
December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

Introductions
• Ruben Safir MS Computer Sciences Candidate
• Artifical Intelligence
• Long Island University Brooklyn
• Fall 2015
• Professor Ping-Tsai Chung
• Expert Systems with Clips and Free Software
• Catching Fish with a the Rod and Reel in NYC
• Source Documentation http://www.nylxs.com/docs/grad_school/artificial_intelligence/fishing_project/

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

Problem Description
• Daily trips are made out of Sheepshead Bay Brooklyn, City Island, and Marinas around NYC to take passengers for

recreational fishing trips on the local waters.
• City, State and Federal Laws regulate which fish can be targeted, and brought home with limitations on size, numbers, and

time of season when one can fish.
• Jurisdictional issues make it necessary to determine when fishing in Federal or State regulated waters is allowed.
• In addition to legal regulations, fish enter our waters on seasonal runs. Some fish come when it is cold, others prefer warm

water. Fish can be found in different waters at different times.
• Some fish are more popular than others, either for the taste or the fish, or the fun in catching. Some seasons generate

excitement for fisherman in local waters, especially tautog and striped bass.
• Captains of fishing boats acquire and share data and hot tips, and otherwise keep certain secret spots to themselves,

something that is increasingly difficult in the modern surveillance state.
• In order to remain profitable, Fishing Boat Captains have to juggle a sizable amount of expert information to remain in

business, and then boost sales with well placed reports in the fishing press and among local tackle shops and places
fishermen gather.

When it comes to fishing EVERYONE wants the inside scoop, making an expert system, perhaps very useful.

Blue Fish World Migrants - around all year - good
fighters, not that tasty

Cod Fish - Staple of Generations
of East Coast Households. Numbers
greatly diminished and now
regulated and even closed in New
England

Tataug or Blackfish are the
tastiest fish in the local waters
and tricky to catch

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

Black Sea Bass: Perhaps the best
eating fish in local waters. Very
abundant in NY due to conservation
efforts, but under close watch by the
federal government, especially in
southern states. I've seen them sold for
$22 a pound in the Union Square
Green Market.

Fluke - Very popular, and live close to shore
making them inexpensive to fish for when in
season.

Striped bass are the queens of the NY
Fishing scene. They fill a niche similar to
Salmon in other places, traveling up and
down the Hudson River, and Chesapeake
Bay is large runs. Not legal to keep in
Federal Waters. They are closely watched
and currently have a limit of one fish a
trip, over 28 inches long. This was the fall
run a few seasons ago. When news gets out
that Stripers are on the run, boats are
filled and everyone is happy for a few
days.

A prized catch of Striped Bass
that fed the family for a few days.

Scrup - un fish to catch and the backbone of the NY
recreational fishery

Along with these, I don't cover popular fish that are rarer in our harbor, but still popular to include Winter Flounder, Lemon Sole,
Herring, Mackerel, Weakfish, and a variety of Tuna which show up from time to time.

Forward Chaining Methodology and Graph
• Since we know the facts which affect our decisions with a fair bit of precision, we would seem to have an good condition for forward chaining of our facts to draw

conclusions.
• Fishing Season are set out by law and can be exactly defined. However, overlapping calenders for different species can make a decision tree difficult to create. A

Schedule looks like this:

When scup are around, they are fun to
catch and fill the buckets

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

Marine Recreational Fishing Limits

Species
Size Limits

(Total Length in Inches)*

Possession
Limits

(Number of Fish)

Open
Seasons

Summer flounder (fluke)^
18

5 May 17 - Sept
21

Winter flounder 12 2
April 1 - May

30

Tautog (blackfish) 16 4 Oct 5 - Dec 14

Bluefish (including
"snappers")

No minimum size for first 10
fish
12 TL for the next 5

15
No more than 10 of
which shall be less
than 12" TL

All year

Black Sea Bass 14

8

10

July 15 - Oct
31

Nov 1 - Dec 31

Scup (Porgy) 10 30 May 1 - Dec 31

Scup (Porgy)
Anglers aboard licensed
party/charter boats

10
30

45
May 1 - Dec 31

Sept 1 - Oct 31

Yellowtail flounder 13 No limit All year

Reducing this to a binary tree is very difficult. Resulting leafs for any date allows for the fishing of multiple species of fish. And that is before weather conditions are
considered. As a result, we need to use three modules of expert system rules to accomplish this.

This is the resulting decision tree constructed from the Free Software program DIA which is available at http://dia-installer.de/index.html.en and licensed under the GPL2
software license. Downloads in anonymity is allowed and encouraged for as long as the Government or Watson allows. See the decision tree diagram on the full next page.

http://www.fsf.org/
http://dia-installer.de/index.html.en

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

December 2015
Artificial Intelligence: Expert

Systems with CLIPS and Free
Software

LIU/Brooklyn Artificial
Intelligence

Fishing Season Schedule strategy
• In evaluating the schedules for fishing seasons it becomes apparent very quickly how unwieldy this data tree and the resulting code base will become, even with just a

moderate number of species, and only two jurisdictions. If I add neighboring states, and the mostly ignored reciprocity laws (what happens when a New York boat
fishes in New Jersey waters) it can take a team of very smart people to create the correct decision tree. Fortunately, with the use of the inference engine in CLIPS, we
can do things in a slightly different way.

• There are two ways to approach this decision tree. First and most obvious is to handle it like a series of nodes, each one triggering the next according to response.
CLIPS is an inference engine and such a solution is suggested by Giarratano & Riley in there text on CLIPS, "Expert Systems, Principles and Programming". In this
case, rules are created where the user is prompted to give an answer questions which cause the CLIPS agenda to start the next appropriate rule until a leaf is reaches
with an answer. A quick mock up of this kind of code is as follows:

(deftemplate node
 (slot name)
 (slot type)
 (slot question)
 (slot yes-node)
 (slot no-node)
 (slot answer)
)

This is similar to what we would see as a structure in procedural code.

(deffacts tree
 (node (name root)(type decision)
 (question "Is the animal warm blooded?")
 (yes-node node1) (no-node node2))
 (node (name node1)(type decision)
 (question "Does it purr?")
 (yes-node node3) (no-node node4))
 (node (name node2) (type answer) (answer snake))
 (node (name node3) (type answer) (answer cat))
 (node (name node4) (type answer) (answer dog))
 (current-node root)
)

These create nodes on reset that either push you down the tree (decisions) or are leafs (answer). Now we just need some rules to stitch it together.

