elements. More
complex graphical environments are built on X; the most
popular are KDE and GNOME. We’ll discuss only a few
programs that open X windows to run.

This book focuses on the second and third parts: supplied pro‐
grams and the shell.

Running a Shell
If you connect to a Linux machine over a network, you will
immediately see a shell, waiting for you to type a command. If
instead, you sit down in front of a Linux machine and log into
it directly, you’re more likely to be greeted by a graphical desk‐
top full of icons and menus, with no shell in sight. For many
users, this is the primary way to work with Linux, and those
icons and menus are fine for simple tasks such as reading email
and browsing the Web. Nevertheless, for the true power of
Linux, you must dive beneath this graphical interface, into the
shell. It might initially be more difficult than icons and menus,
but once you’re accustomed to it, the shell becomes easy to use
and is very powerful.

14 | Linux Pocket Guide

So, how do you run a shell within this graphical interface? The
answer is “it depends.” Linux has several graphical interfaces,
the most common being GNOME and KDE, and every Linux
system may configure them differently! It’s your job to locate an
icon or menu item that lets you open a shell window: a window
with a shell running in it. Look in your system’s main menu or
start menu for an application called Terminal, Konsole, xterm,
gnome-terminal, uxterm, or something similar. Launch this
program to open a shell window.

The window program (Terminal, Konsole, etc.) is not the shell.
It’s just a graphical program—possibly with fancy features of its
own—that runs a shell on your behalf. The shell is what
prompts you for commands and runs them. Figure 2 illustrates
this difference.

Figure 2. The difference between a shell window and the shell

This was just a quick introduction. We’ll discuss additional
details in “Shell Features” on page 26, and cover more powerful
constructs in “Programming with Shell Scripts” on page 232.

Input and Output
Most Linux commands accept input and produce output. For
example, the wc command accepts input from a file and pro‐

Linux: A First View | 15

2 For example, you can capture standard output in a file and still have
standard error messages appear on screen.

duces output (the number of lines, words, and characters) on
the screen.

Linux commands are very flexible with input and output. Input
can come from files or from standard input, which is usually
your keyboard. Likewise, output is written to files or to stan‐
dard output, which is usually your shell window or screen.
Error messages are treated specially and displayed on standard
error, which also is usually your screen but kept separate from
standard output.2 Later, we’ll see how to redirect standard
input, output, and error to and from files or pipes. But let’s get
our vocabulary straight. When we say a command “reads,” we
mean from standard input unless we say otherwise. And when
a command “writes” or “prints,” we mean on standard output,
unless we’re talking about computer printers.

Users and Superusers
Linux is a multiuser operating system: multiple people can use
a single Linux computer at the same time. On a given com‐
puter, each user is identified by a username, like “smith” or
“funkyguy,” and owns a (reasonably) private part of the system
for doing work.

There is also a special user named root—the superuser—who
has the privileges to do anything at all on the system. Ordinary
users are restricted: though they can run most programs, in
general they can modify only the files they own. The superuser,
on the other hand, can create, modify, or delete any file and run
any program; we’ll discuss this more in “Becoming the Super‐
user” on page 166.

16 | Linux Pocket Guide

3 In Linux, all files and directories descend from the root. This is unlike
Windows or DOS, in which different devices are accessed by drive let‐
ters.

The Filesystem
To make use of any Linux system, you need to be comfortable
with Linux files and directories (a.k.a. folders). In a “windows
and icons” system, the files and directories are obvious on
screen. With a command-line system like the Linux shell, the
same files and directories are still present but are not constantly
visible, so at times you must remember which directory you are
“in” and how it relates to other directories. You’ll use shell com‐
mands like cd and pwd to “move” between directories and keep
track of where you are.

Let’s cover some terminology. As we’ve said, Linux files are col‐
lected into directories. The directories form a hierarchy, or tree,
as in Figure 3: one directory may contain other directories,
called subdirectories, which may themselves contain other files
and subdirectories, and so on, into infinity. The topmost direc‐
tory is called the root directory and is denoted by a slash (/).3

Figure 3. A Linux filesystem (partial). The root directory is at the top.
The absolute path to the “dan” directory is /home/dan.

The Filesystem | 17

We refer to files and directories using a “names and slashes”
syntax called a path. For instance, this path:

/one/two/three/four

refers to the root directory /, which contains a directory called
one, which contains a directory two, which contains a directory
three, which contains a final file or directory, four. Any such
path that begins with a slash, which descends all the way from
the root, is called an absolute path.

Paths don’t have to be absolute: they can be relative to some
directory other than the root. In Figure 3, there are two differ‐
ent directories named bin, whose absolute paths are /bin
and /usr/bin. If we simply refer to “the bin directory,” it’s not
clear which one we mean (and there could be many other bin
directories too). More context is needed. Any time you refer to
a path that doesn’t begin with a slash, like bin, it’s called a rela‐
tive path.

To make sense of a relative path, you need to know “where you
are” in the Linux filesystem. This location is called your current
working directory (or just “current directory”). Every shell has a
current working directory, and when you run commands in
that shell, they operate relative to that directory. For example, if
your shell is “in” the directory /usr, and you run a command
that refers to a relative path bin, you’re really referring to /usr/
bin. In general, if your current directory is /one/two/three, a rel‐
ative path a/b/c would imply the absolute path /one/two/
three/a/b/c.

Two special relative paths are denoted . (a single period) and ..
(two periods in a row). The former means your current direc‐
tory, and the latter means your parent directory, one level
above. So if your current directory is /one/two/three, then .
refers to this directory and .. refers to /one/two.

You “move” your shell from one directory to another using the
cd command:

→ cd /usr/local/bin

18 | Linux Pocket Guide

4 Linux filenames are case-sensitive, so capital and lowercase letters are
not equivalent.

More technically, this command changes your shell’s current
working directory to be /usr/local/bin. This is an absolute
change (because the directory begins with “/”). Assuming you
installed the book’s directory of examples in your home direc‐
tory, you can jump into it at any time by running:

→ cd ~/linuxpocketguide

(where the tilde is a shorthand we’ll cover in the next section).
You can make relative moves with cd as well:

→ cd d Enter subdirectory d
→ cd ../mydir Go up to my parent, then into directory mydir

File and directory names may contain most characters you
expect: capital and lowercase letters,4 numbers, periods, dashes,
underscores, and most symbols (but not “/”, which is reserved
for separating directories). For practical use, however, avoid
spaces, asterisks, dollar signs, parentheses, and other characters
that have special meaning to the shell. Otherwise, you’ll need to
quote or escape these characters all the time. (See “Quoting” on
page 36.)

Home Directories
Users’ personal files are often found in the directory /home (for
ordinary users) or /root (for the superuser). Your home direc‐
tory is typically /home/<your-username> (/home/smith, /home/
jones, etc.). There are several ways to locate or refer to your
home directory:

The Filesystem | 19

cd

With no arguments, the cd command returns you (i.e., sets
the shell’s working directory) to your home directory.

HOME variable
The environment variable HOME (see “Shell variables” on
page 30) contains the name of your home directory:

→ echo $HOME The echo command prints its arguments
/home/smith

~

When used in place of a directory, a lone tilde is expanded
by the shell to the name of your home directory.

→ echo ~
/home/smith

When the tilde is followed by a slash, the path is relative to
HOME:

→ echo ~/linuxpocketguide
/home/smith/linuxpocketguide

When the tilde is followed by a username (as in ~fred), the
shell expands this string to be the user’s home directory:

→ cd ~fred If there's a user “fred” on your system
→ pwd The “print working directory” command
/home/fred

System Directories
A typical Linux system has tens of thousands of system directo‐
ries. These directories contain operating system files, applica‐
tions, documentation, and just about everything except per‐
sonal user files (which typically live in /home).

Unless you’re a system administrator, you’ll rarely visit most
system directories—but with a little knowledge you can under‐
stand or guess their purposes. Their names often contain three
parts, as shown in Figure 4.

20 | Linux Pocket Guide

Figure 4. Directory scope, category, and application

Directory path part 1: category
A category tells you the types of files found in a directory. For
example, if the category is bin, you can be reasonably assured
that the directory contains programs. Some common categories
are as follows:

Categories for programs

bin Programs (usually binary files)

sbin Programs (usually binary files) intended to be run by the superuser

lib Libraries of code used by programs

Categories for documentation

doc Documentation

info Documentation files for emacs’s built-in help system

man Documentation files (manual pages) displayed by the man
program; the files are often compressed and are sprinkled with
typesetting commands for man to interpret

share Program-specific files, such as examples and installation
instructions

Categories for configuration

etc Configuration files for the system (and other miscellaneous stuff)

init.d Configuration files for booting Linux

rc.d Configuration files for booting Linux; also rc1.d, rc2.d, ...

Categories for programming

include Header files for programming

src Source code for programs

The Filesystem | 21

Categories for web files

cgi-bin Scripts/programs that run on web pages

html Web pages

public_html Web pages, typically in users’ home directories

www Web pages

Categories for display

fonts Fonts (surprise!)

X11 X window system files

Categories for hardware

dev Device files for interfacing with disks and other hardware

media Mount points: directories that provide access to disks

mnt Mount points: directories that provide access to disks

Categories for runtime files

var Files specific to this computer, created and updated as the
computer runs

lock Lock files, created by programs to say, “I am running”; the
existence of a lock file may prevent another program, or another
instance of the same program, from running or performing an
action

log Log files that track important system events, containing error,
warning, and informational messages

mail Mailboxes for incoming mail

run PID files, which contain the IDs of running processes; these files are
often consulted to track or kill particular processes

spool Files queued or in transit, such as outgoing email, print jobs, and
scheduled jobs

tmp Temporary storage for programs and/or people to use

proc Operating system state: see “Operating System Directories” on
page 24

22 | Linux Pocket Guide

5 Some distros no longer make these distinctions. Fedora, for example,
makes /bin a symbolic link to /usr/bin.

Directory path part 2: scope
The scope of a directory path describes, at a high level, the pur‐
pose of an entire directory hierarchy. Some common ones are:

/ System files supplied with Linux (pronounced “root”)

/usr More system files supplied with Linux (pronounced “user”)

/usr/local System files developed “locally,” either for your organization or your
individual computer

/usr/games Games (surprise!)

So for a category like lib (libraries), your Linux system might
have directories /lib, /usr/lib, /usr/local/lib, and /usr/games/lib.

There isn’t a clear distinction between / and /usr in practice, but
there is a sense that / is “lower level” and closer to the operating
system. So /bin contains more fundamental programs
than /usr/bin does, such as ls and cat, and /lib contains more
fundamental libraries than /usr/lib does, and so on.5 /usr/
local/bin contains programs not included in your distro. These
are not hard-and-fast rules but typical cases.

Directory path part 3: application
The application part of a directory path, if present, is usually
the name of a program. After the scope and category (say, /usr/
local/doc), a program may have its own subdirectory (say, /usr/
local/doc/myprogram) containing files it needs.

The Filesystem | 23

Operating System Directories
Some directories support the Linux kernel, the lowest-level part
of the Linux operating system:

/boot
Files for booting the system. This is where the kernel lives,
typically named /boot/vmlinuz or similar.

/lost+found
Damaged files that were rescued by a disk recovery tool.

/proc
Describes currently running processes; for advanced users.

The files in /proc provide views into the running kernel and
have special properties. They always appear to be zero sized,
read-only, and dated now:

→ ls -lG /proc/version
-r--r--r-- 1 root 0 Oct 3 22:55 /proc/version

However, their contents magically contain information about
the Linux kernel:

→ cat /proc/version
Linux version 2.6.32-71.el6.i686 ...

Files in /proc are used mostly by programs, but feel free to
explore them. Here are some examples:

/proc/
ioports

A list of your computer’s input/output hardware.

/proc/
cpuinfo

Information about your computer’s processors.

/proc/
version

The operating system version. The uname command prints the
same information.

/proc/
uptime

System uptime (i.e., seconds elapsed since the system was last
booted). Run the uptime command for a more human-readable
result.

24 | Linux Pocket Guide

/proc/nnn Information about the Linux process with ID nnn, where nnn is a
positive integer.

/proc/self Information about the current process you’re running; a symbolic
link to a /proc/nnn file, automatically updated. Try running:
→ ls -l /proc/self

several times in a row: you’ll see /proc/self changing where it
points.

File Protections
A Linux system may have many users with login accounts. To
maintain privacy and security, most users can access only some
files on the system, not all. This access control is embodied in
two questions:

Who has permission?
Every file and directory has an owner who has permission
to do anything with it. Typically, the user who created a
file is its owner, but ownership can be changed by the
superuser.

Additionally, a predefined group of users may have per‐
mission to access a file. Groups are defined by the system
administrator and are covered in “Group Management”
on page 167.

Finally, a file or directory can be opened to all users with
login accounts on the system. You’ll also see this set of
users called the world or simply other.

What kind of permission is granted?
File owners, groups, and the world may each have permis‐
sion to read, write (modify), and execute (run) particular
files. Permissions also extend to directories, which users
may read (access files within the directory), write (create
and delete files within the directory), and execute (enter
the directory with cd).

The Filesystem | 25

To see the ownership and permissions of a file named myfile,
run:

→ ls -l myfile
-rw-r--r-- 1 smith smith 1168 Oct 28 2015 myfile

To see the ownership and permissions of a directory named
mydir, add the -d option:

→ ls -ld mydir
drwxr-x--- 3 smith smith 4096 Jan 08 15:02 mydir

In the output, the file permissions are the 10 leftmost charac‐
ters, a string of r (read), w (write), x (execute), other letters, and
dashes. For example:

-rwxr-x---

Here’s what these letters and symbols mean:

Position Meaning

1 File type: - = file, d = directory, l = symbolic link, p = named pipe,
c = character device, b = block device

2–4 Read, write, and execute permissions for the file’s owner

5–7 Read, write, and execute permissions for the file’s group

8–10 Read, write, and execute permissions for all other users

So our example -rwxr-x--- means a file that can be read, writ‐
ten, and executed by the owner, read and executed by the
group, and not accessed at all by other users. We describe ls in
more detail in “Basic File Operations” on page 47. To change
the owner, group ownership, or permissions of a file, use the
chown, chgrp, and chmod commands, respectively, as described
in “File Properties” on page 69.

Shell Features
In order to run commands on a Linux system, you’ll need
somewhere to type them. That “somewhere” is called the shell,
which is Linux’s command-line user interface: you type a com‐

26 | Linux Pocket Guide

6 Actually, how many interactive shells those users are running. If a user
has two shells running, like the user “silver” in our example, he’ll have
two lines of output from who.

mand and press Enter, and the shell runs whatever program (or
programs) you’ve requested. (See “Running a Shell” on page 14
to learn how to open a shell window.)

For example, to see who’s logged into the computer, you could
execute this command in a shell:

→ who
silver :0 Sep 23 20:44
byrnes pts/0 Sep 15 13:51
barrett pts/1 Sep 22 21:15
silver pts/2 Sep 22 21:18

(Recall that the → symbol represents the shell prompt for us,
indicating that the shell is ready to run a command.) A single
command can also invoke several programs at the same time,
and even connect programs together so they interact. Here’s a
command that redirects the output of the who program to
become the input of the wc program, which counts lines of text
in a file; the result is the number of lines in the output of who:

→ who | wc -l
4

telling you how many users are logged in.6 The vertical bar,
called a pipe, makes the connection between who and wc.

A shell is actually a program itself, and Linux has several. We
focus on bash (the Bourne-Again Shell), located in /bin/bash,
which is usually the default in Linux distros. To see if you’re
running bash, type:

→ echo $SHELL
/bin/bash

If you’re not running bash and wish to do so, you can run the
command bash directly (type exit when done to return to your

Shell Features | 27

regular shell). To make bash your default shell, see chsh on
page 165.

The Shell Versus Programs
When you run a command, it might invoke a Linux program
(like who), or instead it might be a built-in command, a feature
of the shell itself. You can tell the difference with the type com‐
mand:

→ type who
who is /usr/bin/who
→ type cd
cd is a shell builtin

Selected Features of the bash Shell
A shell does much more than simply run commands. It also has
powerful features to make this task easier: wildcards for match‐
ing filenames, a “command history” to recall previous com‐
mands quickly, pipes for making the output of one command
become the input of another, variables for storing values for use
by the shell, and more. Take the time to learn these features,
and you will become faster and more productive with Linux.
Let’s skim the surface and introduce you to these useful tools.
(For full documentation, run info bash.)

Wildcards
Wildcards are a shorthand for sets of files with similar names.
For example, a* means all files whose names begin with lower‐
case “a”. Wildcards are “expanded” by the shell into the actual
set of filenames they match. So if you type:

→ ls a*

the shell first expands a* into the filenames that begin with “a”
in your current directory, as if you had typed:

→ ls aardvark adamantium apple

28 | Linux Pocket Guide

ls never knows you used a wildcard: it sees only the final list of
filenames after the shell expands the wildcard. This means
every Linux command, regardless of its origin, works with
wildcards and other shell features. This is a critically important
point. A surprising number of Linux users mistakenly think
that programs expand their own wildcards. They don’t. Wild‐
cards are handled completely by the shell before the associated
program even runs.

Dot Files
Filenames with a leading period, called dot files, are special in
Linux. When you name a file beginning with a period, it will
not be displayed by some programs:

• ls will omit the file from directory listings, unless you
provide the -a option.

• Shell wildcards do not match a leading period.
Effectively, dot files are hidden unless you explicitly ask to see
them. As a result, sometimes they are called “hidden files.”

Wildcards never match two characters: a leading period, and
the directory slash (/). These must be given literally, as in .pro*
to match .profile, or /etc/*conf to match all filenames ending
in conf in the /etc directory.

Wildcard Meaning

* Zero or more consecutive characters

? Any single character

[set] Any single character in the given set, most commonly a sequence of
characters, like [aeiouAEIOU] for all vowels, or a range with a
dash, like [A-Z] for all capital letters

[^set] Any single character not in the given set, such as [^0-9] to mean
any nondigit

Shell Features | 29

Wildcard Meaning

[!set] Same as [^set]

When using character sets, if you want to include a literal dash
in the set, put it first or last. To include a literal closing square
bracket in the set, put it first. To include a ^ or ! symbol liter‐
ally, don’t put it first.

Brace expansion
Similar to wildcards, expressions with curly braces also expand
to become multiple arguments to a command. The comma-
separated expression:

{X,YY,ZZZ}

expands first to X, then YY, and finally ZZZ within a command
line, like this:

→ echo sand{X,YY,ZZZ}wich
sandXwich sandYYwich sandZZZwich

Braces work with any strings, unlike wildcards which expand
only if they match existing filenames.

Shell variables
You can define variables and their values by assigning them:

→ MYVAR=3

To refer to a value, simply place a dollar sign in front of the
variable name:

→ echo $MYVAR
3

30 | Linux Pocket Guide

Some variables are standard and commonly defined by your
shell upon login:

Variable Meaning

DISPLAY The name of your X window display

HOME Your home directory, such as /home/smith

LOGNAME Your login name, such as smith

MAIL Your incoming mailbox, such as /var/spool/mail/smith

OLDPWD Your shell’s previous directory, prior to the last cd command

PATH Your shell search path: directories separated by colons

PWD Your shell’s current directory

SHELL The path to your shell (e.g., /bin/bash)

TERM The type of your terminal (e.g., xterm or vt100)

USER Your login name

The scope of the variable (i.e., which programs know about it)
is, by default, the shell in which it’s defined. To make a variable
and its value available to other programs your shell invokes
(i.e., subshells), use the export command:

→ export MYVAR

or the shorthand:

→ export MYVAR=3

Your variable is now called an environment variable, because it’s
available to other programs in your shell’s “environment.” So in
the preceding example, the exported variable MYVAR is available
to all programs run by that same shell (including shell scripts:
see “Variables” on page 234).

To list a shell’s environment variables, run:

→ printenv

Shell Features | 31

To provide the value of an environment variable to a specific
program just once, prepend variable=value to the command
line:

→ printenv HOME
/home/smith
→ HOME=/home/sally printenv HOME
/home/sally
→ printenv HOME
/home/smith The original value is unaffected

Search path
Programs are scattered all over the Linux filesystem, in directo‐
ries like /bin and /usr/bin. When you run a program via a shell
command, how does the shell find it? The critical variable PATH
tells the shell where to look. When you type any command:

→ who

the shell locates the who program by searching through Linux
directories. The shell consults the value of PATH, which is a
sequence of directories separated by colons:

→ echo $PATH
/usr/local/bin:/bin:/usr/bin

and looks for the who command in each of these directories. If
it finds who (say, /usr/bin/who), it runs the command. Other‐
wise, it reports a failure such as:

bash: who: command not found

To add directories to your shell’s search path temporarily, mod‐
ify its PATH variable. For example, to append /usr/sbin to your
shell’s search path:

→ PATH=$PATH:/usr/sbin
→ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/sbin

This change affects only the current shell. To make it perma‐
nent, modify the PATH variable in your startup file ~/.bash_pro‐

32 | Linux Pocket Guide

7 Some setups use ~/.bashrc for this purpose.

file, as explained in “Tailoring Shell Behavior” on page 46. Then
log out and log back in, or run your ~/.bash_profile startup file
by hand in each of your open shell windows with:

→ . $HOME/.bash_profile

Aliases

The built-in command alias defines a convenient shorthand
for a longer command, to save typing. For example:

→ alias ll='ls -lG'

defines a new command ll that runs ls -lG:

→ ll
total 436
-rw-r--r-- 1 smith 3584 Oct 11 14:59 file1
-rwxr-xr-x 1 smith 72 Aug 6 23:04 file2
...

Define aliases in your ~/.bash_aliases file (see “Tailoring Shell
Behavior” on page 46) to be available whenever you log in.7 To
list all your aliases, type alias. If aliases don’t seem powerful
enough for you (because they have no parameters or branch‐
ing), see “Programming with Shell Scripts” on page 232, run
info bash, and read up on “shell functions.”

Input/output redirection
The shell can redirect standard input, standard output, and
standard error (see “Input and Output” on page 15) to and
from files. In other words, any command that reads from stan‐
dard input can have its input come from a file instead with the
shell’s < operator:

→ any command < infile

Shell Features | 33

Likewise, any command that writes to standard output can
write to a file instead:

→ any command > outfile Create/overwrite outfile
→ any command >> outfile Append to outfile

A command that writes to standard error can have its output
redirected to a file as well, while standard output still goes to
the screen:

→ any command 2> errorfile

To redirect both standard output and standard error to files:

→ any command > outfile 2> errorfile Separate files
→ any command >& outfile Single file
→ any command &> outfile Single file

Pipes
You can redirect the standard output of one command to be
the standard input of another, using the shell’s pipe (|) operator.
(On US keyboards, you can find this symbol just above the
Enter key.) For example:

→ who | sort

sends the output of who into the sort program, printing an
alphabetically sorted list of logged-in users. Multiple pipes
work too. Here we sort the output of who again, extract the first
column of information (using awk), and display the results one
page at a time (using less):

→ who | sort | awk '{print $1}' | less

Process substitution
Pipes let you send one program’s output to another program. A
more advanced feature, process substitution, lets that output
masquerade as a named file. Consider a program that compares
the contents of two files. With the process substitution opera‐
tor, <(), you can compare the outputs of two programs instead.

34 | Linux Pocket Guide

Suppose you have a directory full of JPEG and text files in
pairs:

→ ls jpegexample
file1.jpg file1.txt file2.jpg file2.txt ...

and you want to confirm that every JPEG file has a correspond‐
ing text file and vice versa. Ordinarily, you might create two
temporary files, one containing the JPEG filenames and the
other containing the text filenames, remove the file extensions
with cut, and compare the two temporary files with diff:

→ cd jpegexample
→ ls *.jpg | cut -d. -f1 > /tmp/jpegs
→ ls *.txt | cut -d. -f1 > /tmp/texts
→ diff /tmp/jpegs /tmp/texts
5a6
> file6 No file6.jpg was found
8d8
< file9 No file9.txt was found

With process substitution, you can perform the same task with
a single command and no temporary files:

→ diff <(ls *.jpg|cut -d. -f1) <(ls *.txt|cut -d. -f1)

Each <() operator stands in for a filename on the command
line, as if that “file” contained the output of ls and cut.

Combining commands
To invoke several commands in sequence on a single command
line, separate them with semicolons:

→ command1 ; command2 ; command3

To run a sequence of commands as before, but stop execution if
any of them fails, separate them with && (“and”) symbols:

→ command1 && command2 && command3

Shell Features | 35

To run a sequence of commands, stopping execution as soon as
one succeeds, separate them with || (“or”) symbols:

→ command1 || command2 || command3

Quoting
Normally, the shell treats whitespace simply as separating the
words on the command line. If you want a word to contain
whitespace (e.g., a filename with a space in it), surround it with
single or double quotes to make the shell treat it as a unit. Sin‐
gle quotes treat their contents literally, while double quotes let
shell constructs be evaluated, such as variables:

→ echo 'The variable HOME has value $HOME'
The variable HOME has value $HOME
→ echo "The variable HOME has value $HOME"
The variable HOME has value /home/smith

Backquotes (“backticks”) cause their contents to be evaluated as
a shell command. The contents are then replaced by the stan‐
dard output of the command:

→ date +%Y Print the current year
2016
→ echo This year is `date +%Y`
This year is 2016

A dollar sign and parentheses are equivalent to backquotes:

→ echo This year is $(date +%Y)
This year is 2016

but are superior because they can be nested:

→ echo Next year is $(expr $(date +%Y) + 1)
Next year is 2017

Escaping
If a character has special meaning to the shell but you want it
used literally (e.g., * as a literal asterisk rather than a wildcard),

36 | Linux Pocket Guide

precede the character with the backward slash “\” character.
This is called escaping the special character:

→ echo a* As a wildcard, matching “a” filenames
aardvark adamantium apple
→ echo a* As a literal asterisk
a*
→ echo "I live in $HOME" Print a variable value
I live in /home/smith
→ echo "I live in \$HOME" A literal dollar sign
I live in $HOME

You can also escape control characters (tabs, newlines, ^D, etc.)
to have them used literally on the command line, if you precede
them with ^V. This is particularly useful for tab characters,
which the shell would otherwise use for filename completion
(see “Filename completion” on page 39).

→ echo "There is a tab between here^V and here"
There is a tab between here and here

Command-line editing
Bash lets you edit the command line you’re working on, using
keystrokes inspired by the text editors emacs and vi (see “File
Creation and Editing” on page 63). To enable command-line
editing with emacs keys, run this command (and place it in
your ~/.bash_profile to make it permanent):

→ set -o emacs

For vi (or vim) keys:

→ set -o vi

emacs keystroke vi keystroke (after ESC) Meaning

^P or up arrow k Go to previous command

^N or down arrow j Go to next command

Shell Features | 37

emacs keystroke vi keystroke (after ESC) Meaning

^R Search for a previous command
interactively

^F or right arrow l Go forward one character

^B or left arrow h Go backward one character

^A 0 Go to beginning of line

^E $ Go to end of line

^D x Delete next character

^U ^U Erase entire line

Command history
You can recall previous commands you’ve run—that is, the
shell’s history—and re-execute them. Some useful history-
related commands are listed here:

Command Meaning

history Print your history

history N Print the most recent N commands in your history

history -c Clear (delete) your history

!! Re-run previous command

!N Re-run command number N in your history

!-N Re-run the command you typed N commands ago

!$ Represents the last parameter from the previous command;
great for checking that files are present before running a
destructive operation, like removing them:
→ ls z*
zebra.txt zookeeper
→ rm !$ Same as "rm z*"

38 | Linux Pocket Guide

Command Meaning

!* Represents all parameters from the previous command:
→ ls myfile emptyfile hugefile
emptyfile hugefile myfile
→ wc !*
 18 211 1168 myfile
 0 0 0 emptyfile
 333563 2737539 18577838 hugefile
 333581 2737750 18579006 total

Filename completion
Press the Tab key while you are in the middle of typing a file‐
name, and the shell will automatically complete (finish typing)
the filename for you. If several filenames match what you’ve
typed so far, the shell will beep, indicating the match is ambigu‐
ous. Immediately press Tab again and the shell will present the
alternatives. Try this:

→ cd /usr/bin
→ ls un<Tab><Tab>

The shell will display all files in /usr/bin that begin with un,
such as uniq and unzip. Type a few more characters to disam‐
biguate your choice and press Tab again.

Shell Job Control
jobs List your jobs.

& Run a job in the background.

^Z Suspend the current (foreground) job.

suspend Suspend a shell.

fg Unsuspend a job: bring it into the foreground.

bg Make a suspended job run in the background.

Shell Features | 39

All Linux shells have job control: the ability to run commands
in the background (multitasking behind the scenes) and fore‐
ground (running as the active process at your shell prompt). A
job is simply the shell’s unit of work. When you run a com‐
mand interactively, your current shell tracks it as a job. When
the command completes, the associated job disappears. Jobs are
at a higher level than Linux processes; the Linux operating sys‐
tem knows nothing about them. They are merely constructs of
the shell. Here is some important vocabulary about job control:

Foreground job
Running in a shell, occupying the shell prompt so you
cannot run another command

Background job
Running in a shell, but not occupying the shell prompt, so
you can run another command in the same shell

Suspend
To stop a foreground job temporarily

Resume
To cause a suspended job to start running in the fore‐
ground again

jobs

The built-in command jobs lists the jobs running in your cur‐
rent shell:

→ jobs
[1]- Running emacs myfile &
[2]+ Stopped ssh example.com

The integer on the left is the job number, and the plus sign
identifies the default job affected by the fg (foreground) and bg
(background) commands.

40 | Linux Pocket Guide

&

Placed at the end of a command line, the ampersand causes the
given command to run as a background job:

→ emacs myfile &
[2] 28090

The shell’s response includes the job number (2) and the pro‐
cess ID of the command (28090).

^Z

Typing ^Z in a shell, while a job is running in the foreground,
will suspend that job. It simply stops running, but its state is
remembered:

→ sleep 10 Waits for 10 seconds
^Z
[1]+ Stopped sleep 10
→

Now you’re ready to type bg to put the command into the back‐
ground, or fg to resume it in the foreground. You could also
leave it suspended and run other commands.

suspend

The built-in command suspend will suspend the current shell if
possible, as if you’d typed ^Z to the shell itself. For instance, if
you’ve created a superuser shell with the sudo command and
want to return to your original shell:

→ whoami
smith
→ sudo bash

Shell Features | 41

Password: *******
whoami
root
suspend
[1]+ Stopped sudo bash
→ whoami
smith

bg
bg [%jobnumber]

The built-in command bg sends a suspended job to run in the
background. With no arguments, bg operates on the most
recently suspended job. To specify a particular job (shown by
the jobs command), supply the job number preceded by a per‐
cent sign:

→ bg %2

Some types of interactive jobs cannot remain in the back‐
ground—for instance, if they are waiting for input. If you try,
the shell will suspend the job and display:

[2]+ Stopped command line here

You can now resume the job (with fg) and continue.

fg
fg [%jobnumber]

The built-in command fg brings a suspended or backgrounded
job into the foreground. With no arguments, it selects a job,
usually the most recently suspended or backgrounded one. To
specify a particular job (as shown by the jobs command), sup‐
ply the job number preceded by a percent sign:

42 | Linux Pocket Guide

→ fg %2

Running Multiple Shells at Once
Job control lets you manage several commands at once, but
only one can run in the foreground at a time. More powerfully,
you can also run multiple shells at once, each with a fore‐
ground command and any number of background commands.

If your Linux computer runs a window system such as KDE or
Gnome, you can easily run many shells at the same time by
opening multiple shell windows (see “Running a Shell” on page
14). In addition, certain shell window programs, such as KDE’s
konsole, can open multiple tabs within a single window, each
one running a shell.

Even without a window system—say, over an SSH network
connection—you can manage multiple shells at once. The pro‐
gram screen uses an ordinary ASCII terminal to simulate mul‐
tiple windows, each running a shell. Using special keystrokes,
you can switch from one simulated window to another at will.
(Another such program is tmux.) To begin a session with
screen, simply run:

→ screen

You may see some introductory messages, and then your ordi‐
nary shell prompt. It looks like nothing has happened, but
you’re now running a new shell inside a virtual “window.” The
screen program provides 10 such windows, labeled from 0 to 9.

Type a simple command such as ls, then press ^A^C (control-A,
control-C). The screen will clear and show you a fresh shell
prompt. You are actually viewing a second, independent “win‐
dow.” Run a different command (say, df), then press ^A^A and
you’ll switch back to the first window, where your output from
ls is now visible again. Press ^A^A a second time to toggle back
to the second window. Some other common keystrokes for

Shell Features | 43

screen are listed here (see the manpage or type ^A? for on-
screen help):

^A? Help: show all keystroke commands.

^A^C Create a window.

^A0, ^A1 ... ^A9 Switch to window 0 through 9, respectively.

^A' Prompt for a window number (0–9) and then switch to it.

^A^N Switch to the next window, numerically.

^A^P Switch to the previous window, numerically.

^A^A Switch to the other window you’ve used most recently
(toggling between two windows).

^A^W List all your windows.

^AN Display the current window number. (Note that the N is
capitalized.)

^Aa Send a true control-A to your shell, ignored by screen. In
bash, control-A normally moves the cursor to the beginning of
the command line. (Note that the second a is lowercase.)

