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Dedication

This book is dedicated to James S. Farris, one of the

foremost scholars of phylogenetic biology in the

twentieth century. It is now thirty-five years since

the two-paper introduction of Wagner parsimony1.

Wagner parsimony paved the way for all modern

parsimony approaches, including the more general

algorithms of Fitch and Sankoff. These landmark

publications by Dr. Farris are among the best

known and highest-cited papers in systematic

biology. At the same time, and little known to

either the biological or mathematical communities,

was Dr. Farris’s 1970 development2 of what has

come to be known as the Farris transform3. This

transformation4 was rediscovered in the context of

phylogenetics twice, as well as in Wolf Prize

winner Mikhail Gromov’s work on hyperbolic

groups, for which it was later dubbed the Gromov

product. The Farris transform also appears, in

‘disguise’, in distance geometry, where it is known

as the covariance mapping.

Dr. Farris has received the honor Doctor of

Philosophy honoris causa from the University of

Helsinki, Finland.

Personal Dedication

I first met Steve Farris in 1990, at the International

Congress of Systematic and Evolutionary Biology

meetings held in College Park, Maryland. I was

anxious to meet the man whose work had so

affected me already, despite having just started my

PhD in 1989. Axel Meyer, who was then at Stony

Brook, introduced us. Steve had taught statistics at

Stony Brook for many years (although few know

that he was trained as a systematic ichthyologist). I

showed Steve some calculations and graphics I

had made with Brent Mishler that we thought had

bearing on the issue of consistency of parsimony

(see Chapter 1, for example). Seeing an opportu-

nity, Steve spontaneously proceeded to persuade

organizers of a Hennig Society symposium at the

Congress to let me fill an empty slot. I was lucky

enough to have brought overheads. I gave the talk,

and suffice it to say that I made some friends, and

estranged some others. But this was the true start

of my career. Controversy has never been slight in

the field of phylogenetics, and Steve has almost

never been slight (except when he was young, or

in that photo in David Hull’s book), and certainly

never anything but controversial. Like it or not,

debate, duel, divide, and conquer is one approach

to science. Regardless, we can thank Steve’s

relentless pursuit of what he thought was correct

for many thousands of papers in the literature

using parsimony approaches, as well as for many

others that argue against it.

Victor A. Albert

1 Kluge, A. G. and Farris, J. S. (1969). Quantitative phyletics

and the evolution of Anurans. Syst. Zool. 18: 1–32; Farris, J. S.

(1970). Methods for computing Wagner trees. Syst. Zool. 19:

83–92.
2 Farris, J. S., Kluge, A. G., and Eckhart, M. J. (1970).

A numerical approach to phylogenetic systematics. Syst. Zool. 19:

172–189.
3 Dress, A., Holland, B., Huber, K. T., Koolen, J. H., Moulton,

V. and Weyer-Menkoff, J. (2005). D Additive and D ultra-additive

maps, Gromov’s trees, and the Farris transform. Discrete Appl.

Math. 146: 51–73.
4 The similarity measure Sa ¼ 1�Da that one gets from a

dissimilarity measure D defined on a set of tree leaves (terminal

taxa) X containing leaf a by placing Da ¼ Dðx; yÞ �Dða; xÞ�
Dða; yÞ is the Farris transform of D relative to a. Here, a can be

interpreted as an outgroup root and the values of Dða; xÞ and
Dða; yÞ as the distances of leaves x and y from that root, in which

case �Da ¼ Dða; xÞ þDða; yÞ �Dðx; yÞ would be twice the dis-

tance of the last common ancestor of x and y from a.
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Preface

Parsimony analysis (cladistics) has long been one

of the most widely used methods of phylogenetic

inference in the fields of systematic and evolu-

tionary biology. Moreover, it has mathematical

attributes that lend itself for use with complex,

genomic-scale data sets. This book reviews philo-

sophical, statistical, methodological, and mathe-

matical aspects of parsimony analysis, and

demonstrates the potential that this powerful

hierarchical data-summarization method has for

both structural and functional genomic research.

The book is aimed primarily at graduate-level

students as well as professional researchers in the

fields of phylogenetics and phylogenomics (within

both the evolutionary and molecular biology

communities). However, mathematicians, statisti-

cians, and philosophers of science will also find the

contents of relevance and use.

Readers will discover among the chapters that

parsimony analysis does not represent a single

research view, but rather a variety of perspectives

all based upon a theme. I viewed it of great

importance to display this diversity in light of the

multiplicity of other phylogenetic methods that

have been developed over the years.

My aim with this volume has been to provide

parsimony analysis with a benchmark for its

current place in science and for judgment of

its progress into the future. Previous works

focusing on parsimony analysis are surprisingly

few given the extremely widespread use of parsi-

mony methods in the academic journal literature.

Those books that have been written are mainly

introductory treatises, i.e. geared for mid-upper

level university courses. A noteworthy exception is

Elliott Sober’s Reconstructing the Past: Parsimony,

Evolution, and Inference (1988, MIT Press), which

was written for a specialist audience. While there

exist advanced texts devoted to phylogenetic

analysis of morphological data, concepts of

species, cladistic methods in biogeography, and

mathematical aspects of phylogenetic inference,

there has been no book that specifically incorpo-

rates advanced material spanning philosophical,

methodological, and mathematical perspectives on

the relevance of parsimony analysis, particularly as

applied to the burgeoning field of genomic biology.

My work on this book began at the 21st annual

meeting of the Willi Hennig Society, held at the

Hanasaari Cultural Centre, Helsinki, Finland. I am

grateful to the various chapter authors for their

enthusiasm for the project. Mike Steel and David

Penny are acknowledged for winning the ‘‘First

Draft In Prize.’’ I thank Cécile Ané, Joe Felsenstein,

Mike Sanderson, Mark Simmons, and several

chapter authors for their thoughtful reviews of

one or more chapters. Other referees are listed

among chapter acknowledgments. Andreas Dress,

Katharina Huber, and Vincent Moulton kindly

contributed information on the Farris transform.

Finally, I thank Oxford University Press Commis-

sioning Editor Ian Sherman for immediate interest

in the project, and Editorial Assistants Abbie

Headon, Kerstin Demata and Production Editor

Anita Petrie for their assistance. Heartfelt thanks

also to Charlotte, Torben, and Siri for putting up

with me.

Victor A. Albert
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CHAPTER 1

Parsimony and phylogenetics in
the genomic age

Victor A. Albert

1.1 Parsimony inference

Parsimony (Ockham’s razor) as a method of in-

ference has a long history. Based upon a parsi-

mony argument, Copernicus maintained that his

heliocentric solar system theory was superior to

the geocentric one of Ptolemy because of its

greater simplicity. His reasoning was that Ptol-

emy’s theory required what amounted to inde-

pendent models for each planet’s movement

(extra parameters), whereas his own included the

simplifying factor of Earth–Sun movement for

each planet.1

According to Copernicus, his theory ‘‘follow[s]

Nature, who producing nothing vain or super-

fluous often prefers to endow one cause with

many effects . . . . ’’ An important point about

Copernicus’s argument is that it represented an

appeal to a universal law in nature, in other words,

God. Modern considerations of parsimonymethod-

ology, especially those following Lamarck and

Darwin, have by necessity been occupied with

other, non-deist justifications (Sober 2003).

Parsimony today stands as a method of infer-

ence from observations. For example, if one has a

coin with heads and tails, in the absence of any

prior information about the coin other than this

observation, the most parsimonious assumption

for the result of a coin toss is one or the other, i.e.

50/50 chance. If the toss were to be repeated 1000

times, one could establish a frequency-based

probability (with margin of error) that this were so.

If one were a Bayesian, and Joe had already tossed

the coin 1 000 times and gotten heads for 500 tos-

ses, this prior probability could be used to assess

the posterior probability.

In this simple example, parsimony, maximum

likelihood (the mean of a normal distribution, as

with 1 000 coin tosses), and posterior probability

all give the same answer. However, this was a very

simple example, involving a single object with

only two alternatives. The relationships between

parsimony, likelihood, and Bayesian inference

become much less obvious with more objects

(characters) and alternatives (states). A biological

example that Sober and Steel (2000) and Sober

(2003) have examined is Crick’s (1968) parsimony-

based claim that all life has a common ancestor.

Crick’s argument was that since many different

versions of the genetic code could have been pos-

sible, the common use of one (albeit with slight

modifications) by all extant organisms strongly

suggests their common ancestry. The idea is that

selection would operate against code changes in

descendants of a given code. In other words, one

beginning of life with this attribute is more parsi-

monious than many (say, X). But Crick’s is also a

likelihood argument (Sober 2003):

Pr(code universal in extant organisms j one
ancestor)>Pr(code universal in extant organ-

isms jX separate ancestors)

which takes the standard form Pr(OjM1)>

Pr(OjM2), comparing likelihoods of O observations

given models M. The formulation above follows

the Law of Likelihood (Royall 1997), which states

that a hypothesis with higher likelihood is prefer-

able over one with lesser.

1 Sober (e.g., Sober 1989, 2003; Chapter 3) has been an active

student of this history, and I acknowledge his work for this

example and several others I present below.
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As pointed out by Sober (2003), parsimony and

likelihood therefore provide identical evaluations

of Crick’s common ancestry hypothesis. However,

further equivalence postulates between parsimony

and likelihood, which I explore later, show the

issue to be much more complex.

1.2 Examples of modern
uses of parsimony

1.2.1 Curve fitting

Parsimony often plays a role in choosing among

models fit to a set of points on an x,y plane. For

example, a set of points might be regressed by a

line a bit sloppily, or by a parabola far better. The

question is, which model to accept? The latter

requires an extra adjustable parameter, so it could

be considered less parsimonious based on economy

of assumptions (PEA parsimony), i.e. Ockham’s

razor. On the other hand, a better fit to a parabola,

which takes the form of minimization of residual

variance between observations and model, is of

course the likelihood, Pr(OjM).

There are different criteria to choose among

models. In one example, an excellent parabolic fit

(or even a higher-order one) might have no logical

relationship to the data at hand (e.g. length of a

naked mRNA strand vs. number of free bases after

chemical degradation in vitro), and so a sloppy line

would be the better model (through PEA), albeit

representing data that may have been collected in

an error-prone manner.

Other data with better parabolic fit might have a

realistic basis—this would then suggest a defiance

of PEA in terms of the number of adjustable para-

meters. But how to decide between the models?

Two well-known criteria offer likelihood-based

methods for this choice, the Bayesian and Akaike

information criteria (BIC and AIC, respectively; see

Sober 2003; Felsenstein 2004). In these criteria,

parsimony takes the role of a penalty for com-

plexity (in terms of number of adjustable para-

meters, p, referring to PEA) among models, M, with

different log-likelihoods. For example, with the

BIC (the ratio of the average likelihoods for two

models), for the most likely parabola to be pre-

ferred, it must fit the observations, n, better

enough than the most likely linear model to avoid

the complexity factor, which is dependent on

sample size:

BICM ¼ �2logLM þ pM logn

Roughly equal likelihoods, L, will likely mean that

the line will win.

1.2.2 Trees of species or genes

Data points based on characters (e.g. nucleotides)

sampled from species or genes can be analyzed

under a hierarchic model in order to reconstruct

most parsimonious trees. This operation is, of

course, the central subject of this book. Most par-

simonious trees are hierarchies or partially col-

lapsed hierarchies with changes minimized across

all characters that could show evidence for

grouping. Here, groups are defined as two or more

species or genes partitioned from two or more

other species or genes. Not all character-state dis-

tributions can show evidence for grouping, and

the specifics of information use is a major differ-

ence between parsimony, likelihood, and distance

matrix methods. An illustration of this, as well as

what trees demonstrate among the methods, will

be useful.

For four species or genes, A, B, C, and D, there

are 2n� 1 different ways (in this case n¼ 4) for

binary characters to partition species or genes:

fABg fCDg fABCg fDg fABCDg fg
fACg fBDg fABDg fCg
fADg fBCg fACDg fBg

fBCDg fAg
Parsimony can use only 2n� 1� (nþ 1) partitions,

i.e. three—the two-item splits shown to the left.

A character (in isolation from other characters) that

argues for such a partition incurs one state change

between such splits, yielding two groups (Fig. 1.1).

None of the other partitions produce groups, al-

though the middle four 3 : 1 splits incur state

changes (these merely show a difference, between,

say D vs. A, B, and C; Fig. 1.1). No changes are

implied in the 4 : 0 split. However, likelihood

methods use all of the eight partitions (see below).

Distance matrix methods use information at rate

(n2� n)/2. As species/gene number increases, it

2 P AR S IMONY , P HY LOGENY , AND GENOM I C S



can be seen that 2n� 1� (nþ 1) approaches 2n� 1,

but that (n2� n)/2 lags far behind. Thus, for a

given large n (such as with genomic-scale estima-

tion of gene family phylogenies), parsimony uti-

lizes the majority of all available evidence while

only incorporating characters that could show

evidence for grouping.

Likelihood trees demonstrate relationships

among species or genes that maximize Pr(OjM),

where M is an evolutionary model. As such, like-

lihood methods need all of the observations O,

including the non-grouping partitions, to maxi-

mize the likelihood of the data; anything less

would compromise the calculation. Branches of

likelihood trees have lengths in terms of character-

state change probabilities. Parsimony trees display

relationships in terms of character-state changes

along branches. Distance matrix methods of

building trees show raw or model-adjusted dif-

ferences between species or genes.

These illustrations are not meant as justifica-

tions for one method over the other in phylo-

geny reconstruction; rather, my goal has been to

draw attention to differences in information use

among the different methods, and to what trees

derived from them demonstrate. This has often

been confused in the theoretical and biological

literature.

1.2.3 Phylogenetic models for which
parsimony and likelihood are equivalent

I have already illustrated simple, non-phylogenetic

models for which parsimony and likelihood are

equivalent. The first attempts to establish this

equivalence for phylogeny reconstruction were

those of Farris (1973) and Felsenstein (1973). These

models were different in that Farris’s was basically

Bayesian, with equal (flat) prior probabilities on all

trees, whereas Felsenstein’s was based on likeli-

hood. Farris solved for the tree topology and

character-state assignments at all points along

branches, while including no assumption about

rates of character-state change. Felsenstein’s model

summed over all possible character-state assign-

ments, but required low rates of character-state

change. According to Sober (Chapter 3), Farris’s

solution for topology plus character-state assign-

ments (additional parameters) renders it inequi-

valent to likelihood, but that Felsenstein’s

parsimony model does achieve a likelihood

equivalence. These considerations depend of

course on the type of likelihood under consider-

ation, for which there are several variants (Steel

and Penny 2000; Goloboff 2003). To echo the point

made by Steel and Penny (2000), both Farris’s and

Felsenstein’s models are likelihood equivalents,

just not for the same kind of likelihood.

Goldman’s (1990) parsimony-likelihood formu-

lation permits all branches to have the same

length—a very simple model. However, Goldman,

and indeed Sober (Chapter 3), assert its inequi-

valence with likelihood for basically the same

reasons as for Farris’s (1973) model: inference of

the topology plus something else, in this case, an-

cestral character states. However, it is worth

pointing out other views in the literature.

According to Farris (1986) and Goloboff (2003a),

ancestral states are not to be viewed as parameters:

Goldman (1990) decided that, even if the ancestral

reconstructions are not parameters, they ‘‘could be trea-

ted as if they were.’’ But they could also be treated (much

more properly) as if they were not a parameter. The

ancestral states are more like a kind of inferred observa-

tion (Farris, 1986). Parameters are instead those variables

of the process that determine the conditions of the

problem—the variables that determine the outcome of

1 2
A c c
B c c
C t c
D t t

A

D

C

B

A

B

C

D
∆ ∆

c↔t c↔t

Figure 1.1 Examples of two characters and their states that (1) can

show evidence for hierarchy vs. (2) evidence for difference. Trees

implied by 1 vs. 2 alone are also shown. D indicates where a

character-state change could occur. Note that only character 1 could

support two groups, a group defined as comprising two or more items;

character 2 can only support a fully collapsed tree in which one branch

(not a group) is different from the others. A–D, species or genes.

c/t, different pyrimidine bases.
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evolution, that is. Even if not observed, the ancestral

states are (just like observed states) part of that outcome.

[Goloboff 2003a, p. 100]

Goldman’s formulation of parsimony assumes that each

character type occurs with a probability equal to the

pathway with highest probability, among all the path-

ways that lead to that character type. If the probability of

change in each branch is low, this estimation produces

probabilities that are roughly proportional to the actual

probabilities (i.e., the ones obtained by summing); that is,

all the resulting character types are ranked in the same

order of increasing probability by both criteria. This,

however, does not convert the calculations under

Goldman’s model into estimations of a parameter; if a

reconstruction was indeed a parameter, there would be

one of them which would confer to the corresponding

character type its true probability of occurrence under

the model, and there is none. Only the sum of all

reconstructions provides the true value for a given type.

[Goloboff 2003a, p. 100]

Thus, Goloboff argues, using the most likely recon-

struction (instead of the sum of likelihoods for all

reconstructions) produces a good approximation

of the actual likelihood, which is not exact, but

then again some likelihood methods are not

exact either. Goloboff gives the example that the

assumption of nucleotide state frequencies remain-

ing constant over time also implies that likelihood

calculations are approximate instead of exact, since

reconstructions are then not truly independent

(they must sum to the assumed frequencies)

(Goloboff 2003a, p. 101).

Without debate as an equivalence between

parsimony and likelihood (Sober, Chapter 3;

Goloboff 2003a) is the formulation of Tuffley and

Steel (1997). They provided a proof that parsi-

mony was a maximum likelihood estimator under

the assumption of no common mechanism (po-

tentially unequal change probabilities) for each

character with r states and a symmetric change

assumption. With this formulation, the different

rates can either be very, very small or very, very

large: in fact, only 0 or infinity, and nothing in

between. The Tuffley and Steel result has been

considered by some a complex parsimony equiva-

lent because of its numerous adjustable parameters

(the lengths of each branch for each character, as

estimated from a single datum). On the other

hand, Goldman’s formulation is an extremely

simple model: the fit of a tree to data is solely

based on its topology and on state change/stasis

probabilities. As such, parsimony inference can re-

ceive a likelihood equivalence at both ends of the

complexity spectrum, which has been interpreted to

speak toward its generality as an inferential method

(see Goloboff 2003a). Of course, equivalence be-

tween parsimony and likelihood between a few

models does not mean that equivalence extends to

all models, or that it has to do so in order to

justify use of parsimony methods.

1.2.4 A non-likelihood justification
for parsimony

Not all users of parsimony analysis care about

equivalencies between parsimony and likelihood

under certain process models. Farris himself, who

produced a series of statistical interpretations of

parsimony (1973, 1977, 1978), later downplayed

these in one of the most important philosophical

papers on parsimony analysis (Farris 1983). He

famously stated that:

A number of authors, myself among them (Farris, 1973,

1977, 1978), have used statistical arguments to defend

parsimony, using, of course, different models from

Felsenstein’s [1973]. . . .my own models, if perhaps not

quite so fantastic as Felsenstein’s, are nonetheless like the

latter in comprising uncorroborated (and no doubt false)

claims on evolution. If reasoning from unsubstantiated

suppositions cannot legitimately question parsimony,

then neither can it properly bolster that criterion. The

statistical approach to phylogenetic inference was wrong

from the start, for it rests on the idea that to study

phylogeny at all, one must first know in great detail how

evolution has proceeded. That cannot very well be the

way in which scientific knowledge is obtained. [Farris

1983, p. 17]

Farris argued in favor of parsimony as a method

that maximizes explanatory power among obser-

vations that could be expected to reflect genea-

logical relationships, i.e. potential homologies.

He characterized most-parsimonious trees as the

least falsified hierarchical hypotheses in the con-

text of the philosopher Karl Popper’s ideas on the

treatment of observations (see Kluge, Chapter 2).

However, Farris carried his argument into

more general terms: trees with minimal homoplasy
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(i.e. with minimal parallelism or reversal) must be

preferred over trees that have more, because the latter

require more observations to be dismissed for the sole

purpose of protecting conclusions from ‘offending’

evidence. This is a fundamentally different use of

the parsimony criterion, that which the data requires

(PDR parsimony), and indeed, this is a criterion that

can be interpreted quantitatively. Operationally, for

a given set of independent pairwise similarity

statements,

min
X
k

Hk()max
X
k

Jk

where H and J represent independent statements

of pairwise homoplasy and homology, respectively,

across k characters (see De Laet, Chapter 6).

Minimization of H, with the addition of a tree-

independent constant, is equivalent to minimizing

total steps (character-state changes) as calculated

by standard parsimony software.

With reference to the minimization of H, Farris

also refuted the commonly held belief that parsi-

mony assumes rarity of homoplasy by use of an

analogy to linear regression analysis; although

residual variation in a least squares fit is certainly

minimized, there is no requirement that this vari-

ation be small. Likewise, minimization of H occurs

in the context of all characters, and this involves

no requirement that estimated homoplasy be rare.

For further discussion of Farris’s arguments, see

De Laet (Chapter 6; including an interesting

elaboration) and Kluge (Chapter 2).

1.2.5 Parsimony and statistical consistency

Although consistency enters into further discus-

sion below, I will only briefly deal with its form-

alities. As Felsenstein (2004; p. 107) explains:

An estimator is consistent if, as the amount of data gets

larger and larger (approaching infinity), the estimator

converges to the true value of the parameter with prob-

ability 1. If it converges to something else, we must

suspect the method of trying to push us toward some

untrue conclusion. In 1978 I presented . . . an argument

that parsimony is, under some circumstances, an incon-

sistent estimator of the tree topology. [italics in the

original; bold emphasis is mine]

Farris (1983) rejected Felsenstein’s 1978 model

by arguing against its applicability to real data.

He didn’t object to the general idea of seeking a

consistent estimator; he just felt that one was

not available in practice. A decade ago, collea-

gues and I modeled consistency for sequence

evolution and concluded that the ‘Felsenstein

zone’ of inconsistency (under Felsenstein’s own

conditions) was small enough to be insigni-

ficant for real data (Albert et al. 1992, 1993).

Felsenstein showed similar results himself (2004;

see also Steel and Penny 2000), which echo our

findings that as r states increase, the zone of in-

consistency decreases. This will be seen to have

bearing when gene-order data are discussed

below.

1.2.6 Other practical considerations.

Parsimony analysis yields hierarchic results that

are both fully diagnosable and interconvertible

with the original data (Fig. 1.2). This is a very

positive feature in terms of tree interpretation

and for information storage and retrieval (Farris

1979). As stated above, most-parsimonious trees

have branch lengths in terms of changes among

the states of informative characters. This format is

more intuitive than branches in terms of state-

change probabilities, distances (via some metric),

or those with no dimensions whatsoever. Indeed,

many investigators have exploited parsimony’s

branch-length properties to optimize their ori-

ginal data on to trees derived from other meth-

ods; however, such comparisons are not inter-

convertible with the data matrix, rendering

interpretations potentially tree-biased as opposed

to data-biased (remember that the data that

go into most-parsimonious trees provide the

branch lengths that come back out; see Mishler,

Chapter 4).

1.3 Genomic-scale data and parsimony

Current whole-genome sequences and projects

underway represent the tip of the iceberg. Now

that we have complete genome sequences for

many prokaryotes, several eukaryotes, and

numerous organellar DNAs, bioinformaticians
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must find ways to reduce this complexity to pro-

vide meaningful fodder for biological hypotheses.

One urgent need is for fast and predictive phylo-

genetic estimation of species and gene relation-

ships. Parsimony is a method that has the logical

and practical attributes discussed above, as well

as, recently, the speed necessary to carry out

massive topological calculations.

1.3.1 Sequence data and tree size

Parsimony analyses of sequence data for large

numbers of species have been possible for a

number of years (see Davis et al., Chapter 7), but

only recently have these become fast enough to

be considered of use at the genomic scale. For

genome comparisons, it will be important to use

parsimony calculations to determine gene rela-

tionships within gene families or superfamilies.

The issue of orthology vs. paralogy is important

in the context of molecular evolutionary hypo-

thesis testing (see Liberles, Chapter 10, and

Rogozin et al., Chapter 11). One current applica-

tion, TNT (Goloboff et al. 2004), has the ability

to solve reliably for large most-parsimonious

trees that were once thought to be intractable

problems. For example, the 500-sequence rbcL

data set for seed plants (see Davis et al., Chapter 7)

can now be solved for most-parsimonious trees

in seconds (<42 s on my 1.6 GHz Pentium M

laptop, in fact). This application has also been

parallelized (Goloboff et al. 2003b), so for indi-

vidual sequence alignments, the practical limits

for genomic-scale sequence data will be the

strength of such alignments.

In the case of rbcL, a highly conserved protein-

coding gene with no introns, sequence start-stop

and internal base alignment is unambiguous.

However, this is certainly not a generalization that

can be made for genes in general, not to mention

(e.g.) non-coding regions in between genes. This

begs an issue that I have avoided until now—

according to Wheeler (Chapter 5) and De Laet

(Chapter 6), the logic of a priori multiple alignment

is erroneous and the results are incomplete at best.

These authors argue persuasively for optimization

of sequences as whole, complex characters under

Sankoff parsimony (Sankoff 1975). However,
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Figure 1.2 Phylogenetic trees based on parsimony are fully diagnosable. Similarities that had the capacity to bear hierarchical information, here

characters 2–7, were those used to build the most parsimonious tree, and upon inspection it can be seen that inferred character-state changes can

be readily optimized on to internal branches. All other characters shown in this example only show difference, as opposed to evidence for hierarchy.

This fact can be readily appreciated by examination of the lengths of branches—two differences separate O (outgroup) from the other species or genes

A–H; A and H have whole blocks of singular differences, B–G each have singular differences assigned, and all of this is reflected in the tree as

differential branch lengths, not as arguments for a different overall hierarchy. Note also that the tree and its branch lengths are fully interconvertible

with the original data matrix.
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practical limits rise greatly for such algorithms,

which create compound NP-complete problems

that must, by current necessity, be solved heurist-

ically.

Likelihood- or distance-based phylogenetics will

reach different sorts of complexity blockades in

dealing with relationships among large gene

families. For example, the R2R3-MYB gene family

in Arabidopsis is composed of ca. 100 members, as

opposed to only three found in human (Martin

and Paz-Ares 1997; Romero et al. 1998). Imagine ca.

100 R2R3-MYBs across 500 plant genomes—

perhaps 50 000 genes, which given advances in

sequencing technology, isn’t a far-fetched pos-

sibility in the not-too-distant future. If full diag-

nosability (tree/matrix interconvertability) and

speed of execution together form the important

criterion, distance matrix and likelihood methods

will prove inferior. Distance matrix methods are

fast, but they decompose information into pairwise

estimates of path lengths between ni and nj and

then, at best, try to reassemble them into a tree that

somehow optimizes these lengths. Such an oper-

ation is fraught with error since pairwise path

lengths may show no relationship to those on

reconstructed trees. Moreover, the inherent infor-

mation loss, especially as n gets large, is un-

acceptable (see above). Likelihood methods do not

provide character-state diagnoses either, and are

understandably slower than parsimony given that

calculations are CPU-intensive, especially as n

increases (even using the pruning algorithm,

computational effort is proportional to k(n� 1)r2;

Felsenstein 2004). Supercomputers and CPU clusters

speed up likelihood calculations, but eventually

a tradeoff will be reached. Besides, to quote

Felsenstein (2004, p. 122):

If it escapes the clutches of long branch attraction

[inconsistency], parsimony is a fairly well-behaved

method. It is close to being a likelihood method, but is

simpler and faster. It is robust against violations of the

assumption that rates of change at different sites are

equal. (It shares this with its likelihood doppelganger.)

Given the equatability of parsimony with likeli-

hood under several models that range from simple

to complex (see above), parsimony should be the

method of choice as applied to genomic-scale

questions that include enormous numbers of

species or genes. It will no doubt arise in some

readers’ minds, however, that the issue of tree size,

e.g. for sequences of 50 000 genes, could impact

statistical consistency. Indeed, some have cau-

tioned that inconsistency can occur more often as

trees become larger and larger (Kim 1996). I will

present a more positive outlook on parsimony and

large trees below.

1.3.2 A conjecture on parsimony and large
phylogenetic trees

Background

With reference to the largest phylogenetic

analysis yet attempted (2 538 rbcL sequences for

photosynthetic organisms), colleagues and I

(Källersjö et al. 1999) observed that relatively

rapidly evolving nucleotide sites, such as those in

third positions of codons, provide the majority of

tree structure despite initial estimates of satur-

ation and high levels of homoplasy on most-

parsimonious trees. We pointed out in reference

to this analysis that, analyzed by themselves,

third positions resolve 1 327 supported groups

with an average parsimony jackknife frequency of

85%, whereas the first two positions together re-

solve only 431 groups, with an average frequency

of only 75%. The groups recovered by third

positions are also well supported by the full data

and are spread over the tree, including both older

and younger lineages. In contrast, the first two

positions fail, for example, to recognize either

land plants or flowering plants as monophyletic

groups.

We also generated random subsets (10 for each)

of n¼ 100 species, n, 2n . . . 10n, from the 2538-

species matrix, and calculated the average reten-

tion index, position-wise within codons, for each

subset. The retention index for individual char-

acters—(g� s)/(g�m), where g is the maximum

number of steps, s is the most-parsimonious

number, and m is the minimum number—

measures the amount of initial similarity retained

as homology on most parsimonious trees (Farris

1989a). As matrix size rose from 100 to 1 000, the

retention index rose for third positions as matrix

size increased. In contrast, the retention indices for

first and second positions—those sometimes
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favored for molecular phylogenetics because they

evolve more slowly—decreased. Our simple in-

terpretation, also following the group support data

reported above, was that third positions were

performing better than first or second positions.

Moreover, with respect to total homoplasy, the

consistency index (m/s; Kluge and Farris 1969),

which is inversely proportional to the total number

of substitutions, gave the converse view: first,

second, and third positions averaged 0.155, 0.178,

and 0.046, respectively on the tree calculated from

all positions—that is, greatest homoplasy was dis-

covered for the more rapidly evolving third positions,

despite their better performance. Given these results,

our conclusion was that homoplasy can increase

phylogenetic structure.

Conjecture

Homoplasy on trees can have a direct relation-

ship with rates of change. It certainly does on

large trees, such as those discussed above (n¼
100–2 538), for which enough branches exist to

observe the products of high evolutionary rates.

The branches of small trees (e.g. n¼ 4–6), such as

those often used for simulation studies, would

not be expected to reveal underlying rate differ-

ences as accurately for vast divergences, and such

differences are precisely those that might lead to

inconsistency.

In Chapter 9 of this book, Steel and Penny

prove a common-mechanism equivalence between

parsimony and likelihood when the number of

character states, r, is large enough (we will get

back to this issue later regarding gene-order data).

They also show that under such conditions,

few characters, k, are required to arrive at a most-

parsimonious solution.

My conjecture is that a parsimony-likelihood equivalence can

hold when r is much smaller than required by Steel and

Penny’s Theorem 9.6.2, e.g. in the r¼ 4 case as for nucleotide

data, if n is large enough.

Erdo" s et al. (1999) proved that a compatibility tree,

from which homoplasy is prohibited, requires at

least (n� 3) � log(n� 3)� (n� 3) informative char-

acters (i.e., with grouping potential) to reconstruct

a tree of n species or genes with at least 50/50

probability. For the 2 538 species case illustrated

above, this quantity is at least 17 300 informative

sites. But, in reality, k was only 1 428—the number

of bases in the rbcL gene. Erdo" s et al. (1999) also

established that at least some phylogenetic meth-

ods should require, for a given constant c, only

c log(n) or at worst a power of c log(n) characters.

Steel and Penny’s Conjecture 9.4.3 and Propos-

ition 9.4.4 (Chapter 9) similarly suggest that k

follows logarithmic growth on n, and as n grows, so

too would homoplasy for some characters, especially

given any limitation put on r. This requirement for

homoplasy echoes the empirical findings discussed

above. With Mike Steel’s help, I provide below a

mathematical formalization of my conjecture in

light of these findings.

Conjecture 1.3.1. Consider the r-state symmetric

Poisson model. For any E> 0 and constant B� 1

there exist constants h and c that depend only on r,

E, and B for which the following holds.

Suppose k characters are generated independ-

ently for this model on any fully resolved phylo-

genetic tree T with n species or genes for which all

the branch lengths of T are at most h and the ratio

of any two branch lengths of T is at most B. Then

provided k� c log(n)/f 2, where f is the smallest branch

length in T, maximum parsimony will correctly recover

T with probability at least 1� E.

Here, E is any real number, and B¼ 1 is the case

where all branch lengths are equal. As f, which is

a function of n, gets smaller and smaller, the

sequence length needed to ‘detect’ that branch has

to grow (indeed quadratically with 1/f ). The role

of B is to avoid inconsistency (as described by

Felsenstein 1978a). However, note that the con-

jecture just says ‘for any B’, so one could take

B¼ 1 000 a priori, and thereby allow one branch to

be 1 000 times as long as another. This will impact

the values of c and h, but these are constants so

far as n is concerned. Presumably also as n

increases, the value of B may come down closer

to 1, provided that adding to n does not create a

branch that is too short.

The conditions stated mean that most of the char-

acters will have a fair degree of homoplasy—indeed, the

expected number of steps will go to infinity with n,

since each branch length is bounded below by h, which

is a positive number.

8 P AR S IMONY , P HY LOGENY , AND GENOM I C S



1.3.3 Strings, and more on r-state characters

Around the same time, Steve Farris and I devel-

oped methods that were intended to lower worries

about parsimony and inconsistency. I will begin

with my procedure (Albert et al. 1994), which was

to accept strings of nucleotides (randomly selec-

ted) as unit characters instead of individual bases;

these strings were recoded as presence vs. absence

for data analysis. The intended effect was to

reduce the probability of homoplasy given, e.g.

that a six-base pair string is much easier to lose

once it exists than it is to regain once lost.

My argument was based on investigations of

Dollo parsimony (Farris 1977) and its usewith DNA

restriction-site data (Albert et al. 1992). In this con-

text,Dolloneverpermitsparallel gainsof a restriction

site (often a six-base recognition string), only mul-

tiple losses. In this earlier work, we concluded that

the Dollo model was too severe and that despite the

asymmetry in probabilities just discussed, parsi-

monywith equal character-stateweights (Kluge and

Farris1969;Farris1970)wasmoreappropriate.How-

ever, my work did not consider increasing string

length. Felsenstein (2004, p. 236) has examined the

parallel gain case more thoroughly, solving for the

probability (under the Jukes–Cantor model) that

two species or genes and their common ancestor

each have/had (þ ) a particular nucleotide string

of k sites given substitution rate q and t units of

branch length:

Pr(þþþ ) ¼ 1

4

� �k 1þ 3e�
4
3qt

4

 !2k

The conditional probability that the ancestor is in

state þ is the ratio of this equation with the prob-

ability that both species/genes have state þ . The

latter probability takes the exact form as above while

replacing 2qt for qt and the exponent k for 2k. This

probability ratio clearly demonstrates that as strings

grow longer and longer, the probability of parallel

gain still remains small so long as substitution rates

remain low.

This is precisely why I developed the string

character method; if one were to code only those

completely matching strings beginning at certain

nucleotide positions, especially larger and larger

ones, then these should be rather conservative

characters for deep branchings within phylogenetic

problems. As such, the string character concept

need not be restricted to nucleotide data; amino acid

data, exons/introns, or even genomic regions could

be so coded (see below).

Now on to r-state characters. Farris and Källersjö

presented a related method, supersites, at the 1999

meetings of the Willi Hennig Society in Göttingen,

Germany. With supersites, strings of nucleotides

are recognized beginning at nucleotide W and then

parsed downwards through the matrix, recognizing

as many character states as necessary to account

for differences within the strings. Supersites can

therefore generate considerable character-state space

among fewer informative characters. However,

Steel and Penny (2000) suggest that such proce-

dures may not avoid inconsistency because prob-

abilities of change along branches increase ! 1 as a

function of k, where r¼ dk and d is the number of

possible character states.

1.3.4 Gene content

Genomic-scale phylogenetic studies based on gene

content are reviewed by Rogozin et al. (Chapter 11).

Two approaches have been used: (1) estimate spe-

cies trees from orthologous gene presence vs.

absence among whole genomes, or (2) optimize

these data on to a predetermined species tree. In my

string character method, above, I permitted string

presence-absence to have equal weight, whereas the

probabilities modeled above imply asymmetric

weights favoring losses. So which character-state

weights to use? Rogozin et al. (Chapter 11) discuss

Dollo analyses based on whole genes, which are of

course nucleotide strings themselves (see above).

The Dollo assumption is the asymptotic case, and

with reference to the equation above this should be

entirely appropriate as string size increases, say, to

1 428 bases. Use of Dollo optimization onto species

trees incorporates the same state-change asym-

metry. Moreover, Huson and Steel (2004) have

shown that Dollo parsimony compares very favor-

ably with a genesis-loss likelihood model they con-

structed to analyze gene-content data.

1.3.5 Gene order

The growing rate of whole-genome sequencing,

particularly for the relatively small and circular

genomes (prokaryote, chloroplast, and most mito-

chondrial), has been accompanied by heightened

interest in determining phylogenetic relationships

PA R S IMONY AND PHY LOG EN E T I C S I N TH E G ENOM I C AG E 9



based on gene order (synteny). The problem is not

a simple one, at least in terms of encoding the data.

For one, Steel and Penny point out in Chapter 9

that the order of G genes in a signed (oriented)

circular genome can display any of 2G (G� 1)!

combinations. Nonetheless, their proof of equival-

ence between likelihood and parsimony for large

character-state space states bodes well for use of

computationally simpler parsimony calculations in

this genomic arena.

Parsimony analyses of gene order are related to

analyses of string data (as discussed above), but

differ in their attempt to account for adjacency vs.

non-adjacency of strings. Coding methods for use

with parsimony analysis have already been under

investigation, e.g. Maximum Parsimony on Multi-

state Encodings (MPME; Wang et al. 2002, as sug-

gested by Bryant 2000) methods. This method

produces signed, multistate circular permutations

of gene adjacency on circular genomes (see discus-

sion in Steel and Penny, Chapter 9). In one simula-

tion study, MPME has been shown to have greater

accuracy in comparison with a method incorporat-

ing neighbor joining (Wang et al. 2002), a distance

matrix method that inherently incorporates less in-

formation from the data (see above). Still other

coding methods exist or are under development,

including a technique that utilizes Dollo parsimony

on tightly linked gene pairs that are then binary-

recoded (Wolf et al. 2001; see Rogozin et al.

Chapter 11). This method is directly related to the

string recoding method of Albert et al. (1994).

A limitation encountered by Wang et al. (2002)

and mentioned by Steel and Penny (Chapter 9) is

the relatively small number of character states

permitted by the most rigorous parsimony soft-

ware (e.g. TNT) and required by the multistate

coding methods. In other words, getting anywhere

with the gene-order issue will require algorithmic

advances regarding state space.

1.3.6 Microarray data

Hierarchic analysis of microarray expression data

has become routine. However, almost all methods

used are those of phenetic clustering (Eisen et al.

1998), which only supplies dimensionless levels

of difference based on a distance matrix of

log-transformed fluorescence intensities. Clusters of

genes or ‘treatments’ (including tissue types) are

formed based on shared patterns of up- vs. down-

regulation of gene expression. Such analyses have

proven of some use in (e.g.) tumor classification by

gene-expression profiles, as well as, by inverting the

matrix, identification of genes active in different

tumor types. The analyses do not intend to be

phylogenetic. However, phylogenetic methods,

such as parsimony analysis, can be brought to bear

on microarray data, at least when these data could

be expected a priori to show evidence for hierarchy

(e.g. through hereditary relationship). A parsimony

approach to microarray analysis has been devel-

oped (Planet et al. 2001; Sarkar et al. 2002) and

applied to the tumor classification problem. How-

ever, classification of different tumor types may not

fit a phylogenetic model; gene regulation can be

hierarchical and is certainly heritable, but it may

also be networked, and tumor types do not share

clear evolutionary relationships. A less stringent

view on fit to model might be worth adopting for

exploratory studies, since Sarkar et al. did identify

gene-expression events that had also been identified

by phenetic clustering.

There is one study of which I am aware that

explicitly used parsimony analysis to reconstruct

heritable relationships (they cited Planet et al.

2001). Uddin et al. (2004) used genome-wide

expression profiles from primate brains to perform

a parsimony analysis of organismic relationships;

echoing other substantial evidence (e.g. Salem et al.

2003), the chimpanzee was identified as Homo

sapiens’ closest relative. Another classic study of

heritable gene expression relationships within and

between species was that of Oleksiak et al. (2002)

on Fundulus fish populations. These authors used

the phenetic clustering methods of Eisen et al.

(1998) to group populations by genes, as well as

genes by populations. Although Oleksiak et al.

were studying population differentiation and not

phylogeny per se, it would have been possible

to use parsimony methods that incorporate

population-level information. Sarkar et al.’s Char-

acteristic Attribute Organization System (CAOS)

is closely related to Population Aggregation

Analysis (PAA; Davis and Nixon 1992), which

identifies patterns of discrete features that
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unambiguously mark groups (i.e. that have gone

to fixation). The CAOS approach further identifies

characteristic expression patterns found in some

members of a group and never outside that group,

those found in all members of a group but never

found together outside that group, and those

found in some samples within a group but never

outside that group.

CAOS illustrates the major advantage of using

parsimony analysis for microarray data: diagno-

sability (see above). State changes that identify

groups (of genes or treatments) and changes

among members of groups have far greater pre-

dictive value than dimensionless clustering.

1.4 The future: some predictions

It is difficult to predict future modes and rates of

genomic-scale data acquisition, but with Moore’s

law, computer capacity should open up previ-

ously inaccessible data-analysis possibilities in

less than a decade. Parsimony will remain an in-

dispensable part of the phylogenetics and geno-

mics tool kit, particularly to estimate enormously

large trees with full diagnosability, and also for

data with large character-state space (e.g. gene-

order information). Perhaps a proof for Conjecture

1.3.1 can be given, establishing that particular

amounts of homoplasy on large-enough trees

can render another parsimony-likelihood equiva-

lence. A massive increase in whole-genome

sequencing will no doubt permit refinements to

estimations of ancestral gene content. To mention

an area barely discussed in this chapter, opti-

mization of whole sequences as complex char-

acters will also become a practical and everyday

tool with large numbers of species or genes. The

gene-order issue, which will no doubt develop

further with different encoding methods, will also

include similar approaches to optimization of

whole genomes as complex characters (see De

Laet, Chapter 6). Finally, parsimony analyses of

microarray data should become commonplace for

gene-expression data with underlying hereditary

relationships, such as for phylogenetic and popu-

lation genomics.
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CHAPTER 2

What is the rationale for ‘Ockham’s
razor’ (a.k.a. parsimony) in
phylogenetic inference?

Arnold G. Kluge

Anyone suggesting a justification for a method of inference—be it parsimony

or anything else—should be careful to distinguish sufficiency from necessity.

It is one thing to show that a set of assumptions suffice to justify a method; it

is much more difficult to show that those sufficient conditions are also

necessary. I have suggested a [likelihood] framework, which, if true, suffices to

justify parsimony. But what assurance can there be that this framework is

necessary for the method to be justified? The possibility always remains that

different or more meager assumptions will suffice to legitimize the method.

Although this possibility cannot be ruled out in principle, there is an

indirect test that provides some indication of whether the suggested justifying

principles are fundamental. If those principles provide a general framework

that allows one to characterize and investigate other aspects of phylogenetic

inference, this is some indication that the framework proposed is not only

sufficient, but fundamental.

Elliott Sober (1986, p. 41)

2.1 Introduction

Philosophers continue to debate the meaning and

rationale of ‘Ockham’s razor.’ For instance, Sober

(1994) concluded that parsimony is not a global

principle of theory evaluation because it has no

subject-matter-invariant applicability. He also

maintained (p. 77) ‘‘parsimony, in and of itself,

cannot make one hypothesis more plausible than

another,’’ a position that obtains under the anti-

quantity principle (AQP). On the other hand,

according to Barnes (2000, p. 370), interpreting

parsimony as an anti-superfluity principle (ASP),

parsimony in and of itself does make a theory

more plausible because it ‘‘releases a theory from

its commitment to components unsupported by

the relevant data.’’ Moreover, Barnes went on to

conclude that ASP is a global principle of theory

evaluation because it does not depend on any

subject-matter-specific assumption. Adding yet

another dimension to this recent debate, Baker

(2003; see also Nolan 1997) justified ASP parsimony

hypotheses on strictly quantitative grounds. Thus,

parsimony has been rationalized in terms of

AQP and ASP, and for which there are different

quantitative rationales.

Most empirical scientists have shown little

interest in these debates and the newer meanings

and justifications for Ockham’s razor, not that

empiricists have ever exhibited much concern for

the philosophical. Indeed, it is common to find no

argument whatsoever for parsimony being cog-

nitively virtuous in the evaluation of a set of com-

peting theories or hypotheses, and if an argument

is provided at all it is usually made in operational
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terms. But, in the absence of a concept, most kinds

of justification are difficult, if not impossible,

to make (Grant 2002). One of the underlying

themes of this chapter is the importance of making

the distinction between concept and operation, and

where the former precedes the latter (see also

Farris 1967, p. 44). Another important theme

is identifying incoherence among nested con-

ceptualizations.

Some unconcerned empiricists, when pressed,

will fall back on syntactic simplicity, such as the

conventionalist argument that stresses aesthetic

value (e.g. W. C. Wheeler, personal communica-

tion, XVI Annual Meeting of the Willi Hennig

Society). Such appeals to simplicity cannot, how-

ever, save conventionalism from arbitrariness,

since choice of a convention is arbitrary (Popper

1959). Others have laid claim to the pragmatic,

where for example the most parsimonious

hypothesis is judged a ‘‘necessary property of

methods of analysis’’ (Patterson 1988, p. 79). Still

others have embraced simplicity/parsimony for its

descriptive efficiency (Farris 1979; e.g. see Brower

2000; Frost 2000), but for which there is no epi-

stemology. A few empiricists have spoken of a

statistical, goodness-of-fit, kind of justification

when applying a parsimony method, where for

example the most probable or plausible hypothesis

is claimed to be most predictive. A best explana-

tion kind of justification has also been mentioned

by a few scientists, but usually without stating the

relevant cause and effect. To merely assume ‘some

kind of explanation’ is to treat explanation as a

primitive term.

The ontological status of that to which a

parsimony criterion is applied is not always con-

sidered, but without which the application cannot

be judged. For example, the goodness-of-fit kind of

justification can, and often does, involve an explicit

connection between parsimony and probability,

and that in turn supposes there are multiple

instances of a kind with which to statistically

estimate or model fit. However, not all sciences are

concerned with class concepts and lawful regular-

ities, i.e. not all are nomothetic sciences (Wrinch

and Jeffreys 1921; Grant 2002), and the justification

for parsimony has to be sought elsewhere (see

below). For example, it has been argued that there

can be no probabilification when the entities of

interest—objects and events—are necessarily

unique, as they are in a historical science like

phylogenetics (Grant 2002; Kluge 2002).

Also relevant to parsimony is the question of the

meagerness of the conditions legitimizing a choice

amonghypotheses.What are theminimally sufficient

assumptions required tomake an inference?And, of

those justifications for parsimony that are ontolog-

ically sound and minimally sufficient, are there any

that can be judged necessary (see epigraph)? I begin

my evaluation of these questions in the inference of

phylogeny with a brief discussion of the newer

classifications of parsimony, and their most general

justifications. To set the stage for my evaluation of

the kinds of parsimony that have been, or are likely

to be, employed in phylogenetic inference, I briefly

explicate phylogenetic inference, as I see it, focusing

on the ontological status ofwhat is being inferred, as

well as the scientific approach that is consistent with

achieving that kind of knowledge. I conclude with

some examples of how the fundamental nature of

parsimony in phylogenetics, as well as theory uni-

fication, might be judged. I will only discuss uses of

parsimony applied in the inference of phylogeny

per se, i.e. relative recency of common ancestry.

Parsimony as it pertains to networks (undirected

graphs), methods of algorithmic efficiency, data

exploration (Grant and Kluge 2003), optimization,

and indexes of support will not be considered.

Mention of parsimony in relation to outgroups and

additivity, the study of adaptation, coevolution, and

biogeography will only be made in passing. Each of

these topics deserves a separate forum. While it is

fair to say that I seek a necessary and sufficient jus-

tification for parsimony in phylogenetic inference, I

will be satisfied if I am only able to convince a few

more empirical scientists to become involved in

debating the meaning and rationale of Ockham’s

razor (a.k.a. parsimony) in phylogenetic inference.

2.2 Parsimony: classifications and
justifications

Syntactic simplicity has long been distinguished

from ontological simplicity. Some philosophers

refer to the former as elegance (Walsh 1979), while

the term parsimony is applied to the latter.
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According to Baker (2003), syntactic simplicity

involves the number and complexity of hypo-

theses, where justification for that kind of mini-

mization is sought in descriptive efficiency,

subjective epistemology, such as aesthetic value, or

instrumentalism. In addition to these, syntacti-

cally simple hypotheses can have practical con-

sequences, since the simpler theory can be more

clearly expressed and thereby more easily under-

stood (McAllister 1996). ‘‘Such a structure, simply

as a structure, is intrinsically perspicuous’’ (Walsh

1979 p. 243). This subjective, ‘easily understood,’

argument can also be interpreted objectively in

terms of testability—a simpler theory being more

logically improbable than a less parsimonious

hypothesis (Popper 1959, p. 119; see below).

Obviously, with this kind of understanding, we

have passed from the syntactic to the ontological.

Some continue to restrict the domain of parsimony

to the theoretical, usually the theoretical hypo-

theses that posit the fewest entities, objects, events,

or processes, or ascribe certain properties to

objects (Barnes 2000, p. 354). Appealing to a most-

parsimonious hypothesis of species relationships

in any of these senses certainly gives the appear-

ance of assuming evolution is parsimonious.

However, parsimony can be seen only as a rule of

inference, not an empirical assumption of reality. It

need not be an ontological claim that evolution,

wherever it applies in the universe, is really par-

simonious. Enjoining parsimony is then consistent

with the background knowledge assumption of

‘descent, with modification’ (see below). Having

said that, however, any phylogenetic method that

denies the independent evolution of similarities

would seem to be making a claim on the mini-

mization of the evolutionary process.

Justification for parsimony is usually sought in

explanatory power, realism, objective epistemolo-

gies, or objective cognitive (epistemic) values.

Those who use explanatory power to justify par-

simony are considered realists, not subjectivisits,

when they argue from cognitive (epistemic) cri-

teria in favor of empirical assumptions. Moreover,

in the sense of realism, there are good reasons to

treat the epistemologically preferred hypothesis as

tentatively true, i.e. as an objectively optimal

knowledge claim.

As mentioned in the introduction, Barnes (2000)

distinguished two kinds of parsimony justification,

AQP and ASP. The former principle recommends

positing as few theoretical components as possible,

whereas the latter recommends against positing the

superfluous. As Barnes (2000) exemplified (p. 354):

The two principles are clearly not equivalent: consider

two competing theories, A and B, which both fit the

relevant data equally well. Theory A contains more

components than B, and is thus less parsimonious than B

by the lights of the AQP. But while A contains no com-

ponents that are not required (within A) to explain the

data, theory B posits one or more superfluous com-

ponents—i.e. one or more components which could be

deleted from B without impairing B’s ability to explain

the data. Thus B is less parsimonious than A by the ASP.