(defrule ask-decision-node-question
 ?node <- (current-node ?name)
 (node (name ?name)
 (type decision)
 (question ?question))
 (not (answer ?))
=>
 (printout t ?question "(yes or no) ")
 (assert (answer (read)))
)
;*******
;******
;*****
(defrule bad-answer
 ?answer <- (answer ~yes&~no)
=>
 (retract ?answer)
)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

(defrule proceed-to-yes-branch
 ?node <- (current-node ?name)
 (node (name ?name)
 (type decision)
 (yes-node ?yes-branch))
 ?answer <- (answer yes)
 =>
 (retract ?node ?answer)
 (assert (current-node ?yes-branch))
)
;*******
;******
;*****

(defrule proceed-to-no-branch
 ?node <- (current-node ?name)
 (node (name ?name)
 (type decision)
 (no-node ?yes-branch))
 ?answer <- (ansert no)
 =>
 (retract ?node ?answer)
 (assert (current-node ?no-branch))
)

One set of rules for yes decisions, another for no decisions and a third
bad answers. The last rule is for the leaf

(defrule correct
 ?node <- (current-node ?name)
 (node (name ?name) (tyoe answer)(answer ?value))
 (not (answer ?))
 =>
 (prinout t "I guess it is a " ?value crlf)
)

At this point I note three things here:

1. This code is an adaptation of the code example in the Giarratano & Riley text noted above.
2. I have not tested this code and leave that to you.
3. The complete code in the text is far boarder than this and worth looking into and testing in its own right. I encourage you to get a copy of the text.

• As we examine this, we can see that this will allow us to create our tree exactly like our diagram, but in this case, it is a waste of a good inference engine. It assumes a
single species result. We have results of several species at once and then each of those branches need to be tested for all possible weather conditions, which is a lot of
repeating code, and code that repeats itself is a clear indication that the approach to the problem is not correct.

• So we have a better approach

<!-- Artificial Intelligence: Expert LIU/Brooklyn Artificial

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

/* function to open any folds
containing a jumped-to line

before jumping to it */
function JumpToLine()

{
 var lineNum;

 lineNum =
window.location.hash;

 lineNum = lineNum.substr(1);
/* strip off '#' */

 if (lineNum.indexOf('L') ==
-1) {

 lineNum = 'L'+lineNum;
 }

 lineElem =
document.getElementById(line

Num);
 /* Always jump to new

location even if the line was
hidden inside a fold, or

 * we corrected the raw
number to a line ID.

 */
 if (lineElem) {

 lineElem.scrollIntoView(true
);
 }

 return true;
}

if ('onhashchange' in window)
{

 window.onhashchange =
JumpToLine;

}

-->December 2015

Systems with CLIPS and Free
Software

Intelligence

Let Clips do the work!!
• If we structure our facts correctly we can let CLIP automatically generate the binary tree for us.

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 2 (defmodule FISH (export deftemplate menu))
 3 (deftemplate FISH::fish
 4 (slot species)
 5 (multislot habitat)
 6 (slot seasonal_availability) ;date of fish runs
 7 (slot open_season) ;the date legal open season begins
 8 (slot close_season) ;the date the legal season closes
 9 (slot size_min) ;minimum legal size allowed to be taken
 10 (slot limit) ;legal maximum allowed number of fish allowed
 11 (slot fishing_type) ;bottom or gamefishing
 12 (slot fishing_location) ;inshore or offshore
 13 (multislot best_trip) ; best to fish day or night
 14 (slot desireability) ; how much people like to fish
 15)

• Presented here is the new backbone of out clips program. Instead of a new node for every combination of facts, we let the CLIPS inference engine do what was
designed to do. We move the attributes of species of fish to the fish facts themselves, including the open and closed seasons. Now we can quickly scale up the program,
and change facts rapidly as would be needed as seasons change with every new year, and can expand our program quickly.

• With CLIPS, each combination of facts makes a NEW fact. So we have 12 attributes, so if I have blue fish inshore and blue fish off shore, I can list both. If I have
porgies with one set of rules in January and another in July, I can put both in my list of facts.

• In total I defined 28 different variations of fish species, which is far better than the possibly hundreds of combinations of nodes I would have if I didn't move the fish
attributes to the fish facts.

 60 (deffacts FISH::fishes
 61 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability winter_tautog)
 62 (open_season 21022) (close_season 21231) (size_min 24)
 63 (limit 4) (fishing_type bottom) (fishing_location offshore)
 64 (best_trip day) (desireability 5)
 65)
 66 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability winter_tautog)
 67 (open_season 21022) (close_season 21231) (size_min 24)
 68 (limit 4) (fishing_type bottom) (fishing_location offshore_federal_waters)
 69 (best_trip day) (desireability 5)
 70)
 71 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability winter_tautog)
 72 (open_season 21022) (close_season 21231) (size_min 24)
 73 (limit 4) (fishing_type bottom) (fishing_location inshore)
 74 (best_trip day) (desireability 2)
 75)
 76 (fish (species striped_bass) (habitat inshore current rocks) (seasonal_availability
spring_bass_run)
 77 (open_season 20101) (close_season 21231) (size_min 31)
 78 (limit 1) (fishing_type game) (fishing_location inshore)
 79 (best_trip day night) (desireability 4)
 80)
 81 (fish (species striped_bass) (habitat inshore current rocks) (seasonal_availability
fall_bass_run)
 82 (open_season 20101) (close_season 21231) (size_min 31)
 83 (limit 1) (fishing_type game) (fishing_location inshore)
 84 (best_trip day night) (desireability 4)
 85)
 86 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 87 (open_season 20501) (close_season 20831) (size_min 10)
 88 (limit 30) (fishing_type bottom) (fishing_location inshore)
 89 (best_trip day) (desireability 3)
 90)
 91 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 92 (open_season 20501) (close_season 20831) (size_min 10)
 93 (limit 30) (fishing_type bottom) (fishing_location offshore)
 94 (best_trip day) (desireability 4)
 95)
 96 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 97 (open_season 20501) (close_season 20831) (size_min 10)
 98 (limit 30) (fishing_type bottom) (fishing_location offshore_federal_waters)
 99 (best_trip day) (desireability 4)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