^D Terminate the current shell. This is the ordinary “end of file”
keystroke, explained in “Terminating a Shell” on page 46,
which closes any shell.

^A\ Kill all windows and terminate screen.

Beware when running a text editor in a screen window. screen
will capture all your control-A keystrokes, even if they are
intended as editing commands. Type ^Aa to send a true control-
A to your application.

Killing a Command in Progress
If you’ve launched a command from the shell running in the
foreground, and want to kill it immediately, type ^C. The shell
recognizes ^C as meaning, “terminate the current foreground

44 | Linux Pocket Guide

command right now.” So if you are displaying a very long file
(say, with the cat command) and want to stop, type ^C:

→ cat hugefile
Lorem ipsum dolor sit amet, consectetur adipiscing
odio. Praesent libero. Sed cursus ante dapibus diam.
quis sem at nibh elementum blah blah blah ^C
→

To kill a program running in the background, you can bring it
into the foreground with fg and then type ^C:

→ sleep 50 &
[1] 12752
→ jobs
[1]- Running sleep 50 &
→ fg %1
sleep 50
^C
→

or alternatively, use the kill command (see “Controlling Pro‐
cesses” on page 143).

Surviving a Kill
Killing a foreground program with ^C may leave your shell in
an odd or unresponsive state, perhaps not displaying the key‐
strokes you type. This happens because the killed program had
no opportunity to clean up after itself. If this happens to you:

1. Press ^J to get a shell prompt. This keystroke produces the
same character as the Enter key (a newline) but will work
even if Enter does not.

2. Type the shell command reset (even if the letters don’t
appear while you type) and press ^J again to run this com‐
mand. This should bring your shell back to normal.

Shell Features | 45

8 Control-D sends an “end of file” signal to any program reading from
standard input. In this case, the program is the shell itself, which ter‐
minates.

Typing ^C is not a friendly way to end a program. If the pro‐
gram has its own way to exit, use that when possible (refer to
the preceding sidebar for details).

^C works only within a shell. It will likely have no effect if typed
in an application that is not a shell window. Additionally, some
command-line programs are written to “catch” the ^C and
ignore it: an example is the text editor emacs.

Terminating a Shell
To terminate a shell, either run the exit command or type ^D.8

→ exit

Tailoring Shell Behavior
To configure all your shells to work in a particular way, edit the
files .bash_profile and .bashrc in your home directory. These
files execute each time you log in (~/.bash_profile) or open a
shell (~/.bashrc). They can set variables and aliases, run pro‐
grams, print your horoscope, or whatever you like.

These two files are examples of shell scripts: executable files that
contain shell commands. We’ll cover this feature in more detail
in “Programming with Shell Scripts” on page 232.

This concludes our basic overview of Linux and the shell. Now
we turn to Linux commands, listing and describing the most
useful commands for working with files, processes, users, net‐
working, multimedia, and more.

46 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Basic File Operations
ls List files in a directory.

cp Copy a file.

mv Rename (“move”) a file.

rm Delete (“remove”) a file.

ln Create links (alternative names) to a file.

One of the first things you’ll need to do on a Linux system is
manipulate files: copying, renaming, deleting, and so forth.

ls
ls [options] [files]

The ls command (pronounced as it is spelled, ell ess) lists
attributes of files and directories. You can list files in the cur‐
rent directory:

→ ls

in given directories:

→ ls dir1 dir2 dir3

or individually:

→ ls myfile myfile2 myfile3

The most important options are -a, -l, and -d. By default, ls
hides files whose names begin with a dot, as explained in the
sidebar “Dot Files” on page 29. The -a option displays all files:

→ ls
myfile myfile2
→ ls -a
.hidden_file myfile myfile2

Basic File Operations | 47

The -l option produces a long listing:

→ ls -l myfile
-rw-r--r-- 1 smith users 1168 Oct 28 2015 myfile

that includes, from left to right: the file’s permissions (-rw-r--
r--), number of hard links (1), owner (smith), group (users),
size (1168 bytes), last modification date (Oct 28 2015) and
name. See “File Protections” on page 25 for more information
on permissions.

The -d option lists information about a directory itself, rather
than descending into the directory to list its files:

→ ls -ld dir1
drwxr-xr-x 1 smith users 4096 Oct 29 2015 dir1

Useful options

-a List all files, including those whose names begin with a dot.

-l Long listing, including file attributes. Add the -h option (human-readable)
to print file sizes in kilobytes, megabytes, and gigabytes, instead of bytes.

-G In a long listing, don’t print the group ownership of the file.

-F Decorate certain filenames with meaningful symbols, indicating their types.
Appends “/” to directories, “*” to executables, “@” to symbolic links, “|” to
named pipes, and “=” to sockets. These are just visual indicators for you, not
part of the filenames!

-S Sort files by their size.

-t Sort files by the time they were last modified.

-r Reverse the sorted order.

-R If listing a directory, list its contents recursively.

-d If listing a directory, do not list its contents, just the directory itself.

48 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

cp
cp [options] files (file | directory)

The cp command normally copies a file:

→ cp myfile anotherfile

or copies multiple files into a directory (say) mydir:

→ cp myfile myfile2 myfile3 mydir

Using the -a or -r option, you can also recursively copy direc‐
tories.
Useful options

-p Copy not only the file contents, but also the file’s permissions, timestamps,
and if you have sufficient permission to do so, its owner and group.
(Normally the copies will be owned by you, timestamped now, with
permissions set by applying your umask to the original permissions.)

-a Copy a directory hierarchy recursively, preserving all file attributes and links.

-r Copy a directory hierarchy recursively. This option does not preserve the files’
attributes such as permissions and timestamps. It does preserve symbolic
links.

-i Interactive mode. Ask before overwriting destination files.

-f Force the copy. If a destination file exists, overwrite it unconditionally.

mv
mv [options] source target

The mv (move) command can rename a file:

→ mv somefile yetanotherfile

or move files and directories into a destination directory:

→ mv myfile myfile2 dir1 dir2 destination_directory

Basic File Operations | 49

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

Useful options

-i Interactive mode. Ask before overwriting destination files.

-f Force the move. If a destination file exists, overwrite it unconditionally.

rm
rm [options] files | directories

The rm (remove) command can delete files:

→ rm deleteme deleteme2

or recursively delete directories:

→ rm -r dir1 dir2

Useful options

-i Interactive mode. Ask before deleting each file.

-f Force the deletion, ignoring any errors or warnings.

-r Recursively remove a directory and its contents. Use with caution, especially
if combined with the -f option, as it can wipe out all your files.

ln
ln [options] source target

A link is a reference to another file, created by the ln com‐
mand. Intuitively, links give the same file multiple names,
allowing it to live in two (or more) locations at once.

There are two kinds of links. A symbolic link (also called a sym‐
link or soft link) refers to another file by its path, much like a
Windows “shortcut” or a Mac OS X “alias.” To create a symbolic
link, use the -s option:

50 | Linux Pocket Guide

→ ln -s myfile mysoftlink

If you delete the original file, the now-dangling link will be
invalid, pointing to a nonexistent file path. A hard link, on the
other hand, is simply a second name for a physical file on disk
(in tech talk, it points to the same inode). If you delete the orig‐
inal file, the link still works. Figure 5 illustrates the difference.
To create a hard link, type:

→ ln myfile myhardlink

Figure 5. Hard link versus symbolic link

Symbolic links can point to files on other disk partitions, as
they are just references to file paths; hard links cannot, because
an inode on one disk has no meaning on another. Symbolic

Basic File Operations | 51

links can also point to directories, whereas hard links can‐
not...unless you are the superuser and use the -d option.
Useful options

-s Make a symbolic link instead of a hard link.

-i Interactive mode. Ask before overwriting destination files.

-f Force the link. If a destination file exists, overwrite it unconditionally.

-d Create a hard link to a directory (superusers only).

To find out where a symbolic link points, run either of the fol‐
lowing commands, which show that the link examplelink points
to the file myfile:

→ readlink examplelink
myfile
→ ls -l examplelink
lrwxrwxrwx 1 smith ... examplelink -> myfile

Symbolic links can point to other symbolic links. To follow an
entire chain of links to discover where they point in the end,
use readlink -f.

Directory Operations
cd Change your current directory (i.e., “where you are now” in the

filesystem).

pwd Print the name of your current directory.

basename Print the final part of a file path.

dirname Print a file path without its final part.

mkdir Create (make) a directory.

rmdir Delete (remove) an empty directory.

rm -r Delete a nonempty directory and its contents.

52 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

We discussed the directory structure of Linux in “The Filesys‐
tem” on page 17. Now we’ll cover commands that create, mod‐
ify, delete, and manipulate directories within that structure.

cd
cd [directory]

The cd (change directory) command sets your current working
directory:

→ cd /usr/games

With no directory supplied, cd defaults to your home directory:

→ cd

pwd
pwd

The pwd command prints the absolute path of your current
working directory:

→ pwd
/users/smith/linuxpocketguide

basename
basename path [extension]

The basename command prints the final component in a file
path:

→ basename /users/smith/finances/money.txt
money.txt

Directory Operations | 53

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

If you provide an optional extension, it gets stripped from the
result:

→ basename /users/smith/finances/money.txt .txt
money

dirname
dirname path

The dirname command prints a file path with its final compo‐
nent removed:

→ dirname /users/smith/mydir
/users/smith

dirname does not change your current working directory. It
simply manipulates and prints a string, just like basename does.

mkdir
mkdir [options] directories

mkdir creates one or more directories:

→ mkdir directory1 directory2 directory3

Useful options

-p Given a directory path (not just a simple directory name), create any
necessary parent directories automatically. The command:
→ mkdir -p one/two/three

creates one and one/two and one/two/three if they don’t already exist.

-m

mode

Create the directory with the given permissions:
→ mkdir -m 0755 publicdir

By default, your shell’s umask controls the permissions. See the chmod
command in “File Properties” on page 69, and “File Protections” on
page 25.

54 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionrmdir
rmdir [options] directories

The rmdir (remove directory) command deletes one or more
empty directories you name:

→ mkdir /tmp/junk make a directory
→ rmdir /tmp/junk

Useful options

-p If you supply a directory path (not just a simple directory name), delete not
only the given directory, but the specified parent directories automatically,
all of which must be empty. So rmdir -p one/two/three will delete
not only one/two/three, but also one/two and one.

To delete a nonempty directory and its contents, use (carefully)
rm -r directory. Use rm -ri to delete interactively, or rm -rf to
annihilate without any error messages or confirmation.

File Viewing
cat View files in their entirety.

less View text files one page at a time.

nl View text files with their lines numbered.

head View the first lines of a text file.

tail View the last lines of a text file.

strings Display text that’s embedded in a binary file.

od View data in octal (or other formats).

In Linux, you’ll encounter files that contain readable text, and
others that contain binary data that you want to view in a read‐
able manner. Here, we’ll demonstrate how to display their con‐
tents at the most basic level.

File Viewing | 55

stdin stdout - file -- opt --help --versioncat
cat [options] [files]

The simplest viewer is cat, which just prints its files to standard
output, concatenating them (hence the name):

→ cat myfile

Large files will likely scroll off screen, so consider using less if
you plan to read the output. That being said, cat is particularly
useful for sending a set of files into a shell pipeline:

→ cat myfile* | wc

cat can also manipulate its output in small ways, optionally
displaying nonprinting characters, prepending line numbers
(though the nl command is more powerful for this purpose),
and eliminating whitespace.
Useful options

-T Print tabs as ^I.

-E Print newlines as $.

-v Print other nonprinting characters in a human-readable format.

-n Prepend line numbers to every line.

-b Prepend line numbers to nonblank lines.

-s Squeeze each sequence of blank lines into a single blank line.

56 | Linux Pocket Guide

9 Although technically less can be plugged into the middle of a pipe‐
line, or its output redirected to a file, there isn’t much point to doing
this.

stdin stdout9 - file -- opt --help --versionless
less [options] [files]

Use less to view text one “page” at a time (i.e., one window or
screenful at a time):

→ less myfile

It’s great for text files, or as the final command in a shell pipe‐
line with lengthy output:

→ command1 | command2 | command3 | command4 | less

While running less, type h for a help message describing all its
features. Here are some useful keystrokes for paging through
files:

Keystroke Meaning

h, H View a help page.

Space bar, f, ^V, ^F Move forward one screenful.

Enter Move forward one line.

b, ^B, ESC-v Move backward one screenful.

/ Enter search mode. Follow it with a regular expression and
press Enter, and less will look for the first matching line.

? Same as /, but it searches backward in the file.

n Next match: Repeat your most recent search forward.

N Repeat your most recent search backward.

v Edit the current file with your default text editor (the value
of environment variable VISUAL, or if not defined,
EDITOR, or if not defined, the program vi).

File Viewing | 57

stdin stdout - file -- opt --help --version

Keystroke Meaning

<, g Jump to beginning of file.

>, G Jump to end of file.

:n Jump to next file.

:p Jump to previous file.

less has a mind-boggling number of features; we’re presenting
only the most common. (For instance, less will display the
contents of a compressed Zip file: try less myfile.zip.) The
manpage is recommended reading.
Useful options

-c Clear the screen before displaying the next page. This avoids scrolling and
may be more comfortable on the eyes.

-m Print a more verbose prompt, displaying the percentage of the file displayed
so far.

-N Display line numbers.

-r Display control characters literally; normally less converts them to a
human-readable format.

-s Squeeze multiple, adjacent blank lines into a single blank line.

-S Truncate long lines to the width of the screen, instead of wrapping.

nl
nl [options] [files]

nl copies its files to standard output, prepending line numbers:

→ nl poem
 1 Once upon a time, there was
 2 a little operating system named
 3 Linux, which everybody loved.

58 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

It’s more flexible than cat with its -n and -b options, providing
greater control over the numbering.
Useful options

-b [a|t|n|p R] Prepend numbers to all lines (a), nonblank lines (t), no
lines (n), or only lines that contain regular expression R.
(Default=a)

-v N Begin numbering with integer N. (Default=1)

-i N Increment the number by N for each line, so for example,
you could use odd numbers only (-i2) or even numbers
only (-v2 -i2). (Default=1)

-n [ln|rn|rz] Format numbers as left-justified (ln), right-justified (rn),
or right-justified with leading zeros (rz). (Default=ln)

-w N Force the width of the number to be N columns.
(Default=6)

-s S Insert string S between the line number and the text.
(Default=Tab)

head
head [options] [files]

The head command prints the first 10 lines of a file, which is
great for previewing the contents:

→ head myfile
→ head myfile* | less Previewing multiple files

It’s also good for previewing the first few lines of output from a
pipeline—say, the most recently modified 10 files in the current
directory:

→ ls -lta | head

File Viewing | 59

stdin stdout - file -- opt --help --version

Useful options

-n N Print the first N lines instead of 10.

-N Same as -n N.

-c N Print the first N bytes of the file.

-q Quiet mode: when processing more than one file, don’t print a banner
above each file. Normally, head prints a banner containing the filename.

tail
tail [options] [files]

The tail command prints the last 10 lines of a file, and does
other tricks as well:

→ tail myfile
→ nl myfile | tail See line numbers too

The ultra-useful -f option causes tail to watch a file actively
while another program is writing to it, displaying new lines as
they are written. This is invaluable for watching a Linux log file
in active use, as other programs write to it:

→ tail -f /var/log/syslog

Useful options

-n N Print the last N lines of the file instead of 10.

-N Same as -n N.

-n +N Print all lines except the first N.

-c N Print the last N bytes of the file.

-f Keep the file open, and whenever lines are appended to the file, print
them. This is extremely useful. Add the --retry option if the file
doesn’t exist yet, but you want to wait for it to exist.

60 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

-q Quiet mode: when processing more than one file, don’t print a banner
above each file. Normally tail prints a banner containing the
filename.

strings
strings [options] [files]

Binary files, such as executable programs and object files, usu‐
ally contain some readable text. The strings program extracts
that text and displays it on standard output. You can discover
version information, authors’ names, and other useful tidbits
with strings:

→ strings /usr/bin/who
David MacKenzie
Copyright %s %d Free Software Foundation, Inc.
Report %s bugs to %s
...

Combine strings and grep to make your exploring more effi‐
cient. Here we look for email addresses:

→ strings -n 10 /usr/bin/who | grep '@'
bug-coreutils@gnu.org

Useful options

-n length Display only strings with length greater than length (the
default is 4).

od
od [options] [files]

When you want to view a binary file, consider od (octal dump)
for the job. It copies one or more files to standard output, dis‐
playing their data in ASCII, octal, decimal, hexadecimal, or

File Viewing | 61

floating point, in various sizes (byte, short, long). For example,
this command:

→ od -w8 /usr/bin/who
0000000 042577 043114 000401 000001
0000010 000000 000000 000000 000000
0000020 000002 000003 000001 000000
...

displays the bytes in binary file /usr/bin/who in octal, eight
bytes per line. The column on the left contains the file offset of
each row, again in octal.

If your binary file also contains text, consider the -tc option,
which displays character data. For example, binary executables
like who contain the string “ELF” at the beginning:

→ od -tc -w8 /usr/bin/who | head -3
0000000 177 E L F 001 001 001 \0
0000010 \0 \0 \0 \0 \0 \0 \0 \0
0000020 002 \0 003 \0 001 \0 \0 \0

Useful options

-N B Display only the first B bytes of each file, specified in
decimal, hexadecimal (by prepending 0x or 0X), 512-byte
blocks (by appending b), kilobytes (by appending k), or
megabytes (by appending m). (Default displays the entire
file.)

-j B Begin the output at byte B +1 of each file; acceptable
formats are the same as for the -N option. (Default=0)

-w [B] Display B bytes per line; acceptable formats are the same
as in the -N option. Using -w by itself is equivalent to -
w32. (Default=16)

-s [B] Group each row of bytes into sequences of B bytes,
separated by whitespace; acceptable formats are the same
as in the -N option. Using -s by itself is equivalent to -
s3. (Default=2)

62 | Linux Pocket Guide

-A (d|o|x|n) Display file offsets in the leftmost column, in decimal (d),
octal (o), hexadecimal (x), or not at all (n). (Default=o)

-t(a|c)[z] Display output in a character format, with
nonalphanumeric characters printed as escape sequences
(c) or by name (a).

-t(d|o|u|x)[z] Display output in an integer format, including octal (o),
signed decimal (d), unsigned decimal (u), hexadecimal
(x).

Appending z to the -t option prints a new column on the
righthand side of the output, displaying the printable charac‐
ters on each line.

File Creation and Editing
Command Meaning

nano A simple text editor included by default in popular Linux distros.

emacs Text editor from Free Software Foundation.

vim Text editor, extension of Unix vi.

To get far with Linux, you must become proficient with one of
its text editors. The three major ones are nano, emacs from the
Free Software Foundation, and vim, a successor to the Unix
editor vi. Teaching these editors fully is beyond the scope of
this book, but all have online tutorials, and we list common
operations in Table 1. To edit a file, run any of these com‐
mands:

→ nano myfile
→ emacs myfile
→ vim myfile

If myfile doesn’t exist, it is created automatically.

If you share files with Microsoft Windows systems, Linux also
has fine programs for editing Microsoft Office documents:
LibreOffice (all documents), abiword (Word only), and gnu‐

File Creation and Editing | 63

10 The -n option prevents a newline character from being written to the
file, making it truly empty.

meric (Excel only). These are probably included in your distro,
or you can find them easily through web search.

Creating a File Quickly
You can quickly create an empty file (for later editing) using the
touch command:

→ touch newfile

or the echo -n command (see “File Properties” on page 69):10

→ echo -n > newfile2

or write data into a new file by redirecting the output of a pro‐
gram (see “Input/output redirection” on page 33):

→ echo anything at all > newfile3

Your Default Editor
Various Linux programs will run an editor when necessary, and
usually the default editor is nano or vim. For example, your
email program may invoke an editor to compose a new mes‐
sage, and less invokes an editor if you type “v”. But what if you
want a different default editor? Set the environment variables
VISUAL and EDITOR to your choice, for example:

→ EDITOR=emacs
→ VISUAL=emacs
→ export EDITOR VISUAL

Both variables are necessary because different programs check
one variable or the other. Set EDITOR and VISUAL in your
~/.bash_profile startup file if you want your choices made per‐
manent. Any program can be made your default editor as long
as it accepts a filename as an argument.

64 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

Regardless of how you set these variables, all users should
know at least basic commands for each editor in case another
program suddenly runs an editor on a critical file.

nano
nano [options] [files]

Nano is a text editor with basic features. It’s included by default
in many Linux distros, whereas more powerful editors like
emacs and vim might not be. To invoke nano, type

→ nano

Nano commands generally involve holding down the control
key and typing a letter, such as ^o to save and ^x to quit. Nano
helpfully displays common commands at the bottom of its edit
window, though some of the vocabulary is a little obscure. (For
example, nano uses the term “WriteOut” to mean “save file.”)
Other commands involve the meta key, which is usually the
Escape key or the Alt key. Nano’s own documentation notates
the meta key as M- (as in M-F to mean “use the meta key and
type F”), so we will too. For basic keystrokes, see Table 1. For
more documentation, visit http://nano-editor.org.

emacs
emacs [options] [files]

emacs is an extremely powerful editing environment with
thousands of commands, plus a complete programming lan‐
guage to define your own editing features. To invoke emacs in a
new X window, run:

→ emacs

To run in a existing shell window:

File Creation and Editing | 65

http://nano-editor.org

stdin stdout - file -- opt --help --version

→ emacs -nw

Now to invoke the built-in emacs tutorial, type ^h t.

Most emacs keystroke commands involve the control key (like
^F) or the meta key, which is usually the Escape key or the Alt
key. emacs’s own documentation notates the meta key as M- (as
in M-F to mean “use the meta key and type F”), so we will too.
For basic keystrokes, see Table 1.

vim
vim [options] [files]

vim is an enhanced version of the old standard Unix editor vi.
To invoke the editor in a new X window, run:

→ gvim

To run in a existing shell window:

→ vim

To run the vim tutorial, run:

→ vimtutor

vim is a mode-based editor. It operates usually in two modes,
insert and command, and you must switch between them while
editing. Insert mode is for entering text in the usual manner,
while command mode is for deleting text, copy/paste, and
other operations. For basic keystrokes in normal mode, see
Table 1.

66 | Linux Pocket Guide

Table 1. Basic keystrokes in text editors

Task emacs nano vim

Type text Just type Just type Switch to insert
mode if
necessary, by
typing i, then
type any text

Save and quit ^x^s then
^x^c

^o then ^x :wq

Quit without saving ^x^c

Respond “no”
when asked to
save buffers

^x

Respond “no”
when asked to
save

:q!

Save ^x^s ^o :w

Save As ^x^w ^o, then type a
filename

:w filename

Undo ^/ or ^x u M-u u

Suspend editor (not in X) ^z ^z ^z

Switch to insert mode (N/A) (N/A) i

Switch to command mode (N/A) (N/A) ESC

Switch to command-line
mode

M-x (N/A) :

Abort command in
progress

^g ^c ESC

Move forward ^f or right
arrow

^f or right
arrow

l or right arrow

Move backward ^b or left
arrow

^b or left
arrow

h or left arrow

Move up ^p or up arrow ^p or up arrow k or up arrow

Move down ^n or down
arrow

^n or down
arrow

j or down
arrow

File Creation and Editing | 67

Task emacs nano vim

Move to next word M-f ^SPACEBAR w

Move to previous word M-b M-SPACEBAR b

Move to beginning of line ^a ^a 0

Move to end of line ^e ^e $

Move down one screen ^v ^v ^f

Move up one screen M-v ^y ^b

Move to beginning of
document

M-< M-\ gg

Move to end of document M-> M-/ G

Delete next character ^d ^d x

Delete previous character BACKSPACE BACKSPACE X

Delete next word M-d (N/A) de

Delete previous word M-

BACKSPACE

(N/A) db

Delete current line ^a^k ^k dd

Delete to end of line ^k ... D

Define region (type this
keystroke to mark the
beginning of the region,
then move the cursor to
the end of the desired
region)

^SPACEBAR ^^ (control
caret)

v

Cut region ^w ^k d

Copy region M-w M-^ y

Paste region ^y ^u p

Get help ^h ^g :help

View the manual ^h i ^g :help

68 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

File Properties
stat Display attributes of files and directories.

wc Count bytes, words, and lines in a file.

du Measure disk usage of files and directories.

file Identify (guess) the type of a file.

touch Change timestamps of files and directories.

chown Change owner of files and directories.

chgrp Change group ownership of files and directories.

chmod Change protection mode of files and directories.

umask Set a default mode for new files and directories.

chattr Change extended attributes of files and directories.

lsattr List extended attributes of files and directories.

When examining a Linux file, keep in mind that the contents
are only half the story. Every file and directory also has
attributes that describe its owner, size, access permissions, and
other information. The ls -l command (see “Basic File Opera‐
tions” on page 47) displays some of these attributes, but other
commands provide additional information.

stat
stat [options] files

The stat command lists important attributes of files (by
default) or filesystems (-f option). File information looks like:

→ stat myfile
 File: ‘myfile’
 Size: 1168 Blocks: 8
 IO Block: 4096 regular file
Device: 811h/2065d Inode: 37224455 Links: 1
Access: (0644/-rw-r--r--) Uid: (600/lisa)

File Properties | 69

 Gid: (620/users)
Access: 2015-11-07 11:15:14.766013415 -0500
Modify: 2015-11-07 11:15:14.722012802 -0500
Change: 2015-11-07 11:15:14.722012802 -0500
 Birth: -

and includes the filename, size in bytes (1168), size in blocks
(8), file type (Regular File), permissions in octal (0644), per‐
missions in the format of “ls -l” (-rw-r--r--), owner’s user ID
(600), owner’s name (lisa), owner’s group ID (620), owner’s
group name (users), device type (811 in hexadecimal, 2065 in
decimal), inode number (37224455), number of hard links (1),
and timestamps of the file’s most recent access, modification,
and status change. Filesystem information looks like:

→ stat -f myfile
 File: "myfile"
 ID: f02ed2bb86590cc6 Namelen: 255
Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 185788077 Free: 108262724
 Available: 98819461
Inodes: Total: 47202304 Free: 46442864

and includes the filename (myfile), filesystem ID
(f02ed2bb86590cc6), maximum allowable length of a filename
for that filesystem (255 bytes), filesystem type (ext), block size
for the filesystem (4096), the counts of total, free, and available
blocks in the filesystem (185788077, 108262724, and 98819461,
respectively), and the counts of total and free inodes (47202304
and 46442864, respectively).

The -t option presents the same data but on a single line,
without headings. This is handy for processing by shell scripts
or other programs:

→ stat -t myfile
myfile 1168 8 81a4 600 620 811 37224455 1 0 0
 1446912914 1446912914 1446912914 0 4096
→ stat -tf myfile

70 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

myfile f02ed2bb86590cc6 255 ef53 4096 4096
 185788077 108262715 98819452 47202304 46442864

Useful options

-L Follow symbolic links and report on the file they point to.

-f Report on the filesystem containing the file, not the file itself.

-t Terse mode: print information on a single line.

wc
wc [options] [files]

The wc (word count) program prints a count of bytes, words,
and lines in (presumably) a text file:

→ wc myfile
 18 211 1168 myfile

This file has 18 lines, 211 whitespace-delimited words, and
1168 bytes.
Useful options

-l Print the line count only.

-w Print the word count only.

-c Print the byte count only.

-L Locate the longest line in each file and print its length in bytes.

du
du [options] [files| directories]

The du (disk usage) command measures the disk space occu‐
pied by files or directories. By default, it measures the current

File Properties | 71

directory and all its subdirectories, printing totals in blocks for
each, with a grand total at the bottom:

→ du
36 ./Mail
340 ./Files/mine
40 ./Files/bob
416 ./Files
216 ./PC
2404 .

It can also measure the size of files:

→ du myfile emptyfile hugefile
4 myfile
0 emptyfile
18144 hugefile

Useful options

-b Measure usage in bytes.

-k Measure usage in kilobytes.

-m Measure usage in megabytes.

-B N Display sizes in blocks that you define, where 1 block = N bytes.
(Default = 1024)

-h -H Print in human-readable units. For example, if two directories are of size
1 gigabyte or 25 kilobytes, respectively, du -h prints 1G and 25K. The
-h option uses powers of 1024, whereas -H uses powers of 1000.

-c Print a total in the last line. This is the default behavior when measuring
a directory, but for measuring individual files, provide -c if you want a
total.

-L Follow symbolic links and measure the files they point to.

-s Print only the total size.

72 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

file
file [options] files

The file command reports the type of a file. The output is an
educated guess based on the file content and other factors:

→ file /etc/hosts /usr/bin/who letter.docx
/etc/hosts: ASCII text
/usr/bin/who: ELF 64-bit LSB executable ...
letter.docx: Microsoft Word 2007+

Useful options

-b Omit filenames (left column of output).

-i Print MIME types for the file, such as “text/plain” or “audio/
mpeg”, instead of the usual output.

-f name_file Read filenames, one per line, from the given name_file,
and report their types. Afterward, process filenames on the
command line as usual.

-L Follow symbolic links, reporting the type of the destination file
instead of the link.

-z If a file is compressed (see “File Compression and Packaging”
on page 108), examine the uncompressed contents to decide
the file type, instead of reporting “compressed data.”

touch
touch [options] files

The touch command changes two timestamps associated with a
file: its modification time (when the file’s data was last changed)
and its access time (when the file was last read). To set both
timestamps to right now, run:

→ touch myfile

File Properties | 73

stdin stdout - file -- opt --help --version

You can set these timestamps to arbitrary values, for example:

→ touch -d "November 18 1975" myfile

If a given file doesn’t exist, touch creates it, offering a handy
way to create empty files.
Useful options

-a Change the access time only.

-m Change the modification time only.

-c If the file doesn’t exist, don’t create it (normally, touch
creates it).

-d timestamp Set the file’s timestamp(s). A tremendous number of
timestamp formats are acceptable, from “12/28/2001 3pm” to
“28-May” (the current year is assumed, and a time of
midnight) to “next tuesday 13:59” to “0” (midnight today).
Experiment and check your work with stat. Full
documentation is available from info touch.

-t timestamp A more explicit way to set the file’s timestamp, using the
format [[CC]YY]MMDDhhmm [.ss], where CC is the two-digit
century, YY is the two-digit year, MM is the two-digit month,
DD is the two-digit day, hh is the two-digit hour, mm is the
two-digit minute, and ss is the two-digit second. For
example, -t 20030812150047 represents August 12,
2003, at 15:00:47.

chown
chown [options] user_spec files

The chown (change owner) command sets the ownership of files
and directories. To make user “smith” the owner of several files
and a directory, run:

→ sudo chown smith myfile myfile2 mydir

74 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

The user_spec parameter may be any of these possibilities:

• An existing username (or any numeric user ID), to set
the owner: chown smith myfile

• An existing username (or any numeric user ID), option‐
ally followed by a colon and an existing group name (or
any numeric group ID), to set the owner and group:
chown smith:users myfile

• An existing username (or any numeric user ID) followed
by a colon, to set the owner and to set the group to the
invoking user’s login group: chown smith: myfile

• An existing group name (or any numeric group ID) pre‐
ceded by a colon, to set the group only: chown :users
myfile

• --reference=file to set the same owner and group as
another given file

Useful options

--dereference Follow symbolic links and operate on the files they point to.

-R Recursively change permissions within a directory
hierarchy.

chgrp
chgrp [options] group_spec files

The chgrp (change group) command sets the group ownership
of files and directories:

→ chgrp smith myfile myfile2 mydir

The group_spec parameter may be any of these possibilities:

• A group name or numeric group ID

File Properties | 75

stdin stdout - file -- opt --help --version

• --reference=file, to set the same group ownership as
another given file

See “Group Management” on page 167 for more information
on groups.
Useful options

--dereference Follow symbolic links and operate on the files they point to.

-R Recursively change the ownership within a directory
hierarchy.

chmod
chmod [options] permissions files

The chmod (change mode) command protects files and directo‐
ries from unauthorized users on the same system, by setting
access permissions. Typical permissions are read, write, and
execute, and they may be limited to the file owner, the file’s
group owner, and/or other users. The permissions argument
can take three different forms:

• --reference=file, to set the same permissions as another
given file.

• An octal number, up to four digits long, that specifies the
file’s absolute permissions in bits, as in Figure 6. The left‐
most digit is special (described later) and the second,
third, and fourth represent the file’s owner, the file’s
group, and all users, respectively.

• One or more strings specifying absolute or relative per‐
missions (i.e., relative to the file’s existing permissions).
For example, a+r makes a file readable by all users.

76 | Linux Pocket Guide

The most common permissions are:

→ chmod 600 myfile Private file for you
→ chmod 644 myfile Everyone can read; you can write
→ chmod 700 mydir Private directory for you
→ chmod 755 mydir Everyone can read; you can write

Figure 6. File permission bits explained

In the third form, each string consists of three parts:

Scope (optional)
u for user, g for group, o for other users not in the group, a
for all users. The default is a.

Command
+ to add permissions; − to remove permissions; or = to set
absolute permissions, ignoring existing ones.