The fact that AQP entails ASP, but not vice versa,

leads to the conclusion that whatever justifies B

may not justify A. Barnes (2000) thought ASP to be

at the heart of what is generally known as infer-

ence to the best explanation.

As this discussion suggests, there are many ways

to define Ockham’s razor, as well as to classify its

various kinds. My only reason for choosing Barnes’

(2000) general background knowledge, pragmatic,

unification, anti-free parameters and local back-

ground knowledge as the kinds of parsimony

categories that I recognize in relation to phyloge-

netic inference is that they expose justifications that

have been previously lumped together in this field.

I have added testability and ASP categories to

complete that exposure. As will become apparent,

the justifications that I exploit in these discussions

are the usual philosophical contrasts, between

theory-based and narrative explanation, descrip-

tive efficiency and explanatory power, subjective

and objective epistemologies, instrumentalism and

realism, and the subjective values of aesthetics and

the like and the objective cognitive (epistemic).

2.2.1 General background knowledge

A general background knowledge kind of

parsimony supposes the universe is naturally

parsimonious in some way. Certainly one of the

most general arguments for its justification is due

to Sir Isaac Newton (Thayer 1953, p. 3), who

claimed, ‘‘nature is pleased with simplicity
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and affects not the pomp of superfluous causes.’’

This kind of justification is more than a curiosity,

as will be illustrated below with examples from

phylogenetic inference.

2.2.2 Pragmatic

Truth is tested by its practical consequences with

this kind of parsimony, where the more parsimo-

nious of two hypotheses stands a better chance of

confirmation. According to Quine (1963, p. 105),

for example, the more parsimonious hypothesis,

‘‘the one with fewer parameters, is initially the

more probable because a wider range of possible

subsequent findings is classified as favorable to it.’’

This is an instrumentalist justification, and for

which there can be no straightforward report as to

what is explained (Walsh 1979, p. 244).

2.2.3 Unification

Friedman’s (1983; see also Greene 2004) lengthy

discussion of parsimony in relativistic physics

underscored the importance of unified theories. As

Barnes (2000, p. 356) put the issue inductively,

‘‘unified theories are multiply confirmed by the

various empirical phenomena they explain, while

a competing theory with less unifying power

can only be confirmed by its smaller class of

explanada—thus unified theories tend to be better

confirmed than their disunified competitors.’’

Eliminating those entities that are indeterminate or

have no unifying power in the particular context is

where parsimony is said to come into play in

unification. Isomorphism and reduction are the

traditional techniques used in the analysis of the-

ory unification. For example, two or more theories

are said to be isomorphic if there is a one-to-one

mapping of their structures; e.g. if the properties

attributed to them by their respective theories are

the same. Reduction of theories focuses on the

microstructure of phenomena, rather than on their

physicalities, such as properties.

‘‘According to scientific realists, the unification

of theories reveals common causes or mechanisms

underlying unconnected phenomena’’ (McAllister

2000, p. 538). Realists also point out that the rela-

tive ease with which theories of different domains

are unified would have to be considered fortuitous

according to instrumentalism, which is currently

popular in phylogenetics. The unification of

evolutionary and genetic theories in the neo-

Darwinian synthesis is an example that should

be familiar to most contemporary biologists.

2.2.4 Anti-free parameters

This kind of parsimony concerns a preference for

hypotheses with few adjustable parameters. For

many years the focus was on minimizing para-

meters, and now, with so much emphasis placed

on models in inference (Burnham and Anderson

1998), Akaike’s (1973) approach to evaluating

models is receiving most of the attention. Akaike

argued that the predictive accuracy of models

provides a reason for choosing among models, and

he proved how the predictive accuracy of a model

is estimated (Forster and Sober 1994; Sober 1996).

Simply, old data are used to estimate the max-

imum likelihood of the parameters of the model,

and this fitted model is in turn used to predict

future data. Parsimony is involved when a penalty

is given to the number of adjustable parameters,

which is subtracted from the log-likelihood estim-

ate of the best-fitting model. The proof of the

theorem is not, however, without its difficulties

(Forster and Sober 1994). For example, it is

assumed that: (1) nature is uniform, i.e. the old and

new data sets involved in the definition of

predictive accuracy come from the same under-

lying distribution (Forster 2000), (2) the likelihood

function is asymptotically normal, where the like-

lihood is a function of the parameter values, and

(3) the sample size (amount of data) is large

enough to ensure the likelihood function approx-

imates asymptotic normality.

2.2.5 Local background knowledge

This anti-quality kind of parsimony is firmly

grounded in local background knowledge. Several

different rationales have been advanced that

depend on subject-matter-specific assumptions.

This is even true in a narrowly defined field like

phylogenetic inference, as will be illustrated

below.
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2.2.6 Testability

Testability places a premium on the improbability

of the hypothesis, not its probability (Popper 1959,

p. 119, 1983, pp. 283–240; Kluge 2001b; contra de

Queiroz and Poe 2001, 2003). Testability is defined

objectively, as the power of an hypothesis to

explain the evidence, in light of the background

knowledge, where the data consists of reports of

the outcome of sincere attempts to refute the

hypothesis, not of attempts to confirm it (Popper

1959, p. 414; see also Salmon 1966, p. 46; Kluge

2001b; contra de Queiroz and Poe 2001, 2003). In

maximizing severity of test, explanatory power

and degree of corroboration are maximized. In

Popper’s logic of scientific discovery (Popper 1959,

p. 145; see also below), enjoining parsimony

protects the falsifiability of the system from going

to zero.

2.2.7 Anti-superfluity

Being opposed to the superfluous has been justi-

fied in various ways. For example, Nolan (1997,

p. 339) justified it in terms of plausibility; however,

I believe his argument, that it is ‘‘Better, rather,

to have quantitative parsimony expressed as a

different principle to the independently plausible

principle about explanatory parsimony, rather

than tying them together in this way,’’ unneces-

sarily emphasizes plausibility in determining

extravagance (see also Baker 2003, p. 248). Barnes

(2000) appealed to the subjectivism of Bayesian

inference as his justification, while Baker (2003)

made it clear that he interpreted ASP as pertaining

to the class of cases that are demonstrably addi-

tive, i.e. that involve the postulation of a collection

of qualitatively equivalent individual entities in

the relevant respects, be they objects or events (see

below). In this, Baker presumed an analysis of

equivalent singular causal statements of one kind,

of the form ‘e causes e 0.’ This is not a holist justi-

fication for parsimony in the sense that the

strengths and weaknesses of one kind of science

carry over to another kind. Its virtue is that col-

lectively such equivalent entities can explain some

particular phenomenon. ‘‘The explanation is ‘addit-

ive’ in the sense that the overall phenomenon is

explained by totaling the individual positive con-

tributions of each object’’ where ‘‘quantitative

parsimony tends to increase the explanatory

power of hypotheses compared to their less

quantitatively parsimonious rivals’’ (Baker 2003,

p. 248). A less quantitatively parsimonious

hypothesis can only match the most quantitatively

parsimonious proposition in explanatory power by

adding auxiliary claims. ‘‘Thus the preference for

quantitatively parsimonious hypotheses emerges

as one facet of a more general preference for

hypotheses with greater explanatory power’’

(p. 258). However, it is also clear from Baker’s

lengthy discussion that he defined explanatory

power as a primitive term. For example (p. 258), he

simply concluded, ‘‘quantitatively parsimonious

hypotheses allow the explanation of more things.’’

In other words, Baker did not define quantitative

parsimony specifically in terms of explanation in

relation to evidence. The ASP from which this

justification obtains is not strictly equivalent to

Sober’s (1981, p. 145) more general principle that

entities should not be postulated beyond those that

have explanatory power (see also Farris 1983).

2.3 The ontological status of
phylogeny: what is ideographic
science is not nomothetic science

The historical science of phylogenetic inference is

ideographic (Grant 2002). The word ideographic,

in this context, springs from the idea that relative

recency of common ancestry can be represented

directly as a concrete, spatio-temporally restricted,

explainable thing, the phylogenetic hypothesis,

cladogram, or tree, as can the accompanying

transformation of an inherited trait or homologue.

For all such things there is orderliness to their

unfolding, a transformation series, and for more

complex (highly integrated) traits there is usually

an assumable direction to the sequence of

change, based on such things as ontogeny. At the

‘quantum level’ of systematics, where physico-

chemically identical nucleotide states (A, G, C, T)

substitute for one another indeterministically,

direction of transformation may not be assumed.

In either case, there is an asymmetry between the

past and the future. As an historical science,
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phylogenetics is then retrodictive, but not pre-

dictive; it does not predict speciation events or

evolutionary changes that have yet to happen.

While the laws of relativity may govern time itself,

the direction or arrow of time does not appear to

be governed by relativity. It seems that time’s

arrow was merely conditioned at the birth of the

universe, at a starting point of low entropy (Greene

2004, Fig. 6.3).

Phylogeny defined in terms of Darwin’s (1859,

p. 420) principles of ‘‘descent, with modification’’—

relative recency of species common ancestry

(monophyletic entities or clades) and the trans-

formation of the phenotype/genotype (homo-

logous characters or character states)—is an

evolutionary concept, where only heritable things

can evolve. The event of transformation is the

same factor that gives absolutely the same result in

all places and at all times, and it is on this basis

that the law of inheritance is argued.

Phylogeny is judged to be a lineage system, one

consisting of ‘‘bundles’’ of characters transforming

through time as part of the evolution of species

(Hennig, 1966). Within a species lineage is located

the lineage histories of the organisms, tokogeneti-

cally related in the case of biparentals. Within each

of those parts are located the ontogenetic histories

of the more complex phenotypes. At the least

inclusive level of spatio-temporal restrictedness

there is the transformation series—what the evo-

lutionary systematist claims as evidence (Grant

and Kluge, 2004). This part/whole system is spatio-

temporally restricted at each level. Phylogenetic

inference is then devoted to the deduction of those

sister lineages and the explanation of the singular,

non-recurrent, heritable events in each bundle that

mark such points of phylogenesis. Species diver-

sification is the result of historical contingency

and all of the propensities acting at the time of

divergence (Kluge, 2002).

Inference in such an ideographic system is lim-

ited to what can be observed of organisms,

observations that are then used to retrodict some

objectively defined part of the system’s history to

which they belong. That inference explains the

heritable variation observed among lineages by

identifying the series of necessarily unique trans-

formation events that occurred in the lineage

immediately subtending a lineage splitting event.

Each stage of occurrence in a hypothesized trans-

formation series is tested simultaneously against

all other such evidence, thereby maximizing

severity of test (Kluge 2003a). Phylogenetic

hypotheses are chosen for their explanatory

power, on the basis of the number of transforma-

tion events they explain. The only things that are

explanatorily relevant in this system are the cla-

distic and patristic (Farris 1967; not the patristic of

Sokal and Camin 1965; see below), which is to say

that only the inherited patristic things can provide

a critical test of competing cladistic hypotheses.

The spatio-temporally unrestricted can be rejected,

because it has no meaning in the part/whole sys-

tem of organism history. The a priori testable and a

posteriori reciprocally illuminated hypotheses are

the statements of relative recency of species com-

mon ancestry and homology, respectively (Kluge

2003a). As Grant and Kluge (2004) pointed out,

however, the number of possible hypotheses of

homology is defined a priori by pure logic, as a

function of the number of inherited parts identified

for each terminal taxon, just as all possible

hypotheses of phylogeny are predefined as a

function of the number of those terminals (Siddall

and Kluge 1997). As such, no special procedure is

required to generate hypotheses of homology, nor

hypotheses of relationships, since they already

exist.

Popper (1957, pp. 105–122, 143–147; see also

Scriven 1959; Goudge 1961, p. 63; Hull 1974,

1982; Sober 1993, pp. 14–18) discussed the dis-

tinction between historical things and lawful

generalizations—the ideographic and the nomo-

thetic, respectively. For the most part, the

ideographic and the nomothetic are readily dis-

tinguished in terms of being concerned with the

spatio-temporally restricted and unrestricted, res-

pectively. Nomological necessity pertains to rela-

tions that are repeatable in an indefinitely

recurrent way, or to sequences of variable phe-

nomena, which are invariable under the same

conditions. The historical entity—object or event—

is firmly grounded in objective reality, whereas

laws explain what is inherent in the abstract—

classes (kinds) or sets of particulars (Grant 2002).

No frequency-based probability exists for the
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necessarily unique. There is no basis for modeling

the probability of error in the ideographic science

of phylogenetic inference (Kluge 2002). As will be

argued below, that homoplasy is a universal con-

cept, the complement, ‘not-a,’ of homology means

that it can play no role in the conceptualization of

phylogeny or in its inference.

Hull (1977, 1989) and Sober (1980) forcefully

argued that evolutionary theory precludes the con-

ception of taxa, including species, as classes or sets.

I agree, and would add that the end game or goal of

identifying species and the monophyletic taxa of

which they are a part involves historical questions,

and which cannot be answered with nomothetic

means (Kluge 2002; see howeverRieppel 2004).Why

is it then that some phylogeneticists use the lawful

‘if/then’ means of modeling historical relationships

(e.g. Felsenstein 2004)? I believe the answer lies in

‘‘distinguishing means from ends,’’ and from separ-

ating the nomothetic and ideographic sciences

according to that distinction (Sober 1993, p. 14). As

Sober (1993, p. 15) illustrated:

The astronomer’s problem is a historical one because the

goal is to infer the properties of a particular object; the

astronomer uses laws only as a means. Particle physics,

on the other hand, is a nomothetic discipline because the

goal is to infer general laws; descriptions of particular

objects are relevant only as a means.

The problem to ponder, as I see it, is how the means

(say, of modeling) can justify the end (of identifying

species and their relationships). By focusing first on

the kind of question involved, as dictated by the

ontological status of what is being inferred, as I

argued above, you are effectively saying the oppo-

site—that it is the end that justifies the means.

That there really is a general truth in this

aphorism, consider what is often presented as one

of the greatest challenges to Darwin’s theory of

natural selection—the origin of sex, where as a

consequence the individual female wastes half her

energy producing males. The significance of the

problem is usually stated as a function of the

number of biparental relative to uniparental spe-

cies, nb and nu, respectively, and the solution to the

problem is sought with lawful, if/then, means.

These are the standards of neo-Darwinian science,

such as modeling and frequentist statistical infer-

ence applied within and among populations, where

modeled accuracy and prediction are the goals.

Alternatively, however, one can identify the mini-

mum number of independent character-state

transformations of sex, inferred from the most

parsimonious hypothesis of species relationships,

assuming for example only nb$ nu, and proceed to

explain each of those relatively few unique past

instances of evolution on a case-by-case basis. To

apply the standard nomothetic means of analysis at

the population level, as if the problem is necessarily

one of lawful optimality, ‘due to natural selection,’

may be arguable, but to treat the nb and nu obser-

vations as if they are all independent in those ana-

lyses does not give consideration to the historical

nature of the problem, including the uniqueness of

each instance of transformation, and Darwin’s

other major principles of evolution, ‘‘descent, with

modification.’’ To think of Darwin’s contribution

only in terms of the lawful regularities of natural

selection and adaptation is to miss the significance

of his theory of propinquity of descent.

Popper (1957) also used the distinction between

lawfulness and explanatory retrodiction, the

nomothetic and the ideographic, as part of his

argument that laws cannot predict history, nor

explain trends in history, because you cannot use

what is spatio-temporally unrestricted to retrodict

what is spatio-temporally restricted. Even

familiar law-like evolutionary statements, such as

‘‘all swans are white,’’ can be accorded a singular,

spatio-temporally restricted, object explanation,

because ‘‘all white swans’’ can be hypothesized to

be parts of an historical individual or mono-

phyletic taxon (Kluge 1999). In addition, there is

the argument that ‘‘evolutionary theory contains

no reference to particular taxa, just what one

would expect if taxa are actually individuals and

not classes. According to this view, ‘All swans are

white’ could not count as a scientific law even if it

were true’’ (Hull 1977, p. 83). As Simpson (1964,

p. 128) succinctly concluded, ‘‘The search for

historical laws is . . .mistaken in principle.’’

Nomothetic science is not the domain of phylo-

genetics, not only because each instance of common

ancestry is a spatio-temporally restricted unique

part of history, but because each species is part of a

replicator system (Lidén 1990) that renders it

‘‘necessarily unique,’’ which is uniqueness in the
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strictest sense (Goudge 1961; Simpson 1964, p. 186;

Kluge 2002; see however Hull 1974, p. 47, 97–98).

The phylogeneticist cannot meaningfully practice

estimation because there is no set of instances with

which to assess a frequentist probability statement

of species relationships. Not only is each event of

common ancestry necessarily unique, so is each

transformation event that is used as evidence

(a proposition of homology) in the inference of

phylogenetic relatedness and the explanation of

observed biological diversity. Whether inherited

variation is identifiedwithDNAsubstitutions or the

modification of a complex (highly integrated) phe-

notypic character, each hypothesized transforma-

tion or proposition of homology involves a

necessarily unique event—an historical indivi-

dual—just as are species and monophyletic groups

of species (Grant and Kluge 2004).

The rationale one uses in defense of parsimonious

inferences in phylogenetics must not rely on

assumptions that violate the logic imposed by the

ontological status of history. But what is assumed is

often disputed. For example, there is the popular

claim that uses of unweighted parsimony in phy-

logenetic inference are dependent, at least impli-

citly, on a model that assumes a constant rate of

evolution in which all character transformations are

equally likely to occur, and therefore parsimony is

unable to identify any patterns of relationships

other than those kinds. The error in this argument is

obvious upon inspection of empirical results—par-

simony methods often identify heterogeneous rates

of character evolution in the unweighted most-

parsimonious phylogenetic hypothesis. In other

words, there is no basis for modeling data, either in

light of, or independent of, the hypothesis.

Even this brief discussion indicates why those

who apply parsimony must be careful to evaluate

the ontological status of what is being inferred, as

well as the nature of the evidence used in those

inferences—which are the normative aspects of

parsimony. No scientist should feel safe in

appealing to parsimony without first assessing the

ontological status of what he/she is making an

inference. Even the instrumentalist’s heuristic use

of probability or likelihood as the basis for histor-

ical prediction, and not explanation, cannot be

founded on an illogical thesis (Ariew 1998).

2.4 Causality and scientific practice
in phylogenetic inference

Given the ideographic generalities discussed in the

previous section, I can now explicate the specifics

of the causality involved and the kind of scientific

method that can be practiced in the inference of the

necessarily unique parts of history. To begin with,

the causal event of heritability is the sufficient

condition for claiming a homology or historical

identity (H), where that relation specifies a part of

phylogeny (P), that which is ostensively defined in

terms of common ancestry. The point is that an

event of heritability is precisely located in relation

to the object or character state that is inherited

(Hennig, 1966, fig. 21). Although the part/whole

relations of ontogenesis/tokogenesis/phylogenesis

may be necessary to the conceptualization of

causality in phylogenetic inference, it is the event

of heritability or transformation that fixes the

nature of the causality involved.

This logic does not tell us what things exist; it

only suggests how to determine what things a the-

ory claims to exist. OnlyH is relevant in the study of

P, which in the simplest case of three terminal taxa,

A, B and C, can be represented as (A,B)C, (A,C)B

and (B,C)A. Since neither P or H are observable,

typically a hypothesized shared derived state, a

synapomorphy (S), is used as the unit of empirical

evidence to test among the logically possible P, a

choice of which in turn hypothesizes at least some S

being explained by H. Regarding linguistic con-

ventions (Kluge, 2003a, p 236), we can say that

P(A,B)C causally explains H(A,B)C, as inferred from

S(A,B)C, but not H(A,C)B or H(B,C)A, as inferred from

S(A,C)B or S(B,C)A, respectively. Likewise, P(A,C)B

causally explains H(A,C)B, as inferred from S(A,C)B,

but notH(A,B)C orH(B,C)A, as inferred from S(A,B)C or

S(B,C)A; or P(B,C)A causally explains H(B,C)A, as

inferred from S(B,C)A, but not H(A,B)C or H(A,C)B, as

inferred from S(A,B)C or S(A,C)B.

Two attendant considerations turn this ideo-

graphic kind of causal explanation into a historical

kind of scientific operation (following the general

outline provided by Goudge 1961). For the practice

of phylogenetic inference to be scientific (1) the

evolutionary principles of ‘‘descent, with modifica-

tion,’’ must contain concepts that do not necessarily
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correlate with what is hypothesized, the P and the

H. These concepts are called theoretical constructs,

which is what heritability is in the present case.

These constructsmay not be directly observable, but

nonetheless play an important role in the frame-

work of the theory. Their scientific admissibility

depends on the fact that they occur in statements

that have a deductive connection with statements

that refer directly to the inherited object, i.e. the

empirical data. It is because of this connection that

theoretical constructs have scientific meaning con-

ferred on them. In the practice of phylogenetic

inference (Kluge 2003a), so-called observation

statements, S, stand as a hypothesis ofH, if at best a

weak one (see below), which in turn provide the

means whereby the theory, P, is tested to ascertain

its falsity. (2) In addition, there are reasons for

holding that a theory, P, is properly called scientific

provided it entails observation statements, which

are capable of being refuted by any empirical data

(Kluge 1999). This guarantees that the theory, P, is

potentially falsifiable. Character congruence, and

the reciprocally illuminating process of character re-

analysis, provides the test of such statements in

phylogenetic inference (Farris et al. 1970, pp. 177–

178; Kluge 1997b). There is no vicious circularity in

this scheme of causality and testing (for further

discussion see Hull 1967; Kluge 2003b, p. 365),

because the observation statements, such as S, are

not perfectly correlated with H (Farris et al. 1970).

The logical proof of this obtains from the familiar

argument that while all H are S, not all S are H

(Farris et al. 1970, p. 187). Thus, the scientific quality

of P, as inferred from H, is maintained.

Goudge (1961) also formulated two kinds of his-

torical explanation, integrative and narrative. While

neither supposed genuine scientific laws, they are

not to be confused with the deductive historical

explanation described immediately above, which I

will consider further in my explication of phyloge-

netic inference. In the case of Goudge’s integrative

explanation, similarity relations and spatial patterns

observed among organisms are explained in light of

a phylogenetic hypothesis, showing the relations

and patterns to be the outcome of, or partly depen-

dent on, past sequences of historical phenomena,

which have continuity and direction. Although

Goudge argued that integrative explanations can be

causally and critically evaluated, most such ana-

lyses are fraught with issues of non-independence

and enumerative confirmation, which I believe

cannot be part of a scientific philosophy.

According to Goudge (1961), why particular

historical events have occurred requires a narrative

explanation. As he summarized (p. 77):

What we seek to formulate is a temporal sequence of

conditions which, taken as a whole, constitutes a unique

sufficient condition of that event. This sequence will

likewise never recur, though various elements of it may.

When, therefore, we affirm ‘E because s’, under the above

circumstances, we are not committed to the empirical

generalization (or law) ‘Whenever s, then E’. What we are

committed to, of course, is the logical principle ‘If s, then E’,

for its acceptance is required in order to argue ‘E

because s’. But the logical principle does not function as a

premise in an argument; the affirmation, ‘E because s’,

is not deducible form it . . .Both s and E are concrete,

individual phenomena between which an individual

relation holds.

Critical to Goudge’s thinking on integrative and

narrative explanations (p. 174), and the part with

which I do not take exception, is the idea that if

we envisage a transformation series ‘‘as a unique

sequence of historical events, extending from

the past into the present, then it is irreversible in

the sense of being irrevocable. What has happened

cannot be altered, and a fortiori cannot be

reversed.’’

The particulars involved in a historical narrative

explanation are akin to the central subjects of literary

narratives, and they take their place in the chronicle

as a consequence of interpretative or explanatory

writing. Under this interpretation, explanation is

achieved through closure, that which contributes to

the cohesiveness and conclusiveness of the chroni-

cle. The analogue to closure in phylogenetics is

Hull’s (1975, 1981) notion of integration, where

explanation is achieved through integrating onto-

logical individuals, i.e. by making them wholes.

Narrative explanation is, however, not without

significant problems. As O’Hara (1988) pointed

out, not all clades exhibit closure; the more inclus-

ive ones remain open, to the extent that any

included lineage is extant. Also, O’Hara argued

that the literary interpretation tends to emphasize

linearity, which in reading the phylogenetic
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hypothesis promotes unnatural, paraphyletic,

groups. O’Hara (1988, p. 153) concluded that these

‘‘false concepts arise out of our expectation that the

central subject of an evolutionary history is a linear

individual, instead of a branched tree.’’ Then there

is the disanalogy between the divergent nature of

phylogenetic hypotheses and the reticulate nature

of at least some aspects of cultural evolution, such

as the ‘‘tree of knowledge.’’ In addition, it remains

unclear how historical integration (sensu Hull 1981;

O’Hara 1988) would involve those properties

exhibited by the central subjects, as well as those

processes in which central subjects participate.

These are the cause–effect relations (the sufficient

conditions) that connect the central subjects, such

as evolving species. Indeed, the historical narrative

does not have the form of theory-based explana-

tion, as in science, where an hypothesis is sought

that has the power to explain the evidence (Popper

1957, 1962a, b; see however, Ruse 1971). Additional

criticisms of Goudge’s narrative explanation can

be found in Ruse (1971; see also R. Laudan 1990).

2.5 Parsimony: justifications in
phylogenetic inference

With the ontological status of phylogeny, the nat-

ure of historical causality, and the scientific prac-

tice of phylogenetic inference having been

explicated, we are now in a position to more cri-

tically evaluate the justifications for parsimony in

phylogenetics in light of these details.

2.5.1 General background knowledge

The Camin—Sokal parsimony method, popular for

only a brief time in phylogenetics, was argued in

terms of the parsimonious nature of the evolu-

tionary process, such as the probability of char-

acter state change being rare. As Camin and Sokal

(1965, pp. 311–312) stated:

Comparison by Camin of these various schemes with the

‘‘truth’’ led him to the observation that those trees which

most closely resembled the true cladistics invariably

required for their construction the least number of pos-

tulated evolutionary steps for the characters studied.

However, this justification for parsimony falls

short of general background knowledge, because it

has been falsified empirically. Any unweighted

most-parsimonious hypothesis of species relation-

ships on which character states cannot be opti-

mized as unique and unreversed disconfirms this

justification, assuming the absence of systematic

error. The best falsifiers in this regard are physico-

chemically identical nucleotide states. Moreover,

this kind of falsification has long been considered

commonplace (Felsenstein 1979, p. 60). At best, the

probability of character-state change being rare is

an auxiliary conditional of the kind one expects to

find in a model. In fact, Felsenstein (1979) took

Camin and Sokal’s statement to be the model for a

likelihood argument—the hypothesis of maximum

likelihood being the rooted branching pattern that

requires the fewest character-state changes to

explain the observed data, assuming the absence of

systematic error and processes that lead to rever-

sals of character evolution, 1! 0.

A similar auxiliary conditional, again not of the

quality of general background knowledge, forms

the basis for Farris’ (1977a, b) Dollo method. Here,

the opposite of the Camin and Sokal model is

assumed. (1) Forward changes (0! 1) are allowed,

but are considered very rare. (2) As many rever-

sions (1! 0) are permitted to occur as are neces-

sary to explain the data. As Farris discussed

(1977a, p. 86): ‘‘A useful way of assessing the sig-

nificance of a probability ratio between two trees is

to compare it to the likelihood ratio between null

and alternative hypotheses attained when the null

hypothesis can be rejected in favor of the alter-

native at exactly error-rate a in large-sample

normal statistics.’’ Basically, the phylogenetic

hypothesis with fewest reversions is preferred

under that model of evolution (see review by

Blackburn 1984).

Earlier references to a general background

knowledge kind of minimum evolution assump-

tion in phylogenetic inference can be found in

Edwards and Cavalli-Sforza (1963, 1964), and that

assumption continues to be explicitly assumed or

implied (e.g. Dayhoff and Eck 1968; Dayhoff

and Park 1969, p. 7–16; Crisci and Stuessy 1980;

Cartmill 1981; Kumar et al. 1993; Pritchard 1994;

de Queiroz 1996; Larson and Losos 1996; Gee

2000, p. 6–7). This class of justifications for

discrete character-state change, as well as those
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for minimum distances (e.g. see Kidd and

Sgaramella-Zonta 1971; Farris 1972; Rzhetsky and

Nei 1992; Swofford et al. 1996, p. 451), not only

generally fail in their presumption that evolution-

ary change is rare, but they exceed the sufficient

general background knowledge premise of

‘‘descent, with modification’’ (see below).

2.5.2 Pragmatic

Many pattern cladists appeal to a kind of prag-

matic justification for their use of parsimony. Their

usual interpretation of pragmatic is like Friedman’s

(1983, p. 269), where the descriptively most

efficient hypothesis is sought because it is argued

to be the most predictive (Farris 1979). The kind of

prediction most commonly mentioned is that of

other characters, even in the situation where an

evolutionary explanation of homology is explicitly

denied (Brower 2000)! A frequently repeated

justification for why pattern cladists exorcise

evolutionary assumptions is that the most-

parsimonious pattern of relationships, once deter-

mined, can then, and only then, serve as evidence

of the basic principles of evolution. Brady (1985)

went even further, arguing that the pre-Darwinian

standing patterns of natural history—common

plan, homology, ontogenetic parallelism, and the

hierarchy of groups—are recoverable with the

parsimony method, without presuming ‘‘descent,

with modification.’’ In other words, it is parsi-

mony’s inductive confirmation of patterns that is

critical, not its evolutionary explanation. And, like

fitting the simplest curve to a set of points, pattern

cladists argue that an hypothesis will be produced

in the long run that is predictively efficient and

arbitrarily close to the truth. Of course, Brady’s

argument runs afoul of reification, i.e. it is illogical

to interpret an abstract pattern as a historical

thing (Kluge 2003b; see however Rieppel and

Kearney 2002).

There are a number of additional points that can

be made regarding the pattern cladists’ pragmatic,

theory-free, justification for parsimony when using

it to predict phylogeny (see review by Kluge

2001a). (1) To begin with, the evidential basis

for grouping species (taxa) is overall similarity,

which is notoriously deficient when it comes to

identifying the relative recency of common ances-

try required of all approaches to phylogenetic

inference. As will be further discussed below, it is

also imperfect when using shared-derived similar

states (Farris et al. 1970, p. 187; Kluge and Farris

1999). Even physico-chemically identical states of

nucleotide characters are well known to be an

imperfect index to common ancestry. (2) Without a

minimal a priori assumption of ‘descent’ there is no

reason to presuppose a nested, hierarchical, pat-

tern of relationships; it might just as well be a

circular array, a reticulate pattern, or a periodic

order. (3) There is also no reason to assume that

the pattern of relationships is necessarily dichot-

omous, since the difference between the reticulate

pattern of tokogeny and the increasingly divergent

pattern of species relationships is theory-

dependent. (4) There is no reason to exclude com-

patibility/clique analysis as a kind of parsimony

method because the largest clique consists of a

completely congruent set of characters, one in

which all the evidence is unique and unreversed,

without exception. (5) Without an assumption,

such as ‘‘descent, with modification,’’ there is no

justification for optimizing character states at the

internodes of a pattern of relationships. The fact

that Wagner and Prim networks provide most-

parsimonious hypotheses among the terminals

without entailing internodes should make them

the methods of choice for the pattern cladist.

(6) Without a limiting assumption, such as

‘descent,’ i.e. one history, there is no reason to seek

onemost-parsimonious hypothesis of relationships.

In other words, pattern cladists have no basis for

using the phylogeneticists’ optimality criterion of

the most parsimonious tree hypothesis.

2.5.3 Unification

Some might consider systematics, including most

of its sub-disciplines, to be the ‘‘poster-child’’ for

disunification, not unification. For example, there is

no consensus as to phylogenetic method and rele-

vant evidence, let alone a theory of inference.

Consider, phenetics was born out of a concern for

similarity relations, shared states, not shared steps

(Farris et al. 1970, pp. 178, 187), and pattern cladism

continues to be an argument for phenetics
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(Kluge and Farris 1999). Further, Bayesian and

likelihood inference of species history involve

excess assumptions and subjectivism, where there

is little to connect what is observed to what is

analyzed and explained as character data. More-

over, there is as yet little published that convin-

cingly indicates theory unification within any of the

disciplines that relate to phylogenetic inference,

such as the study of adaptation, vicariance bio-

geography, coevolution, and taxonomy (see below).

However, I believe there is one overarching

consideration that holds promise for the unifica-

tion of all the historical sciences—which is to

eliminate or reformulate the theories (and meth-

ods) of those disciplines and sub-disciplines that

are inconsistent with the ontological status of what

is being inferred. The history of species relations

being what it is clearly defines the criteria for

systematics more generally and phylogenetic

inference in particular—an ordered set of histori-

cally contingent and necessarily unique events of

common ancestry. As will be further discussed

below, such a unification of this kind would

eliminate those theories (and methods) that are

indeterminate or inconsistent and cannot therefore

have any unifying power in this kind of historical

science. Such a unified theory in its ultimate form

could then be legitimately judged an ideographic

science, as distinct from the nomothetic. That is to

say, historicism would finally be removed from

phylogenetics (Popper 1957). This ideographic

science would not only be recognized for its power

to unify, but to simplify and explain the particulars

of species diversity. A step in the direction of this

kind of unification has already been taken in

questioning the similarity-based theory of char-

acter and replacing it with an evolutionary concept

of ‘‘transformation series’’ or ‘‘stages of expres-

sion’’ (Hennig 1966, p. 91; Kluge 2003b; Grant and

Kluge 2004; see however Rieppel and Kearney

2002). This is considered significant because all of

the important entities in phylogenetics, the species

relations, as well as the statements of homology,

conceptualized as spatio-temporally restricted

objects or events, are interpretable in terms of

evolutionary theory (Hull 1977, 1989; Sober 1980).

This is not to say that another form of theory

unification cannot be achieved according to other,

or alternative, principles. If competing forms of

phylogenetic unification should actually be for-

mulated then they can be evaluated in terms of

that which has the greater generality or scope, the

more general and broader in scope being more

vulnerable to refutation (see epigraph).

2.5.4 Anti-free parameters

Numerous authors have examined the premium

placed on free parameters in terms of the models

assumed by parsimony and likelihood methods of

inference (e.g. see Farris 1973b; Felsenstein 1973,

1979, 1981a,b, 1982, 1983, 1988; Sober 1985, 1988a;

Felsenstein and Sober 1987; Goldman 1990; Steel

et al. 1993, 1994; Yang et al. 1995a; Yang 1996; Lewis

2001; Steel and Penny 2000; Steel 2002). According

to Tuffley and Steel’s (1997: 599, italics in the

original; Steel and Penny 2000, Theorem 2)

Theorem 5, ‘‘Maximum parsimony and maximum

likelihood with no common mechanism are equivalent

in the sense that both choose the same tree or trees.’’

No common mechanism in this theorem refers to

the absence of constraints on edge parameters

from site to site. This theorem does require,

however, the simplest type of substitution model

at a particular nucleotide position, a Poisson

model, where each of the possible substitutions

occurs with equal probability. Given just a tree and

a single character (and no information as to edge

lengths), the maximum likelihood estimate of

the state at any internal node is precisely the

maximum parsimony state.

More recently, Goloboff (2003) provided an

example of anti-free parameter justification for

parsimony in phylogenetic inference, where he

proved that parsimony assumes fewer model

parameters than does likelihood. Thus, that

unweighted most-parsimonious hypothesis of

species relationships must necessarily be included

in any likelihood ratio test to decide whether the

simpler model should be rejected.

However, I believe the fact that Tuffley and Steel

assumed more model parameters than did

Goloboff illustrates the futility of attempting to

understand a method based on the model it sup-

posedly implies. If exactly the same hypothesis can

be understood as being derived from a maximally
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complex model (in terms of free parameters) or a

maximally simple model (in terms of free para-

meters), or just assuming ‘‘descent, with mod-

ification,’’ as background knowledge, then this

demonstrates that focusing on free parameters is a

meaningless exercise.

Another anti-free parameter justification for

parsimony in phylogenetic inference is Akaike’s

framework (e.g. see Posada and Crandall 1998,

2001a, b; Sober and Steel 2002), where the goal of

model selection is predictive accuracy, and parsi-

mony is employed in hypothesis evaluation.

However, the ‘uniformity of nature’ assumption

disqualifies that framework (see above) when it

comes to phylogenetics. To assume that the old

and new data sets evolved according to the same

underlying distribution is a counter-factual con-

ditional, and one that is recognized among phy-

logeneticists as being generally false. More

importantly, while this framework may provide

instrumentalism with a kind of justification, its

appeal to frequentism is denied in the study of

phylogeny, because the events of interest and the

relevant evidence are necessarily unique (Kluge

2002; Grant and Kluge 2004).

Minimally, any phylogenetic method, parsi-

mony or likelihood, that assumes a model, can be

criticized. First, models assume counter-factual

conditionals. There is also the issue that models

are usually statistical, and to relate them to the

necessarily unique hypotheses of phylogeny is

illogical. Further, to employ a model is to assume

more than background knowledge, that which is

minimally sufficient to provide a causal explana-

tion of historical individuality (Kluge 2002; Grant

and Kluge 2004; see also below).

2.5.5 Local background knowledge

This justification for parsimony has taken a variety

of forms in phylogenetic inference, including

weighting (Wheeler 1986; Goloboff 1993b, p. 83).

The several kinds of weighted parsimony

analysis—a priori, successive (iterative, a posteriori),

implied (heaviest tree), support, and strongest

evidence—attempt to correct for instances of

homoplasious similarity, which is assumed to lead

to a better-supported, more reliable, hypothesis

(e.g. Farris, 1966, 1969, 1979, 2001; Le Quesne

1969; Goloboff 1993b; Mindell and Thacker

1996; Penny et al. 1996; Salisbury 1999). All of the

more explicitly stated arguments for differential

character weighting assume some concept of

conservatism/constancy (uniformatarianism; e.g.

Goloboff 1993b; see Kluge 1997b).

More specific criticisms of weighting that must

also be rebutted before proceeding with any such

kind of practice include the following: (1) Weight-

ing leads to suboptimal, less-parsimonious, not

more-parsimonious, phylogenetic hypotheses when

it comes to the data of observation (Kluge 1997b;

see however Farris 1983). Thus, to weight is to be

logically inconsistent with parsimony’s goal of

maximizing explanatory power and finding

the best-supported hypothesis given the evidence

(sensu Grant and Kluge 2003). As an aside, by

the same argument, weighting does not maximize

descriptive efficiency (Farris 1979; Kluge 1997a).

(2) Assuming a conservative/constancy model of

evolution also diminishes severity of test (Kluge

1997a). (3) Weighting contributes to a loss of char-

acter independence; there is a loss of independence

by virtue of the fact that the members of any

weighted-class of characters (the more or less

conservative classes) are weighted the same (Kluge

1997b). (4) There is also a potential loss of infor-

mation because an incongruent character state

can in fact increase phylogenetic structure; e.g. a

reversed state can be diagnostic of a monophyletic

group (Källersjö et al. 1999).

Sober (1988a, 1994, p. 85; see also Felsenstein

1973) provided quite a different kind local back-

ground knowledge justification for parsimony—

where parsimony impacts on likelihoods in terms

of a common causal explanation. Many phylo-

geneticists, including some who call themselves

cladists (e.g. Nelson and Platnick 1981), have

implied that their inference extends from such an

explanation. As developed by Sober (1988a),

Bayes’ theorem summarizes the plausibility of the

common causal explanation of homology (cc) in

relation to the separate ‘explanation’ of homoplasy

(sc) in light of shared-derived character-state

similarities or synapomorphies (e), p(cc, e)¼ p(e, cc)

p(cc)/p(e), and p(sc, e)¼ p(e, sc) p(sc)/p(e). Sober

(1988a, p. 79) traced the concept of common causal
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explanation to the idea of improbable coincidences

developed by Russell (1948) and Reichenbach

(1956): ‘‘If two events are similar in ways that

would be immensely improbable if they had

separate causes, we may reasonably hypothesize

that they trace back to a common cause.’’ Sober’s

‘Smith/Quackdoodle theorem’ formalized a com-

mon causal explanation for three taxa (Sober

1988a, p. 239). In the present case, a hypothesis

of homology is considered more plausible than

a separate cause of homoplasy when the inde-

pendent origin of similar shared-derived (syna-

pomorphic) character states is relatively unlikely.

Sober (1988a) argued, by analogy, that the genea-

logical relatedness of two people listed in a phone

book as Smith is not as plausible as two people

named Quackdoodle.

Given the same denominators in p(cc, e) and

p(sc, e), p(e, cc) p(cc)> p(e, sc) p(sc), or p[(A1, B1),

cc]> p[(A1, B1),sc], where the hypothesis of

homology is considered more plausible than the

separate cause of homoplasious similarity obser-

ved in two species, A1, B1. For three taxa, the

likelihood terms, p(e,h), are p[1 1 0, (A,B)C]> p[1 1 0,

A(B,C)], or p[1 1 0, B(A,C)]. It is in this context

that set of terms was considered ‘‘a prima facie

plausible inference principle’’ (Sober 1993, p. 174).

While there appears to be explanatory power in

Sober’s Bayesian approach to phylogenetic infer-

ence, where shared-derived similarities are

explained as homologues, his justification depends

on a frequentist assumption of character-state

occurrence (the frequency of Smiths and Quack-

doodles in a phone book), as well as a causal

explanation of homoplasy (see above). Those who

assert that parsimony is a kind of likelihood have

some form of plausibility parsimony in mind (e.g.

Swofford et al., 1996; de Queiroz and Poe 2001,

2003), not an unweighted parsimony analysis (see

also Kluge 1997b, 2001b).

A phylogenetic hypothesis cannot tell you whe-

ther a given character relation is expected or not.

Each transformation is necessarily unique, and any

hypothesis of such change can only be true (p¼ 1)

or false (p¼ 0); some frequentist probability value

in between true and false has no meaning when

applied to the concept of historical individuality of

transformation (Kluge 2002; Grant and Kluge 2004;

see however Sober 1988a; Felsenstein 2004). To be

sure, phylogeneticists can be wrong in their choice

of data used to test some part of species history,

but that concerns the uncertainty of the operational

issues required to identify transformation series.

There is no logic that says phylogenetic hypotheses

are able to say how probable the observations are

as evidence of common ancestry ‘‘if we append

further assumptions about character evolution’’

(contra Sober 1994, p. 88; my italics). Yes, there is

uncertainty in the observations systematists

employ as evidence of phylogenetic relationships,

a normal part of operationalism; however, as we

will see below, there is no uncertainty in the rela-

tionship between the ideographic character con-

cept of transformation series and the nested

hierarchy concept of species relationships—the

two concepts are perfectly coincident (e.g. see

Hennig 1966, Fig. 21).

Further, the concept of support is important in

the inference of species relationships (Grant and

Kluge 2003), as measured by the relative degree of

corroboration of the competing hypotheses, not

their probability/plausibility. Assessing truth is

subjective, founded on probabilities, statistics, or

likelihood, where what is being inferred, and the

evidence used to infer it, are misapplied class

concepts. As argued elsewhere (e.g. Kluge 2002), it

is illogical to treat historical individuals as class

concepts, and to do so leads unnecessarily to over-

reductionism (Frost and Kluge 1994).

2.5.6 Testability

Phylogenetic inference has long been cast in Pop-

perian terms (Wiley 1975; see also Bock 1973),

where testability is a function of the improbability

of a hypothesis of relative recency of common

ancestry, not its frequentist probability. In the case

of phylogenetic inference (Kluge 2003a), assuming

only ‘‘descent, with modification,’’ as background

knowledge, the evidence for competing hypo-

theses of sister-group relationships should be

equally likely. Thus, in the simplest case of three

terminal taxa, the possible hypotheses are P(A,B),

P(A,C), and P(B,C), and the expected data of obser-

vation equally likely, S(A,B)¼S(A,C)¼S(B,C). How-

ever, if a large majority of one of those possible
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kinds of data were to be observed in an unbiased

sample, say S(A,B), which counts against P(A,C) and

P(B,C), but counts for P(A,B), then this is improbable

given the background knowledge alone, but not

under that background knowledge plus the pos-

tulated rooted cladogram P(A,B)C (Kluge 1997a). It

follows from this improbability argument, where

only incongruent data count as a falsifier, that

severity of test increases with the number of those

tests that have been carried out, and the more

severe the test, as supporting evidence of the cor-

roborated hypothesis, the greater power the

hypothesis has to causally explain the data. The

corroboration of the hypothesis by the evidence is

simply the measure of the degree of support given

by the evidence to the hypothesis, and explanatory

power and degree of corroboration are maximized

by minimizing the data on the hypothesis, where

‘‘enjoining parsimony protects the falsifiability of the

phylogenetic system from going to zero’’ (Kluge 2003a,

p. 237).

In this system, the unweighted most-

parsimonious phylogenetic hypothesis requires the

fewest character-state changes or steps. The applica-

tion of this kind of parsimony in a total evidence

analysis of equally weighted data minimizes the

total number of hypotheses of character transfor-

mation required to explain the heritable variation

observed among species and, as such, the unwei-

ghted most-parsimonious cladogram represents the

objectively optimal phylogenetic theory (Grant and

Kluge 2004; Kluge 2004). Moreover, support can be

defined objectively in this system (see also above),

as the ‘‘degree to which critical evidence refutes

competing hypotheses. A hypothesis is unsup-

ported if it is either (1) decisively refuted by the

critical evidence or (2) contradicted by other,

equally optimal hypotheses (i.e. the evidence is

ambiguous), otherwise it is supported. That is,

rational hypothesis preference is based on the

relative degree of corroboration of competing

hypotheses, where the hypothesis that is the least

refuted by critical evidence is preferred’’ (Grant

and Kluge 2003, p. 383). While some have argued

that Popper (1959) interpreted testability only in

nomothetic terms, there still appears to be no

reason why it, and his epistemological principle of

explanatory power, do not apply to the ideographic

science of phylogenetic inference (Goudge 1961;

Popper 1980; Kluge 2003a, p. 238).

2.5.7 Anti-superfluity

Farris’ (1983) minimization of ad hoc hypotheses is

a well-known ASP justification for most parsimo-

nious phylogenetic hypotheses. The value of

minimizing ad hoc hypotheses is unassailable, as

philosophers and scientists alike acknowledge (e.g.

Popper 1962b, p. 288; Farris 1983, p. 18), because

such hypotheses are adopted only for the purpose

of saving a theory from difficulty or refutation, in

the absence of any independent rationale. Without

such minimization there would be no way to dis-

tinguish personal belief from evidence in choosing

among competing theories. Moreover, ad hocisms

can be explanatorily empty. As Popper (1957,

p. 103) pointed out, ‘‘the ad hoc hypothesis that the

laws have changed would ‘explain’ everything,’’

but in doing so would explain nothing at all.

Farris (1983) was clear that it was ad hoc

hypotheses of a particular kind that are explana-

torily superfluous. As he stated (p. 18; my italics),

‘‘the explanatory power of genealogy

is . . .measured by the degree to which it can

avoid postulating homoplasies,’’ where (Farris

1989b, p. 107) ‘‘A postulate of homology explains

similarities among taxa as inheritance, while one

of homoplasy requires that similarities be dis-

missed as coincidental, so that most parsimonious

arrangements have greatest explanatory power.’’

Contrary to homologues, homoplasious simila-

rities are then minimized in phylogenetic infer-

ence, according to Farris, because they do not

constitute propositions of similarity that identify

monophyletic groups.

There are, however, significant problems with

the different ways homoplasy has been expli-

cated. First, there is the issue of interpreting

homoplasy as independently evolved instances of

a similar kind (for a review see Kluge 2003b).

Suffice it to say, similarity in this context is being

treated as a class concept, one tied to lawfulness

or natural necessity, where one or more immu-

table properties constitute the basis for inten-

sionally defining any particular class or kind. As

such, similarity is an abstraction, and so too is
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any group of organisms defined in terms of

having properties of that kind (see however Sober

1988b). Aside from the arguments that have been

lodged against using similarity in the inference of

phylogeny (Hennig 1966; Farris et al. 1970; Kluge

2003b; see also below), homoplasy cannot be

explained in terms of evolution, when homoplasy

is intensionally defined as an immutable set of

similarity relations. Only ostensively defined, spa-

tio-temporally restricted, things have the potential

to evolve according to Darwin’s principles of

‘‘descent, with modification’’ (contra Sanderson

and Hufford, 1996).

When propositions of homology are tested with

character congruence, and from which homoplasy

is deduced, homology and homoplasy become a

complementary relation, a, and not-a, respectively.

As the not-a relation, homoplasy is nominal

(everything that a is not) and as such it cannot be

causally explained. Of course, any one of the

independently evolved instances of homoplasy

might be explained in its own right as homology

(Kluge 1999). None of this argument denies the

lawfulness of natural selection, only as it applies to

a set of independently evolved similar things

(Kluge 2003b). Homoplasy per se can have no

common causal historical explanation because the

independently evolved instances of similarity are

spatio-temporally unrestricted. If nature has

taught us anything, it would be that living things

respond to the same selective pressures in any

number of ways, a lesson that is an anathema

to inductive reasoning in comparative biology

(T. Grant, personal communication).

Lastly, it was Farris’ (1983) position that homo-

plasy is merely investigator ‘‘error’’ in the infer-

ence of homology. However, there is no natural

causal explanation for such error. Although

homoplasy as systematic error may be defined

intensionally as a class concept, it cannot be

modeled as if it were a historical law. Of course,

increasing precision by minimizing error is a

worthwhile endeavor in all sciences, but it has no

epistemological standing itself. As Popper (1979, p.

356–357) recognized, a ‘‘precise statement can be

more easily refuted than a vague one, and can

therefore be better tested.’’ However, as he went

on to note, the theoretical or the explanatory has

logical priority over the practical or ‘‘instrumental’’

tasks of science, such as precision.

Phylogeneticists are concerned with the ideo-

graphic, patterns of inherited things that can be

deduced from a common ancestral state. That

being the case, I assert that homoplasy can be

nothing more than a description of inferred trans-

formation events; effectively, it is a description of

explanations. Just as referring to something as

similar is acausally descriptive, referring to some-

thing as homoplasious is acuasally descriptive.

Explanation of the observed, independently

evolved heritable variation is achieved through the

inference of transformation events, and nothing

explanatory is added by referring to them as

homoplasies.

Arguably, homoplasy is an example of Aristotle’s

‘‘fallacy of accident,’’ where distinct differences

between the essential and the accidental are

assumed, i.e. that independent transformations

result in a set of ‘‘similar,’’ causally accidental,

things. As Ghiselin (1966, p. 148) argued, we may

want to compare similar things, but it is an error to

subsume one relation within the other, because

homology involves some kind of similarity

between organisms (Farris et al. 1970).

It is true that incongruent transformations can

be made useful, both in the sense of Hennig’s

(1966) reciprocal illumination and also as a heur-

istic in developing and testing adaptive/

selectionist explanations of particular transforma-

tions, but even in these cases there is nothing at all

explanatory in the term homoplasy. Although

further explanation may in principle be achieved

for each of those transformation events, e.g. by

establishing the selective basis for their origin and

retention, those conditions may be determined to

be causally the same (cf. homoplasy) or causally

different, and in neither case does this impinge on

phylogenetic explanation which is concerned with

the spatio-temporally restricted, i.e. historical

individuals.