100)
101 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
102 (open_season 20901) (close_season 21031) (size_min 10)
103 (limit 45) (fishing_type bottom) (fishing_location offshore)
104 (best_trip day night) (desireability 4)
105)
106 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
107 (open_season 20901) (close_season 21031) (size_min 10)
108 (limit 45) (fishing_type bottom) (fishing_location offshore_federal_waters)
109 (best_trip day night) (desireability 4)
110)
111 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
112 (open_season 20901) (close_season 21031) (size_min 10)
113 (limit 45) (fishing_type bottom) (fishing_location inshore)
114 (best_trip day night) (desireability 3)
115)
116 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
117 (open_season 21101) (close_season 21231) (size_min 10)
118 (limit 30) (fishing_type bottom) (fishing_location inshore)
119 (best_trip day) (desireability 3)
120)
121 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
122 (open_season 21101) (close_season 21231) (size_min 10)
123 (limit 30) (fishing_type bottom) (fishing_location offshore)
124 (best_trip day) (desireability 4)
125)
126 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
127 (open_season 21101) (close_season 21231) (size_min 10)
128 (limit 30) (fishing_type bottom) (fishing_location offshore_federal_waters)
129 (best_trip day) (desireability 4)
130)
131 (fish (species fluke) (habitat bottom) (seasonal_availability warm_months)
132 (open_season 20517) (close_season 20921) (size_min 18)
133 (limit 5) (fishing_type bottom) (fishing_location inshore)
134 (best_trip day) (desireability 3)
135)
136 (fish (species bluefish) (habitat open_water current) (seasonal_availability all_year)
137 (open_season 20101) (close_season 21231) (size_min 0)
138 (limit 500) (fishing_type game) (fishing_location inshore)
139 (best_trip day) (desireability 2)
140)
141 (fish (species bluefish) (habitat open_water current) (seasonal_availability all_year)
142 (open_season 20101) (close_season 21231) (size_min 12)
143 (limit 15) (fishing_type game) (fishing_location offshore)
144 (best_trip day) (desireability 3)
145)
146 (fish (species bluefish) (habitat open_water current) (seasonal_availability all_year)
147 (open_season 20101) (close_season 21231) (size_min 12)
148 (limit 15) (fishing_type game) (fishing_location offshore_federal_waters)
149 (best_trip day) (desireability 3)
150)
151 (fish (species cod) (habitat open_water) (seasonal_availability winter)
152 (open_season 20101) (close_season 21231) (size_min 22)
153 (limit 10) (fishing_type bottom) (fishing_location offshore)
154 (best_trip day) (desireability 3)
155)
156 (fish (species cod) (habitat open_water) (seasonal_availability winter)
157 (open_season 20101) (close_season 21231) (size_min 22)
158 (limit 10) (fishing_type bottom) (fishing_location offshore_federal_waters)
159 (best_trip day) (desireability 3)
160)
161 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability warm_months)
162 (open_season 20715) (close_season 21031) (size_min 14)
163 (limit 8) (fishing_type bottom) (fishing_location inshore)
164 (best_trip day) (desireability 3)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

165)
166 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability warm_months)
167 (open_season 21101) (close_season 21231) (size_min 14)
168 (limit 10) (fishing_type bottom) (fishing_location inshore)
169 (best_trip day) (desireability 3)
170)
171 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability warm_months)
172 (open_season 20715) (close_season 21031) (size_min 14)
173 (limit 8) (fishing_type bottom) (fishing_location offshore)
174 (best_trip day) (desireability 3)
175)
176 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability warm_months)
177 (open_season 21101) (close_season 21231) (size_min 14)
178 (limit 10) (fishing_type bottom) (fishing_location offshore)
179 (best_trip day) (desireability 3)
180)
181 (fish (species black_sea_bass_federal) (habitat bottom) (seasonal_availability
warm_months)
182 (open_season 20515) (close_season 20921) (size_min 14)
183 (limit 10) (fishing_type bottom) (fishing_location offshore_federal_waters)
184 (best_trip day) (desireability 3)
185)
186 (fish (species black_sea_bass_federal) (habitat bottom) (seasonal_availability
warm_months)
187 (open_season 21022) (close_season 21231) (size_min 14)
188 (limit 10) (fishing_type bottom) (fishing_location offshore_federal_waters)
189 (best_trip day) (desireability 3)
190)
191 (fish (species ling) (habitat mud bottom) (seasonal_availability winter)
192 (open_season 20101) (close_season 21231) (size_min 0)
193 (limit 500) (fishing_type bottom) (fishing_location offshore)
194 (best_trip day) (desireability 2)
195)
196 (fish (species ling) (habitat mud bottom) (seasonal_availability winter)
197 (open_season 20101) (close_season 21231) (size_min 0)
198 (limit 500) (fishing_type bottom) (fishing_location offshore_federal_waters)
199 (best_trip day) (desireability 2)
200)
201)

• Now all I need to do it prompt the user for a date, and I can let clips pull out all the fish I can fish for on that date, by comparing the opening an close dates for the
season. The only problem is that CLIPS has no date data type. So that leaved me to make a function that would test dates and return true. This was done as follows:

 29 (deftemplate FISH::season
 30 (slot description) (slot start_date) (slot end_date)
 31)
 32 (deftemplate FISH::date
 33 (slot categ (type SYMBOL) (allowed-symbols today start_date end_date))
 34 (slot day (type INTEGER) (range 1 31))
 35 (slot month (type INTEGER) (range 1 12))
 36 (slot dateint (type INTEGER)(range 20101 21231)) ; (dateint - 20000) is the date
 37)
 38
 39 (deffunction FISH::openseason (?start ?end ?today)
 40 (if (> ?start ?end)
 41 then
 42 (or
 43 (and (>= ?today ?start) (<= ?today 21231))
 44 (and (>= ?today 20101) (<= ?today ?end))
 45)
 46 else (and (>= ?today ?start) (<= ?today ?end))
 47)
 48)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 7 (defrule FISH::getdate
 8 =>
 9 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 10 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 11 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 12 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 13 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 14 (printout t crlf "Enter the Date" crlf "What is the Month (as an integer) ==>")
 15 (bind ?month (read))
 16 (printout t crlf "What is the Day (as an integer)==> ")
 17 (bind ?day (read))
 18 (bind ?day2 (+ ?day 10000))
 19 (bind ?month2 (+ (* ?month 100) 10000))
 20 (assert (date (categ today) (month ?month) (day ?day) (dateint (+ ?month2 ?day2))))
 21)

• The rule getdate does the math needed to create an integer which can be compared in the function openseason. Poof and gone is a huge unwieldy decision tree, and
instead CLIPS does the job for us.