Permissions
r for read, w for write/modify, x for execute (for directo‐
ries, this is permission to cd into the directory), X for con‐
ditional execute (explained later), u to duplicate the user
permissions, g to duplicate the group permissions, o to
duplicate the “other users” permissions, s for setuid or
setgid, and t for the sticky bit.

For example, ug+rw would add read and write permission for
the user and the group, a-x (or just -x) would remove execute
permission for everyone, and o=r would directly set the “other

File Properties | 77

stdin stdout - file -- opt --help --version

users” permissions to read only. You can combine these strings
by separating them with commas, such as ug+rw,a-x.

Conditional execute permission (X) means the same as x,
except that it succeeds only if the file is already executable, or if
the file is a directory. Otherwise, it has no effect.

Setuid and setgid, when applied to executable files (programs
and scripts), have a powerful effect. Suppose we have an exe‐
cutable file F owned by user “smith” and the group “friends”. If
file F has setuid (set user ID) enabled, then anyone who runs F
will “become” user “smith,” with all her rights and privileges,
for the duration of the program. Likewise, if F has setgid (set
group ID) enabled, anyone who executes F becomes a member
of the “friends” group for the duration of the program. As you
might imagine, setuid and setgid can impact system security, so
don’t use them unless you really know what you’re doing. One
misplaced chmod +s can leave your whole system vulnerable to
attack.

The sticky bit, most commonly used for /tmp directories, con‐
trols removal of files in that directory. Normally, if you have
write permission in a directory, you can delete or move files
within it, even if you don’t have this access to the files them‐
selves. Inside a directory with the sticky bit set, you need write
permission on a file in order to delete or move it.
Useful options

-R Recursively change the ownership within a directory hierarchy.

umask
umask [options] [mask]

The umask command sets or displays your default mode for cre‐
ating files and directories—whether they are readable, writable,
and/or executable by yourself, your group, and the world:

78 | Linux Pocket Guide

→ umask
0002
→ umask -S
u=rwx,g=rwx,o=rx

Let’s start with some technical talk and follow with common-
sense advice. A umask is a binary (base two) value, though it is
commonly presented in octal (base eight). It defines your
default protection mode by combining with the octal value
0666 for files and 0777 for directories, using the binary opera‐
tion NOT AND. For example, the umask 0002 yields a default file
mode of 0664:

0666 NOT AND 0002
= 000110110110 NOT AND 000000000010
= 000110110110 AND 111111111101
= 000110110100
= 0664

Similarly for directories, 0002 NOT AND 0777 yields a default
mode of 0775.

If that explanation seems from outer space, here are some sim‐
ple recipes. Use mask 0022 to give yourself full privileges, and
all others read/execute privileges only:

→ umask 0022
→ touch newfile && mkdir dir
→ ls -ldG newfile dir
-rw-r--r-- 1 smith 0 Nov 11 12:25 newfile
drwxr-xr-x 2 smith 4096 Nov 11 12:25 dir

Use mask 0002 to give yourself and your default group full
privileges, and read/execute to others:

→ umask 0002
→ touch newfile && mkdir dir
→ ls -ldG newfile dir
-rw-rw-r-- 1 smith 0 Nov 11 12:26 newfile
drwxrwxr-x 2 smith 4096 Nov 11 12:26 dir

Use mask 0077 to give yourself full privileges with nothing for
anyone else:

File Properties | 79

stdin stdout - file -- opt --help --version

→ umask 0077
→ touch newfile && mkdir dir
→ ls -ldG newfile dir
-rw------- 1 smith 0 Nov 11 12:27 newfile
drwx------ 2 smith 4096 Nov 11 12:27 dir

chattr
chattr [options] [+ − =]attributes [files]

If you grew up with other Unix systems, you might be sur‐
prised that Linux files can have additional attributes beyond
their access permissions. If a file is on an “ext” filesystem (ext2,
ext3, etc.), you can set these extended attributes with the chattr
(change attribute) command and list them with lsattr.

As with chmod, attributes may be added (+) or removed (-) rela‐
tively, or set absolutely (=). For example, to keep a file com‐
pressed and nondumpable, run:

→ chattr +cd myfile

Attribute Meaning

a Append-only: appends are permitted to this file, but it cannot
otherwise be edited. Root only.

A Accesses not timestamped: accesses to this file don’t update its access
timestamp (atime).

c Compressed: data is transparently compressed on writes and
uncompressed on reads.

d Don’t dump: tell the dump program to ignore this file when making
backups (see “Backups and Remote Storage” on page 134).

i Immutable: file cannot be changed or deleted (root only).

j Journaled data (ext3 filesystems only).

s Secure deletion: if deleted, this file’s data is overwritten with zeros.

S Synchronous update: changes are written to disk immediately.

80 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Attribute Meaning

u Undeletable: file cannot be deleted.

There are a few other attributes too, some of them obscure or
experimental. See the manpage for details.
Useful options

-R Recursively process directories.

lsattr
lsattr [options] [files]

If you set extended attributes with chattr, you can view them
with lsattr (list attributes). The output uses the same letters as
chattr; for example, this file is immutable and undeletable:

→ lsattr myfile
-u--i--- myfile

With no files specified, lsattr prints the attributes of all files in
the current directory.
Useful options

-R Recursively process directories.

-a List all files, including those whose names begin with a dot.

-d If listing a directory, do not list its contents, just the directory itself.

File Location
find Locate files in a directory hierarchy.

xargs Process a list of located files (and much more).

locate Create an index of files, and search the index for string.

which Locate executables in your search path (command).

File Location | 81

11 The tcsh shell performs some trickery to make which detect aliases.

stdin stdout - file -- opt --help --version

type Locate executables in your search path (bash built-in).

whereis Locate executables, documentation, and source files.

Linux systems can contain hundreds of thousands of files
easily. How can you find a particular file when you need to?
The first step is to organize your files logically into directories
in some thoughtful manner, but there are several other ways to
find files, depending on what you’re looking for.

For finding any file, find is a brute-force program that slogs file
by file through a directory hierarchy to locate a target. locate is
much faster, searching through a prebuilt index that you gener‐
ate as needed. (Some distros generate the index nightly by
default.)

For finding programs, the which and type commands check all
directories in your shell search path. type is built into the bash
shell (and therefore available only when you’re running bash),
while which is a program (normally /usr/bin/which); type is
faster and can detect shell aliases.11 In contrast, whereis exam‐
ines a known set of directories, rather than your search path.

find
find [directories] [expression]

The find command searches one or more directories (and their
subdirectories recursively) for files matching certain criteria. It
is very powerful, with over 50 options, and unfortunately, a
rather unusual syntax. Here are some simple examples that
search the entire filesystem from the current directory (indica‐
ted by a dot):

Find a particular file named myfile:

82 | Linux Pocket Guide

→ find . -type f -name myfile -print
./myfile

Print filenames beginning with “myfile” (notice how the wild‐
card is escaped so the shell ignores it):

→ find . -type f -name myfile* -print
./myfile.zip
./myfile3
./myfile
./myfile2

Print all directory names:

→ find . -type d -print
.
./jpegexample
./dir2
./mydir
./mydir/dir
./dir1
./dir3
./d

Useful options

-name pattern
-path pattern
-lname pattern

The name (-name), pathname (-path), or symbolic link
target (-lname) of the desired file must match this shell
pattern, which may include shell wildcards *, ?, and [].
(You must escape the wildcards, however, so they are
ignored by the shell and passed literally to find.) Paths
are relative to the directory tree being searched.

-iname pattern
-ipath pattern
-ilname pattern

The -iname, -ipath, and -ilname options are the
same as -name, -path, and -lname, respectively, but
are case-insensitive.

-regex regexp The path (relative to the directory tree being searched)
must match the given regular expression.

-type t Locate only files of type t. This includes plain files (f),
directories (d), symbolic links (l), block devices (b),
character devices (c), named pipes (p), and sockets (s).

File Location | 83

-atime N
-ctime N
-mtime N

File was last accessed (-atime), last modified
(-mtime), or had a status change (-ctime) exactly N
*24 hours ago. Use +N for “greater than N,” or -N for
“less than N.”

-amin N
-cmin N
-mmin N

File was last accessed (-amin), last modified (-mmin),
or had a status change (-cmin) exactly N minutes ago.
Use +N for “greater than N,”or -N for “less than N.”

-anewer

other_file

-cnewer

other_file

-newer

other_file

File was accessed (-anewer), modified (-newer), or
had a status change (-cnewer) more recently than
other_file.

-maxdepth N
-mindepth N

Consider files at least (-mindepth) or at most
(-maxdepth) N levels deep in the directory tree being
searched.

-follow Dereference symbolic links.

-depth Proceed using depth-first search: completely search a
directory’s contents (recursively) before operating on the
directory itself.

-xdev Limit the search to a single filesystem (i.e., don’t cross
device boundaries).

-size N [bckw] Consider files of size N, which can be given in blocks (b),
one-byte characters (c), kilobytes (k), or two-byte words
(w). Use +N for “greater than N,” or -N for “less than
N.”

-empty File has zero size, and is a regular file or directory.

-user name File is owned by the given user.

-group name File is owned by the given group.

-perm mode File has permissions equal to mode. Use - mode to check
that all of the given bits are set, or +mode to check that
any of the given bits are set.

84 | Linux Pocket Guide

You can group and negate parts of the expression with the fol‐
lowing operators:

expression1 -a expression2
And. (This is the default if two expressions appear side by
side, so the “-a” is optional.)

expression1 -o expression2
Or.

! expression
-not expression

Negate the expression.

(expression)
Precedence markers, just like in algebra class. Evaluate
what’s in parentheses first. You may need to escape these
from the shell with “\”.

expression1 , expression2
Same as the comma operator in the C programming lan‐
guage. Evaluate both expressions and return the value of
the second one.

Once you’ve specified the search criteria, you can tell find to
perform these actions on files that match the criteria.
Useful options

-print Simply print the path to the file, relative to the search
directory.

-printf string Print the given string, which may have substitutions
applied to it in the manner of the C library function,
printf(). See the manpage for the full list of outputs.

-print0 Like -print, but instead of separating each line of output
with a newline character, use a null (ASCII 0) character. Use
when piping the output of find to another program, and
your list of filenames may contain space characters. Of
course, the receiving program must be capable of reading
and parsing these null-separated lines (e.g., xargs -0).

File Location | 85

stdin stdout - file -- opt --help --version

-exec cmd ; Invoke the given shell command, cmd. Make sure to escape
any shell metacharacters, including the required, final
semicolon, so they are not immediately evaluated on the
command line. Also, the symbol “{}” (make sure to quote or
escape it) represents the path to the file found. A full
example is:
find . -exec ls '{}' \;

-ok cmd ; Same as -exec, but also prompts the user before invoking
each command.

-ls Perform the command ls -dils on the file.

xargs
xargs [options] [command]

xargs is one of the oddest yet most powerful commands avail‐
able to the shell. It reads lines of text from standard input, turns
them into commands, and executes them. This might not
sound exciting, but xargs has some unique uses, particularly
for processing a list of files you’ve located. Suppose you made a
file named important that lists important files, one per line:

→ cat important
/home/jsmith/mail/love-letters
/usr/local/lib/critical_stuff
/etc/passwd
...

With xargs, you can process each of these files easily with other
Linux commands. For instance, the following command runs
the ls -l command on all the listed files:

→ cat important | xargs ls -l

Similarly, you can view the files with less:

→ cat important | xargs less

86 | Linux Pocket Guide

and even delete them with rm:

→ cat important | xargs rm -f Careful! Destructive!

Each of these pipelines reads the list of files from important and
produces and runs new Linux commands based on the list. The
power begins when the input list doesn’t come from a file, but
from another command writing to standard output. In particu‐
lar, the find command, which prints a list of files on standard
output, makes a great partner for xargs. For example, to search
your current directory hierarchy for files containing the word
“tomato”:

→ find . -type f -print | xargs grep -l tomato
./findfile1
./findfile2
→ cat findfile1
This file contains the word tomato.

This power comes with one warning: if any of the files located
by find contains whitespace in its name, this will confuse grep.
If one file is named (say) my stuff, then the grep command con‐
structed is:

grep -l tomato my stuff

which tells grep to process two files named my and stuff. Oops!
Now imagine if the program had been rm instead of grep. You’d
be telling rm to delete the wrong files! To avoid this problem,
always use find -print0 instead of -print, which separates
lines with ASCII null characters instead of newline characters,
combined with xargs -0, which expects ASCII nulls:

→ find . -type f -print0 | xargs -0 grep -l tomato

We have barely scratched the surface of the xargs command, so
continue experimenting! (With harmless commands like grep
and ls at first!)

File Location | 87

Useful options

-n k Feed k lines of input to each executed command. The common -n1
guarantees that each execution will process only one line of input.
Otherwise, xargs may pass multiple lines of input to a single command.

-0 Set the end-of-line character for input to be ASCII zero rather than
whitespace, and treat all characters literally. Use this when the input is
coming from find -print0.

xargs Versus Backquotes
If you remember “Quoting” on page 36, you might realize that
some xargs tricks can be accomplished with backquotes:

→ cat file_list | xargs rm -f With xargs
→ rm -f `cat file_list` With backquotes
→ rm -f $(cat file_list) With $()

While these commands do similar things, the last two can fail if
the command line gets so long, after the output of cat is expan‐
ded, that it exceeds the maximum length of a shell command
line. xargs writes to standard output, rather than appending to
the command line, so it’s safer and more suitable for large or
risky operations.

88 | Linux Pocket Guide

12 Our locate command comes from a package called “mlocate.” Some
systems have an older package called “slocate” with slightly different
usage. If you have slocate, simply type slocate instead of updatedb
in our examples.

stdin stdout - file -- opt --help --versionlocate
locate [options]

The locate command, with its partner updatedb, creates an
index (database) of file locations that is quickly searchable.12 If
you plan to search for many files over time in a directory hier‐
archy that doesn’t change much, locate is a good choice. For
locating a single file or performing more complex processing of
found files, use find.

Some distros automatically index the entire filesystem on a reg‐
ular basis (e.g., once a day), so you can simply run locate and
it will work. But if you ever need to create an index yourself of
a directory and all its subdirectories (say, storing it in /tmp/
myindex), run:

→ updatedb -l0 -U directory -o /tmp/myindex

(Note that -l0 is a lowercase L followed by a zero, not the num‐
ber 10.) Then to search for a string in the index:

→ locate -d /tmp/myindex string

locate has an interesting, optional security feature. You can
create an index that, when searched, will display only files that
the user is permitted to see. So if the superuser created an index
of a protected directory, a nonsuperuser could search it but not
see the protected files. This is done by omitting the -l0 option
to updatedb and running it as root:

→ sudo updatedb -U directory -o /tmp/myindex

File Location | 89

stdin stdout - file -- opt --help --version

Indexing options for updatedb

-u Create index from the root directory downward.

-U directory Create index from directory downward.

-l (0|1) Turn security off (0) or on (1). The default is 1.

-e directories Exclude one or more directories from the index. Separate
their paths by commas.

-o outfile Write the index to file outfile.

Search options for locate

-d index Indicate which index to use (in our example, /tmp/myindex).

-i Case-insensitive search.

-r regexp Search for files matching the given regular expression.

which
which file

The which command locates an executable file in your shell’s
search path. If you’ve been invoking a program by typing its
name:

→ who

the which command tells you where this command is located:

→ which who
/usr/bin/who

You can even find the which program itself:

→ which which
/usr/bin/which

If several programs in your search path have the same name
(e.g., /usr/bin/who and /usr/local/bin/who), which reports only
the first.

90 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

type
type [options] commands

The type command, like which, locates an executable file in
your shell’s search path:

→ type grep who
grep is /bin/grep
who is /usr/bin/who

However, type is built into the bash shell, whereas which is a
program on disk:

→ type which type rm if
which is /usr/bin/which
type is a shell builtin
rm is aliased to `/bin/rm -i'
if is a shell keyword

As a built-in shell command, type is faster than which; how‐
ever, it’s available only in certain shells such as bash.

whereis
whereis [options] files

The whereis command attempts to locate the given files by
searching a hardcoded list of directories. It can find executa‐
bles, documentation, and source code. whereis is somewhat
quirky because its list of directories might not include the ones
you need.

→ whereis vim
vim: /usr/bin/vim /etc/vim /usr/share/vim ...

Useful options

-b

-m

-s

List only executables (-b), manpages (-m), or source code
files (-s).

File Location | 91

stdin stdout - file -- opt --help --version

-B dirs... -f
-M dirs... -f
-S dirs... -f

Search for executables (-B), manpages (-M), or source code
files (-S) only in the given directories. You must follow the
directory list with the -f option before listing the files you
seek.

File Text Manipulation
grep Find lines in a file that match a regular expression.

cut Extract columns from a file.

paste Append columns.

tr Translate characters into other characters.

expand,

unexpand

Convert between tabs and spaces.

sort Sort lines of text by various criteria.

uniq Locate identical lines in a file.

tee Copy a file and print it on standard output, simultaneously.

Perhaps Linux’s greatest strength is text manipulation: massag‐
ing a text file (or standard input) into a desired form by apply‐
ing transformations, often in a pipeline. Any program that
reads standard input and writes standard output falls into this
category, but here we’ll present some of the most important
tools.

grep
grep [options] pattern [files]

The grep command is one of the most consistently useful and
powerful in the Linux arsenal. Its premise is simple: given one
or more files, print all lines in those files that match a particular
regular expression pattern. For example, if a file randomlines
contains these lines:

92 | Linux Pocket Guide

The quick brown fox jumped over the lazy dogs!
My very eager mother just served us nine pancakes.
Film at eleven.

and we search for all lines containing “pancake”, we get:

→ grep pancake randomlines
My very eager mother just served us nine pancakes.

Now we use a regular expression to match lines ending in an
exclamation point:

→ grep '\!$' randomlines
The quick brown fox jumped over the lazy dogs!

grep can use two different types of regular expressions, which it
calls basic and extended. They are equally powerful, just differ‐
ent, and you may prefer one over the other based on your expe‐
rience with other grep implementations. The basic syntax is in
Table 2. Regular expressions are well worth your time to learn.
Other powerful Linux programs use them as well, such as sed
and perl.
Useful options

-v Print only lines that do not match the regular expression.

-l Print only the names of files that contain matching lines,
not the lines themselves.

-L Print only the names of files that do not contain matching
lines.

-c Print only a count of matching lines.

-n In front of each line of matching output, print its original
line number.

-b In front of each line of matching output, print the byte
offset of the line in the input file.

-i Case-insensitive match.

-w Match only complete words (i.e., words that match the
entire regular expression).

File Text Manipulation | 93

stdin stdout - file -- opt --help --version

-x Match only complete lines (i.e., lines that match the entire
regular expression). Overrides -w.

-A N After each matching line, print the next N lines from its
file.

-B N Before each matching line, print the previous N lines from
its file.

-C N Same as -A N -B N: print N lines (from the original file)
above and below each matching line.

--color=always Highlight the matched text in color, for better readability.

-r Recursively search all files in a directory and its
subdirectories.

-E Use extended regular expressions. See egrep.

-F Use lists of fixed strings instead of regular expressions. See
fgrep.

egrep
egrep [options] pattern [files]

The egrep command is just like grep, but uses a different
(“extended”) language for regular expressions. It’s the same as
grep -E.

Table 2. Regular expressions for grep and egrep

Regular expression

Plain Extended Meaning

. Any single character.

[...] Match any single character in this list.

[^...] Match any single character NOT in this list.

(...) Grouping.

\| | Or.

94 | Linux Pocket Guide

Regular expression

Plain Extended Meaning

^ Beginning of a line.

$ End of a line.

\< Beginning of a word.

\> End of a word.

[:alnum:] Any alphanumeric character.

[:alpha:] Any alphabetic character.

[:cntrl:] Any control character.

[:digit:] Any digit.

[:graph:] Any graphic character.

[:lower:] Any lowercase letter.

[:print:] Any printable character.

[:punct:] Any punctuation mark.

[:space:] Any whitespace character.

[:upper:] Any uppercase letter.

[:xdigit:] Any hexadecimal digit.

* Zero or more repetitions of a regular expression.

\+ + One or more repetitions of a regular expression.

\? ? Zero or one occurrence of a regular expression.

\{n \} {n } Exactly n repetitions of a regular expression.

\{ n ,\} {n ,} n or more repetitions of a regular expression.

\{ n , m
\}

{ n , m } Between n and m (inclusive) repetitions of a regular
expression, n < m.

File Text Manipulation | 95

stdin stdout - file -- opt --help --version

Regular expression

Plain Extended Meaning

\c The literal character c, even if c is a special regular
expression character. For example, use * to match an
asterisk or \\ to match a backslash. Alternatively, put
the literal character in square brackets, like [*] or [\].

grep and End-of-Line Characters
When you match the end of a line ($) with grep, text files cre‐
ated on Microsoft Windows or Mac OS X systems may produce
odd results. Each operating system has a different standard for
ending a line. On Linux, each line in a text file ends with a new‐
line character (ASCII 10). On Windows, text lines end with a
carriage return (ASCII 13) followed by a newline character.
And on OS X, a text file might end its lines with newlines or
carriage returns alone. If grep isn’t matching the ends of lines
properly, check for non-Linux end-of-line characters with
cat -v, which displays carriage returns as ^M:

→ cat -v dosfile.txt
Uh-oh! This file seems to end its lines with^M
carriage returns before the newlines.^M

To remove the carriage returns, use the tr -d command:

→ tr -d '\r' < dosfile.txt > linuxfile.txt
→ cat -v linuxfile.txt
Uh-oh! This file seems to end its lines with
carriage returns before the newlines.

fgrep
fgrep [options] [fixed_strings] [files]

The fgrep command is just like grep, but instead of accepting a
regular expression, it accepts a list of fixed strings, separated by

96 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

newlines. It’s the same as grep -F. For example, if you have a
dictionary file full of strings, one per line:

→ cat my_dictionary_file
aardvark
aback
abandon
...

you can conveniently search for those strings in a set of input
files:

→ fgrep -f my_dictionary_file story
a little aardvark who went to
visit the abbot at the abbey.

Normally, you’ll use the lowercase -f option to make fgrep
read the fixed strings from a file. You can also read the fixed
strings on the command line using quoting, but it’s a bit trick‐
ier. To search for the strings “one”, “two”, and “three” in a file,
you’d type:

→ fgrep 'one Note we are typing newline characters
two
three' myfile

fgrep is convenient when searching for nonalphanumeric char‐
acters like * and { because they are treated literally, not as regu‐
lar expression characters.

cut
cut -(b|c|f)range [options] [files]

The cut command extracts columns of text from files. A “col‐
umn” is defined by character offsets (e.g., the nineteenth char‐
acter of each line):

→ cut -c19 myfile

File Text Manipulation | 97

stdin stdout - file -- opt --help --version

or by byte offsets (which are different from characters if your
language has multibyte characters):

→ cut -b19 myfile

or by delimited fields (e.g., the fifth field in each line of a
comma-delimited file, data.csv):

→ cat data.csv
one,two,three,four,five,six,seven
ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN
1,2,3,4,5,6,7
→ cut -f5 -d, data.csv
five
FIVE
5

You aren’t limited to printing a single column: you can provide
a range (3-16), a comma-separated sequence (3,4,5,6,8,16),
or both (3,4,8-16). For ranges, if you omit the first number
(-16), a 1 is assumed (1-16); if you omit the last number (5-),
the end of line is used.
Useful options

-d C Use character C as the input delimiter character
between fields for the -f option. By default it’s a
tab character.

--output-delimiter=C Use character C as the output delimiter character
between fields for -f. By default it’s a tab
character.

-s Suppress (don’t print) lines that don’t contain the
delimiter character.

paste
paste [options] [files]

98 | Linux Pocket Guide

The paste command is the opposite of cut: it treats several files
as vertical columns and combines them on standard output:

→ cat letters
A
B
C
→ cat numbers
1
2
3
4
5
→ paste numbers letters
1 A
2 B
3 C
4
5
→ paste letters numbers
A 1
B 2
C 3
 4
 5

Useful options

-d delimiters Use the given delimiters characters between columns;
the default is a tab character. Provide a single character
(-d:) to be used always, or a list of characters (-dxyz) to
be applied in sequence on each line (the first delimiter is x,
then y, then z, then x, then y, ...).

-s Sideways: transpose the rows and columns of output:
→ paste -s letters numbers
A B C
1 2 3 4 5

File Text Manipulation | 99

stdin stdout - file -- opt --help --versiontr
tr [options] charset1 [charset2]

The tr command performs some simple, useful translations of
one set of characters into another. For example, to capitalize
everything in a file:

→ cat wonderfulfile
This is a very wonderful file.
→ cat wonderfulfile | tr 'a-z' 'A-Z'
THIS IS A VERY WONDERFUL FILE.

or to change all vowels into asterisks:

→ cat wonderfulfile | tr aeiouAEIOU '*'
Th*s *s * v*ry w*nd*rf*l f*l*.

or to delete all vowels:

→ cat wonderfulfile | tr -d aeiouAEIOU
Ths s vry wndrfl fl.

As a practical example, delete all carriage returns from a DOS
text file so it’s more compatible with Linux text utilities like
grep:

→ tr -d '\r' < dosfile.txt > linuxfile.txt

tr translates the first character in charset1 into the first char‐
acter in charset2, the second into the second, the third into the
third, and so on. If the length of charset1 is N, only the first N
characters in charset2 are used. (If charset1 is longer than
charset2, see the -t option.)

Character sets can have the following forms:

Form Meaning

ABDG The sequence of characters A, B, D, G.

A-Z The range of characters from A to Z.

[x*y] y repetitions of the character x.

100 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Form Meaning

[: class :] The same character classes ([:alnum:], [:digit:], etc.)
accepted by grep.

tr also understands the escape characters “\a” (^G = alert by
ringing bell), “\b” (^H = backspace), “\f ” (^L = formfeed), “\n”
(^J = newline), “\r” (^M = return), “\t” (^I = tab), and “\v” (^K =
vertical tab) accepted by printf (see “Screen Output” on page
198), as well as the notation \nnn to mean the character with
octal value nnn.

tr is great for quick and simple translations, but for more pow‐
erful jobs consider sed, awk, or perl.
Useful options

-d Delete the characters in charset1 from the input.

-s Eliminate adjacent duplicates (found in charset1) from the input. For
example, tr -s aeiouAEIOU would squeeze adjacent, duplicate vowels
to be single vowels (reeeeeeally would become really).

-c Complement: operate on all characters not found in charset1.

-t If charset1 is longer than charset2, make them the same length by
truncating charset1. If -t is not present, the last character of charset2
is (invisibly) repeated until charset2 is the same length as charset1.

expand
expand [options] [files]

unexpand [options] [files]

The expand command converts tab characters to an equivalent-
looking number of space characters, and unexpand does the
opposite. By default, a tab stop occurs every eight spaces, but
you can change this with options. Both programs write to stan‐
dard output by default.

File Text Manipulation | 101

stdin stdout - file -- opt --help --version

→ expand tabfile > spacefile
→ expand spacefile > tabfile

To check whether a file contains spaces or tabs, use the cat -T
command, which displays tabs as ^I, or the od -c command,
which displays tabs as \t.
Useful options

-t N Specify that one tab stop occurs every N spaces.

sort
sort [options] [files]

The sort command prints lines of text in alphabetical order, or
sorted by some other rule you specify. All provided files are
concatenated, and the result is sorted and printed:

→ cat threeletters
def
xyz
abc
→ sort threeletters
abc
def
xyz

Useful options

-f Case-insensitive sorting.

-n Sort numerically (i.e., 9 comes before 10) instead of alphabetically (10
comes before 9 because it begins with a “1”).

-g Another numerical sorting method with a different algorithm that,
among other things, recognizes scientific notation (7.4e3 means “7.4
times ten to the third power,” or 7400). Run info sort for full
technical details.

-u Unique sort: ignore duplicate lines. (If used with -c for checking sorted
files, fail if any consecutive lines are identical.)

102 | Linux Pocket Guide

-c Don’t sort, just check if the input is already sorted. If it is, print nothing;
otherwise, print an error message.

-b Ignore leading whitespace in lines.

-r Reverse the output: sort from greatest to least.

-t X Use X as the field delimiter for the -k option.

-k key Choose sorting keys. (Combine with -t to choose a separator character
between keys.)

A sorting key indicates a portion of a line to consider when
sorting, instead of the entire line. An example could be the fifth
character of each line. Normally, sort would consider these
lines to be in sorted order:

aaaaz
bbbby

but if your sorting key is “the fifth character of each line,” deno‐
ted -k1.5, then the lines are reversed because y comes before z.
A more practical example involves this file of names and
addresses:

→ cat people
George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco
John Adams,39 Tremont Street,Boston

An ordinary sort would display the “Abraham Lincoln” line
first. But if you consider each line as three comma-separated
values, you can sort on the second value with:

→ sort -k2 -t, people
George Washington,123 Main Street,New York
John Adams,39 Tremont Street,Boston
Abraham Lincoln,54 First Avenue,San Francisco

where “123 Main Street” is first alphabetically. Likewise, you
can sort on the city (third value) with:

→ sort -k3 -t, people
John Adams,39 Tremont Street,Boston

File Text Manipulation | 103

stdin stdout - file -- opt --help --version

George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco

and see that Boston comes up first alphabetically. The general
syntax -k F1[.C1][,F2[.C2]] means:

Item Meaning Default if not supplied

F1 Starting field Required

C1 Starting position within field 1 1

F2 Ending field Last field

C2 Starting position within ending field 1

So sort -k1.5 sorts based on the first field, beginning at its
fifth character; and sort -k2.8,5 means “from the eighth char‐
acter of the second field, up to the first character of the fifth
field.” The -t option changes the behavior of -k so it considers
delimiter characters such as commas rather than spaces.

You can repeat the -k option to define multiple keys, which will
be applied from first to last as found on the command line.

uniq
uniq [options] [files]

The uniq command operates on consecutive, duplicate lines of
text. For example, if you have a file myfile:

→ cat letters2
a
b
b
c
b

then uniq would detect and process (in whatever way you spec‐
ify) the two consecutive b’s, but not the third b:

104 | Linux Pocket Guide

→ uniq letters2
a
b
c
b

uniq is often used after sorting a file:

→ sort letters2 | uniq
a
b
c

In this case, only a single b remains because all three were
made adjacent by sort, then collapsed to one by uniq. Also, you
can count duplicate lines instead of eliminating them:

→ sort letters2 | uniq -c
 1 a
 3 b
 1 c

Useful options

-c Count adjacent duplicate lines.

-i Case-insensitive operation.

-u Print unique lines only.

-d Print duplicate lines only.

-s N Skip the first N characters on each line when detecting duplicates.

-f N Ignore the first N whitespace-separated fields on each line when detecting
duplicates.

-w N Consider only the first N characters on each line when detecting
duplicates. If used with -s or -f, sort will ignore the specified number
of characters or fields first, then consider the next N characters.

File Text Manipulation | 105

stdin stdout - file -- opt --help --versiontee
tee [options] files

Like the cat command, the tee command copies standard
input to standard output unaltered. Simultaneously, however, it
also copies that same standard input to one or more files. tee is
most often found in the middle of pipelines, writing some
intermediate data to a file while also passing it to the next com‐
mand in the pipeline:

→ who | tee original_who | sort
barrett pts/1 Sep 22 21:15
byrnes pts/0 Sep 15 13:51
silver :0 Sep 23 20:44
silver pts/2 Sep 22 21:18

This command line produces the sorted output of who on
screen, but also writes the original, unsorted output of who to
the file original_who:

→ cat original_who
silver :0 Sep 23 20:44
byrnes pts/0 Sep 15 13:51
barrett pts/1 Sep 22 21:15
silver pts/2 Sep 22 21:18

and then passes along that same output to the rest of the pipe‐
line (sort), producing sorted output on screen.
Useful options

-a Append instead of overwriting files.

-i Ignore interrupt signals.

More Powerful Manipulations
We’ve just touched the tip of the iceberg for Linux text filtering.
Linux has hundreds of filters that produce ever more complex
manipulations of the data. But with great power comes a great

106 | Linux Pocket Guide

learning curve, too much for a short book. Here are a few filters
to get you started.
awk
AWK is a pattern-matching language. It matches data by regu‐
lar expression and then performs actions based on the data.
Here are a few simple examples for processing a text file, myfile.

Print the second and fourth word on each line:

→ awk '{print $2, $4}' myfile

Print all lines that are shorter than 60 characters:

→ awk 'length < 60 {print}' myfile

sed
Like AWK, sed is a pattern-matching engine that can perform
manipulations on lines of text. Its syntax is closely related to
that of vim and the line editor ed. Here are some trivial exam‐
ples.

Print the file with all occurrences of the string “me” changed to
“YOU”:

→ sed 's/me/YOU/g' myfile

Print the file with the first 10 lines removed:

→ sed '1,10d' myfile

m4
m4 is a macro-processing language and command. It locates
keywords within a file and substitutes values for them. For
example, given this file:

→ cat substitutions
My name is NAME and I am AGE years old.
ifelse(QUOTE,yes,Learn Linux today!)

see what m4 does with substitutions for NAME, AGE, and QUOTE:

→ m4 -DNAME=Sandy substitutions
My name is Sandy and I am AGE years old.