I conjecture that it has been the inductionists’

preoccupation with homoplasy (e.g. see Sober

1988, p. 32), with the possibility of interpreting

similar character states as repetitions of a kind,

that has given license to the myriad of methods

concerned with which hypothesis is most likely to
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be true (Bayesianism), which hypothesis is sta-

tistically the most probable (frequentism), or

which hypothesis confers the highest likelihood

on the data (likelihoodism), where counter-factual

auxiliary assumptions are entailed in an attempt

to model the course of such a history of inde-

pendent evolution. Repetitions, like repeated

trials, may instantiate a class concept of some

kind of similarity. That set of instances may even

be used to generate a frequency profile that is

interpreted as approximating a probability dis-

tribution relevant to some method. That concept,

distribution and method may even be thought of

as governed by a universal law or propensity.

While this may be nomothetic science at its best,

it bears no relationship to the practice of ideo-

graphic science.

This is the same argument that denies the use

of weighting against instances of homoplasy,

from a priori, successive (iterative, a posteriori),

implied (heaviest tree), support, to strongest evi-

dence (see above). It is true that the multiple

hypotheses required to explain the variation that

we describe as similar can lead to the reciprocally

clarifying elimination of operational error (Kluge

1999). That, however, does not offer an historical

epistemological argument for minimizing instan-

ces of independent evolution. The study of

homoplasy may be of interest to students of

function, but that research has no special meaning

for historical biologists, independent of the sepa-

rately evolved states being homologous. To be so

concerned, the phylogeneticist is engaged in fal-

lacious reasoning.

A quantitative kind of ASP has yet to be

articulated as a justification for parsimony in the

inference of phylogenetic relationships. Wheeler’s

(1996) direct optimization approach to gene-

sequence alignment may be an analog of ASP, but

an epistemological justification has yet to be pro-

vided for it (see below). To be sure, few phylo-

geneticists have shown much interest in the

philosophical, and Baker’s (2003) discussion of the

quantitative justification was published only

recently (however, see preliminaries by Nolan

1997). Also important is the additivity require-

ment—a collection of qualitatively equivalent

individual objects or events in the relevant

respects—which would appear to make this justi-

fication an unlikely candidate for phylogenetic

inference. Indeed, none of the character concepts

usually referred to in phylogenetics suggest that

kind of individuality, where character states can be

interpreted as additive instances of one kind.

Recently, however, Grant and Kluge (2004) made

that connection with their definition of an

ideographic character. As they stated (p. 29; my

italics),

the application of phylogenetic parsimony in a total

evidence analysis of equally weighted evidence mini-

mizes the total number of hypotheses of transformation

required to explain the heritable variation observed

among species and, as such, the most parsimonious

cladogram represents the objectively optimal phylo-

genetic theory.

In fact, it was this treatment of Hennig’s (1966)

transformation series character concept that I

consider fundamental to my quantitative parsi-

mony rationale—where the conceptualization of

history determines the operational and metho-

dological means used in its inference—and which

in turn is critical to my attempt to focus phyloge-

netic inference only on the ideographic.

As Grant and Kluge (2004) pointed out, most of

the character concepts currently in use emphasize

kinds and degrees of similarity among terminal

taxa as evidence of their relationships (for details

see Kluge 2003b; see also Rieppel and Kearney

2002). For example, it is usually stated that

‘‘Derived similarity is evidence of propinquity of

descent’’ and ‘‘Ancestral similarity is not evidence

of propinquity of descent’’ (Sober 1994, p. 87).

Aside from the problem of not being able

to provide an evolutionary epistemology for

‘‘similarity’’—because the properties of organisms

to which similarities refer are spatio-temporally

unrestricted, abstract, and immutable (see

above)—there is no basis on which to claim an

additive accounting. To begin with, the plesio-

morphic and the apomorphic states of a single

heritable transformation may entail any number of

properties (Hennig 1966, pp. 92–93), with the total

number of properties being infinite. Moreover,

logic dictates that a similarity relation according to

one kind of property cannot be equivalent to one
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based on another kind, because each kind has its

own intensionally defined necessary and sufficient

set of conditions. Thus, similarity is without a

common currency, because it is one of degree as

well as kind.

Grant and Kluge’s (2004) ideographic definition

of character is an event concept, events being

things that happen, such as phylogenesis and

transformation. That definition is not a material

object concept, those being things to which physi-

cal features are attributed, like volume, mass, and

being containable and storable, even though the

object is the thing that systematists claim to

observe when operationalizing the concept char-

acter, and it is the thing geneticists currently use to

measure heritability, i.e. the proportion of the

variance in a trait among individuals that is attri-

butable to differences in genotype. What is it then

that allowed Grant and Kluge to argue that their

transformation series character concept is con-

cerned with heritability when the ontological dis-

tinctions between event and object imply their

incommensurability? To begin with, the problem is

simplified by virtue of the fact that the transfor-

mation event(s) and the transformed object(s) form

a spatio-temporally restricted, historically con-

tingent, transformation series (Hennig, 1966, fig.

21). That is, the locatability and mobility of the

event is not a problem with reference to the object,

they are causally related, and consequently, para-

phrasing Woodger (1929, pp. 301–302), it can be

stated that the perceptual object we also call the

character state is expressive of certain of the

knowable characteristics of the event that can be

exemplified in sense-experience. That is, the char-

acter state is the event and the event is the char-

acter state, or, in a word, the event and the object

are coextensive. Thus, the ontological distinctness of

mutation (event) and mutant (object) concepts

does not deny their causal continuity and their

comparability in such terms as heritability. More-

over, it is because the transformation events

occupy the same place in the causal sequence, i.e.

have the same causes and the same effects, and

that they are identical with events described in the

causal law of inheritance, that they can be con-

sidered identical and additive (Davidson, 1991;

Baker, 2003).

With regard to the systematists’ and geneticists’

character operationalisms, it is important to

recognize that the phenotypic states that are

attributed to an organism are, at best, only proxies

for the actual ‘‘stages of expression’’ in the trans-

formation series (Hennig, 1966, p. 91). For exam-

ple, no one should be fooled into thinking that the

states of eye color and handedness in humans are

things that literally pass from parent to offspring.

An investigator would do well to sample nucleo-

tides if precision in heritability is of particular

concern.

As already mentioned above, Hennig’s (1966,

Fig. 21) transformation series character concept,

assuming just ‘‘descent, with modification,’’ as

background knowledge, does not entail the con-

tradictions and inconsistencies with respect to

evolutionary theory as do similarity-based def-

initions. More importantly in my formulation of a

quantitative parsimony rationale, adopting Grant

and Kluge’s (2004; see also Kluge 2003b) ideo-

graphic explication of Hennig’s concept, insofar as

it is relevant to phylogenetic explanation, each

inferred transformation is metaphysically the

same kind of process, with each such event

counting equally as heritable evidence in the

analysis of singular causal statements of that kind

(Bach 1981; Davidson, 1991).

How this quantitative ASP parsimony rationale

is connected to Grant and Kluge’s (2004) ideo-

graphic character concept is clarified by Farris’

(1967) definition of evolutionary relationship. In

that seminal, but largely overlooked, paper, Farris

distinguished phenetic and evolutionary or phy-

logenetic systems, and in doing so he made dis-

tinctions and identified other relevant parameters

sufficiently rich in ideas to restrict the permissible

meanings of relationship. As he pointed out,

in distinguishing phenetic relations (pp. 45–47; my

italics), ‘‘The best one can do is to study the form

of the measure of overall phenetic similarity . . .

until the meaning of overall similarity is standard-

ized.’’ Whereas, with four axioms, he precisely

defined a priori the evolutionary form of the

measure of phylogenetic relationship.

Axiom 1: The objective of the [phylogenetic] system is

to place [species] in such a way as to describe their
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patristic and cladistic relationships as completely as

possible. . . .Axiom 2: The patristic difference between

[species] is a function of the displacement in all the

unit characters of the [species] along the phyletic line

connecting the [species]. . . .Axiom 3: The phylogenetic

relationship between two given [species] is a fixed

value. . . .Axiom 4: The measures of patristic and cladistic

difference are non-negative real numbers.

And from these axioms, Farris characterized two

phylogenetic relationship functions, cladistic and

patristic (not the patristic of Sokal and Camin

1965), with phylogenetic relationship being the

negative of the corresponding cladistic or patristic

differences. For example, as he stated:

The overall patristic difference is the sum of the patristic

unit character differences. Each patristic unit character

difference is the summation of the changes of that char-

acter from point to point over the phyletic line between

the [taxa] compared.

Likewise, Farris defined cladistic difference as the

sum of the number of lineage divergences between

any two taxa and their most recent common

ancestor, which means that both phylogenetic

relationship functions have the same properties of

historical individuality, where each divergence

and transformation is spatio-temporally restricted

and necessarily unique. As Farris (1967, p. 47)

concluded, ‘‘The two components of evolutionary

difference thus have similar properties, and this

fact lends a certain unity to the concept of [phy-

logenetic] relationship.’’

Let there be no mistake, Farris’ definition of

phylogenetic relationship and relationship func-

tions are genealogical and not phenetic. As Darwin

(1859, p. 420) stated:

All the foregoing rules and aids and difficulties in

classification are explained, if I do not greatly deceive

myself, on the view that the natural system is founded

on descent with modification; that the characters which

naturalists consider as showing true affinity between

any two or more species, are those which have been

inherited from a common parent, and, in so far, all true

classification is genealogical; that community of descent

is the hidden bond which naturalists have been uncon-

sciously seeking, and not some unknown plan of crea-

tion, or the enunciation of general propositions, and the

mere putting together and separating of objects more or

less alike.

While Kluge and Farris (1969; see also Farris 1970)

provided an heuristically efficient, if not an effect-

ive, algorithm in their Wagner method for choosing

a best fitting hypothesis, it was Farris et al.

(1970) who further clarified and extended the

meaning of cladistics and patristics (Farris 1967).

They abstracted four premises from Hennig’s

(1966) ‘‘Phylogenetic Systematics,’’ and from these

they derived three theorems, plus corollaries,

which they used to explicate evolutionary tree

hypotheses in accordance with Hennigian phylo-

genetic principles. Their specific points that con-

stitute the basis for my ideographic interpretation

of phylogenetic systematics are as follows. (1) Their

Axiom I described Hennig’s transformation series

concept of character (see also Grant and Kluge

2004), which defined the evolutionary ordering of

character-states as plesiomorphous and apomor-

phous in the simple case or as a character-state tree

when the transformation series consists of more

than two stages of expression, and they allowed

reversals and any state to be potentially permis-

sible as the most ancestral state for some restricted

part of the tree (their Axiom I 0). (2) According

to their Axiom II (Farris et al. 1970, p. 173), all

monophyletic groups are distinguished by sharing

one or more apomorphous ‘‘stages of expression,’’

whether the group has an apomorphic state x or

a state apomorphous relative to state x (as deter-

mined by the predefined character-state tree).

(3) Transformation series or stages of expression

were characterized in terms of ‘‘steps’’ or ‘‘derived

steps,’’ where emphasis was put on sharing

‘‘stages of expression.’’ As Farris et al. (1970, p. 174;

italics in the original) summarized, ‘‘two [taxa]

with states y and z share a step, x, if and only if y

[is derived from] x and z [is derived from] x.

(4) In their Axiom III (Hennig’s auxiliary princi-

ple), in the absence of evidence to the contrary, any

state corresponding to a step shared by a group of

taxa is assumed to be unique and unreversed

(at least locally). (5) Their Axiom IV measured

the strength of the evidence for a monophyletic

group—the more characters certainly interpretable

as apomorphous the better founded is the

assumption the group is monophyletic. (6) Their

Theorem I provided the basis for describing the

common ancestral state of a monophyletic group,
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i.e. the most derived state from which the sister

lineages are derived. In this theorem they identi-

fied homologous states, at least in the unambigu-

ously optimized case. (7) As a corollary, their

Theorem II described the same relation for taxa, i.e.

the common ancestor for a monophyletic group

is the most derived hypothetical taxon from which

the sister lineages are derived. In these two theo-

rems, they had characterized both monophyletic

taxa and transformation series as spatio-

temporally restricted. (8) Their Theorem III stated,

in terms of derived steps, the evidential basis for a

taxon being excluded from a monophyletic group.

Summarizing, Farris et al. identified a close

connection between Hennigian phylogenetic

systematics and unweighted most parsimonious

hypotheses of species relationships, and they

found the Wagner method for inferring those

hypotheses (Kluge and Farris 1969; Farris 1970)

to be consistent with their generalization of the

Hennigian axioms. Effectively, they made the con-

nection between amount of evidence (Axiom IV)

and the minimum number of steps required of the

unweighted most-parsimonious hypothesis of

species relationships, which is measured by the

additive requirement of quantitative parsimony.

The virtue of minimizing the quantitatively

superfluous—the patristic difference—is that col-

lectively the hypothesized heritable stages of

transformation (T, not syanpomorphy or S) can

explain the particular phenomenon of homology

(H) as a nested series of such statements. The

explanation is ‘additive’ in the sense that the

overall phenomenon of phylogeny (P) is explained

by totaling the individual positive contributions of

each transformation, where quantitative parsi-

mony tends to increase the explanatory power of

phylogenetic hypotheses compared to their less

quantitatively parsimonious rivals. Less quantita-

tively parsimonious hypotheses can only match

the more quantitatively parsimonious propositions

in explanatory power by adding auxiliary claims

of one sort or another.

The following injunction summarizes these

details—choose the hypothesis of cladistic relation-

ships that minimizes the overall patristic difference,

because that hypothesis has the greatest power to

explain the independently heritable transformation

events as propositions of homology. In keeping

with Farris et al.’s (1970, p. 172) reference to a

‘‘quantitative analog of phylogenetic systematics,’’

I believe it is fitting to designate this ideographic

kind of phylogenetic inference quantitative phylo-

genetic systematics (QPS), and I name its quantita-

tive parsimony rationale Farris parsimony (FP),

in recognition of James S. Farris’ many significant

contributions to the theory of phylogenetics.

Wagner parsimony remains an efficient, if not an

effective, method for operationalizing FP (Kluge

and Farris 1969; Farris 1970).

I underscore the fact that not one of the para-

meters of QPS (sensu Farris 1967; Kluge and Farris

1969; Farris et al. 1970) is conceptualized in terms

of similarity, nor is FP’s rationale identified with

the minimization of ad hoc hypotheses of homo-

plasy. Setting aside similarity in these con-

ceptualizations means more than discounting

overall similarity, which subsumes symplesio-

morphy, synapomorphy, and independent evolu-

tion (Hennig 1966; Kluge 2003b). It also means

setting aside synapomorphic similarity, s(A,B), i.e.

‘‘shared-derived character states,’’ when it comes

to the conceptual. At the very most, conceptually

speaking, one might say that QPS is left with

a kind of similarity ‘‘owing to ancestral states,’’

as per Farris et al.’s (1970, p. 187) formal distinc-

tion between s(A,B) and sE(A,B). And, as they

pointed out:

The actual choice of a phyletic tree is left to an algorithm

that effectively constructs the evolutionary hypothesis

most in accord with available data. Thus only a weak

connection between s or sE and relationship is assumed.

Unfortunately, their distinction between the con-

ceptual and the operational when it comes to

similarity in phylogenetic inference (see also Kluge

2003b; Grant and Kluge 2004) has been largely

overlooked, even in the most recent literature (e.g.

see Mayr and Bock 2002; Ghiselin 2004; Padian

2004).

Although there may not be an absolute criterion

for knowing the truth, as I stated above, specifying

the conditions for truth is no more burdensome in

QPS than it is in other approaches to phylogenetic

inference. For example, given three terminal taxa,

the statement ‘‘(A,B)C is true’’ if and only if A and B
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share a more recent common ancestor than either

does with C; ‘‘(A,C)B is true’’ if and only if A and C

share a more recent common ancestor than either

does with B; ‘‘(B,C)A is true’’ if and only if B and C

share a more recent common ancestor than either

does with A. In turn, a transformation series

characteristic of A and B is presumed to be

homologous if and only if the stage of expression

observed in A and the stage of expression

observed in B can be derived eventually from the

ancestral state of the group (A,B), not including C;

a transformation series characteristic of B and C is

presumed to be homologous if and only if the stage

of expression observed in B and the stage of

expression observed in C can be derived eventually

from the ancestral state of the group (B,C), not

including A; a transformation series characteristic

of A and C is presumed to be homologous if and

only if the stage of expression observed in A and

the stage of expression observed in C can be

derived eventually from the ancestral state of

the group (A,C), not including B (Theorem I, Farris

et al. 1970, p. 175).

As suggested above, the virtue of ASP is that

collectively qualitatively equivalent things can

explain some particular phenomenon, like trans-

formation series, whose stages of expression con-

stitute the basis for inferring the parts of species

history. It is the application of FP—choosing the

unweighted most parsimonious hypothesis of spe-

cies relationships—that maximizes explanatory

power, i.e. the stages of expression form a nested

series of homology statements. I maintain that the

difference is conceptually significant between

minimizing steps, sE(A,B), in order to maximize

explanatory power, and minimizing ad hoc hypo-

theses of homoplasy in order to explain shared-

derived character state similarities, s(A,B), as

homologues. Transformation has a common causal

explanation in this historical science—heritable

change—whereas similarity and homoplasy do not.

2.6 Judging the ontological consistency
and sufficiency of parsimony
justifications

Each parsimony justification discussed in the pre-

vious section was examined for its ontological and

epistemological consistency in the inference of

phylogeny—inconsistency being any apparent

negation or contradiction among the concepts and

operations that are claimed to lead to advances in

objective knowledge (Grant 2002). In these eva-

luations I was primarily concerned with the nor-

mative aspect of parsimony, what justifies the

minimization, and not with the descriptive or how

the related optimality criteria are scored (Sober

1983). The limited evaluations undertaken are an

example of normative naturalism, where rules or

criteria are identified for picking the theories or

concepts according to the aims of the discipline at

hand (L. Laudan 1990).

Leaving the theory unification justification for

parsimony until the final section, it is in this sense

of evaluation that all but the testability and

quantitative justifications were judged to be

inconsistent, having failed ontologically and/or

epistemologically. For example, the failures of the

general background-knowledge justifications were

simply a function of the falsity of the assumptions

they make. And, claiming an advance in knowl-

edge is not possible according to the pragmatic

justification because there is no way to evaluate

either ‘best fit’ or explanation. The principal reason

for the failures of the other justifications was not

distinguishing between the ideographic and

nomothetic—not taking account of the ontological

status of what is being inferred—each instance of

common ancestry being necessarily unique and

not a class or set of things.

What constitutes a minimally sufficient justifi-

cation for parsimony is another important kind of

evaluation. In this I am guided by the ‘principle of

less is more,’ a conditional of the usual form, if p

then q, if the less of something then the more of

something else. For example, according to Sober

(1988a, p. 11; my italics), the ‘‘less we need to know

about the evolutionary process to make an infer-

ence about pattern, the more confidence we can

have in our conclusions. From the point of view of

an evolutionary theory that is used to uncover

phylogenetic relationships, the best outcome

would be that minimal process assumptions suf-

fice to identify that pattern. If on the other hand a

detailed understanding were required of why

evolution proceeded in the way it did, then an
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inference about pattern would have to await a

detailed understanding of process,’’ or be unat-

tainable if the understanding of process is entirely

dependent on knowledge of the historical pattern.

How to exploit the ‘less is more’ conditional is

suggested by Sober’s reference to ‘‘confidence’’, i.e.

there being a basis in the logical condition of being

necessary/sufficient: if p is a necessary condition of

q, then q cannot be true unless p is true. If p is a

sufficient condition of q, then given that p is true, q

is also true. However, as Sober recorded, there are

some potential difficulties with this logic when

applied to current topic. (1) What is the minimum

set of assumptions required to make an inference

of phylogeny? (2) At some point, pattern will

become irretrievable, because process assumptions

will have become too meager, and how is that

point to be recognized (Sober 1988a)?

In phylogenetic inference, the principles of

‘‘descent, with modification,’’ are widely con-

sidered the minimal set of assumptions. To assume

‘‘descent’’ alone is too meager, since it does noth-

ing more than provide an assumption of common

ancestry (contra de Queiroz 1992, p. 305), albeit an

important assumption in the argument against a

creationist interpretation of pattern. To assume

absolutely nothing about evolution, as pattern

cladists claim, is obviously vacuous because it

provides no basis whatsoever for an empirical

evaluation of competing hypotheses of relative

recency of common ancestry. The simplicity justi-

fication that Goloboff (2003) attributed to parsi-

mony pertains to model parameters, i.e. auxiliary

assumptions, which are in addition to ‘‘descent,

with modification.’’

Only premises that are not known to be false can

serve as background knowledge, and it is in this

sense that assuming just ‘‘descent, with modifica-

tion,’’ is not considered problematic (Siddall and

Kluge 1997, p. 320). Further, the hierarchy of

relative recency of common ancestry, given this

particular example of background knowledge,

cannot be judged an a priori truth (pace Brady 1994,

p. 22). On the other hand, models are problematic,

because they are counterfactual conditionals, of the

general form ‘‘if p were to have happened q would

have happened, where the supposition of p is

contrary to the known fact not-p.’’ It is for this

reason that assumptions used in the inference of

phylogeny, other than ‘‘descent, with modifica-

tion,’’ should be looked upon with skepticism, if

not outright rejected.

The ‘less is more’ principle can also be inter-

preted as saying ‘‘the less one assumes the more

one can test, and thereby explain.’’ For example, in

assuming a model of homogeneity of rate of evo-

lutionary change in phylogenetic inference, one

cannot in turn use the phylogenetic hypothesis to

measure that rate or its homogeneity. Likewise, if

the temporal order of fossils is used to polarize a

character then that temporal record cannot serve as

the basis for testing competing hypotheses of

species relationships (Donoghue et al. 1989). Con-

sider further, to a priori down-weight transversions

relative to transitions leaves no opportunity to

judge that inequality most critically, i.e. histori-

cally. In Popperian terms, the simplest (unweigh-

ted most-parsimonious) set of assumptions

maximizes severity of test, and in turn explanatory

power and degree of corroboration (Kluge 2003a).

Historical scientists cannot afford to lose these

opportunities to critically evaluate hypotheses of

relative recency of common ancestry, because that

is the basis for providing objective knowledge.

I conclude that the testability and quantitative

justifications for parsimony are judged ontologi-

cally consistent, as well as minimally sufficient, in

that they rely solely on the non-problematic back-

ground knowledge of ‘‘decent, with modification.’’

Not only are model assumptions of some of the

other justifications ontologically inconsistent, they

violate the principle of less is more. The question

remains, however, whether the testability and

quantitative justifications are rival, com-

plementary, or coextensive in the inference of

phylogeny. The basic issue is whether or not QPS

is inclusive of testability.

Having a skeptical research ethic, as formally

provided by testability, is certainly to be com-

mended in the historical sciences, because nothing

inferred can be proven to be true, or even probably

true (Kluge 2002). As already discussed above,

testability places a premium on the improbability

of hypotheses, not on their probability, where

evidence consists of reports of the outcome of

sincere attempts to refute a hypothesis, not of
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attempts to verify it. Thus, falsificationism is dis-

tinguished from verificationism, deduction from

induction (Kluge 1997a). In maximizing severity of

test, given the total relevant available evidence,

explanatory power, and degree of corroboration are

maximized, and objective knowledge gains can be

claimed, as can an objective measure of support

(Grant and Kluge 2003; Kluge 2004). All that is

required of testability is that the investigator exhibit

no a priori bias towards one or more of the compet-

ing phylogenetic hypotheses, as in the simplest case

of P(A,B),P(A,C), orP(B,C). Thus, when a largemajority

of one of the kinds of data, T(A,B), T(A,C), or T(B,C) in

QPS, is observed in the unbiased sample, say that

which counts for P(A,B), then the phylogeneticist can

argue that this is improbable given only ‘‘descent,

with modification,’’ but not given that background

knowledgeplus the rooted cladogramP(A,B)C. That a

parsimony algorithm maximizes severity of test is

what is important, not that its justification is sought

in a particular argument, such as testability or the

quantitative interpretation of ASP.

I believe testability benefits QPS in another way,

besides providing for severity of test. As Grant and

Kluge (2003) pointed out, testability is accompanied

by an objective concept of support, which QPS is

not provided with in the quantitative justification

for parsimony. While it can always be argued that

such a concept will eventually be defined for that

justification, I fail to see that there is any room for it.

By this I mean FP is limited to maximizing expla-

natory power, without the accompanying severity

of test that underlies the concept of support in tes-

tability. A concept of support might be formulated

for QPS but I don’t see how it could be anything but

‘‘explanatory power¼ support.’’ Having defined

QPS as including testability, this problem may be

considered mute. While adopting the philosophy of

testability in the practice of QPS has great merit, it is

FP that provides a sufficient justification for

advancing our knowledge of species relationships

(Kluge 2003a, p. 237).

2.7 The fundamental nature of Farris
parsimony in phylogenetic inference

While FP certainly qualifies as sufficient in the

inference of phylogeny, and I believe minimally so

as well, some may doubt those conditions are also

necessary. Taking my cue from Sober (1986, p. 41;

see epigraph), I will now judge how necessary FP

is by examining some of its sufficient conditions

for fundamental contributions—those justifying

principles that provide a general framework for

characterizing and investigating the empirical

aspects of phylogenetic inference and related fields

of inquiry.

In this regard, I believe the empirical nature of

phylogenetic inference benefits significantly from

parsimony being defined in terms of transfor-

mation series. For example, according to that

definition, FP then provides an evolutionary

epistemology. That argument, either the empirical

or the epistemological, cannot be made when

the concept of character is defined in terms of

similarity, s(A,B) (Hennig 1966; Farris et al. 1970,

p. 187). Moreover, similarity is neither predictive

nor projectible (Kluge 2003b).

Further, it is equally important to re-emphasize

the fact that FP departs significantly from simil-

arity valued comparisons, where the phylogeneti-

cist is faced with having to argue relations in terms

of natural kinds and properties, concepts that are

contradictory, if not antagonistic, to evolutionary

theory (Frost and Kluge 1994; Kluge 2003b; Grant

and Kluge 2004). The ideographic character con-

cept defined by Grant and Kluge (2004), with its

unambiguous reference to the concept of trans-

formation series (Hennig 1966), and in turn herit-

ability is not only evolutionary, it focuses directly

on what it is the phylogeneticist is concerned

with—parts of species history and homology—and

more precisely on the congruence of two kinds of

historical things, monophyletic taxa and transfor-

mation or heritable change (Farris et al. 1970). That

FP provides a criterion for choosing among com-

peting hypotheses of these parameters may be

interpreted as a fundamental conceptual advan-

tage over all those methods that rely on counting

instances of similarity of a kind, including those

similarity-based uses of parsimony, s(A,B).

Character coding is an area where similarity

has been mistakenly involved in a variety of

ways. For example, Lipscomb (1992) advocated

that all multistate characters be treated non-

additively, even though that kind of coding
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discards both the form and direction of the char-

acter-state tree, preserving only the identity of the

character states. Whereas, additive coding pre-

serves the form and the direction of evolutionary

ordering, and as Farris et al. (1970, p. 181) con-

cluded, only ‘‘Additive coding corresponds

directly to the operations employed in the phy-

logenetic system,’’ even though an analysis of

non-additive characters results in a hypothesis of

relationships equal to or of fewer steps than an

additive analysis (Grant and Kluge 2003). Cur-

iously, Lipscomb (1992, p. 51; italics in the origi-

nal; my bold) asked the correct question, ‘‘If

parsimony is minimizing some assumptions and this is

to be used to derive hypotheses of multistate character

transformation, we must decide what types of

assumptions are most important to minimize,’’ but

then proceeded to operationalize it incorrectly.

Incorrectly I say (p. 52), because the ‘‘order of the

states is postulated so that states that are most

similar are adjacent to each other’’ was the first

step in her ‘‘transformation series’’ method. To

assume the non-additivity of complex morpholo-

gical characters is in principle to embrace a pat-

tern cladistic kind of phenetics, i.e. to be content

with similarity relations or shared states, s(A,B)

(Kluge and Farris 1999). Moreover, Lipscomb’s (p.

54) elaborate method for distinguishing ‘‘the

incongruence in the character that is due to the

character state order from that caused by non-

homology of states’’ becomes a non-issue. As

Farris et al. (1970, p. 181) clearly had in mind, the

shared steps ordering relation of taxa and character

states is integral to the phylogenetic system, of

which FP is a part, whereas ‘‘in phenetic practice

this need not be.’’

An unweighted most-parsimonious phylo-

genetic hypothesis is chosen because it counts more

transformation events as homologues than does

any competing hypothesis, and when the concept

character is defined ideographically, as an histor-

ical individual, all such events are necessarily

independent. ‘‘The dependency between such

transformation series is non-problematic, because

it merely reflects the transformation event(s) they

share, i.e., the shared portion of their history’’

(Grant and Kluge 2004, p. 26). The functional and

developmental dependence that occurs at the level

of the organism is not problematic either, because

it merely reflects the integrated nature of the

organism, as a whole. However, a category error is

committed when these two kinds of the non-

independence are conflated (e.g. see Naylor and

Adams 2001, 2003), and the problem is unavoid-

able when the concept character is defined in

purely operational terms, as it was in Rieppel and

Kearney’s (2002) similarity definition of character.

Dependence in QPS is not a problem, providing

the ideographic concept of character is primary,

and from which the operationalisms of character

analysis follow. To observe functional and devel-

opmental dependence may effect how the sys-

tematist a priori defines the unit character, but the

possibility of such dependence does not invalidate

choosing the unweighted most-parsimonious

hypothesis.

The importance of the distinction between

sE(A,B) and s(A,B), a patristic difference and

synapomorphic similarity difference, is no more

evident than in the analysis of homologous

nucleotide sequences that differ in length. Typi-

cally, in multiple sequence alignment, gaps are

introduced so that base correspondences can be

interpreted as shared similarities. Alternatively,

there is Wheeler’s (1996) direct optimization

approach, which was founded on the idea that the

number of DNA sequence events is provided

directly by phylogeny, with character-optimization

procedures finding the minimum number of those

events on the competing tree hypotheses. Ignoring

the fact that Wheeler’s actual method used

weighted (cost) functions (relying ultimately on

frequentist probability arguments), the relevant

conceptual feature of direct optimization is that it

analyzes all events as transformations, sE(A,B),

insertion and deletion (indels), as well as sub-

stitutions, rather than the implied similarity rela-

tions that obtain from multiple sequence-

alignment methods. However, Wheeler’s (p. 1)

justification for that minimization was descriptive

efficiency, direct optimization providing ‘‘more

efficient (simpler) explanations of sequence varia-

tion than does multiple alignments.’’ But as Frost

et al. (2001, p. 354) pointed out, even that inter-

pretation is only consistent when setting all sub-

stitution costs and the unit gap cost equal. Still, the
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bottom line remains that unweighted direct opti-

mization can find a pattern of character state

change that is more parsimonious than those based

on maximizing pair-wise statements of alignment

similarities, s(A,B) (e.g., compare figs. 1B and D to

1C and E in Simmons, 2004). New methods that

use s(A,B) and claim to avoid the problem of

suboptimal hypotheses have yet to be justified

epistemologically (e.g., see DeLaet, 1997; DeLaet

and Smets, 1998).

Lastly, on the subject of similarity, QPS does

not provide a basis for distinguishing ‘good’ from

‘bad’ data, unique and unreversed from homo-

plasy, where the number of instances of inde-

pendent evolution supposedly marks the

relatively weakness of the evidence. Indeed, FP

calls into question the whole issue of weighting

(Kluge 1997b). Instead of weighting, Hennig

(1966, p. 148; Hull 1967, p. 186; Farris et al. 1970;

Kluge 1997b) emphasized the importance of

research cycles in his empirical concept of reci-

procal clarification (reciprocal illumination). Basi-

cally, the incongruence of different kinds of

observations, in light of the unweighted most-

parsimonious phylogenetic hypothesis, suggests

the need for further study, a posteriori, and further

testing of the incongruences may lead to a

reinterpretation of the data, such as a redefinition

of the characters and character states, and

ultimately to a more severely tested and better-

supported hypothesis. There is no vicious

circularity of reasoning at work in QPS under

these conditions; however, one must be careful to

maintain testability at all levels of analysis and

reanalysis, because it is easy for reciprocal

clarification to be born out of utilitarianism.

Obviously, this argument for research cycles

favors including testability in QPS, because ASP

does not advocate any particular scientific scheme

of inference, either deductive or inductive. Being

able to claim the potential for research cycles in

testability also draws attention to how little

potential of that objective kind there is in the

Bayesian and likelihood kinds inference, where

models and claiming to know the truth are critical

(subjectively speaking, of course).

I believe QPS is also relevant to the issue of

character-state polarity (rooting). In theory at least,

QPS argues against Nixon and Carpenter’s (1993,

p. 413) ‘‘unconstrained, simultaneous analysis of

all terminals,’’ which those authors judged to be

sufficient with respect to the discovery of mono-

phyletic groups according to the parsimony cri-

terion. The problem with their conclusion is that

they asserted an operational imperative, global

parsimony, without regard for the epistemological

argument that justifies the concept of parsimony in

phylogenetic inference. A convincing justification

is required of global parsimony, just as it is of FP.

To appeal to descriptive efficiency in these cir-

cumstances won’t do, because it is without an

epistemological foundation of its own.

The importance of FP maximizing explanatory

power goes beyond the philosophical and theore-

tical, with the practical and the heuristic being

covered as well. For example, the fact that the

unweighted most-parsimonious hypothesis of

species relationships maximally explains the rele-

vant available evidence in terms of discrete and

incontrovertible homology statements means the

evidence can then be used to diagnose mono-

phyletic groups. Such information is practically

important to the community of scholars respon-

sible for identifying and systematizing museum/

herbarium collections. It is also possible to use the

history of each character, described in light of that

optimal hypothesis of species relationships, as the

basis for formulating testable population-level

hypotheses, such as in the study of adaptation.

That not all methods of phylogenetic inference are

explanatory, and do not therefore have these extra

research benefits, is clear. For example, the his-

tories of individual characters in a maximum

likelihood analysis can only be estimated sub-

jectively, as probabilities. Effectively, there is no

distribution of real valued (other than abstract)

character states on a maximum likelihood tree, a

distribution that is often obtained from an

a posteriori most-parsimonious mapping of discrete

character states on the tree of greatest likelihood

(e.g. Smith et al. 2004, Fig. 9)!

2.8 Ideographic theory unification

While FP may be both necessary and sufficient in

the inference of phylogeny (see previous two
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sections), the question remains whether QPS

addresses more than the empirical in the evaluation

of scientific hypotheses. Can that ideographic

theory make significant contributions to the

philosophical—to metaphysical system building?

In addressing this question from the point of

view of theory unification (Friedman 1983;

McAllister 2000), I briefly survey a small sample of

relevant areas of comparative biology to deter-

mine to what extent they multiply disconfirm

ideographic theory. I will also consider using

‘Ockham’s razor’ to eliminate other approaches to

phylogenetic inference, other than those based on

unweighted evidence, on the grounds that their

contributions are indeterminate, or have less uni-

fying power.

The latter exercise is certainly not the first

attempt to unify phylogenetic theory. Initially,

there were the debates that resulted in the elim-

ination of phenetics and the evolutionary sys-

tematics of the neo-Darwinian synthesis. Recently,

the indeterminate nature of phenetics was identi-

fied in pattern cladistics, which I believe has

marginalized, if not eliminated, the influence of

that approach. Even more recently, the excess of

assumptions and the subjectivism of evolutionary

systematics have been identified in the currently

popular Bayesian and likelihood approaches to

phylogenetic inference. Thus, the ideographic

continues to be tested, as it should be if unification

is to be a scientific exercise.

Fink (1982) was the first to explicate develop-

ment in the context of a cladogram. He argued

that to interpret ontogenetic processes requires

such a hypothesis. For example, a paedomorphic

condition can resemble the plesiomorphic state,

and the only way to distinguish the two is in

light of a phylogenetic hypothesis, the former

often being described as an ‘‘evolutionary rever-

sal.’’ This is a good example of the well-known

principle that to explain any pattern of inter-

specific variation in terms of ‘‘descent, with

modification,’’ that pattern must be in accord

with ideographic theory. Certainly, the best-

known example of this principle is the explana-

tion of homologues. Not all theories of historical

inference, however, such as represented by

Bayesian and maximum likelihood methods,

provide these kinds of causal explanation on their

own (e.g. Smith et al. 2004, Fig. 9). Many sys-

tematists are especially interested in discrete

evolutionary changes in the phenotype and gen-

otype, and not being able to deduce that kind of

history, in light of the most probable or likely

phylogenetic hypothesis, must be considered a

significant shortcoming of the methods employed.

I eliminate Bayesian and likelihood approaches

from ideographic theory because they are inde-

terminate when it comes to the causality and

explanation of the evidence employed. Phyloge-

netic inference is about more than a probable or

likely classification, assuming those subjective

conditions can be determined.

Also relevant to ideographic theory unification

is reliance on a character concept of transformation

series, assuming ‘‘descent, with modification,’’ and

not on one of similarity. Not only does QPS avoid

being logically inconsistent with evolutionary

theory in this conceptualization, it is directly rele-

vant to all fields of comparative biology that

assume heritable objects/events. This considera-

tion is relevant even to areas of historical research

outside biology. For example, the study of illumi-

nated manuscripts (Platnick and Cameron 1977;

Cameron 1987) assumes a concept of a transfor-

mation series that involves a kind of ‘‘heritability,’’

a change in what is copied and passed on to sub-

sequent illuminators, and for which there is the

objective of maximizing the explanatory power of

the event—explaining mistakes in copying in

terms of the history of manuscript. The same

cannot be said however for the studies of lan-

guages that depend on class concepts of historical

evidence (Rexová et al. 2003), and here there is an

explicit basis for their elimination from ideo-

graphic theory.

Taxonomy has always been an important area of

systematics, and one where phylogenetics is now

being promoted with increased vigor. Not only has

there been an emphasis on the individuality of

taxa in at least some of these efforts (e.g. Kluge

2005), giving license to the distinction between

the classification of classes and the systematization

of historical things, but the use of testability has

been advocated as the basis for ruling on the

content (wholeness) of taxa and their names, as
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opposed to handing over such important respon-

sibilities to international commissions of nomen-

clature which reach decisions according to

legalistic, non-scientific, conventions (ICZN 1999;

Grueter et al. 2000). I interpret this example to be

an issue of metaphysical system building, reaching

out into areas that heretofore had not been con-

sidered scientific. Perhaps only a small point, but a

point nonetheless, taxonomic names at all levels of

taxonomy are proper names, and therefore the

things to which they apply are required to be

spatio-temporally restricted, as they are in QPS.

Most other approaches to phylogenetic inference

treat most or all of the parts of species history as

class concepts, as is evident in names being pre-

ceded by the article ‘‘the,’’ as in the Homo sapiens.

As noted earlier, evolutionary theory precludes the

conception of taxa, including species, as classes

or sets.

Most of the current interspecific studies of

adaptation, coevolution, and vicariance biogeo-

graphy entail a phylogenetic hypothesis. More-

over, most of the analyses in these areas use

parsimony as an optimality criterion. Still, I doubt

they multiply confirm ideographic theory. For

example, Lauder et al.’s (1993) parsimony-based

lineage (homology) method for inferring adapta-

tion was tested for its ability to deliver increased

knowledge, but sufficient failures were found in its

theory, especially in its presuppositions, to call

into question its credibility in the inference of

adaptation. Harvey and Pagel’s (1991) comparative

(convergence) method, although statistical, fails

for the same kinds of reasons.

The historical treatments of coevolution and

biogeography fare no better. As Sober (1988b) put

it, there is a disanalogy between phylogenetic

inference and those sciences accompanied by

‘‘dispersal’’ theory, such as coevolution and

vicariance biogeography. In phylogenetic infer-

ence, only ancestor-descendant (vertical) relations

are assumed and counted as heritable events

in choosing between competing hypotheses. In

coevolution and vicariance biogeography, deciding

among competing hypotheses is a complex func-

tion of the kinds of vertical and horizontal (dis-

persal) events the researcher is prepared to accept.

I believe assuming a shared history (Brooks 1988)

is ontologically indecisive in making that decision,

and increasing information density (Brooks 1981),

which is just another phrase for increasing

descriptive efficiency, provides no epistemological

basis for choosing. However, as Sober (p. 252; see

also Kluge 1988, p. 316) contemplated, ‘‘If hor-

izontal transmission and vertical transmission are

unequally probable or make different predictions,

that may provide a reason for preferring some-

. . .hypotheses to others.’’ But, here we are being

asked to use a nomothetic means to address an

ideographic end, which is the instrumentalist

scheme that I rejected earlier in this paper. Thus,

given these issues, and aside from the possibility

of their heuristic potential, I doubt the historical

theories of adaptation, coevolution, and vicariance

biogeography can confirm ideographic theory

unification.

Like the evolutionary systematics of the neo-

Darwinian synthesis, the nomothetic sciences

practiced in the inference of phylogeny, such as

Bayesian inference and likelihood, make exces-

sive assumptions, and thereby have relatively

little unifying power. As already discussed, these

model assumptions are counterfactual condi-

tionals. Nor can those assumptions be tested

because testing requires a phylogenetic hypoth-

esis in the first place. In addition, nomothetic

inference relies on a frequentist interpretation of

history. However, as Kluge (2002) argued, the

adequacy of a probabilistic interpretation must

be judged according to the nature of the event,

or object, being inferred, and he found a con-

ditional (frequency) interpretation of probability

fails all the tests of adequacy—admissibility,

ascertainability, and applicability. Dilemmas of

this sort are becoming especially evident in

emerging fields of comparative biology, like

genomics, where the impressive technicalities of

nomothetic science seem to count more than an

unweighted parsimony analysis that can objec-

tively identify hypotheses of species relation-

ships and character history, and do so with

philosophical, theoretical, and methodological

consistency.

It is significant that QPS assumes only back-

ground knowledge, ‘‘descent, with modification,’’

whereas Bayesian and likelihood methods of
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inference depend on choosing from among an

infinite number of additional auxiliary or model

assumptions. Not only is the assumption of

‘‘descent, with modification,’’ not known to be

false, unlike model assumptions, it is uniformly

required of all the comparative biological sci-

ences, including the nomothetic. Surely, choosing

from among an infinite variety of models con-

tributes relatively little to any kind of theory

unification.

Obviously, the details involved in this most

recent attempt at unification of the historical sci-

ences have only just begun to be exposed. At least

some of the important bases for distinguishing the

ideographic from the nomothetic have been iden-

tified, and all that remains is to continue to criti-

cally evaluate those research programs that are

comparative and claim to assume historical

change. As for future studies in this area, I see no

reason to necessarily exclude any kind of research,

including those at the populational level, such as

illustrated by the nomothetic sciences of phylo-

geography (Avise 2000) and conservation genetics

(Moritz 2002). While I am not optimistic that con-

firmation can be obtained from any theory that

does not focus on historical individuality, the

unification of the phylogenetic and the tokogenetic

may yet be possible by reformulating the latter

fields in ideographic terms, by divesting them of

all their references to class concepts and kinds. If

successful, the result would at least be equiva-

lent in scope, although not in kind, to the neo-

Darwinian synthesis, i.e. the unification of evolu-

tionary and genetic theories (McAllister 2000).
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CHAPTER 3

Parsimony and its presuppositions

Elliott Sober

3.1 Introduction

The use of a principle of parsimony in phylogenetic

inference is both widespread and controversial. It is

controversial because biologists who view phylo-

genetic inference as first and foremost a statistical

problem have pressed the question of what one

must assume about the evolutionary process if one

is entitled to use parsimony in this way. They

suspect not just that parsimony makes assumptions

about the evolutionary process but that it makes

highly specific assumptions that are often implaus-

ible. That it must make some assumptions seems

clear to them because they are confident that

the method of maximum parsimony must resemble

the main statistical procedure that is used to make

phylogenetic inferences, the method of maximum

likelihood.1 Maximum likelihood requires the

explicit statement of a probabilistic model of the

evolutionary process. Parsimony does not; you can

calculate how parsimonious different tree topolog-

ies are for a given data set without stating a process

model. Likelihoodists suspect that parsimony

nonetheless involves an implicit model. The ques-

tion, for them, is to discover what that model is.

Cladists who defend the criterion of maximum

parsimony often reply that parsimony does make

assumptions about evolution, but that those

assumptions are modest and unproblematic. For

example, cladists sometimes claim that parsimony

assumes just that descent with modification has

occurred. This suggests that the disagreement

between critics and defenders of parsimony is

not about whether parsimony makes assumptions

about the evolutionary process, but concerns

what those assumptions are and whether they are

troublesome. But perhapsmore important is the fact

that critics and defenders also disagree about

how those assumptions should be unearthed

and evaluated. Defenders of maximum likelihood

approach this problem by embedding the principle

of parsimony in a statistical framework; they

evaluate parsimony by examining it through the

lens of probability. Defenders of parsimony often

reject the use of statistics and probability as a cri-

terion for evaluating parsimony; as Farris (1983/

1994, p. 342) says, ‘‘the modeling approach was

wrong from the start.’’ His preferred alternative is to

evaluate (and justify) parsimony in terms ofwhat he

takes to be the more basic idea that the best phylo-

genetic hypothesis is the one that has the most

explanatory power.

There are many dimensions to this dispute—too

many to discuss in the brief compass of the present

chapter. What I wish to concentrate on here is the

relationship that exists between maximum like-

lihood andmaximumparsimony. Felsenstein (1973,

1979) and Tuffley and Steel (1997) have each

identified models of the evolutionary process that

suffice to insure that the two methods always agree

on which hypothesis is best supported by a given

data set. I will argue that these results provide only

negative guidance concerning what parsimony

presupposes. They allow one to establish that this

or that proposition is not assumed by parsimony,

but do not allow one to conclude that any pro-

position is an assumption that parsimonymakes. To

discover what parsimony presupposes, another

strategy is needed. I suggest that parsimony’s

presuppositions can be found by examining simple

1 For the purposes of this chapter, I will treat ‘the maximum

likelihood approach’ as an umbrella term that covers both fre-

quentist and Bayesian implementations. The difference between

them is discussed later.
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examples in which parsimony and likelihood

disagree. My arguments will assume a broadly

likelihoodist point of view, but will not require the

assumption that any evolutionary model is correct.

3.2 Preliminaries

The principle of parsimony does not provide a rule

of acceptance; rather, it provides a rule of evaluation.

That is, the principle does not tell you to believe the

phylogenetic hypothesis that requires the fewest

changes in character state to explain the data

at hand. After all, if the most-parsimonious tree

requires that there be at least 25 changes, and the

second and third most-parsimonious trees require

that there be 26 and 27 respectively, the most you

should conclude is that the most-parsimonious

tree is better supported than the others; you are not

obliged to conclude that the most parsimonious

tree is true. In other words, parsimony would be a

sound principle if the parsimony ordering of

phylogenetic hypotheses and the support ordering

of those hypotheses came to the same thing:

(1) For any data set D, and any phylogenetic hypotheses

H1 and H2, D supports H1 more than D supports H2

if and only if H1 is a more parsimonious explanation

of D than H2 is.

If (1) is always true, I will say that parsimony is

‘correct’ in what it says. And if (1) is true in some

restricted domain, I will say that parsimony is

correct in what it says about that domain.

Likelihood likewise seeks to provide a rule of

evaluation, not a rule of acceptance. If one hypothesis

confers a higher probability on the data than another

hypothesis does, it does not follow that the first hy-

pothesis is true; in fact, it doesn’t even follow that

the first has the higher probability of being true. The

fact that Pr(Data jH1)>Pr(Data jH2) does not entail

that Pr(H1 jData)>Pr(H2 jData). Rather, the virtue

that has been claimed for the likelihood concept

is that it provides an indication ofwhich hypotheses

are better supported by the data. The following

principle has come to be called the Law of Likelihood

(Hacking 1965, Edwards 1972, Royall 1997):

(2) For any data set, and any phylogenetic hypotheses

H1 and H2, the Data support H1 more than they sup-

port H2 if and only if Pr(Data jH1)>Pr(Data jH2).

Proposition (2) restricts likelihood to hypotheses

that describe phylogenetic relationships. I state the

Law of Likelihood in this way to preserve its

symmetry with (1), even though likelihood is

supposed to be a perfectly general criterion for

evaluating the direction in which the evidence

points. Proposition (2) is not a consequence of the

axioms of probability; it is not a mathematical

truth, but rather is a philosophical thesis—that the

epistemological concept of support is adequately

represented by the mathematical concept of like-

lihood. Just as one can ask whether, or in what

circumstances, (1) is true, the same questions can

be posed about (2). If (2) is always true, then I will

say that likelihood is ‘correct’ in what it says. And

if (2) is true in some restricted domain, I will say

that likelihood is correct in what it says about that

restricted domain.

How are (1) and (2) related? If there is a data set

and a pair of hypotheses H1 and H2 such that the

parsimony ordering and the likelihood ordering

do not agree (e.g. where H1 is more parsimonious

than H2, but Pr(Data jH1)<Pr(Data jH2)), then (1)

and (2) cannot both be true. On the other hand,

if parsimony and likelihood agreed about the

relative support of any two hypotheses for any

data set you please, then (1) and (2) would be

perfectly compatible. The fact that one is stated

in terms of likelihood and the other in terms of

parsimony would be no more significant than the

difference between measuring distance in meters

and measuring it in feet.

Proposition (2) gives a somewhat misleading

picture of what it means to apply the Law of

Likelihood to phylogenetic hypotheses. The prob-

lem is that phylogenetic hypotheses that describe

the topology of a tree—not the times of branching

events, or the amount of change that has taken

place on branches, or the character states of inter-

ior nodes—do not, all by themselves, confer

probabilities on the data. In the language of stat-

istics, phylogenetic hypotheses are composite, not

simple There are two possible solutions to this

problem. The first is Bayesian; one represents the

likelihood of a phylogenetic hypothesis H as

a weighted average. H will vary in its likelihood,

depending on which process model is considered,

and depending also on what the values are for the
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parameters that occur in a process model. The

‘full’ Bayesian approach is to take all these pos-

sibilities into account, weighting each by its prob-

ability, conditional on H:

Pr(Data jH)¼ P
i

P
j Pr(Data jH & process model i &

values j for the parameters in model i)�Pr(process

model i & values j for the parameters in model i/H)2

Although biologists are starting to explore Bayesian

methods in phylogenetic inference (see e.g.

Huelsenbeck et al. 2001), no one has proposed to

represent a hypothesis’ likelihood by averaging

over all possible process models;3 rather, Bayesians

have tended to adopt a single process model M

and to average over the different values that the

parameters in M might take. According to this

‘attenuated’ Bayesian approach, the likelihood of

H should be written as PrM(Data jH), not as

Pr(Data jH), where

(B) PrM(Data jH)¼Pj Pr(Data jH & modelM & values j

for the parameters in M)�Pr(values j for the para-

meters in model M jH&M)

Whereas Bayesians treat the likelihood of H (once a

model has been adopted) as a weighted average

over the likelihood that H would have under

the different possible settings of the model’s

parameters, frequentists treat the likelihood of H

(given an assumed model) by finding L(H&M),

where L(H&M) is the likeliest special case of

the conjunction (H&M); it is found by setting

the adjustable parameters in M to values that

maximize the likelihood of (H&M).4 For them,

the appropriate quantity is

(F) PrM(Data jH)¼Pr(Data j L(H&M)).

Whereas likelihood means average likelihood for

a Bayesian, likelihood means best-case likelihood for

a frequentist. We will return to this difference

between Bayesian and frequentist treatments of

likelihood in a moment. For now, let’s focus on

what they have in common—both evaluate the

likelihood of H by assuming a process model M.5

How should this recognition of the model-

relativity of likelihoods be incorporated in (2)?