<!--

/* function to open any folds
containing a jumped-to line

before jumping to it */
function JumpToLine()

{
 var lineNum;

 lineNum =
window.location.hash;

 lineNum = lineNum.substr(1);
/* strip off '#' */

 if (lineNum.indexOf('L') ==
-1) {

 lineNum = 'L'+lineNum;
 }

 lineElem =
document.getElementById(line

Num);
 /* Always jump to new

location even if the line was
hidden inside a fold, or

 * we corrected the raw
number to a line ID.

 */
 if (lineElem) {

 lineElem.scrollIntoView(true
);

Artificial Intelligence: Expert
Systems with CLIPS and Free

Software

LIU/Brooklyn Artificial
Intelligence

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 }
 return true;

}
if ('onhashchange' in window)

{
 window.onhashchange =

JumpToLine;
}

-->December 2015
•

Full Overview - how is the weather and can we make a few bucks.
• With a basic understanding, we can now look at the full code. There are a few things that the novice CLIPS programmer (such as myself) needs to understand.

• At its heart and soul, CLIPS is a huge regular expression engine. In many regards, using it reminds me Unix power tools like GAWK and even Perl. The
top of every rule, CLIPS defrules has a pattern that has to be matched according to a specific set of, not nearly obvious, rules.

• On the other hand, CLIP leans heavily on the functional language paradigm. I think that the authors of CLIP view its shell like many LISP coders view
EMACS, but EMACS is a better editor.

• Getting started with CLIPS is easy. Learning it well, that can take a long time. It is a fickle programming language and having a good programming text
editor is vital to spotting the inevitable lost parenthesis.

• Good programming languages shape the way that you thing. CLIPS does this. After knocking your head around with it for a while, you begin to see its
roots in the Artificial Intelligence area. Standard textbooks become easier to read and understand. And new possible solutions to problems arise as you
develop a sense of what it does.

• Every TIME you assert a fact into a scope, the entire scope is reevaluated in full. You can't say this enough.
• Every TIME you assert a fact into a scope, the entire scope is reevaluated in full. You can't say this enough.
• Every TIME you assert a fact into a scope, the entire scope is reevaluated in full. You can't say this enough.
• Every TIME you assert a fact into a scope, the entire scope is reevaluated in full. You can't say this enough. Learning CLIPS means learning how its

engine works.
• CLIPS has the ability to create modules that allow for results to be passed from one scope to another. I leveraged this ability. Without that ability, I

would have fallen back on procedural programming techniques that for the purposes of this project, was not my goal. We have four modules: FISH,
WEATHER, TRIP, and REPORT

• Source Code Links:

fish2.clp : The main program that loads everything else and runs. You can run it in GNU/Linux with the command clips -f2 ./fish2.dat

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

• The fishing program uses a scoring system to evaluate which would be the best trip to take on a given day under a give set of weather conditions. Each species has a
point assigned from 1-5 of desirability. If a trip can target more than one species, good! Then the scores for each species is added up. The best trip is notated and all
alternatives are also listed.

• The program is built with expansion in mind, so those extra facts you see are not useless. They just represent features not implemented.
• Bonus seasons are implemented. So striped bass get a bump during the likely times of the fall and spring runs. the code works, but I would like to make it work a little

better.
• Areas of expansion would include a module for bonus points for hot news. We should have bonus points for point good reports on the internet which will drive sales.

One might add daily results and crew reports to make bonus points for different captains. Not all captains are the same. GIS and mapping information, which is
currently built into postgres, is also possible with some work. We can also include a section for bait, what are the fish biting today? Weather can be expaned. Porgies
don't bite when it rains more than 4 inches. Tautog don't bite until water temperature drops below 56 F. So this topic can include a lot more work.

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

<!--

/* function to open any folds containing a jumped-to line before jumping to it */
function JumpToLine()
{
 var lineNum;
 lineNum = window.location.hash;
 lineNum = lineNum.substr(1); /* strip off '#' */

 if (lineNum.indexOf('L') == -1) {
 lineNum = 'L'+lineNum;
 }
 lineElem = document.getElementById(lineNum);
 /* Always jump to new location even if the line was hidden inside a fold, or
 * we corrected the raw number to a line ID.
 */
 if (lineElem) {
 lineElem.scrollIntoView(true);
 }
 return true;
}
if ('onhashchange' in window) {
 window.onhashchange = JumpToLine;
}

--> 1 (load fish.dat)
 2 (load fish2.dat)
 3 (load fish3.dat)
 4 (load fish4.dat)
 5 (reset)
 6 (focus FISH)
 7 (defrule FISH::getdate
 8 =>
 9 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 10 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 11 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 12 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 13 (printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf)
 14 (printout t crlf "Enter the Date" crlf "What is the Month (as an integer)

==>")
 15 (bind ?month (read))
 16 (printout t crlf "What is the Day (as an integer)==> ")
 17 (bind ?day (read))
 18 (bind ?day2 (+ ?day 10000))
 19 (bind ?month2 (+ (* ?month 100) 10000))
 20 (assert (date (categ today) (month ?month) (day ?day) (dateint (+ ?month2 ?

day2))))
 21)
 22
 23 (defrule FISH::whatsonthemenu
 24 (fish (species ?sp) (open_season ?open) (close_season ?close)
 25 (habitat $?hb) (seasonal_availability ?sa) (size_min ?min) (limit ?lm)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 26 (fishing_type ?tp) (fishing_location ?loc) (best_trip $?dn)
(desireability ?ds))
 27 (date (dateint ?today))
 28 (test (openseason ?open ?close ?today))
 29 =>
 30 (assert (menu (species ?sp) (habitat $?hb) (seasonal_availability ?sa)

(size_min ?min) (limit ?lm)
 31 (fishing_type ?tp) (fishing_location ?loc) (best_trip $?dn)

(desireability ?ds) (bonus OFF)))
 32 (printout t crlf ?sp " is open now. They are currently at " ?hb " and best

fished during the " ?sa " season. " crlf)
 33 (printout t "We can fish for them by " ?tp " fishing " ?loc ". " crlf)
 34 (printout t "You can have " ?lm " fish and it is best to fish for them

during the " $?dn " trip(s). " crlf)
 35 (printout t "On a scale of 1-5 they are desireable: " ?ds crlf crlf)
 36)
 37
 38 (defrule FISH::testrule
 39 (menu (seasonal_availability $sa3))
 40 =>
 41 (printout t "==> " $sa3 crlf)
 42)
 43
 44 (defrule FISH::goodseason
 45 ?f1 <- (menu (species ?sp) (habitat $?hb) (seasonal_availability ?sa)

(size_min ?min) (limit ?lm)
 46 (fishing_type ?tp) (fishing_location ?loc) (best_trip $?dn)