File Text Manipulation | 107

→ m4 -DNAME=Sandy -DAGE=25 substitutions
My name is Sandy and I am 25 years old.

→ m4 -DNAME=Sandy -DAGE=25 -DQUOTE=yes substitutions
My name is Sandy and I am 25 years old.
Learn Linux today!

Perl, PHP, Python, Ruby
Perl, PHP, Python, and Ruby are full-fledged programming lan‐
guages powerful enough to build complete, robust applications.
See “Beyond Shell Scripting” on page 248 for references.

File Compression and Packaging
tar Package multiple files into a single file.

gzip Compress files with GNU Zip.

gunzip Uncompress GNU Zip files.

bzip2 Compress files in BZip format.

bunzip2 Uncompress BZip files.

bzcat Compress/uncompress BZip files via standard input/output.

compress Compress files with traditional Unix compression.

uncompress Uncompress files with traditional Unix compression.

zcat Compress/uncompress file via standard input/output (gzip or
compress).

zip Compress files in Windows Zip format.

unzip Uncompress Windows Zip files.

munpack Extract MIME data to files.

mpack Convert a file into MIME format.

Linux can compress files into a variety of formats and uncom‐
press them. The most popular formats are GNU Zip (gzip),
whose compressed files are named with the .gz extension, and
BZip, which uses the .bz2 extension. Other common formats
include Zip files from Windows systems (.zip extension), xz

108 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

files (.xz and .lzma extensions), and occasionally, classic Unix
compression (.Z extension).

A related technology involves converting binary files into tex‐
tual formats, so they can (say) be transmitted within an email
message. Nowadays this is done automatically with attach‐
ments and MIME tools, but we’ll cover the munpack program,
which can do this from the command line.

If you come across a format we don’t cover, such as Mac OS X
sit files, Arc, Zoo, rar, and others, learn more at http://en.wikipe
dia.org/wiki/List_of_archive_formats.

tar
tar [options] [files]

The tar program packs many files and directories into a single
file for easy transport, optionally compressed. (It was originally
for backing up files onto a tape drive; its name is short for “tape
archive.”) Tar files are the most common file-packaging format
for Linux.

→ tar -czf myarchive.tar.gz mydir Create
→ ls -lG myarchive.tar.gz
-rw-r--r-- 1 smith 350 Nov 7 14:09 myarchive.tar.gz
→ tar -tf myarchive.tar.gz List contents
mydir/
mydir/dir/
mydir/dir/file10
mydir/file1
mydir/file2
...
→ tar -xf myarchive.tar.gz Extract

If you specify files on the command line, only those files are
processed:

→ tar -xvf myarchive.tar myfile myfile2 myfile3

File Compression and Packaging | 109

http://en.wikipedia.org/wiki/List_of_archive_formats
http://en.wikipedia.org/wiki/List_of_archive_formats

stdin stdout - file -- opt --help --version

Otherwise, the entire archive is processed.
Useful options

-c Create an archive. You’ll have to list the input files and directories on
the command line.

-r Append files to an existing archive.

-u Append new/changed files to an existing archive.

-A Append one archive to the end of another: for example, tar -A -f
first.tar second.tar appends the contents of second.tar to
first.tar. Does not work for compressed archives.

-t List (test) the archive.

-x Extract files from the archive.

-f file Read the archive from, or write the archive to, the given file. This is
usually a tar file on disk (such as myarchive.tar) but can also be a tape
drive (such as /dev/tape).

-d Diff (compare) the archive against the filesystem.

-z Use gzip compression.

-j Use bzip2 compression.

-Z Use Unix compression.

-v Verbose mode: print extra information.

-h Follow symbolic links rather than merely copying them.

-p When extracting files, restore their original permissions and
ownership.

gzip
gzip [options] [files]

gunzip [options] [files]

zcat [options] [files]

110 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

gzip and gunzip compress and uncompress files in GNU Zip
format. The original file may be deleted in some cases, as
shown. Compressed files have the extension .gz.
Sample commands

gzip file Compress file to create file.gz. Original
file is deleted.

gzip -c file Produce compressed data on standard output.

cat file | gzip Produce compressed data from a pipeline.

gunzip file.gz Uncompress file.gz to create file. Original
file.gz is deleted.

gunzip -c file.gz Uncompress the data on standard output.

cat file.gz | gunzip Uncompress the data from a pipeline.

zcat file.gz Uncompress the data on standard output.

tar -czf tarfile dir Pack directory dir into a gzipped tar file. Use
-cvzf to print filenames as they are processed.

bzip2
bzip2 [options] [files]

bunzip2 [options] [files]

bzcat [options] [files]

bzip2 and bunzip2 compress and uncompress files in Burrows–
Wheeler format. The original file may be deleted in some cases,
as shown. Compressed files have the extension .bz2.
Sample commands

bzip2 file Compress file to create file.bz2. Original
file is deleted.

bzip2 -c file Produce compressed data on standard output.

cat file | bzip2 Produce compressed data on standard output.

File Compression and Packaging | 111

stdin stdout - file -- opt --help --version

bunzip2 file.bz2 Uncompress file.bz2 to create file.
Original file.bz2 is deleted.

bunzip2 -c file.bz2 Uncompress the data on standard output.

cat file.bz2 | bunzip2 Uncompress the data on standard output.

bzcat file.bz2 Uncompress the data on standard output.

tar -cjf tarfile dir Pack directory dir into a bzipped tar file. Use
-cvjf to print filenames as they are
processed.

compress
compress [options] [files]

uncompress [options] [files]

zcat [options] [files]

compress and uncompress compress and uncompress files in
standard Unix compression format (Lempel Ziv). The original
file may be deleted in some cases, as shown. Compressed files
have the extension .Z.
Sample commands

compress file Compress file to create file.Z. Original
file is deleted.

compress -c file Produce compressed data on standard
output.

cat file | compress Produce compressed data from a pipeline.

uncompress file.Z Uncompress file.Z to create file.
Original file.Z is deleted.

uncompress -c file.Z Uncompress the data on standard output.

cat file.Z | uncompress Uncompress the data from a pipeline.

zcat file.Z Uncompress the data on standard output.

112 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file --opt --help --version

tar -cZf tarfile dir Pack directory dir into a compressed tar
file. Use -cvZf to print filenames as they
are processed.

zip
zip [options] [files]

zip and unzip compress and uncompress files in Windows Zip
format. Compressed files have the extension .zip. Unlike most
other Linux compression commands, zip does not delete the
original files.

zip myfile.zip file1 file2 file3 ... Pack.

zip -r myfile.zip dirname Pack recursively.

unzip -l myfile.zip List contents.

unzip myfile.zip Unpack.

munpack
munpack [options] mail_file

mpack [options] files

Modern email programs can send and receive attachments so
easily we rarely think about it, but this was not always the case.
Programs like munpack were created to work with attachments
directly on the command line, appending or extracting them to
and from mail messages. For example, if you have an email
message in a file, messagefile, and it contains a JPEG image and
a PDF file as attachments, munpack can extract both attach‐
ments as files:

File Compression and Packaging | 113

stdin stdout - file -- opt --help --version

→ munpack messagefile
beautiful.jpg (image/jpeg)
researchpaper.pdf (application/pdf)

Its partner program, mpack, does the opposite, inserting one or
more files as attachments into a MIME-format file. Here we
create the file attachment.mime containing a MIME-encoded
image, photo.jpg:

→ mpack -o attachment.mime photo.jpg
Subject: My photo

File Comparison
diff Line-by-line comparison of two files or directories.

comm Line-by-line comparison of two sorted files.

cmp Byte-by-byte comparison of two files.

md5sum Compute a checksum of the given files (MD5).

There are three ways to compare Linux files:

• Line by line (diff, diff3, sdiff, comm), best suited to text
files

• Byte by byte (cmp), often used for binary files
• By comparing checksums (md5sum, sum, cksum)

diff
diff [options] file1 file2

The diff command compares two files (or two directories) line
by line. When comparing text files, diff can produce detailed
reports of their differences. For binary files, diff merely
reports whether they differ or not. For all files, if there are no
differences, diff produces no output.

114 | Linux Pocket Guide

The traditional output format looks like this:

Indication of line numbers and the type of change
< Corresponding section of file1, if any

> Corresponding section of file2, if any

For example, if we start with a file fileA:

Hello, this is a wonderful file.
The quick brown fox jumped over
the lazy dogs.
Goodbye for now.

Suppose we delete the first line, change “brown” to “blue” on
the second line, and add a final line, creating a file fileB:

The quick blue fox jumped over
the lazy dogs.
Goodbye for now.
Linux r00lz!

Then the diff command produces this output for these files:

→ diff fileA fileB
1,2c1 fileA lines 1-2 became fileB line 1
< Hello, this is a wonderful file. Lines 1-2 of fileA
< The quick brown fox jumped over
--- diff separator
> The quick blue fox jumped over Line 1 of fileB
4a4 Line 4 was added in fileB
> Linux r00lz! The added line

The leading symbols < and > are arrows indicating fileA and
fileB, respectively. This output format is the default: many oth‐
ers are available, some of which can be fed directly to other
tools. Try them out to see what they look like.

Option Output format

-n RCS version control format, as produced by rcsdiff (man
rcsdiff).

File Comparison | 115

-c Context diff format, as used by the patch command (man
patch).

-D macro C preprocessor format, using #ifdef macro ... #else ...
#endif.

-u Unified format, which merges the files and prepends “-” for deletion
and “+” for addition.

-y Side-by-side format; use -W to adjust the width of the output.

-e Create an ed script that would change fileA into fileB if run.

-q Don’t report changes, just say whether the files differ.

diff can also compare directories:

→ diff dir1 dir2

which compares any same-named files in those directories, and
lists all files that appear in one directory but not the other. To
compare entire directory hierarchies recursively, use the -r
option:

→ diff -r dir1 dir2

which produces a (potentially massive) report of all differences.
Useful options

-b Don’t consider whitespace.

-B Don’t consider blank lines.

-i Ignore case.

-r When comparing directories, recurse into subdirectories.

diff is just one member of a family of programs that operate
on file differences. Some others are diff3, which compares
three files at a time, and sdiff, which merges the differences
between two files to create a third file according to your
instructions.

116 | Linux Pocket Guide

stdin stdout - file -- opt --help --versioncomm
comm [options] file1 file2

The comm command compares two sorted files and produces
three columns of output, separated by tabs:

1. All lines that appear in file1 but not in file2.
2. All lines that appear in file2 but not in file1.
3. All lines that appear in both files.

For example, if commfile1 and commfile2 contain these lines:

commfile1: commfile2:
apple baker
baker charlie
charlie dark

then comm produces this three-column output:

→ comm commfile1 commfile2
apple
 baker
 charlie
 dark

Useful options

-1 Suppress column 1.

-2 Suppress column 2.

-3 Suppress column 3.

-23 Show lines that appear only in the first file.

-13 Show lines that appear only in the second file.

-12 Show only common lines.

File Comparison | 117

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

cmp
cmp [options] file1 file2 [offset1 [offset2]]

The cmp command compares two files. If their contents are the
same, cmp reports nothing; otherwise, it lists the location of the
first difference:

→ cmp myfile yourfile
myfile yourfile differ: byte 225, line 4

By default, cmp does not tell you what the difference is, only
where it is. It also is perfectly suitable for comparing binary
files, as opposed to diff, which operates best on text files.

Normally, cmp starts its comparison at the beginning of each
file, but it will start elsewhere if you provide offsets:

→ cmp myfile yourfile 10 20

This begins the comparison at the tenth character of myfile and
the twentieth of yourfile.
Useful options

-l Long output: print all differences, byte by byte:
→ cmp -l myfile yourfile
 225 167 127

This means at offset 225 (in decimal), myfile has a small “w” (octal 167) but
yourfile has a capital “W” (octal 127).

-s Silent output: don’t print anything, just exit with an appropriate return code;
0 if the files match, 1 if they don’t. (Or other codes if the comparison fails.)

md5sum
md5sum files | --check file

The md5sum command works with checksums to verify that files
are unchanged. The first form produces the 32-byte checksum
of the given files, using the MD5 algorithm:

118 | Linux Pocket Guide

→ md5sum myfile
48760f921ec6111e3979efa14e22535d myfile

while the second form tests whether a checksum matches its
file, using --check:

→ md5sum myfile myfile2 myfile3 > mysum
→ cat mysum
48760f921ec6111e3979efa14e22535d myfile
49f6c28a5ec01d15703794a31accd08d myfile2
d28b9f7fc7d61c60913c8026fc91149a myfile3
→ md5sum --check mysum
myfile: OK
myfile2: OK
myfile3: OK
→ echo "new data" > myfile2
→ md5sum --check mysum
myfile: OK
myfile2: FAILED
myfile3: OK
md5sum: WARNING: 1 of 3 computed checksums did NOT
match

Two different files are highly unlikely to have the same MD5
checksum, so comparing checksums is a reasonably reliable
way to detect if two files differ:

→ md5sum myfile | cut -c1-32 > sum1
→ md5sum myfile2 | cut -c1-32 > sum2
→ diff -q sum1 sum2
Files sum1 and sum2 differ

A stronger but (as yet) less popular program is shasum, which
can produce longer hashes using a different algorithm. It is
likely more reliable than md5sum.

→ shasum myfile SHA-1 algorithm
253c9c5836261859a77f83dc296168b35c1230ac myfile
→ shasum -a 256 myfile SHA-256 algorithm
e8183aaa23aa9b74c7033cbc843041fcf1d1e9e93724b7ef63c94d
4c50a15df8 myfile
→ shasum myfile > mysum

File Comparison | 119

→ shasum --check mysum
myfile: OK

Avoid older, weaker programs such as sum and cksum which
produce much smaller, unreliable checksums.

PDF and PostScript File Handling
pdftotext Extract text from PDF files.

ps2ascii Extract text from PostScript or PDF files.

pdfseparate Extract individual pages from a PDF file.

pdftk Split, join, rotate, and otherwise manipulate PDF files.

pdf2ps, ps2pdf Convert between PDF and PostScript file formats.

You may commonly encounter files in Adobe PDF format,
especially when exchanging files with Windows or Mac OS X
computers. Less commonly, you may encounter files in Post‐
Script format, or you might need to convert files to PostScript
in order to print them. Linux has a rich set of tools for working
with PDF and PostScript files, even if you’re working in the
shell and can’t view the files graphically.

If you simply want to display PDF and PostScript files, you
have a number of choices. The commands evince, okular, and
gv (Ghostview) all display both types of files, and xpdf displays
only PDFs. There’s also a full-featured but ancient “official”
PDF viewer from Adobe, acroread, but it is no longer main‐
tained and is relatively slow. All of these programs are available
on the command line. For more complex handling of PDF and
PostScript files, read on.

120 | Linux Pocket Guide

13 Actually, if you run ps2ascii --help, you’ll be presented with
command-line options, but they don’t work. They are the options of a
related program, gs, which gets invoked by ps2ascii.

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

pdftotext
pdftotext [options] [file.pdf [outfile.txt]]

The pdftotext command extracts text from a PDF file and
writes it to a file. This works only if the PDF contains actual
text, not images that look like text (say, a magazine article that’s
been scanned on a graphical scanner).

→ pdftotext sample.pdf Creates sample.txt

Useful options

-f N Begin with page N of the PDF file. You must
have a space between the option and the
number.

-l N End with page N of the PDF file. You must
have a space between the option and the
number.

-htmlmeta Generate HTML rather than plain text.

-eol (dos | mac | unix) Write end-of-line characters in the text file
for the given operating system.

ps2ascii
ps2ascii file.(ps|pdf)] [outfile.txt]

The ps2ascii command extracts text from a PostScript file. It’s
a simple command with no options.13 To extract text from sam‐
ple.ps and place it into extracted.txt:

→ ps2ascii sample.ps extracted.txt

PDF and PostScript File Handling | 121

14 At press time, the manpage for ps2ascii says that the PDF file can‐
not come from standard input, but in practice it seems to work fine:
cat sample.pdf | ps2ascii.

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

ps2ascii can also extract text from a PDF file, though you
wouldn’t guess that from the command name.14

→ ps2ascii sample.pdf extracted.txt

pdfseparate
pdfseparate [options] [file.pdf] [pattern.txt]

The pdfseparate command splits a PDF file into separate PDF
files, one per page. For example, if one.pdf is 10 pages long,
then this command will create 10 PDF files named split1.pdf
through split10.pdf, each containing one page:

→ pdfseparate one.pdf split%d.pdf

The final argument is a pattern for forming the names of the
individual page files. The special notation %d stands for the
extracted page number.
Useful options

-f N Begin with page N of the PDF file. You must have a space between the
option and the number.

-l N End with page N of the PDF file. You must have a space between the
option and the number.

pdftk
pdftk [arguments]

122 | Linux Pocket Guide

pdftk is the “Swiss Army knife” of PDF commands. This versa‐
tile program can extract pages from a PDF file, join several
PDFs into one, rotate pages, add watermarks, encrypt and
decrypt files, and much more, all from the command line. This
power comes with complicated syntax, unfortunately, but with
a little effort you can learn a few useful tricks.

To join the files one.pdf and two.pdf into a single PDF file, com‐
bined.pdf:

→ pdftk one.pdf two.pdf cat output combined.pdf

To extract pages 5, 7, and 10–15 from the file one.pdf and write
them to new.pdf:

→ pdftk one.pdf cat 5 7 10-15 output new.pdf

Extract the first five pages from one.pdf and the odd-numbered
pages from two.pdf and combine them as combined.pdf:

→ pdftk A=one.pdf B=two.pdf cat A1-5 Bodd output \
 combined.pdf

Copy the file one.pdf to new.pdf, but with page 7 rotated by 90
degrees clockwise (“east”):

→ pdftk one.pdf cat 1-6 7east 8-end output new.pdf

Interleave the pages of one.pdf and two.pdf, creating inter‐
leaved.pdf:

→ pdftk one.pdf two.pdf shuffle output \
 interleaved.pdf

You may have noticed that the page selection criteria, typically
appearing before the output keyword, are very powerful. They
consist of one or more page ranges with qualifiers. A page
range can be a single page like 5, a range like 5-10, or a reverse
range like 10-5 (which will reverse the pages in the output).
Qualifiers can remove pages from a range, like 1-100~20-25,
which means “all pages from 1 to 100 except for pages 20 to 25.”
They can also specify only odd pages or even pages, using the
keywords odd or even, and rotations using the compass direc‐

PDF and PostScript File Handling | 123

stdin stdout - file -- opt --help --version

tions north, south, east, and west. We’ve only scratched the
surface of pdftk’s abilities. The manpage has many more exam‐
ples and full syntax.

pdf2ps
pdf2ps [options] file.pdf [file.ps]

ps2pdf [options] file.ps [file.pdf]

The pdf2ps command converts an Adobe PDF file into a Post‐
Script file (if you don’t provide an output file name, the default
is to use the input filename, with .pdf replaced by .ps):

→ pdf2ps sample.pdf converted.ps

The command has a couple of options but they are rarely used.
See the manpage if you’re interested.

To go in the opposite direction, converting a PostScript file to
PDF format, use ps2pdf:

→ ps2pdf sample.ps converted.pdf

Printing
lpr Print a file.

lpq View the print queue.

lprm Remove a print job from the queue.

Linux has two popular printing systems, called CUPS and
LPRng. Both systems use commands with the same names: lpr,
lpq, and lprm. However, these commands have different
options depending on whether you’re using CUPS or LPRng.
To be generally helpful, we will present common options that
work with both systems.

In the past, installing a printer on Linux required editing a
cryptic configuration file, such as /etc/cups/printers.conf or /etc/

124 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

printcap. Nowadays, both GNOME and KDE have printer con‐
figuration tools in their system settings that generate these files.

To troubleshoot a CUPS printer, visit http://localhost:631 to
access your computer’s CUPS management system.

lpr
lpr [options] [files]

The lpr (line printer) command sends a file to a printer:

→ lpr -P myprinter myfile

Useful options

-P printername Send the file to printer printername, which you have
previously set up.

-# N Print N copies of the file.

-J name Set the job name that prints on the cover page (if your
system is set up to print cover pages).

lpq
lpq [options]

The lpq (line printer queue) command lists all print jobs wait‐
ing to be printed.
Useful options

-P printername List the queue for printer printername.

-a List the queue for all printers.

-l Be verbose: display information in a longer format.

Printing | 125

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

lprm
lprm [options] [job_IDs]

The lprm (line printer remove) command cancels one or more
print jobs. Use lpq to learn the ID of the desired print jobs (say,
61 and 78), then type:

→ lprm -P printername 61 78

If you don’t supply any job IDs, your current print job is can‐
celed. (Only the superuser can cancel other users’ jobs.) The -P
option specifies which print queue contains the job.

Spellchecking
look Look up the spelling of a word quickly.

aspell Interactive spelling checker.

spell Batch spelling checker.

Linux has several spellcheckers built in. If you’re accustomed to
graphical spellcheckers, you might find Linux’s text-based ones
fairly primitive, but they can be used in pipelines, which is
quite powerful.

look
look [options] prefix [dictionary_file]

The look command prints (on standard output) words that
begin with a given string prefix. The words are located in a
dictionary file (default /usr/share/dict/words):

→ look bigg
bigger
biggest
Biggs

126 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout -file --opt --help --version

If you supply your own dictionary file—any text file with
alphabetically sorted lines—look will print all lines beginning
with the given prefix.
Useful options

-f Ignore case.

-t X Match the prefix only up to and including the termination character X. For
instance, look -t i big prints all words beginning with “bi”.

aspell
aspell [options] file | command

aspell is an interactive spellchecker. It identifies words that it
doesn’t recognize and presents alternatives. A few useful com‐
mands are:

aspell -c file
Interactively check, and optionally correct, the spelling of
all words in file.

aspell dump master

Print aspell’s master dictionary on standard output.

aspell help

Print a concise help message. See http://aspell.net for more
information.

spell
spell [files]

The spell command prints all words in the given files that are
misspelled, according to its dictionary (it is not interactive):

→ cat badwords
This Linux file has some spelling errors.

Spellchecking | 127

http://aspell.net

You may naturaly wonder if a spelling checker
will pick them up. Careful Linuxx users should
run thier favorite spelling checker on this file.
→ spell badwords
naturaly
Linuxx
thier

Disks and Filesystems
df Display available space on mounted filesystems.

mount Make a disk partition accessible.

umount Unmount a disk partition (make it inaccessible).

fsck Check a disk partition for errors.

eject Eject a CD, DVD, or other removable disk.

Linux systems can have multiple disks or disk partitions. In
casual conversation, these are variously called disks, partitions,
filesystems, volumes, even directories. We’ll try to be more
accurate.

A disk is a hardware device, which may be divided into parti‐
tions that act as independent storage devices. Partitions are rep‐
resented on Linux systems as special files in (usually) the direc‐
tory /dev. For example, /dev/sda7 could be a partition on your
hard drive. Some common devices in /dev are:

sda First block device, such as SCSI, SATA, USB, or FireWire hard drives;
partitions are sda1, sda2, ...

sdb Second block device; partitions are sdb1, sdb2, ... Likewise for sdc, sdd, ...

scd0 First SCSI CD-ROM drive (then scd1, scd2, ...)

Before a partition can hold files, it is “formatted” by a program
that writes a filesystem on it (see “Partitioning and Formatting”
on page 129). A filesystem defines how files are represented;
examples are ext3 (a Linux journaling filesystem) and ntfs

128 | Linux Pocket Guide

15 You can mount a filesystem on a nonempty directory, but the direc‐
tory’s contents will become inaccessible until you unmount.

stdin stdout - file -- opt --help --version

(Microsoft Windows NT filesystem). Formatting is generally
done for you when you install Linux.

Once a filesystem is created, you can make it available for use
by mounting it on an empty directory.15 For example, if you
mount a Windows filesystem on a directory /mnt/win, it
becomes part of your system’s directory tree, and you can cre‐
ate and edit files like /mnt/win/myfile. Mounting is generally
done automatically at boot time. Filesystems can also be
unmounted to make them inaccessible via the filesystem, say,
for maintenance.

Partitioning and Formatting
Disk-related operations like partitioning and formatting can be
complex on Linux systems. Here are pointers to the programs
you may need (start with their manpages):

gparted, parted, fdisk, or sfdisk
Partition a hard drive. Any of these programs will work in
most cases. gparted has the simplest user interface.

mkfs

Format a hard disk (i.e., create a new filesystem).

df
df [options] [disk devices | files | directories]

The df (disk free) program shows you the size, used space, and
free space on a given disk partition. If you supply a file or
directory, df describes the disk device on which that file or

Disks and Filesystems | 129

stdin stdout - file -- opt --help --version

directory resides. With no arguments, df reports on all moun‐
ted filesystems:

→ df
Filesystem 1k-blocks Used Avail Use% Mounted on
/dev/sda 1011928 225464 735060 24% /
/dev/sda9 521748 249148 246096 51% /var
/dev/sda8 8064272 4088636 3565984 54% /usr
/dev/sda10 8064272 4586576 3068044 60% /home

Useful options

-k List sizes in kilobytes (the default).

-m List sizes in megabytes.

-B N Display sizes in blocks of N bytes. (Default = 1024)

-h

-H

Print human-readable output, and choose the most appropriate unit
for each size. For example, if your two disks have 1 gigabyte and 25
kilobytes free, respectively, df -h prints 1G and 25K. The -h option
uses powers of 1024, whereas -H uses powers of 1000.

-l Display only local filesystems, not networked filesystems.

-T Include the filesystem type (ext3, vfat, etc.) in the output.

-t type Display only filesystems of the given type.

-x type Don’t display filesystems of the given type.

-i Inode mode. Display total, used, and free inodes for each filesystem,
instead of disk blocks.

mount
mount [options] device | directory

The mount command makes a partition accessible. Most com‐
monly it handles disk drives (say, /dev/sda1) and removable
media (e.g., USB keys), making them accessible via an existing
directory (say, /mnt/mydir):

130 | Linux Pocket Guide

→ sudo mkdir /mnt/mydir
→ ls /mnt/mydir Notice it’s empty
→ sudo mount /dev/sda1 /mnt/mydir
→ ls /mnt/mydir
file1 file2 file3 Files on the mounted partition
→ df /mnt/mydir
Filesystem 1K-blocks Used Avail Use% Mounted on
/dev/sda1 1011928 285744 674780 30% /mnt/mydir

mount has tons of options and uses; we will discuss only the
most basic.

In most common cases, mount reads the file /etc/fstab (filesys‐
tem table) to learn how to mount a desired disk. For example, if
you type mount /usr, the mount command looks up “/usr”
in /etc/fstab, whose line might look like this:

/dev/sda8 /usr ext3 defaults 1 2

Here mount learns, among other things, that disk device /dev/
sda8 should be mounted on /usr as a Linux ext3-formatted file‐
system. Now you can mount /dev/sda8 on /usr with either of
these commands:

→ sudo mount /dev/sda8 By device
→ sudo mount /usr By directory

mount is run typically by the superuser, but common removable
devices like USB keys and DVDs often can be mounted and
unmounted by any user.
Useful options

-t type Specify the type of filesystem, such as ext3 or ntfs.

-l List all mounted filesystems; works with -t too.

-a Mount all filesystems listed in /etc/fstab. Ignores entries that include
the noauto option. Works well with -t too.

-r Mount the filesystem read-only (but see the manpage for some
disclaimers).

Disks and Filesystems | 131

16 Notice the spelling is “umount,” not “unmount.”

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

umount
umount [options] [device | directory]

umount does the opposite of mount: it makes a disk partition
unavailable via the filesystem.16 For instance, if you’ve mounted
a DVD, you can’t eject it until it’s umounted:

→ umount "/media/smith/My Vacation Photos"

Always unmount a removable medium before ejecting it, par‐
ticularly if it’s writable, or you risk damage to its filesystem. To
unmount all mounted devices:

→ sudo umount -a

Don’t unmount a filesystem that’s in use; in fact, the umount
command will refuse to do so for safety reasons.

fsck
fsck [options] [devices]

The fsck (filesystem check) command validates a Linux disk
partition and, if requested, repairs errors found on it. fsck is
run automatically when your system boots; however, you can
run it manually if you like. In general, unmount a device before
checking it, so no other programs are operating on it at the
same time:

→ sudo umount /dev/sda10
→ sudo fsck -f /dev/sda10
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts

132 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Pass 5: Checking group summary information
/home: 172/1281696 files (11.6% non-contiguous), ...

You cannot use fsck to fix your root filesystem while your sys‐
tem is running normally. You’ll need to boot first on a Linux
CD, DVD, or other rescue media.

fsck is a frontend for a set of filesystem-checking programs
found in /sbin, with names beginning “fsck”. Only certain types
of filesystems are supported; you can list them with the com‐
mand:

→ ls /sbin/fsck.* | cut -d. -f2

Useful options

-A Check all disks listed in /etc/fstab, in order.

-N Print a description of the checking that would be done, but exit without
performing any checking.

-r Fix errors interactively, prompting before each fix.

-a Fix errors automatically (use only if you really know what you’re doing; if
not, you can seriously mess up a filesystem).

eject
eject [options] [device_name]

The eject command does the same thing as pressing the open/
close button on a removable drive, such as a CD-ROM or DVD
drive. It’s handy for ejecting a disc when you’re physically away
from the computer. Of course, the media must be in a state
where ejection is possible.

→ eject

Useful options

-h Display a help message.

Disks and Filesystems | 133

stdin stdout - file -- opt --help --version

-n Don’t eject anything, just say what would be done. Combine with -v for
a detailed description.

-v Produce verbose output.

-d Print the name of the default device to be ejected, such as /dev/
cdrom, and exit.

-c N Eject disc N from a multi-disc changer.

Backups and Remote Storage
rsync Efficiently copy a set of files, even across a network.

dd Low-level copying of data.

growisofs Burn a DVD or Blu-ray disc.

There are various way to back up your precious Linux files:

• Copy them to a backup medium, such as an external
hard drive.

• Burn them onto a writable CD, DVD, or Blu-ray disc.
• Mirror them to a remote machine.

We aren’t presenting every available Linux command for back‐
ups. Some users prefer cpio for its flexibility, and some long-
time administrators swear by dump and restore as the only reli‐
able way to back up every type of file. See the manpages for
these programs if you are interested in them.

rsync
rsync [options] source destination

The rsync command copies a set of files. It can make an exact
copy, including file permissions and other attributes (called
mirroring), or it can just copy the data. It can run over a net‐
work or on a single machine. rsync has many uses and over 50

134 | Linux Pocket Guide

options; we’ll present just a few common cases relating to back‐
ups.

To mirror the directory mydir and its contents into another
directory mydir2 on a single machine:

→ rsync -a mydir mydir2

rsync is finicky about how you specify the first directory. If you
write mydir as in the example here, that directory will be copied
into mydir2, creating mydir2/mydir. That might not be what
you want. If you’d rather have the contents of mydir copied into
mydir2, append a slash onto mydir:

→ rsync -a mydir/ mydir2

In order to mirror directory mydir over the network to another
host, server.example.com, where you have an account with user‐
name “smith.” rsync automatically secures the connection with
SSH to prevent eavesdropping:

→ rsync -a mydir smith@server.example.com:D2

If you like working with rsync but want to have incremental
backups and manage them efficiently, look into rsnapshot
(http://rsnapshot.org/).
Useful options

-o Copy the ownership of the files. (You might need superuser privileges on the
remote host.)

-g Copy the group ownership of the files. (You might need superuser privileges
on the remote host.)

-p Copy the file permissions.

-t Copy the file timestamps.

-r Copy directories recursively (i.e., including their contents).

-l Permit symbolic links to be copied (not the files they point to).

-D Permit devices to be copied. (Superuser only.)

Backups and Remote Storage | 135

http://rsnapshot.org/

stdin stdout - file -- opt --help --version

-a Mirroring: copy all attributes of the original files. This implies all of the
options -ogptrlD.

-x When copying a tree of files, remain within the current filesystem; do not
cross over into other mounted filesystems.

-n Dry-run mode: don’t actually do any copying. Just display what would be
done.

-v Verbose mode: print information about what’s happening during the copy.
Add --progress to display a numeric progress meter while files are
copied.

dd
dd [options]

dd is a low-level copier of bits and bytes. It can copy data from
one file to another, say, from file1 to file2:

→ dd if=fileA of=fileC
7+1 records in
7+1 records out
3816 bytes (3.8 kB) copied, 0.000356028 s, 10.7 MB/s

and it can even perform data conversions while it copies. For
example, you can convert all characters to uppercase as you
transfer data between files:

→ dd if=fileA of=filecaps conv=ucase
7+1 records in
7+1 records out
3816 bytes (3.8 kB) copied, 0.000389499 s, 9.8 MB/s

dd does much more than copying files, however. It can clone a
disk by copying from one device to another (Warning! This will
DESTROY all data on the destination device!):

→ sudo dd if=/dev/device1 of=/dev/device2 bs=512 \
 conv=noerror,sync

136 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

dd is simple in the sense that it does one thing very well—mov‐
ing bits—but it’s also complex because if you’re not careful, you
can wipe out your hard drive in seconds. Back up your com‐
puter and keep a Linux “live” DVD on hand (see “What’s in
This Book?” on page 1) before playing around with dd as the
superuser.