If different models are correct for different data

sets and different taxa, there won’t be a single

‘master model’ that should be used to evaluate the

support of all phylogenetic hypotheses. Rather,

what we need is the following:

(2*) If M is the correct model for how the characters

described in a data set evolved in the taxa des-

cribed in phylogenetic hypotheses H1 and H2, then

the Data support H1 more than they support H2 if

and only if PrM(D jH1)>PrM(D jH2).

Just as Proposition (2) is a philosophical thesis, not

a mathematical truth, the same point holds for (2*).

If (2*) is true, then I’ll say that likelihoodM is

correct for the taxa and data set in question.

I earlier described how (1) and (2) can come into

conflict. What would it take for (1) and (2*) to

conflict? You need the same ingredients as before,

plus a model M that is correct for the taxa and

characters involved. That is, consider a pair of

phylogenetic hypotheses, a data set, and amodelM,

where the parsimony ordering of the hypotheses

differs from their likelihoodM ordering. If you ac-

cept (2*) and also think that model M is correct, then

you are obliged to accept the judgment of likelihoodM
and reject the judgment of parsimony concerning which

hypothesis is better supported by the data. Notice that

there are two if’s in this italicized statement. This

means that if you do not reject what parsimony

says about the hypotheses, there are two options

available, not just one. You can reject model M or

you can reject (2*). That is, cladists are not obliged

to reject model M; they also have the option of

rejecting the Law of Likelihood as it is embodied

in (2*).

I so far have described how a model can lead to

a conflict between (1) and (2*). However, it is

equally true that there are models of the evolu-

tionary process that lead to a perfect harmony

2 As an expository convenience, I represent H’s average like-

lihood as a discrete summation, rather than as a continuous

integration.
3 Hulesenbeck et al. (2004) average over all of the many dif-

ferent time-reversible models by assigning them equal prior

probabilities. Since some of these models are nested inside others,

this prior distribution is questionable.
4 Note that L(H&M) is a proposition, not a number between

0 and 1.

5 In Sober (2004a) I argue that model selection criteria such as

Akaike information criteria (AIC) permit phylogenetic inference

to proceed by considering any number of process models without

one’s having to commit to any of them.
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between (1) and (2*). Such models lead parsimony

and likelihoodM to be ordinally equivalent:

(OE) Parsimony and likelihoodM are ordinally equi-

valent if and only if, for any data set D, and any

pair of phylogenetic hypotheses, the parsimony

ordering of that pair is the same as the likelihoodM

ordering.

If a model M induces ordinal equivalence, what

does that establish about the legitimacy of parsi-

mony and likelihoodM? If you accept the model

and regard one method as legitimate, then you

should regard the other method as legitimate as

well. In this circumstance, likelihoodists will

say that M provides a likelihood justification of

parsimony, whereas friends of parsimony will

say that M provides a parsimony justification of

likelihoodM. On the other hand, if you do not

accept the model that induces ordinal equivalence,

the status of the two methods is left open; for

example, both could turn out to be unsatisfactory

methods for evaluating the support of phylo-

genetic hypotheses. The point to notice here is that

(OE) says nothing about whether parsimony is

correct; it merely says what it means for parsimony

and likelihoodM to be in the same boat; if parsi-

mony and likelihoodM are ordinally equivalent,

then both are correct or neither is. Two broken

thermometers can be ordinally equivalent in

what they say about the temperatures of different

objects.

In summary, the model-relativity of likelihood

entails that we are asking the wrong question

when we ask ‘‘what is the relationship between

likelihood and parsimony?’’ The word ‘the’ is

where the trouble lies; there are many likelihood

concepts (one for each possible model of the evolu-

tionary process) and so there are many relation-

ships between the different likelihood concepts

and parsimony. More specifically, if we adopt (2*),

the following two lines of reasoning are valid.

� If model M is correct, then likelihoodM correctly

evaluates support. If likelihoodM has this prop-

erty, and moreover is ordinally equivalent with

parsimony, then parsimony also correctly evalu-

ates support.

� If parsimony and likelihoodM are not ordinally

equivalent and parsimony correctly evaluates

support, then likelihoodM does not. If likelihoodM

does not correctly evaluate support, then M cannot

be correct.

The first line of reasoning describes what would be

true if likelihoodM and parsimony were not just in

perfect agreement, but additionally had the prop-

erty of correctly evaluating support. The second

describes how a failure of ordinal equivalence can

help uncover a presupposition of parsimony—

if parsimony correctly evaluates support, then

process model M must be false. Notice that both

lines of reasoning require (2*). A more thorough

investigation would address the question of why

one should accept this formulation of the Law of

Likelihood. This is a topic I will not take up here;

I’ll assume (2*) without trying to justify it.

3.3 How to determine what parsimony
does not presuppose

A number of writers have attempted to find

models that induce ordinal equivalence. Three

have succeeded, Felsenstein (1973, 1979) and

Tuffley and Steel (1997). In Felsenstein’s model,

characters are constrained to have very low prob-

abilities of changing state, but there is no require-

ment that the probability of a character’s changing

from state i to state j on a branch is the same as its

probability of changing from state j to state i. In

Tuffley and Steel’s, characters can have high

probabilities of changing state (though they need

not), but the probabilities of change must be

symmetrical.6 The models are very different, but

each entails ordinal equivalence.

Both Felsenstein, and Tuffley and Steel, evaluate

the likelihoods of phylogenetic hypotheses by

using the frequentist approach (F) for assigning

values to the parameters in the models they dis-

cuss. For example, consider a single site in the

aligned sequences that characterize four species W,

X, Y, and Z. Suppose that W and X are in state G

and that Y and Z are in state A. The most parsi-

monious unrooted tree is (WX)(YZ). Under the

6 The two models agree that different traits on the same branch

can have different probabilities of changing; this also applies to

the same trait on different branches.
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symmetrical model that Tuffley and Steel assume,

the highest likelihood this tree can have, relative

to this character, is (14)(
1
4)(1)(1)(1)(1)¼ 1/16, and this

is the likelihood that Tuffley and Steel take the

unrooted tree to have.7 A Bayesian would want

to consider the average likelihood of (WX)(YZ), not

the maximum.

There are other attempts in the literature to

establish ordinal equivalence. Farris (1973) tried to

prove this result by using a model that makes very

weak assumptions about the evolutionary process.

Goldman (1990) sought to do the same thing

by using a model in which the probability that

a character will change state on a branch is

independent of the branch’s duration. Both these

efforts fail to establish ordinal equivalence because

both interpret parsimony as inferring not just

the topology of a tree but something more inclu-

sive. Goldman viewed parsimony as a procedure

for inferring the topology plus an assignment of

character states to interior nodes; Farris took parsi-

mony to output the topology plus an assignment

of character states to all points along the branches.

Why does this vitiate the arguments that Farris

and Goldman present? The reason is that even if

H1&X1 is more likely and more parsimonious than

H2&X2, and H1 is more parsimonious than H2, it

doesn’t follow that H1 is more likely than H2

(Felsenstein 1973; Sober 1988; Steel and Penny

2000). The likelihood of a tree must sum over all

possible assignments of character states to points

in the tree’s interior.

When a model induces ordinal equivalence,

what does this reveal concerning parsimony’s

presuppositions about the evolutionary process?

It most certainly does not show that parsimony

assumes that the model is true. The models of

Felsenstein (1973, 1979) and of Tuffley and Steel

(1997) are simply sufficient conditions for ordinal

equivalence. No one has shown that either of these

models is necessary for ordinal equivalence. And,

obviously, neither of them is; if each of two models

suffices, neither is necessary. We must be careful to

distinguish what a modeler assumes from what the

model reveals concerning what parsimony assumes

(Sober 1988, 2004a).

Still, if we accept the instance of the Law of

Likelihood given by (2*), these results about

ordinal equivalence provide a partial test for

whether parsimony assumes this or that proposi-

tion about the evolutionary process (Sober 2002,

2004a). As noted earlier, parsimony and likeli-

hoodM can be ordinally equivalent even if both are

wrong in what they say about support. However,

if they are ordinally equivalent and model M is

true, then both are correct, given (2*). Consider

a model M that induces ordinal equivalence; M

might be Felsenstein’s model, or the one described

by Tuffley and Steel, or some third model that no

one has yet identified:

M! parsimony is correct ! A

If model M is true (where M induces ordinal

equivalence), then parsimony is correct in what

it says about support (and so is likelihoodM, of

course). What does parsimony assume? The

assumptions (A) of parsimony are just those pro-

positions that must be true, if parsimony is correct

in what it says about support. Notice that any

proposition that is entailed by the claim that

parsimony is correct also must be entailed by

model M. However, the converse is not true—if

model M entails a proposition, that proposition

may or may not be entailed by the thesis that

parsimony is correct. This means that the results

of Felsenstein (1973, 1979) and of Tuffley and Steel

(1997) provide the following test concerning

whether parsimony assumes that proposition X is

true:

� If model M entails X, then X may or may not be

an assumption of parsimony’s.

� If model M does not entail X, then X is not an

assumption of parsimony’s.

Applying this partial test yields some surprising

results. First, many biologists have suspected that

parsimony assumes that changes in character state

are very improbable and that homoplasies are rare;

from a likelihood point of view, this suspicion is

provably mistaken. The reason is that the Tuffley

and Steel model does not entail that changes are

7 Of the two occurrences of one-quarter in this expression, one

of them is the prior probability of the root’s being in a given state;

the other is the probability of a change in state in the tree’s

interior.
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improbable or that homoplasies are rare. Second,

it follows that parsimony does not assume that

change is symmetrical; the reason is that the

Felsenstein model does not assume this. These

results depend on using the Law of Likelihood

(2*); but once that interpretative framework is

adopted, these results are secure.

As illuminating as these results are, they still

have the limitation of being purely negative.

The partial test can show that this or that pro-

position is not an assumption that parsimony

makes, but the test isn’t able to demonstrate that a

given proposition is assumed by parsimony.

Results that demonstrate that a model induces

ordinal equivalence have this inherent limitation.

In order to obtain positive results concerning what

parsimony assumes about the evolutionary

process, a new strategy is needed.

3.4 How to determine what
parsimony presupposes

Mathematical arguments for ordinal equivalence

are necessarily general; they must show, for any

data set and for any pair of phylogenetic hypo-

theses (which may describe an arbitrarily large

number of taxa), that parsimony and likelihoodM

agree about the support ordering. In contrast,

an argument that demonstrates a failure of ordinal

equivalence need not be general; it can just take the

form of a simple example. All that is needed is a

model M, a single data set, and a pair of hypo-

theses such that the parsimony ordering differs

from the likelihoodM ordering. If parsimony is

right in what it says, then likelihoodM is wrong.

And if likelihoodM is wrong, so is the model M

(assuming that 2* is true). Such cases therefore

help reveal parsimony’s presuppositions.

3.4.1 Example 1

Let’s begin with a simple example in which the

hypotheses being evaluated don’t describe tree

topologies, but rather assign character states to

ancestors in trees that are taken as given. Imagine a

bifurcating tree in which all the tip species are

observed to have the same character state a. Parsi-

mony asserts that the best-supported estimate of the

character state of the most recent common ancestor

A of those tip species is that A was also in state a.

Parsimony’s solution to the problem would remain

the same if we were talking about a star phylogeny.

In fact, distilled to its simplest form, the problem

and parsimony’s solution to it can be formulated by

considering a single lineage that ends with a des-

cendant D that is in state a; the problem is to infer

what the character state was of the ancestor A that

existed at the start of the lineage. Parsimony says

that the best estimate is that A¼ a.

What would a likelihood analysis of this problem

look like? If the character in question is dicho-

tomous (with character states 0,1), the standard

approach from the theory of stochastic processes

(Parzen 1962) is to divide the lineage into a large

number of brief temporal intervals. In each, there is

a probability u that the lineage will change from

state 0 to state 1, and there is a (possibly different)

probability v that the lineage will change from state

1 to state 0. Each of these instantaneous probabilities

are assumed to be small (at least less than one-half).

They allow us to describe the probability PrN(i! j)

that a lineage that isN units of time in duration will

end in state j, given that it starts in state i. These

lineage transition probabilities are as follows:

PrN(0!1) ¼ u=(uþ v)� [u=(uþ v)](1� u� v)N

PrN(1!1) ¼ u=(uþ v)þ [v=(uþ v)](1� u� v)N

PrN(1! 0) ¼ v=(uþ v)� [v=(uþ v)](1� u� v)N

PrN(0!0) ¼ v=(uþ v)þ [u=(uþ v)](1� u� v)N

This is the two-state Markov process model. Each

of these transition probabilities averages over all

possible scenarios consistent with the specified

initial and end states. For this reason, it would be

misleading to say that the two transition probab-

ilities of the form PrN(i! i) describe the probability

of stasis; PrN(i! i) encompasses the possibility that

there has been no change in the lineage but also the

possibility that the lineage has flip-flopped an even

number of times. There is no assumption in this

model as to whether u¼ v. If u¼ v, the lineage

undergoes an unbiased process of drift. If u> v,

there is a directionality or bias in the evolutionary

process, favoring state 1 over state 0. One possible

source of this bias is natural selection; however,

mutation and migration also can induce a bias in

how the lineage tends to evolve.
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When N is very small, the two probabilities of

the form PrN(i! i) are close to unity and the two

probabilities of the form PrN(i! j) (where i 6¼ j) are

close to 0. When N is infinite PrN(i! j)¼PrN
(j! j); the lineage has the same probability of

ending in state j, regardless of what the state was

in when the lineage began. Thus, when a lineage

has a very short duration, its initial condition vir-

tually determines its final state and the relation-

ship of u and v doesn’t matter; when a lineage is

very old, it is the process that occurs during the

lineage’s duration (represented by u and v) that

matters; the initial condition is forgotten.

It is a property of this model that a backwards

inequality obtains: PrN(j! j)�PrN(i! j), with strict

inequality when N is finite (Sober 1988). Don’t con-

fuse the backwards inequality with the forwards

inequality PrN(j! j)>PrN(j! i). An instance of this

forwards inequality (e.g. that PrN(1!1)>PrN(1! 0))

will be true for some values of u, v, and N, but not

for others. The backwards inequality says that if a

descendant is in state j, that outcome is made more

probable by the hypothesis that its ancestor was in

state j than by the hypothesis that the ancestor was

in state i. This provides a likelihood solution to our

problem: if the descendant is in state a of a dichotomous

character, the hypothesis of maximum likelihood about

the state of the ancestor is that the ancestor was in state a

as well. This result holds regardless of what the

values of u, v, and N are; even if these values entail

that the expected number of changes in the lineage

is large, the most-parsimonious assignment of

character state to the ancestor is still the assignment

ofmaximum likelihood. Parsimony and likelihoodM

therefore agree when M is the two-state Markov

process model and the problem is to infer an

ancestor’s character state from the character state of

a descendant.8

In analyzing this simple problem, I used the

Bayesian method (B), not the frequentist procedure

(F), for taking account of the fact that the two-

state Markov model can have different values

assigned to its parameters u, v, and N. I didn’t

focus exclusively on the values for these para-

meters that would maximize the likelihood of each

hypothesis about the state of ancestor A; that

would have led to the conclusion that the two

likelihoods are as close together as you please,

since

Pr(D¼1 j L(A¼1& u¼a1 & v¼a2 &N¼a3))

¼1

and

Pr(D¼1 j L(A¼0& u¼a1 & v¼a2 &N¼a3))

! 1 as a3 !1

Rather, my argument is that for each value of u,

each value of v (each less than 0.5), and for each

finite value of N,

Pr(D¼1 j A¼1&u¼a1 & v¼a2 &N¼a3)
> Pr(D¼1 j A¼0&u¼a1 &v¼a2 &N¼a3)

From this it follows thatX
i;j;k

Pr(D¼1 j A¼1& u¼ i& v¼ j&N¼k)

� Pr(u¼ i& v¼ j&N¼k j A¼1)

>
X
i;j;k

Pr(D¼1 j A¼0& u¼ i& v¼ j&N¼k)

� Pr(u¼ i& v¼ j&N¼k j A¼0)

if the settings of u, v, and N are independent of the

character state of the ancestor A. In this instance,

the Bayesian weighting terms Pr(u¼i& v¼j&
N¼ k jA¼1) and Pr(u¼i& v¼j&N¼ k jA¼0) are

innocuous; the last stated inequality holds, no

matter what their values are.

I now want to consider the same problem—that

of inferring the character state of the ancestor A

from the observed character state of the descendant

D—when the character in question is a quantitative

phenotype (e.g. the average length in the species

of a particular bone), not dichotomous. It remains

true, of course, that if the descendant is in state a,

then the most-parsimonious hypothesis about the

state of the ancestor is that it was in state a as well.

To see what likelihood says about this problem,

we need to construct a probabilistic model of the

8 The same result holds when we pose this question about a

star phylogeny or a bifurcating tree. If branches are conditionally

independent of each other, the support for A¼ a (as measured by

the likelihood ratio) is greater when there are several descendants

than when there is just one.
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evolution of the quantitative character. Let’s begin

by setting limits on the values of the character in

question; suppose it can’t go below zero or above

100. We can think of u as the probability of the

lineage’s increasing its character state by a very

small amount during a brief interval of time, and v

as the probability of the lineage’s reducing its

value during that instant. Since there are upper

and lower bounds on the character state, u and v

cannot remain constant over the full range of the

lineage’s possible states; for example, u must have

a value of zero when the lineage is in state 100,

though of course it can have a nonzero value when

the lineage has a value less than 100.9 In addition,

we want to allow for the possibility that the lineage

is evolving towards a stable equilibrium; for

example, perhaps a trait value of 75 is optimal, and

selection is pushing the lineage towards that value.

This means that u> v when the lineage’s trait

value is less than 75, but that u< v when the

population has a value greater than 75. In addition,

the degree to which u> v must decline as the

population approaches 75 from below.

When a biased process (such as natural selec-

tion) is pushing a lineage towards a single attractor

state, the lineage’s probability of reaching that

equilibrium is greater, the closer its initial state is

to that attractor. Similarly, the equilibrium

value has a higher probability of being attained,

the more time there is in the lineage. When the

lineage has a very short duration, stasis is almost

certain; as the lineage is given a longer duration,

the biased process takes over and the initial con-

dition recedes in its impact on the lineage’s final

state. In the limit of infinite time, the initial con-

dition is entirely forgotten and the lineage’s

probability of attaining a given end state is the

same, regardless of what the state was in which the

lineage began.

How should we conceptualize a pure drift

process for continuous phenotypic characters? In

this case, u¼ v, except when the lineage is at the

limit values of 0 and 100. If the ancestor has a

given trait value, that trait value is the expected

value of its descendant. With very little time, the

expected value of the descendant is tightly peaked

around the lineage’s initial state. As time goes on,

this low variance bell curve flattens and spreads

out. With infinite time, there is a flat distribu-

tion—each character state has the same proba-

bility. Whereas selection in a finite population

involves both the shifting and the squashing of a

distribution, the process of pure drift involves

only squashing.10

Now let’s return to the inference problem. If the

descendant D is in state a of a quantitative

phenotypic trait, which assignment of character

state to the ancestor A has the highest likelihood?

Since the backwards inequality holds for dichot-

omous characters, one might expect the model for

continuous phenotypic characters to have the same

unconditional consequence: that A¼ a has

maximum likelihood. This is not always correct

(Sober 2002). If D¼ a, then A¼ a is the maximum

likelihood assignment when the process is one of

pure drift (W. Maddison 1991). And if D¼ a and a is

the optimal character state towards which natural

selection is pushing, then A¼ a is again the

maximum-likelihood assignment. However, if the

descendant has a character state of, say, 40 and

selection is pushing the lineage towards a value of

50, then the maximum likelihood assignment to

the ancestor A will be less than 40; how much less

than 40 the maximum likelihood value is depends

on how long the lineage has been evolving, on how

strong the directional force is, and on the char-

acter’s heritability (Sober in press). This means that

parsimony and likelihoodM conflict when the

model says that there is a directional process

whose attractor is some state different from a,

the observed character state of the descendant.

Thus, to defend the parsimonious assignment of

A¼ a without rejecting the Law of Likelihood, one

must reject this model. Parsimony assumes that

the trait either evolves by pure drift or by a selec-

tion process in which the descendant’s character

state is optimal.

9 I do not conceptualize its maximum and minimum values

(0 and 100) conceptualized as absorbing states. The same will be

true in the drift model to be discussed shortly.

10 See Lande (1976) and Sober (2005) for further details

concerning these phenotypic models for selection and drift. Let

me emphasize that my discussion of ‘drift’ in this paper is not

about random genetic drift, but concerns change in the population

average of a quantitative phenotype.
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3.4.2 Example 2

Consider two extant species A and B and their

most recent common ancestor C. Suppose that

A¼ 1 and B¼ 0; parsimony says that C¼ 1 and

C¼ 0 are equally parsimonious. In what circum-

stances do these two assignments of character state

to the ancestor have the same likelihood? That

is, when will it be true that PrA(0! 1)PrB(0! 0)¼
PrA(1! 1)PrB(1! 0)? Here the subscripts A and B

represent which of the two lineages the transition

probabilities describe. It is helpful to rewrite this

equality as

PrA(0! 1)

PrA(1! 1)
¼ PrB(1! 0)

PrB(0! 0)

If the two lineages experience the same evolu-

tionary processes (i.e. are characterized by the

same pair of u, v values), then this equality holds if

and only if the duration N of the lineages is 0, or

infinity, or u¼ v. That is, parsimony assumes that

if the two lineages are of finite duration and have

experienced the same evolutionary process, then

that process is pure drift.

3.4.3 Example 3

The next problem is just like the previous one,

except that the two lineages have unequal tem-

poral durations. When A¼ 1 and B¼ 0, parsimony

says that C¼ 1 and C¼ 0 are equally well-

supported estimates of the ancestral character state

even when A is a present-day species and B is

a fossil. This temporal difference between A and B

means that the lineage leading from C to A lasted

longer than the lineage leading from C to B. The

two-state Markov model views this difference as

evidentially significant; recall that N, the duration

of a lineage, figures in the expressions for the

lineage transition probabilities. If the processes in

the two lineages are characterized by the same

values of u and v, then B provides stronger

evidence (in the sense of a larger likelihood ratio)

about the state of C than A does; likelihood will

then favor C¼ 0 over C¼ 1. Parsimony denies this.

Parsimony therefore assumes that the u and v

values that characterize one lineage must differ

from the u and v values that characterize the other.

But not just any difference between the two pairs

of values will suffice for C¼ 0 and C¼ 1 to have

the same likelihood. The lineage with the longer

duration (the one leading to A) must have a

smaller value for uþ v; in fact, the degree to which

its value for uþ v must be smaller is determined by

the two lineage durations. This has the embarras-

sing consequence that the lineage leading to A

must change its values for u and v in a very precise

way as it gets older. At one point the lineage

leading to A and the lineage leading B were of

equal duration. But then B went extinct while A

continued to exist, so the lineage leading to A got

longer while the one leading to B did not.

According to parsimony, A’s values for u and v

must evolve in precise response to its duration and

to the duration and u and v values that attach to

the lineage leading to B.

3.4.4 Example 4

The next example in which a process model M

induces a conflict between likelihoodM and parsi-

mony concerns a rooted tree in which the character

state of the root is specified. It is a familiar prop-

erty of parsimony in this context that shared

derived characters are said to provide evidence

of common ancestry, but that shared ancestral

characters do not. If three tip species A, B, and C,

are in states A¼ 1, B¼ 1, and C¼ 0, with 0 taken to

represent the ancestral character state, then (AB)C

will be more parsimonious than A(BC). However,

if the polarity is reversed, with 1 now representing

the ancestral condition, then (AB)C and A(BC) will

be equally parsimonious.

Consider the two-state Markov model given

before on which an additional constraint is

imposed, namely that the probability of one

branch’s ending in state i if it begins in state j

(i,j¼ 0,1) is the same as another branch’s doing the

same, if the two branches are simultaneous. This

model has the consequence that (AB)C has a higher

likelihood than A(BC), given the observation that

A¼ 1, B¼ 1, C¼ 0, if all branches have finite dur-

ation, regardless of what the polarity of the character is

(Sober 1988, pp. 206–212). This contradicts what

parsimony asserts, when 1 is the ancestral state.
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Parsimony’s interpretation of the observations

therefore requires a rejection of the process model

just described.

3.4.5 Discussion of the examples

If the Law of Likelihood, as formulated in (2*), is

correct, then parsimony assumes the falsehood of

any model M for which likelihoodM and parsi-

mony are not ordinally equivalent. A summary of

the models discussed in this chapter that parsi-

mony assumes are false is provided in Table 3.1.

These descriptions do not lay out the full details of

the models that parsimony must reject. This is an

important point, since these models are each con-

junctions of several propositions. If parsimony

assumes that model M is false, this means that

at least one of the constitutive propositions that

specifies the model must be false, not that all of

them must be. So don’t take the table’s brief

description of a model to mean that the detail

described must be false. Also, I have described, for

each inference problem, a model that parsimony

must regard as false; don’t assume that this is the

only model that parsimony must reject when it

addresses that inference problem.

Though each example requires that parsimony

reject a process model, a model that parsimony

needs to reject in one inference problem doesn’t

necessarily have to be rejected in another. In

Example 1, parsimony requires a nontrivial

assumption when the character is quantitative,

but no such requirement is imposed when the trait

is dichotomous. In Example 3, parsimony assumes

that the two lineages experience different evolu-

tionary processes. In Example 2, parsimony does

not require this assumption; rather, it assumes that

if the same process is at work in the two lineages,

then that single process is drift. In Example 4,

parsimony leaves open whether selection or drift is

operating within a branch, but requires that dif-

ferent simultaneous branches be characterized by

different pairs of values for u and v. These results

suggest, but do not demonstrate, that parsimony

may impose different assumptions about the

evolutionary process when it addresses different

inference problems.

Although I think these examples make clear at

least some of the assumptions that parsimony

makes about the evolutionary process, I have not

commented on whether those assumptions are

innocuous or implausible. I have emphasized that

my arguments are predicated on the assumption

that the Law of Likelihood, as formulated in (2*), is

true. This is so general a proposition that it can

hardly be said to be an assumption about evolution.

Even so, if it is rejected, we are back to square one.

If it is retained, the question becomes more spe-

cifically biological, but here again, there are choices

to consider. For example, in problem 3, a like-

lihoodist may wish to maintain that the state of the

fossil B provides more evidence about the state of

the most recent common ancestor C than the extant

organism A does. If so, parsimony’s solution to

this problem is mistaken. But it is open to the

defender of parsimony to take the opposite

Table 3.1 Summary of the models discussed in this chapter that parsimony assumes to be false

Inference problem A model that parsimony assumes is false

1 For a quantitative character evolving in a lineage, infer the

character state of the ancestor when the descendant has

character state a.

Selection is pushing the lineage towards an optimum

that differs from the character state of the descendant.

2 When two descendants alive now exhibit different states of

a dichotomous character, infer the character state of their

most recent common ancestor.

The two lineages are characterized by the same pair of

values for u and v, where u 6¼ v.

3 When two descendants (one extant, the other a fossil) exhibit

different states of a dichotomous character, infer the

character state of their most recent common ancestor.

The two lineages are characterized by the same pair of

values for u and v.

4 When two species share a symplesiomorphy not exhibited by a

third, infer the rooted tree topology.

Simultaneous branches in the tree have the same pair of

values for u and v.
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position; however, I think it is not enough just to

insist that parsimony is right in what it says about

this example and to conclude from this that the

model that leads likelihood to a contrary verdict

must be mistaken. An additional argument is

needed concerning why the Markov process model

should not be taken seriously. This point gen-

eralizes to the other examples. All these examples

can be handled in the same way by attacking the

entire Markov process framework. I don’t say that

this framework is beyond criticism. Rather, I sug-

gest that criticisms of this framework must be

biological in their content. This is an important

point: once the Law of Likelihood is accepted, both

criticisms and defenses of parsimony must be

based on biological, not purely methodological,

considerations.

I have not discussed the issue of statistical con-

sistency in this essay, but there is a part of the

debate about that matter that bears on the present

discussion. Felsenstein (1978) described a model

of evolution and an assumed true phylogeny

that together lead parsimony to converge on a

false phylogeny as the data are made large

without limit. Farris’ (1983/1994) reaction was

to reject Felsenstein’s model as unrealistic; after all,

Felsenstein’s model says that all traits in a given

branch have identical transition probabilities and

that the probability of reversion from the derived

to the ancestral state is always zero. Felsenstein

said at the outset that the model he describes is

unrealistic; Farris emphatically agreed, and took

this point to cancel whatever criticism of parsi-

mony the demonstration of statistical inconsist-

ency might be thought to imply. Farris apparently

was reasoning that the correctness of parsimony

requires parsimony to be statistically consistent;

thus, if model M entails that parsimony is not

consistent, then the correctness of parsimony

requires that model M be false.11 I have reasoned

similarly about the examples in this essay, except

that I have focused on ordinal equivalence with

respect to finite data sets, not on statistical con-

sistency, which describes what will happen if you

have an infinite data set. This difference aside,

I am hardly the first to suggest that parsimony’s

failing to have some property elucidates what its

biological assumptions are.
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11 In Sober (1988, pp. 166–171), I argue that a method’s

statistical consistency is not a necessary condition for one to be

rational in using that method. As it happens, there are parameter

settings of the Tuffley and Steel (1997) no common mechanism

model (N) that have the consequence that parsimony and like-

lihoodN both fail to be statistically consistent. However, I don’t

see why that forces one to decline to use N as one process model,

possibly among several, in phylogenetic inference; for discussion

of the use of multiple process models, see Sober (2004a). Further-

more, if using parsimony required the rejection of any model

whose parameters can be assigned values that render parsimony

statistically inconsistent, then the Tuffley–Steel model has

both of the following properties: (1) it suffices for likelihood

and parsimony to agree, and (2) its falsity is presupposed

by parsimony. This illustrates how fundamentally different

likelihood and statistical consistency are as tools for thinking

about parsimony. Bayesians see the Law of Likelihood as

fundamental; frequentists such as Felsenstein see consistency as

the fundamental desideratum.
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CHAPTER 4

The logic of the data matrix in
phylogenetic analysis

Brent D. Mishler

4.1 Introduction

The process of phylogenetic analysis inherently

consists of two phases. First a data matrix is

assembled, then a phylogenetic tree is inferred

from that matrix. There is obviously some feed-

back between these two phases, yet they remain

logically distinct parts of the overall process.

One could easily argue that the first phase of

phylogenetic analysis is the most important;

the tree is basically just a re-representation of

the data matrix with no value added. This is

especially true from a parsimony viewpoint, the

point of which is to maintain an isomorphism

between a data matrix and a cladogram. We

should be very suspicious of any attempt to add

something beyond the data in translating a

matrix into a tree!

Paradoxically, despite the logical preeminence of

data matrix construction in phylogenetic analysis,

by far the greatest effort in phylogenetic theory

has been directed at the second phase of analysis,

the question of how to turn a data matrix into

a tree. Extensive series of publications have been

elaborated to attempt to justify such tree building

approaches as neighbor-joining, maximum like-

lihood, and Bayesian inference, while ignoring

entirely the nature of the data matrix that

must underlie any analysis. The reasons for this

asymmetry in research on phylogenetic theory are

not entirely clear, but it probably has to do with

the fact that the problem of tree building may

appear simpler, more clear-cut. Perhaps it is just a

matter of research fashions. For whatever reason,

relatively little attention has been paid to the

assembly of the data matrix, and it is high time to

examine this all-important part of systematic

research. At stake are each of the logical elements

of the data matrix: the rows (what are the

terminals?), the columns (what are the characters?),

and the individual entries (what are the character

states?).

The tree of life is inherently fractal-like in its

complexity, which complicates the search for

answers to these questions. Look closely at one

lineage of a phylogeny (defined as a diachronic

connection between an ancestor and a descendent)

and it dissolves into many smaller lineages, and so

on, down to a very fine scale. Thus the nature

of both the terminal units (TUs; the twigs of the

tree in any particular analysis) and the characters

(hypotheses of homology, markers that serve as

evidence for the past existence of a lineage) change

as one goes up and down this ‘fractal’ scale.

Furthermore, there is a tight interrelationship

between TUs and character states, since they are

reciprocally recognized during the character

analysis process.

This chapter will deal with logical issues invol-

ving the elements of the data matrix in light of the

nested and interrelated nature of TUs and char-

acters. I will argue at the end that if care is taken to

construct an appropriate data matrix to address a

particular question of relationships at a given

level, then simple parsimony analysis is all that is

needed to transform the matrix into a tree. Debates

over more-complicated models for tree building

can then be seen for what they are: attempts to

compensate for marginal data.
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4.2 What exactly is a terminal
branch on a tree (that is, a row
in the data matrix)?

People who publish phylogenetic analyses are usu-

ally cavalier about what their terminal branches

represent. One often sees species or other taxon

names, or even geographic designations of popu-

lations, attached to terminal branches of published

trees without explanation. Larger-scale units might

indeed be a well-justified TU, but they need to be

justified, not assumed a priori. Taxa or populations

are never the fundamental things from which

phylogenies are actually built. Not even indi-

viduals are the TUs (contra Vrana and Wheeler

1992). As was carefully elaborated by Hennig

(1966), the fundamental terminal entity in phylo-

genetics is the semaphoront, an instantaneous time

slice of an individual organism at some point in its

ontogeny. A tube of extracted DNA and its associ-

ated museum voucher specimen—a semaphoront—

should be considered the ultimate TU.

This realization helps conceptually, but doesn’t

solve all of the empirical problems that arise in

assembling a matrix. In practice, TUs (i.e. rows in

a data matrix) are usually not semaphoronts.

Especially in larger-scale studies, TUs are usually a

complicated assemblage of semaphoronts, and

sometimes even include data removed from any

connection with its original semaphoront. Many

specimens often need to be examined for relevant

character information (not all of which can be

gathered from all semaphoronts because of their

sex, life stage, or state of preservation). Informa-

tion from the literature or a database such as

GenBank is often included in the matrix, based on

a taxon identification alone without reference to a

voucher specimen. This process of assembly of

such composite TUs needs careful examination.

Similar sorts of terminals have been called

operational taxonomic units (OTUs) in the past,

but I think a refined concept of TUs, as referred to

above, is necessary, one designed specifically for

phylogenetics. The original concept of OTU was

defined by pheneticists as a minimal cluster in a

Euclidian distance sense. Cladists need instead to

refer to specific, potentially homologous and dis-

crete-state characters in a Manhattan distance

sense. An additional flaw of the original concept

of OTU is that, by using the word ‘taxonomic,’ it

implies that one can do taxonomy before an

analysis is completed. This view, by confounding

the logical precedence of analysis before classifi-

cation, has led to major mistakes in systematics

research, both phenetic and cladistic, most acutely

in the development of phylogenetic species con-

cepts (see the debates framed in Wheeler and

Meier 2000).

So how can we define a TU that is suitable for

use in phylogenetics? Epistemologically speaking,

a TU is a set of semaphoronts that are homogeneous for

the informative character states currently known (as

explained in detail below). A TU is essentially a

pile of semaphoronts that cannot currently be

subdivided by character data, and thus it is a

pragmatic unit, always subject to change as

knowledge of characters progresses. Ontologically

speaking, a TU is taken to represent a time slice of one

of the terminal lineages whose relationships are being

studied in a particular analysis.

Why do I say ‘‘in a particular analysis?’’ Because

the definition of TUs, even for the same group

of organisms, may change in analyses at different

scales. There unfortunately isn’t one fundamental

TU suitable for any and all analyses; for several

different reasons. Epistemologically speaking,

since TUs are dependent on character-state divi-

sions in the characters being employed, they are

discovered and defined in the course of character

analysis (as discussed in detail below), and of

course different characters are useful at different

scales of analysis. There is thus a reciprocal rela-

tionship between character states and TUs as they

are being discovered during character analysis at

different levels. Ontologically speaking, larger-

scale lineages are usually composed of smaller

lineages nested inside them, and the choice of

which lineage to represent in a particular analysis

depends on the questions begin asked. Further-

more, the lineages at these different levels poten-

tially have different histories; in other words the

smaller lineages are not always proper subsets of

the larger ones. This is sometimes called the

gene tree/species tree distinction (Maddison and

Maddison 1992), but that distinction is far too sim-

plified; there are many nested levels of potentially
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incongruent lineages, not just two (more on this

topic later).

Even if one wanted to try to avoid these pro-

blems by using only semaphoronts in a data

matrix, one would still need to pay attention to the

same issues of scale. One would still need to decide

conceptually which lineages are being represented

by what semaphoronts. It is nearly impossible in

practice to use single semaphoronts as terminals

rather than compositely coded TUs that have data

taken from a number of semaphoronts. For one

thing, not all semaphoronts bear all the characters;

there may be juvenile specializations or sexual

dimorphism present in a lineage. Some specimens

will be missing reproductive organs or other key

features. Different genes will often be sequenced

from different individuals. Furthermore, data are

often taken from the literature (e.g. a previously

published ultrastructural analysis) or from a data-

base (e.g. another laboratory’s gene sequence),

in cases where no reference can be made to an

original semaphoront (e.g. if no voucher specimen

was deposited in a museum). Thus, data are

virtually always compiled from studies of different

individual organisms considered to represent the

same terminal lineage. TUs are nearly always

composites in practice; their composition varying

depending on the scale of analysis.

This topic obviously touches on the species

debate, on which I have some opinions (Mishler

and Brandon 1987; Mishler 1999; Mishler and

Theriot 2000a, b, c), but which I am attempting to

steer clear of in this essay to maintain focus. I am

speaking here to how data matrices are made:

classification (including naming species) is some-

thing that happens much later in the process.

So, while this is not the place to debate species

concepts, I do need to point out that the fractal

scaling of nested lineages includes those well

below the traditional species level. Thus, species

are not somehow different from lineages at any

other level; they are not ‘privileged’ TUs—they

simply need to be justified like any other.

In summary, there is never a given, a priori

set of TUs to begin a phylogenetic analysis

with. Certainly, named taxa (including species)

should not be taken as TUs without question.

TUs need to be constructed during each analysis,

and re-checked each time a group is re-studied.

They need to be carefully justified and re-justified

using character evidence. This causes problems

with easy comparison between analyses based

on different data, but is an unavoidable fact of

life in systematics and needs to be taken into

account in such areas as database design (more

below).

4.3 What exactly is a character (that is,
a column in the data matrix)?

The fundamental activity in phylogenetic syste-

matics is character analysis (Neff 1986) in which

characters and states are hypothesized, tested, and

refined in a reciprocal manner, in concert with the

assembly of TUs, as part of the development of a

data matrix. In addition to the logical primacy

of data matrix construction, there is a temporal

primacy as well. It is an established fact that a

systematist spends 95% of his/her time gathering

and analyzing character data and less than 5%

time turning the assembled data matrix into a tree.

Character analysis must be the all-important part

of the phylogenetic reconstruction process if there

is going to be a hope of discovering the history of a

group. Fortunately, there have been some clear

treatments of the elements of character analysis

(Wiley 1981, Farris 1983, Neff 1986), but these were

published some time ago and seem to be unknown

to many recent workers. Younger systematists

would do well to put more energy into investiga-

tions of the principles of character analysis and

building better matrices, than into ever more

complex model building for tree reconstruction,

keeping firmly in mind the principle of ‘garbage

in, garbage out.’ No model of the evolutionary

process can be brought to bear successfully if the

data matrix does not represent cogently argued

character and character-state statements.

Before using a tool (characters in this case) it is

wise to think carefully about what one is trying to

do with the tool. What we are trying to do in

phylogenetic analysis is to infer the existence of

some past lineage by finding characters that

changed state in that lineage and can thus serve as

a potential marker for reconstructing that branch

in the future (the Hennig Principle). The goal of
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character analysis is find as many potential

markers as possible that can serve as evidence for

the past existence of lineages shared by one or

more of the TUs (see Fig. 4.1). These markers are

the only tools a phylogeneticist has to reconstruct

the branching history of life, but of course the

kind of markers that are useful for branches at

one level of depth in time won’t necessarily be

so for another level. Thus markers need to be

searched for carefully in light of the particular

branching events one is trying to reconstruct. Since

semaphoronts are chosen to build TUs that are

representative of the branching events under

study, then we need to find ‘good’ characters that

differentiate the chosen semaphoronts.

Much has been written about what constitutes a

‘good’ character. Ontologically speaking, poten-

tially informative markers need to support a

hypothesis of homology across the group under

study; thus they need to be comparable in a con-

vincing way across the study organisms. They

need to be independent, so they can be taken as

separate pieces of evidence for the existence of past

lineages in the face of confounding effects such as

convergence. They need to have discrete states so

they can be inferred to contain a record of evo-

lutionary events marking at least one specific

past lineage. The epistemological rules of char-

acter analysis can thus be summarized as follows.

Potential characters need to be evaluated by

evidence for: (1) homology and heritability of a

character across the TUs being studied, (2) inde-

pendent evolution of different characters, and

(3) presence in each character of a system of at

least two discrete states. I elaborate somewhat on

each of these criteria in turn below:

(1) Homology is certainly one of the most

important concepts in systematics, and therefore

also one of the most controversial. Following on

from the work of Hennig and later phylogenetic

systematists, when we say that two semaphoronts

share the same characteristic, we mean they share

a profound historical continuity of information

(Roth 1984, 1988). They are postulated to have

shared a common ancestor that had that char-

acteristic. Thus an important contribution of

cladistics has been the explicit formulation of

a phylogenetic criterion for homology: a hypothesis

of taxic homology (i.e. a potential synapomorphy) by

necessity is also a hypothesis for the existence of

a monophyletic group (Patterson 1982; Stevens 1984).

Each postulated homology (i.e. a column in the

data matrix) is essentially a miniature phylogenetic

hypothesis all by itself (especially as viewed in the

context of its assigned states), and can be tested

against other postulated homologies. Therefore,

congruence among all postulated homologies

provides a test of any single character in question;

some characters initially thought to be homologous

are later inferred not to be because they are in

conflict with the majority of characters. The initial

hypotheses of homology are based on detailed

similarity in structure and development (see the

discussion in Wiley 1981); these go into the matrix

for eventual testing by congruence.

(2) For character changes to count as independ-

ent pieces of evidence in the congruence test

(Patterson 1982), it is necessary that they not be

Period of shared
history

A character
changing state on the
branch, becoming a
marker for the
existence of that
branch in the future

Figure 4.1 Illustration of the concept of a

phylogenetic marker.
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genetically, developmentally, or functionally cor-

related with other characters. There are many

biological processes acting to distort the phyloge-

netic signal present in characters (e.g. reversal

to primitive states caused by heterochrony, con-

vergent evolution across different characters

caused by natural selection, parallel changes to the

same state within one character caused by func-

tional constraints, etc.), along with random effects

such as long branch attraction (caused by the

accumulation of homoplastic matches on long,

non-sister branches making them appear to be

sister groups). The only weapon the phylogenetic

systematist has against this inevitable distortion is

many independent sources of information that are,

as best as can possibly be determined, not impac-

ted by the same biasing factors.

Note that there is another meaning of ‘correla-

tion’, phylogenetic congruence, that does not dis-

qualify characters from counting as independent!

Congruence is what gives us supporting evidence

for the existence of a monophyletic group. Thus

the rules of character analysis need to be carefully

drawn to encompass all the valid potential mar-

kers possible while rejecting those that are not

suitable.

(3) Why is it necessary for a useful character to

have at least two distinct states? Again, we need to

think back to what we are trying to do: discrete

states are needed because we are trying to recon-

struct a discrete thing, an evolutionary event in

which a prior state changed to some new posterior

state, thus marking the existence of a shared

ancestral lineage. The literature on the practice of

how to define character states has had a checkered

past. In most cases, people have simply made

character state distinctions without any justifica-

tion at all, and many methods proposed for ‘gap

coding’ are flawed in various ways (Stevens 1991).

The empirical details are beyond the scope of this

chapter; see Mishler and De Luna (1991) for a

discussion of this issue and a recommended

approach using ANOVA and multiple range tests

to seek statistically homogeneous groups of TUs

representing character states.

To summarize, a ‘good’ character for phyloge-

netic analysis shows greater variation among TUs

than within them. This variation must be heritable

and independent of other characters. This view of

taxonomic characters also requires that each be a

system of at least two discrete transformational

homologs, or character states. Note that just as with

TUs, there is never a given, a priori set of characters

to begin a phylogenetic analysis with. Characters

need to be discovered and evaluated during

each analysis, and re-checked each time a group is

studied.

4.4 What is the relationship between
TUs and character states (that is, the
individual entries in the data matrix)?

Neither the concept of TU nor the concept of

character can be fully understood alone, without

reference to each other and to the ‘fractal’ nature of

the tree of life (as discussed earlier). The nature

of both TUs and characters change as you go up

and down this fractal scale.

As discussed earlier, the rows in a data matrix

are virtually never based on data taken from a

single individual, given that different labs are

producing the data over time, and that different

data-gathering techniques (ranging from DNA

extraction through preparation for anatomical

study) often require destructive sampling; thus

data are often compiled from study of different

organisms considered to represent the same TU.

Thus TUs are nearly always composites in practice,

their composition varying depending on the scale

of analysis.

Likewise, what counts as a useful character

changes depending on the scale of analysis. They

have been selected based on their apparent utility

for the task at hand, homologized (e.g. aligned) for

the organisms under study, and pre-screened for

their fit to the criteria of a good taxonomic char-

acter. Thus, the columns in a data matrix are

already highly refined hypotheses of phylogenetic

homology, defined with respect to the scale of the

current study.

To make things more complicated, there is

clearly a reciprocal relationship between TUs and

character states. As detailed earlier, a TU can best

be defined as a set of individual samples (sema-

phoronts in Hennig’s terminology) that are homo-

geneous for character states currently known,
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while a character can best be defined as a potential

marker for shared history of some subset of the

known TUs. This means that TUs and characters

emerge during a process of ‘‘reciprocal illum-

ination’’ (Hennig 1966). To a large extent their

definitions and discovery are interlinked. How do

we proceed empirically in a way that avoids

circularity? Before answering this question we need

to consider the scaling problem in more detail.

4.5 Deep vs. shallow phylogenetics

The reconstruction of ‘deep’ relationships is fun-

damentally different than reconstruction of ‘shal-

low’ relationships (Mishler 2000). This is because

the problems faced at these different temporal

scales are quite distinct. In shallow reconstruction

problems, the branching events at issue happened

a relatively short time ago and the set of lineages

resulting from these branching events is relatively

complete (extinction has not had time to be a major

effect). In these situations the relative lengths

of internal and external branches are similar,

giving less opportunity for long-branch attraction.

However, the investigator working at this level has

to deal with the potentially confounding effects of

reticulation and lineage sorting. Character-state

distinctions may be quite subtle, at least at the

morphological level. At the nucleotide level it

is necessary to look very carefully to find

genes evolving rapidly enough; however, such

genes may be relatively selectively neutral, and

thus less subject to adaptive constraints which can

lead to non-independence.

In deep reconstruction problems, the branching

events at issue happened a relatively long time ago

and the set of lineages resulting from these

branching events is relatively incomplete (extinc-

tion has had a major effect). In these situations, the

relative lengths of internal and external branches

are often quite different; thus there is more

opportunity for long branch attraction, even

though there is little to no problem with reticula-

tion and lineage sorting since most of the remain-

ing branches are so old and widely separated in

time. Due to all the time available on many bran-

ches, many potential morphological characters

should be available, yet they may have changed so

much as to make homology assessments difficult;

the same is true at the nucleotide level, where

multiple substitutions in the same region may

make alignment difficult. Thus very slowly evol-

ving genes may be sought, but that very con-

servatism is caused by strong selective constraints

which increases the danger of convergence leading

to character dependence. Another approach is

to increase sampling density—if TUs can be

added that more evenly sample the true tree, thus

reducing the asymmetry between internal and

external branches, then faster-evolving genes may

have better performance (Källersjö et al. 1998, 1999).

These considerations suggest that the problems

being faced, and their best-justified solutions, will

change as you go up and down this fractal scale.

The nature of TUs and usable characters are going

to change, and we need to have a way to scale

phylogenetic results from one level to the next if

we are going to have a hope of building a complete

tree of life. There is effectively an infinite number

of semaphoronts out there; there will never be a

‘complete’ data matrix for all of them for the

practical reason that there are too many. But more

importantly, it isn’t at all clear that a single global

analysis of all semaphoronts living on Earth would

be desirable, even if we could do it. There is the

fact discussed earlier that a given semaphoront

doesn’t bear all the relevant data, and thus

composite TUs would need to be constructed

in practice. There is also the fact that character

homologies can be drawn much more easily when

comparing only closely related TUs. Very few

characters can be coded reliably across the whole

tree of life. So we need to examine the scaling

issue closely to see how we might combine

or concatenate data matrices and phylogenetic

results from more-shallow analyses into deeper

and deeper ones until eventually a global tree of

life can be produced.

4.6 How should we connect up
analyses and data matrices that
are ‘nested’ inside each other at
various different time scales?

How will we ultimately connect up deep and

shallow analyses, each with their own distinctively
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useful data and problems? Some hold out hope for

eventual global analyses, once enough universally

comparable data have been gained and computer

programs get much more efficient, to deal with all

extant organisms at once. Others would go to the

opposite extreme, and use a supertree approach,

where shallow analyses are grafted on to the tips

of deeper analyses. An intermediate approach,

called compartmentalization (Mishler 1994, 2000),

uses shallow topologies (that are based on analyses

of the characters useful locally) to constrain global

deep analyses (that are based on analyses of

characters useful globally). All of these issues

surrounding how to use phylogenetic markers at

their appropriate level to reconstruct the extremely

deep tree of life are likely to be among the major

concerns of phylogenetics in coming years, as

reconstruction of the whole tree of life from twigs

to trunk is attempted.

The different approaches to concatenating

analyses at different scales can be best viewed as a

spectrum (see Fig. 4.2). At the left-hand end of this

spectrum, the approach is to include all possible

TUs and potential characters in one matrix.

Generally this is not actually done, because the

sheer amount of data (millions of possible TUs)

makes thorough phylogenetic analysis computa-

tionally impossible. The most-common approach

in practice in global analyses is to select a few

representatives of a large, clearly monophyletic

group (the exemplar method). Care is sometimes

taken to select representatives that are ‘basal’ TUs

within the group to be represented (i.e. cladistic-

ally basal relative to the imaginary root defined

by outgroups); however, this still does not avoid

two important problems: (1) within-group vari-

ation is not fully represented in the analysis, and

(2) an increase both in terminal branch lengths

and in asymmetry between lengths of different

branches is introduced. These problems can lead

to erroneous long branch attractions in global

analyses.

At the right-hand end of the spectrum,

local analyses are simply grafted together into

supertrees at the place where shared taxa occur,

without reference back to the original data. There

are many ways to do this in detail (as reviewed by

Sanderson et al. 1998), but the important thing is

that the analyses on real character data are only

done locally, and the concatenation is based on a

combination of local topologies rather than an

integration of local data sets into a global data set.

Both of these approaches may be problematic,

one too global, the other too local. Thus the appeal

of a promising intermediate approach called

compartmentalization (by analogy to a water-tight

compartment on a ship—homoplasy is not allowed

in or out). This approach represents diverse yet

clearly monophyletic clades by their inferred

ancestral states in larger-scale cladistic analyses

(Mishler 1994, 2000). A well-supported local topo-

logy is sought first, then an inferred ‘‘archetype’’ or

Hypothetical Ancestor (HA) for the group is inserted

into a more inclusive analysis. In more detail,

the procedure is to: (1) perform global analyses,

determine the best supported clades (these become

the compartments); (2) perform local analyses

within compartments, including more taxa and

characters (more characters can be used within

compartments due to improved homology assess-

ments among closely related organisms—see

below); (3) return to a global analyses, in one of

two ways, either (a) with compartments repre-

sented by single HAs (the archetypes), or (b) with

compartments constrained to the topology found

in local analyses (for smaller data sets, this

approach appears better because it allows flexible

character state assignments to the base of the

compartment based on optimizations to the local

topology).