(desireability ?ds)(bonus OFF))
 47 (date (dateint ?today))
 48 (season (description ?sa)(start_date ?open) (end_date ?close))
 49 (test (openseason ?open ?close ?today))
 50 =>
 51 (bind ?ds (+ ?ds 2)) ; GOOD SEASON MORE DESIRABLE BY 2
 52 (retract ?f1)
 53 (assert (menu (species ?sp) (habitat $?hb) (seasonal_availability ?sa)

(size_min ?min) (limit ?lm)
 54 (fishing_type ?tp) (fishing_location ?loc) (best_trip

?dn) (desireability ?ds) (bonus ON))
 55)
 56 (printout t "Oh we are in Season - even better. This is " ?sa " SEASON"

crlf)
 57 (printout t ?sp " is open now. They are currently at " ?hb " and best

fished NOW!. " crlf)
 58 (printout t "We can fish for them by " ?tp " fishing " ?loc ". " crlf)
 59 (printout t "You can have " ?lm " fish and it is best to fish for them

during the " $?dn " trip(s). " crlf)
 60 (printout t "and they are now at desireable level: " ?ds crlf crlf)
 61)
 62
 63 ;WEATHER MODULE
 64 (focus WEATHER)
 65
 66 (defrule WEATHER::WAVEHEIGHT

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 67 =>
 68 (printout t "What is the expected Wave Heights today =>" crlf)
 69 (bind ?height (read))
 70 (assert (wave_height (height ?height)))
 71)
 72
 73 (defrule WEATHER::SWELL
 74 =>
 75 (printout t "What Swell Period in Seconds =>" crlf)
 76 (bind ?sec (read))
 77 (assert (swells(seconds ?sec)))
 78)
 79
 80 (defrule WEATHER::WIND
 81 =>
 82 (printout t "What is the expected wind speed in knots =>" crlf)
 83 (bind ?speed (read))
 84 (printout t "From what direction is the wind from? (NORTH SOUTH EAST or

WEST) =>" crlf)
 85 (bind ?direction (read))
 86 (assert (wind_speed (speed ?speed)(dir ?direction)))
 87)
 88
 89 (defrule WEATHER::CANCEL
 90 (or (wave_height (height ?ht&:(>= ?ht 10)))
 91 (wind_speed (speed ?sp&:(>= ?sp 30)))
 92 (wind_speed (speed ?sp&:(>= ?sp 20)) (dir EAST))
 93 (swells (seconds ?sec&:(>= ?sec 6)))
 94)
 95 =>
 96 (assert (acceptable_condition (locale cancel)))
 97 (printout t "Weather is too harsh to fish" crlf)
 98 (exit)
 99)
100
101 (defrule WEATHER::HIGHWINDS
102 (wind_speed (speed ?sp&:(and (>= ?sp 20) (< ?sp 30))) (dir ~EAST))
103 =>
104 (assert (acceptable_condition (locale inshore) (fsh_type bottom)))
105)
106
107 (defrule WEATHER::MODERATEWINDS
108 (wind_speed (speed ?sp&:(and(>= ?sp 15) (< ?sp 20))) (dir WEST))
109 =>
110 (assert (acceptable_condition (locale offshore) (fsh_type bottom)))
111 (assert (acceptable_condition (locale offshore_federal_waters) (fsh_type

bottom)))
112 (assert (acceptable_condition(locale inshore) (fsh_type bottom)))
113 (assert (acceptable_condition(locale inshore) (fsh_type game)))
114 (assert (acceptable_condition(locale inshore) (fsh_type jigging)))
115 (assert (acceptable_condition(locale inshore) (fsh_type wreck)))
116)
117

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

118 (defrule WEATHER::MODERATE_HARSH_WINDS
119 (wind_speed (speed ?sp&:(and(>= ?sp 15) (< ?sp 20))) (dir ~WEST))
120 =>
121 (assert (acceptable_condition(locale inshore) (fsh_type game)))
122 (assert (acceptable_condition(locale inshore) (fsh_type bottom)))
123)
124
125 (defrule WEATHER::CALMSEAS
126 (wind_speed (speed ?sp&:(< ?sp 15)))
127 =>
128 (assert (acceptable_condition (locale offshore_federal_waters) (fsh_type

bottom)))
129 (assert (acceptable_condition (locale offshore_federal_waters) (fsh_type

game)))
130 (assert (acceptable_condition (locale offshore_federal_waters) (fsh_type

jigging)))
131 (assert (acceptable_condition (locale offshore_federal_waters) (fsh_type

wreck)))
132 (assert (acceptable_condition (locale offshore) (fsh_type bottom)))
133 (assert (acceptable_condition (locale offshore) (fsh_type game)))
134 (assert (acceptable_condition (locale offshore) (fsh_type jigging)))
135 (assert (acceptable_condition (locale offshore) (fsh_type wreck)))
136 (assert (acceptable_condition (locale inshore) (fsh_type bottom)))
137 (assert (acceptable_condition (locale inshore) (fsh_type game)))
138 (assert (acceptable_condition (locale inshore) (fsh_type jigging)))
139 (assert (acceptable_condition (locale inshore) (fsh_type wreck)))
140 (assert (acceptable_condition (locale open_ocean) (fsh_type bottom)))
141 (assert (acceptable_condition (locale open_ocean) (fsh_type game)))
142 (assert (acceptable_condition (locale open_ocean) (fsh_type jigging)))
143 (assert (acceptable_condition (locale open_ocean) (fsh_type wreck)))
144)
145
146 (focus TRIP)
147 (defrule TRIP::all_possible_trips
148 ?f1 <- (menu (species ?spec) (habitat $?hab) (size_min ?min)
149 (limit ?lim) (fishing_type ?ft) (fishing_location ?loc) (best_trip $?)