Visit https://wiki.archlinux.org/index.php/Disk_cloning for some
great advice on sophisticated uses of dd. My favorite is copying
just the master boot record (MBR) from a disk, where the MBR
is 512 bytes long, to a file called mybootrecord:

→ sudo dd if=/dev/device of=mybootrecord bs=512 \
 count=1

Useful options

if=file Specify an input file or device.

of=file Specify an output file or device.

bs=N Copy N bytes at a time, known as the “block size.” (To set the
block size differently for the input and the output, use ibs and
obs, respectively.)

skip=N Skip past N blocks of input before starting the copy.

seek=N Discard N blocks of output before starting the copy.

conv=spec Convert the data being copied. spec can be ucase (convert to
uppercase), lcase (convert to lowercase), ascii (convert to
ASCII from EBCDIC), and many others listed on the manpage.

growisofs
growisofs [options] tracks

The growisofs command burns a writable CD, DVD, or Blu-
ray disc. To burn the contents of a Linux directory onto a disc
readable on Linux, Windows, and Mac OS X systems:

Backups and Remote Storage | 137

https://wiki.archlinux.org/index.php/Disk_cloning

1. Locate your disc writer’s device by running:
→ more /proc/sys/dev/cdrom/info
CD-ROM information, Id: cdrom.c 3.20 2003/12/17

drive name: sr1 sr0
drive speed: 48 12
drive # of slots: 1 1
Can close tray: 1 1
Can open tray: 1 1
...

The available devices here are /dev/sr1 and /dev/sr0.
2. Put the files you want to burn into a directory, say, dir.

Arrange them exactly as you’d like them on the disc. The
directory dir itself will not be copied to the disc, just its
contents.

3. Use the mkisofs command to create an ISO (disc) image
file, and burn it onto a disc using growisofs, assuming
your device is /dev/sr1:
→ mkisofs -R -l -o $HOME/mydisk.iso dir
→ growisofs -dvd-compat -Z /dev/sr1=$HOME/mydisk.iso
→ rm $HOME/mydisk.iso

If you want to burn audio CDs, use a friendlier, graphical pro‐
gram like k3b instead.

Viewing Processes
ps List process.

uptime View the system load.

w List active processes for all users.

top Monitor resource-intensive processes interactively.

free Display free memory.

A process is a unit of work on a Linux system. Each program
you run represents one or more processes, and Linux provides

138 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

commands for viewing and manipulating them. Every process
is identified by a numeric process ID, or PID.

Processes are different from jobs (see “Shell Job Control” on
page 39): processes are part of the operating system, whereas
jobs are higher-level constructs known only to the shell in
which they’re running. A running program comprises one or
more processes; a job consists of one or more programs exe‐
cuted as a shell command.

ps
ps [options]

The ps command displays information about your running
processes, and optionally the processes of other users:

→ ps
 PID TTY TIME CMD
 4706 pts/2 00:00:01 bash
15007 pts/2 00:00:00 emacs
16729 pts/2 00:00:00 ps

ps has at least 80 options; we’ll cover just a few useful combina‐
tions. If the options seem arbitrary or inconsistent, it’s because
the supplied ps command (GNU ps) incorporates the features
of several other Unix ps commands, attempting to be compati‐
ble with all of them.

To view your processes:

→ ps -ux

all of user “smith’s” processes:

→ ps -U smith

all occurrences of a program:

→ ps -C program_name

processes on terminal N:

Viewing Processes | 139

stdin stdout - file -- opt --help --version

→ ps -tN

particular processes 1, 2, and 3505:

→ ps -p1,2,3505

all processes with command lines truncated to screen width:

→ ps -ef

all processes with full command lines:

→ ps -efww

and all processes in a threaded view, which indents child pro‐
cesses below their parents:

→ ps -efH

Remember, you can extract information more finely from the
output of ps using grep and other filter programs:

→ ps -ux | grep myprogram

uptime
uptime

The uptime command tells you how long the system has been
running since the last boot:

→ uptime
 10:54pm up 8 days, 3:44, 3 users,
 load average: 0.89, 1.00, 2.15

This information is, from beginning to end: the current time
(10:54pm), system uptime (8 days, 3 hours, 44 minutes), num‐
ber of users logged in (3), and system load average for three
time periods: one minute (0.89), five minutes (1.00), and fifteen
minutes (2.15). The load average is the average number of pro‐
cesses ready to run in that time interval.

140 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

w
w [username]

The w command displays the current process running in each
shell for all logged-in users:

→ w
 10:51pm up 8 days, 3:42, 8 users,
 load average: 2.02, 3.79, 5.44
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
barrett pts/0 :0 Sat 2pm 27:13m 0.07s 0.07s emacs
jones pts/1 host1 6Sep03 2:33m 0.74s 0.21s bash
smith pts/2 host2 6Sep03 0.00s 13.35s 0.04s w

The top line is the same one printed by uptime. The columns
indicate the user’s terminal, originating host or X display (if
applicable), login time, idle time, two measures of the CPU
time (run man w for details), and the current process. Provide a
username to see only that user’s information.

For the briefest output, try w -hfs.
Useful options

-h Don’t print the header line.

-f Don’t print the FROM column.

-s Don’t print the JCPU and PCPU columns.

top
top [options]

The top command lets you monitor the most active processes,
updating the display at regular intervals (say, every second). It
is a screen-based program that updates the display in place,
interactively:

Viewing Processes | 141

→ top
94 processes: 81 sleeping, 1 running, 0 zombie,
 11 stopped
CPU states: 1.1% user, 0.5% system, 0.0% nice,
 4.5% idle
Mem: 523812K av, 502328K used, 21484K free, ...
Swap: 530104K av, 0K used, 530104K free
 115300K cached

PID USER PRI NI SIZE SHARE STAT %CPU %MEM TIME CMD
26265 smith 10 0 1092 840 R 4.7 0.2 0:00 top
 1 root 0 0 540 472 S 0.0 0.1 0:07 init
 914 www 0 0 0 0 SW 0.0 0.0 0:00 httpd
...

While top is running, you can press keys to change its behavior,
such as setting the update speed (s), hiding idle processes (i),
or killing processes (k). Type h to see a complete list and q to
quit. For similar programs to monitor your system’s I/O and
network bandwidth, try iotop and iftop.
Useful options

-nN Perform N updates, then quit.

-dN Update the display every N seconds.

-pN -pM ... Display only the processes with PID N, M, ..., up to 20 processes.

-c Display the command-line arguments of processes.

-b Print on standard output noninteractively, without playing
screen tricks. top -b -n1 > outfile saves a quick
snapshot to a file.

142 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionfree
free [options]

The free command displays memory usage in kilobytes:

→ free
 total used free shared buffers cached
Mem: 523812 491944 31868 0 67856 199276
-/+ buffers/cache: 224812 299000
Swap: 530104 0 530104

The Linux kernel reserves as much memory as possible for
caching purposes, so your best estimate of free RAM in the pre‐
ceding output is in the buffers/cache row, free column (i.e.,
299000K).
Useful options

-s N Run continuously and update the display every N seconds.

-b Display amounts in bytes.

-m Display amounts in megabytes.

-t Add a totals row at the bottom.

-o Don’t display the “buffers/cache” row.

Controlling Processes
kill Terminate a process (or send it a signal).

timeout Kill a command that runs for too long.

nice Invoke a program at a particular priority.

renice Change a process’s priority as it runs.

flock Ensure that only one copy of a process runs at the same time, using
locks.

Once processes are started, they can be stopped, restarted, kil‐
led, and reprioritized. We discussed some of these operations as

Controlling Processes | 143

stdin stdout - file -- opt --help --version

handled by the shell in “Shell Job Control” on page 39. Now we
cover killing and reprioritizing.

kill
kill [options] [process_ids]

The kill command sends a signal to a process. This can termi‐
nate a process (the default action), interrupt it, suspend it,
crash it, and so on. You must own the process, or be the super‐
user, to affect it. To terminate process 13243, for example, run:

→ kill 13243

If this does not work—some programs catch this signal without
terminating—add the -KILL or (equivalently) -9 option:

→ kill -KILL 13243

which is virtually guaranteed to work. However, this is not a
clean exit for the program, which may leave resources allocated
(or cause other inconsistencies) upon its death.

If you don’t know the PID of a process, run ps and examine the
output:

→ ps -uax | grep emacs

or even better, try the pidof command, which looks up and
prints the PID of a process by its name:

→ pidof emacs
8374

Now you can kill a process knowing only its program name in
a single line, using shell backquotes to execute pidof:

→ kill `pidof emacs`

Or use the killall command to kill all processes for a given
program:

→ killall emacs

144 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

In addition to the kill program in the filesystem (usually /bin/
kill), most shells have built-in kill commands, but their syntax
and behavior differ. However, they all support the following
usage:

→ kill -N PID
→ kill -NAME PID

where N is a signal number, and NAME is a signal name without
its leading “SIG” (e.g., use -HUP to send the SIGHUP signal). To
see a complete list of signals transmitted by kill, run kill -l,
though its output differs depending on which kill you’re run‐
ning. For descriptions of the signals, run man 7 signal.

timeout
timeout [options] seconds command...

The timeout command sets a time limit for running another
program, in seconds. If the program runs longer than the limit,
timeout kills it. As a demonstration, here is a sleep command
that should run for a minute but gets killed after 3 seconds:

→ sleep 60 Runs for 60 seconds
→ timeout 3 sleep 60 Killed after 3 seconds

As a more practical example, play music from your MP3 collec‐
tion for an hour, then stop:

→ timeout 3600 mplayer *.mp3

Useful options

-s signal Send a signal other than the default (TERM). The choices are the
same ones listed by kill -l.

-k seconds If the program doesn’t die after the first signal, wait this many
seconds longer and send a deadly KILL signal.

Controlling Processes | 145

17 This is called “nicing” the process. You’ll hear the term used as a verb:
“That process was niced to 12.”

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

nice
nice [-n level] command_line

When invoking a system-intensive program, you can be nice to
the other processes (and users) by lowering its priority. That’s
what the nice command is for: it sets a nice level (an amount of
“niceness”) for a process so it gets less attention from the Linux
process scheduler.17 Here’s an example of setting a big job to
run at nice level 7:

→ nice -n 7 sort hugefile > outfile

If you run nice without a level, 10 is used. Normal processes
(run without nice) run at level zero, which you can see by run‐
ning nice with no arguments:

→ nice
0

The superuser can also lower the nice level, increasing a proc‐
ess’s priority:

→ sudo nice -n -10 myprogram

To see the nice levels of your jobs, use ps and look at the “NI”
column:

→ ps -o pid,user,args,nice

renice
renice [-n N] [options] PID

While the nice command can invoke a program at a given nice
level, renice changes the nice level of an already-running pro‐

146 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

cess. Here we increase the nice level (decrease the priority) of
process 28734 by five:

→ renice -n 5 -p 28734

As a quick (though trivial) test, you can create a process that
just sleeps for 2 minutes, run it in the background, and change
its priority:

→ sleep 120 &
→ pidof sleep
2673
→ renice -n 5 -p 2673
2673 (process ID) old priority 0, new priority 5

Ordinary users can increase the nice level of their own pro‐
cesses, while the superuser can also decrease it (increasing the
priority) and can operate on any process. The valid range is
−20 to +20, but avoid high negative numbers or you might
interfere with vital system processes.
Useful options

-p pid Affect the given process ID. You can omit the -p and just
provide a PID (renice -n 5 28734).

-u username Affect all processes owned by the given user.

flock
flock [options] lockfile command...

Do you ever need to ensure that only one copy of a program
runs at a time on your computer? For example, if you run auto‐
matic backups every hour using a command like rsync, there’s
a slight chance that a previous backup might still be running
when the next backup launches. The flock command solves
this sort of problem. It prevents a command, such as a backup
script, from running concurrently with itself. If you try to run
two copies of the command at once, the second will fail. For

Controlling Processes | 147

example, this rsync command, when run with flock, will
instantly fail if another instance of the same command is
already running:

→ flock -n /tmp/mylock rsync ...

To see flock in action, open two shell windows and run the fol‐
lowing command in each shell, one at a time (we’ll use the
sleep command as a demonstration, which does nothing but
wait for a given number of seconds):

→ flock -n /tmp/mylock sleep 60

The first command will run, and the second will instantly ter‐
minate. The two commands needn’t be identical, but they must
refer to the same lockfile as the first argument. This can be
the name of any file or directory, which flock treats as a unique
marker to prevent any other commands from running. For
example, if you run the same sleep command in one shell and
a different command such as ls in another, with the same lock
file:

→ flock -n /tmp/mylock ls

the second will still fail. But if you provide different lock files,
both commands will run.
Useful options

-n Instantly fail if another command is already running.

-w N Fail after waiting N seconds, if another command is already running.

-s Use a shared lock instead of an exclusive lock. You can run multiple
commands simultaneously with this option, but flock will fail if you
omit the option. This is useful for permitting a limited number of
commands to run simultaneously.

Scheduling Jobs
sleep Wait a set number of seconds, doing nothing.

watch Run a program at set intervals.

148 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

at Schedule a job for a single, future time.

crontab Schedule jobs for many future times.

If you need to launch programs at particular times or at regular
intervals, Linux provides several scheduling tools at various
degrees of complexity.

sleep
sleep time_specification

The sleep command simply waits a set amount of time. The
given time specification can be an integer (meaning seconds)
or an integer followed by the letter s (also seconds), m

(minutes), h (hours), or d (days). For example:

→ sleep 5m Do nothing for 5 minutes

sleep is useful for delaying a command for a set amount of
time:

→ sleep 10 && echo 'Ten seconds have passed.'
(10 seconds pass)
Ten seconds have passed.

watch
watch [options] command

The watch program executes a given command at regular inter‐
vals; the default is every two seconds. The command is passed
to the shell (so be sure to quote or escape any special charac‐
ters), and the results are displayed in a full-screen mode, so you
can observe the output conveniently and see what has changed.
For example, watch -n 60 date executes the date command
once a minute, sort of a poor man’s clock. Type ^C to exit.

Scheduling Jobs | 149

stdin stdout - file -- opt --help --version

Useful options

-n seconds Set the time between executions, in seconds.

-d Highlight differences in the output, to emphasize what has
changed from one execution to the next.

-g Exit when the command produces output that is different from
the previous execution.

at
at [options] time_specification

The at command runs a shell command once at a specified
time:

→ at 7am next sunday
at> echo Remember to go shopping | mail smith
at> lpr $HOME/shopping-list
at> ^D
<EOT>
job 559 at 2015-09-14 21:30

The time specifications understood by at are enormously flexi‐
ble. In general, you can specify:

• A time followed by a date (not a date followed by a time)
• Only a date (assumes the current clock time)
• Only a time (assumes the very next occurrence, whether

today or tomorrow)
• A special word like now, midnight, or teatime (16:00)
• Any of the preceding followed by an offset, like “+ 3

days”

Dates are acceptable in many forms: december 25 2015, 25
december 2015, december 25, 25 december, 12/25/2015,
25.12.2015, 20151225, today, thursday, next thursday, next

150 | Linux Pocket Guide

18 Programmers can read the precise syntax in /usr/share/doc/at/time‐
spec.

month, next year, and more. Month names can be abbreviated
to three letters (jan, feb, mar, ...). Times are also flexible: 8pm,
8 pm, 8:00pm, 8:00 pm, 20:00, and 2000 are equivalent. Offsets
are a plus or minus sign followed by whitespace and an amount
of time: + 3 seconds, + 2 weeks, - 1 hour, and so on.18

If you don’t specify a part of the date or time, at copies the
missing information from the system date and time. So “next
year” means one year from right now, “thursday” means the
upcoming Thursday at the current clock time, “december 25”
means the next upcoming December 25, and “4:30pm” means
the very next occurrence of 4:30 p.m. in the future.

The command you supply to at is not evaluated by the shell
until execution time, so wildcards, variables, and other shell
constructs are not expanded until then. Also, your current
environment (see printenv) is preserved within each job so it
executes as if you were logged in. Aliases, however, aren’t avail‐
able to at jobs, so don’t include them.

To list your at jobs, use atq (“at queue”):

→ atq
559 2015-09-14 07:00 a smith

To delete an at job, run atrm (“at remove”) with the job num‐
ber:

→ atrm 559

Useful options

-f filename Read commands from the given file instead of standard
input.

-c job_number Print the job commands to standard output.

Scheduling Jobs | 151

stdin stdout - file -- opt --help --versioncrontab
crontab [options] [file]

The crontab command, like the at command, schedules jobs
for specific times. However, crontab is for recurring jobs, such
as “Run this command at midnight on the second Tuesday of
each month.” To make this work, you edit and save a file (called
your crontab file), which automatically gets installed in a system
directory (/var/spool/cron). Once a minute, a Linux process
called cron wakes up, checks your crontab file, and executes
any jobs that are due.

→ crontab -e

Edit your crontab file in your default editor ($VISUAL).

→ crontab -l

Print your crontab file on standard output.

→ crontab -r

Delete your crontab file.

→ crontab myfile

Install the file myfile as your crontab file.

The superuser can add the option -u username to work with
other users’ crontab files.

Crontab files contain one job per line. (Blank lines and com‐
ment lines beginning with “#” are ignored.) Each line has six
fields, separated by whitespace. The first five fields specify the
time to run the job, and the last is the job command itself.

Minutes of the hour
Integers between 0 and 59. This can be a single number
(30), a sequence of numbers separated by commas
(0,15,30,45), a range (20–30), a sequence of ranges
(0-15,50-59), or an asterisk to mean “all.” You can also
specify “every nth time” with the suffix /n; for instance,
both */12 and 0-59/12 mean 0,12,24,36,48 (i.e., every 12
minutes).

152 | Linux Pocket Guide

Hours of the day
Same syntax as for minutes.

Days of the month
Integers between 1 and 31; again, you may use sequences,
ranges, sequences of ranges, or an asterisk.

Months of the year
Integers between 1 and 12; again, you may use sequences,
ranges, sequences of ranges, or an asterisk. Additionally,
you may use three-letter abbreviations (jan, feb, mar, ...),
but not in ranges or sequences.

Days of the week
Integers between 0 (Sunday) and 6 (Saturday); again, you
may use sequences, ranges, sequences of ranges, or an
asterisk. Additionally, you may use three-letter abbrevia‐
tions (sun, mon, tue, ...), but not in ranges or sequences.

Command to execute
Any shell command, which will be executed in your login
environment, so you can refer to environment variables
like $HOME and expect them to work. Use only absolute
paths to your commands (e.g., /usr/bin/who instead of
who) to ensure that cron is running the right programs, as
a Linux system may have several programs with the same
name.

Here are some example time specifications:

* * * * * Every minute

45 * * * * 45 minutes after each hour (1:45, 2:45, etc.)

45 9 * * * Every day at 9:45 am

45 9 8 * * The eighth day of every month at 9:45 am

45 9 8 12 * Every December 8 at 9:45 am

45 9 8 dec * Every December 8 at 9:45 am

Scheduling Jobs | 153

stdin stdout - file -- opt --help --version

45 9 * * 6 Every Saturday at 9:45 am

45 9 * * sat Every Saturday at 9:45 am

45 9 * 12 6 Every Saturday in December, at 9:45 am

45 9 8 12 6 Every Saturday in December, plus December 8,
at 9:45 am

If the command produces any output upon execution, cron will
email it to you (or more precisely, to the owning user for that
crontab file: see the manpage for cron).

Logins, Logouts, and Shutdowns
We assume you know how to log into your Linux account. To
log out using GNOME or KDE, choose Logout from the main
menu. To log out from a remote shell, just close the shell (type
exit or logout).

Never simply turn off the power to a Linux system: it needs a
more graceful shutdown. To perform a shutdown from
GNOME or KDE, use the main menu. To perform a shutdown
from a shell, run the shutdown or systemctl command as the
superuser, as follows.

shutdown
shutdown [options] time [message]

The shutdown command halts or reboots a Linux system; only
the superuser may run it. Here’s a command to halt the system
in 10 minutes, broadcasting the message “scheduled mainte‐
nance” to all users logged in:

→ sudo shutdown -h +10 "scheduled maintenance"

154 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

The time may be a number of minutes preceded by a plus sign,
like +10; an absolute time in hours and minutes, like 16:25; or
the word now to mean immediately.

With no options, shutdown puts the system into single-user
mode, a special maintenance mode in which only one person is
logged in (at the system console), and all nonessential services
are off. To exit single-user mode, either perform another shut
down to halt or reboot, or type ^D to bring up the system in nor‐
mal, multiuser mode.
Useful options

-r Reboot the system.

-h Halt the system.

-k Kidding: don’t really perform a shutdown, just broadcast warning messages
to all users as if the system were going down.

-c Cancel a shutdown in progress (omit the time argument).

-f On reboot, skip the usual filesystem check performed by the fsck program
(described in “Disks and Filesystems” on page 128).

-F On reboot, require the usual filesystem check.

For technical information about shutdowns, single-user mode,
and various system states, see the manpages for init and init
tab.

systemctl
systemctl [options] command [arguments]

In some Linux distros, the shutdown command is a symbolic
link to systemctl, a multipurpose command for starting and
stopping services, including the entire host. systemctl is part of
a service manager called systemd; a full treatment is beyond the
scope of this book, but we’ll cover a few basic uses. (See man
systemd for more details.)

Logins, Logouts, and Shutdowns | 155

stdin stdout - file -- opt --help --version

sudo systemctl poweroff Shut down the system.

sudo systemctl reboot Reboot the system.

sudo systemctl suspend Suspend the system.

Users and Their Environment
logname Print your login name.

whoami Print your current, effective username.

id Print the user ID and group membership of a user.

who List logged-in users, long output.

users List logged-in users, short output.

finger Print information about users.

last Determine when someone last logged in.

printenv Print your environment.

Who are you? Only the system knows for sure. This grab-bag
of programs tells you all about users: their names, login times,
and properties of their environment.

logname
logname

The logname command prints your login name (it might seem
trivial, but it’s useful in shell scripts):

→ logname
smith

If this command does not work on your system, try instead:

→ echo $LOGNAME

156 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

whoami
whoami

The whoami command prints the name of the current, effective
user. This may differ from your login name (the output of
logname) if you’ve used the sudo command. This example dis‐
tinguishes whoami from logname:

→ logname
smith
→ sudo logname
smith
→ whoami
smith
→ sudo whoami
root

id
id [options] [username]

Every user has a unique, numeric user ID, and a default group
with a unique, numeric group ID. The id command prints these
values along with their associated user and group names:

→ id
uid=500(smith) gid=500(smith)
groups=500(smith),6(disk),490(src),501(cdwrite)

Useful options

-u Print the effective user ID and exit.

-g Print the effective group ID and exit.

-G Print the IDs of all other groups to which the user belongs.

-n Print names (for users and groups) rather than numeric IDs. Must be
combined with -u, -g, or -G. For example, id -Gn produces the same
output as the groups command.

Users and Their Environment | 157

19 If your system is configured to log this information.

stdin stdout - file -- opt --help --version

-r Print login values instead of effective values. Must be combined with -u,
-g, or -G.

who
who [options] [filename]

The who command lists all logged-in users, one user shell per
line:

→ who
smith pts/0 Sep 6 17:09 (:0)
barrett pts/1 Sep 6 17:10 (10.24.19.240)
jones pts/2 Sep 8 20:58 (192.168.13.7)
jones pts/4 Sep 3 05:11 (192.168.13.7)

Normally, who gets its data from the file /var/run/utmp. The
filename argument can specify a different data file, such
as /var/log/wtmp for past logins or /var/log/btmp for failed log‐
ins.19

Useful options

-H Print a row of headings as the first line.

--lookup For remotely logged-in users, print the hostnames of origin.

-u Also print each user’s idle time at his/her terminal.

-T Also indicate whether each user’s terminal is writable (see mesg in
“Instant Messaging” on page 193). A plus sign means “yes,” a
minus sign means “no,” and a question mark means “unknown.”

-m Display information only about yourself (i.e., the user associated
with the current terminal).

-q Quick display of usernames only, and a count of users. Much like the
users command, but it adds a count.

158 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

users
users [filename]

The users command prints a quick listing of users who have
login sessions (if a user is running multiple shells, she appears
multiple times):

→ users
barrett jones smith smith smith

Like the who command, users reads /var/log/utmp by default
but can read from another supplied file instead.

finger
finger [options] [user[@host]]

The finger command prints logged-in user information in a
short form:

→ finger
Login Name Tty Idle Login Time
smith Sandy Smith :0 Sep 6 17:09
barrett Daniel Barrett :pts/1 24 Sep 6 17:10
jones Jill Jones :pts/2 Sep 8 20:58

or a long form:

→ finger smith
Login: smith Name: Sandy Smith
Directory: /home/smith Shell: /bin/bash
On since Sat Sep 6 17:09 (EDT) on :0
Last login Mon Sep 8 21:07 (EDT) on pts/6 from web1
No mail.
Project:
Enhance world peace
Plan:
Mistrust first impulses; they are always right.

Users and Their Environment | 159

stdin stdout - file -- opt --help --version

The user argument can be a local username or a remote user in
the form user@host. Remote hosts will respond to finger
requests only if they are configured to do so.
Useful options

-l Print in long format.

-s Print in short format.

-p Don’t display the Project and Plan sections, which are ordinarily read from
the user’s ~/.project and ~/.plan files, respectively.

last
last [options] [users] [ttys]

The last command displays a history of logins, in reverse
chronological order:

→ last
bob pts/3 localhost Mon Sep 8 21:07 - 21:08 (00:01)
sue pts/6 :0 Mon Sep 8 20:25 - 20:56 (00:31)
bob pts/4 myhost Sun Sep 7 22:19 still logged in
...

You may provide usernames or tty names to limit the output.
Useful options

-N Print only the latest N lines of output, where N is a positive
integer.

-i Display IP addresses instead of hostnames.

-R Don’t display hostnames.

-x Also display system shutdowns and changes in system runlevel
(e.g., from single-user mode into multiuser mode).

-f filename Read from some other data file than /var/run/wtmp; see the
who command for more details.

160 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionprintenv
printenv [environment_variables]

The printenv command prints all environment variables
known to your shell and their values:

→ printenv
HOME=/home/smith
MAIL=/var/spool/mail/smith
NAME=Sandy Smith
SHELL=/bin/bash
...

or only specified variables:

→ printenv HOME SHELL
/home/smith
/bin/bash

User Account Management
useradd Create an account.

userdel Delete an account.

usermod Modify an account.

passwd Change a password.

chfn Change a user’s personal information.

chsh Change a user’s shell.

The installation process for your Linux distro undoubtedly
prompted you to create a superuser account (root), and possi‐
bly also an ordinary user account (presumably for yourself).
But you might want to create other accounts, too.

Creating users is an important job not to be taken lightly. Every
account is a potential avenue for an intruder to enter your sys‐
tem, so every user should have a strong, hard-to-guess pass‐
word.

User Account Management | 161

stdin stdout - file -- opt --help --versionuseradd
useradd [options] username

The useradd command lets the superuser create a user account:

→ sudo useradd smith

Its defaults are not very useful (run useradd -D to see them), so
be sure to supply all desired options. For example:

→ sudo useradd -d /home/smith -s /bin/bash \
 -g users smith

Useful options

-d dir Set the user’s home directory to be dir.

-s shell Set the user’s login shell to be shell.

-u uid Set the user’s ID to be uid. Unless you know what
you’re doing, omit this option and accept the
default.

-c string Set the user’s comment field (historically called
the GECOS field). This is usually the user’s full
name, but it can be any string. The chfn
command can also set this information.

-g group Set the user’s initial (default) group to group,
which can either be a numeric group ID or a group
name, and which must already exist.

-G group1,group2,... Make the user a member of the additional,
existing groups group1, group2, and so on.

-m Copy all files from your system skeleton
directory, /etc/skel, into the newly created home
directory. The skeleton directory traditionally
contains minimal (skeletal) versions of
initialization files, like ~/.bash_profile, to get new
users started. If you prefer to copy from a different
directory, add the -k option (-k dirname).

162 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

userdel
userdel [-r] username

The userdel command deletes an existing user.

→ sudo userdel smith

It does not delete the files in the user’s home directory unless
you supply the -r option. Think carefully before deleting a
user; consider deactivating the account instead (with usermod
-L). And make sure you have backups of all the user’s files
before deleting them: you might need them again someday.

usermod
usermod [options] username

The usermod command modifies the given user’s account in
various ways, such as changing a home directory:

→ sudo usermod -d /home/another smith

Useful options

-d dir Change the user’s home directory to dir.

-l username Change the user’s login name to username.
Think carefully before doing this, in case anything
on your system depends on the original name.
And don’t change system accounts (root, daemon,
etc.) unless you really know what you’re doing!

-s shell Change the user’s login shell to shell.

-g group Change the user’s initial (default) group to
group, which can either be a numeric group ID or
a group name, and which must already exist.

User Account Management | 163

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

-G group1,group2,... Make the user a member only of the additional,
existing groups group1, group2, and so on. If
the user previously belonged to other groups, but
you don’t specify them here, the user will no
longer belong to them.

-L Disable (lock) the account so the user cannot log
in.

-U Unlock the account after a lock (-L) operation.

passwd
passwd [options] [username]

The passwd command changes a login password, yours by
default:

→ passwd

or another user’s password if run by the superuser:

→ sudo passwd smith

passwd does have options, most of them related to password
expiration. Use them only in the context of a well-thought-out
security policy.

chfn
chfn [options] [username]

The chfn (change finger) command updates a few pieces of
personal information maintained by the system: real name,
home telephone, office telephone, and office location, as dis‐
played by the finger command. Invoked without a username,
chfn affects your account; invoked with a username (by root), it
affects that user. With no options, chfn will prompt you for the
desired information:

164 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

→ chfn
Password: ********
Name [Shawn Smith]: Shawn E. Smith
Office [100 Barton Hall]:
Office Phone [212-555-1212]: 212-555-1234
Home Phone []:

Useful options

-f name Change the full name to name.

-h phone Change the home phone number to phone.

-p phone Change the office phone number to phone.

-o office Change the office location to office.

chsh
chsh [options] [username]

The chsh (change shell) command sets your login shell pro‐
gram. Invoked without a username, chsh affects your account;
invoked with a username (by root), it affects that user. With no
options, chsh will prompt you for the desired information:

→ chsh
Changing shell for smith.
Password: *******
New shell [/bin/bash]: /bin/tcsh

The new shell must be listed in the file /etc/shells.
Useful options

-s shell Specify the new shell.

-l List all permissible shells.

User Account Management | 165

Becoming the Superuser
Normal users, for the most part, can modify only the files they
own. One special user, called the superuser or root, has full
access to the machine and can do anything on it. You should
rarely need superuser privileges; and in fact, you should use
them only when absolutely necessary, to avoid accidentally
harming your Linux system.

You can become the superuser in several ways. One is to use
the sudo command to gain superuser abilities for the duration
of a single command. Simply type “sudo” followed by the com‐
mand. You may be prompted for your password, depending on
how sudo is configured on your machine:

→ sudo rm protected_file
Password: ******** Your own password

To make your superuser powers last for multiple commands,
you can run a shell with sudo:

→ sudo bash

This is convenient, say, before browsing through many pro‐
tected directories with cd. When finished executing commands
as the superuser, type ^D or run exit to end the superuser shell
and become yourself again. If you forget whether your shell is a
superuser shell or just a normal one, check your identity with
the whoami command. If you’re the superuser, it will display
root.

Another way to become the superuser is the su command,
which also creates a superuser shell, but you’ll need a different
password, called the root password, to use it. If you don’t know
the root password on the system, you can’t use su. (If you
installed Linux yourself, you chose the root password during
installation):

→ su -l
Password: ******* root password
#

166 | Linux Pocket Guide

Your shell prompt may change, often to a hash mark (#), to
indicate you are the superuser.

If you provide a username to su:

→ su -l sophia
Password: ******* sophia's password

you can become that user (provided you know her password).

sudo and su have important differences. su is standard on every
Linux system, but you need a password other than your own in
order to run it. sudo uses your own password, but it must be
configured to do so. sudo is superior for systems with multiple
superusers, as it provides precise control over privileges (in
the /etc/sudoers file) and even logs the commands that get run.
A full discussion is beyond the scope of this book: see man sudo
and http://www.sudo.ws/ for full details.

Group Management
groups Print the group membership of a user.

groupadd Create a group.

groupdel Delete a group.

groupmod Modify a group.

A group is a set of accounts treated as a single entity. If you give
permission for a group to take some action (such as modify a
file), then all members of that group can take it. For example,
you can give full permissions for the group friends to read,
write, and execute the file /tmp/sample:

→ groups
users smith friends
→ chgrp friends /tmp/sample
→ chmod 770 /tmp/sample
→ ls -l /tmp/sample
-rwxrwx--- 1 smith friends 2874 ... /tmp/sample

Group Management | 167

http://www.sudo.ws/

20 Different systems may store the group member list in other ways.

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

To add users to a group, edit /etc/group as root.20 To change the
group ownership of a file, recall the chgrp commands from
“File Properties” on page 69.

groups
groups [usernames]

The groups command prints the Linux groups to which you
belong, or to which other users belong:

→ whoami
smith
→ groups
smith users
→ groups jones root
jones : jones users
root : root bin daemon sys adm disk wheel src

groupadd
groupadd [options] group

The groupadd command creates a group. In most cases, you
should use the -f option to prevent duplicate groups from
being created:

→ sudo groupadd -f friends

Useful options

-g gid Specify your own numeric group ID instead of letting groupadd
choose one.