The compartmentalization approach differs from

the exemplar approach in that the representative

character-states coded for the archetype are based

on all the TUs in the compartment, thus the

reconstructed HA is likely to be quite different

from any particular TU. As an estimate of the states

of the most recent common ancestor of all the local

Global Local

‘All’ TUs Compartmentalization Supertrees

Figure 4.2 How to concatenate different analyses to build the tree

of life? Shown is a spectrum of approaches ranging from global

to local. See text for explanation.
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TUs, the HA is likely to have a much shorter

terminal branch with respect to the global analysis,

which in turn can have the beneficial global effect

of reducing long branch attraction. In addition

to these advantages of compartmentalization at

the global level, the local analyses will be

better because one can: (1) include all local TUs for

which data are available; (2) incorporate more

(and better justified) characters, by adding in

those characters for which homology could not

be determined globally (e.g. genes that can only be

aligned locally); (3) avoid spurious homoplasy

that can change the local topology due to long-

branch attractions with distant outgroups. The

effects of compartmentalization are thus to cut

large data sets down to manageable size, suppress

the impact of spurious homoplasy, and allow the

use of more information in analyses. This approach

is self-reinforcing; as better understanding of

phylogeny is gained, the support for compartments

will be improved, leading in turn to refined

understanding of appropriate characters and TUs

both within the compartments and between the

compartments.

4.7 Structural vs. DNA sequence
characters

The choice of data for use at different scales of

analysis is the crux of the matter. One important

issue to consider is how intrinsically useful are

different categories of characters at these different

scales? It is clear that, as general categories,

structural data (i.e. anatomical, morphological, or

genomic) and DNA sequence data have different

and complementary strengths and weaknesses.

DNA sequence characters are much more numer-

ous than structural characters, thus increasing the

chance that sufficient markers can be found for all

branches of a tree. They are especially useful in

organisms with simple morphology, such as fungi

and bacteria, that may lack a sufficient number

of structural characters. Objectively defining

character states in structural comparisons can be

difficult, particularly in shallow reconstructions,

while the states are usually clear-cut in DNA

sequence data. It has been argued that it is useful

that DNA sequence data are independent from

morphological characters that are perhaps subject

to adaptive convergence (although convergence of

course cannot be ruled out in DNA sequences,

particularly at deeper levels). Sequences of highly

conserved genes can be homologized across very

broad groups that share little morphologically,

although these same highly conserved regions are

probably highly subject to adaptive convergence.

Finally, models of evolutionary change are easier to

postulate for DNA sequence evolution, a perceived

advantage for those who like to use maximum

likelihood methods.

On the other hand, especially in deeper com-

parisons, structural characters (i.e. traditional

morphological characters but also modern geno-

mic characters such as rearrangements and intron

insertions; see next section) often have much

greater complexity, and may exhibit ontogeny,

allowing a temporal axis of comparison not avail-

able with DNA sequence data. Structural char-

acters often change in an episodic pattern, which is

necessary for evidence of deep, short branches to

remain detectable. Clock-like markers are the

worst kind of data for those sorts of branches; the

markers keep changing and thus erasing history. It

is much better for discovering those deep, short

branches to have a clock like those found frozen in

place on the sunken ship Titanic (still showing the

time the ship went down); a clock that stopped

ticking when some major change occurred. Fur-

thermore, the number of possible character states

is usually much higher in morphological character

systems (and in genomic rearrangements) than in

DNA sequence data, which serves to make long

branch attraction less of a problem (see Mishler

1994 for discussion). Morphological data are more

easily gathered from large numbers of specimens,

and from fossils, making it much easier to robustly

sample the true phylogeny. For all these reasons,

morphological data have remained among the

characters of choice at deeper phylogenetic levels,

and have been joined recently by an exciting

new class of structural characters derived from

genomic comparisons. The latter promise to be

very useful in the future, particularly for those

deep, relatively short internal branches that have

proven resistant to phylogenetic reconstruction

with DNA sequence data.

64 P AR S IMONY , P HY LOGENY , AND GENOM I C S



4.8 Genomic characters

This is the era of whole-genome sequencing;

molecular data are becoming available at a

rate unanticipated even a few years ago. Sequen-

cing projects in a number of countries have

produced a growing number of fully sequenced

genomes, providing computational biologists with

tremendous opportunities. However, comparative

genomics has so far largely been restricted to

pairwise comparisons of genomes; for instance,

to identify syntenic regions, orthologous genes,

and common regulatory elements between human

and mouse. The importance of taking a phylo-

genetic approach to systematically relating

larger sets of genomes has only recently been

realized.

A recent synthesis of phylogenetic systematics

and molecular biology/genomics—two fields once

estranged—is beginning to form a new field that

could be called phylogenomics (Eisen et al. 1998).

Something can be learned about the function

of genes by examining them in one organism.

However, a much richer array of tools is available

using a phylogenetic approach. Close sister-group

comparisons between lineages differing in a critical

phenotype (e.g. desiccation or freeze tolerance) can

allow a quick narrowing of the search for genetic

causes. Dissecting a complicated, evolutionarily

advancedgenotype/phenotypecomplex (e.g.devel-

opment of the angiosperm flower) by tracing the

components back through simpler ancestral recon-

structions can lead toquickerunderstanding.Hence,

phylogenomics allows one to go beyond the use of

pairwise sequence similarities and use phylogenic

comparativemethods to confirmand/or to establish

gene function and interactions.

Cross-genome phylogenetic approaches have

the potential to provide insights into many open

functional questions. A short list includes under-

standing the processes underlying genomic

evolution, identifying key regulatory regions,

understanding the complex relationship between

phenotype and genomic changes, and under-

standing the evolution of complex physiological

pathways in related organisms. Using such a

comparative approach will aid in elucidating how

these genes interact to perform specific biological

processes. For example, Stuart et al. (2003) used

microarray data from four completely sequenced

genomes (yeast, nematode, insect, and human) to

show coexpression relationships that have

been conserved across a wide spectrum of animal

evolution.

Most importantly for the systematist, the new

comparative genomic data should also greatly

increase the accuracy of reconstructions of the tree

of life. Even though nucleotide sequence compar-

isons have become the workhorse of phylogenetic

analysis at all levels, there are clearly phylogenetic

problems for which nucleotide sequence data are

poorly suited, because of their simple nature

(having only four character states) and tendency to

evolve in a regular, more-or-less clock-like fashion.

In particular, as stated earlier, deep branching

questions (with relatively short internodes of

interest mixed with long terminal branches) are

notoriously difficult to resolve with DNA sequence

data. It is fortunate, therefore, that fundamentally

new kinds of structural genomic characters such as

inversions, translocations, losses, duplications, and

insertion/deletion of introns will be increasingly

available in the future.

These characters need to be evaluated using

much the same principles of character analysis

(discussed earlier) that were originally developed

for morphological characters. They must be

looked at carefully to establish likely homology

(e.g. examining the ends of breakpoints across

genomes to see whether a single rearrangement

event is likely to have occurred), independence,

and discreteness of character states. Given the

close link between characters and TUs discussed

above, it is also necessary to consider carefully

the appropriate TUs for comparative genomic

analysis, especially since different parts of one

organism’s genome may or may not have exactly

the same history. Thus close collaboration between

systematists and molecular biologists will be

required to code these genomic characters pro-

perly, and to assemble them into matrices with

other data types. Challenges resulting from

combining different data sources, in light of the

possibility of different histories for different parts

of the same genome, are discussed in the next two

sections.
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4.9 Dealing with heterogeneous
data types

There is every reason to search carefully for good

potential markers in all kinds of data, particularly

for the deep branching questions discussed earlier.

Deep phylogenetic reconstructions are by their

nature difficult, and all characters should be

sought and used if they meet the criteria of good

potential markers (Mishler 2000). However, it

remains controversial how data from different

sources are to be evaluated and compared

(Swofford 1991). Some have argued that data sets

derived from fundamentally different sources

should be analyzed separately, and only common

results taken as well supported (i.e. consensus tree

approaches), or at least that only data sets that

appear to be similar in the trees they favor should

be combined (Huelsenbeck et al. 1996). Others have

argued that all putative homologies should be

combined into one matrix (i.e. ‘total evidence’;

Kluge 1989; Barrett et al. 1991; Donoghue and

Sanderson 1992; Mishler 1994). Theoretical argu-

ments at present favor the latter approach: if

characters have been independently judged to

be good candidates for phylogenetic markers,

then they are equivalent and should be analyzed

together.

There is one major exception to the preference

for a ‘total evidence’ position: data should not

be combined into a single matrix if there is evid-

ence that some characters had a different branch-

ing history than the rest (Mishler 2000). However,

this is not easy to detect. There are several sources

of homoplasy other than different branching his-

tory, including evolutionary convergence. If sev-

eral data partitions show different highly

discordant trees due to convergence, the only way

to see the ‘true’ tree topology is to combine them.

The only weapon a systematist has against con-

vergence is the likelihood that truly independent

characters will be subject to different confusing

factors and thus the true history may emerge

when these independent characters are combined

(Barrett et al. 1991). Probably all character systems

are influenced by constraints that tend to bias

phylogeny reconstruction one way or another,

yet a combination of very different character data

may allow the noise to cancel out, and the histor-

ical signal to come through.

Therefore, observing a particular gene or other

data partition exhibiting serious conflict with

another is not sufficient reason to reject combining

them. There must also be additional evidence,

outside of the phylogenetic analysis, for reticulation

or lineage sorting. The best current examples of

such discordance are in shallow analyses, where

organellar genomes may have different phylogenies

than those of associated nuclear genomes and

morphologies (Smith and Sytsma 1990; Rieseberg

and Soltis 1991). Barring that sort of clearly explain-

able discordance via reticulation, all appropriate

data should be used, especially in deep analyses

because, as argued earlier, reticulation and lineage

sorting are much less likely to be problems in deep

analyses, while convergence is likely to be a greater

problem. But even if its effects may be negligible in

many deeper analyses, the problem of reticulation is

a difficult one, worthy of a more detailed look.

4.10 Reticulation

As introduced earlier, the tree of life is essentially

composed of nested sets of lineages. Look closely

at one lineage, and it turns out to be composed of

smaller lineages, all the way down to within the

organism (e.g. cell lineages and gene genealogies).

None of the levels of nested lineages can be con-

sidered fundamental (Mishler and Theriot 2000a,

b,c)—it depends on the scale of the specific ques-

tion being asked. To build the large-scale frame-

work of the tree of life one can probably ignore

the fine-scale lineages within organisms and

between organisms within populations. But to

study microevolutionary differentiation processes

and design conservation plans at the population

level, one needs to look at the fine-scale lineages,

and to look at the spread of cancer cells in a body,

one needs to look at finer levels still.

The major problem that arises is that these

nested sets of lineages are not always proper

subsets. Especially at the finer levels, sublineages

of a larger lineage may not all have the same

history, and/or may not have the same history

as the larger lineage. For example, parts of the

genome within one organism can have different
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histories, for two main reasons. The first of these

is lineage sorting (see Fig. 4.3), which occurs when

genes exist in families within the genome due to

past duplication events, and differential extinction

has taken place in derived higher-level lineages

such that the relationships of the genes appear not

to match the relationships of the higher-level

lineages (Avise 1989). The problem in this case is

one of mistaken homology—paralogy is confused

with orthology because not all the gene lineages

are present in all higher-level lineages.

The second major reason for differential histories

is reticulation, which occurs when once separate

lineages blend back together. At the genome level,

recombination can bring genes with different

histories together into a single lineage. Of all the

different sources of homoplasy, such as adaptive

convergence, gene conversion, developmental

constraints, mistaken coding, lineage sorting, and

reticulation, the last is the most problematical. This

is because reticulation violates a fundamental

assumption underlying cladistic analysis, that of a

branching model of history. The other factors are all

cases of mistaken hypotheses of homology of one

sort or another, whereas ‘homoplastic’ character

distributions due to reticulate evolution involve

true homologies whose mode of transmission was

not tree-like. The possibility of reticulation further

complicates the relationship between TUs and

characters discussed earlier, since it ensures that

some lineages nested inside of larger ones truly

have different histories than others.

Because of this important violation of a funda-

mental cladistic assumption, Hennig (1966) and

later Nixon and Wheeler (1990) were correct in

focusing on reticulation and the problems it causes

for cladistics. However, the problems posed by

reticulation are more complicated than their

proposed ‘solution,’ i.e. their suggestion that the

species level can be used as a dividing line by

supposing that reticulation only occurs below the

species level. This assumption (made by many, but

not all, cladists) of an abrupt cessation of inter-

breeding at the species level, separating rampant

reticulation below from clean divergent evolution

above, was wrong in two important respects. One

is the implication that reticulation can be dis-

regarded at higher levels, and the other is the

implication that cladistic methods are not appro-

priate below the species level. Mishler and Theriot

(2000a, b, c) refuted both implications; here are

their arguments in summary:

(1) There is no consistent demarcation between

reticulate and branching relationships at any

particular level. Hybridization takes place between

clades of various patristic/cladistic degrees of

relatedness. Reticulate relationships range from

intense (in panmictic, sexually reproducing groups

where individual relationships are exclusively

reticulate), to less intense (in spatially or tempor-

ally subdivided groups where both reticulate and

divergent relationships exist among individuals),

to none in clonally reproducing organisms. Rare,

high-level hybridizations may occur among very

divergent lineages, such as among genera of

orchids; viral-mediated lateral transfer of genetic

material is suspected at much higher levels.

(2) Just as barriers to reticulation are often not

complete, reticulation is not a complete barrier to

cladistic analysis. There is much phylogenetic

structure within named species; indeed, a whole

new field of phylogeography was founded to

explore this (Avise 1989). We can reconstruct

relationships in the face of some amount of reticu-

lation (how much is not yet clear, but is amenable

to study). For example, McDade (1992) showed

that incorporating a few known hybrids in an

analysis of ‘good’ species does not seriously affect

the cladistic topology of the good species. There

may be a self-correcting mechanism here as there

A

B

C
c

b
a

Figure 4.3 Illustration of lineage sorting. Three larger-scale lineages are

outlined with dark lines and labeled with capital letters. Three extant

smaller-scale lineages are included, together with extinct relatives,

and shown with lighter lines and lower-case letters. Note that

the relationships of the larger-scale lineages are A(B,C) while the

relationships of the smaller-scale lineages are (a,b)c because of

the particular pattern of extinction that occurred. This would result in

apparent homoplasy at the level of the larger-scale lineages.
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is with other sources of homoplasy: even major

convergence (e.g. among cave animals) can be

uncovered via cladistic analysis. As with con-

vergence, where the application of cladistic

analysis provides the only rigorous basis we have

for identifying homoplasy and thus demonstrating

non-parsimonious evolution, the only way we can

identify reticulation on the basis of character

analysis alone is through the application of

cladistic parsimony, followed by the examination

of homoplasy to attempt to discover its source

(see discussion by Vrana and Wheeler 1992).

As was pioneered by Slatkin and Maddison (1989),

cladistic analysis of non-recombining genes can

even be used to measure gene flow between

populations. Thus, cladistic analysis can be used to

study reticulation, at any level.

(3) Thus, just as there may be no largest cladistic

unit for which reticulation is impossible, there may

be no smallest ‘irreducible’ cladistic unit within

which no further diverging phylogenetic patterns

occur. Ontologically speaking, we are dealing with

a fractal pattern again; if you look inside one

lineage you see a pattern of divergence of lineages

within (and some reticulation, perhaps increas-

ingly greater as one looks at less-inclusive linea-

ges). This fractal pattern of reticulation and

branching presents a problem for simple phylo-

genetic inference. But, as argued above, phenom-

ena such as lineage sorting and reticulation can be

discovered as incongruence between organismal

and gene phylogenies, or incongruence between

different genes or different regions of the genome.

4.11 TUs, characters, and
database design

One of the big challenges in modern biology is

informatics. There are so many data available, and

a number of projects are attempting to represent

the information in databases. However existing

databases (e.g. GenBank or Tropicos) are essen-

tially a flat file with respect to phylogeny. Data are

entered with whatever taxon name happens to be

attached to them. The only sense of evolutionary

relationships is given by a schema of higher-taxon

names (say families and phyla) that can be used to

group the basic entries. These higher taxa may or

may not be monophyletic, and essentially function

as static sorting bins for pulling out the basic

records—there is no way to access or display

emergent properties of data at higher evolutionary

levels or to discover finer-scale patterns at lower

levels. In other words, databases are not yet

sensitive to the fractal nature of phylogenies (with

their many hierachically nested levels). As argued

above, there are no basic comparable taxa

(terminal or otherwise), or characters. Both TUs

and characters are defined with respect to a certain

level in the phylogeny.

As a new generation of phylogenetic databases

are built (in part coordinated by a large NSF ITR

grant supporting a national resource in phylo-

informatics, Cyber Infrastructure for Phylogenetic

Research (CIPRes); see www.phylo.org), there

needs to be much more flexibility built in. The main

themes of this chapter need to be explored to

appropriately present the richness of phylogenetic

data to users. Fundamental open questions that

need to be addressed for databases include: (1)

how can the elements of the data matrix (TUs,

characters, and states) as defined and recognized

in some particular study be stored and potentially

retrieved for use in a future study at a different

level? (2) How can heterogeneous data types

(e.g. DNA sequences, genomic rearrangements,

morphology) be compared/combined? (3) How

can data sets and analyses at very different scales

be concatenated (e.g. supertree, compartmentali-

zation, or global approaches as discussed earlier)?

(4) How can phylogenetic results at these different

concatenated scales, where TUs are nested inside

larger ones, and character definitions (e.g. align-

ments) change as you move up and down the

scale, be presented to the community in compre-

hensible and useable ways?

The centerpiece of all future biological data-

bases will need to be phylogenetic classification,

a deeply nested hierarchy of named nodes linked

to all available structural and functional data at

each level dynamically, as new data enter the

database. All biological data fall somewhere on the

tree of life, which is the one thing that can unify

them all. This new approach to biodiversity

informatics will take advantage of the richness of

the phylogenetic structure of biological data.
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4.12 Tree building

This chapter has focused on the first phase of

phylogenetic analysis, building the data matrix,

rather than the second phase, building a tree from

the matrix. Still, a few words on the latter are

appropriate. The simplest model for evaluating

congruence among characters (different hypo-

theses of homology) is equally weighted parsi-

mony (Farris 1983), which remains the preferred

method for comparing diverse sorts of characters.

Each column in a data matrix can be regarded

as an independently justified hypothesis about

phylogenetic grouping (the criteria for justifying

these individual character hypotheses is discussed

above), an individual piece of evidence for the

existence of a monophyletic group. Parsimony

assumes that an apparent homology is more likely

to be due to true homology than to homoplasy,

unless evidence to the contrary exists, i.e. a plur-

ality of apparent homologies showing a different

pattern (Funk and Brooks 1990; Mishler 1994).

Parsimony does involve some simplifying assum-

ptions, i.e. that all character-state changes are

similar in their probability of change, and thus

they can all be equally weighted. This assumption,

while robust, can lead to mistaken reconstructions

under some extreme circumstances of asymmetric

probabilities of change within and among char-

acters, and in such cases simple parsimony can

be modified using more complicated models of

change by either character and character-state

weighting (Albert et al. 1992, 1993; Albert and

Mishler 1992) or maximum likelihood approaches

(Felsenstein 1981; Yang 1994).

Debates will no doubt continue over how com-

plicated an evolutionary model it is prudent to

include in an analysis, but it is clear that all the

parsimony and maximum likelihood methods,

by using individual character data (specific hypo-

theses of homology), belong to a related Hennigian

family of methods. Fortunately, one important

empirical observation is that differential weighting

and maximum likelihood have little effect on

simple parsimony reconstructions. Weighted

parsimony and maximum likelihood topologies

are almost always a subset of the equally weighted

parsimony topologies, especially when applied to

data with an appropriate rate of change for the

problem at hand (more on this later). Thus, para-

doxically, pursuit of well-supported weighting

schemes has ended up convincing many of us of

the broad applicability and robustness of equally

weighted parsimony (Albert et al. 1993). Further-

more, all reconstruction methods work best with

‘good data’, i.e. characters chosen with respect to a

particular level of phylogenetic question. It is with

more problematic data (e.g. with a limited number

of informative characters, a high rate of change,

or strong constraints) that results of different

methods begin to diverge. Weighting algorithms

and maximum likelihood approaches may be able

to extend the use of problematic data, but only if

the evolutionary parameters that are biasing rates

of change are known. As biases become greater,

precise knowledge of them becomes ever more

important for avoiding spurious reconstructions.

Therefore, given the large number of potential

characters made available by modern technology,

it is desirable to be highly selective about the

characters that are used to address any particular

phylogenetic question; to the extent possible,

the problematic data should be left out (possibly

to be used at a different, more appropriate level:

see discussion on compartmentalization in Mishler

1994, and elsewhere in this chapter).

What is the relationship between this chapter

emphasizing the datamatrix, and the general themes

of this book on parsimony? Simple. A rigorously

produced data matrix has already been evaluated

carefully for potential homology of each feature

when being assembled. Everything interesting has

already been encoded in the matrix; what is needed

is a simple transformation of that matrix into a

tree without any pretended value added. Straight,

evenly weighted parsimony is to be preferred,

because it is a robust method (insensitive to variation

over a broad range of possible biasing factors)

and because it is based on a simple, interpretable,

and generally applicable model. More-complicated

models for tree building are fundamentally attempts

to compensate for marginal data. Given the surfeit

of data available these days, it would be wiser to

avoid the use of marginal data!

These issues of how to use phylogenetic mar-

kers at their appropriate level to reconstruct the
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extremely fractal tree of life are likely to be one of

the major concerns in the theory of phylogenetics

in coming years. In the future, my prediction is

that more-careful selection of characters for parti-

cular questions (i.e. more-careful and rigorous

construction of the data matrix) will lead to less

emphasis on the need for modifications to equally

weighted parsimony. The future of phylogenetic

analysis appears to be in careful selection of

appropriate characters (discrete, heritable, inde-

pendent, and with an appropriate rate of change)

for use at a carefully defined phylogenetic level.

4.13 Acknowledgements

This chapter has benefited from analyses and

collaborations supported by three NSF grants, and

I acknowledge my co-principal investigators for

their help in understanding these issues: the Deep

Gene Research Coordination Network (DEB- 0090227;

http://ucjeps.berkeley.edu/bryolab/deepgene/),

the Green Tree of Life Project (EF-0228729; http://

ucjeps.berkeley.edu/TreeofLife/), and the ITR grant

entitled Cyber Infrastructure for Phylogenetic

Research (CIPRes; EF-0331494; www.phylo.org/).

70 P AR S IMONY , P HY LOGENY , AND GENOM I C S

www.phylo.org/
http://ucjeps.berkeley.edu/bryolab/deepgene/
http://ucjeps.berkeley.edu/TreeofLife/
http://ucjeps.berkeley.edu/TreeofLife/


CHAPTER 5

Alignment, dynamic homology,
and optimization

Ward C. Wheeler

5.1 Introduction

Systematics is the production of cladograms that

link taxa through their observed variation. These

cladograms must optimize an objective function

such that they can participate in hypothesis testing

on the basis of this function. The core activity of

systematics is to assay the relative merits of a

pair of competing scenarios and judge one

superior. The repeated and transitive application

of this elemental comparison results in a globally

optimal solution that is the ultimate goal of

systematics.

This depiction of systematics raises three points:

the nature of the objective optimality criterion;

the manner of determination of this value; and the

assessment of the relativemerits of cladograms. This

chapter is concerned with the second of these three,

the realm of character analysis, homology and

optimization. The arguments here will be based on

the optimality criterion of parsimony or minimum

cost. Likelihood or other criteria could well be used,

however, and most of the character-optimization

discussions would remain largely unchanged other

than the specifics of their implementation and

numerical values. The comparison of cladograms is

the province of cladogram or tree searching and is

not discussed in any depth here.

Homology is the relationship between features

that is derived from their shared, unique origin.

Given a single cladogram, two features are

homologous if their origin can be traced back to a

specific transformation on a branch of that clado-

gram, but the same pair of features may not be

homologous on alternate cladograms. Homology is

entirely cladogram-dependent and the relative

optimality of alternate cladograms determines

whether or not features exhibit this relationship.

The dynamic homology framework (Wheeler

2001a) is an analytical concept that extends through

optimization of transformations to the corres-

pondence among features (often referred to as puta-

tive or primary homologies) themselves. The joint

scenario of correspondence and transformation is

chosen such that the overall cladogram cost is mini-

mal. The correspondences among features (nucleo-

tides in this context) are not predetermined, but a

result of the analysis. In this framework, there is no

distinction between putative or primary and sec-

ondary homology (de Pinna 1991)—all variation is

optimized de novo for each cladogram.

5.2 Sequence data

There are two properties that have been used

to differentiate sequence data from other sorts of

information: simplicity of states and length vari-

ation. Unlike complex anatomical features (e.g. limb

or wing) that can express themselves in a myriad

of forms, nucleotides exhibit only four conditions.

Complexity and difference imply that states (e.g.

presence/absence, or conditions) are not compar-

able across characters. Nucleotide states, on the

other hand are identical no matter where they

occur. Nucleotide sequences may also differ in

length. These two aspects of molecular sequence

data remove the complexity and positional

information so often used in establishing primary

homologies in anatomical systems.
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5.3 Alignment and optimization

Two approaches have been developed to deal with

the absence of preordained homologies and analyze

sequence data. On one hand, methods have been

devised to create the missing primary homology

statements that are then analyzed by standard

techniques—broadly referred to as multiple align-

ment. Traditionally, sequence data have undergone

this pre-phylogenetic analysis step to permit familiar

procedures akin to those used with anatomical

characters. A second approach is to directly optimize

sequence variation during cladogram searching.

This methodology requires no notions of primary

character homology or any global (i.e. topology-

independent) homology statements whatsoever

(other than that the compared sequences themselves

be homologous). Direct optimization is also applic-

able to simple, serial morphologies, for which char-

acters and their states are similarly constrained.

For the sake of discussion here, the terms align-

ment and optimization will refer to these alternate

approaches.

5.4 The problem

In computational terms, the problem of determin-

ing the cost of a given cladogram reduces to the

determination of the set of internal vertex (hypo-

thetical ancestral) sequences such that the overall

cost is minimized. Whether expressed in terms of

alignment or optimization, the problem (known as

the tree-alignment problem) is NP-hard (see Wang

and Jiang 1994); hence, we are very unlikely to

achieve exact solutions. NP-hard problems are

members of a class of computational problems for

which there is no known polynomial time solution.

These problems are often combinatorially ‘explo-

sive’, with the size of the solution space expanding

factorially. That is, when the sequences can vary in

length, even the determination of the cost of a

single cladogram will be heuristic (for 10 sequen-

ces of length 5—an unrealistically small and well-

behaved case—there are 1.35� 1038 homology

schemes; Slowinski 1998).

Given that determining cladogram cost is heur-

istic, the transformation and homology statements

derived from the cladogram are heuristic as well.

When coupled with cladogram search, we are

faced with a compound NP-complete problem and

all of our statements will be based on approximate

solutions.

Both alignment and optimization may be viewed

as heuristic approaches to solving this problem.

Alignment accomplishes this based on static, glo-

bal, primary homology statements, whereas opti-

mization techniques propose cladogram-specific

homology scenarios.

5.5 Alignment methods

As a heuristic solution, alignment decomposes the

nested homology/search procedure into two

sequential problems. Length-variable sequences are

converted into a series of column vectors (primary

homology statements) through the insertion of

gap characters (-) as placeholders that denote the

results of insertion/deletion events. Alignments

minimize a cost function (in the caseof two sequences

the cost to ‘edit’ one sequence into the other) that

is based on the relative costs of transforma-

tion events (especially insertion/deletion—‘indel’—

costs), which may or may not be cladogram-based.

There are several components to the alignment

process. These progress from pairwise alignment

of two sequences to the exact solution for multiple

sequences and then to the heuristic methods

employed in real-world analyses.

5.5.1 Pairwise alignment

Alignment of sequence pairs is the foundation

of all more elaborate procedures. The problem,

simply stated, is to create the series of corres-

pondences between the nucleotides in two seque-

nces via the insertion of gaps, such that the edit

cost (the weighted sum of all events—insertions,

deletions, nucleotide substitutions—required to

convert one sequence into another) between the

sequences is minimized (or some other function

optimized). Costs must be assigned to each type of

event, or trivial, zero-cost alignments can result

(e.g. indels costing zero and an alignment

that places each nucleotide opposite a gap). The

first algorithmic solution to this form of string-

matching problem was proposed by Needleman
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and Wunsch (1970) and is used throughout most

alignment procedures (see Gusfield 1997 for more

extensive discussion).

Consider two sequences ACGT and AGCT and

alignment parameters of nucleotide-substitution

cost equal to 1 (CostSubs) and indel cost equal

to 10 (CostInDel). The algorithm follows a dynamic

programming approach by solving a series of small,

dependent sub-problems that implicitly examine all

possible alignments. There are two components to

the procedure. The first determines the cost of the

best alignment (or alignments—there may be mul-

tiple solutions). This is often referred to as

the wavefront update. The second component is the

traceback, which yields the alignment itself (more-

complex examples can be found in Phillips

et al. 2000). Needleman and Wunsch described a

maximization-of-identity algorithm, where here a

minimization of difference is presented. The

underlying principles are unchanged.

Costi;j ¼ minfCosti�1;j þ CostInDel, Costi;j�1
þ CostInDel; Costi�1;j�1 þ CostSubs i;jg

The first part of the algorithm fills a matrix M of

size (nþ 1)� (mþ 1) to align a pair of sequences a

and b of length n and m respectively. Each cell (i,j)

is the cost of aligning the first i characters of a with

the first j characters of b (i.e. aligning a1 . . . ai and

b1 . . . bj). Each value is calculated using the pre-

viously aligned subsequences: that is, the cost of

cell (i,j) will be

minfði� 1, jÞ þ indel, ði, j� 1Þ þ indel,

ði� 1, j� 1Þ þ align character ai and big

or less formally, the minimum among

aligning a1 . . . ai�1 and b1 . . . bj and

aligning character ai with a gap,

aligning a1 . . . ai and b1 . . . bj�1 and

aligning character bj with a gap,

aligning a1 . . . ai�1 and b1 . . . bj�1 and

aligning character ai and bj:

The additional first row and column (the reason

for the þ 1 in the matrix dimensions) represents

the alignment of a sequence with an empty string;

that is, initial gaps. Each decision minimum is

recorded, to follow the path that leads to the

cost of aligning a and b; that is, the cost in cell (n,m)

(Fig. 5.1).

In order to create the actual alignment between

the sequences a traceback step is performed that

proceeds back up and to the left of the matrix,

keeping track of the optimal indels and substitu-

tions performed in the matrix-update operations.

The minimum cost path is followed back, where

the best move is diagonal if the nucleotides of the

sequences correspond, and the left and upwards

moves signify indels (Fig. 5.1). The minimal cost

alignment for these sequences (ACGT and AGCT)

with the cost regime {indels¼ 10, substitutions¼ 1}

is 2 with two base substitutions implied between

the sequences (C$G, and G$C).

If a complementary cost scenario is specified,

e.g. indels¼ 1 and substitutions¼ 10, a different

optimal solution is found (Fig. 5.1, right). In this

case as well, the minimum cost is two, but

no substitutions are implied—only indels (2).
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Figure 5.1 Needleman and Wunsch (1970) alignment

matrix tables for two cost scenarios. On the left, indel

events cost 10 steps and nucleotide changes 1, while

these are reversed on the right. Both cost scenarios yield

minimum cost alignments of cost 2, although minimizing

indels in the former (left) and nucleotide substitutions in

the latter (right).
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Furthermore, there are two equally optimal solu-

tions differing in the placement of the gaps. This

ambiguity comes from the equally costly paths

found at matrix element 3,3 (of 0,0 to 4,4).

The non-unique nature of such solutions is a

frequent property of alignments and can have

dramatic effects on phylogenetic conclusions

(Wheeler 1994).

5.5.2 Exact multiple alignment

The pairwise procedure can be generalized in a

straightforward fashion to align more than two

sequences. The matrix would have an axis for

each sequence (l sequences would require l

dimensions) and there would be 2l� 1 paths to

each cell representing all the possible combinations

of gaps and substitutions possible (seven in the

case of three sequences). These two factors add

enormously to the calculations, making true mul-

tidimensional alignments unattainable for real

data sets.

An additional complexity arises in analyses of

data sets with more than three sequences. The cost

calculations at each cell may (as Sankoff and

Cedergren 1983 suggested) be based on the clado-

gram of relationships of the sequences. If this is

known, or at least specified a priori, the cell cost can

be calculated directly. If, however, the cladogram is

unspecified, a search would be performed for each

cell, or the entire multidimensional alignment

repeated for multiple (potentially all) cladograms.

The immense computational burden of exact

multiple alignment ensures that heuristic solutions

are used in nearly all real-world cases.

5.5.3 Heuristic multiple alignment

Current heuristic procedures are similar in

that many attempt to render multiple alignment

tractable by breaking down simultaneous

n-dimensional alignments into a series of man-

ageable pairwise alignments related by a ‘‘guide

tree’’ (in the parlance of Feng and Doolittle 1987).

These differ in the techniques used to generate the

guide tree and conduct the pairwise alignments at

the guide tree nodes. Furthermore, the procedures

may or may not be explicitly linked to optimality

criteria (Fig. 5.2).

By far the most commonly used heuristic

multiple-alignment implementation is CLUSTAL,

mainly because it is fast and relatively easy to use.

Many others are freely available, however, and

take different approaches to the problem. Several

of these approaches are illustrated in this sample.

More-complete lists can be found at http://pbil.

univ-lyon1.fr/alignment.html and more compar-

isons in Phillips et al. (2000).

CLUSTAL (Higgins and Sharp 1988 et seq.) cre-

ates a single multiple alignment based on a single

guide tree. A neighbor joining tree (Saitou and Nei

1987) is calculated from the pairwise alignments

via a ‘corrected’ distance formula. This tree is used

as a guide tree for progressive pairwise alignment

of terminal sequences and internal consensus

sequences (a down-pass). A second (up) pass

resolves the placement of gaps in internal and

ultimately observed sequences. There is no

optimality value associated with a CLUSTAL

alignment.

TREEALIGN (Hein 1989a, b) Also produces a

single multiple alignment based on a single guide

tree, but that guide tree is constructed (with some

tree refinement) as the alignment is created.

A parsimony step is included as part of the tree-

reconstruction procedure. Although alignments

are not searched as such, the generation of the

guide tree examines multiple alternatives. A final,

single multiple alignment is generated with an

attached parsimony score, but no comparisons to

other complete alignments are made.

DALIGN (Morgenstern et al. 1996) differs from

other methods in looking for alignments of con-

tiguous gap-free fragments of DNA that may have

mismatches. This contrasts with the approach that

attempts to align each position in a sequence.

No gap penalty is employed. The idea behind this

method is to create complete alignments by

stitching together locally similar sequences that

may be separated by highly divergent regions.

An optimal alignment is one that maximizes the

weighted sum of the matches in the smaller seg-

ments. Alignments can be compared on this basis.

This method makes no reference to cladograms or

trees whatsoever.
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COFFEE (Notredame et al. 1998, 2000) behaves

as a ‘wrapper,’ using a genetic algorithm to optim-

ize multiple alignments based on consistency with

the pairwise alignments of the same sequences.

Any pairwise alignment procedure can be used

under the COFFEE optimality function.

The following alignment methods involve

‘search’ procedures. In MALIGN and the method

of Hein et al. (2003), tree searches are conducted to

produce multiple alignments, whereas POY sear-

ches for optimal cladograms directly and can

generate alignments post facto for the optimal

cladogram.

MALIGN (Wheeler and Gladstein 1994) uses

multiple guide trees to generate a diversity of

multiple sequence alignments, choosing the best

on the basis of the parsimony score (indels inclu-

ded) of the most parsimonious cladogram derived

from that alignment. Guide trees are searched and

multiple alignments created for each candidate

guide tree. Each alignment is used as the basis for

a heuristic cladogram search (indels weighted and

included). The cost of the most parsimonious cla-

dogram is attached to the alignment as its optim-

ality score. MALIGN will output multiple

multiple-alignments if they are equally optimal.

AGT

AXT-
AXTX

AXTX

AT ATC

AGT

AGT
A-C

AGT-
A-T-
A-TC

AT ATC

Tree search

AGT

AGT
ATC

AGT-
ATC
AT-

ATC AT

AT

AT-
ATC

AGT-
A-T-
A-TC

ATC AGT

Tree search Compare
tree lengths

Best
alignment

Tree search

Figure 5.2 General heuristic multiple sequence alignment. Top, a guide tree is specified to direct a series of pairwise alignments which

incrementally include sequences as the guide tree is traversed from tips to root (e.g. CLUSTAL). Usually, some form of consensus sequence is created

at the internal nodes. Additional gaps are inserted as the tree is traversed a second time form root to tips. When an optimality criterion is

employed (e.g. MALIGN) multiple guide trees are created and the derived alignments compared by some metric (such as phylogenetic tree cost).
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Hein et al. (2003) employ the Thorne–Kishino–

Felsenstein (TKF) model (Thorne et al. 1991) for

likelihood-based multiple alignments related by a

tree. The algorithm employed is based on Sankoff

(1975) for likelihood. Currently, the implementa-

tion (designed for demonstration purposes) can

manage a few sequences (ca. 7) but could well be

extended to larger data sets.

POY ImpliedAlignment (Wheeler 2003a;Wheeler

et al. 2003) is not an alignment program, but sear-

ches for parsimonious cladograms directly (see the

next section). A multiple alignment can be gener-

ated, however, from the transformation series

implied by the optimal cladogram. This is not a

multiple alignment in the sense of other methods,

but rather is inextricably linked to the cladogram

from which it was derived (Wheeler 2003a).

5.6 Optimization methods

In contrast to alignment procedures, optimization

methods skip the alignment step and proceed

directly to the determination of cladogram cost.

This is achieved by focusing on determining opti-

mal hypothetical taxonomic unit (HTU) sequences

at internal tree nodes. In doing so, homology

schemes are created for each cladogram uniquely,

and for cladogram costs based on them. Multiple-

alignment methods create a single alignment upon

which all cladograms are diagnosed. Optimization

methods create individualized homology schemes

for each cladogram.

5.6.1 Exact solutions

As mentioned earlier, the determination of the

lowest cost for a single cladogram depends on the

lowest cost assignment of HTU sequences, and this

is an NP-hard problem (Wang and Jiang 1994).

Exact solutions, therefore, will not be available

generally.

Sankoff (1975) proposed a recursive procedure

that would calculate the minimum-cost cladogram

exactly. This method requires a number of steps

proportional to (2n)m where n is the average length

of the sequences and m the number of sequences

for a given cladogram. An alternate, simple-

minded exhaustive approach would be to simply

generate a list of all possible sequences, determine

the edit cost between each pair (via some pro-

cedure akin to that of Needleman and Wunsch

1970), and try each possible sequence at each

internal cladogram node by dynamic program-

ming (Sankoff and Rousseau 1975). This type of

explicit enumeration could be accomplished by

extending the candidate set of sequences employed

by search-based optimization (Wheeler 2003b) to

include all possible sequences. Since this would

entail an explosively increasing number of sequ-

ences this technique would become untenable

rapidly. Some sort of branch-and-bound technique

could be applied to this search given an initial

upper-bound estimate, but it is unclear whether

much additional headway can be made towards

exact solutions.

5.6.2 Heuristic solutions

The operational goal of heuristic optimization

procedures is to determine a set of HTU sequences

that minimizes the overall cladogram length

(¼ edge weight). Two general sorts of approach

have been proposed based on attempts to estimate

these internal vertex sequences using known

sequences or on a search for them within the world

of possible sequences.

The first-estimation heuristic was proposed by

Sankoff et al. (1973) and Sankoff (1975). Given the

high dimensionality of the exact recursive solution

proposed by Sankoff (1975), a three-dimensional

local-optimum heuristic was proposed. This would

break the problem down into a series of single-

point estimations surrounded by three known or

previously estimated sequences (Fig. 5.3; as

opposed to the two-point problem reduction in

many heuristic alignment approaches). At the

time, the method was too time-consuming for real

data sets.

Wheeler (1996, 2002) proposed a two-

dimensional heuristic (optimization alignment,

later called direct optimization), which though

more approximate that the three-dimensional

approach, was more rapid (Fig. 5.4a). Later,

Wheeler combined the Sankoff method with direct

optimization and incremental character optimiza-

tion (Gladstein 1997) in iterative-pass optimization,
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which improved cladogram-length calculations

and can be used for larger numbers of sequences

(Fig. 5.4b; Wheeler 2003c).

Sequence-search heuristics first appeared with

fixed-state optimization (Wheeler 1999). The

Fixed-state method limited the possible set

of HTU sequences to those observed in terminal

taxa, which are then diagnosed via dynamic

programming based on a matrix of edit costs

between the sequences. Given this constraint, less-

satisfactory lower bounds on cladogram length are

usually found (Fig. 5.5a; when sequences differ

greatly in length this may not be true). Since the

method is not calculating ancestral sequence states

but simply optimizing states, cladogram optim-

ization time, after initialization, is independent of

sequence length. As the number of sequences

increases, the number of potential sequence states

rises as well, both improving the cladogram

cost estimation and increasing the cost of compu-

tation of a given cladogram (roughly m3 for m

sequences) (Fig. 5.5b).

Search-based optimization (Wheeler 2003b)

relaxes the strict limit on sequence states by

the addition of heuristically chosen sequences

(Fig. 5.5c). Through the increase of the state set at

Seq i Seq j

Seq k

X X minimizes d(X, seq i ) + d(x, seq j )
 + d(x, seq k )

Figure 5.3 Median-state heuristic for n-dimensional optimization

proposed by Sankoff (1975). The state of X (which could be an entire

sequence) is that which minimizes the summed distances to the nodes

which connect to it.
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3 indels + 1 substitution = 7
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Figure 5.4 Estimation methods. (a) Direct optimization (Wheeler 1996)

results in a cladogram of cost 8 for the input sequences AA, ATTA,

AAAAA, and AAA when all events (indels and nucleotide substitutions)

are equally costly. (b) Iterative-pass optimization (Wheeler 2003c)

improves on this by 1 step. The horizontal bars signify indels and D
represent nucleotide subsitutions whose location may be ambiguous.

AA(a)

(b)

AG
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3 indels + 1 substitution = 4

4 indels + 1 substitution = 5

AAG

AAGG

AAGG

AGAG

∆
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4 indels + 0 substitution = 4
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AAG

AAG

AAGG
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AGAG

Figure 5.5 Search-based methods. (a) Direct optimization (Wheeler

1996) for the sequences AG, AA, AGAG, and AAGG. When all events

are equally costly (indels and nucleotide substitutions) the cladogram

has a cost of 4. (b) Fixed-state optimization (Wheeler 1999) limits

the HTU sequences to those present in the terminals and results in a cost

of 5. (c) Search-based optimization (Wheeler 2003b) allows the

addition of HTU states—here AAG—and thereby reducing the

cladogram cost to 4.
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the cost of execution time, progressively lower

bounds can be found until further enlargement of

the set is unproductive. The set could be made all-

inclusive with an exact solution the result (but at

great time cost).

5.7 Comparison of alignment and
optimization

Although the goals of alignment (at least in phy-

logenetics) and optimization are the same—to find

minimum-cost cladograms—the approaches are

quite different. Alignment methods seek to find a

single putative homology scheme upon which all

cladograms are evaluated. Optimization methods

perform this operation for each evaluated clado-

gram. As such, cladogram searches based on

alignment methods are likely to be consistently

faster than optimization approaches since the steps

involved in determining the cost of a cladogram

from a fixed alignment are much less burdensome.

Optimization methods, however, are likely to find

lower-cost cladograms (Wheeler 1996; Giribet et al.

2002; T. Grant. pers, comm.) and execution time

comparisons should include the time consumed by

alignment.

This can be illustrated by examining a simple set

of three sequences (Fig. 5.6). There is not necessa-

rily one globally optimal alignment. An alignment

may be optimal for a particular cladogram (a la

Sankoff and Cedergren) but any cladogram search

based on such an alignment may well overlook

other equal or lower-cost solutions. Optimization

procedures, by examining the cladograms them-

selves, do not suffer this shortcoming (direct

optimization as implemented in POY (Wheeler

et al. 2003) finds both cladograms).

5.7.1 Evaluation

Given the identical goals of alignment

and optimization, how can these somewhat

competing methods be evaluated? Speed and

effectiveness are two obvious criteria. Speed

would be measured straight-forwardly as the

time required to complete the combined align-

ment/cladogram-search operation versus that for

the optimization-based cladogram search. The

determination of cladogram cost for fixed align-

ments can be accomplished extremely efficiently

(Goloboff 1994; 1998b) even for fairly general

dynamic-programming characters (Goloboff 1995,

1996a). Implementations such as TNT (Goloboff

et al. 2002) are able to evaluate many tens of

thousands of cladograms (containing hundreds of

taxa) per second. Multiple alignment imple-

mentations that generate a single multiple align-

ment (such as CLUSTAL) can create an alignment

of a thousand nucleotides for a hundred taxa in a

few minutes. Multiple-alignment procedures that

evaluate many candidate multiple alignments

(such as MALIGN) will absorb much more time.

Such a search using dynamic homology optim-

ization (at least under present implementations)

could take yet longer.

An example (for illustrative purposes, not

exhaustive by any means) is provided by the

analysis of 100 mollusk 18S rRNA sequences

(G. Giribet, personal communication). The align-

ment programs CLUSTAL and MALIGN were

used and compared to optimization-based POY.

CLUSTAL produced alignments most quickly and

MALIGN most slowly. When comparing the

approach of CLUSTAL and POY, CLUSTAL was

faster by 20% (without cladogram search and

when minimal POY options were specified), but the

multiple alignment (really an implied alignment)

produced by POY was 30% less costly in terms of

parsimony (see Table 5.1). Cladogram searching

would add time to the total solution of the align-

ment methods, but this would be a small premium

I
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III
IV 6 steps

I
II
III
IV

((I III)(II IV)) = 6 steps 

((I II)(III IV)) = 6 steps 

II

IV

6 steps

III

IV

I

(a)

(b)

(c)
II
III
IV

GGGG
-GGG
GAAG
-GAA

GGGG
G-GG
GAAG
GAA-

GGGG
GGG-
GAAG
GAA-

I

III

I

II

Figure 5.6 Simple alignments of four sequences GGGG, GGG, GAAG,

and GAA. The alignments in (a) and (b) result in minimal cost,

but different cladograms. The alignment in (c) yields both.
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in comparison with the alignment time. This could,

however, narrow the CLUSTAL vs. POY execu-

tion-time difference.

The second criterion, effectiveness, favors optimi-

zation methods. Given that optimization methods

are creating homology schemes specifically tai-

lored to be optimal for each cladogram examined,

it is only logical that this approach should result in

less-costly (or higher-likelihood, for that matter)

cladograms. This has been shown several times

(Wheeler and Hiyashi 1998; Giribet et al. 2002;

T. Grant. pers, comm.) and in the example above.

Decreases in cladogram cost of 10% over align-

ment methods are not unexpected. The more

length variation present in the sequences, the more

opportunity there is for dynamic homology to find

more-effective topology-specific solutions.

5.7.2 Interrelationship

There is a connection between multiple alignment

and cladogram optimization. Transformation ser-

ies inherent in a cladogram can be extracted and

represented as an implied alignment (Wheeler

2003a). Such an implied alignment contains all the

synapomorphy statements and transformation

events required by the topology under an optimi-

zation approach. As such, they resemble standard

multiple alignments, but are actually derived from

the analysis of a specific cladograms as opposed to

the basis for a search. Given the dependence of this

sort of alignment on a specific cladogram, the

object created is not necessarily fair to topologies

other than its basis cladogram. Each of those

topologies would be tested best by their own

implied alignments. Such a unique-alignment

procedure is the approach optimization methods

bring to phylogenetic analysis.

An effect of this is seen in the calculations of

Bremer (1994) support. Support values calculated

on the basis of a global alignment can overestimate

support compared to those based on dynamic

homology. Given the specific homology schemes

created by optimization methods, alternate clado-

gram lengths should be lower (or at worst equal)

to those based on an alignment that is optimal for

some other cladogram. This will tend to inflate the

differences in cladogram lengths, hence Bremer

values.

Alignment and optimization can be used in

tandem to reduce execution time in optimization-

based searches. In essence, an implied alignment

(or any alignment for that matter), represents a

static approximation of dynamic homology. Given

that an implied alignment is generated for a spe-

cific cladogram, it can be used as the basis for

rapid cladogram cost evaluations among similar

topologies. The implied alignment is used

to identify candidate cladograms quickly for fur-

ther, more time consuming, analysis. If a clado-

gram is found to be superior to previously

identified solutions, a new implied alignment is

created based on the new topology and the process

continued. This approach can accelerate searches

Table 5.1 Performance of CLUSTAL, MALIGN. and POY on mollusc test set. The analyses were performed with all

transformations (indels included) costing 1. The data set consisted of 100 mullusk 18S DNA sequences of

approximately 1000 bp (G. Giribet, personal communication). All runs were on a Pentium M computer at 1.7 Ghz

under LINUX. Runs for MALIGN and POY specified indel cost as 1, CLUSTAL was run twice; once under the

default values (Default) and a second time specifying all gaps and transformations as 1 (1 : 1 : 1 : 1). The POY run with

TBR branch swapping yields two equally costly cladograms. The arrows denotes the cost of the implied alignments

when analyzed using NONA (Goloboff 1993b). NONA diagnosed the POY cladograms as the cost found by POY,

but was able to find more-parsimonious solutions using the implied alignments

Method Options Execution time(s) Cost

CLUSTALW 1 : 1 : 1 : 1 688 11 999

CLUSTALW Default 722 10 642

MALIGN ‘Build’ only 26 270 11 790

POYþ Implied Alignment ‘Build’ only 920 7 989! 7 970

POYþ Implied Alignment TBR 134 470 2 @ 7 690! 7 684
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by a factor of four or more depending on the

problem at hand (Wheeler 2003a).

5.8 Conclusion

Traditionally, alignment has been used to convert

data without inherent putative homology state-

ments into those that do. This step is operation-

ally logical, but, given the ultimate goal of

optimal cladograms, unnecessary. The criticism of

optimization-based methods as lacking primary

homology is largely based on this historical exer-

cise. Clearly, a priori notions of homology (at least

at the nucleotide level) are not logical or compu-

tational requisites of phylogenetic analysis.

Criticisms of the optimization approach need to

be based in effectiveness and logic—not on

appeals to tradition.

As such, multiple alignment does not have

separate standing in phylogenetic analysis. It is

one approach to solving a complex, NP-complete

problem. In comparison to optimization-based

procedures, it may be fast, but it is approximate.