(desireability ?ds))
150 ?f2 <- (acceptable_condition (locale ?loc) (fsh_type ?ft))
151
152 =>
153 (retract ?f1)
154 (assert (all_trips (location ?loc) (method ?ft) (species ?spec)

(desireability ?ds) (check 1)))
155)
156
157
158 (defrule TRIP::make_table
159 ?f1 <- (all_trips (location ?s_loc) (method ?s_ft))
160 =>
161 (assert (table (location ?s_loc) (method ?s_ft)))
162)
163
164 (defrule TRIP::eval_function_new

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

165 ?f1 <- (table (location ?s_loc) (method ?s_ft))
166 ?f2 <- (all_trips (location ?s_loc) (method ?s_ft) (species $?spec)

(desireability ?ds) (check 1))
167 (not (exists (trips (location ?s_loc) (method ?s_ft)))) ;restrict to new

entries only
168 =>
169 (modify ?f2 (check -1));
170 (assert (trips (location ?s_loc) (method ?s_ft) (species ?spec)

(desireability ?ds)))
171)
172
173 (defrule TRIP::eval_function_cont
174 ?f3 <- (trips (location ?s_loc) (method ?s_ft) (species $?species)

(desireability ?sum)) ;current data in trips
175 ?f1 <- (table (location ?s_loc) (method ?s_ft))
176 ?f2 <- (all_trips (location ?s_loc) (method ?s_ft) (species $?spec)

(desireability ?ds) (check 1))
177 =>
178 (modify ?f2 (check -1))
179 (retract ?f3)
180 (assert (trips (location ?s_loc) (method ?s_ft) (species =(create$?species

?spec)) (desireability =(+ ?sum ?ds)))) ; unify old data with new data
181)
182
183 (defrule TRIP::send_report
184 (not (exists (menu (species ?))))
185 (not (exists(all_trips (check 1))));all trips processed
186 (all_trips (check -1)); and at least one finished
187 ?f1 <- (print_report (value off))
188 =>
189 (modify ?f1 (value on))
190 (printout t "TURNING ON REPORT" crlf)
191)
192
193 (focus REPORT)
194
195
196 (defrule REPORT::MAXIE
197 ?f2 <- (report_phase header)
198 ?f1 <- (tops ?)
199 (trips (location ?s_loc) (method ?s_ft) (species $?species) (desireability

?MAX))
200 (not (trips (desireability ?LOWER&:(< ?MAX ?LOWER))))
201 =>
202 (retract ?f2)
203 (retract ?f1)
204 (assert (report_phase choice))
205 (assert (tops ?MAX))
206 (printout t "MAX PROFIT Points is ==>" ?MAX crlf crlf crlf crlf)
207 (printout t "*********Best Trip**********" crlf)
208)
209
210 (defrule REPORT::MAXIE_PRINT

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

211 ?f2<-(report_phase choice)
212 ?f1<-(tops ?MAX)
213 (trips (location ?s_loc) (method ?s_ft) (species $?species) (desireability

?MAX))
214 =>
215 (retract ?f2)
216 (assert (report_phase body))
217 (format t "Trip: %-25s Method: %-6s Species: %-25s" ?s_loc ?s_ft

(implode$?species))
218 (printout t crlf "*********Best Trip**********" crlf crlf crlf

"---"
crlf)
219)
220
221 (defrule REPORT::final_report
222 (report_phase body)
223 (trips (location ?s_loc) (method ?s_ft) (species $?species) (desireability

?ds))
224 =>
225 (format t "Trip: %-25s Method: %-6s Species: %-25s" ?s_loc ?s_ft

(implode$?species))
226 (printout t crlf)
227 (format t "Profit Points: %4d" ?ds)
228 (printout t crlf crlf)
229)
230
231
232 (get-focus-stack)
233 (clear-focus-stack)
234 (reset)
235 (focus FISH WEATHER TRIP REPORT)
236 (run)
237
238

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

<!--

/* function to open any folds containing a jumped-to line before jumping to it */
function JumpToLine()
{
 var lineNum;
 lineNum = window.location.hash;
 lineNum = lineNum.substr(1); /* strip off '#' */

 if (lineNum.indexOf('L') == -1) {
 lineNum = 'L'+lineNum;
 }
 lineElem = document.getElementById(lineNum);
 /* Always jump to new location even if the line was hidden inside a fold, or
 * we corrected the raw number to a line ID.
 */
 if (lineElem) {
 lineElem.scrollIntoView(true);
 }
 return true;
}
if ('onhashchange' in window) {
 window.onhashchange = JumpToLine;
}

--> 1 (set-dynamic-constraint-checking TRUE)
 2 (defmodule FISH (export deftemplate menu))
 3 (deftemplate FISH::fish
 4 (slot species)
 5 (multislot habitat)
 6 (slot seasonal_availability) ;date of fish runs
 7 (slot open_season) ;the date legal open season begins
 8 (slot close_season) ;the date the legal season closes
 9 (slot size_min) ;minimum legal size allowed to be taken
 10 (slot limit) ;legal maximum allowed number of fish allowed
 11 (slot fishing_type) ;bottom or gamefishing
 12 (slot fishing_location) ;inshore or offshore
 13 (multislot best_trip) ; best to fish day or night
 14 (slot desireability) ; how much people like to fish
 15)
 16
 17 (deftemplate FISH::menu
 18 (slot species)
 19 (multislot habitat)
 20 (slot seasonal_availability) ;date of fish runs
 21 (slot size_min) ;minimum legal size allowed to be taken
 22 (slot limit) ;legal maximum allowed number of fish allowed
 23 (slot fishing_type) ;bottom or gamefishing
 24 (slot fishing_location) ;inshore or offshore
 25 (multislot best_trip) ; best to fish day or night
 26 (slot desireability) ; how much people like to fish
 27 (slot bonus (type SYMBOL) (allowed-symbols ON OFF)) ; how much people like

to fish

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 28)
 29 (deftemplate FISH::season
 30 (slot description) (slot start_date) (slot end_date)
 31)
 32 (deftemplate FISH::date
 33 (slot categ (type SYMBOL) (allowed-symbols today start_date end_date))
 34 (slot day (type INTEGER) (range 1 31))
 35 (slot month (type INTEGER) (range 1 12))
 36 (slot dateint (type INTEGER)(range 20101 21231)) ; (dateint - 20000)

is the date
 37)
 38
 39 (deffunction FISH::openseason (?start ?end ?today)
 40 (if (> ?start ?end)
 41 then
 42 (or
 43 (and (>= ?today ?start) (<= ?today 21231))
 44 (and (>= ?today 20101) (<= ?today ?end))
 45)
 46 else (and (>= ?today ?start) (<= ?today ?end))
 47)
 48)
 49
 50 (deffacts FISH::fishing_seasons
 51 (season (description spring_bass_run) (start_date 20401) (end_date

20515))
 52 (season (description fall_bass_run) (start_date 21001) (end_date

21201))
 53 (season (description winter) (start_date 21215) (end_date 20315))
 54 (season (description winter_tautog) (start_date 21015) (end_date