-f If the specified group exists already, complain and exit.

168 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

groupdel
groupdel group

The groupdel command deletes an existing group:

→ sudo groupdel friends

Before doing this, it’s a good idea to identify all files that have
their group ID set to the given group, so you can deal with
them later:

→ sudo find / -group friends -print

because groupdel does not change the group ownership of any
files. It simply removes the group name from the system’s
records. If you list such files, you’ll see a numeric group ID in
place of a group name.

groupmod
groupmod [options] group

The groupmod command modifies the given group, changing its
name or group ID:

→ sudo groupmod -n newname friends

groupmod does not affect any files owned by this group: it sim‐
ply changes the ID or name in the system’s records. Be careful
when changing the ID, or these files will have group ownership
by a nonexistent group.
Useful options

-n name Change the group’s name to name (safe).

-g gid Change the group’s ID to gid (risky).

Group Management | 169

stdin stdout - file -- opt --help --version

Host Information
uname Print basic system information.

hostname Print the system’s hostname.

domainname Same as hostname -y.

ip Set and display network interface information.

ifconfig Older command to set and display network interface
information.

Every Linux machine (or host) has a name, a network IP
address, and other properties. Here’s how to display this infor‐
mation.

uname
uname [options]

The uname command prints fundamental information about
your computer:

→ uname -a
Linux server.example.com 4.2.0-17-generic
 #21-Ubuntu SMP Fri Oct 23 19:56:16
 UTC 2015 x86_64 ... GNU/Linux

This includes the kernel name (Linux), hostname
(server.example.com), kernel release (4.2.0-17-generic), kernel
version (#21-Ubuntu SMP Fri Oct 23 19:56:16 UTC 2015),
hardware name (x86_64), and operating system name (GNU/
Linux). Each of these values can be printed individually using
options.
Useful options

-a All information.

-s Only the kernel name (the default).

170 | Linux Pocket Guide

21 This change might not survive a reboot. Some Linux distros require
additional steps, such as placing the hostname into a configuration file
that is read at boot time. Consult the documentation for your distro.

stdin stdout - file -- opt --help --version

-n Only the hostname, as with the hostname command.

-r Only the kernel release.

-v Only the kernel version.

-m Only the hardware name.

-p Only the processor type.

-i Only the hardware platform.

-o Only the operating system name.

hostname
hostname [options] [name]

The hostname command prints the name of your computer.
Depending on how you have things set up, this might be the
fully qualified hostname:

→ hostname
myhost.example.com

or your short hostname:

→ hostname
myhost

You can also set your hostname, as root:21

→ sudo hostname orange

However, hostnames and nameservers are complicated topics
well beyond the scope of this book. Don’t just blindly start set‐
ting hostnames!

Host Information | 171

stdin stdout - file -- opt --help --version

Useful options

-i Print your host’s IP address.

-a Print your host’s alias name.

-s Print your host’s short name.

-f Print your host’s fully qualified name.

-d Print your host’s DNS domain name.

-y Print your host’s NIS or YP domain name.

-F hostfile Set your hostname by reading the name from file hostfile.

ip
ip [options] object command...

The ip command displays and sets various aspects of your
computer’s network interface. This topic is beyond the scope of
the book, but we’ll teach you a few tricks.

You can get information about the default network interface
(usually called eth0):

→ ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether 00:50:ba:48:4f:ba brd ff:ff:ff:...
 inet 192.168.0.21/24 brd 192.168.0.255 scope ...
 inet6 fe80::21e:8cff:fe53:41e4/64 ...

This includes your MAC address (00:50:ba:48:4f:ba), your IP
address (192.168.0.21), and various other information. To view
all loaded network interfaces, run:

→ ip addr show

Some other useful commands for displaying network informa‐
tion include:

ip help

See usage information for all these commands.

172 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

ip addr

Display IP addresses of your network devices.

ip maddr

Display multicast addresses of your network devices.

ip link

Display attributes of your network devices.

ip route

Display your routing table.

ip monitor

Begin monitoring your network devices; type ^C to stop.

Each of these commands has various options: add help on the
end (e.g., ip link help) for usage. Additionally, ip can modify
your network when run by the superuser: configuring your
network devices, managing routing tables and rules, creating
tunnels, and more. It’s part of a suite of tools called iproute2.
You’ll need networking experience to understand this complex
command; see the ip manpage to get started, or visit http://
lartc.org.

ifconfig
ifconfig [options] interface

The ifconfig command is an ancestor of ip. It is still found on
many Linux systems but is less powerful (some would call it
obsolete). We’ll cover a few simple commands here, but you
should be using ip instead.

To display information about the default network interface
(usually called eth0):

→ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:50:BA:48:4F:BA
 inet addr:192.168.0.21 Bcast:192.168.0.255 ...
 UP BROADCAST RUNNING MULTICAST MTU:1500 ...

Host Information | 173

http://lartc.org
http://lartc.org

stdin stdout - file -- opt --help --version

 RX packets:1955231 errors:0 dropped:0 overruns:0 ...
 TX packets:1314765 errors:0 dropped:0 overruns:0 ...
 collisions:0 txqueuelen:100
 ...

This includes your MAC address (00:50:BA:48:4F:BA), your IP
address (192.168.0.21), your netmask (255.255.255.0), and vari‐
ous other information. To view all loaded network interfaces,
run:

→ ifconfig -a

Host Location
host Look up hostnames, IP addresses, and DNS info.

whois Look up the registrants of Internet domains.

ping Check if a remote host is reachable.

traceroute View the network path to a remote host.

When dealing with remote computers, you might want to
know more about them. Who owns them? What are the IP
addresses? Where on the network are they located?

host
host [options] name [server]

The host command looks up the hostname or IP address of a
remote machine by querying DNS:

→ host www.ubuntu.org
www.ubuntu.com has address 91.189.90.41
→ host 91.189.90.41
41.90.189.91.in-addr.arpa domain name pointer
 jujube.canonical.com.

It can also find out much more:

174 | Linux Pocket Guide

→ host -a www.ubuntu.org
Trying "www.ubuntu.org"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR ...
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, ...

;; QUESTION SECTION:
;www.ubuntu.org. IN ANY

;; ANSWER SECTION:
www.ubuntu.org. 60 IN CNAME
ubuntu.org.

though a full discussion of this output is beyond the scope of
this book. The final, optional “server” parameter specifies a
particular nameserver for the query:

→ host www.ubuntu.org ns2.dondominio.com
Using domain server:
Name: ns2.dondominio.com
Address: 93.93.67.2#53
Aliases:

www.ubuntu.org is an alias for ubuntu.org.
ubuntu.org has address 147.83.195.55
ubuntu.org mail is handled by 10 mx2.upc.es.
ubuntu.org mail is handled by 10 mx1.upc.es.

To see all options, type host by itself.
Useful options

-a Display all available information.

-t Choose the type of nameserver query: A, AXFR, CNAME, HINFO, KEY, MX,
NS, PTR, SIG, SOA, and so on.

Here’s an example of the -t option to locate MX records:

→ host -t MX redhat.com
redhat.com mail is handled by 5 mx1.redhat.com.
redhat.com mail is handled by 10 mx2.redhat.com.

Host Location | 175

stdin stdout - file -- opt --help --version

If the host command doesn’t do what you want, try dig,
another powerful DNS lookup utility. You might also encounter
the nslookup command, mostly obsolete but still found on
some Linux and Unix systems.

whois
whois [options] domain_name

The whois command looks up the registration of an Internet
domain:

→ whois linuxmint.com
...
Domain name: LINUXMINT.COM
Registrar: TUCOWS DOMAINS INC.
...
 Administrative Contact:
 Lefebvre, Clement
...
 Technical Contact:
 Hostmaster, Servage
...
Creation Date: 07-jun-2006
Expiration Date: 07-jun-2016
...

plus a few screens full of legal disclaimers from the registrar.
Useful options

-h registrar Perform the lookup at the given registrar’s server. For
example, whois -h whois.networksolutions.com
yahoo.com.

-p port Query the given TCP port instead of the default, 43 (the
whois service).

176 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

ping
ping [options] host

The ping command tells you if a remote host is reachable. It
sends small packets (ICMP packets to be precise) to a remote
host and waits for responses:

→ ping google.com
PING google.com (74.125.226.144) from 192.168.0.10 :
56(84) bytes of data.
64 bytes from www.google.com (74.125.226.144):
 icmp_seq=0 ttl=49 time=32.390 msec
64 bytes from www.google.com (74.125.226.144):
 icmp_seq=1 ttl=49 time=24.208 msec
^C
--- google.com ping statistics ---
2 packets transmitted, 2 packets received,
 0% packet loss
round-trip min/avg/max/mdev =
 24.208/28.299/32.390/4.091 ms

Useful options

-c N Ping at most N times.

-i N Wait N seconds (default 1) between pings.

-n Print IP addresses in the output, rather than hostnames.

traceroute
traceroute [options] host [packet_length]

The traceroute command prints the network path from your
local host to a remote host, and the time it takes for packets to
traverse the path:

Host Location | 177

→ traceroute yahoo.com
 1 server.mydomain.com (192.168.0.20) 1.397 ms ...
 2 10.221.16.1 (10.221.16.1) 15.397 ms ...
 3 router.example.com (92.242.140.21) 4.952 ms ...
...
...
16 p6.www.dcn.yahoo.com (216.109.118.69) * ...

Each host in the path is sent three “probes” and the return
times are reported. If five seconds pass with no response,
traceroute prints an asterisk. Also, traceroute may be blocked
by firewalls or unable to proceed for various reasons, in which
case it prints a symbol:

Symbol Meaning

!F Fragmentation needed.

!H Host unreachable.

!N Network unreachable.

!P Protocol unreachable.

!S Source route failed.

!X Communication administratively prohibited.

!N ICMP unreachable code N.

The default packet size is 40 bytes, but you can change this with
the final, optional packet_length parameter (e.g., traceroute
myhost 120).
Useful options

-n Numeric mode: print IP addresses instead of hostnames.

-w N Change the timeout from five seconds to N seconds.

178 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Network Connections
ssh Securely log into a remote host, or run commands on it.

scp Securely copy files to/from a remote host (batch).

sftp Securely copy files to/from a remote host (interactive).

ftp Copy files to/from a remote host (interactive, insecure!).

netcat Create arbitrary network connections.

With Linux, it’s easy to establish network connections from one
machine to another for remote logins and file transfers. Just
make sure you do it securely.

ssh
ssh [options] host [command]

The ssh (Secure Shell) program securely logs you into a remote
machine where you already have an account:

→ ssh remote.example.com

Alternatively, it can invoke a program on that remote machine
without logging you in:

→ ssh remote.example.com who

ssh encrypts all data that travels across its connection, includ‐
ing your username and password (which you’ll need to access
the remote machine). The SSH protocol also supports other
ways to authenticate, such as public keys and host IDs. See man
sshd for details.
Useful options

-l user Specify your remote username; otherwise, ssh assumes your local
username. You can also use the syntax username@host:
→ ssh smith@server.example.com

Network Connections | 179

stdin stdout - file -- opt --help --version

-p port Use a port number other than the default (22).

-t Allocate a tty on the remote system; useful when trying to run a
remote command with an interactive user interface, such as a text
editor.

-v Produce verbose output, useful for debugging.

scp
scp local_spec remote_spec

The scp (secure copy) command copies files and directories
from one computer to another in batch. (For an interactive
user interface, see sftp.) It encrypts all communication
between the two machines. As a simple example, scp can copy
a local file to a remote machine:

→ scp myfile remote.example.com:newfile

recursively copy a directory to a remote machine:

→ scp -r mydir remote.example.com:

copy a remote file to your local machine:

→ scp remote.example.com:myfile .

or recursively copy a remote directory to your local machine:

→ scp -r remote.example.com:mydir .

To specify an alternate username on the remote system, use the
username@host syntax:

→ scp myfile smith@remote.example.com:

Useful options

-p Duplicate all file attributes (permissions, timestamps) when copying.

-r Recursively copy a directory and its contents.

-v Produce verbose output, useful for debugging.

180 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionsftp
sftp (host username@host)

The sftp program copies files interactively and securely
between two computers. (As opposed to scp, which copies files
in batch.) The user interface is much like that of ftp, but ftp is
not secure:

→ sftp remote.example.com
Password: ********
sftp> cd MyFiles
sftp> ls
README
file1
file2
file3
sftp> get file2
Fetching /home/smith/MyFiles/file2 to file2
sftp> quit

If your username on the remote system is different from your
local one, use the username@host argument:

→ sftp smith@remote.example.com

Command Meaning

help View a list of available commands.

ls List the files in the current remote directory.

lls List the files in the current local directory.

pwd Print the remote working directory.

lpwd Print the local working directory.

cd dir Change your remote directory to be dir.

lcd dir Change your local directory to be dir.

get file1 [file2] Copy remote file1 to local machine, optionally
renamed as file2.

Network Connections | 181

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

Command Meaning

put file1 [file2] Copy local file1 to remote machine, optionally
renamed as file2.

mget file* Copy multiple remote files to the local machine using
wildcards * and ?.

mput file* Copy multiple local files to the remote machine using
wildcards * and ?.

quit Exit sftp.

ftp
ftp [options] host

The popular ftp (File Transfer Protocol) program copies files
between computers, but not in a secure manner: your user‐
name and password travel over the network as plain text. Use
sftp instead if your remote server supports it.

The same commands we listed for sftp also work for ftp.
(However, the two programs support other, differing com‐
mands, too.)

netcat
netcat [options] [destination] [port]

nc [options] [destination] [port]

netcat, or equivalently, nc, is a general-purpose tool for making
network connections. It’s handy for debugging, learning about
networking, and many other uses. For example, netcat can
speak directly to any TCP or UDP service, such as an SSH
server on your local TCP port 22:

182 | Linux Pocket Guide

→ netcat localhost 22
SSH-2.0-OpenSSH_6.9p1 Ubuntu-2ubuntu0.1
^C

This feature, which is handy for determining if a particular ser‐
vice is up or down, also works with service names as listed
in /etc/services. For example, you could connect to Google’s web
service (port 80) with:

→ netcat www.google.com http
xxx Type some junk and press Enter
HTTP/1.0 400 Bad Request
Content-Type: text/html; charset=UTF-8
Content-Length: 1555
Date: Fri, 04 Mar 2016 02:17:37 GMT
...

If you’re an old-school Linux user, you might be using telnet
for connecting in this way to arbitrary TCP ports. netcat is
much more flexible. For example, using two shells, you can cre‐
ate a client and a service and have them talk to each other. Start
a service listening on port 55555:

→ netcat -l 55555

Now in another window, run a client that talks to that same
port, and type a message:

→ netcat localhost 55555
Hello world, how are you?

Your message gets sent to your service, which will print “Hello
world, how are you?” and any subsequent lines you enter. Press
^D to close the connection.
Useful options

-u Establish a UDP connection instead of TCP.

-l Listen for connections on the given port.

-p N Use port N as the source port.

-w N Time out after N seconds.

Network Connections | 183

stdin stdout - file -- opt --help --version

-h Get help.

Email
mutt Text-based mail client.

mail Minimal text-based mail client.

mailq View the outgoing mail queue on your system.

Linux includes a number of text-based mail clients. We’ll look
at several with different purposes and strengths. (Linux also has
graphical email clients, such as Thunderbird, Evolution, and
KMail.)

mutt
mutt [options]

Mutt is a text-based mailer that runs in an ordinary terminal
(or terminal window), so it can be used both locally (e.g., in an
X terminal window) or remotely over an SSH connection. It is
very powerful, with many commands and options. To invoke it,
type:

→ mutt

When the main screen appears, any messages in your mailbox
are listed briefly, one per line, and the following commands are
available:

Keystroke Meaning

Up arrow Move to the previous message.

Down arrow Move to the next message.

PageUp Scroll up one pageful of messages.

PageDown Scroll down one pageful of messages.

Home Move to the first message.

184 | Linux Pocket Guide

Keystroke Meaning

End Move to the last message.

m Compose a new mail message. This invokes your default text
editor. After editing the message and exiting the editor, type y to
send the message or q to postpone it.

r Reply to current message. Works like m.

f Forward the current message to a third party. Works like m.

i View the contents of your mailbox.

C Copy the current message to another mailbox.

d Delete the current message.

While writing a message, after you exit your text editor, the fol‐
lowing commands are available:

Keystroke Meaning

a Attach a file (an attachment) to the message.

c Set the CC list.

b Set the BCC list.

e Edit the message again.

r Edit the Reply-To field.

s Edit the subject line.

y Send the message.

C Copy the message to a file.

q Postpone the message without sending it.

Additional commands are always available:

Keystroke Meaning

? See a list of all commands (press the SPACEBAR to scroll down, q to
quit).

^G Cancel the command in progress.

Email | 185

stdin stdout - file -- opt --help --version

Keystroke Meaning

q Quit.

The official Mutt site is http://www.mutt.org. For a different
command-line mail client for Linux, check out alpine (http://
patches.freeiz.com/).

mail
mail [options] recipient

The mail program is a quick, simple email client. Most people
want a more powerful program for regular use, but for quick
messages from the command line or in scripts, mail is really
handy.

To send a quick message:

→ mail smith@example.com
Subject: my subject
I'm typing a message.
To end it, I type a period by itself on a line.
.
Cc: jones@example.com
→

To send a quick message using a single command, use a pipe‐
line:

→ echo "Hey!" | mail -s "subject" smith@example.com

To mail a file using a single command, you can use redirection
or a pipeline:

→ mail -s "my subject" smith@example.com < filename
→ cat filename \
 | mail -s "my subject" smith@example.com

Notice how easily you can send the output of a pipeline as an
email message; this is useful in scripts.

186 | Linux Pocket Guide

http://www.mutt.org
http://patches.freeiz.com/
http://patches.freeiz.com/

stdin stdout - file -- opt --help --version

Useful options

-s subject Set the subject line of an outgoing message.

-v Verbose mode: print messages about mail delivery.

-c addresses CC the message to the given addresses, a comma-separated
list.

-b addresses BCC the message to the given addresses, a comma-separated
list.

mailq
mailq

The mailq command lists any outgoing email messages await‐
ing delivery, if any (mail delivery is usually so quick, however,
that mailq typically has no output):

→ mailq
...Size-- ----Arrival Time-- -Sender/Recipient---
 333 Tue Jan 10 21:17:14 smith@example.com
 jones@elsewhere.org

Sent mail messages are also recorded in a log file such
as /var/log/mail.log; the name may differ from distro to distro.
To see the most recent mail delivery actions, view the last few
lines with tail:

→ tail /var/log/mail.log

Beyond Mail Readers
Email is more “transparent” on Linux than on other platforms
that merely display your mailbox and send and receive mes‐
sages. The ability to list outgoing email messages with mailq is
just one example. Here are some other options to whet your
appetite and encourage you to explore.

Email | 187

• You can process your mailboxes with any command-line
tools, such as grep, because mail files are plain text.

• You can manually retrieve messages from your mail
server at the command line with the fetchmail com‐
mand. Using a simple configuration file, this command
can reach out to IMAP and POP servers and download
mail in batch. See man fetchmail.

• Your system can run a mail server, such as postfix or
sendmail, to handle the most complex mail delivery sit‐
uations.

• You can control local mail delivery in sophisticated ways
with the procmail command, which filters arriving email
messages through any arbitrary program. For more
information, see man procmail.

• Spam filtering is sophisticated on Linux: check out the
SpamAssassin suite of programs. You can run it person‐
ally on your incoming email, or at the server level for
large numbers of users.

In short, email is not limited to the features of your mail-
reading program. Investigate and experiment!

Web Browsing
lynx Text-only web browser.

wget Download web pages and files.

Besides the usual web browsers such as Chrome and Firefox,
Linux offers several ways to explore the World Wide Web via
the command line.

188 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionlynx
lynx [options] [URL]

Lynx is a stripped-down, text-only web browser. It doesn’t dis‐
play pictures, play audio or video, or even respond to your
mouse. But it’s incredibly useful when you just want a quick
look at a page, or when the network is slow, or for downloading
the HTML of a website. It’s particularly good for checking out a
suspicious URL, as Lynx doesn’t run JavaScript and won’t even
accept a cookie without asking you first.

→ lynx http://www.yahoo.com

All browsing is done by keyboard. Many pages will not look
quite right, especially if they use tables or frames extensively,
but usually you can find your way around a site.

Keystroke Meaning

? Get help.

k List all keystrokes and their meanings.

^G Cancel a command in progress.

q Quit Lynx.

Enter “Click” the current link, or finish the current form field.

Left arrow Back to previous page.

Right arrow Forward to next page, or “click” the current link.

g Go to a URL (you’ll be prompted to enter it).

p Save, print, or mail the current page.

Space bar Scroll down.

b Scroll up.

Down arrow Go to the next link or form field.

Up arrow Go to the previous link or form field.

^A Go to top of page.

Web Browsing | 189

stdin stdout - file -- opt --help --version

Keystroke Meaning

^E Go to end of page.

m Return to the main/home page.

/ Search for text on the page.

a Bookmark the current page.

v View your bookmark list.

r Delete a bookmark.

= Display properties of the current page and link.

\ View HTML source (type again to return to normal view).

Lynx has over 100 command-line options, so the manpage is
well worth exploring. If you like text-based browsing but Lynx
isn’t to your taste, try similar programs such as w3m, links, and
elinks.
Useful options

-dump Print the rendered page to standard output and exit.
(Compare to the -source option.)

-source Print the HTML source to standard output and exit.
(Compare to the wget command.)

-emacskeys Make Lynx obey keystrokes reminiscent of the emacs editor.

-vikeys Make Lynx obey keystrokes reminiscent of the vim (or vi)
editor.

-homepage=URL Set your home page URL to be URL.

-color Turn colored text mode on.

-nocolor Turn colored text mode off.

wget
wget [options] URL

190 | Linux Pocket Guide

The wget command hits a URL and downloads the data to a file
or standard output. It’s great for capturing individual web
pages, downloading files, or duplicating entire website hierar‐
chies to arbitrary depth. For example, let’s capture the Yahoo!
home page:

→ wget http://www.yahoo.com
23:19:51 (220.84 KB/s) - 'index.html' saved [31434]

which is saved to a file index.html in the current directory. wget
has the added ability to resume a download if it gets interrup‐
ted in the middle, say, due to a network failure: just run
wget -c with the same URL and it picks up where it left off.

Perhaps the most useful feature of wget is its ability to down‐
load files without needing a web browser:

→ wget http://linuxpocketguide.com/sample.pdf

This is great for large files like videos and ISO images. You can
even write shell scripts to download sets of files if you know
their names:

→ for i in 1 2 3
do
 wget http://example.com/$i.mpeg
done

Another similar command is curl, which writes to standard
output by default—unlike wget, which duplicates the original
page and file names by default:

→ curl http://www.yahoo.com > mypage.html

wget has over 70 options, so we’ll cover just a few important
ones. (curl has a different set of options; see its manpage.)
Useful options

-i filename Read URLs from the given file and retrieve them in turn.

-O filename Write all the captured HTML to the given file, one page
appended after the other.

Web Browsing | 191

-c Continue mode: if a previous retrieval was interrupted,
leaving only a partial file as a result, pick up where wget
left off. That is, if wget had downloaded 100K of a 150K
file, the -c option says to retrieve only the remaining 50K
and append it to the existing file. wget can be fooled,
however, if the remote file has changed since the first
(partial) download, so use this option only if you know the
remote file hasn’t changed.

-t N Try N times before giving up. N =0 means try forever.

--progress=dot Print dots to show the download progress.

--progress=bar Print bars to show the download progress.

--spider Don’t download, just check existence of remote pages.

-nd Retrieve all files into the current directory, even if
remotely they are in a more complex directory tree. (By
default, wget duplicates the remote directory hierarchy.)

-r Retrieve a page hierarchy recursively, including
subdirectories.

-l N Retrieve files at most N levels deep (5 by default).

-k Inside retrieved files, modify URLs so the files can be
viewed locally in a web browser.

-p Download all necessary files to make a page display
completely, such as stylesheets and images.

-L Follow relative links (within a page) but not absolute links.

-A pattern Accept mode: download only files whose names match a
given pattern. Patterns may contain the same wildcards as
the shell.

-R pattern Reject mode: download only files whose names do not
match a given pattern.

-I pattern Directory inclusion: download files only from directories
that match a given pattern.

-X pattern Directory exclusion: download files only from directories
that do not match a given pattern.

192 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Instant Messaging
write Send messages to a terminal.

mesg Prohibit write.

tty Print your terminal device name.

sendxmpp Send instant messages via XMPP (Jabber).

profanity Text-based XMPP client.

irssi Text-based IRC client.

Linux provides two types of instant messaging. The first is for
contacting other users on the same Linux machine, using an
ancient command called write. The second is modern instant
messaging, with commands such as sendxmpp. In the second
case, it’s more common to use a graphical instant messaging
program such as pidgin (http://www.pidgin.im/), but
command-line tools are helpful if you aren’t using a graphical
desktop.

write
write user [tty]

The write program sends lines of text from one logged-in user
to another on the same Linux machine:

→ write smith
Hi, how are you?
See you later.
^D

^D ends the connection. write is also useful in pipelines for
quick one-off messages:

→ echo 'Howdy!' | write smith

The related command wall sends a message to all logged-in
users at once:

Instant Messaging | 193

http://www.pidgin.im/

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

→ wall The system will reboot in 1 hour

mesg
mesg [y|n]

The mesg program controls whether write connections can
reach your terminal. mesg y permits them, mesg n denies them,
and mesg prints the current status (y or n); y is the default. mesg
has no effect on modern instant messaging programs:

→ mesg
is y
→ mesg n
→ mesg
is n

tty
tty

The tty program prints the name of the terminal device associ‐
ated with the current shell (write may need this information if
your recipient is logged in multiple times):

→ tty
/dev/pts/4

sendxmpp
sendxmpp [options] recipients

The sendxmpp command provides a quick way to send an
instant message via the XMPP protocol (Jabber). It’s convenient
when you just want to send a single message, which can be a

194 | Linux Pocket Guide

simple “hello” or the contents of a text file, and you don’t need
to receive a message in return.

You’ll need a Jabber username and password first, which you
can obtain by registering on any Jabber server around the Web;
visit http://www.jabber.org for a list of servers. Once you’ve reg‐
istered, put your username and password into the file
~/.sendxmpp in your home directory. Different versions of
sendxmpp use different file formats. If your username is smith,
your Jabber server is jabber.example.com, and your password
is wQVY6LC/8pCH, the older file format is:

smith@jabber.example.com wQVY6LC/8pCH

and the newer format is:

username: smith
jserver: jabber.example.com
password: wQVY6LC/8pCH

Once this setup is complete, you can send a message to a friend
on Jabber with:

→ echo "Hello world" | sendxmpp user@host

Many Jabber servers use secure connections, so you will proba‐
bly need to add the option -t (for TLS connections) or -e (for
SSL connections) for your command to work. Here’s an exam‐
ple that secures the connection with TLS and sends the con‐
tents of a text file message.txt file:

→ sendxmpp -t user@host < message.txt

Useful options

-t Use TLS to secure the connection.

-e Use SSL to secure the connection.

-s text Send a subject line along with your message.

-v Verbose mode: print debugging information. Helpful if your
connection fails.

Instant Messaging | 195

http://www.jabber.org

stdin stdout - file -- opt --help --versionprofanity
profanity [options]

The profanity command is a fully functional instant messag‐
ing client for the XMPP protocol (Jabber). Unlike graphical cli‐
ents, profanity runs in a shell window, so you can use it over
SSH, for example.

You’ll need a Jabber username and password, as with sendxmpp:

→ profanity -a user@host

profanity then prompts you for commands, which always
begin with a slash. For example, to open a text-based “window”
for messaging with a friend, enter:

/msg friend@jabber.example.com

and to send a message to that friend, enter:

/msg Hi there!

Selected commands

/help Get help on all available commands.

/connect you@host Log in.

/msg user@host Open a messaging window to communicate with
user@host.

/msg text Send an instant message in your current messaging
window.

/close Close the current messaging window.

/wins List your messaging windows.

F1–F10 Switch between messaging windows 1 through 10.
(Does not work over SSH.)

/disconnect Log out.

/quit Exit profanity.

196 | Linux Pocket Guide

stdin stdout - file -- opt --help --versionirssi
irssi [options]

The irssi command is a fully functional IRC (Internet Relay
Chat) client that is text-based, so it runs in a shell window. A
full tutorial on chatting with IRC is beyond the scope of this
book: see https://irssi.org and http://irchelp.org for more infor‐
mation. To get started, run:

→ irssi

irssi then prompts you to type something. This can either be a
command, which begins with a slash, or any other text, which
is broadcast as a message to everyone else connected to your
current IRC channel:

→ irssi
[[status]] /connect irc.example.com
... Irssi: Connection to irc.example.com established
[[status]] /nick zippy
You're now known as zippy
[[status]] /join test
Irssi: Join to #test was synced in 0 secs
<zerbina> Hi there, zippy!
<fuelrod> Welcome back!
[#test] Are we having fun yet?
<zippy> Are we having fun yet?
<fuelrod> Totally!
<zerbina> Yow!
[#test] /quit

Selected commands

/help List the available commands. For help on a single
command, type /help /command. For
example: /help /join

/connect server Connect to an IRC server.

/nick name Set your IRC nickname.

/join channel Join a given IRC channel.

Instant Messaging | 197

https://irssi.org
http://irchelp.org

stdin stdout - file -- opt --help --version

/names List the users connected on the current channel.

/disconnect Disconnect from the IRC server.

/quit Exit irssi.

Screen Output
echo Print simple text on standard output.

printf Print formatted text on standard output.

yes Print repeated text on standard output.

seq Print a sequence of numbers on standard output.

clear Clear the screen or window.

Linux provides several commands for printing messages on
standard output, such as echo:

→ echo hello world
hello world

Each command has different strengths and intended purposes.
These commands are invaluable for learning about Linux,
debugging problems, writing shell scripts (see “Programming
with Shell Scripts” on page 232), or just talking to yourself.

echo
echo [options] strings

The echo command simply prints its arguments:

→ echo We are having fun
We are having fun

Confusingly, there are several different echo commands with
slightly different behavior. There’s /bin/echo, but Linux shells
typically override this with a built-in command called echo. To
find out which you’re using, run the command:

198 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

→ type echo
echo is a shell builtin

Useful options

-n Don’t print a final newline character.

-e Recognize and interpret escape characters. For example, try echo 'hello
\a' and echo -e 'hello\a'. The first prints literally and the second
makes a beep.

-E Don’t interpret escape characters: the opposite of -e.

Available escape characters are:

\a Alert (play a beep)

\b Backspace

\c Don’t print the final newline (same effect as -n)

\f Form feed

\n Line feed (newline)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ A backslash

\' Single quote

\" Double quote

\nnn The character whose ASCII value is nnn in octal

printf
printf format_string [arguments]

The printf command is an enhanced echo: it prints formatted
strings on standard output. It operates much like the C pro‐
gramming language function printf(), which applies a format

Screen Output | 199

string to a sequence of arguments to create some specified out‐
put. For example:

→ printf "User %s is %d years old.\n" sandy 29
User sandy is 29 years old.

The first argument is the format string, which in our example
contains two format specifications, %s and %d. The subsequent
arguments, sandy and 29, are substituted by printf into the
format string and then printed. Format specifications can get
fancy with floating-point numbers:

→ printf "That\'ll be $%0.2f, sir.\n" 3
That'll be $3.00, sir.

There are two printf commands available in Linux: one built
into the bash shell, and one in /usr/bin/printf. The two are iden‐
tical except for one format specification, %q, supported only by
the bash built-in: it prints escape symbols (“\”) so its output
can be used as shell input safely. Note the difference:

→ printf "This is a quote: %s\n" "\""
This is a quote: "
→ printf "This is a quote: %q\n" "\""
This is a quote: \"

It is your responsibility to make sure the number of format
specifications (%) equals the number of arguments supplied to
printf. If you have too many arguments, the extras are
ignored, and if you have too few, printf assumes default values
(0 for numeric formats, an empty string for string formats).
Nevertheless, you should treat such mismatches as errors, even
though printf is forgiving. If they lurk in your shell scripts,
they are bugs waiting to happen.

Format specifications are described in detail on the manpage
for the C function printf (see man 3 printf). Here are some
useful ones:

%d Decimal integer

%ld Long decimal integer

200 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

%o Octal integer

%x Hexadecimal integer

%f Floating point

%lf Double-precision floating point

%c A single character

%s String

%q String with any shell metacharacters escaped

%% A percent sign by itself

Just after the leading percent sign, you can insert a numeric
expression for the minimum width of the output. For example,
“%5d” means to print a decimal number in a five-character-
wide field, and “%6.2f ” means a floating-point number in a six-
character-wide field with two digits after the decimal point.
Some useful numeric expressions are:

n Minimum width n.