In essence, alignment is a heuristic—and not a

very effective one.
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CHAPTER 6

Parsimony and the problem of
inapplicables in sequence data

Jan E. De Laet

‘ ‘I don’t know what you mean by ‘glory,’ ’ Alice said. Humpty Dumpty

smiled contemptuously. ‘Of course you don’t–till I tell you. I meant ‘there’s a

nice knock-down argument for you!’ ’ ‘But ‘glory’ doesn’t mean ‘a nice

knock-down argument,’ ’ Alice objected. ‘When I use a word,’ Humpty

Dumpty said in rather a scornful tone, ‘it means just what I choose it to

mean–neither more nor less.’ ’

(Caroll 1872, chapter VI)

6.1 Introduction

About 10 years ago, Maddison (1993; see also

Platnick et al. 1991) drew attention to problems that

can arise in parsimony analyses when data sets

contain characters that are not applicable across all

terminals. Examples of such characters are tail

color when some terminals lack tails, or positions

in DNA sequences in which gaps are present.

Maddison (1993) examined various ways of coding

such characters for various parsimony algorithms

and concluded that no general solution was

available. Since then, the problem of inapplicables

has been rediscussed repeatedly (e.g. Lee and

Bryant 1999; Strong and Lipscomb 1999; Seitz et al.

2000), but Maddison’s conclusion still holds.

Farris (1983), focusing on regular single-column

characters as classically used in phylogenetic ana-

lysis, characterized parsimony as a method that

maximizes explanatory power in the sense that

most-parsimonious trees are best able to explain

observed similarities among organisms by inherit-

ance and common ancestry. This led De Laet (1997;

see also De Laet and Smets 1998) to formu-

late parsimony analysis as two-item analysis.

In this view, parsimony maximizes the number

of observed pairwise similarities that can be

explained as identical by virtue of common descent,

subject to two methodological constraints: the

same evidence should not be taken into account

multiple times, and the overall explanation must

be free of internal contradictions.

Here, I examine how this formulation can be

used to deal with the problem of inapplicables.

More specifically, I deal with the problem of

inapplicables in sequence data, a harder and more

general problem than most cases of inapplicability

that Maddison (1993) had in mind. The review of

parsimony analysis in the first section provides the

basis for discussing the analysis of sequence data

in the second section. The basic idea of the whole

chapter is to explore the ramifications of the con-

ceptual framework of Farris (1983) beyond the

realm of single-column characters. This was in part

prompted by the double observation that several

authors seem to be using isolated elements of that

paradigm when discussing methods for sequence

analysis (see, e.g., Frost et al. 2001; Simmons 2004),

while, at the same time, no coherent discussion of

those ideas as applied to sequence data is available.

6.2 Parsimony analysis as
two-item analysis

Some notes on terminology are appropriate first.

Take a simple term such as ‘autapomorphy’.
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Originally, autapomorphies were defined as ‘apo-

morphous features characteristic for a particular

monophyletic group (present only in it)’ (Hennig

1966, p. 90). In addition to this original meaning, a

more restrictive usage that reserves the term for

‘novelties that are coded as unique in a data set’

(Kluge 1989, p. 9) is widespread.

Consider the data set of Fig. 6.1 and its most-

parsimonious tree (out1 out2 (A ((B C) (D (E F)))))

(see Fig. 6.2). Under Hennig’s original definition,

the first seven characters all provide autapomor-

phies. As an example, character c4 has apomor-

phous state 0 for monophyletic group (B C), and

that state does not occur outside that clade. Under

the more restrictive definition only character c7 is

autapomorphic. Obviously, questions as to whe-

ther autapomorphies should be taken into account

or not when calculating the consistency index of a

data set on a tree (e.g. Yeates 1992) take an entirely

different meaning depending on the way in which

the term ‘autapomorphy’ is used.
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0
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1
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1
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Figure 6.1 A data set with 10 unordered characters for eight terminals.

Terminals out1 and out2 are interpreted as outgroups.
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Figure 6.2 Parsimony analysis of the data of Fig. 6.1. (a) The most-parsimonious explanation of the data requires 14 steps. (b) To come to hypotheses of

synapomorphy and monophyly in the ingroup, the ingroup is rooted using the branch that leads to the outgroups (note that this procedure does not imply

such hypotheses outside the ingroup). (c, d) Two alternative optimal explanations of character c10 on the most-parsimonious tree. (e) A suboptimal

explanation of character c10 on the most parsimonious tree. (f) An optimal explanation of character c10 on a suboptimal tree.
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Paraphrasing Farris (1983, p. 8), I share Humpty

Dumpty’s disdain for arguing definitions as such.

Therefore I shall not discuss and evaluate the pros

and cons of various possible meanings of the terms

that I employ, nor indicate alternative terms with

identical or similar meanings. But as the above

example shows, it is important to make intended

meanings clear, so in this section I shall explicitly

point out my usages of terms.

At the same time, this process will provide an

interlocked set of concepts that will allow a clear

discussion of parsimony and inapplicables in the

next section, and help to distinguish terminological

issues from more substantial argument. To preempt

any objection as should the conclusions hinge on

major redefinitions of familiar terms, I shall indicate

howmy usages are rooted in existing literature. This,

however, should not be taken to imply that these

usages are always strictly in line with those refer-

ences: whenever some existing, term is close enough,

in spirit, to intendeduse (aswould, e.g.Kluge’s use of

Hennig’s autapomorphyabove) I shall adopt existing

terminology rather than propose a new term.

6.2.1 Characters and character analysis

Conceptually, a cladistic analysis consists of

two main activities (see, e.g., Rieppel 1988; de

Pinna 1991; Rieppel and Kearney 2002). The first

comprises empirical observation, leading to deli-

mitation of characters and character states, and to a

data set in which those characters are scored for the

terminals in the analysis. This is the activity of

perceiving similarity and coding it into characters

and data sets, to which I shall refer as character

analysis (Kluge and Farris 1969, p. 9–10; see also

Rieppel and Kearney 2002, p. 60). The second

activity takes data sets as input, identifies their

most-parsimonious hierarchic arrangment(s), and

uses the resulting cladogram(s) as a basis for phy-

logenetic inference. I shall refer to this as parsimony

analysis (Farris 1983, p. 10–12; see also later).

Character analysis and parsimony analysis stand

in a continuous relationship of reciprocal illumi-

nation, at different levels (e.g. Rieppel 2003, p. 182;

see also Hennig 1950, p. 26). As an example, the

selection of terminals that will be included in a

data set is in part guided by existing phylogenetic

hypotheses. Likewise, empirical work that results

in new characters that are added to data sets can

lead to cladograms with new or refined hypoth-

eses of phylogenetic relationships. These, in turn,

can point to characters that are highly incongruent

with the general pattern and that may therefore be

worth additional scrutiny. If an empirical basis can

be found for a reinterpretation of such characters

or their states, the data set can be adapted

accordingly (see, e.g., Farris 1983, p.10).

At a given point in this process of continuous

refinement, consider an individual character such

as c4 in the data set of Fig. 6.1. From the point of

view of character analysis this character is a state-

ment about a feature that comes in two states,

coded 0 and 1, such that state 0 is observed in

terminals B and C and state 1 in all other terminals.

Theoretically, such a character expresses the hypo-

thesis that the observed feature carries evidence on

the genealogical relationships among the taxa that

are involved. This directly limits characters and

character states for phylogenetic analysis to fea-

tures that are inheritable. A thought-provoking

discussion of this seemingly trivial observation can

be found in Freudenstein et al. (2003).

Beyond this, however, little more specific can be

said other than that a character state as observed in

different terminals ‘must be sufficiently similar to

be called the same [ . . . ] at some level of taxonomic

generality’ (Kluge 1997a, p. 89; the quote refers to

derived states but the statement is valid in gen-

eral), an observation that also holds for the char-

acter as a whole (see, e.g., Platnick 1979, p. 542;

Jenner 2004, p. 301). For morphological and ana-

tomical features, the criteria of composition, con-

junction, ontogeny, and topography provide

perspectives that can serve to evaluate if such

sufficiency holds in particular cases (Kluge 1997a).

Of those, topography or topological relationships

are often considered to be the fundamental criter-

ion (e.g. Rieppel 1988; de Pinna 1991, Hennig 1966,

pp. 93–94; see also Remane 1952, pp. 31–66).

As discussed extensively by Rieppel and

Kearney (2002, in the context of anatomy; see also

Jenner 2004), care must be taken to give similarity

statements as expressed in characters an observa-

tional basis. In order to do so one has to rely,

however, unavoidably on background knowledge,
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and there is in principle no limit to the degree of

background knowledge that can be incorporated in

a character (Rieppel and Kearney 2002, p. 265). So

even in this specific and restricted context of

erecting character hypotheses for cladistic analysis,

the concept of similarity unavoidably retains some

elusiveness. This notwithstanding, similarity

assessments as expressed in characters and their

states, in the theoretical framework as just dicus-

sed, are the empirical basis on which further

phylogenetic inference is built.

6.2.2 Single-character phylogenetic inference

If no other comparative data were available for the

terminals that are involved, a character such as c4

would constitute a data set on its own. It is a useful

exercise to subject such a minimal data set to

parsimony analysis. Within the constraint of

terminal sampling, this leads to the following

inferences: (1) the feature arose in a common

ancestor of these terminals, from which they

inherited it; (2) differentiation into two states

ocurred at a later stage; (3) for each state, the

terminals with that state are only connected

through ancestors that have that same state. These

inferences do not yet include a polarity statement

for which state is considered apomorphic and

which plesiomorphic.

The apomorphy/plesiomorphy pair of terms is

defined as follows: for a given evolutionary

transformation, the condition or state from which

the transformation started is plesiomorphic or pri-

mitive and the condition after the transformation

apomorphic or derived (Hennig 1966, p. 89). As dis-

cussed by Hennig (1966, p. 93), coming to an

hypothesis of features that are involved in such a

transformation on the one hand and deciding on

the evolutionary direction of such a transformation

on the other are entirely different questions. The

inclusion of outgroups in data sets is arguably the

most general and least assumption-laden way to

address the latter question.

Roots and outgroups

In general, when studying the phylogenetic rela-

tionships among a group of terminals, one

assumes that these are part of a monophyletic group

at some level of inclusiveness, meaning that they

share a common ancestor that they do not share

with terminals outside that group (Hennig 1966,

73–74; see Farris 1991 for a review of this and

related terms). The terminals that are assumed to

be part of the monophyletic group are called

ingroup terminals and are collectively referred to as

the ingroup. Terminals outside that group are

called outgroup terminals or outgroups for short.

When outgroups are included in a data set,

they can be used to root the ingroup after the

globally most-parsimonious arrangements of the

data have been identified (Farris 1972, p. 657; see

Figs 6.2a and 6.2b for an example). In the ingroup,

hypotheses of relative apomorphy and plesio-

morphy and of the direction of transformations

then directly follow (Farris 1982a; see Figs 6.2c

and 6.2d for some examples). This is the proce-

dure that is now almost universally used to root

ingroups and polarize characters, and it is mostly

referred to as the outgroup method or the outgroup

criterion (see, e.g., Farris 1979, p. 511). Confus-

ingly, these and similar labels were also used in a

series of papers in the 1980s for a series of

methods of prior character polarization that are

fundamentally different and mostly no longer in

use. A historical account and a discussion of these

methods can be found in Nixon and Carpenter

(1993). The precise way in which hypotheses on

character polarity come about does not affect the

argumentation in this paper, so without loss of

generality the discussion is restricted to out-

groups.

In a data set that has only one character, as

above, the general use of outgroups as just

described becomes simplified because the best

tree for the data set coincides with the structure

of its single character. In the above example, the

outgroup hypothesis could be the assumption

that terminals A through F (the ingroup) share a

most recent common ancestor that is not shared

with terminals out1 and out2 (the outgroups).

Observing that state 1 of character c4 is present

in the outgroups as well as in the ingroup, it

follows that state 1 is plesiomorphic in the

ingroup; that state 0 is apomorphic in that same

group; and that (B C) is a monophyletic subgroup

of the ingroup.
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Outgroups do not always lead to such unam-

biguous single-character inferences. An example

is character c6, where (A D E F) and (B C) could

both be monophyletic; or, alternatively, either

could be paraphyletic with the other mono-

phyletically nested in it. In addition, contra-

dictions can arise between a character hypothesis

and the outgroup hypothesis, even with binary

characters. An example is character c8: the two

following statements, derived from the character,

contradict the outgroup hypothesis: terminals

out1 and F are only connected through ancestors

that have state 1; the other terminals are only

connected through ancestors that have state 0.

Such cases are mostly but not necessarily inter-

preted to mean that the hypothesis of ingroup

monophyly is incorrect. In general, nothing more

can be said other than that the data do not

support the prior assumption of ingroup mono-

phyly (Farris 1972, p. 657), an observation that is

also consistent with the alternative interpretation

that the data are wrong. Neither issue addressed

in this paragraph affects the argumentation of

this paper.

Premises

Obviously, the above conclusion of monophyly for

(B C) is conditional: it depends on the correctness

of the outgroup hypothesis, on the correctness of

the similarity assessments that led to character c4

and its coded states, and on the correctness of

several other, hidden, assumptions that remained

unexpressed (such as absence of reticulate evolu-

tion). So, it would be more precise to say that (B C)

is a putative monophyletic group, or a presumed

monophyletic group, or that B and C are hypo-

thesized to be monophyletic, each time conditional

on the premises stated above (see Farris 1983, p. 13

for a similar use of the term ‘putative’). Below, I

shall use such verbose formulations only when

confusion could arise otherwise, or when I wish to

stress the difference between hypothesis or infer-

ence on the one hand and true historical account

on the other. For the latter I shall then use the

convenient adjective ‘true’, following existing

practice (see, e.g., Farris 1983, p. 12), while obser-

ving that the philosophical problems that sur-

round the notion of truth (see, e.g., Boyd 1991) do

not affect this usage. The same applies to some

other terms that I already have used: outgroup,

apomorphy, and plesiomorphy are defined in

terms of phylogenetic history but are often used to

refer to just a hypothesis about that history.

Hennig (1966, p. 89) introduced the terms sym-

plesiomorphy and synapomorphy to decribe the pre-

sence of plesiomorphies and apomorphies among

terminals. As above, these terms are defined with

respect to true evolutionary history, but are often

used to refer to inferences as well. Such context-

dependent shifts in meaning of these and similar

terms are widespread in the literature, Hennig

(1966) being a prime example. Related to this,

when considering a transformation series such as

a! a 0, Hennig (1966, pp. 88–89) sometimes refer-

red to a and a 0 as ‘character conditions,’ sometimes

as ‘special characters’ and sometimes even just as

‘characters.’ Combined with context-dependent

meanings of terms, such use of different terms for

the same thing, with meanings that often differ

from current usage, can make it hard to under-

stand Hennig’s writings. This is even more pro-

blematic because Hennig used an argumentation

scheme to order and polarize characters that is

very different from current practice. In the above

example, Hennig referred to a and a 0 as characters
‘in the sense that they distinguish their bearers

from one another’ (Hennig 1966, p. 89). At the level

of character analysis they are, in current usage, just

character states.

When used conditionally, the precise meaning of

terms such as synapomorphy and plesiomorphy in

particular cases can drastically change according

to the exact conditionals that are used or implied.

Consider, for example, isolated character c9 and

the outgroup hypothesis. In that case the presence

of state 1 in terminals A, B, C, and D is a (putative)

synapomorphy compared to the presence of state 0

in terminals out1, out2, E, and F, which is a

(putative) plesiomorphy. On the other hand, when

considering the whole data set of Fig. 6.1 and its

most-parsimonous tree (Fig. 6.2b), the presence of

the same character state 1 in the same terminals A,

B, C, and D is now a (putative) symplesiomorphy

compared to the presence of state 0 in terminals E

and F, which has become a (putative) synapo-

morphy. The presence of state 0 in the outgroups
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remains a (putative) symplesiomorphy. More

interestingly, the presence of apomorphic state 1 in

its original form (terminals A, B, C, and D) and in

its more derived form (terminals E and F) is now a

putative synapomorphy for terminals A–F.

6.2.3 Homology, the Hennig–Farris auxiliary
principle, and parsimony analysis

A crucial assumption in the above interpretation of

a single character is Hennig’s auxiliary principle,

stating ‘that the presence of apomorphous char-

acters in different species . . . is always reason for

suspecting kinship [i.e. that the species belong to a

monophyletic group], and that their origin by

convergence should not be assumed a priori’

(Hennig 1966, p. 121; square brackets present in

original). In this quote, the term ‘character’ refers

to a ‘special character’ (Hennig 1966, p. 89), which

is a character state as used in this chapter, whereas

an apomorphous (special) character refers to a

special character that ‘can certainly or with rea-

sonable probability be interpreted as apomor-

phous’ (Hennig 1966, p.121), i.e. an hypothesis of

apomorphy or a putative apomorphy; monophyly

is used in its true historical meaning.

Without this principle, one could equally well

assume that, for example, state 1 of character c5 of

Fig. 6.1 arose multiple times. As an example, on the

most-parsimonous tree (Fig. 6.2b) state 1 could have

arisen a first time in the branch that leads up to

terminal D, and a second time in a common ances-

tor of E and F that is not a common ancestor of D.

Under this interpretation, the shared presence of

1 in E and F would be interpreted as evidence for

monophyly of clade (E F), to the specific exclusion

of terminal D, even if D has the same state.

However, given that the delimitation of char-

acter c5 is grounded in empirical observation, this

is not a very plausible interpretation of the char-

acter. Indeed, if any empirical evidence were

available that state 1 as present in terminal D is not

sufficiently similar to state 1 as found in terminals

E and F to be called the same at some level of

generality, these terminals would not have been

assigned the same numeric state code to begin

with. Since this was not the case, preferring the

second interpretation over the first amounts to

discarding some of the evidence that bears on the

problem at hand (viz. the perceived similarity

between terminal D on the one hand and terminals

E and F on the other. The remaining evidence

(viz. the perceived similarity between E and F)

then supports monophyly of E and F to the

exclusion of D.

Homology should be presumed in the absence of

evidence to the contrary

Hennig’s formulation of his auxiliary principle,

quoted earlier, is logically inconsistent because it

can lead to internal contradictions: if the presence

of presumed apomorphies is always to be a reason

for suspecting true monophyly (first part of the

principle), then it is not simply sufficient that

multiple, convergent, origins of that state should

not be assumed a priori (second part). This would

still leave open the possibility that some terminals

with the presumed plesiomorphic state obtained

that state through a reversal. In that case, the

group of all terminals with the presumed apo-

morphic state would no longer be truely mono-

phyletic, which contradicts the first part. So that

first part by logical necessity requires an additional

statement that the origin of presumed plesiomor-

phies should not a priori be interpreted as reversals

(for characters with more than two states, a similar

statement is required for each state). As an exam-

ple, without this addition a character such as c5

could be taken as evidence for, e.g., a mono-

phyletic group (A D E F) because it is not pre-

cluded that state 0 in terminal A arose as a reversal

within that clade. In this interpretation, state 0 as

present in terminal A would be derived relative to

state 1 as present in terminals D, E, and F.

Such additional statements are implicit in Farris’

(1983, p. 8) formulation of Hennig’s auxiliary

principle: ‘homology should be presumed in

absence of evidence to the contrary’, where

homology refers to similarities among organisms

that have arisen historically through inheritance

from a common ancestor, irrespective of these

similarities being apomorphic or plesiomorphic.

More explicit discussions of the necessity, in

parsimony analysis, of explaining plesiomor-

phic similarities as due to common descent

can be found in Farris et al. (1995, p. 215) and
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Farris (1997, pp. 132–133). I shall therefore refer to

the auxiliary criterion in its logically consistent

form as the Hennig–Farris auxiliary principle.

When, as above, the Hennig–Farris auxiliary

principle is applied to single–character data sets, it

can be interpreted as a condition that makes the

apomorphic state by necessity mark a true mono-

phyletic group: the state arose only once and never

reverted. That group will be present on any tree

that requires only a single origin for that state,

which is in line with Farris’ (1983, p. 12) observa-

tion that grouping by true synapomorphy would

have to behave exactly as parsimony, in the sense

that it would lead to preference for the tree(s) on

which no homoplasy is present (homoplasy being a

point of similarity among organsims that cannot be

explained by inheritance and common descent on

a particular tree; Farris 1983, p. 18; see also below).

These are, by definition, the shortest trees possible,

so they are also most parsimonious trees.

Parsimony and the Hennig–Farris auxiliary principle

In practice, however, one is constrained to work

with actual observable traits of organisms rather

than with true historical synapomorphies. Char-

acter codings of such traits seldom if ever capture

all true evolutionary transformations, let alone

their order, as exemplified by the presence of

homoplasy in all but the smallest and simplest

data sets (note that absence of homoplasy in such

data sets would hardly justify the conclusion that

all relevant transformations have been captured—

absence of evidence is not evidence of absence).

This led Farris (1983, p. 17–19; see also Farris and

Kluge 1986, p. 300; Farris 1986, pp. 15–16) to a

general characterization of parsimony analysis in

terms of a methodological principle that is funda-

mental to science in general: maximization of

explanatory power or conformity between obser-

vation and theory. More specifically, the observa-

tions are the similarity statements as coded in

characters, and the theory is that these similarities

have arisen through inheritance and common

descent. Most-parsimonious cladograms are then

preferred because they are the trees on which the

greatest amount of such observed points of simi-

larity among organisms can be explained by

inheritance and common descent (contra Grant

and Kluge 2004, p. 29). As such they provide the

best explanation of the observations on account of

the theory.

Note that, at this level of analysis, characters and

their states can indeed be treated as simple

observations, even if, as discussed above, they are

complex theories or hypotheses on their own.

Likewise, little confusion arises if the presence of

the same character state of a given character in two

terminals is simply called an observed point of

similarity between those two terminals. Such usa-

ges of these terms can be found, for example,

throughout Farris (1983).

Similarities as coded in characters can very well

be true homoplasies rather than true homologies.

Likewise, it cannot be ruled out that character

similarities that can be explained as homologies on

most-parsimonious cladograms are true homo-

plasies instead, even when using single-character

data sets as above. Combined with the observation

that parsimony minimizes putative homoplasy,

such observations are sometimes taken to mean

that it is an assumption of parsimony analysis that

homoplasy is rare in evolutionary history. How-

ever, even if rarity of homoplasy may be a suffi-

cient condition to prefer most-parsimonious trees

(see, e.g., Felsenstein 1981), it is definitely not a

necessary condition.

Consider a data set for terminals out, A, B, and C

where 10 characters support clade (B C) and just

one character supports clade (A C) (this example

and discussion is based on Farris 1983, pp. 13–14,

see also p. 12, pp. 18–19). If clade (A C) is genea-

logically correct, then the 10 characters that sup-

port (B C) are (true) homoplasies; if, on the other

hand, clade (B C) is genealogically correct, then the

single character that supports (A C) is a (true)

homoplasy. These simple observations point out

an interesting asymmetry in the relationship

between characters and genealogies: a given gen-

ealogy implies that characters that contradict this

genealogy are homoplasious but requires nothing

concerning characters that do not contradict the

genealogy. Now assume that true homoplasy is so

abundant that only one out of those 11 characters

has escaped its effects. Under the assumption that

this one character can equally well be any char-

acter in the data set, a simple statistical argument
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leads to preference for clade (B C): the probability

that this single historically correct character sup-

ports this clade is 10 times higher than the prob-

ability that it supports (A C). Thus it is seen that

even under extremely high levels of homoplasy

most-parsimonious trees can still be the best phy-

logenetic hypotheses one can make on the basis of

the available data, even if some of the putative

homologies may be true homoplasies instead.

The underlying assumption of the above con-

clusion is best stated in the negative: absence of

any assumption about the distribution of homo-

plasies in data sets. In a statistical framework, this

can be understood as the use of an uninformative

prior. Obviously, one can postulate distributions of

homoplasy such that the most-parsimonious trees

will no longer be the best bets. Such distributions

are typically derived from stochastic models of

sequence evolution (see, e.g., Felsenstein 1978a;

Huelsenbeck and Lander 2003). The mere fact,

however, that such distributions can be postulated

does not by itself invalidate parsimony analysis as

a method to analyze empirical data. Indeed, such a

conclusion would crucially hinge on the realism or

plausibility of the underlying stochastic models

(and not on their simplicity, as Huelsenbeck

and Lander 2003 seem to suggest). Farris (1983,

pp. 14–17, p. 12; see also Farris 1999) amply dis-

cussed these issues and found the models that

were in use at that time greatly lacking in realism.

Stochastic models of sequence evolution have

dramatically increased in complexity since then

(see Felsenstein 2004 for a review), but they still

seem mostly inadequate to model even small-sized

real data sets (D. Pol, personal communication).

Therefore, Farris’ discussion and conclusions

remain as valid and to the point as they were more

than 20 years ago.

Considering all this, the Hennig–Farris auxiliary

principle can be phrased as the following rule for

erecting character hypotheses and interpreting

their optimizations on trees: ‘features that on the

basis of empirical evidence are deemed sufficiently

similar to be called the same at some level of

generality should be treated as putative homo-

logues in phylogenetic analysis (even if they may

be true homoplasies instead).’ In combination with

the principle of maximizing explanatory power,

this makes similarity-based statements of putative

homology the centerpiece of phylogenetic infer-

ence: most parsimonious trees are trees on which

the greatest amount of putative homology state-

ments that return from character analysis can be

explained as due to inheritance and common

descent, and such trees are the best available

phylogenetic hypotheses for the terminals at

hand, whether or not the individual similarity

statements or their explanations are historically

correct.

As just discussed, the premises under which this

holds are best stated in the negative: complete non-

reliance on specific premises regarding correla-

tions of evolutionary rates within and across

characters and lineages. As such, parsimony ana-

lysis can be considered the most general method

for phylogenetic analysis that is available. Tuffley

and Steel (1997; see also Steel and Penny 2000) and

Goloboff (2003) have examined similar but less

extreme positions of agnosticism with respect

to the details of evolutionary processes, using

stochastic modeling. In both cases the most-

parsimonious tree(s) are the best phylogenetic

hypotheses, reinforcing the above conclusion.

6.2.4 Quantifying and maximizing homology

Given a tree and a data set such as in Fig. 6.1,

Farris (1983) did not directly quantify the amount

of points of similarity that can be explained by

common descent and inheritance on that tree.

Instead he used, as a relative measure, the mini-

mum number of independent statements of

homoplasy that are required on that tree. This

works because an instance of homoplasy is present

on a tree whenever a point of similarity as

expressed in a character cannot be explained as

homology on that tree (Farris 1983, p. 18).

So, when comparing two trees, the tree with the

lower level of homoplasy will have the greater

amount of similarity that can be explained as

homology, and hence the greater power to explain

the data on account of the theory. In practice, most

parsimony programs calculate the minimum

number of steps that are required, which, for

a given character, differs from the minimum

number of independent statements of homoplasy
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by a constant factor. As a result, the same ranking

of trees is obtained. Several points are worth

elaborating here.

Inner-node state assignments and the requirement

of internal consistency

First, whether or not a particular pairwise simi-

larity as coded in a character can be explained as a

homology on a particular tree does not just depend

on the structure of the tree and on the state dis-

tribution of the character that is involved, but also

on assumptions that are made about the character

states that are present at the internal nodes of

the tree.

Take character c10 of the data set of Fig. 6.1 and

the most-parsimonious tree for that data set (Fig.

6.2b). Representing a pairwise similarity that is

expressed as the presence of a same state i of a

character in two terminals X and Y as Si(X Y), or,

equivalently, Si(Y X), the similarity among term-

inals A and D as coded in c10 is S1(A D). With

inner node state assignments as in Figs. 6.2c or

6.2e, this pairwise similarity cannot be explained

as a homology because independent derivations of

state 1 from state 0 are involved. On the other

hand, with state assignments as in Fig. 6.2d, that

same similarity can be explained as a homology.

Similarly, S0(out1 B) can be explained as a homo-

logy in Fig. 6.2c but not in Figs. 6.2d and 6.2e. In

general, a pairwise similarity Si(X Y) can be

explained as a homology on a tree when all nodes

that connect X and Y have been assigned that same

state i; in that case, the statement is said to be

accomodated on the tree. In all other cases, it is a

homoplasy, and the statement is not accomodated

(only cases in which unique states are assigned to

inner nodes are considered in this paper; poly-

morphic inner nodes, as in Farris (1978a) or in

Felsenstein (1979), are left undiscussed).

The connection between the explanation of a

character and assignments of states to inner nodes

can be seen as a methodological constraint that

ensures that the set of all homology statements that

can be derived from a tree and a character state

distribution is free from internal contradictions (De

Laet and Smets 1998, pp. 374–376). Or, put posi-

tively, it ensures that the overall explanation is

logically possible or consistent. This, in turn,

makes the explanation of the character on the tree

logically capable of phylogenetic interpretation

(Farris et al. 2001b). For example, on this tree one

can explain either the similarity between A and D

(e.g. Fig. 6.2d) or the similarity between out1 and B

as a homology (e.g. Fig. 6.2c); one cannot possibly,

however, simultaneously explain both similarities

as homologies because they are mutually exclus-

ive. This logical requirement of non-contradiction

is also met in maximum likelihood methods that

integrate over all possible sets of inner-node state

assignments, such as that of Felsenstein (1981). It is

not met in quartet and triplet methods (De Laet

and Smets 1998). Pairwise similarity statements

that can simultaneously be explained as homology

on a given tree will be referred to as (mutually)

compatible statements.

When the terminals of a tree are labeled with the

observed states of a particular character and the

inner nodes have been assigned character states as

well, the tree can be cut into a number of parts in

which all nodes have the same state, and such that

neighboring parts have different states. I shall refer

to such parts as regions. There is a straightforward

connection between number of regions and num-

ber of steps: any boundary between two regions

implies a step, so the number of steps is one less

than the number of regions. By definition, all

similarities within a region can be explained as

homologies, while similarities across regions

are homoplastic. Because these regions are non-

overlapping and because homologies do not cross

the borders of such regions, the problem of quan-

tifying the amount of similarity of the character

that can be explained as homology on the tree can

be broken down easily into the smaller problem of

determining the amount of homology in such a

region. For the same reason, the different states of

a character can be treated independently under

those conditions.

Independence and the units of empirical

content of comparative data sets

A second issue is logical independence of pairwise

homology (and homoplasy) statements within

characters (Farris 1983, pp. 19–20, 21–22; De Laet

and Smets 1998, pp. 369–374; this is different

from logical dependence between characters, as
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discussed, e.g., in Wilkinson 1995, pp. 297–298).

Consider state 1 of character c10 as it returns from

character analysis. At that point, all its six pairwise

similarity statements can be interpreted as homo-

logies: S1(A D), S1(A E), S1(A F), S1(D E), S1(D F),

and S1(E F). Not all of these are independent

though: if, e.g., S1(A D) and S1(A E) can be inter-

preted as homologies, then, by necessity, S1(D E)

can be interpreted as a homology as well. In gen-

eral, if ni terminals have the same character state

for a given character, there are ni * (ni� 1)/2 dif-

ferent pairwise similarity statements that can be

made, but no more than ni� 1 of those can be

independent. Adding statements beyond this

number will introduce redundancy in the

description of the data. This maximum number of

independent pairwise similarity statements is at

the same time the minimum number of statements

that must be considered to deduce the complete

set: when removing statements from a largest set

of independent statements, there is no longer suf-

ficient information to generate all data.

Non-redundant descriptions. I shall call such max-

imal sets of independent pairwise similarity

statements smallest generating sets. The exact iden-

tity of the members of such sets does not matter,

the important points are completeness and absence

of logical dependencies. As an example, {S1(A D),

S1(A E), S1(A F)} and {S1(A D), S1(D E), S1(E F)} are

two different smallest generating sets for state 1 of

character c10; {S1(A D), S1(A E), S1(A F), S1(E D)} is

a generating set, but not a smallest one because not

all of its elements are independent. Next consider

how the pairwise similarities in a character state

can be explained on a particular tree with a par-

ticular set of inner-node state assignments, such as,

for example, in Fig. 6.2c. There are two regions

that have character state 1: isolated node A and

subtree (D (E F)). All similarities within a region

are homologies and all similarities across regions

homoplasies, so S1(D E), S1(D F), and S1(E F)

are homologies, while S1(A D), S1(A E), and S1(A F)

are homoplastic.

A non-redundant description of this can be

determined as follows. For each region that is

involved, establish a smallest generating set (in

general, a region with j terminals will have smallest

generating sets of cardinality j� 1). These sets non-

redundantly describe the homologies of the char-

acter state on the tree, and the total number of

independent statements that are accomodated is

the total number of statements in these sets. Then

pool these generating sets and augment the

resulting set to obtain a smallest generating set for

all similarities in the character state, without

reference to a tree. The added statements form a

maximal set of independent pairwise similarity

statements that are not accomodated. This proce-

dure establishes that the number of independent

accomodated homologies and homoplasies for

a given state add up to a number that is tree-

independent. As a result, minimizing the number

of independent statements of pairwise homoplasy

in a character state and maximizing the number of

independent statements of pairwise homology in

that same state are equivalent problems indeed.

Because independent homologies can be counted

one region at a time, this remains true when

summing over all states in a character, and/or over

all characters in a data set.

In this example, the first region (isolated node A)

has no similarities and therefore an empty smallest

generating set; {S1(D E), S1(E F)} is a smallest

generating set for the second region. Adding, for

example, homoplastic statement S1(A E) is suffic-

ient to fully describe the character state and its

explanation on the given tree. As an example,

given that S1(D E) is accomodated and that S1(A E)

is not accomodated, it follows that S1(A D) is not

accomodated either.

Explanation. When assessing how well a tree with

inner-node state assignments can explain a char-

acter state as due to inheritance and common

descent, the correct measure is the number of

independent accomodated pairwise similarities,

not the total number of accomodated pairwise

similarities. Consider a character in which 100

terminals have state 0 and another 100 state 1, and

two trees on which the first 100 terminals occur in

one region and the other 100 in two regions.

Assume that in the first tree, the first region with

state 1 has one terminal and the second 99; and

that, in the second tree, both regions with state 1

have 50 terminals. The total number of pairwise
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similarities in this character state is 99� 100/

2¼ 4 950, of which at most 99 are independent.

Summing over regions, in the first case a total of

0þ 4 851¼ 4 851 similarities are accomodated, in

the second case only 1 225þ 1 225¼ 2 450.

Yet in both cases, the same number of 98 inde-

pendent pairwise similarities are required for a

non-redundant description of the situation. Or,

conversely, in both cases only a single independent

pairwise similarity cannot be explained as a

homology. This is in direct agreement with the

observation that both cases can equally well

explain the observations on account of the theory,

which in this restricted case is possible historical

identity of state 1 through inheritance and com-

mon descent on the given trees with the given sets

of inner-node state assignments for the given

character. The total number of pairwise homo-

logies gives a different answer (the first tree is

considered about twice as good: score 4 851 vs.

2 450) because that number also depends on the

numbers of terminals that are present in each

region of a tree in which the state is homologous.

As these numbers do not feature in the theory

on account of which the data are explained, the

total number of accomodated similarities is not

suited to measure agreement between theory and

observation.

Weighting. An alternative way of viewing the

difference between all and independent pairwise

similarity statements is in terms of dynamic

weighting of similarity statements (see De Laet

and Smets 1998 for a similar discussion in the

context of triplet and quartet methods). More

particularly, if the weight that is assigned to an

independent accomodated similarity statement in

a given region is calculated dynamically as the

total number of statements in that region divided

by the number of independent statements in that

region, then the total number of unweighed

accomodated statements equals the number of

weighted independent accomodated statements.

This weighting scheme is highly unnatural and

hard if not impossible to defend, which just

reinforces the conclusion of the previous para-

graph. But it also raises the general question of

weighting.

I have been assuming equal weighting of simi-

larity statements throughout, but the principle of

parsimony as discussed here does in itself not

prescribe that all parts of the data be equally

weighted. Farris (1983, p. 11) discussed this issue

at the level of differential weighting of entire

characters and characterized his preference for

equal weighting as a stance of ignorance: in the

absence of any convincing reason for doing

otherwise, all characters in a data set are treated as

if they provide equally cogent evidence on phy-

logenetic relationship. The same reasoning applies

at the level of the independent similarity state-

ments that make up characters.

Algorithms such as Farris (1970; additive char-

acters) or Sankoff and Rousseau (1975; step

matrices) can be seen as methods that apply dif-

ferential weighting within characters. Such differ-

ential weighting is defined in terms of

transformations, not in terms of similarities:

transformations between different pairs of char-

acter states can receive different weights. This may

seem problematic for the current approach because

the simple equivalence of minimizing homoplasy

and maximizing homology, as discussed above, in

general only holds when all transformations and

all unit homologies are weighted equally. How-

ever, differential weighting as in Farris (1970) and

Sankoff (1975) can also be characterized in terms of

similarities that are hierarchically nested. A full

discussion of this issue is beyond the scope of this

review.

A methodological requirement. The unit of evident-

ial value of a data set on a tree that arises from this

discussion is an independent accomodated pair-

wise similarity statement. Likewise, independent

pairwise similarity statements are the currency in

which the empirical content of a data set is mea-

sured. This ultimately permits to interpret the

preference for independent accomodated state-

ments (versus all accomodated statements) as a

methological requirement when maximizing the

number of pairwise similarity statements that can

be explained as homology: it enforces that each

unit or quantum of empirical content of a data set

is considered precisely once. Note that, in itself,

this does not amount to equal weighting: whether
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or not all quanta of comparative empirical content

should receive the same weight is an entirely dif-

ferent question.

Again, this methodological constraint is not met

in quartet and triplet methods (De Laet and Smets

1998). Likewise, it is not met in methods that base

the inference on a square matrix of pairwise dis-

tances among terminals, such as neighbor joining

(Saitou and Nei 1987), for the simple reason that

the required information to do so is not present in

such matrices. To be sure, neighbor joining can in

principle operate directly on character state data

(Saitou and Nei 1987, p. 410), but such data sets are

mostly reduced to square distance matrices first. In

maximum likelihood methods such as Felsenstein

(1981), the constraint is met. The difference with

parsimony analysis is that in such methods the

explanation of a similarity statement on a tree is

based on integration over all possible inner-node

state assignments, using stochastic models of

character evolution and best-scenario branch

lengths (see, e.g., Steel and Penny 2000 and

Goloboff 2003 for a discussion). As seen above,

when looking for best trees, parsimony analysis

evades uncertainty as to the true historical status

of a similarity statement that can be explained as a

homology on a tree at an entirely different level,

thus enabling it to remain largely agnostic about

details of the processes of character evolution.

Maximizing the amount of homology

Given a data set of characters, one has to identify

the tree or trees on which the highest number of

independent compatible pairwise similarity state-

ments can be explained as homology. This

involves an optimization at two different levels.

First, which is the highest number of such

homology statements on a given tree? Second,

given a procedure to solve the first problem,

which is (are) the tree(s) on which this number is

maximal?

The first problem can be tackled one character at

a time because there are no logical interactions

among the explanations of different characters

(this is a fundamental assumption that is not met

when inapplicables are present). Within a char-

acter, though, it cannot be tackled one state at a

time because the explanation of any given state

imposes methodological constraints on allowed

explanations of the other states. As discussed

above, such constraints are met when inner-node

state assignments are taken into account, in addi-

tion to the observed states at the terminal nodes.

Therefore, a crude solution for optimizing a char-

acter on a tree is to generate all possible sets of

inner-node state assignments and to count the

number of independent accomodated statements

for each (three different possibilities, on the same

tree, are illustrated in Figs. 6.2c–6.2e, with scores 5,

5, and 2). If the sets of inner-node state assign-

ments are generated in a clever enough order,

this can be improved using a branch-and-bound

mechanism.

However, a much more efficient approach is

possible, starting from the above observation that

the number of independent compatible homologies

and homoplasies for a character add up to a num-

ber that is tree-independent. As a result, a set of

inner node state assignments that minimizes inde-

pendent homoplasies also maximizes independent

homologies. Next, the minimum number of inde-

pendent homoplasies for a given character and a

given optimal set of inner-node state assignments

equals, up to a tree-independent constant, the

number of regions as imposed by the inner-node

state assignments, which in turn is one more than

the minimum number of steps in the character.

Therefore, algorithms that minimize the number of

steps in such characters can be used to maximize

homology. Examples are the algorithm of Farris

(1970) for binary characters and additive multistate

characters, or the algorithm of Fitch (1971; see also

Hartigan 1973) for unordered characters.

The second problem is illustrated in the two

trees of Figs 6.2b and 6.2f: even if the second tree

can explain some characters better than the first

tree (e.g. c10), the first tree is preferred because it

provides a better explanation of the data as a

whole. The problem of deciding whether a given

tree is an optimal tree for the data at hand is NP-

complete (Foulds and Graham 1982). Practically,

this means that in general the only way to find

the best tree(s) is the hard approach of examining

all possible trees that exist for the given terminals,

either explicitly or implicitly, by using a branch-

and-bound approach (for which see Hendy and
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Penny 1982). Unfortunately, the number of trees

grows so extremely fast as the number of terminals

grows (see, e.g., Felsenstein 1978b) that this

approach is only feasible for relatively small

numbers of terminals. Exactly how many terminals

can be analysed in this way depends on the

structure of the data set and on the computing

power and time that is available, but as a rule of

thumb it is somewhere between 15 and 25. So,

when dealing with increasingly larger numbers of

terminals, one is practically forced to restrict the

tree search to increasingly smaller subsets of all

possible trees, proportionwise. In doing so, heur-

istics such as branch swapping are used to make

sure that no or little computing effort is wasted

on trees that are manifestly not optimal (for a

broader discussion and some developments beyond

simple branch swapping see, e.g., Goloboff 1999;

Moilanen 1999; Nixon 1999; Moilanen 2001).

Both levels of optimization are logically inde-

pendent, even if they are in practice often tightly

integrated in heuristic approaches (see, e.g.,

Goloboff 1996b for examples). One could do a tree

search using any imaginable function that com-

putes a number from a tree and a data set, and,

heuristic uncertainty aside, the resulting trees

would be optimal according to that function.

Therefore, when comparing and evaluating differ-

ent methods, it is sufficient to examine the meaning

of the function used to evaluate any single tree.

6.2.5 Characters revisited

Summarizing this long introductory section,

observation-based pairwise similarity statements

are the fundamental statements of comparative

research. When searching for trees on which

the highest number of such similarities can be

explained as homologies, two methodological

requirements must be met: (1) the overall expla-

nation of the data must be free of internal contra-

dictions, which can be enforced by assigning, for

each character, states to inner nodes of the tree; (2)

the same piece of empirical content should not be

used multiple times, which translates into counting

only homologies that are logically independent.

From this point of view, a character that

describes the distribution of a number of states in a

number of terminals is just a convenient non-

redundant summary of elementary putative

homology decisions that are made, during char-

acter analysis, in all possible pairwise comparisons

of some observable characteristic in those term-

inals (see De Laet and Smets 1998, pp. 378–380; the

unhappy informal use of the term ‘essence’ does

not invalidate their discussion). In each such

pairwise comparison, the mere fact that the char-

acteristic is being compared entails the hypothesis

that at some level of generality it is historically the

same. At a lower level, the different states of the

character are hypotheses of alternative expressions

of the characteristic, each of which is also hypo-

thesized to be historically the same. As discussed

above, all such hypotheses are to be seen through

the lens of the Hennig–Farris auxiliary principle.

To clarify, consider some angiosperms and a

character that codes a floral structure that comes in

two forms, rounded (state 0) and square (1). The

fact that these two forms are coded as states of

the same character reflects the hypothesis that the

structures, despite the observed difference in form,

are homologous at a more general level. Mostly,

such an hypothesis is based on a combination of

criteria. As an example, when the development of

floral buds in different terminals is compared, the

meristem that gives rise to the structure could

originate in almost identical topological relation-

ships relative to other meristems. In addition, the

adult structures, whether round or square, could

share many anatomical and morphological simi-

larities. As a whole, the character then reflects the

higher-level prior hypothesis that the structure in

all these terminals is identical through common

descent and inheritance. Within the character, the

difference in general form (round vs. square) is

considered important enough to warrant recogni-

tion of two different states, reflecting the lower-

level prior hypotheses that the roundness and the

squareness of these structures can be explained as

identity through common descent and inheritance

as well.

The different roles of characters and character states

It has often been observed that there is a large

discrepancy between the formalized nature of

phylogenetic analysis once a data set has been
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constructed and the much more subjective deci-

sions that are involved in character analysis, when

it comes to deciding if observed features in two

terminals should be coded as the same state of a

character, two alternative states of a character, or

part of different characters altogether (see e.g.,

de Pinna 1991, p. 380). Pleijel (1995) argued that

this is especially relevant for the assumptions

regarding homology of states within a character

(are two such floral structures homologous, irre-

spective of their general form?). Contrary to

hypotheses of homology within states (is the

roundness of two round structures homologous, is

the squareness of square structures homologous?),

such higher-level hypotheses are never questioned

during subsequent phylogenetic analysis (Pleijel

1995, p. 312). As an example, consider character c9

of the data set of Fig. 6.1, and assume that state

0 codes the square and state 1 the round structure

of the above character. On the most-parsimonious

tree for these data (Fig. 6.2b), the squareness of the

structure that is observed in terminals out1 and out2

is not homologous to the squareness of the same

structure that is observed in terminals E and F, and

the initial lower-level hypothesis has to be revised.

Similar posterior revisions of the higher-level

hypothesis cannot be made because the homology

of round versus square structures has been hard-

coded in the analysis, precisely because they have

been coded as states of the same character. To

remove such hard-coded higher-level assump-

tions, Pleijel (1995) proposed to use absence/pre-

sence coding of character states, which is formally

identical to non-additive binary coding, a tech-

nique that stems from phenetics (see, e.g., Sokal

1986). Whether it is feasible or desirable to exclude

such assumptions from the analysis will be

examined below.

But whatever the answer, the use of absence/

presence coding as a means of doing so can lead to

internal inconsistencies in the phylogenetic expla-

nation of data, a result that is particularly relevant

for this paper because Pleijel (1995) advanced

absence/presence coding as a promising way to

deal with inapplicables. Consider the data set of

Fig. 6.3a and assume, without loss of generality,

that none of the character states codes for absence.

In the recoded version of Fig. 6.3b each column

stands for one character state of a character of Fig.

6.3a, with 0 coding for absence of that state and 1

for presence. When analyzing Fig. 6.3a, the three

trees of Fig. 6.3c are obtained (nine steps; loss of

two independent pairwise similarities). With the

recoded data, only one shortest tree is found, the

middle tree of Fig. 6.3c; the two other trees are

suboptimal by one step (18 vs. 17).

Pleijel (1995, p. 313) pointed out that, with

absence/presence coding, hypotheses concerning
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Figure 6.3 Absence/presence coding of character states aims to remove prior hypotheses of homology among states (Pleijel 1995) but can lead

to internal inconsistencies. (a) A dataset with characters that reflect nested hypotheses of homology as determined during character analysis

(characters unordered). (b) The characters of (a) with absence/presence recoding of character states. (c) The three most-parsimonious trees for (a).

With the data coded as in (b) only the middle tree is considered optimal. The two other trees are rejected even if they explain the data equally well

under acceptable hypotheses of homology that they imply.
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transformation series between the analysed states

will emerge as part of the results, but he remained

somewhat vague about the logical and technical

implications of this observation. As an example,

take the three recoded states of the original char-

acter c6, each with a perfect fit on the single most-

parsimonious tree for the recoded data. Because 0

stands for absence of the corresponding state, an

inner node that is optimized as 0 can be hypo-

thesized to have one of the two other states (other

possibilities exist but are not relevant for the

argument). Combining and summarizing all pos-

sible such optimizations of the three recoded states

of c6, and using the outgroup hypothesis, three

possible implied transformation series emerge from

the tree: 1 0! 2, 0! 1! 2, and 0! 2! 1. Each

of these has a perfect fit on the tree as well, and in

each case only two steps are required to explain

the state distribution. When doing the same

excercise for the groups of states as defined by the

other characters of Fig. 6.3a, all these other states

can be explained by postulating a total of only

seven steps (note that some of the implied trans-

formation series incorporate non-homology of sta-

tes as defined a priori; an example is character c4).

The middle tree of Fig. 6.3c is considered

the best tree for the recoded states because it has

the shortest length for the recoded data. But on the

basis of possible transformation series that emerge

as part of the analysis, one can construct a phylo-

genetic explanation of the data on that tree that

requires fewer steps. So, whatever the length of an

absence/presence recoded matrix on a tree means,

it definitely does not measure how well that tree

can explain the data phylogenetically under the

assumption that character states can transform into

one another, and maximization of phylogenetic

explanatory power under that assumption cannot

be the rationale for preferring trees that minimize

this recoded length. Indeed, analyzing the two

other trees in the same manner, they can also be

explained by postulating only nine steps (which

should not come as a surprise, as it was already

clear from the analysis of the data set of Fig. 6.3a

that the states could be grouped such that only

nine steps are required on those trees). Yet they are

rejected if the length of the recoded matrix is used

as an optimality criterion.

One step further, posterior groupings of states

may exist that reduce the total number of steps

below the number required by the groupings as

they come out of character analysis. An example is

presented in Fig. 6.4. As above, it can be assumed

without loss of generality that none of the states in

Fig. 6.4a codes for absence. When states 8–13

are grouped as in characters c5 and c6 of Fig. 6.4a,

the transformation series that are implied by the

optimizations of the recoded states on the best

tree require a total of five steps on the best tree. But

the alternative grouping as in Fig. 6.4b, implying

11 8! 13 and 10! 9! 12, can explain the

observed distributions of states 8–13 at only four

steps. This optimal implied grouping of states

obviously contradicts the empirical evidence on

the basis of which the original characters were

proposed. But then it is the aim of this approach to

remove such untestable assumptions (Pleijel 1995,

p. 312), and posterior acceptance of groups of

states as in characters c5 0 and c6 0 is just a logical

consequence. More precisely, recognition of such

transformation series follows from the notion that

hypotheses concerning transformation series

among the analysed states should emerge as part

of the results and from the general requirements

that the analysis should be logically capable

of phylogenetic interpretation and internally

consistent.

It does not require much imagination to see that

in practice this could easily lead to situations

where square floral structures of one angiosperm
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Figure 6.4 Absence/presence coding of character states, to remove

prior hypotheses of homology among states, can lead to surprising

optimal implied transformation series. (a) A dataset with six unordered

characters as they return from character analysis; the groupings of

character states in columns (characters) reflect nested hypotheses of

putative homology; the most-parsimonious tree is (out (A (B C))), which is

also the best tree when the data are recoded to remove prior assumptions

of homologies among states. (b) Alternative grouping of the states of

characters c5 and c6 that cannot be rejected on the basis of the

optimized recoded states. For this grouping, the transformation series

as implied by the optimized recoded characters provides a better

explanation of the data than the original characters.
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would a posteriori be considered homologous with,

for example, a type of root system as present in

another angiosperm, and the round floral struc-

tures of this other angiosperm to the root system of

the first. Most systematists would not hesitate to

reconsider homology within states on the basis

of a well-supported most-parsimonious tree (the

squareness of the floral structures in these term-

inals is not the same as the squareness of such

structures in those other terminals after all, despite

my prior assessment to the contrary), but in gen-

eral such reinterpretations across characters are

much more difficult to accept (darn, these flowers

are actually not flowers but modified root

systems!).

So, even if statements of homology among states

are untestable in the sense of Pleijel (1995), they

put bounds on the degree of reinterpretation of

character states one is willing to accept in the light

of incongruence in the data, and these bounds

reflect empirical evidence as obtained during

character analysis. Outright removal of such

bounds, as would seem to be a logical consequence

of using absence/presence coding as advocated by

Pleijel (1995), therefore amounts to throwing away

important relevant empirical data. As a work-

around, one could limit implied transformation

series to include only groupings of states that are

compatible with the results of character analysis.