20315))
 55 (season (description spring_tautog) (start_date 20401) (end_date

20515))
 56 (season (description warm_months) (start_date 20415) (end_date 21101))
 57)
 58
 59
 60 (deffacts FISH::fishes
 61 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability

winter_tautog)
 62 (open_season 21022) (close_season 21231) (size_min 24)
 63 (limit 4) (fishing_type bottom) (fishing_location offshore)
 64 (best_trip day) (desireability 5)
 65)
 66 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability

winter_tautog)
 67 (open_season 21022) (close_season 21231) (size_min 24)
 68 (limit 4) (fishing_type bottom) (fishing_location

offshore_federal_waters)
 69 (best_trip day) (desireability 5)
 70)
 71 (fish (species tautog) (habitat bottom wrecks) (seasonal_availability

winter_tautog)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

 72 (open_season 21022) (close_season 21231) (size_min 24)
 73 (limit 4) (fishing_type bottom) (fishing_location inshore)
 74 (best_trip day) (desireability 2)
 75)
 76 (fish (species striped_bass) (habitat inshore current rocks)

(seasonal_availability spring_bass_run)
 77 (open_season 20101) (close_season 21231) (size_min 31)
 78 (limit 1) (fishing_type game) (fishing_location inshore)
 79 (best_trip day night) (desireability 4)
 80)
 81 (fish (species striped_bass) (habitat inshore current rocks)

(seasonal_availability fall_bass_run)
 82 (open_season 20101) (close_season 21231) (size_min 31)
 83 (limit 1) (fishing_type game) (fishing_location inshore)
 84 (best_trip day night) (desireability 4)
 85)
 86 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 87 (open_season 20501) (close_season 20831) (size_min 10)
 88 (limit 30) (fishing_type bottom) (fishing_location inshore)
 89 (best_trip day) (desireability 3)
 90)
 91 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 92 (open_season 20501) (close_season 20831) (size_min 10)
 93 (limit 30) (fishing_type bottom) (fishing_location offshore)
 94 (best_trip day) (desireability 4)
 95)
 96 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
 97 (open_season 20501) (close_season 20831) (size_min 10)
 98 (limit 30) (fishing_type bottom) (fishing_location

offshore_federal_waters)
 99 (best_trip day) (desireability 4)
100)
101 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
102 (open_season 20901) (close_season 21031) (size_min 10)
103 (limit 45) (fishing_type bottom) (fishing_location offshore)
104 (best_trip day night) (desireability 4)
105)
106 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
107 (open_season 20901) (close_season 21031) (size_min 10)
108 (limit 45) (fishing_type bottom) (fishing_location

offshore_federal_waters)
109 (best_trip day night) (desireability 4)
110)
111 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
112 (open_season 20901) (close_season 21031) (size_min 10)
113 (limit 45) (fishing_type bottom) (fishing_location inshore)
114 (best_trip day night) (desireability 3)
115)
116 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
117 (open_season 21101) (close_season 21231) (size_min 10)
118 (limit 30) (fishing_type bottom) (fishing_location inshore)
119 (best_trip day) (desireability 3)
120)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

121 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
122 (open_season 21101) (close_season 21231) (size_min 10)
123 (limit 30) (fishing_type bottom) (fishing_location offshore)
124 (best_trip day) (desireability 4)
125)
126 (fish (species scup) (habitat bottom) (seasonal_availability warm_months)
127 (open_season 21101) (close_season 21231) (size_min 10)
128 (limit 30) (fishing_type bottom) (fishing_location

offshore_federal_waters)
129 (best_trip day) (desireability 4)
130)
131 (fish (species fluke) (habitat bottom) (seasonal_availability

warm_months)
132 (open_season 20517) (close_season 20921) (size_min 18)
133 (limit 5) (fishing_type bottom) (fishing_location inshore)
134 (best_trip day) (desireability 3)
135)
136 (fish (species bluefish) (habitat open_water current)

(seasonal_availability all_year)
137 (open_season 20101) (close_season 21231) (size_min 0)
138 (limit 500) (fishing_type game) (fishing_location inshore)
139 (best_trip day) (desireability 2)
140)
141 (fish (species bluefish) (habitat open_water current)

(seasonal_availability all_year)
142 (open_season 20101) (close_season 21231) (size_min 12)
143 (limit 15) (fishing_type game) (fishing_location offshore)
144 (best_trip day) (desireability 3)
145)
146 (fish (species bluefish) (habitat open_water current)

(seasonal_availability all_year)
147 (open_season 20101) (close_season 21231) (size_min 12)
148 (limit 15) (fishing_type game) (fishing_location

offshore_federal_waters)
149 (best_trip day) (desireability 3)
150)
151 (fish (species cod) (habitat open_water) (seasonal_availability winter)
152 (open_season 20101) (close_season 21231) (size_min 22)
153 (limit 10) (fishing_type bottom) (fishing_location offshore)
154 (best_trip day) (desireability 3)
155)
156 (fish (species cod) (habitat open_water) (seasonal_availability winter)
157 (open_season 20101) (close_season 21231) (size_min 22)
158 (limit 10) (fishing_type bottom) (fishing_location

offshore_federal_waters)
159 (best_trip day) (desireability 3)
160)
161 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability

warm_months)
162 (open_season 20715) (close_season 21031) (size_min 14)
163 (limit 8) (fishing_type bottom) (fishing_location inshore)
164 (best_trip day) (desireability 3)
165)

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

166 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability
warm_months)
167 (open_season 21101) (close_season 21231) (size_min 14)
168 (limit 10) (fishing_type bottom) (fishing_location inshore)
169 (best_trip day) (desireability 3)
170)
171 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability

warm_months)
172 (open_season 20715) (close_season 21031) (size_min 14)
173 (limit 8) (fishing_type bottom) (fishing_location offshore)
174 (best_trip day) (desireability 3)
175)
176 (fish (species black_sea_bass) (habitat bottom) (seasonal_availability

warm_months)
177 (open_season 21101) (close_season 21231) (size_min 14)
178 (limit 10) (fishing_type bottom) (fishing_location offshore)
179 (best_trip day) (desireability 3)
180)
181 (fish (species black_sea_bass_federal) (habitat bottom)

(seasonal_availability warm_months)
182 (open_season 20515) (close_season 20921) (size_min 14)
183 (limit 10) (fishing_type bottom) (fishing_location

offshore_federal_waters)
184 (best_trip day) (desireability 3)
185)
186 (fish (species black_sea_bass_federal) (habitat bottom)