0n Minimum width n, padded with leading zeros.

n.m Minimum width n, with m digits after the decimal point.

printf also interprets escape characters like “\n” (print a new‐
line character) and “\a” (ring the bell). See the echo command
for the full list.

yes
yes [string]

The yes command prints the given string (or “y” by default)
forever, one string per line:

→ yes again
again
again

Screen Output | 201

stdin stdout - file -- opt --help --version

again
...

Though it might seem useless at first glance, yes can be perfect
for turning interactive commands into batch commands. Want
to get rid of an annoying “Are you SURE you want to do that?”
message? Pipe the output of yes into the input of the command
to answer all those prompts:

→ yes | my_interactive_command

When my_interactive_command terminates, so will yes.

seq
seq [options] specification

The seq command prints a sequence of integers or real num‐
bers, suitable for piping to other programs. There are three
kinds of specification arguments:

A single number: an upper limit
seq begins at 1 and counts up to the number:

→ seq 3
1
2
3

Two numbers: lower and upper limit
seq begins at the first number and counts as far as it can
without passing the second number:

→ seq 2 5
2
3
4
5

Three numbers: lower limit, increment, and upper limit
seq begins at the first number, increments by the second
number, and stops at (or before) the third number:

202 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

→ seq 1 .3 2
1
1.3
1.6
1.9

You can also go backward with a negative increment:

→ seq 5 -1 2
5
4
3
2

Useful options

-w Print leading zeros, as necessary, to give all lines the same width:
→ seq -w 8 10
08
09
10

-f format Format the output lines with a printf-like format string, which
must include either %g (the default), %e, or %f:
→ seq -f '**%g**' 3
1
2
3

-s string Use the given string as a separator between the numbers. By
default, a newline is printed (i.e., one number per line):
→ seq -s ':' 10
1:2:3:4:5:6:7:8:9:10

clear
clear

This command simply clears your display or shell window.

Screen Output | 203

stdin stdout - file -- opt -help -version

Copy and Paste
xclip Copy and paste between the shell and the clipboard.

xsel Manipulate the clipboard from the shell.

Linux has a clipboard for copying and pasting between graphi‐
cal applications. Actually, Linux has three different clipboards,
which are called selections. You can access the selections from
the command line, sending the output of any shell command to
the selection, or reading the selection like standard input. Note
that these commands work only if your shell is running in a
graphical environment such as GNOME or KDE. Otherwise,
no selection exists.

xclip
xclip [options]

xclip reads and writes the three Linux selections (clipboards),
so you can copy and paste text between the shell and graphical
applications.

To see it in action, use your mouse to copy some text to a selec‐
tion—say, double-click a word in your terminal window—and
then run:

→ xclip -o

The text you copied will be printed on standard output.

As another example, copy the contents of a file to a selection,
and then print the selection:

→ cat poem See the file
Once upon a time, there was
a little operating system named
Linux, which everybody loved.
→ cat poem | xclip -i Pipe file to selection
→ xclip -o Print selection

204 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Once upon a time, there was
a little operating system named
Linux, which everybody loved.

All command-line options for xclip use single dashes, even
-help and -version.
Useful options

-selection name Choose a selection by name, either primary,
secondary, or clipboard. The default is primary.
In my terminal windows, the mouse’s middle button
pastes from primary, but the right-button menu uses
clipboard for its “Paste” command.

-i Read the selection contents from standard input. You
may omit this option.

-o Write the selection contents to standard output.

xsel
xsel [options]

xsel is a more powerful version of xclip. Along with reading
and writing the three selections (clipboards), it can also append
to them, swap them, and clear them:

→ echo Hello | xsel -i
→ xsel -o
Hello
→ echo World | xsel -a Append
→ xsel -o
Hello
World

Useful options

-p Use the primary selection (default).

-s Use the secondary selection.

Copy and Paste | 205

stdin stdout - file -- opt --help --version

-b Use the clipboard selection.

-i Read the selection contents from standard input. This is the default
behavior.

-a Append to the selection.

-o Write the selection contents to standard output.

-c Clear the selection contents.

-x Swap (exchange) the contents of the primary and secondary selection.

Math and Calculations
expr Do simple math on the command line.

bc Text-based calculator.

dc Text-based RPN calculator.

Need a calculator? Linux provides some command-line pro‐
grams to compute mathematical truths for you.

expr
expr expression

The expr command does simple math (and other expression
evaluation) on the command line:

→ expr 7 + 3
10
→ expr '(' 7 + 3 ')' '*' 14 Shell characters are quoted
140
→ expr length ABCDEFG
7
→ expr 15 '>' 16
0 Meaning false

Each argument must be separated by whitespace. Notice that
we had to quote or escape any characters that have special

206 | Linux Pocket Guide

meaning to the shell. Parentheses (escaped) may be used for
grouping. Operators for expr include:

Operator Numeric operation String operation

+, -, *, / Addition, subtraction,
multiplication, and
integer division,
respectively

% Remainder (mod)

< Less than Earlier in dictionary

<= Less than or equal Earlier in dictionary, or equal

> Greater than Later in dictionary

>= Greater than or equal Later in dictionary, or equal

= Equality Equality

!= Inequality Inequality

| Boolean “or” Boolean “or”

& Boolean “and” Boolean “and”

s : regexp Does the regular expression
regexp match string s?

substr s p n Print n characters of string s,
beginning at position p (p =1 is the
first character)

index s chars Return the index of the first
position in string s containing a
character from string chars.
Return 0 if not found. Same
behavior as the C function
index().

For Boolean expressions, the number 0 and the empty string
are considered false; any other value is true. For Boolean
results, 0 is false and 1 is true.

Math and Calculations | 207

22 This demonstration code will fail if the roots are imaginary.

stdin stdout - file -- opt --help --versionbc
bc [options] [files]

bc is a text-based calculator that reads arithmetic expressions,
one per line, and prints the results. Unlike most other calcula‐
tors, bc can handle numbers of unlimited size and any number
of decimal places:

→ bc
1+2+3+4+5
15
scale=2
(1 + 2 * 3 / 4) - 5
-2.50
2^100
1267650600228229401496703205376
^D

Programmers may enjoy the ability to switch bases to perform
calculations and conversions in binary, octal, hexadecimal, or
even custom bases:

→ bc
obase=2 Display results in base 2
999
1111100111
obase=16 Or base 16
999
3E7

But bc doesn’t stop there. It’s also a programmable calculator in
which you can define your own functions. Here’s a function
that implements the quadratic formula from algebra and prints
the real roots of a given equation, stored in a file called
quadratic.txt:22

208 | Linux Pocket Guide

→ cat quadratic.txt
scale=2
define quadform (a, b, c) {
 root1 = (-b + sqrt(b^2 - 4*a*c)) / (2*a)
 root2 = (-b - sqrt(b^2 - 4*a*c)) / (2*a)
 print root1, " ", root2, "\n"
}

quadform(1, 7, 12) solve x2 + 7x + 12 = 0

Redirect the file to bc, and see the results:

→ bc < quadratic.txt
 -3.00 -4.00

In its most powerful form, bc is a programming language for
arithmetic. You can assign values to variables, manipulate
arrays, execute conditional expressions and loops, and even
write scripts that prompt the user for values and run any
sequence of math operations you like. For full details, see the
manpage.
Useful arithmetic operations

+, -, *, / Addition, subtraction, multiplication, and division, respectively.
Results of division are truncated to the current scale (see below).

% Remainder (mod).

^ Exponentiation, as in 10^5 for “ten to the fifth power.”

sqrt(N) Square root of N.

ibase=N Treat all input numbers as base N.

obase=N Output all numbers in base N.

scale=N Set the number of significant digits after the decimal point to N.

(...) Parentheses for grouping (changing precedence).

name=value Assign a value to the variable name.

Math and Calculations | 209

stdin stdout - file -- opt --help --versiondc
dc [options] [files]

The dc (desk calculator) command is a reverse-polish notation
(RPN), stack-based calculator that reads expressions from stan‐
dard input and writes results to standard output. If you know
how to use a Hewlett-Packard RPN calculator, dc is pretty easy
to use once you understand its syntax. But if you’re accustomed
to traditional calculators, dc may seem inscrutable. We’ll cover
only some basic commands.

For stack and calculator operations:

q Quit dc.

f Print the entire stack.

c Delete (clear) the entire stack.

p Print the topmost value on the stack.

P Pop (remove) the topmost value from the stack.

n k Set precision of future operations to be n decimal places (default is 0,
meaning integer operations).

To pop the top two values from the stack, perform a requested
operation, and push the result:

+, -, *, / Addition, subtraction, multiplication, and division, respectively.

% Remainder (mod).

^ Exponentiation (second-to-top value is the base, top value is the
exponent).

To pop the top value from the stack, perform a requested oper‐
ation, and push the result:

v Square root.

Examples:

210 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

→ dc
4 5 + p Print the sum of 4 and 5
9
2 3 ^ p Raise 2 to the 3rd power and print the result
8
10 * p Multiply the stack top by 10 and print the result
80
f Print the stack
80
9
+p Pop the top two values and print their sum
89

Dates and Times
cal Print a calendar.

date Print or set the date and time.

ntpdate Set the system time using a remote timeserver.

Need a date? How about a good time? Try these programs to
display and set dates and times on your system.

cal
cal [options] [month [year]]

The cal command prints a calendar—by default, the current
month:

→ cal
November 2015
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

Dates and Times | 211

stdin stdout - file -- opt --help --version

To print a different calendar, supply a month and four-digit
year: cal 8 2016. If you omit the month (cal 2016), the entire
year is printed.
Useful options

-y Print the current year’s calendar.

-3 Three-month view: print the previous and next month as well.

-j Number each day by its position in the year; in our example, February 1
would be displayed as 32, February 2 as 33, and so on.

date
date [options] [format]

The date command prints dates and times. The results will
depend on your system’s locale settings (for your country and
language). In this section, we assume an English, US-based
locale.

By default, date prints the system date and time in the local
timezone:

→ date
Fri Mar 18 22:32:04 EDT 2016

You can format the output differently by supplying a format
string beginning with a plus sign:

→ date '+%D'
03/18/16
→ date '+The time is %l:%M %p on a lovely %A in %B'
The time is 10:32 PM on a lovely Friday in March

Here is a sampling of the date command’s many formats:

212 | Linux Pocket Guide

Format Meaning Example (US English)

Whole dates and times:

%c Full date and time, 12-hour clock Sun 28 Sep 2003,
09:01:25 PM EDT

%D Numeric date, 2-digit year 09/28/03

%x Numeric date, 4-digit year 09/28/2003

%T Time, 24-hour clock 21:01:25

%X Time, 12-hour clock 09:01:25 PM

Words:

%a Day of week (abbreviated) Sun

%A Day of week (complete) Sunday

%b Month name (abbreviated) Sep

%B Month name (complete) September

%Z Time zone EDT

%p AM or PM PM

Numbers:

%w Day of week (0–6, 0=Sunday) 0

%u Day of week (1–7, 1=Monday) 7

%d Day of month, leading zero 02

%e Day of month, leading blank 2

%j Day of year, leading zeros 005

%m Month number, leading zero 09

%y Year, 2 digits 03

%Y Year, 4 digits 2003

%M Minute, leading zero 09

%S Seconds, leading zero 05

%l Hour, 12-hour clock, leading blank 9

Dates and Times | 213

stdin stdout - file -- opt --help --version

Format Meaning Example (US English)

%I Hour, 12-hour clock, leading zero 09

%k Hour, 24-hour clock, leading blank 9

%H Hour, 24-hour clock, leading zero 09

%N Nanoseconds 737418000

%s Seconds since the beginning of Linux time:
midnight January 1, 1970

1068583983

Other:

%n Newline character

%t Tab character

%% Percent sign %

Through its options, date can also display other dates and
times.
Useful options

-d string Display the given date or time string, formatted as you wish.

-r filename Display the last-modified timestamp of the given file, formatted
as you wish.

-s string Set the system date and/or time to be string; only the
superuser can do this.

ntpdate
ntpdate timeserver

The ntpdate command sets the current system time by contact‐
ing a timeserver machine on the network (you must be root to
set the system time):

214 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

→ sudo /usr/sbin/ntpdate timeserver.someplace.edu
7 Sep 21:01:25 ntpdate[2399]: step time server
 178.99.1.8
offset 0.51 sec

To keep your system date in sync with a timeserver over long
periods, use the daemon ntpd instead; see http://www.ntp.org. If
you don’t know a local timeserver, search the Web for “public
ntp time server”.

Graphics
display Display a graphics file.

convert Convert files from one graphical format into another.

mogrify Modify a graphics file.

montage Combine graphics files.

For viewing or editing graphics, Linux has handy tools with
tons of options. We’ll focus on command-line tools from a
package called ImageMagick (http://imagemagick.org). Its com‐
mands all have similar usage, and a full explanation is at http://
imagemagick.org/script/command-line-processing.php.

display
display [options] files

The display command lets you view images in numerous for‐
mats: JPEG, PNG, GIF, BMP, and more. It also includes a small
suite of image editing tools that appear if you left-click the dis‐
played image. Type q to exit the program.

→ display photo.jpg

The command is very powerful, with more than 100 options
listed on its manpage.

Graphics | 215

http://www.ntp.org
http://imagemagick.org
http://imagemagick.org/script/command-line-processing.php
http://imagemagick.org/script/command-line-processing.php

stdin stdout - file -- opt --help --version

Useful options

-resize size Resize the image. The size values are extremely flexible,
including setting the width (800), the height (x600), both
(800x600), a percentage to grow or shrink (50%), an area in
pixels (480000@), and more.

-flip Reverse the image vertically.

-flop Reverse the image horizontally.

-rotate N Rotate the image by N degrees.

-backdrop Display the image on a backdrop of solid color that covers the
rest of your screen.

-fill Set the solid color used by the -backdrop option.

-delay N Show the image for N seconds and then exit. If you list
multiple images, you get a slideshow with a delay of N
seconds between images.

-identify Print information about the image’s format, size, and other
statistics to standard output.

convert
convert [input_options] infile [output_options] outfile

The convert command makes a copy of an image but con‐
verted to a different graphics format. For example, if you have a
JPEG file, you can produce a PNG file of the same image:

→ convert photo.jpg newphoto.png

At the same time, you can perform modifications on the copy,
such as resizing or reversing it:

→ convert photo.jpg -resize 50% -flip newphoto.png

convert accepts largely the same options as display.

216 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

mogrify
mogrify [options] file

The mogrify command transforms an image just like convert
does, but the changes are made directly to the image file you
provide, not in a copy. (So convert is a safer command when
experimenting on a favorite photo.) It accepts largely the same
options as convert:

→ mogrify -resize 25% photo.jpg

montage
montage infiles [options] outfile

montage produces a single image file from a collection of input
files. For example, you can create a sheet of thumbnails in a
single image, where each thumbnail is labeled with its original
filename:

→ montage photo.jpg photo2.png photo3.gif \
 -geometry 120x176+10+10 -label '%f' outfile.jpg

montage provides great control over how those images appear.
The preceding command, for example, produces thumbnails of
size 120x176 pixels, offset by 10 pixels horizontally and verti‐
cally (creating space between the thumbnails), and labeled with
their input filename.
Useful options

-geometry

widthxheight[+-]x[+-]y

Set the height, width, and (x,y) offset
of the images.

-frame N Draw a frame of N pixels around each
image.

Graphics | 217

stdin stdout - file -- opt --help --version

-label string Label each image with any string,
which can contain special escape
characters beginning with a percent sign:
%f for the original filename, %h and %w
for height and width, %m for file format,
and about 40 others.

Audio and Video
cdparanoia Rip audio from CDs to WAV files.

lame Convert from WAV to MP3.

id3info View ID3 tags in an MP3 file.

id3tag Edit ID3 tags in an MP3 file.

ogginfo View information about an OGG file.

metaflac View and edit information about a FLAC file.

sox Convert between audio file formats.

mplayer Play a video or audio file.

There are numerous Linux programs with graphical interfaces
for playing and editing audio and video, but we’ll focus once
again on command-line tools.

cdparanoia
cdparanoia [options] span [outfile]

The cdparanoia command reads (rips) audio data from a CD
and stores it in WAV files (or other formats: see the manpage).
Common uses are:

→ cdparanoia N
Rip track N to a file.

→ cdparanoia -B

Rip all tracks on the CD into separate files.

218 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

→ cdparanoia -B 2-4

Rip tracks 2, 3, and 4 into separate files.

→ cdparanoia 2-4

Rip tracks 2, 3, and 4 into a single file.

If you experience difficulty with accessing your drive, try run‐
ning cdparanoia -Qvs (“search for CD-ROM drives verbosely”)
and look for clues.

lame
lame [options] file.wav

The lame command converts a WAV audio file (say, song.wav)
into an MP3 file:

→ lame song.wav song.mp3

It has over 100 options to control bit rate, convert other for‐
mats, add ID3 tags, and much more.

id3info
id3info [options] [files]

The id3info command displays information about an MP3
audio file, such as the song title, recording artist, album name,
and year. This assumes the file has ID3 tags inside it. There are
no options except displaying a help message and the program
version:

→ id3info guitar.mp3
*** Tag information for guitar.mp3
=== TYER (Year): 2004
=== TCON (Content type): Sample File
=== TPE1 (Lead performer(s)/Soloist(s)): Gentle Giant
=== TIT2 (Title/songname): Guitar Solo
=== TALB (Album/Movie/Show title): Scraping the Barrel

Audio and Video | 219

stdin stdout - file -- opt --help --version

stdin stdout - file -- opt --help --version

*** mp3 info
MPEG1/layer III
Bitrate: 256KBps
Frequency: 44KHz

id3tag
id3tag [options] files

The id3tag command adds or modifies ID3 tags in an MP3 file.
For example, to tag an MP3 file with a new title and artist, run:

→ id3tag -A "My Album" -a "Loud Linux Squad" song.mp3

Useful options

-A name Set the artist’s name.

-a title Set the album title.

-s title Set the song title.

-y year Set the year.

-t number Set the track number.

-g number Set the genre number.

ogginfo
ogginfo [options] [files]

ogginfo is a simple command that displays information about
an OGG Vorbis audio file:

→ ogginfo guitar.ogg
Processing file "guitar.ogg"...
...
Channels: 2
Rate: 44100
...

220 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Nominal bitrate: 112.000000 kb/s
User comments section follows...
 Title=Guitar Solo
 Artist=Gentle Giant
 Album=Scraping the Barrel
 Year=2004
 Genre=Sample File
Vorbis stream 1:
 Total data length: 102390 bytes
 Playback length: 0m:09.952s
 Average bitrate: 82.301673 kb/s

Add the -h option for more detailed usage information.

metaflac
metaflac [options] [files]

The metaflac command displays or changes information about
a FLAC audio file. To display information, run:

→ metaflac --list guitar.flac
...
 sample_rate: 44100 Hz
 channels: 2
 bits-per-sample: 16
 total samples: 438912
...
 comments: 5
 comment[0]: Title=Guitar Solo
 comment[1]: Artist=Gentle Giant
 comment[2]: Album=Scraping the Barrel
 comment[3]: Year=2004
 comment[4]: Genre=Sample File

The simplest way to change information, such as the title and
artist, is to export the information to a text file, edit the file, and
then reimport it:

Audio and Video | 221

stdin stdout - file -- opt --help --version

→ metaflac --export-tags-to info.txt guitar.flac
→ cat info.txt
Title=Guitar Solo
Artist=Gentle Giant
Album=Scraping the Barrel
Year=2004
Genre=Sample File
→ nano info.txt Make changes and save the file
→ metaflac --import-tags-from info.txt guitar.flac

Useful options

--show-tag name Display the value for the given tag, such as title,
artist, album, year, etc. There are many other
“show” options for other information: see the
manpage.

--remove-tag name Remove all occurrences of the given tag (title,
artist, etc.) from the FLAC file.

sox
sox [options] infile outfile

sox is the simplest command for converting from one audio file
format to another. MP3, OGG, FLAC, WAV, and dozens of
other formats are supported. (Run man soxformat for a list.)
Simply specify the new format using the correct file extension:

→ sox guitar.mp3 guitar2.wav MP3 to WAV
→ sox guitar.ogg guitar2.mp3 OGG to MP3
→ sox guitar.flac guitar2.ogg FLAC to OGG
...and so forth...

sox has many other uses, including combining audio files and
adding special effects; it’s often called the “Swiss Army knife” of
audio commands. See the manpage for details.

222 | Linux Pocket Guide

stdin stdout -file -- opt --help --version

Useful options

-S Show a progress meter; useful for long conversions.

--no-clobber Don’t overwrite the output file if it already exists.

-t type Specify the type of the input file, if sox cannot figure it out.
See man soxformat for the list of types.

mplayer
mplayer [options] video_files...

The mplayer command plays video files in many formats
(MPEG, AVI, MOV, and more):

→ mplayer myfile.avi

While the video is playing, press the space bar to pause and
resume, the cursor keys to jump forward and backward in
time, and Q to quit. mplayer also plays audio files. The program
has dozens of options on its manpage, and you can learn more
at http://www.mplayerhq.hu.

Other popular video players for Linux include vlc (http://
www.videolan.org/vlc/), kaffeine (http://kaffeine.kde.org/), and
xine (http://www.xine-project.org/).

Installing Software
You will probably want to add further software to your Linux
system from time to time. The method of installation varies,
however, because Linux has multiple standards for “packaged”
software. Your distro might perform installations on the com‐
mand line, with one or more GUI tools, or both. The most
common package types are:

Installing Software | 223

http://www.mplayerhq.hu
http://www.videolan.org/vlc/
http://www.videolan.org/vlc/
http://kaffeine.kde.org/
http://www.xine-project.org/

*.deb files
Debian packages, used by Debian, Ubuntu, and other dis‐
tros. We’ll cover the package management commands
aptitude, apt-get, and dpkg for installing software in this
format.

*.rpm files
RPM Package Manager files are used by Red Hat, Fedora,
CentOS, and other distros. These are installed by the pack‐
age managers dnf, yum, and rpm.

*.tar.gz files and *.tar.bz2 files
Compressed tar files. This kind of file isn’t an installable
“package” but a collection of files created by tar and com‐
pressed with gzip (.gz) or bzip2 (.bz2). Whereas Debian
and RPM packages can be installed with a single com‐
mand, compressed tar files usually require multiple man‐
ual steps.

You must learn which package type is used by your Linux system.
In general, you cannot (or should not) mix package types like
Debian and RPM. Fortunately, modern Linux systems are usu‐
ally set up with a package manager when initially installed, so
all you need to do is use it.

If you aren’t sure which Linux distro you’re running, one of the
following commands should give you a clue:

→ cat /etc/issue
Ubuntu 15.10 \n \l
→ more /etc/*-release
NAME="Ubuntu"
VERSION="15.10 (Wily Werewolf)"
...

Most new software must be installed by the superuser, so you’ll
need to run the sudo command (or equivalent) for any installa‐
tion. For example:

→ sudo rpm -ivh mypackage.rpm
Password: ********

224 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Your Linux distribution almost certainly comes with graphical
programs for manipulating packages, but you may find the
command-line programs to be simpler or faster depending on
your needs.

dnf
dnf [options] [packages]

dnf is the newest package manager for RPM packages (.rpm
files).

The following table lists common operations with dnf:

Action dnf command

Search for a package that meets your needs
(supports wildcards * and ?)

dnf search command_name

Check if a package is installed dnf list installed
package_name

Download a package but don’t install it dnf download
package_name

Download and install a package sudo dnf install
package_name

Install a package file sudo dnf install
file.rpm

Learn about a package dnf info package_name

List the contents of a package rpm -ql package_name

Discover which package an installed file
belongs to

dnf
provides /path/to/file

Update an installed package sudo dnf upgrade
package_name

Installing Software | 225

stdin stdout - file -- opt --help --version

Action dnf command

Remove an installed package sudo dnf remove
package_name

List all packages installed on the system dnf list installed
| less

Check for updates for all packages on the
system

dnf check-update

Update all packages on the system sudo dnf upgrade

yum
yum [options] [packages]

yum is a popular package manager for RPM packages (.rpm
files) found on Red Hat Enterprise Linux, Fedora, CentOS, and
other distros. It is primarily a command-line tool, though you
may encounter graphical frontends for yum, such as PackageKit
on Fedora Linux.

The following table lists common operations with yum. For
operations on local files, which yum does not provide, we use
the rpm command directly:

Action yum command

Search for a package that meets your needs
(supports wildcards * and ?)

yum search command_name

Check if a package is installed yum list installed
 package_name

Download a package but don’t install it.
Requires the downloadonly plugin; to
install it, run:
sudo yum install \
yum-downloadonly

sudo yum --downloadonly
install package_name

226 | Linux Pocket Guide

stdin stdout - file -- opt --help --version

Action yum command

Download and install a package sudo yum install
package_name

Install a package file rpm -ivh package.rpm

Learn about a package yum info package_name

List the contents of a package rpm -ql package_name

Discover which package an installed file
belongs to

yum provides /path/to/
file

Update an installed package sudo yum update
package_name

Remove an installed package sudo yum remove
package_name

List all packages installed on the system yum list installed
| less

Check for updates for all packages on the
system

yum check-update

Update all packages on the system sudo yum update

rpm
rpm [options] [files]

If you prefer to download and install RPM packages by hand,
use rpm, the same package-management program that yum runs
behind the scenes. Unlike yum, rpm works locally on your com‐
puter: it does not search software archives on the Internet for
new packages.

rpm not only installs the software, but also confirms that your
system has all prerequisites. For example, if package superstuff

Installing Software | 227

stdin stdout - file -- opt --help --version

requires package otherstuff that you haven’t installed, rpm will
not install superstuff. If your system passes the test, however,
rpm installs the requested package.

RPM filenames typically take the following form
<name>-<version>.<architecture>.rpm. For example, the file‐
name emacs-23.1-17.i386.rpm indicates the emacs package, ver‐
sion 23.1-17, for i386 (Intel 80386 and higher) machines. Be
aware that rpm sometimes requires a filename argument (like
emacs-23.1-17.i386.rpm) and other times just the package
name (like emacs).

Action rpm command

Check if a package is installed rpm -q package_name

Install a package file sudo rpm -ivh
package_file.rpm

Learn about a package rpm -qi package_name

List the contents of a package rpm -ql package_name

Discover which package an installed
file belongs to

rpm -qf /path/to/file

Update an installed package sudo rpm -Uvh
package_file.rpm

Remove an installed package sudo rpm -e package_name

List all packages installed on the
system

rpm -qa | less

APT
apt-get [options] packages

apt-file [options] string

apt-cache [options] packages

228 | Linux Pocket Guide

dpkg [options] packages

The APT (Advanced Packaging Tool) suite of commands can
install, remove, and manipulate Debian (.deb) packages.

Before upgrading packages on your system, run sudo apt-get
update to retrieve the latest information on which packages are
available.

Action APT command

Search for a package that meets your needs apt-file search
package_name

Check if a package is installed dpkg -s package_name

Download a package but don’t install it apt-get -d package_name

Download and install a package sudo apt-get install
package_name

Install a package file dpkg -i package_file.deb

Learn about a package apt-cache show
package_name

List the contents of a package dpkg -L package_name

Discover which package an installed file
belongs to

dpkg -S /path/to/file

Update an installed package sudo apt-get upgrade
package_name

Remove an installed package sudo apt-get remove
package_name

List all packages installed on the system dpkg -l

Check for updates for all packages on the
system

sudo apt-get -u upgrade

Installing Software | 229

stdin stdout - file -- opt --help --version

Action APT command

Update all packages on the system (to
include kernel packages, replace upgrade
by dist-upgrade)

sudo apt-get upgrade

aptitude
aptitude [options] [packages]

aptitude is another package manager for the command line
that manipulates Debian (.deb) packages. You’ll also need to
know dpkg for some operations, such as working with local .deb
files, as aptitude does not have that capability.

Action aptitude command

Search for a package that meets your
needs

aptitude search
package_name

Check if a package is installed (examine
the output for “State: not installed” or
“State: installed”)

aptitude show package_name

Download a package but don’t install it aptitude download
package_name

Download and install a package sudo aptitude install
package_name

Install a package file dpkg -i package_file.deb

Learn about a package aptitude show package_name

List the contents of a package dpkg -L package_name

Discover which package an installed file
belongs to

dpkg -S /path/to/file

230 | Linux Pocket Guide

23 A maliciously designed tar file could include an absolute file path
like /etc/passwd designed to overwrite your system password file.

Action aptitude command

Update an installed package sudo aptitude safe-
upgrade package_name

Remove an installed package sudo aptitude remove
package_name

List all packages installed on the system aptitude search '~i' |
less

Check for updates for all packages on the
system

aptitude --simulate full-
upgrade

Update all packages on the system sudo aptitude full-upgrade

tar.gz and tar.bz2 Files
Packaged software files with names ending .tar.gz and .tar.bz2
typically contain source code that you’ll need to compile
(build) before installation. Typical build instructions are:

1. List the package contents, one file per line. Assure yourself
that each file, when extracted, won’t overwrite something
precious on your system, either accidentally or mali‐
ciously:23

→ tar tvf package.tar.gz | less gzip
→ tar tvf package.tar.bz2 | less bzip2

2. If satisfied, extract the files into a new directory. Run these
commands as yourself, not as root, for safety reasons:
→ mkdir newdir
→ cd installation_directory

Installing Software | 231

→ tar xvf <path>/package.tar.gz gzip
→ tar xvf <path>/package.tar.bz2 bzip2

3. Look for an extracted file named INSTALL or README.
Read it to learn how to build the software, for example:
→ cd newdir
→ less INSTALL

4. Usually the INSTALL or README file will tell you to run a
script called configure in the current directory, then run
make, then run make install. Examine the options you
may pass to the configure script:
→ ./configure --help

Then install the software:
→ ./configure options
→ make
→ sudo make install

Programming with Shell Scripts
Earlier when we covered the shell (bash), we said it had a pro‐
gramming language built in. In fact, you can write programs,
or shell scripts, to accomplish tasks that a single command can‐
not. The command reset-lpg, supplied in the book’s examples
directory, is a shell script that you can read:

→ less ~/linuxpocketguide/reset-lpg

Like any good programming language, the shell has variables,
conditionals (if-then-else), loops, input and output, and more.
Entire books have been written on shell scripting, so we’ll be
covering the bare minimum to get you started. For full docu‐
mentation, run info bash, search the Web, or pick up a more
in-depth O’Reilly book like Learning the bash Shell or Bash
Pocket Reference.

232 | Linux Pocket Guide

http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/0636920046288.do
http://shop.oreilly.com/product/0636920046288.do

24 That’s because the script runs in a separate shell (a subshell or child
shell) that cannot alter the original shell.

Creating and Running Shell Scripts
To create a shell script, simply put bash commands into a file as
you would type them. To run the script, you have three choices:

Prepend #!/bin/bash and make the file executable
This is the most common way to run scripts. Add the line:

#!/bin/bash

to the very top of the script file. It must be the first line of
the file, left-justified. Then make the file executable:

→ chmod +x myscript

Optionally, move it into a directory in your search path.
Then run it like any other command:

→ myscript

If the script is in your current directory, but the current
directory “.” is not in your search path, you’ll need to pre‐
pend “./” so the shell finds the script:

→ ./myscript

The current directory is generally not in your search path
for security reasons. (You wouldn’t want a local script
named (say) “ls” to override the real ls command.)

Pass to bash
bash will interpret its argument as the name of a script and
run it.

→ bash myscript

Run in current shell with “.” or source
The preceding methods run your script as an independent
entity that has no effect on your current shell.24 If you
want your script to make changes to your current shell

Programming with Shell Scripts | 233

(setting variables, changing directory, etc.), it can be run
in the current shell with the source or “.” command:

→ . myscript
→ source myscript

Whitespace and Linebreaks
Bash shell scripts are very sensitive to whitespace and line‐
breaks. Because the “keywords” of this programming language
are actually commands evaluated by the shell, you need to sep‐
arate arguments with whitespace. Likewise, a linebreak in the
middle of a command will mislead the shell into thinking the
command is incomplete. Follow the conventions we present
here and you should be fine.

If you must break a long command into multiple lines, end
each line (except the last) with a single \ character, which
means “continued on next line”:

→ grep abcdefghijklmnopqrstuvwxyz file1 file2 \
 file3 file4

Variables
We described shell variables earlier:

→ MYVAR=6
→ echo $MYVAR
6

All values held in variables are strings, but if they are numeric,
the shell will treat them as numbers when appropriate:

→ NUMBER="10"
→ expr $NUMBER + 5
15

When you refer to a variable’s value in a shell script, it’s a good
idea to surround it with double quotes to prevent certain run‐
time errors. An undefined variable, or a variable with spaces in
its value, will evaluate to something unexpected if not surroun‐
ded by quotes, causing your script to malfunction:

234 | Linux Pocket Guide

→ FILENAME="My Document" Space in the name
→ ls $FILENAME Try to list it
ls: My: No such file or directory ls saw 2 arguments
ls: Document: No such file or directory
→ ls -l "$FILENAME" List it properly
My Document ls saw only 1 argument

If a variable name is evaluated adjacent to another string, sur‐
round it with curly braces to prevent unexpected behavior:

→ HAT="fedora"
→ echo "The plural of $HAT is $HATs"
The plural of fedora is No variable "HATs"
→ echo "The plural of $HAT is ${HAT}s"
The plural of fedora is fedoras What we wanted

Input and Output
Script output is provided by the echo and printf commands,
which we described in “Screen Output” on page 198:

→ echo "Hello world"
Hello world
→ printf "I am %d years old\n" `expr 20 + 20`
I am 40 years old

Input is provided by the read command, which reads one line
from standard input and stores it in a variable:

→ read name
Sandy Smith <ENTER>
→ echo "I read the name $name"
I read the name Sandy Smith

Booleans and Return Codes
Before we can describe conditionals and loops, we need to
explain the concept of a Boolean (true/false) test. To the shell,
the value 0 means true or success, and anything else means
false or failure. (Think of zero as “no error” and other values as
error codes.)