But that actually amounts to giving up the premise

that prior statements regarding homology among

states should be removed from the analysis. And

as discussed above, absence/presence coding then

results in the same trees as obtained with regularly

coded characters, at least if the aim of the analysis

is to maximize explanatory power in a phyloge-

netic context.

Beyond single-column characters

On the other hand, it is not uncommon in character

analysis to find multiple possible interpretations

for features, which is not surprising given the role

of background knowledge as discussed earlier. As

an example, depending on the view one takes, the

vegetative region in some species of the angio-

sperm genus Utricularia (bladderworts) can be

interpreted morphologically as a shoot-like leaf, a

branched stem system without leaves, or a shoot

with stems and leaves (Rutishauser and Sattler

1989; a fourth, more complex, interpretation is also

provided). Similar problems abound when dealing

with fossils or when making comparisons across

very divergent groups. In both cases one often has

to deal with structures that cannot be easily

homologized across the terminals being compared,

which in turn often results in competing and

conflicting prior interpretations. In studies of

sequence data, this problem can come in the form

of different prior hypotheses about orthology and

paralogy of sequences (Fitch 1970) or in different

alignments for the same set of putative orthologs

(several examples of the latter case are discussed in

the second section).

In each such case, when characters are coded

according to just one of the competing interpreta-

tions, chances are that the chosen view will be

favored by the resulting trees simply because the

data have been exclusively interpreted as such to

begin with. As observed by Endress (1994, p. 401–

402), circular reasoning when dealing with such

ambiguously interpretable features can be over-

come by repeatedly testing all different possibi-

lities. Only this approach amounts to a sincere

attempt at falsification. Unfortunately, in formal

analyses and with current algorithms this is not

easy to achieve because the technical framework of

independent single-column characters does not

lend itself to simultaneous analysis of such alter-

native interpretations of the data in a logically

consistent and correct way.

A hard work-around would be to manually

construct and analyse as many data sets as there

are different combinations of different interpreta-

tions in different characters, which may be prac-

tically feasible when the number of such

combinations is not too large. The best phyloge-

netic hypotheses would then be the shortest trees

across all those data sets, and optimal homo-

logizations and details of transformation series

would emerge from those trees as part of the

analysis. The difference with absence/presence

coding of states is that, as above, the level of rein-

terpretation of states that one is willing to accept in

the light of incongruence is still bounded by the

results of character analysis. The difference with an

analysis of just one set of classic single-column
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characters is of a purely technical nature: these are

cases in which the a priori acceptable hypotheses of

homology among states cannot be expressed as a

simple series of independent single-column char-

acters. But the purpose remains maximization of

the number of independent pairwise similarities

that can be interpreted as identical through com-

mon descent and inheritance. From this point of

view, the next section can be seen as an attempt to

develop a formal and logically consistent method to

deal with the problem ofmultiple a priori acceptable

hypotheses of homology among states in the case of

putative homology statements within putative

orthologous sequences.

6.3 Parsimony analysis of
sequence data

When dealing with sequence data, it is not unusual

to find that putative homologous sequences have

different lengths in different terminals. Such

length differences are explained as the result of

indel events, insertion and/or deletions that

occurred in the course of evolutionary history. As

a consequence of indel events, two sequences that

are homologous as a whole will nevertheless con-

tain subsequences that are not homologous: with a

deletion, the resulting sequence misses a part of

the original sequence; with an insertion the

resulting sequence has a subsequence that was not

present before. In both cases, characters that

describe the subsequences that are involved will be

inapplicable in the other sequence.

For the purpose of phylogenetic analysis, it is

common practice to establish the positions and

sizes of indels by creating a multiple alignment

prior to tree evaluation and tree search, thus

turning the putative homologous sequences into a

sequence of single-column positional characters

that subsequently can be treated as a regular data

set (see Fig. 6.5a for an example). Each such posi-

tional character describes the state distribution of

the base that is found at that position of the

alignment, with gaps (coded as dashes in this

chapter) indicating inapplicability. As discussed

by Maddison (1993, p. 578), this makes sequence

data susceptible to the general problems that come

with inapplicables.

However, the approach of generating multiple

alignments prior to tree evaluation and tree search

is fundamentally insufficient as a general method

for analysis of sequence data, as will be discussed

below. As a consequence, the question of inapp-

licables in sequence data cannot be discussed in
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Figure 6.5 Three putative homologous sequences and two different approaches to evaluating them on the single unrooted tree for three terminals.

(a) First a multiple alignment is constructed to establish base-level positional correspondences (dashes indicate gaps); the resulting positional

characters are optimized using the algorithm of Fitch (1971), resulting in three substitutions (s) and one indel (i). (b) The unaligned sequences are

optimized directly on the tree using the algorithm of Sankoff (1975); in this example, two optimal reconstructions of the sequence at the inner node exist,

each at four steps; in each case, the optimal length imposes one or more optimal sets of positional correspondences.
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general at that level. It is argued that a general

method by necessity requires that unaligned

sequences be directly optimized on trees, using

algorithms such as Sankoff (1975) or Altschul (1989,

pp. 307–308). Such algorithms treat the unaligned

putative homologous sequences as one single

complex character, to which I shall refer as a

sequence character. It is widely believed that the

various parameters that these algorithms employ to

set up a cost regime, such as base substitution and

gap costs, can only be specified or interpreted with

reference to detailed models of the evolutionary

processes that generated the data. However, the

cost regime can also be set according to the prin-

ciple of parsimony as discussed above, leading to a

maximization of the amount of independent

sequence similarity that can be interpreted as due to

inheritance and common descent (De Laet 2004).

Throughout this section I use DNA sequences,

but the discussion is general and applies to any

kind of data that can be conceptualized to be

hierarchically related through substitutions and

indels, including, for example, serial homologs in

morphology or different versions of manuscripts

in stemmatology. Examples are constructed such

that optimalities can be verified by hand.

6.3.1 Some background

Some additional notes on terminology are appro-

priate first. Gap and gap cost terminology can be

confusing because the same terms are sometimes

used for different things and the other way

around. As an example, in a sequence like a t t - - -

t t a c the term gap is sometimes used for each of

the three consecutive missing positions in the

middle (three gaps), or alternatively for the whole

stretch of three missing positions (one gap). In this

paper, a gap always refers to a maximum stretch of

missing positions, not to smaller composing parts.

The length of a gap is the number of positions over

which it extends. The smallest composing part of a

gap is referred to as a unit gap. The character that is

used to indicate a unit gap, a dash in this chapter,

is sometimes called the gap character, a term that

has also been used for characters in data sets that

describe the distribution of a putative indel events

(e.g. Simmons and Ochoterena 2000).

All gap costs in this paper are of the form

aþ (n� 1) � b, in which n is the length of the gap, a

the (gap) opening cost, and b the (gap) extension cost.

If gap opening cost and gap extension cost are

equal, the term unit gap cost refers to either, and

the cost for a gap of length n is n times the unit gap

cost. Such a cost regime can be expressed as a 5� 5

step matrix (see Sankoff and Rousseau 1975) in

which the unit gap is included as a fifth state, in

addition to a, c, g, and t.

The minimal mutation algorithm of Sankoff (1975)

is illustrated in the example of Fig. 6.5b. It recon-

structs inner node sequences and positional corre-

spondences among observed sequences such that

the total number of mutations is minimized under

the assumption that a gap of length n constitutes

n mutation events. This corresponds to a cost

regime in which all base substitution costs, the gap

opening cost, and the gap extension cost are equal.

Sankoff and Cedergren (1983) generalized the

approach to a step matrix with arbitrary metric

distances, still treating a gap of length n as n

events. A further extension to include gap costs of

the form a 0 þ n � b, in which n is the length of the

gap, a 0 þ b the gap opening cost, and b the gap

extension cost, was examined by Altschul (1989,

pp. 307–308). With such gap costs, the first unit

gap of a gap incurs a cost (a 0 þ b), each next unit

a cost of b.

Sankoff (1975) used the concept of optimal frame

sequences to specify reconstructed sequences and

positional correspondences that lead to minimal

costs. Sankoff and Cedergren (1983) framed their

discussion in terms of the slightly less general

concept of tree alignments. A tree alignment always

refers to a particular tree with the given sequences

at the tips and hypothetical or reconstructed

sequences at the inner nodes. It consists of (1) that

tree; (2) a matrix in which both observed and

reconstructed sequences are aligned; and (3) cor-

respondences between nodes of the tree and rows

of the matrix. It is conveniently represented as a

tree in which the nodes are labeled with the rows

of the matrix, as, for example, in Fig. 6.10 (see

below). In this way it is easy to see that, in a tree

alignment, each branch of the tree defines a pair-

wise alignment between the sequences at the two

nodes that the branch connects. The cost of the tree
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alignment is then defined as the sum of the costs of

these pairwise alignments along all branches of the

tree, always with reference to the cost regime in

use. A ‘classic’ multiple alignment of the terminal

sequences is obtained by deleting the rows with

inner-node sequences from the matrix of a tree

alignment. Multiple alignments that are obtained

in this way have been called implied alignments (e.g.

Schwikowski and Vingron 1997; Wheeler 2003a).

Some examples of optimal implied alignments can

be found in Fig. 6.5b.

With cost regimes that make no difference

between gap opening cost and gap extension cost,

the cost at any position in a pairwise alignment of

a tree alignment is independent from the costs at

its other positions. By extension, this also applies

to the costs of complete colums of a tree alignment.

As a result, each such column can be interpreted as

a single-column character with a set of inner-node

state assignments. In this way the algorithm of

Sankoff (1975; all substitution costs and unit gap

cost equal) can be seen as a generalization of the

minimum mutation algorithm of Fitch (1971).

Indeed, under the conditions of Sankoff (1975),

each column of an optimal tree alignment specifies

a character and set of inner-node state assignments

that are also optimal under the conditions of Fitch

(1971). The generalization lies in the fact that dif-

ferent optimal tree alignments for the same data

on the same tree can imply different sets of

Fitch characters (see Fig. 6.5b for examples). The

algorithm of Sankoff and Cedergren (1983; tree

alignments with step matrices) is a similar

generalization of the algorithm of Sankoff and

Rousseau (1975), which, in turn, generalized Fitch

(1971) to accomodate differential weighting within

characters. Under the conditions of Altschul (1989;

different gap opening and gap extension costs),

the costs of the different columns of a tree align-

ment are no longer independent. As a result, such

tree alignments cannot be understood in terms of

independent single-column positional characters.

As was the case with inner-node state assign-

ments for simple single-column characters (com-

pare, e.g., Figs. 6.2c and 6.2e), tree alignments on a

given tree can be optimal or suboptimal. Sankoff

and Cedergren (1983) called the cost of an optimal

tree alignment for a set of observed sequences on

a given tree the tree distance of those sequences on

that tree. Their and similar algorithms (Sankoff

1975; Altschul 1989) can be used to calculate such

tree distances and the reconstructions that come

with them. In terms of the current approach, the

tree distance as defined by Sankoff and Cedergren

(1983) is the length of the sequence character on

that tree. As such, the algorithms of, for example,

Fitch (1971) and Sankoff (1975) are comparable in

the sense that they both calculate the cost of an

optimal reconstruction of a character on a tree. As

will be discussed below, they are vastly different

when it comes to computational complexity. For

tree alignments, the second level of optimization—

the problem of finding, among all possible trees,

trees of minimal length or tree distance—is often

called generalized tree alignment (e.g. Jiang and

Lawler 1994; Vingron 1999) but other terms are

used as well; Hein (1989a), for example, refers to it

as the general parsimony problem.

6.3.2 Putative homologous sequences:
a sequence of characters or a sequence
character?

It has been argued that all substitution costs and the

unit gap cost should be set equal in Sankoff (1975)

style analyses of sequence data (Frost et al. 2001), a

position that will be examined more closely later.

However, first it is argued, in this subsection, that a

general method of sequence alignment must by

necessity move beyond prior multiple alignments

(contra Simmons and Ochoterena 2000; Simmons

2004). The argumentation does not depend on the

particular settings of the cost regime, but for clarity

I tentatively accept the position of Frost et al. (2001)

and contrast (equally weighted) Fitch (1971) ana-

lysis of prior alignments with Sankoff (1975)

analysis of unaligned sequences.

When optimizing a sequence character on a tree,

base-level correspondences among the observed

sequences are not determined and fixed a priori but

calculated as part of the optimization process, as

already illustrated for three terminals in Fig. 6.5.

The full implication of this can be seen when

analyzing more than three sequences, such that

alternative trees exist and have to be examined.

Consider the data set of Fig. 6.6a. For four taxa
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A–D, three unrooted trees exist: (A B)(C D), (A C)

(B D), and (A D)(B C). Using Sankoff (1975), the

latter two are both diagnosed at cost 3 (each time

two substitutions and one indel) while (A B)(C D)

comes at cost 4 (three substitutions and one indel).

Looking at the two optimal trees, (A C)(B D) comes

with the implied alignment of Fig. 6.6b, (A D)(B C)

with the different implied alignment of Fig. 6.6c.

So it is not just that base correspondences are not

fixed prior to analysis, a posteriori they can be dif-

ferent in different optimal trees.

A simple case of symmetry

The data set of Fig. 6.6a has a peculiar symmetry:

when the labels of A and B are switched and the

directions of all sequences reversed, the original

data set is recovered. As such it provides a perfect

example where mutually exclusive sets of putative

homology statements cannot be distinguished at

the level of character analysis. The higher-level

hypothesis in this data set is that the sequences are

orthologs. Within the orthologs, however, the

symmetry makes it logically impossible to decide a

priori if the single c of terminal C is to be con-

sidered homologous to the c in the second position

of A or to the c in the first position of B. Con-

ceptually, this is like the situation in bladderworts,

discussed above, where it cannot be determined a

priori if the vegetative system should be considered

a shoot-like leaf or a leaf-like shoot system (even if

the situation with bladderworts is more complex

because there are still other homologizations that

are considered acceptable on a priori grounds).

Turning to trees, the symmetry has, as a con-

sequence, that these data cannot possibly distin-

guish between (A C)(B D) and (B C)(A D), two

unrooted trees in which the labels of A and B have

been exchanged. This conclusion follows directly

and solely from the internal structure of the data

set. As such it can be used to establish the fol-

lowing strong test for candidate phylogenetic

methods: (A C)(B D) and (B C)(A D) should get the

same score. Any method that does not meet this

test is in serious trouble.

As discussed, Sankoff (1975) optimization dia-

gnoses (A C)(B D) and (B C)(A D) at the same cost

and thus meets the test. Turning to prior align-

ments, the first question is which prior alignments

to consider. With data as simple as this it is easily

established that alignments in Figs 6.6b and 6.6c are

the only valid candidates. All other alternatives,

such as, for example, Fig. 6.6d would need some

special argumentation as to why, in this case, the c

that is observed in terminal C should not a priori be

considered homologous to the c that is observed in

A or to the c that is observed in B. Given that it is

accepted, a priori, that the sequences as a whole are

homologous (they are putative orthologs), this

seems hard to do. A Fitch (1971) analysis of align-

ment 6b yields tree (A C)(B D) at cost 3, with

(B C)(A D) one step more costly; alignment 6c

yields (B C)(A D), also at cost 3, and with (A C)(B D)

one step more costly (in both cases, (A B)(C D) has a

cost of 4). So, when looking at just one alignment,

the two trees get a different score and the method

fails the above test. As a result, depending on the

prior alignment that is used, positive support is

found for either (B C)(A D) or (A C)(B D), whereas

in fact relationships are ambiguous.

Similar symmetry observations can be made

with respect to alignments 6b and 6c: they can be

turned into one another by exchanging the labels

of A and B and reversing the direction of each

sequence. Therefore, if either is considered optimal

according to some criterion, the other should be as

well. So a way out of the problem of finding

spurious relationships with single prior align-

ments suggests itself: rather than to construct and

analyse just one prior alignment, identify and

analyse all different prior multiple alignments that

are considered optimal, and accept only groups

that are common to all. This may sound trivial but

it raises the non-trivial question of how to calculate

the relevant prior optimal multiple alignments. For

this particular example, that question comes down

to finding a criterion that gives an optimal score to

alignments on Figs 6.6b and 6.6c and a worse score

to all other alignments.

Optimal alignments of two sequences can be

calculated using dynamic programming algorithms
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Figure 6.6 A simple dataset (a) and three different multiple alignments

(b, c, d).
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as pioneered, in biology, by Needleman and

Wunsch (1970) and Sellers (1974). A description of

the basic algorithm and some historic notes can be

found in Kruskal (1983); extensions are reviewed

in, for example, Gusfield (1997). For the current

purpose, approaches that generalize such algo-

rithms to more than two sequences can be grouped

according to whether or not they use the tree-

alignment approach.

In optimal tree alignments, the kind of data

symmetry in Fig. 6.6a is reflected directly in sym-

metry of calculations when comparing trees

(A C)(B D) and (B C)(A D). So it was not just

coincidence that the above Sankoff (1975) optim-

ization of the data of Fig. 6.6a gave identical scores

for those trees, with implied alignments that dis-

play among themselves the same symmetry as the

data. Theoretically then, one could use a tree-

alignment analysis to generate implied alignments

that are next used as prior alignments. There

would be no need to analyze the implied align-

ments, though, because their best trees would

already have been identified in the preliminary

tree alignment analysis. In fact, while the approach

provides a solution to the problem discussed here,

it actually comes down to giving up the notion that

sequences should be aligned prior to tree evalua-

tion and tree search.

Among the multiple alignments methods that do

not use tree alignments, SP alignments or sums-of-

pairs alignments (Murata et al. 1985; Carillo and

Lipman 1988) and especially progressive alignment

methods (e.g. Feng and Doolittle 1987; Thompson

et al. 1994; Notredame et al. 2000) are probably

most widely used. First consider SP alignments.

An SP alignment of a set of sequences is an

alignment for which the sum of pairwise align-

ment scores between all possible pairs of sequen-

ces is minimal. Setting all substitution costs and

the unit gap cost to 1, it is easily verified that the

alignments of Figs 6.6b and 6.6c have identical SP

scores of 9, leaving the SP criterion as a potential

solution to the problem.

Another case of symmetry

However, consider the data of Fig. 6.7a. Reading

each sequence in reverse, nothing changes for B

and E, but the sequence of A is turned into the

sequence of C and D, and the sequences of C and

D are turned into the sequence of A. Therefore, the

structure of the data set is such that these data

cannot distinguish between trees that differ only in

the positions of A vs. (C D), as, for example, the

pair (B (C D) (A E)) and (A B (E (C D))). Using

Sankoff (1975), these trees both have a cost of 3,

which is the optimal cost over all trees as well.

Tree (B (C D) (A E)), or any other tree that has an

AE–BCD partition, comes with optimal implied

alignment 7b; tree (A B (E (C D))), or any other tree

that has an AB–CDE and an ABE–CD partition,

comes with alignment 7c. As above, these implied

alignments have among themselves the same

symmetry as the unaligned data. So Sankoff (1975)

optimization does not tell these trees apart, and

correctly so.

This is necessarily so as long as the ancestor of C

and D has a reconstructed sequence that is ident-

ical to and perfectly aligned with the sequences of

C and D in optimal tree alignments. If this is the

case, the data symmetry is directly reflected in the

Sankoff (1975) calculations that are performed on

the two trees that are involved, and an identical

cost on both trees follows. The assumption about

the reconstructed sequence for the ancestor of C

and D is easily proved by showing that its nega-

tion leads to a contradiction. Assume that an

optimal tree alignment exists in which the ancestor

of C and D has a sequence that is different or

differently aligned. In that case, the tree alignment

can be improved—contradicting the premise—by

changing that ancestor and its alignment as indic-

ated above. That this is an improvement can be

seen as follows: for any position in the ancestor of

C and D with an entry (base or unit gap) that is

different from the base at the corresponding posi-

tion in C and D, changing that entry into the cor-

responding entry of C and D will improve the cost
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Figure 6.7 A simple data set (a) and two different multiple alignments

(b, c). According to the SP criterion, alignment (b) is better than

alignment (c) (SP scores 13 and 14).
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by two mutations; at the same time, that change

can incur at most one additional mutation,

between the ancestor of C and D and the third

node to which this ancestor is connected. So, in

conclusion, optimal tree alignments are not tricked

by data symmetries such as in Fig. 6.7.

This does not hold for SP alignments: alignment

7b has a better SP score than alignment 7c (13 vs.

14; the score for 7b is optimal), proving the case by

counter example. As a result, if the SP criterion

were used to construct and select prior alignments,

alignment 7b would be selected and trees with AB–

CDE and ABE–CD partitions considered sub-

optimal in the subsequent phylogenetic analysis.

To salvage the approach, one could consider to

examine suboptimal SP alignments, like 7c, up to

the degree that all prior alignments have been

accepted that are involved in symmetries such as

in Figs. 6.6a and 6.7a. But this would not work, for

two reasons. First, there is no general way to tell

how far one has to descend into suboptimality

before all relevant alignments have been taken into

account. Second, many additional and unwanted

alignments might pass as well. So accepting sub-

optimal SP alignments cannot be a general solution

to this problem of data symmetry.

Similar problems can arise with progressive

alignments using guide trees (e.g. Thompson et al.

1994; see also Feng and Doolittle 1987). Such trees

are usually constructed on the basis of a square

overall distance matrix that is derived from pair-

wise alignment scores. Multiple alignment then

proceeds by traversing this tree from terminals to

the root. At each node that is visited, a partial

multiple alignment is created that includes and

combines the partial alignments that are found at

the daughter nodes (terminal nodes are initially

assigned a trivial partial alignment that includes

just the observed sequence of that node). In this

way, all sequences are included in the alignment

after the root node has been visited. At any node,

the alignment of partial alignments mostly pro-

ceeds by using some modification of the SP cri-

terion, considering only those pairwise alignments

across the node being considered. Moreover, this

criterion is mostly applied only locally: gaps that

have been inserted before will never be removed.

In general, this group of methods cannot guarantee

that symmetries as discussed here are properly

taken into account.

A case of local symmetry

Based on the premise that multiple alignments

should be constructed prior to tree search on the

basis of a similarity criterion, Simmons (2004,

p. 876; see also Ochoterena 2004) recently pro-

posed the following tree-independent procedure

for constructing optimal prior alignments. In a first

step, construct one or more multiple alignments

using, for example, programs that try to maximize

(an unspecified measure of) similarity, or infor-

mation from secondary structure. Next, evaluate

these alignments using the number of ‘differences’

that are implied, and try to lower that score by

adjusting those alignments. Such adjustments can

be done manually or, ideally, using optimization

programs. The rationale is to further increase the

amount of similarity that is present in the align-

ment. The best alignments that are obtained are

then subjected to parsimony analysis.

In the above, the number of differences is best

explained by first looking at a regular data set such

as in Fig. 6.1. For each character in the data set, the

observed variation m (Farris 1989a, p. 417) is one

less than the number of states in the character, and

that number is the minimum of steps that the

character can have on any tree. The observed

variation for the data set as a whole, M, is the sum

of the observed variation in all its characters, and

can be interpreted as the number of steps that the

best tree for the data set would have if all char-

acters were congruent. If indel events would not

occur, the number of differences in the sense of

Simmons (2004) would be equal to M. But indel

events do occur and complicate matters because

single indel events can affect multiple columns of

an alignment. However, as will be clear below,

further details of the calculations that are involved

in such cases (see, for example, Simmons and

Ochoterena 2000) are not required for the current

argument. Simmons (2004) observed that minim-

ization of differences in this sense can lead to

trivial alignments that require only as many indels

as there are sequences in the data set, irrespective

of the tree being considered (see Fig. 6.13c, below,

for an example). To circumvent that problem,
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Simmons (2004, p. 876) suggested not to add

positions to alignments as obtained in the first step

during possible adjustments in the second step.

This optimality criterion assigns the same scores

to the symmetric alignments of Figs. 6.6 and 6.7,

and in each case all other alignments have a worse

score. Therefore this approach could correctly

identify the relevant prior alignments for these

problematic data sets. However, consider the data

set of Fig. 6.8a, a case where two different sets of

putative homologous sequences are analysed

simultaneously (the example uses two sets of

sequences for reasons of clarity only; similar

examples can be constructed that use only one set

of putative homologs). The structure of the first set

of sequences jumps out so clearly that it is easily

seen that the best trees for that part of the data are

(out (A (B (C (D (E (H (F G)))))))) and (out (A (B (C

(D (F (H (E G)))))))). Moreover, it is easily estab-

lished that the first set of sequences is so strongly

structured that the problem of finding the best

trees for the data set as a whole reduces to evalu-

ating the second set of sequences on those two

trees.

In both trees, consider the ancestor of terminals

D–H and this second set of sequences. In each case,

that node will be optimized as c for the alignments

of Figs. 6.8b and 6.8c, or indeed for any alignment

in which the c’s of terminals A–D are aligned (it is

easily seen that such must be the case for optimal

explanations). Next consider the data set of

Fig. 6.8d, where terminals out, A, B, C, and D have

been replaced by a single hypothetical terminal

I that is assigned that reconstructed sequence c.

This reduced data set exhibits the same kind of

data symmetry as discussed above: change the

labels of E and F, reverse the direction in which the

sequences are read, and the original data set is

recovered. Considering all this, the second set of

sequences of Fig. 6.8a cannot be used to distin-

guish between the two candidate trees, as these

only differ in their relative positions of E and F.

Therefore, any method that assigns different scores

to these trees for these data is in serious trouble.

The algorithm of Sankoff (1975) properly takes

into account data symmetries such as in Fig. 6.8d.

It also treats the whole data set of Fig. 6.8a cor-

rectly, which can be shown, as above, by observing

that optimal tree alignments on optimal trees have

to reconstruct the ancestral sequence for terminals

D–H as c, and such that this c is aligned with the

c’s of terminals A–D. The score for the complete

data set of Fig. 6.8a on both trees is 30, and this is

also the optimal score. Two corresponding implied

alignments are shown in Figs. 6.8b and 6.8c. As

above, these display the same symmetry as the

raw data (other optimal tree alignments exist, but

that does not affect the argumentation).

Evaluating these implied alignments using the

criterion of Simmons (2004) cannot be done by

simply summing over isolated columns because

some gaps affect more than one column, and more

elaborate calculations are required. However,

these are not really required in this case because

reversing the sequences in both alignments estab-

lishes mutual symmetry of gap positions for such

calculations. So, whatever the contribution of the

gaps in the first alignment, it will be the same in

the second and their unit gaps can therefore be

treated as missing entries for the purpose of

assessing the relative scores of the alignments. This

results in relative score three for Fig. 6.8b but four

out
A
B
C
D
E
F
G
H

(a) ttttttttttggggtttt tcca
aattttttttggggtttt c
aaaattttttggggtttt c
aaaaaattttggggtttt c
aaaaaaaattggggtttt c
aaaaaaaaaaggggaaaa cg
aaaaaaaaaacccctttt gc
aaaaaaaaaaccccaaaa aca
aaaaaaaaaaccggaatt gg

(b) tcca
-c--
-c--
-c--
-c--
-cg-
-gc-
-aca
-gg-

(c) tcca
--c-
--c-
--c-
--c-
-cg-
-gc-
aca-
-gg-

(d)

I c
E cg
F gc
G aca
H gg

Figure 6.8 An example of localized data symmetry. (a) A data set consisting of two sets of putative homologous sequences. (b, c) Two multiple

alignments for the second set. (d) Reduced data set that exhibits the same kind of symmetry as discussed for Fig. 6.6.
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for Fig. 6.8c, and the procedure of Simmons (2004)

therefore would lead to prior rejection of the

alignment of Fig. 6.8c. The net result is that this

procedure leads to rejection of a tree that the data

cannot distinguish from a tree that it accepts.

Comparing the alignments of Figs 6.8b and 6.8c,

the preference of the optimality criterion of

Simmons (2004) for the first one boils down to the

fact that it puts the last a of terminal G in the same

column as the last a of the outgroup. But on the

best tree for this alignment, the a that G and the

outgroup share cannot be explained as identical by

common descent and inheritance. Consider the

consequences of this observation in the light of the

overall analysis, where tree (out (A (B (C (D (E (H

(F G)))))))) is accepted but (out (A (B (C (D (F (H (E

G)))))))) rejected. Given the local symmetry in the

second sequence character, both trees explain the

data equally well, albeit with different posterior

homologizations of positions and base identities.

But they are different in their amounts of homo-

plasy: overall, the first tree has a homoplastic

pairwise base similarity (the last a of terminal G

and the outgroup) that the second tree lacks.

Moreover, the preference for the first tree when

using the procedure of Simmons (2004) is based

solely on this difference: of the two trees with

equal amount of similarity that can be explained as

homology, it selects the tree that has the higher

amount of homoplasious similarity. In more com-

plex cases, this effect can ultimately lead to rejec-

tion of trees with higher amounts of homologous

similarity in favour of trees with lower amounts of

homologous similarity. The same problem can also

occur with the related tree-independent optimality

criteria for multiple alignments that have recently

been discussed by Carpenter (2003, pp. 6–7) and

Nixon and Little (2004).

General conclusions

None of this is accidental. Data symmetries such as

in Figs 6.6a, 6.7a, and 6.8a have a consequence that

no distinction can be made between particular

trees or groups of trees. As a result, methods of

analysis that do not directly take into account the

structure of trees (e.g. SP alignment or the pro-

cedure of Simmons 2004), or do so in a way that

violates the symmetry (e.g. progressive alignment,

or even just the use of suboptimal tree alignments),

will not in general be able to deal with such

situations. This leaves, by definition, optimal tree

alignment methods. As a corollary, unless one is

willing to defend methods that in some cases can

give different scores to trees that cannot be dis-

tinguished by the data at hand, alignment and tree

search cannot be properly separated in phyloge-

netic analysis of sequence data. Note that this

conclusion is argued and reached in logical space.

Whether or not it results in a practically feasible

method will be discussed below.

The examples of Figs 6.6a, 6.7a, and 6.8a are

unusual in that some terminals have sequences

that are the exact reverse of other sequences, a

situation that will hardly if ever arise in real data

sets. But such perfect crab canons are not neces-

sary for the phenomenon to occur. Sequences such

as those can be embedded as short motifs in longer

sequences that as a whole are not identical when

read in reverse, and similar distortions could

result. For simple examples as above, one could

argue that the problem can easily be spotted and

solved by carefully inspecting the data and the

alignments by eye, but this approach would no

longer work in such more complex cases.

In addition, the motifs that are involved do not

have to be identical when read in reverse, only

their alignment scores with the other sequences

must remain unchanged. Lastly, even when the

symmetry in the motifs is not perfect, by devia-

tions in motif sequence and/or substitution costs

that are involved, systematic distortions, though

less well defined, would still arise. So situations

where short subsequences can have alternative

optimal alignments, with different local costs on

different trees, may well be relatively common in

empirical data. Moreover, when such data sets are

aligned progressively according to a guide tree

(using, for example, CLUSTAL; Thompson et al.

1994), such ambiguities that include groups of the

guide tree may systematically be resolved in favor

of the guide tree.

Summarizing, alignment and tree evaluation

cannot be properly separated in phylogenetic ana-

lyses of sequence data. As a consequence, the view

that a set of sequences that are deemed putative

homologues should be turned into a sequence of
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positional characters prior to tree search and eva-

luation is erroneous or at best incomplete. Instead,

such sequences constitute a single complex char-

acter, a sequence character, that can be optimized

on trees using optimal tree alignment algorithms

such as that of Sankoff (1975). These conclusions

follow from very general considerations of data

symmetry and do not depend on details of the cost

regime that is used.

6.3.3 Quantifying and maximizing homology
in sequence characters

Frost et al. (2001, pp. 354–355; they use the term

‘indel’ for a unit gap as used here) discussed the

method of direct optimization (Wheeler 1996), and

argued for setting all substitution costs and the

unit gap cost equal because this amounts to equal

weighting of all hypothesized transformations,

which in turn ‘renders the highest degree of des-

criptive efficiency and maximizes the explanatory

power of all lines of evidence (i.e. characters).’

Direct optimization has been proposed and is

still often discussed as a sequence optimization

method that is qualitatively different from optimal

tree alignment methods, but the method is best

seen as a heuristic approximation for optimal tree

alignments (De Laet and Wheeler 2003; see also

below), and the claimed novelty of the approach

rests on a lack of familiarity with or misunder-

standing or misrepresentation of the work of

Sankoff (1975) and Sankoff and Cedergren (1983)

(see, e.g., Wheeler 1996, 1998; Giribet and Wheeler

1999; Phillips et al. 2000; Wheeler 2001b, 2002,

2003a). Therefore, the argumentation of Frost et al.

(2001) amounts to a preference for the minimum

mutation algorithm of Sankoff (1975).

Consider the sequence character aaa, gat, and agt

and two alternative tree alignments on the single

tree for three terminals as presented in Fig. 6.9.

With the above cost regime, tree alignment 9a is

better than 9b (three steps versus four). On the

other hand, when looking at independent accom-

modated pairwise similarities, as a measure of the

amount of similarity that can be explained as

homology, 9b performs better than 9a: it accomod-

ates one more independent pairwise base match.

This should not come as a surprise. For pairwise

alignments, Smith et al. (1981; their equation 4b

with wk¼ 0) showed that maximization of base-to-

base matches is equivalent to minimization of cost

when all base substitution costs are set at twice the

unit gap cost, a different regime than advocated by

Frost et al. (2001). This result of Smith et al. (1981)

cannot directly be extended to comparisons of

more than two sequences, but a generalization to

tree alignments (see below) still yields a cost

regime that is different from the one favored by

Frost et al. (2001). With more than three sequences,

this difference can lead to a preference for different

trees.

On a general level, this example merely reflects

the well-known fact that the choice of substitution,

gap opening, and gap extension costs affects the

result of alignment and tree-building procedures.

When examining the logical basis of sequence

analysis, however, the paradoxical situation arises

that the objectives of maximizing explanatory

power and maximizing independent homologous

similarity seem to be at odds. As discussed below,

this contradiction is only apparent because the pre-

mises at either side of the comparison are faulty:

setting all costs equal does not maximize expla-

natory power, and independent base-to-base

homologous similarity is not all there is to

sequence homology.

Subsequence homology and compositional homology

The latter is easily seen when considering a data

set, such as in Fig. 6.10, where sequences differ

only in length. The two tree alignments that are

shown do not differ in the number of independent

aaa

aat

agt gat

(a) aaa-

agat

ag-t -gat

(b)

Figure 6.9 Two different tree alignments of the putative homologues

aaa, agt, and gat on the single tree for three sequences.

(a) This reconstruction requires three steps (three substitutions, no indels)

and retains three independent pairwise base similarities among observed

sequences. (b) At four steps (one substitution, three indels) this

reconstruction requires one more transformation, even if it retains one

more independent pairwise similarity among observed sequences.
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base-to-base matches among observed sequences

that they accommodate: in both cases there are 20

independent base-to-base comparisons, and all

these are matches. Yet, the first tree alignment can

be considered a better explanation of the data at

hand because it captures an element of homo-

logous similarity between the sequences of A and

B that is not retained in the second one. However

the tree of the first tree alignment is rooted, A and

B share the absence of bases 4–7 with their direct

ancestor. Depending on the position of the root,

these three contiguous nodes lack the insertion of

that subsequence, or they share its deletion; in both

cases, this comes down to one unit similarity that

can be explained as a homology. On the second

tree alignment, the shared absence of bases 4–7 in

A and B must be explained as a homoplasy. The

main conclusion that can be drawn from this

simple example is that sequence homology has

a component that cannot be reduced to mere

base-to-base composition. This component I shall

refer to as homology of subsequences, as opposed to

base-to-base or compositional homology within

homologous subsequences.

The two components of sequence homology can

be optimized separately but there would be little

use in doing so. When just optimizing base-to-base

similarities, gaps will be inserted ‘at will’ to max-

imize matches (Smith et al. 1981, p. 42). On the

other hand, maximizing subsequence homology

without regard for the composition of those sub-

sequences comes down to optimizing the length of

the observed sequences as a regular unordered

character, irrespective of the amount of substitu-

tions that are implied. Optimized in isolation,

neither will in general result in a globally optimal

explanation of the data.

Instead, what is needed is an optimal balance

between subsequence and compositional homol-

ogy. This optimal balance can be found by using a

cost regime that is the sum of the two cost regimes

that are involved, provided that there is a

mechanism to avoid or deal with logical contra-

dictions between optimizations of both compon-

ents. Such a mechanism is implicit in tree

alignments because tree alignments are internally

consistent explanations of the data. Therefore,

expressions to describe the amount of subsequence

homology and the amount of compositional

homology in tree alignments can be derived

independently and then simply summed to get an

expression for the total amount of sequence

homology. This expression, finally, can be used for

purposes of optimization.

Quantifying the amount of subsequence homology

of a tree alignment

The amount of subsequence similarity in a tree

alignment that can be interpreted as homology can

be measured indirectly and in a relative way by

A
B
C
D
E

aaa
aaa
aaaaaaa
aaaaaaa
aaaaaaa

(a) (b)

(c)

aaa---- A

aaa---- aaaaaaa

C
aaaaaaa

aaa---- B

D aaaaaaa

aaaaaaa

E aaaaaaa

aaa---- A

aaaaaaa aaaaaaa

C
aaaaaaa

aaaaaaa D

B aaa----

aaaaaaa

E aaaaaaa

Figure 6.10 A data set in which the sequences only differ in their lengths (a) and two trees with optimal inner-node reconstructions and

positional correspondences under the assumption that insertion/deletion of a stretch of contiguous bases is counted as one transformation (b, c).

Double bars indicate indel events. Note that on each tree alternative sets of optimal positional correspondences exist.
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counting nindels, the number of independent indel

events, provided that the insertion/deletion of a

series of contiguous bases is counted as a single

event. This is so because each such indel

event effectively marks a subsequence that is

not homologous across a branch. Therefore, an

independent indel event can be seen as an inde-

pendent unit of non-homology in subsequence

homology.

As discussed above, the cost of a tree alignment

is obtained as the sum of the costs of the pairwise

alignments across the branches of the tree. Tech-

nically, counting independent indel events in such

a pairwise alignment is achieved by setting sub-

stitution costs to 0, gap opening cost to 1, and gap

extension cost to 0. In addition, when evaluating

such a pairwise alignment, paired gaps have to be

removed first, a procedure that Altschul (1989)

called projection. Projection is required because

paired gaps just indicate that both sequences miss

something that is present elsewhere on the tree

and because the indel events that caused such a

shared absence are accounted for along other

branches. As an example, going from -gaat---ccct-

to -gaat--ccccc- in, for example, the second tree

alignment of Fig. 6.14, (see below) means going

from gaat-ccct to gaatccccc. As far as subsequence

homology is concerned, this comes at cost 1

(1 times the gap opening cost of 1 plus 0 times the

extension cost of 0).

Quantifying the amount of compositional homology

of a tree alignment

Specifying an expression for compositional simi-

larity that can be explained as homology is more

elaborate. A tree alignment can be seen as a reg-

ular multiple alignment with, for each position,

reconstructions at the inner nodes. If, in a single

column, the tree path between two observed bases

passes through an inner node that is optimized as

a unit gap character, these bases are not compar-

able because they are part of non-homologous

subsequences; if, on the other hand, the connect-

ing path has no nodes with unit gaps, they belong

to homologous subsequences; more specifically,

they occur at the same position within those

homologues. I refer to such bases as comparable

bases.

The observed bases in a single column of a tree

alignment can be sorted into a number of groups

such that two bases from the same group are

comparable but two bases from different groups

are not comparable. I shall refer to these groups of

comparable bases as subcharacters, a concept that is

closely related to the concept of regions as defined

above, and denote the number of subcharacters in

a column of a tree alignment as nscc. This number

is related but not identical to the number of indel

events in which this column of the alignment is

involved.

Within a subcharacter, denote the number of

observed bases as nobsc. If two such bases are ident-

ical and all nodes in the path that connects them

are labeled with that same base, then the two bases

match and their shared presence can be explained

as a homology. If any node in the path that con-

nects two such identical bases has a base that is

different, then they don’t match and their shared

presence cannot be explained as a homology. Two

non-identical bases of a subcharacter or two bases

that belong to different subcharacters, finally, do

not contribute to base-to-base homology. The

minimum number of pairwise comparisons that

have to be made to classify the bases of a sub-

character into subgroups of such matching bases is

nobsc� 1. The number of mismatches nmmsc in any

such set of nobsc� 1 independent pairwise com-

parisons can be thought of as the number of base

substitutions or steps within the subcharacter.

With these definitions, the amount of composi-

tional homology in a subcharacter is obtained just

as the amount of homology in a regular character:

the maximum number of independent pairwise

comparisons minus its number of steps, or

nobsc� 1� nmmsc. With nobc the total number of

observed bases and nmmc the total number of

substitutions in a column of a tree alignment, the

amount of compositional homology in a column is

nobc� nscc� nmmc. The amount of compositional

homology in the whole tree alignment is the sum

of this value over all columns. Switching signs,

nsccþ nmmc� nobc describes a cost function that

varies directly with compositional homology in a

column. In this expression, nscc can be considered

a cost factor that accounts for local loss of com-

positional homology due to indel events (that may
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encompass multiple neigbouring columns), and

nmmc a regular substitution cost factor.

Maximizing homology in sequence characters

Adding it up, the total amount of homology of

different tree alignments for a given set of

sequences can be compared using cost function

nindelsþS(nsccþ nmmc� nobc), where the summa-

tion is over all columns of the tree alignment: the

lower the cost, the higher the amount of homology.

In this expression, losses in subsequence homology

and compositional homology are weighted equally.

Differential weighting, for example to downweight

subsequence homology, can be done by applying

different weights to the two terms that are

involved. As Snobc is identical for different tree

alignments for the same data, the cost func-

tion for a tree alignment can be reduced to

nindelsþS(nsccþ nmmc). Using nsubc for Snscc and

nsubst for Snmmc, the relative amounts of total

homology of two different tree alignments can be

compared using nindelsþ nsubcþ nsubst, the sum of

indel events, subcharacters, and substitutions.

Alternatively, the problem can be presented as a

maximization of a similarity measure; this simi-

larity measure would count independent homo-

logous base-to-base matches but assign a penalty

to indel events, much as the original algorithm of

Needleman and Wunsch (1970). More specifically,

the penalty would be � 1 for each indel event in

the tree alignment, irrespective of the length of the

indel. In comparisons of two and three sequences,

such similarity measures with length independent

gap penalties have been studied by Fredman

(1984) (fide Hein 1989a, p. 650).

In Figs. 6.11–6.15, the positions of all inferred

indel events are indicated throughout the tree

alignments, using vertical bars. The subsequences

that are defined in that way can be considered

logical subsequences. In simple cases, such logical

subsequences are identical to the subsequences

that effectively take part in the inferred indel

events (e.g. Figs 6.11–6.14), but in more complex

cases a single inferred indel event along a parti-

cular branch can affect a series of contiguous

logical subsequences (see Fig. 6.15 for examples).

The total number of subcharacters in a tree align-

ment can be easily determined as the sum of the

lengths of its different homologous logical sub-

sequences.

For any given tree alignment, nindelsþ nsubcþ nsubst
is a straightforward expression that is easily

checked, but finding the tree alignment(s) for

which this expression is minimal is quite some-

thing else. Even for a single given tree, the pro-

blem of deciding if a tree alignment is optimal has

been shown to be NP-complete (Wang and Jiang

1994). Algorithmically, as the subsequence

homology component requires use of variable gap

costs (gap opening cost 1, gap extension cost 0),

the algorithms of Sankoff (1975) and Sankoff and

Cedergren (1983) are not adequate. Altschul (1989)

does accomodate variable gap costs but still this is

not sufficient because his algorithm does not keep

track of the number of subcharacters in a column.

This directly implies that the current cost function

cannot be expressed just in terms of substitution,

gap opening, and gap extension costs. To optimize

this function, the dynamic programming recur-

rences of Altschul (1989) would have to be adapted

and extended to keep track of observed bases and

subcharacters in columns as well.

6.3.4 Discussion

So, when applied to sequence data, the simple

principle of maximizing similarity that can inter-

preted as homology, in a logically correct way,

leads to a preference for those trees on which the

sum of indel events, base substututions, and sub-

characters is minimal. In this final subsection,

some properties and wider connections of this

parsimony criterion are discussed.

Heuristics

Even with simple Hamming distances, as when

using Fitch (1971) optimization of prior align-

ments, the problem of deciding if a tree is optimal

is NP-complete (Foulds and Graham 1982). So,

when combining tree search and tree alignment,

one NP-complete problem is nested within

another. As pointed out by Hein (1989a, p. 651),

the computational complexity of this problem

makes the use of heuristic approximations una-

voidable. Examples of algorithms for heuristic

approximations of optimal tree alignment costs, or
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algorithms that can be interpreted as such, can be

found in, for example, Sankoff et al. (1973, 1976),

Hein (1989a, b), Jiang and Lawler (1994), Wang et

al. (1996), Wheeler (1996, 1999, 2003c; all available

in Wheeler et al. 2003, where they are tightly

integrated with a wide range of tree search

heuristics; see De Laet and Wheeler 2003), and

Schwikowski and Vingron (1997, 2003). Still other

approaches can be found in the reviews of Vingron

(1999) and Notredame (2002).

It currently remains largely an open question

how well these various approaches perform in

practice. In the end, even the use of an a priori

alignment can be seen as a quick and dirty heur-

istic for the analysis of a sequence character. Even

if any single such analysis is too shallow to be

satisfactory, analyses of many different prior

alignments may be effectively combined into a

more elaborate search strategy, following the

heuristic logic as developed in Farris et al. (1996)

(see also Goloboff and Farris 2001).

Most heuristic tree alignment methods attack

the optimal tree alignment problem by approx-

imate decomposition into a set of simpler pro-

blems that can easily be solved exactly using

pairwise alignments (e.g. Hein 1989a; Wang et al.

1996; Wheeler 1996, 1999) or threewise alignments

on a star tree (e.g. Sankoff et al. 1973; Wheeler

2003c). Interestingly, compositional homology in a

pairwise alignment amounts to the number of base

matches, a number that can be maximized by

setting the unit gap cost to half the substitution

cost (Smith et al. 1981). To maximize total sequence

homology in a pairwise alignment, an additional

penalty has to be added for losses in subsequence

homology, which, as discussed above, can be done

using the gap opening cost. With equal weighting

of both components of homology, this penalty

equals the substitution cost. As an example, using

a substitution cost of 2, the corresponding gap-

opening cost is 2þ 1, and the corresponding gap

extension cost 1. The same result holds for three-

wise comparisons on a star tree.

Beyond three sequences this simpler cost regime

is no longer equivalent to the criterion developed

here, as can be seen from the following counter-

example. The tree alignment of Fig. 6.11b explains

the sequence character of Fig. 6.11a better than

Fig. 6.11c because it can explain an additional

independent pairwise base match: the a that ter-

minates the sequences of B and D. This difference

is correctly measured by the sum of indels, sub-

characters, and substitutions, but with the simpler

cost regime, both tree alignments come at the same

cost of 12. In more complex examples, such situa-

tions can lead to a preference for different trees

alltogether. The simpler cost regime may never-

theless be a good choice when using heuristic tree

alignment methods that are based on pairwise or

threewise comparisons of sequences.

For some approximation methods an upper

bound can be established for their deviation of

optimality. As an example, consider lifted align-

ments (Jiang and Lawler 1994; Wang et al. 1996; see

also Wheeler 1999; Lutzoni et al. 2000), in which

possible inner-node sequences are chosen from

and restricted to the set of observed sequences.

Under these restricted conditions, an efficient

algorithm exists to find the optimal assignments of

sequences to inner nodes of a given tree, and the

resulting tree alignment can be shown to have a

cost that is at most twice the cost of the unrestricted

(b)
ggg|- A
1

A
B
C
D

ggg
ggga
ttt
ttta

(a)

ggg|a
1  2

ggg|a B
1  2

C  ttt|-
    1

ttt|a
 1  2

D  ttt|a
    1  2

(c)
ggg|- A
1

ggg|-
1

ggg|a B
1  2

C  ttt|-
    1

ttt|-
1

D  ttt|a
    1  3

Figure 6.11 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b) An optimal tree alignment on the optimal tree.

(c) A suboptimal tree alignment on the optimal tree (same number of indel events and substitutions, but one more subcharacter). Single bars across

branches indicate substitutions, double bars indel events. Logical subsequences are indicated using vertical bars, and numbered for clarity.
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optimum for that tree (Wang et al. 1996) As

discussed by Gusfield (1997, p. 358), such bounded-

error approximation methods can help to under-

stand the behaviour of difficult optimization

problems; from a practical point of view, they may

be combined with other methods, such as local

improvement methods, to obtain more elaborate

heuristic search strategies.

Inapplicables

The example of Fig. 6.12 illustrates that indel events

divide the sequences of the tree alignment into

subsequences that can be considered indepen-

dently: the two optimal alignments that are shown

have identical subsequences and only differ in

the way that those subsequences (and their sub-

characters) are presented. Incidentally, this example

also shows that postulated indel events may

improve the explanation of the data even in cases

where all observed sequences have the same length.

This independence is a direct consequence of the

fact that, in the current approach, base-to-base

comparisons are only made within subsequences

that can be explained as homologs. As a con-

sequence, comparisons of sequences and their

bases automatically occur at the correct levels of

generality, and the problems with inapplicables

that Maddison (1993) described simply dissolve.

Indeed, Maddison (1993, p. 580) observed that all

solutions that he considered to deal with inap-

plicables were in the end problematic because they

did not properly restrict counting of steps to parts

of trees where comparisons were valid, and he

correctly surmised that an eventual solution would

lie in the development of new algorithms. Most

cases of inapplicability, however, would not

require an algorithm as complex as the one dis-

cussed here, because there are fewer degrees of

freedom in a priori acceptable hypotheses of

homology.

(b)
---|aaaa|ttt A

2
A
B
C
D

aaaattt
tttaaaa
gggcccc
ccccggg

(a)

---|aaaa|---

ttt|aaaa|--- B
3

C  ggg|cccc|---
    4

---|cccc|---

D  ---|cccc|ggg
             5

1 1

1 1

1 1 24

indels:  4

subc: 16

subs:  4

(c)
------|aaaa|ttt| A

2

------|aaaa|------

---|ttt|aaaa|------ B
3

C  ggg|---|cccc|------
    4

------|cccc|------

D  ------|cccc|---|ggg
                    5

1 1

1 1

1 1 24

indels:  4

subc: 16

subs:  4

(d)
aaaattt A

tttaaaa

tttaaaa B

C  gggcccc
      1

gggcccc

D  ccccggg
      1

1

1 1

1 26

indels:  0

subc:  7

subs: 19

Figure 6.12 An example of the parsimony criterion for sequence characters. (a) A sequence character in which all sequences have equal length.

(b, c, d) Three tree alignments of the character on the optimal tree (A B)(C D). The first two, requiring four indel events, are optimal; the third,

not requiring indel events, is suboptimal by two units. The two optimal alignments that are shown imply the same five subsequences that take part

in indel events and differ only in the way that these subsequences are presented (still other possibilities exist). Subs, subc, and indels are numbers

of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions, double bars indel events. Logical subsequences

are indicated using vertical bars, and numbered for clarity.
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Consider again the multiple alignment of

Fig. 6.8b, but now assume that the four columns

are regular independent single-column characters,

with a dash indicating inapplicability. Obviously,

in this case there is no need to examine alternative

groupings of states, such as in Fig. 6.8c, during tree

search and optimization. Permitting such shifts

would lead to the same problems as when using

absence/presence coding of individual states. As

the computational complexity of the current

approach mostly derives from the need to examine

alternative groupings of bases when optimizing

sequences on a tree, this restriction has as a

fortunate consequence that the general algorithm

for dealing with this kind of inapplicability is

much simpler and faster (De Laet 2003).