(seasonal_availability warm_months)
187 (open_season 21022) (close_season 21231) (size_min 14)
188 (limit 10) (fishing_type bottom) (fishing_location

offshore_federal_waters)
189 (best_trip day) (desireability 3)
190)
191 (fish (species ling) (habitat mud bottom) (seasonal_availability

winter)
192 (open_season 20101) (close_season 21231) (size_min 0)
193 (limit 500) (fishing_type bottom) (fishing_location offshore)
194 (best_trip day) (desireability 2)
195)
196 (fish (species ling) (habitat mud bottom) (seasonal_availability

winter)
197 (open_season 20101) (close_season 21231) (size_min 0)
198 (limit 500) (fishing_type bottom) (fishing_location

offshore_federal_waters)
199 (best_trip day) (desireability 2)
200)
201)
202

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

<!--

/* function to open any folds containing a jumped-to line before jumping to it */
function JumpToLine()
{
 var lineNum;
 lineNum = window.location.hash;
 lineNum = lineNum.substr(1); /* strip off '#' */

 if (lineNum.indexOf('L') == -1) {
 lineNum = 'L'+lineNum;
 }
 lineElem = document.getElementById(lineNum);
 /* Always jump to new location even if the line was hidden inside a fold, or
 * we corrected the raw number to a line ID.
 */
 if (lineElem) {
 lineElem.scrollIntoView(true);
 }
 return true;
}
if ('onhashchange' in window) {
 window.onhashchange = JumpToLine;
}

--> 1 (defmodule WEATHER (import FISH deftemplate menu) (export deftemplate
acceptable_condition))
 2 (deftemplate WEATHER::acceptable_condition ;these are viable non-species

specific fishing options based on weather
 3 (slot locale (type SYMBOL)(allowed-symbols cancel inshore offshore

open_ocean offshore_federal_waters))
 4 (slot fsh_type (type SYMBOL)(allowed-symbols bottom game jigging wreck))
 5)
 6
 7 (deftemplate WEATHER::wave_height
 8 (slot height (type NUMBER))
 9)
10 (deftemplate WEATHER::swells
11 (slot seconds (type NUMBER))
12)
13 (deftemplate WEATHER::wind_speed
14 (slot speed (type NUMBER))
15 (slot dir (type SYMBOL)(allowed-symbols EAST WEST NORTH SOUTH))
16)
17

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

<!--

/* function to open any folds containing a jumped-to line before jumping to it */
function JumpToLine()
{
 var lineNum;
 lineNum = window.location.hash;
 lineNum = lineNum.substr(1); /* strip off '#' */

 if (lineNum.indexOf('L') == -1) {
 lineNum = 'L'+lineNum;
 }
 lineElem = document.getElementById(lineNum);
 /* Always jump to new location even if the line was hidden inside a fold, or
 * we corrected the raw number to a line ID.
 */
 if (lineElem) {
 lineElem.scrollIntoView(true);
 }
 return true;
}
if ('onhashchange' in window) {
 window.onhashchange = JumpToLine;
}

--> 1 (defmodule TRIP (export deftemplate trips) (import FISH deftemplate menu)
(import WEATHER deftemplate acceptable_condition))
 2
 3 (deftemplate TRIP::all_trips
 4 (slot location) (slot method) (multislot species) (slot desireability)

(slot check (type INTEGER))
 5)
 6 (deftemplate TRIP::table
 7 (slot location) (slot method)
 8)
 9
10 (deftemplate TRIP::trips
11 (slot location) (slot method) (multislot species) (slot desireability)
12)
13
14 (deftemplate TRIP::spec_tmp (multislot spec))
15 (deftemplate TRIP::print_report (slot value))
16 (deffacts TRIP::inital
17 (spec_tmp)
18 (sum 0)
19 (print_report (value off))
20)
21

December
2015

Artificial Intelligence: Expert Systems with CLIPS
and Free Software

LIU/Brooklyn Artifical
Intelligence

<!--

/* function to open any folds containing a jumped-to line before jumping to it */
function JumpToLine()
{
 var lineNum;
 lineNum = window.location.hash;
 lineNum = lineNum.substr(1); /* strip off '#' */

 if (lineNum.indexOf('L') == -1) {
 lineNum = 'L'+lineNum;
 }
 lineElem = document.getElementById(lineNum);
 /* Always jump to new location even if the line was hidden inside a fold, or
 * we corrected the raw number to a line ID.
 */
 if (lineElem) {
 lineElem.scrollIntoView(true);
 }
 return true;
}
if ('onhashchange' in window) {
 window.onhashchange = JumpToLine;
}

-->1 (defmodule REPORT (import TRIP deftemplate trips))
2 (deffacts REPORT::initial_facts
3 (report_phase header)
4 (tops 0)
5)
6

	December 2015
	Artificial Intelligence: Expert Systems with CLIPS and Free Software
	LIU/Brooklyn Artifical Intelligence
	Introductions
	Forward Chaining Methodology and Graph
	December 2015
	Artificial Intelligence: Expert Systems with CLIPS and Free Software
	LIU/Brooklyn Artificial Intelligence

	Fishing Season Schedule strategy
	<!-- /* function to open any folds containing a jumped-to line before jumping to it */ function JumpToLine() { var lineNum; lineNum = window.location.hash; lineNum = lineNum.substr(1); /* strip off '#' */ if (lineNum.indexOf('L') == -1) { lineNum = 'L'+lineNum; } lineElem = document.getElementById(lineNum); /* Always jump to new location even if the line was hidden inside a fold, or * we corrected the raw number to a line ID. */ if (lineElem) { lineElem.scrollIntoView(true); } return true; } if ('onhashchange' in window) { window.onhashchange = JumpToLine; } -->December 2015
	Artificial Intelligence: Expert Systems with CLIPS and Free Software
	LIU/Brooklyn Artificial Intelligence

	Let Clips do the work!!
	<!-- /* function to open any folds containing a jumped-to line before jumping to it */ function JumpToLine() { var lineNum; lineNum = window.location.hash; lineNum = lineNum.substr(1); /* strip off '#' */ if (lineNum.indexOf('L') == -1) { lineNum = 'L'+lineNum; } lineElem = document.getElementById(lineNum); /* Always jump to new location even if the line was hidden inside a fold, or * we corrected the raw number to a line ID. */ if (lineElem) { lineElem.scrollIntoView(true); } return true; } if ('onhashchange' in window) { window.onhashchange = JumpToLine; } -->December 2015
	Artificial Intelligence: Expert Systems with CLIPS and Free Software
	LIU/Brooklyn Artificial Intelligence

	Full Overview - how is the weather and can we make a few bucks.