Programming with Shell Scripts | 235

Additionally, every Linux command returns an integer value,
called a return code or exit status, to the shell when the com‐
mand exits.

You can see this value in the special variable $?:

→ cat myfile
My name is Sandy Smith and
I really like Ubuntu Linux
→ grep Smith myfile
My name is Sandy Smith and A match was found...
→ echo $?
0 ...so return code is “success”
→ grep aardvark myfile
→ echo $? No match was found...
1 ...so return code is “failure”

The return codes of a command are usually documented on its
manpage.

test and “[”

The test command (built into the shell) will evaluate simple
Boolean expressions involving numbers and strings, setting its
exit status to 0 (true) or 1 (false):

→ test 10 -lt 5 Is 10 less than 5?
→ echo $?
1 No, it isn’t
→ test -n "hello" Does “hello” have nonzero length?
→ echo $?
0 Yes, it does

Here are common test arguments for checking properties of
integers, strings, and files:

File tests

-d name File name is a directory

-f name File name is a regular file

-L name File name is a symbolic link

236 | Linux Pocket Guide

-r name File name exists and is readable

-w name File name exists and is writable

-x name File name exists and is executable

-s name File name exists and its size is nonzero

f1 -nt f2 File f1 is newer than file f2

f1 -ot f2 File f1 is older than file f2

String tests

s1 = s2 String s1 equals string s2

s1 != s2 String s1 does not equal string s2

-z s1 String s1 has zero length

-n s1 String s1 has nonzero length

Numeric tests

a -eq b Integers a and b are equal

a -ne b Integers a and b are not equal

a -gt b Integer a is greater than integer b

a -ge b Integer a is greater than or equal to integer b

a -lt b Integer a is less than integer b

a -le b Integer a is less than or equal to integer b

Combining and negating tests

t1 -a t2 And: Both tests t1 and t2 are true

t1 -o t2 Or: Either test t1 or t2 is true

! your_test Negate the test (i.e., your_test is false)

\(your_test \) Parentheses are used for grouping, as in algebra

test has an unusual alias, “[” (left square bracket), as a short‐
hand for use with conditionals and loops. If you use this short‐
hand, you must supply a final argument of “]” (right square
bracket) to signify the end of the test. The following tests are
identical to the previous two:

Programming with Shell Scripts | 237

→ [10 -lt 5]
→ echo $?
1
→ [-n "hello"]
→ echo $?
0

Remember that “[” is a command like any other, so it is fol‐
lowed by individual arguments separated by whitespace. So if
you mistakenly forget some whitespace:

→ [5 -lt 4] No space between 4 and]
bash: [: missing ']'

then test thinks the final argument is the string “4]” and com‐
plains that the final bracket is missing.

A more powerful—but less portable—syntax for Boolean tests
is the double bracket, [[, which adds regular expression match‐
ing and eliminates some of the quirks of test. See http://
mywiki.wooledge.org/BashFAQ/031 for details.

Conditionals
The if statement chooses between alternatives, each of which
may have a complex test. The simplest form is the if-then
statement:

if command If exit status of command is 0
then
 body
fi

Here’s an example script with an if statement:

→ cat script-if
#!/bin/bash
if [`whoami` = "root"]
then
 echo "You are the superuser"
fi

Next is the if-then-else statement:

238 | Linux Pocket Guide

http://mywiki.wooledge.org/BashFAQ/031
http://mywiki.wooledge.org/BashFAQ/031

if command
then
 body1
else
 body2
fi

For example:

→ cat script-else
#!/bin/bash
if [`whoami` = "root"]
then
 echo "You are the superuser"
else
 echo "You are a mere mortal"
fi
→ ./script-else
You are a mere mortal
→ sudo ./script-else
Password: ********
You are the superuser

Finally, we have the form if-then-elif-else, which may have
as many tests as you like:

if command1
then
 body1
elif command2
then
 body2
elif ...
 ...
else
 bodyN
fi

For example:

→ cat script-elif
#!/bin/bash
bribe=20000

Programming with Shell Scripts | 239

if [`whoami` = "root"]
then
 echo "You are the superuser"
elif ["$USER" = "root"]
then
 echo "You might be the superuser"
elif ["$bribe" -gt 10000]
then
 echo "You can pay to be the superuser"
else
 echo "You are still a mere mortal"
fi
→ ./script-elif
You can pay to be the superuser

The case statement evaluates a single value and branches to an
appropriate piece of code:

→ cat script-case
#!/bin/bash
echo -n "What would you like to do (eat, sleep)? "
read answer
case "$answer" in
 eat)
 echo "OK, have a hamburger."
 ;;
 sleep)
 echo "Good night then."
 ;;
 *)
 echo "I'm not sure what you want to do."
 echo "I guess I'll see you tomorrow."
 ;;
esac
→ ./script-case
What would you like to do (eat, sleep)? sleep
Good night then.

The general form is:

case string in
 expr1)

240 | Linux Pocket Guide

 body1
 ;;
 expr2)
 body2
 ;;
 ...
 exprN)
 bodyN
 ;;
 *)
 bodyelse
 ;;
esac

where string is any value, usually a variable value like $myvar,
and expr1 through exprN are patterns (run the command info
bash for details), with the final * like a final “else.” Each set of
commands must be terminated by ;; (as shown):

→ cat script-case2
#!/bin/bash
echo -n "Enter a letter: "
read letter
case $letter in
 X)
 echo "$letter is an X"
 ;;
 [aeiou])
 echo "$letter is a vowel"
 ;;
 [0-9])
 echo "$letter is a digit, silly"
 ;;
 *)
 echo "The letter '$letter' is not supported"
 ;;
esac
→ ./script-case2
Enter a letter: e
e is a vowel

Programming with Shell Scripts | 241

Loops
The while loop repeats a set of commands as long as a condi‐
tion is true.

while command While the exit status of command is 0
do
 body
done

For example:

→ cat script-while
#!/bin/bash
i=0
while [$i -lt 3]
do
 echo "$i"
 i=`expr $i + 1`
done
→ ./script-while
0
1
2

The until loop repeats until a condition becomes true:

until command While the exit status of command is nonzero
do
 body
done

For example:

→ cat script-until
#!/bin/bash
i=0
until [$i -ge 3]
do
 echo "$i"
 i=`expr $i + 1`
done
→ ./script-until

242 | Linux Pocket Guide

0
1
2

Be careful to avoid infinite loops, using while with a condition
that always evaluates to 0 (true), or until with a condition that
always evaluates to a nonzero value (false):

i=1
while [$i -lt 10] Variable i never changes. Infinite!
do
 echo "forever"
done

Another type of loop, the for loop, iterates over values from a
list:

for variable in list
do
 body
done

For example:

→ cat script-for
#!/bin/bash
for name in Tom Jane Harry
do
 echo "$name is my friend"
done
→ ./script-for
Tom is my friend
Jane is my friend
Harry is my friend

The for loop is particularly handy for processing lists of files;
for example, filenames with a certain extension in the current
directory:

→ cat script-for2
#!/bin/bash
for file in *.docx
do

Programming with Shell Scripts | 243

 echo "$file is a stinky Microsoft Word file"
done
→ ./script-for2
letter.docx is a stinky Microsoft Word file

You can also use the seq command (see seq on page 202) to
produce a list of consecutive integers, and then loop over those
numbers:

→ cat script-seq
#!/bin/bash
for i in $(seq 1 20) Generates the numbers 1 2 3 4 ... 20
do
 echo "iteration $i"
done
→ ./script-seq
iteration 1
iteration 2
iteration 3
...
iteration 20

Command-Line Arguments
Shell scripts can accept command-line arguments and options
just like other Linux commands. (In fact, some common Linux
commands are scripts.) Within your shell script, you can refer
to these arguments as $1, $2, $3, and so on:

→ cat script-args
#!/bin/bash
echo "My name is $1 and I come from $2"

→ ./script-args Johnson Wisconsin
My name is Johnson and I come from Wisconsin
→ ./script-args Bob
My name is Bob and I come from

Your script can test the number of arguments it received with
$#:

244 | Linux Pocket Guide

→ cat script-args2
#!/bin/bash
if [$# -lt 2]
then
 echo "$0 error: you must supply two arguments"
else
 echo "My name is $1 and I come from $2"
fi

The special value $0 contains the name of the script, and is
handy for usage and error messages:

→ ./script-args2 Barbara
./script-args2 error: you must supply two arguments

To iterate over all command-line arguments, use a for loop
with the special variable $@, which holds all arguments:

→ cat script-args3
#!/bin/bash
for arg in $@
do
 echo "I found the argument $arg"
done
→ ./script-args3 One Two Three
I found the argument One
I found the argument Two
I found the argument Three

Exiting with a Return Code
The exit command terminates your script and passes a given
return code to the shell. By tradition, scripts should return 0
for success and 1 (or other nonzero value) on failure. If your
script doesn’t call exit, the return code is automatically 0:

→ cat script-exit
#!/bin/bash
if [$# -lt 2]
then
 echo "$0 error: you must supply two arguments"
 exit 1

Programming with Shell Scripts | 245

else
 echo "My name is $1 and I come from $2"
fi
exit 0

→ ./script-exit Bob
./script-exit error: you must supply two arguments
→ echo $?
1

Piping to bash
Bash is not just a shell; it’s also a command, bash, that reads
from standard input. This means you can construct commands
as strings and send them to bash for execution:

→ echo wc -l myfile
wc -l myfile
→ echo wc -l myfile | bash
18 myfile

Bash Warning
Piping commands into bash is powerful but can also be danger‐
ous. First make sure you know exactly which commands will be
executed. You don’t want to pipe an unexpected rm command to
bash and delete a valuable file (or 1,000 valuable files).

If someone asks you to retrieve a web page (say, with the curl
command) and pipe it blindly into bash, don’t do it! Instead,
capture the web page as a file (with curl or wget), examine it
closely, and make an informed decision whether to execute it
with bash.

This technique is incredibly useful. Suppose you want to down‐
load the files photo1.jpg, photo2.jpg, through photo100.jpg from
a website. Instead of typing 100 wget commands by hand, con‐
struct the commands with a loop, using seq to construct the list
of integers from 1 to 100:

246 | Linux Pocket Guide

→ for i in `seq 1 100`
do
 echo wget http://example.com/photo$i.jpg
done
wget http://example.com/photo1.jpg
wget http://example.com/photo2.jpg
...
wget http://example.com/photo100.jpg

Yes, you’ve constructed the text of 100 commands. Now pipe
the output to bash, which will run all 100 commands as if you’d
typed them by hand:

→ for i in `seq 1 100`
do
 echo wget http://example.com/photo$i.jpg
done | bash

Here’s a more complex but practical application. Suppose you
have a set of files you want to rename. Put the old names into a
file oldnames, and the new names into a file newnames:

→ cat oldnames
oldname1
oldname2
oldname3
→ cat newnames
newname1
newname2
newname3

Now use the commands paste and sed (“File Text Manipula‐
tion” on page 92) to place the old and new names side by side
and prepend the word “mv” to each line, and the output is a
sequence of “mv” commands:

→ cat oldnames | paste -d' ' oldnames newnames \
 | sed 's/^/mv /'
mv oldfile1 newfile1
mv oldfile2 newfile2
mv oldfile3 newfile3

Finally, pipe the output to bash, and the renaming takes place!

Programming with Shell Scripts | 247

→ cat oldnames | paste -d' ' oldnames newnames \
 | sed 's/^/mv /' \
 | bash

Beyond Shell Scripting
Shell scripts are fine for many purposes, but Linux comes with
much more powerful scripting languages, as well as compiled
programming languages. Here are a few:

Language Program To get started...

C, C++ gcc, g++ man gcc

https://gcc.gnu.org/

.NET mono man mono

http://www.mono-project.com/

Java javac http://java.com/

Perl perl man perl

http://www.perl.com/

PHP php man php

http://php.net/

Python python man python

https://www.python.org/

Ruby ruby http://www.ruby-lang.org/

Final Words
Although we’ve covered many commands and capabilities of
Linux, we’ve just scratched the surface. Most distributions
come with thousands of other programs. We encourage you to
continue reading, exploring, and learning the capabilities of
your Linux systems. Good luck!

248 | Linux Pocket Guide

https://gcc.gnu.org/
http://www.mono-project.com/
http://java.com/
http://www.perl.com/
http://php.net/
https://www.python.org/
http://www.ruby-lang.org/

Acknowledgments
I am very grateful to the many readers who purchased the first
two editions of this book, making the third edition possible.
My heartfelt thanks also go to my editor, Nan Barber, the
O’Reilly production staff, the technical review team (Justin
Karimi, Bill Ricker, Dan Ritter), Jay Moran at Cimpress, and as
always, my beautiful family, Lisa and Sophia.

Final Words | 249

Index

Symbols
! (shell command history), 38
$(), 36
& (ampersand), running back‐

ground jobs, 41
&& (two ampersands), logical

and, stopping execution of
combined commands, 35

- (dash), standard input/output, 9
-- (two dashes), end of options, 9
--help option, 12
. (period)

current directory, 18
dot files, 29
shell script execution, 234

.. (two periods), parent directory,
18

.NET, 248
/ (slash), root directory, 17
; (semicolon), combine com‐

mands using, 35
< (input redirection), 33
<() (process substitution), 34
> (output redirection), 34
[(left square bracket), alias for

test command, 237
\ (backward slash)

escaping special characters, 37

line continuation, 10, 234
^C keystroke (killing programs),

45
^Z keystroke (suspending jobs),

41
| (pipe operator), 34
|| (two pipes), logical or, stopping

execution of combined com‐
mands, 36

~ (tilde), denoting home directo‐
ries, 20

A
abiword command, 64
absolute path, 18
absolute path of current directory,

printing, 53
acroread command, 120
administrator, 5
alias command, 33
alphabetical order, sorting text in,

102
alpine mail program, 186
ampersand (&), running back‐

ground jobs, 41
apt-cache command, 229
apt-file command, 229

251

apt-get command, 224, 229
aptitude command, 224, 230
arguments for commands, 3
aspell command, 127
at command, 150
atq command, 151
atrm command, 151
attributes of files, 80

changing, 80
viewing, 81

audio, 218
compressing, 219
converting, 222
playing, 223
ripping, 218
tags, creating, 220, 221
tags, viewing, 219, 220

awk command, 107
vs. tr command, 101

B
background jobs, running, 40
backing up Linux files, 134
backquotes on command line, 36,

144
vs. xargs, 88

backward slash (\)
escaping special characters, 37
line continuation, 10, 234

basename command, 53
bash (Bourne-Again Shell), 14, 27

command-line editing, 37
printf command, 200
programming with shell

scripts, 232
type command, 82, 91

bc command, 208
bg command, 42

jobs command and, 40
bin directory, 21
Booleans in shell scripts, 207, 235
/boot directory, 24
Bourne-Again Shell (see bash), 27

braces
expansion on command line,

30
grep regular expressions, 95
shell variables, 235

browsing the Web, 188
bunzip2 command, 111
burning CDs and DVDs, 137
bzcat command, 112
bzip2 command, 111

software installation and, 224
tar –j command and, 110

C
C and C++ languages, 248
cal command, 211
calculator programs, 206
calendar printing, 211
carriage returns, 96
case statement, 240
cat command, 2, 56, 102

revealing end-of-line charac‐
ters, 96

tee command and, 106
CD (compact discs)

burning, 137
ripping audio, 218

cd command, 17, 18, 53
home directories, locating, 20

cdparanoia command, 218
cgi-bin directory, 22
chattr command, 80
checksums, comparing, 120
chfn command, 164

with useradd, 162
chgrp command, 26, 75, 168
chmod command, 26, 76
chown command, 26, 74
chsh command, 165
cksum command, 114, 120
clear command, 203
clearing the screen, 203
clipboard, 204

252 | Index

clock programs, 211
cmp command, 114, 117
columns of text, extracting from

files, 97
combining commands, 35
comm command, 114, 117
command prompt, 5
command-line arguments in shell

scripts, 244
command-line editing with bash,

37
commands, 3

combining, 35
examples to try, 6
killing, 45, 144
previous, 38

comparing files, 114
completing filenames with Tab

key, 39
compress command, 112

tar –Z command and, 110
compressing/uncompressing files,

109
conditionals in shell scripts, 238
configure script, 232
configuring the shell, 46
connecting to networks, 179
controlling processes, 144
convert command, 216
cp command, 49
cpio command, 134
cron process, 152
crontab command, 152
CUPS printing system, 124
curl command, 191

piping into bash, 246
curly-brace expressions (see

braces)
cut command, 97

D
date command, 212

watch command and, 149

dates, displaying/setting, 211, 214
dc command, 210
dd command, 136
deb file, 224
Debian packages, 224, 230
default editor, setting, 64
/dev directory, 22
df command, 130
diff command, 114, 114
diff3 command, 114, 116
dig command, 176
directories, Linux, 17

changing, using cd command,
53

creating, 54
deleting empty directories, 55
home directories, 19
operating system directories,

24
printing absolute path of, 53
system directories, 20

dirname command, 54
disk usage command (du), 72
disks and filesystems, 128
display command, 215
DISPLAY environment variable,

31
distro, 3

identifying, 224
dnf command, 224, 225
doc directory, 21
domain name service (DNS), 174
domainname command, 170
dot files, 29
downloading examples (see

examples, running)
downloading files, 191
dpkg command, 224, 229, 230
du command, 72
dump command, 134

chattr command and, 80

Index | 253

E
echo command, 10, 198

script output, 235
ed line editor, 107

diff –e command, 116
EDITOR environment variable,

57
setting default editor, 64

egrep command, 94
eject command, 133
elinks command, 190
else statement, 238
emacs text editor, 37

bash command-line editing,
37

creating/editing files, 63
lynx –emacskeys command,

190
email, 184

directory, 22, 31
file format, 188
log file, 187
pipelines, 186
queue, 187
readers, 184
reading over SSH connection,

184
scripting, 186

environment variables, 31
DISPLAY, 31
EDITOR, 57, 64
HOME, 20, 31
LOGNAME, 31
MAIL, 31
OLDPWD, 31
PATH, 31
printing, 161
PWD, 31
SHELL, 31
TERM, 31
USER, 31
VISUAL, 57, 64

escaping special characters, 37

etc directory, 21
evince command, 120
examples, running, 11
Excel documents, 64
exclamation point (!) for shell his‐

tory, 38
exit command, 154

exiting with return codes, 245
terminating shells, 46

exit status of Linux commands,
236

expand command, 101
export command, 31
expr command, 206
ext3 filesystems, 129

chattr/lsattr commands, 80

F
fdisk command, 129
fetchmail command, 188
fg command, 42

jobs command and, 40
file command, 73
filename completion, 39
files

attributes of, 69
copying with cp, 49
copying with dd, 136
counting words, 71
creating, 63, 74
deleting with rm, 50
disk space of, 72
editing, 63
group ownership, 75
linking with ln, 50
listing with ls, 47
locating, 82
moving, 49
named beginning with a dash,

9
ownership, 25, 48, 74, 75
permissions, 25, 48, 76
renaming with mv, 49

254 | Index

timestamps, 73
transferring between

machines, 180, 182
viewing, 55

filesystem, 17, 129
find command, 82

with xargs, 87
finger command, 159, 164
flock command, 148
fonts directory, 22
for loops, 243

command-line arguments
and, 245

foreground jobs, 42
formatting disks, 129, 129
free command, 143
fsck command, 132

shutdown command and, 155
ftp (File Transfer Protocol) pro‐

gram, 182

G
g++ command, 248
gcc command, 248
GNOME graphical environment,

14
running shells within, 15

GNU emacs (see emacs text edi‐
tor)

gnumeric, 64
gparted command, 129
graphical desktop, 14
graphics, 215
grep command, 92

egrep command and, 94
ps command and, 140

groups, 167
adding with groupadd, 168
changing with groupmod, 169
deleting with groupdel, 169
ownership of files, 75

groups command, 168
id –Gn command and, 157

growisofs command, 137
gunzip command, 111
gv command, 120
gzip command, 111

software installation and, 224
tar –z command and, 110

H
hard drive cloning, 136
hard links, 51
hardware platform, 171
head command, 59
help and tutorials, 11
--help option, 9
history command, 38
home directories, 19
HOME environment variable, 20,

31
host command, 174
host information

local, 170
remote, 174

hostname command, 171
html directory, 22

I
ICMP packets, 177
id command, 157
ID3 tags, 219, 220
id3info command, 219
id3tag command, 220
if statement, 238
ifconfig command, 173
iftop command, 142
ImageMagick, 215
images, 215
include directory, 21
index of file locations, creating, 89
info command, 12
init.d directory, 21
input, reading from a shell script,

235

Index | 255

input/output redirection, 33
installing software, 223
instant messaging, 193
Internet domains, looking up reg‐

istration of, 176
Internet Relay Chat, 197
iotop command, 142
ip command, 172
IRC, 197
irssi command, 197
ISO files, 137

J
Jabber, 195, 196
Java language, 248
javac command, 248
job control in Linux shells, 40
jobs command, 40
jobs, scheduling, 150, 152

K
k3b command, 138
kaffeine video player, 223
KDE graphical environment, 14

running shells within, 15
kernel, 13

name, 170
version, 170, 171

kill command, 45, 144
killall command, 144
konsole command, 15

L
lame command, 219
last command, 160
less command, 2, 57

cat command and, 56
lib directory, 21
LibreOffice, 64
line continuation character, 10,

234
line numbering, 56, 58

linebreaks
grep, 96
in shell scripts, 234
Windows and Mac OS X, 96

links, 50
hard vs. symbolic, 51

links command, 190
Linux, components of, 13
linuxpocketguide directory (see

examples, running)
ln command, 50
load average, 140
locate command, 89
locating files, 89
lock directory, 22
log directory, 22
logging into remote machines,

179
logname command, 156

whoami and, 157
LOGNAME environment vari‐

able, 31, 156
logout command, 154
long command lines, 10, 234
look command, 126
loops in shell scripts, 242
/lost+found directory, 24
lpq command, 125
lpr command, 124
lprm command, 126
LPRng printing system, 124
ls command, 8, 47

displaying file attributes, 69
file protections and, 26

lsattr command, 81
lynx web browser, 189

M
m4 macro-processing language,

107
mail (see email)
mail command, 186
mail directory, 22, 31

256 | Index

MAIL environment variable, 31
mailq command, 187
make command, 232
man command, 12, 21
man directory, 21
masks and protection modes, 79
math commands, 206
md5sum command, 114, 118, 120
/media directory, 22
memory usage, displaying, 143
mesg command, 158, 194
metaflac command, 221
Microsoft Excel documents, 64
Microsoft Word documents, 64
MIDI, 218
MIME

attachments, 113
types, identifying, 73

mkdir command, 54
mkfs command, 129
mkisofs command, 138
mlocate command, 89
/mnt directory, 22
mogrify command, 217
mono command, 248
montage command, 217
mount command, 130
MP3 files

create from WAV, 219
ID3 tags, 219, 220

mplayer command, 223
music (see audio)
mv command, 49

N
nameserver (see domain name

service)
nc command, 182
.NET, 248
netcat command, 182
network connections, establish‐

ing, 179

network interface, displaying
information about, 172, 173

nice command, 146
nl command, 58

cat command and, 56
nslookup command, 176
ntfs filesystems, 129
ntp daemon, 215
ntpdate command, 214

O
od command, 2, 62, 102
ogginfo command, 220
okular command, 120
OLDPWD environment variable,

31
operating system directories, 24
operating system name, 171
options for commands, 3
output in shell scripts, 235
ownership of files, 25, 48

P
package managers, 223
PackageKit, 226
parted command, 129
partitioning disks, 128, 129
passwd command, 164
paste command, 99
patch command, context diff, 116
PATH environment variable, 31
path, search, 32
PDF files, 120

displaying, 120
manipulating, 123
PostScript conversion, 124
splitting, 122
text extraction, 121, 121

pdf2ps command, 120, 124
pdfseparate command, 120, 122
pdftk command, 120, 123
pdftotext command, 120, 121

Index | 257

Perl language, 248
permissions, file, 25, 48, 76
photos, 215
PHP language, 248
pidgin, 193
pidof command, 144
ping command, 177
pipe (|) operator, 34
postfix mail server, 188
PostScript files, 120

PDF conversion, 124
text extraction, 121

printenv command, 161
at command and, 151

printf command, 200
script output, 235

-printf option (find command),
85

printing, 124
/proc directory, 22, 24
process substitution, 34
processes, 144

controlling, 144
shell jobs vs., 139
viewing, 139

processor type, 171
procmail command, 188
profanity command, 193, 196
prompt, 5
ps command, 139, 144
ps2ascii command, 120, 121
ps2pdf command, 120, 124
public_html directory, 22
pwd command, 17, 53
PWD environment variable, 31
Python language, 248

Q
quoting

in shell scripts, 234
on command line, 36

R
rc.d directory, 21
rcsdiff command, 115
read command, 235
readlink command, 52
redirecting input/output, 33
regular expressions

awk command, 107
egrep command, 94
find –regex command, 83
grep command, 92, 94
less command, 57
line numbering, 59
locate –r command, 90

relative path, 18
remote machines

file transfers, 180, 181
hostname lookup, 174
logging in with ssh, 179
sending ICMP packets to, 177
traceroute command, 177

renice command, 147
reset command, 45
reset-lpg command, 11
restore command, 134
resuming jobs with fg command,

42
return codes of Linux commands,

236, 245
ripping CD tracks, 218
rm command, 50
rmdir command, 55
root directory (/), 17
/root home directory for super‐

user, 19
root user, 5, 16, 166
rpm command, 224, 228
RPM Package Manager files, 224,

225, 226, 228
rsnapshot command, 135
rsync command, 135
Ruby language, 248
run directory, 22

258 | Index

S
sbin directory, 21
scheduling jobs, 150, 152
scp command, 180
screen command, 43
sdiff command, 114, 116
search path, 32
secure copy (scp) command, 180
secure shell (ssh) program, 179
sed command, 107

vs. tr command, 101
selection (clipboard), 204
semicolon (;), combine com‐

mands using, 35
sendmail mail server, 188
sendxmpp command, 193, 195
seq command, 202

for loops, 244
setting the date and time, 214

by timeserver, 214
sfdisk command, 129
sftp command, 181
share directory, 21
shasum command, 119
SHELL environment variable, 31
shell prompt, 3, 5
shell scripts, 232

command-line arguments in,
244

conditionals in, 238
creating, 233
exiting with return codes, 245
loops in, 242
programming with, 232
running, 233

shell windows, opening, 15
shells, 14, 27

(see also bash)
changing login shell program,

165
history-related commands, 38
job control, 40
multiple at once, 43

running, 15
suspending, 41
terminating, 46
vs. programs, 28

shutdown command, 154
slash (/)

directory separator, 18
root directory, 17

sleep command, 149
slocate command, 89
soft links, 50
software installation, 223
sort command, 102
sound (see audio)
source command, 234
sox command, 222
spaces, converting to tabs, 101
spamassassin, 188
special characters, escaping, 37
spell command, 127
spelling checkers, 126
spool directory, 22
src directory, 21
ssh (secure shell) program, 179

instant messaging, 196
rsync, 135

standard output, printing mes‐
sages on, 198

stat command, 69
subdirectories, Linux, 17
sudo command, 5

becoming superuser, 166
software installation and, 224
whoami command and, 157

sum command, 114, 120
superusers, 5, 16

becoming, 166
suspend command, 41
symbolic links, 50

target file of, 52
sync command, 80
system directories, 20
system load, 140

Index | 259

systemctl command, 155
systemd, 155

T
Tab key, completing filenames

with, 39
tabs, converting to spaces, 101
tail command, 60
tar command, 109

software installation and, 224
tar files, 224, 231

bzipped, 112
compressed, 113
gzipped, 111

tee command, 106
telnet vs. netcat, 183
TERM environment variable, 31
Terminal program, 15
terminating shells, 46
test command, 237
text manipulation commands, 92
tilde (~), denoting home directo‐

ries, 20
time, displaying/setting, 211
timeout command, 145
timestamps, 73
tmp directory, 22
tmux command, 43
top command, 141
touch command, 73

creating empty files, 64
tr command, 100
traceroute command, 177
translating characters, using tr

command, 100
tty command, 194
tutorials, 66

emacs, 66
Linux help, 11
mutt mailer, 186
vim editor, 66

type command, 82, 91
locating files, 91

types of files, reporting, 73

U
umask command, 78
umount command, 132
uname command, 24, 170
uncompress command, 112
unexpand command, 101
uniq command, 104
until loops, 242

infinite, 243
unzip command, 113
updatedb command, 89
uptime command, 24, 140
USER environment variable, 31
useradd command, 162
userdel command, 163
usermod command, 163
users, 161

creating new accounts, 162
deleting existing users, 163
finger command and, 159
listing logged-in users, 158
modifying accounts, 163
password changes, 164
printenv command and, 161
printing login names, 156
printing user IDs, 157
superusers and, 16
updating information, 164

users command, 159
/usr/share/doc directory, 12
uxterm command, 15

V
/var directory, 22
variables, 30

defining, 30
in shell scripts, 234

vi (see vim text editor)
video

playback, 223

260 | Index

viewing
files, 55
processes, 138

vim text editor, 63, 66
bash command-line editing,

37
less command, 57
lynx –vikeys command, 190
sed and, 107

VISUAL environment variable, 57
setting default editor, 64

vlc video player, 223

W
w command, 141
w3m command, 190
wall command, 193
watch command, 149
wc command, 3, 71
web browsing, 188

automation, 191
retrieving pages via command

line, 191
text-based, 189

wget command, 11, 190, 246
whereis command, 82, 91
which command, 90
while loops, 242

infinite, 243
whitespace, 234

linebreaks, 96
programming with shell

scripts, 234
quoting on command line, 36

who command, 158
tee command and, 106

whoami command, 157
whois command, 176
wildcard characters and the shell,

28
(see also regular expressions)

windows (shell), opening, 15
Word documents, 64
write command, 193
www directory, 22

X
X11 directory, 22
xargs command, 86

null-separated lines, 85
vs. backquotes, 88
with find command, 87

xclip command, 204, 205
xine video player, 223
XMPP, 195, 196
xpdf command, 120
xsel command, 205
xterm command, 15

Y
yes command, 201
yum command, 224, 226

Z
zcat command, 111, 112
zip command, 113

Index | 261

About the Author
Daniel J. Barrett has been immersed in Internet technology
since 1985. Currently a director of technology at an ecommerce
company, Dan has also been a heavy metal singer, software
engineer, system administrator, university lecturer, web
designer, and humorist. He is the author of O’Reilly’s Linux
Pocket Guide, and he is the coauthor of Linux Security Cook‐
book, and SSH, The Secure Shell: The Definitive Guide.

	Cover
	Copyright
	Table of Contents
	Chapter 1. Linux Pocket Guide
	What’s in This Book?
	What’s New in the Third Edition?
	What’s Linux?
	What’s a Distro?
	What’s a Command?
	Reading This Book

	Practicing with This Book
	Getting Help
	Linux: A First View
	Running a Shell
	Input and Output
	Users and Superusers

	The Filesystem
	Home Directories
	System Directories
	Operating System Directories
	File Protections

	Shell Features
	The Shell Versus Programs
	Selected Features of the bash Shell
	Shell Job Control
	Running Multiple Shells at Once
	Killing a Command in Progress
	Terminating a Shell
	Tailoring Shell Behavior

	Basic File Operations
	Directory Operations
	File Viewing
	File Creation and Editing
	Creating a File Quickly
	Your Default Editor

	File Properties
	File Location
	File Text Manipulation
	File Compression and Packaging
	File Comparison
	PDF and PostScript File Handling
	Printing
	Spellchecking
	Disks and Filesystems
	Backups and Remote Storage
	Viewing Processes
	Controlling Processes
	Scheduling Jobs
	Logins, Logouts, and Shutdowns
	Users and Their Environment
	User Account Management
	Becoming the Superuser
	Group Management
	Host Information
	Host Location
	Network Connections
	Email
	Web Browsing
	Instant Messaging
	Screen Output
	Copy and Paste
	Math and Calculations
	Dates and Times
	Graphics
	Audio and Video
	Installing Software
	Programming with Shell Scripts
	Creating and Running Shell Scripts
	Whitespace and Linebreaks
	Variables
	Input and Output
	Booleans and Return Codes
	Conditionals
	Loops
	Command-Line Arguments
	Exiting with a Return Code
	Piping to bash
	Beyond Shell Scripting

	Final Words
	Acknowledgments

	Index