Maximizing homologous similarity vs. mimimizing

transformations

The parsimony criterion as discussed here relies on

the notion that one indel event counts as one unit

loss of subsequence homology, irrespective of the

number of bases that are involved. But this does

not mean that it would in general produce trivial

alignments that are obtained by simply juxtapos-

ing all observed sequences, which requires only as

many insertion events as there are sequences. An

example is presented in Fig. 6.13. In the optimal

tree alignment of Fig. 6.13b, two independent

pairwise base matches can be explained as

homology. The trivial alignment that is obtained

by juxtaposing all observed sequences (Fig. 6.13c)

has no such base matches. In addition, compared

to the first tree alignment, it has has four inde-

pendent instances of subsequence non-homology.

The total difference in explanatory power thus

equals six, which is reflected in the relative tree

scores.

This shows that the current criterion is not a

minimum evolution method: the second tree

alignment of Fig. 6.13 requires only four muta-

tions (four insertions of subsequences of length

four) but it is considered a much worse explana-

tion of the data than the first one, which requires

10 mutations (10 substitutions). Given that one of

the terms in the minimization for sequence

character homology is the number of sub-

characters, a quantity that has no direct relation-

ship with evolutionary transformations, the non-

equivalence of both approaches when dealing

with sequence characters should come as no

surprise. But this non-equivalence with minimiza-

tion of evolutionary transformations does not

imply that the current method is not logically

capable of phylogenetic interpretation. Such an

interpretation, however, is in terms of unit state-

ments of similarity that can be explained in a

logically consistent way as identity through

(b)
A
B
C
D

aaaa
ggag
tccc
tttt

(a)

(c)
aaaa|------------ A

----------------

----|ggag|-------- B

C  --------|tccc|----

----------------

D  ------------|tttt

1 3

2 4 20

indels:  4

subc: 16

aaaa A

aaaa

ggag B

C  tccc
     1

tttt

D  tttt
1

1

1 1

1

subs:  0

14

indels:  0

subc:  4

subs: 10

Figure 6.13 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b, c) Two tree alignments on the optimal

tree (A B)(C D). The first is optimal. The second, obtained by simply juxtaposing all observed sequences, is suboptimal by six units. Subs, subc, and

indels are numbers of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions, double bars indel events.

Logical subsequences are indicated using vertical bars, and numbered for clarity.
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common descent and inheritance, and not in

terms of numbers of transformations that are

required to that effect.

An example where different optimal tree align-

ments on the best tree have different numbers of

indels plus substitutions is presented in Fig. 6.14.

The two first tree alignments have more indel

events plus substitutions than the third one (11

versus 9), but despite this higher total number of

mutations, they provide an equally good overall

explanation of the data in terms of the amount of

total sequence similarity that can be explained as

homology. More precisely, the first alignment

accomodates 29 independent pairwise matches

among observed bases, the second 30, and the third

one 30 as well, as easily verified by examining

the tree alignments column by column. So just

considering compositional homology, the first

explanation is suboptimal. The difference, how-

ever, is exactly offset by its lower loss in sub-

sequence homology (three indels versus four and

four). With the cost regime that is advocated by

Frost et al. (2001) (all costs equal), the optimization of

Fig. 6.14c is preferred (cost 12 vs. costs 13 for 14b and

14 for 14d).

The difference between both cost regimes is

further illustrated in Fig. 6.15. Maximizing the

amount of sequence similarity that can be inter-

preted as homology, the tree of Fig. 6.15b is

optimal, and an optimal tree alignment is shown.

The tree of Fig. 6.15c is suboptimal by two units,

as can be seen from the optimal alignment that

(c)

A
B
C
D
E

gaatcgct
gaatccgt
ataaaaacccac
ataaaaaccccgg
gaatccccc

(a)

a|taaa|aa|c|ccac|- C

a|taaa|aa|c|cccc|-

-|gaat|--|c|cccc|-
2 4 5

-|gaat|--|c|cccc|-
2 4

E

5

a|taaa|aa|c|cccg|g D

A -|gaat|---|cgct|-
2 5

-|gaat|---|ccct|-

B -|gaat|---|ccgt|-
2 5

2 3 4 5

24

indels:  4

subc: 13

subs:  7
2 3 4 5

2

1

1

1 3 4 5 6

2 5

(d)
--|at|aaaaa|c|ccac|- C

--|at|aaaaa|c|cccc|-

ga|at|-----|c|cccc|-
21 4 5

ga|at|-----|c|cccc|-
1 2

E

4 5

--|at|aaaaa|c|cccg|g D

A  ga|at|------|cgct|-
1 2 5

ga|at|------|ccct|-

B  ga|at|------|ccgt|-
1 2 5

2 3 4 5

24

indels:  4

subc: 15

subs:  5
2 3 4 5

2 3 4 5 6

1 2 5

(b)
ataa|aaa|c|ccac|- C

ataa|aaa|c|cccc|-

gaat|---|c|cccc|-
1 3 4

gaat|---|c|cccc|-
1 3

E

4

ataa|aaa|c|cccg|g D

A  gaat|----|cgct|-
1 4

gaat|----|ccct|-

B  gaat|----|ccgt|-
1 4

1 2 3 4

24

indels:  3

subc: 13

subs:  8
1 2 3 4

1 2 3 4 5

1 4

Figure 6.14 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b, c, d) Three optimal tree alignments on its

optimal tree. Subs, subc, and indels are numbers of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions,

double bars indel events. Logical subsequences are indicated using vertical bars, and numbered for clarity.
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is shown. Under the costs of Frost et al. (2001)

the tree alignments of Figs 6.15b and 6.15c are

also optimal for their respective trees, but the

ranking of the trees reverses: the second tree is

now preferred (costs 14 vs. 13). This shift in

preference is a consequence of counting an indel

event of length k as k events, as implicitly

advocated by Frost et al. (2001). In this exam-

ple, this amounts operationally to treating the

lengths of the gaps that are involved as an

ordered character.

A more extreme example of the same pheno-

menon occurs with a sequence character such as

ttaatt, ttaaatt, ttaaaatt, and ttaaaaatt for terminals

A, B, C, and D. With the cost regime of Frost et al.

(2001), unrooted tree (A B)(C D) is preferred

because, operationally, it best groups the series of

a’s in the middle of the observed sequences

according to their length. With the cost regime that

maximizes homology, the three different unrooted

trees for four terminals are considered equally

good explanations of the character.

The preference of Frost et al. (2001, pp. 354–

355) for equal substitution and unit gap costs

follows from their position that all hypothesized

evolutionary transformations should be weighted

equally. However, this cost regime only accom-

plishes such equal weighting under the very

restrictive assumption that indels only affect

single bases, which constitutes a severe knowl-

edge claim about the processes that shape

sequence evolution. It is hard to see then how

this approach ‘maximizes the explanatory power

of all lines of evidence’ (Frost et al. 2001, p. 354)

even more so if one considers their apparent

position that methods that make severe know-

ledge claims can be safely ignored (Frost et al.

2001, p. 354). No comparable claim is present in

the current method, in which the lengths and

positions of subsequences that take part in indel

events are left open to optimization.

A similar methodological asymmetry exists

between methods that impose irreversibility

of inferred character evolution and methods

that leave the possibility of reversal open

during phylogenetic analysis. An extensive dis-

cussion of the issues that are involved can be

found in Farris (1983, pp. 24–27). Frost et al.

(2001) did not discuss such issues. In fact, they

did not not even provide arguments why

equal weighting of all evolutionary transforma-

tions should lead to equal substitution and unit

gap costs. It can reasonably be argued that

the principle of equal weighting of all transforma-

tions is instead better implemented by using equal

substitution and gap costs, irrespective of the

length of the gaps that are involved. However,

for most sequence characters this cost regime

(b)
A
B
C
D

ggaaaaaaaaaat
ggaaat
ccat
ccaaaaaat

(a)
gga|aa|aaa|aaaa|t A

gga|aa|aaa|----|t

gga|aa|-------|t B

C  cca|---------|t
1 5

cca|aa|aaa|----|t

D  cca|aa|aaa|----|t
1 2 3 5

1 2 3 4 5

1 2 3 5 1 2 3 5

1 2 5

(c)
gga|aa|aaa|aaaa|t A

gga|aa|aaa|----|t

cca|aa|aaa|----|t D

B  gga|aa|-------|t
1 2 5

gga|aa|-------|t

C  cca|---------|t
1 5

1 2 3 4 5

1 2 3 5 1 2 5

2 31 5

Figure 6.15 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b) An optimal tree alignment on the

optimal tree. (c) An optimal tree alignment on a suboptimal tree. Single bars across indicate substitutions, double bars indel events. Logical

subsequences are indicated using vertical bars, and numbered for clarity. The number of subcharacters in both optimizations is the same.
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would lead to trivial alignments such as in

Fig. 6.13c, requiring only as many transformations

as there are terminals, irrespective of the tree

that is considered. Again, it is hard to see

how such optimizations can be considered to

maximize explanatory power. Yet they are optimal

under the notion of minimizing equally weighted

transformations.

Sequence characters and branch support

The example of Fig. 6.13 illustrates an interest-

ing consequence for the concept of branch sup-

port. Consider the tree alignment of Fig. 6.13b.

In that alignment, the (A B)(C D) branch is

supported, not because of the four substitutions

on that branch, but because collapse of the

branch—resulting in an unresolved tree—would

remove either the a–a base match between A and

B or the t–t base match between C and D. This

is in line with the observation of Farris et al.

(2001a) that branch lengths do not measure sup-

port. Instead, support for any single branch is

measured as the degree to which removal of

the branch worsens the explanation of the

data, which holds for sequence and non-sequence

data alike. This, by definition, is Bremer (1988)

support.

Alternatively, one could measure robustness of

a branch using the jackknife (Farris et al. 1996) or

related methods. However, as sequence char-

acters have no predefined single-column char-

acters, pseudoreplicates cannot be constructed in

the usual way. This problem can be solved by

resampling at the level of individual bases in the

sequences to be compared, such that unsampled

bases are made uninformative with a probability

equal to the character removal probability of

regular jackknifing (operationally, this can be

done by replacing a base with a polymorphism

code for ‘a or c or g or t or -’; or, a bit more

conservative, for ‘a or c or g or t’). With a

removal probability of 0.37, the (A B)(C D)

branch in the above example would not survive,

as it depends on the simultaneous presence of

the four bases mentioned above. With the con-

servative approach, the probability that all four

are retained in a pseudoreplicate is only

(1� 0.37)4.

A likelihood conjecture

Miklós et al. (2004) recently described a probabil-

istic model of sequence evolution that allows

insertions and deletions of arbitrary length, a more

general approach than Thorne et al. (1992), the first

probabilistic method that incorporated indels that

affect multiple residues at once. In their model,

substitutions are described using a regular time-

reversible rate matrix; indels are modelled such

that the rates for insertions as a function of their

length k are a geometric function of k, and such

that the ratio between the rates of insertions and

deletions of length k is a constant.

Miklós et al. (2004) only dealt with comparisons

of two sequences, but the model can in principle

be extended to simultaneous comparison of more

than two sequences that are related by a binary

tree, similarly as Hein (2001) extended the two-

sequence model of Thorne et al. (1991), the first

stochastic model to include insertions and dele-

tions (single residue indels only). In the approach

of Hein (2001), rate parameters are assumed to be

constant throughout the sequences. Removal of

assumptions of that kind would turn the model

into a no-common-mechanism model akin to the

model of Tuffley and Steel (1997, pp. 584, 597) for

regular r-state characters.

Envisioning such a double extension of the

model of Miklós et al. (2004) it can be conjectured

that, under a wide range of possible non-fixed

rates, the trees that are found with a parsimony

criterion along the lines as described here are also

trees of maximum likelihood. As with single-

column characters (see above), this does not

imply that such a probabilistic process model

would exhaustively describe and capture the

current method.

Beyond sequence characters: the genome

Most examples above consist of data sets with just

a single sequence character, but data sets can have

several such characters, and in addition any

number of single-column characters. Exactly

which observations are coded as characters, the

subject of character analysis, is ultimately outside

the realm of the technical aspects of further ana-

lysis that have been discussed in this section. For

sequence characters, a widely used criterion for
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establishing hypotheses of putative sequence

homology is almost identical to the technology to

obtain those sequences in the first place: whatever

is amplified using a particular primer pair. In

addition, various other criteria can be used to

identify biologically relevant structures, such as

exons and introns in protein coding sequences,

or stems and loops in rRNA sequences (see, e.g.,

Kjer 1995; Giribet 2002).

On the basis of such criteria, even contiguous

stretches of the genome can be subdivided

into sequences of sequence characters that can

be optimized separately. When doing so, it

may be a legitimate concern that the subsequent

analysis might be constrained and even biased

by preconceived ideas about the evolution of

such structures. However, given that the com-

plexity of the calculations when dealing with

sequence characters makes the use of heuristics

and approximations unavoidable, the procedure

of breaking up long sequences in smaller com-

ponents prior to analysis may very well be part

of a heuristic search strategy. This approach

could be especially powerful when combined

with heuristic multiple alignment methods that

try to assemble global alignments from align-

ments of fragments that are dynamically identi-

fied (e.g. Morgenstern et al. 1996; Morgenstern

2004).

On a more fundamental level, sequence char-

acters as discussed here are thought to be hier-

archically related through indels and substitutions

only. This may be a biologically plausible

assumption for shorter parts of the genome, but it

definitely breaks down for complete genomes,

where other processes such as inversions, dupli-

cations, and translocations play a role as well.

Over the past few years, many combinatorial

algorithms have been developed to study such

phenomena (see, e.g., Sankoff and Nadeau 2000),

and heuristic multiple-alignment methods that

incorporate such rearrangment events are becom-

ing available (see, e.g., Brudno et al. 2003, 2004).

It remains an open question how such methods

can be interpreted or generalized to accomodate

a parsimony criterion as developed here.

Such extensions may well lead to revisions or

further elaborations of the current framework.

Consider, for example, a process such as lateral

transfer, which may well play an important

role in the evolution of genomes (see, e.g.,

Kunin and Ouzounis 2003), or speciation

through allopolyploidization (see, e.g., Vander

Stappen et al. 2002). For any data set, positing

sufficient such events in any phylogenetic tree

will permit to explain all observed similari-

ties as historically identical, whether through

regular ancestor–descendant relationships of

organisms or through non-hierarchic processes

such as lateral transfer. It may be sufficient

to restrict the current criterion to the former

case, but, alternatively or additionally, a more

general criterion might be conceived that max-

imizes the difference between similarity that can

be explained as historical identity, whatever the

underlying processes, and the minimum number

of hypothesized historical events required to

that effect.

This second approach would need careful

elaboration of a broader theoretical concept of

explanation than used here, which is beyond the

scope of this chapter. However, one way to go

would be to couple the principle of maximizing

conformity between observation and theory to the

principle of choosing the simplest theory or the-

ories that can explain the data, which would lead

to a true synthesis of two different but interwoven

lines of argument that can be found in the work

of Farris (see, e.g., Farris 1982b, 1983). As dis-

cussed extensively in this paper, the first principle

leads to maximization of similarity that can be

explained as homology. The second principle

requires a measure of the simplicity of a phylo-

genetic explanation, which may well be the

minimum number of logically distinct historical

events that have to be postulated. The rationale

for a combined optimality function as above

would then be to find an optimal balance between

both principles.

For single-column character data and under the

above restriction, that approach would opera-

tionally be equivalent to the current parsimony

criterion, because in such cases it amounts to

minimizing twice the amount of homoplasy. For

sequence characters as defined here (only indels

and substitutions), it would amount to minimizing

PAR S IMONY AND TH E P ROB L EM OF I NA P P L I C AB L E S I N S EQU ENC E DA TA 115



2nindelsþ nsubcþ 2nsubst, which would obviously

change details of several examples discussed

in this section. For example, both trees of Fig. 6.13

are then considered equally good explanations; or

the two first trees of Fig. 6.14 become suboptimal

by two units. But the main conclusions, and

especially those based on data symmetries, would

remain valid.
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CHAPTER 7

The limits of conventional
cladistic analysis

Jerrold I. Davis, Kevin C. Nixon, and Damon P. Little

7.1 Introduction

Software for cladistic analysis has been widely

available for more than 20 years, and a series of

advances made during this time have facilitated

the analysis of matrices of ever-increasing size. A

milestone was reached in 1993 with the assembly

of a 500-terminal rbcL matrix (known as zilla), but

optimal trees for this matrix were not discovered

until years later. A range of analytical methods

developed since that time have found what appear

to be most-parsimonious trees for the zilla matrix,

but there continue to be perceptions that shortest

trees for this matrix cannot be discovered by con-

ventional search methods with a single personal

computer in a reasonable period of time. We pro-

vide an overview of the development of parsi-

mony methods for cladistic analysis, describe

strategies that have allowed the zilla matrix to be

analyzed by conventional methods, and demon-

strate that zilla was amenable to analysis by these

methods as early as the mid-1990s, using then-

available hardware and software. Preliminary

analyses, even when unsuccessful at discovering

most-parsimonious trees, can be used to identify

appropriate software settings for use during thor-

ough analyses. A useful indicator of the settings

that yield the most efficient searches is the excess

branch-swapping ratio, which is the ratio between

the number of tree rearrangements conducted

during a particular phase of branch swapping in

which shorter trees are being discovered, and the

minimum possible number of rearrangements

during this phase. Two-stage search strategies,

with intensive branch swapping conducted on a

small percentage of the most optimal sets of trees

obtained by a large number of relatively short

searches, are more efficient than one-stage sear-

ches. Although data sets with substantially greater

numbers of terminals than the zilla matrix are

beyond the current limits of conventional cladistic

analysis with a solitary personal computer, these

techniques are likely to continue to be of impor-

tance when employed in association with more

recently developed methods such as tree fusion,

sectorial searches, tree drifting, and the parsimony

ratchet.

7.2 A brief history of parsimony
methods for phylogenetic analysis

Willi Hennig, the German dipterist, is widely

considered to be the father of modern phylo-

genetics, and his book Phylogenetic Systematics

(Hennig 1966) had a broad-reaching influence in

the early development of the field. Hennig’s

greatest contributions are observed in his clear

definitions of monophyly, in his discussion of

the evidence used to determine monophyly (i.e.

synapomorphy), and in his strict adherence to

phylogenetic classifications. However, Hennig’s

explication of the methods by which one might

determine synapomorphies, and thus monophy-

letic groups, and ultimately phylogenetic trees,

were less precise. On the other hand, some meth-

ods that at least superficially embodied Hennig’s

proposals had been published several years earlier

(e.g. Wagner 1952, 1961). Following the publication

of Phylogenetic Systematics in the late 1960s, efforts
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were begun to reconcile Hennigian phylogenetics

with quantitative methods that were becoming

practicable through the availability of digital

computers. Very quickly, the concept of parsimony

as the overriding criterion in constructing phylo-

genetic trees began to predominate, although there

was great resistance among the numerical taxo-

nomists (pheneticists) of the day. Most of the

advances in the development and application of

parsimony to phylogenetics were due to the work

of J. S. Farris, and much of the early seminal work,

both by Farris and others, was published in the

journal Systematic Zoology.

Among the first computational approaches

for the production of phylogenetic trees using

Hennigian concepts of synapomorphy was the

Wagner tree method (Wagner 1961) as developed

and implemented by Farris (1970). Initially, Wagner

trees were computed by hand, which could be

tedious with more than a few taxa. Such trees were

then utilized as ‘final’ results—in other words, a

Wagner tree was computed and this cladogram

alone was the basis for interpreting the phylogeny.

Once computer programs became available for

‘quickly’ computing Wagner trees (e.g. Farris

1978b1), it became apparent that there were two

major problems: first, Wagner trees were often

suboptimal (i.e. there were shorter trees) when the

data were noisy, or had significant levels of

homoplasy, and second, there were often multiple

equally parsimonious solutions. This was evident

when the taxon order in an analysis was changed,

which often resulted in the discovery of different

trees of different lengths, often with more than one

of the shortest length found. In the early days

when the computer programs were mostly exe-

cuted by stacks of cards, the easiest way to gen-

erate these extra trees was to ‘shuffle’ the taxon

deck (each taxon, along with its character scores,

was on a single card in the Fortran deck) and

resubmit the job.

The first real breakthroughs in calculating

parsimony trees came in the program PHYSYS

(Mickevich and Farris 1981). PHYSYS was only

available for mainframe computers (PCs had not

yet become widely available) and it was installed

only at a few universities in North America. In

addition to numerous other numerical techniques,

PHYSYS included routines that performed branch

swapping, including branch breaking (BB; later

called tree bisection and reconnection (TBR) by

Swofford 1990; branch-breaking actually had been

implemented by Farris in 1970, in a little-known

and undistributed program called Clad/OS

(J. S. Farris, personal communication). It quickly

became obvious that these ‘heuristic’ branch-

swapping methods were more effective at finding

shorter trees than those methods that merely

shuffled the taxon order in a Wagner tree analysis.

With this recognition also came the discouraging

realization that such methods were not effective

enough to guarantee the discovery of shortest trees

for data sets of any realistic size, because of the

massive numbers of trees that would need to be

examined (see Felsenstein 1978b).

In the mid-1980s PCs became widely available,

and MS-DOS machines with 64–640KB of RAM,

running at 5–8 MHz, were the platforms for the

cladistic parsimony program Hennig86 (Farris

1988; the 86 refers to the Intel 8 086 chip family, not

to the date of release, a common misconception).

Many of the parsimony features of PHYSYS were

implemented in Hennig86. The most important

features included a ‘branch and bound’ command

(ie, which stood for implicit enumeration) that

could guarantee shortest trees on data sets with as

many as 20 or more terminals, and the mh* and bb*

commands that performed branch breaking (again,

BB or TBR) on input trees (the starting trees usually

were calculated with the Wagner algorithm).

Although not obvious to users, the mh* command

did a series of quick analyses using different taxon-

addition sequences, followed by branch breaking

while holding few trees. The user would typically

take the results of an mh* analysis and perform

branch breaking on the shortest of the trees from the

initial sets while holding as many trees as would

fit in available memory, with the command bb*

(which students sometimes confused with branch

and bound). The mh*þ bb* sequence in Hennig86

thus was the first common implementation of

1 Note: we have attempted to provide accurate citations for the

release dates of the computer programs cited in this chapter.

However, we have encountered conflicting records concerning

the release dates of certain versions of these programs, and some

of the dates given may not be accurate.
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a two-stage analysis (see below), with a series of

‘quick’ runs initially conducted, using multiple

starting trees, followed by more exhaustive swap-

ping on the best trees found during the first stage.

The first release of PAUP (Swofford 1984) initi-

ally ran on mainframes, then on MS-DOS PCs

(Swofford 1985), and later the program was ported

to the principal platform on which it is now used,

the Macintosh (Swofford 1990). Although available

for desktop computers before Hennig86 was

released, PAUP had limitations on tree output,

search options, and overall speed. Before the

release of version 3.0 in 1990, PAUP did not

implement branch breaking, and indeed the same

method as branch breaking was named as TBR in

that release (Swofford 1990). Because of the ease of

use on the Macintosh platform, PAUP became and

appears to remain (as PAUP*) the most widely

used cladistic program. Unfortunately, the default

settings and culture that developed around PAUP

resulted in many analyses being conducted as

single one-stage analyses (see below) with the

maximum number of trees held for branch swap-

ping being 100 (or in many cases the maximum

that would fit in the available RAM).

The use of these methods, in association with

what became known by many PAUP users as

‘‘swapping to completion’’ (conducting a complete

round of branch swapping on an entire set of trees

held in memory), came to be regarded as a thor-

ough analysis by many investigators. Even these

analyses often were not completed on moderately

sized data sets, and on large data sets, such as the

500-terminal rbcL matrix (discussed further below),

analyses had to be stopped prematurely after

running for a period of time, often several months

(e.g. Chase et al. 1993; Rice et al. 1997).

Of course, adherence to the mantra of swapping

to completion does not in any way guarantee the

discovery of shortest trees, due to problems of ‘‘tree

islands’’ (D. Maddison 1991), so the benefits of this

approach are at best illusory. Because of the wide-

spread adoption of these methods, many clado-

grams published with PAUP over the years,

whether or not the trees were swapped to comple-

tion, are not actually among the most-parsimonious

trees that could have been found easily with con-

current versions of Hennig86 or Nona (e.g. Chase

et al. 1993; Rice et al. 1997), or represent only a subset

of the complete set of most-parsimonious trees,

resulting in spurious resolution in the reported

consensus (e.g. Donoghue and Doyle 1989).

The program Nona (Goloboff 1993b) was

developed by the Argentine arachnologist Pablo

Goloboff, while a graduate student at Cornell

University, as a companion to his program Pee-Wee

(Goloboff 1993c), which was designed to conduct

implied-weighting tree searches. Pee-Wee was

available as a beta version from 1991, and Nona

from 1993. Nona hasmany similarities to Hennig86,

but allows more precise control over search strate-

gies, and by using the defaults it is very easy

to implement customized two-stage searches as

described above (e.g. mult*þmax*). This has resul-

ted in more experimentation with different search

strategies, including those described in this chapter.

The belief that data sets with 100 or more taxa are

virtually intractable to analyzewas common through

the 1990s and persists even today, particularly

among users of PAUP and PAUP*. This belief was

voiced strongly by Rice et al. (1997), who expressed

the goal of exploring ‘‘methodological and theore-

tical issues raised by very large data sets’’ (p. 554), yet

conducted a one-stage reanalysis of the 500-terminal

rbcL seed plant matrix of Chase et al. (1993).

Much of the attitude about intractability of large

data sets rests on the misguided belief that an

analysis must swap to completion in order to be

valid. However, as illustrated in the present

chapter, the methods and thus conclusions of the

Rice et al. paper were flawed. By performing eight

one-stage analyses while holding large numbers of

trees in RAM, Rice et al. merely repeated the

ineffective analytical strategies that were

employed as the default settings of PAUP (and

PAUP*). The only difference was the total amount

of time devoted to the analyses, which consumed

11.6 months of computer time on three separate

Sun workstations (Rice et al. 1997). Other supposed

new search strategies proposed by Rice et al. were

either not implemented or not shown to be effec-

tive, and thus the overall result of the paper was to

reinforce the common myth that data sets of this

magnitude were intractable. The current chapter,

using the same data set as analyzed by Rice et al.,

and using software available at the time, and
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computers of comparable speed, shows how inef-

fective the Rice et al. approach actually was at the

time it was published.

7.3 Newer methods for
parsimony analysis

The first breakthrough in analyzing what might

now be considered large (>150 terminal) data sets

came with the introduction of the parsimony

jackknife by Farris et al. (1996), which remains the

fastest method by which to undertake a parsimony

analysis. Using the parsimony jackknife, Källersjö

et al. (1998) analyzed a data set of 2538 terminals,

and their results include, as far as we are aware,

the largest cladogram ever published. Rice et al.

(1997, p. 559), referring to the parsimony jackknife

and to analogous approaches for rapid maximum

likelihood analysis, incorrectly characterized the

use of such methods as ‘‘abandoning the notion

that maximum parsimony or maximum likelihood

is the criterion that we are optimizing.’’

More recently, tree-search strategies and new

algorithms that are more effective than simple two-

stage methods have been developed, utilizing ran-

domization of character weights during successive

searches (the parsimony ratchet; Nixon 1999), tem-

porary changes in optimality criteria (tree drifting;

Goloboff 1999), as well as tree fusion (Goloboff

1999) and swapping on only a portion of a tree

(sectorial searches; Goloboff 1999). Detailed

descriptions of these methods are beyond the scope

of this chapter, and the reader is referred to the

original publications for more information on the

algorithms and how they have been implemented.

The parsimony ratchet, originally available only

in WinClada (running Nona as a daughter pro-

cess), has now been implemented as the program

PAUPRat (Sikes and Lewis 2001), which produces

batch files that can be analyzed with PAUP*. The

parsimony ratchet, tree fusion, tree drifting, and

sectorial searches are available in the latest version

of the computer program TNT (Goloboff et al.

2004). Besides raw speed (the TBR swapper is

estimated to be at least 10 times faster than that of

the latest version of Nona), TNT allows the user to

combine methods (conventional, ratchet, tree

drifting, and sectorial searches) to produce optimal

or near-optimal trees that can then be subjected to

tree fusion (driven searches). Since the success of

tree fusion is dependent on the input trees collec-

tively having all of the clades found in the shortest

trees, the selection of methods to produce these

input trees is very important.

With TNT it is possible to analyze large data sets

very quickly. For example, an analysis of a matrix

of 1553 small-subunit ribosomal DNA sequences,

with a combination of the ratchet (using Nona as

the search engine, because the ratchet was not yet

available in TNT) and tree fusion (using TNT),

took approximately 2 months of computer time on

a 1.3 GHz Xeon processor, and resulted in a

minimum of five independent discoveries of pre-

sumed shortest trees (Tehler et al. 2003). Attempts

to use conventional searches, tree drifting, and

sectorial searches to produce input trees for tree

fusion did not yield trees as short as those

obtained when the ratchet was used to produce the

input trees, but it is not known if this would be the

case with other matrices of comparable size.

The availability of new programs that imple-

ment advanced tree-search strategies (e.g. TNT)

does not eliminate the need to fully understand the

idiosyncrasies and factors influencing the effi-

ciency of conventional tree-search strategies. With

the exception of tree fusion, these new strategies

(the parsimony ratchet, tree drift, and particularly

sectorial searches) use standard branch-swapping

techniques, applied in an iterative fashion.

Although tree fusion does not utilize branch

swapping per se, the trees which form the popu-

lation to fuse must be found by conventional

searches or more often with the ratchet or sectorial

searches (e.g. Tehler et al. 2003). Thus, the detailed

information provided here on conventional sear-

ches, in combination with further study of the

nature of tree islands, and further exploration of

the effectiveness of different combinations of tree-

search methods, has utility in a general theoretical

sense, and may facilitate the development of new

tree search strategies.

7.4 Challenges of large data sets

With the rise of molecular systematics, which

involves the scoring of thousands of characters for
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a taxon in the course of a single set of operations

(i.e. the sequencing of a genomic region), it has

become possible over the past two decades to

assemble numerous characters for a single taxon in

a short order of time, and thus to assemble cladistic

data matrices with increasingly large numbers of

taxa. As noted above, a milestone in this progres-

sion was reached more than 10 years ago, when

Chase et al. (1993) generated and analyzed the zilla

matrix, which consists of 500 rbcL sequences,

though they did not discover most-parsimonious

trees for the matrix. This point was demonstrated

by the discovery of shorter trees by Rice et al.

(1997), whose re-analysis of the data set consumed

a total of nearly a year of computer time on three

Sun workstations (i.e. an average of about one-

third of a year on each of the three computers), and

yielded trees five steps shorter than those that had

been described by Chase et al. However, it soon

became evident that Rice et al. also had not dis-

covered the shortest trees for this matrix.

Nixon (1999) and Goloboff (1999) analyzed the

samematrix, the former author using the parsimony

ratchet and the latter using tree fusion, tree drifting,

and sectorial searches (alone and in combination),

and both authors found trees two steps shorter

than the shortest trees that had been discovered by

Rice et al. Trees of this length have since been dis-

covered numerous times, in re-analyses by the

authors of the present chapter, using themethods of

Nixon and Goloboff. Although one cannot be cer-

tain that these are most-parsimonious trees for this

matrix, it seems likely that they are, since trees of

this length are discovered rapidly with these

methods, in the course of many hundreds of sear-

ches. Even if shorter trees still remain to be dis-

covered, trees of the length discovered by Nixon

and Goloboff still represent a benchmark against

which other analytical methods can be compared.

Here we present results of a set of conventional

analyses (i.e. using only standard branch-swapping

techniques) of the 500-terminal data set and, as

detailed below, we have discovered trees of the

same length as those previously found by Nixon

and Goloboff using other techniques. These trees,

with uninformative characters removed from the

matrix, are 16 218 steps in length, and sets of

trees of this length have been discovered more

than 200 times during the course of the present

study. During the same period, approximately

10 times as many sets of trees of length less than

or equal to 16 220 (the shortest length discovered

by Rice et al. 1997) were discovered.

The analyses that constitute this overall study

were conducted on several different personal com-

puters of various processor speeds, over the course

of a period of about 6 years. With a PC that is fast by

current standards (3 GHz), and usingNonawith the

optimum software settings, as determined by the

current analysis, one set of trees of length 16 218 can

be discovered in about 1 day (details below). This

does not imply that a single day’s analysis is suffi-

cient to declare the analysis of this or any other

matrix of this magnitude complete, because there

may be multiple ‘‘islands’’ (D. Maddison 1991) of

equally parsimonious trees that cannot be dis-

covered by conventional branch swapping from one

tree of this length. Thus, the true consensus tree for a

matrix may be less resolved than the one that is

discovered following the initial discovery of a set of

most-parsimonious trees.

The estimate of 1 day of data analysis also can be

misleading because it is based on the use of opti-

mum settings for this matrix, and does not include

the preliminary analyses that are required to

determine these settings. However, when this

matter is taken into consideration it is reasonable

to state that a thorough conventional analysis of

the 500-terminal matrix, including the preliminary

analyses, and resulting in a consensus tree that

includes no erroneously resolved nodes, can be

completed over the course of a few weeks. Thus, if

it is assumed that the shortest trees currently

known for the 500-terminal rbcL matrix actually

are the shortest possible trees for this matrix, it is

possible at present to analyze this matrix in a

reasonable amount of time on one personal com-

puter using conventional search methods. Desktop

computers with processors approximately one-

tenth the speed of those currently available have

been available since 1997, as was the software that

was used in the present study (Nona; Goloboff

1993b and 1993), so it was possible at that time that

Rice et al. were conducting their analysis of this

matrix to discover at least one set of shortest

trees for the 500-terminal matrix over the course
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of a few weeks, and possibly, with some luck, as

early as 1993, when the matrix first was assembled.

Although the 500-terminal rbcL matrix still is a

relatively large data set, matrices with more than

1000 terminals have been generated and analyzed

in recent years (e.g. Källersjö et al. 1998; Tehler

et al. 2003), and the present availability of nucleotide

sequences of growing numbers of genes from hun-

dreds or even thousands of accessions suggests that

additional matrices of this magnitude and greater

will be generated during the next few years.

One might ask, then, whether we have reached

the limits of conventional cladistic analysis. Faster

processors become available in personal computers

at regular intervals, but a doubling in rates occurs, at

best, over a period of 1 year to a few years, and the

required processing power for cladistic matrices is

growing much faster than that. Although sub-

stantially more efficient approaches to cladistic

analysis are now available (i.e. the methods of

Nixon and Goloboff, as discussed above), those

methods resemble conventional analytical techni-

ques in employing heuristic tools such as branch

swapping. Thus, empirical study of the limits of

conventional analysis, as described in the present

chapter, should provide insights that are applicable

to the development of analytical strategies that may

help to maximize the effectiveness of these and

other methods that may be developed. Also, by

establishing benchmarks and limits, the current

analysis will help to establish a basis for compar-

isons among current and future methods.

We refer to the general methods of heuristic

search techniques that have been used for cladistic

analysis over the past several years, as described

above, as conventional search methods. Similar

methods have been used for maximum likelihood

searches, and those too can be called conventional

search methods. These searches vary in certain

details, but they follow a basic multistep pattern,

and it is useful to review this pattern. Typically, an

initial or ‘starting’ tree is generated (usually a

Wagner tree), and this tree is then subjected to

a methodical regimen of branch rearrangements

(i.e. branch swapping).

When swapping results in the discovery of a tree

that is more optimal than the tree that is being sub-

jected to swapping, the tree that is being swapped

is abandoned, as are all other trees of equal length

that are held in memory, and swapping is then

initiated on the new tree, which can be regarded as a

new parent tree. In this manner, conventional ana-

lyses proceed from a starting tree through sets of

successively shorter trees, often spending con-

siderable periods of time at one length or another,

accumulating and swapping through a large num-

ber of trees, before shorter trees are discovered.

Eventually, every search of this sort results in the

discovery of a set of one ormore trees of some length

(which may or may not be most-parsimonious for

thematrix), and the search culminates in a complete

round of branch swapping through this set of trees.

With matrices for which the discovery of most-

parsimonious trees is difficult, the starting tree for

each search often is far from optimal, and there is

an initial period of swapping during which there

is a relatively rapid approach towards optimality,

with a substantial portion of the trees that are

subjected to swapping being discarded before

being swapped completely. Later in the process

the approach to optimality slows, with large num-

bers of trees accumulated and subjected to swap-

ping, while little or no progress is made towards

the discovery of more optimal trees.

In light of this pattern, a tradeoff in potential

search strategies is apparent. If the investigator

chooses to retain relatively few trees in memory,

each search ends relatively quickly (i.e. stalls at

some length after failing to find shorter trees

within the imposed limits), but a large number of

searches can be conducted in a given period of

time. With few trees retained, the thoroughness

of each search is minimal, and each search is

relatively unlikely to result in the discovery of

most-parsimonious trees.

Alternatively, if greater numbers of trees are

retained in memory, each tree search is more thor-

ough, and thusmore likely to result in the discovery

of most-parsimonious or nearly most-parsimonious

trees, but each search also consumes a great deal of

time, and few searches can be conducted. The latter

situation is illustrated by the analysis of the 500-

terminal rbcLmatrix thatwas conductedbyRice et al.

(1997), who allowed large numbers of trees to be

held in memory, but conducted only eight indivi-

dual searches during the course of nearly a year of
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computer time, with none of those searches yielding

most-parsimonious trees for the data matrix. All

eight of the searches were aborted prior to comple-

tion (i.e. an ad hoc limit on the number of trees to be

swapped in each search was interposed during the

course of the analysis) because more trees had been

accumulated than could be subjected to swapping

in a reasonable amount of time.

In light of the tradeoff between rapidity and

thoroughness of individual searches, one would

need to evaluate various combinations of settings

between two extremes to determine the optimal

point(s) of balance between the conflicting goals of

conducting numerous searches and of having these

searches be thorough. One of the goals of the present

analysis was to examine this tradeoff, and we have

determined that there can be multiple peaks of

search efficiency for a matrix, and that one of the

peaks of search efficiency can occur, even with a

homoplasious matrix of 500 terminals, with as few

as 50 trees held in memory during each search.

Apart from the number of trees held in memory

and subjected to branch swapping during indi-

vidual searches, several additional factors can affect

the overall efficiency of conventional tree searches.

We refer to the general approach described in the

previous paragraphs (one or more independent

search initiations, each followed by branch swap-

ping from a starting tree, and terminating after a

set of trees of some length has been accumulated

and subjected to swapping) as a one-stage search.

In fact, many practitioners now conduct two-stage

searches (as with the mh* and bb* commands of

Hennig86), with the first stage corresponding to a

one-stage search in which a relatively large num-

ber of searches are conducted, each with a rela-

tively small number of trees held in memory.

Following the completion of this stage, the second

stage proceeds as the most optimal sets of trees

obtained during the first stage are subjected to

additional swapping with greater numbers of trees

held in memory. The two-stage approach has the

advantage of confining the most intensive and

time-consuming branch swapping (i.e. with

numerous trees held in memory and subjected to

swapping) to those sets of trees that are relatively

optimal to begin with and, as detailed below, there

are two key advantages to this approach.

First, trees that are nearly optimal for the matrix

are more likely to yield most-parsimonious trees

under intensive branch swapping than are those

that are less optimal. Thus, use of the two-stage

search strategy focuses the most-intensive swap-

ping on sets of trees that are among the most likely

to yield most-parsimonious trees. Second, the two-

stage search strategy allows a greater number of sets

of trees to be subjected to intensive swapping dur-

ing a given period of time than does the one-stage

search strategy. This is because the trees that are

subjected to intensive swapping during the second

stage of a search are relatively optimal to beginwith,

and therefore have a relatively shorter path to fol-

low to their point of completion, whether or not they

succeed in discovering most-parsimonious trees.

For example, swapping with 2 000 trees held

in memory, when initiated with trees two steps

longer than the most-parsimonious, involves

branch swapping through amaximum of 6 000 trees

(up to 2 000 trees each at the initial length and at one

and two steps shorter), and a maximum of only

4 000 trees in searches that fail to yield most-

parsimonious trees. However, if intensive branch

swapping is initiated with trees that are 10 steps

longer than the most-parsimonious, as many as

20 000 treesmay be subjected to branch swapping in

searches that do not yield most-parsimonious trees.

Hence, a key advantage of two-stage searching

lies in its ability to minimize the time that is spent

in intensive swapping during each search, which

thereby allows a greater number of searches to be

conducted in a given period of time. In other

words, the limitations inherent in one-stage sear-

ches, as are evident in the tradeoff between con-

ducting a small number of intensive searches, and

a larger number of individually less-intensive

searches, are ameliorated by the very structure of

two-stage searches. As described below, with

reference to the 500-terminal matrix, almost any

two-stage search that is conducted with reasonable

software settings is superior to even the most

efficient one-stage search.

If two-stage searches are more efficient than

one-stage searches, as a general rule (i.e. with

appropriate software settings in each case), it still

remains to determine how many trees should be

held in memory during each stage, and what
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percentage of tree sets obtained during the first

stage should be subjected to additional swapping

during the second stage. In addition to these

points, there are other significant factors. There are

different branch swapping procedures, ranging

from relatively cursory (e.g. nearest-neighbor

interchange) to much more thorough (e.g. BB, or

TBR). Also, trees with polytomies may or may not

be recognized as acceptable trees for evaluation

during a branch swapping procedure, and when

polytomies are allowed, there are different rules

that can be applied to determine whether the

various possible dichotomous resolutions of a

polytomy are recognized as being supported by a

given matrix. All searches in the present analysis

involved BB/TBR swapping, but we examined

various combinations of the numbers of trees held,

and of the search settings relating to polytomies.

If the optimum search conditions for one data

matrix differ from those for another, as seems rea-

sonable to assume, it is important to develop

methods for estimating the appropriate settings to

be used with any particular data set. This goal may

be difficult to attain for large matrices, because the

analysis of any data set that is recognized as a large

one is, almost by definition, computationally

demanding. The problem, then, is that if the most

efficient search conditions for a given data set can be

determined only by conducting a series of pre-

liminary searches under a variety of conditions, and

if most-parsimonious trees are discovered only

infrequently under even the best of conditions, and

furthermore, if the results of preliminary searches

are evaluated in terms of success in the discovery

of most-parsimonious trees, the computational

demands of the required preliminary searches will

be nearly as burdensome as a thorough analysis

itself. However, a preliminary phase of searching,

preceding an actual search, would be feasible if

the effectiveness of the various settings that are

explored during the preliminary phase could be

evaluated in terms of a result that is correlated with

efficiency in the discovery of most-parsimonious

trees, and that could be determined on the basis of

a relatively small number of preliminary searches.

We consider various correlates of search efficiency

with the 500-terminal matrix, and demonstrate that

one useful indicator is the ratio between the number

of tree rearrangements required during a particular

phase of a search and the minimum that would be

required by an unsuccessful search, i.e. an excess

branch-swapping ratio (see below).

We have conducted preliminary searches and

applied these calculations to a second and larger

data set, the three-gene matrix of 567 terminals of

Soltis et al. (2000). As indicated by those authors, the

shortest trees discovered by conventional searches

with PAUP*, conducted over a period of several

weeks, were six steps longer than those that were

discovered in the course of a few hours with the

parsimony ratchet, and the ratchet eventually yiel-

ded trees that were one further step shorter. Since

that time, numerous additional ratchet searches

have been conducted with the three-gene matrix

and, as with the 500-terminal matrix, we are con-

fident but not certain that the shortest trees obtained

with the ratchet, and reported by Soltis et al., are

most-parsimonious trees for this matrix.

However, as noted above with reference to the

500-terminal matrix, even if shortest trees for the

three-gene matrix have not yet been discovered,

the tree length obtained with the ratchet still pro-

vides a basis for comparison among search stra-

tegies. It might be argued that an optimal method

for the discovery of trees slightly longer than most-

parsimonious is not the best method for obtaining

most-parsimonious trees themselves, but if this

were the case we would expect any differences in

methods for the efficient discovery of most-parsi-

monious and nearly most-parsimonious trees to be

relatively minor.

We conducted preliminary analyses with the

three-gene matrix, using a range of settings, cal-

culated excess branch-swapping ratios, used these

ratios to select software settings for more thorough

searches of this matrix, and then conducted addi-

tional searches using those settings.

7.5 Methodogical matters

7.5.1 The zilla data set

Analyses were conducted using the rbcL data set

that was assembled and first analyzed by Chase

et al. (1993). Chase et al. analyzed two different

versions of the same general data set, using
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different analytical procedures. In their search II

they employed a data matrix comprising 500 term-

inals, including two sequences from Canella, so the

matrix can be described as comprising 499 taxa or

500 terminals. Their search IIwas conductedwith all

transformations between nucleotides weighted

equally, and therefore it represents the earliest

analysis of a matrix of this magnitude using analy-

tical techniques that are generally accepted today.

Rice et al. obtained a copy of the search II matrix and

nicknamed it Treezilla (attributing the name to A.

Yoder), but this nameoften is replacedby the shorter

name zilla, which we use for the balance of this

chapter. Rice et al. (1997) re-analyzed the zillamatrix,

using equal character weights, and the present

analysis is also based on that version of the data.

The data matrix used here was downloaded in

January 1998, as posted by Rice et al. (at www.

herbaria.harvard.edu/~rice/treezilla/), converted

from NEXUS format (Maddison et al. 1997) to Nona

format, and stripped of cladistically uninformative

characters, leaving 759 informative characters. The

aforementioned Harvard website is unavailable at

the time of writing, but the NEXUS-format version

of the zillamatrix is available currently at a different

website (www.cis.upenn.edu/~krice/treezilla/).

In addition to the zilla matrix, the downloaded file

includes a tree of length 16 533, which is the shortest

tree length reported by Rice et al. (1997). We

undertook extensive evaluation of this data set to

establish that it was identical to the published 500-

taxon data set of Chase et al. and Rice et al. Details of

these tests are available upon request from the

senior author of the present chapter (J. I. D.).

7.5.2 Comparability of reported results with
zilla across software platforms

The present analyses of zilla, and prior analyses by

other authors, have been conducted with a variety

of programs, and in order to compare results of the

various studies it is important to determine the

comparability of the results reported by the var-

ious packages. Several different versions of PAUP,

MacClade, Nona, and WinClada have been used in

these various analyses, and two principal items of

interest reported by these programs are tree

lengths and numbers of trees examined during

branch swapping. Reported tree lengths vary, in

part, because uninformative characters have been

included in some calculations and excluded from

others. Another source of variation lies in the use

of different criteria of character informativeness by

the various programs. This problem was noted by

Rice et al., who used PAUP andMacClade, and who

observed that the programs reported different tree

lengths when commands were invoked to exclude

uninformative characters from consideration.

The following software packages have been

employed in this and previous studies of the zilla

data set: Chase et al. (1993) used PAUP version 3.0s

(Swofford 1990) for their search II analysis; Rice

et al. (1997) used PAUP versions 3.0s and 3.1.1

(Swofford 1993), plus MacClade version 3.04

(Maddison and Maddison 1992); and we used

Nona version 1.5.1 (compiled September 4, 1996;

Goloboff 1993b), the multi-thread version of Nona

version 1.6 (Goloboff 1993, i.e. Paranona, compiled

February 26, 1998), WinClada version 1.00.08

(Nixon 2002), PAUP version 3.1.1, PAUP* version

4.0b10 (Swofford 2002), and MacClade version 4.03

(Maddison and Maddison 2001).

Because of different reported lengths for the trees

found by Chase et al. and Rice et al., due to errors in

excluding uninformative characters in older ver-

sions of PAUP, we use here the tree lengths as

determined by MacClade version 3.04 (Maddison

and Maddison 1992), Nona, and WinClada, which

are all consistent (details of the comparisons that

were made are available from J.I.D.). These pro-

grams determine the shortest trees found by Rice

et al. to be of length 16 220 with uninformative

characters excluded (80 steps fewer than the num-

ber reported by older versions of PAUP, and 313

steps fewer than the number obtained with unin-

formative characters included). Rice et al. included

one of these trees in their posted matrix, and we

confirm, using PAUP* version 4.0b10, that this tree

is of length 16533 with the data matrix in that file,

when all characters are included. This version of

PAUP* also detects 759 cladistically informative

characters in the matrix, which is the same number

detected by Nona and WinClada in the matrices

that we derived from this file (see above). Also,

this version of PAUP* reports a length of 16220 for

the Rice et al. shortest tree when uninformative
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characters are excluded from consideration. Finally,

we have determined that PAUP* version 4.0b10 and

MacClade version 4.03 both agree with Nona and

WinClada in determining that the shortest trees

discovered by the present analysis are of length

16218 (uninformative characters excluded) or 16 531

(uninformative characters included). In both cases

these trees are recognized as two steps shorter than

those discovered by Rice et al., and seven steps

shorter than those discovered by Chase et al.

The preceding comparisons substantiate an

overall consistency in data structure among the

various zilla files that exist in NEXUS and Nona

formats, and among Nona, WinClada, PAUP*

version. 4.0b10, andMacClade in the determination

of character informativeness and in the calculation

of tree lengths with and without uninformative

characters included. In contrast, it appears that

older versions of PAUP employ a definition of

character informativeness that differs from the one

discussed by Farris (1989a), and employed by all

current versions of the programs mentioned above.

On the basis of these results we recommend that

investigators using older versions of PAUP, or

consulting publications that used those versions,

verify all results that are based on distinctions

between informative and uninformative characters,

including items such as consistency indices, which

are inflated when uninformative characters are

interpreted as informative.

7.5.3 Three-gene matrix

In addition to the zilla data set, we conducted

analyses with another large data matrix, the three-

gene data set of Soltis et al. (2000). This data set

comprises 567 taxa scored for rbcL, atpB, and 18 S

rDNA. As noted by Soltis et al., they found shortest

trees for this matrix only with the parsimony

ratchet (Nixon 1999), as implemented in WinClada,

using Nona as a daughter process for tree searches

(the Nona-format version of the matrix employed

in those searches is available at www.cladistics.

com/). Analyses of this data set for the present

study were conducted using copies of the matrix

downloaded from that website. This matrix

includes 567 terminals scored for 2 153 informative

characters, and most-parsimonious trees are of

length 44 163, or, as reported by Soltis et al., 45 100

steps when uninformative characters are included.

7.5.4 One-stage tree searches

Except where specified otherwise, cladistic ana-

lyses were conducted with the multi-thread ver-

sion of Nona version 1.6 cited above. All analyses

were conducted as one-thread tree searches (using

the default setting thread 1). Searches were per-

formed with the mult* command, which conducts

a set of replicate tree searches (e.g. 10 replicates

with mult*10), and most searches were conducted

in sets of 10 or 20, with trees saved after each set of

searches. The mult* command initiates each repli-

cate search by generating a Wagner tree, assembled

with a taxon entry sequence determined by a seed

number that is input with the command rseed, then

conducts a round of subtree pruning-regrafting

(SPR) swapping on the Wagner tree, with one tree

held in memory, followed by BB/TBR branch

swapping with a user-determined number of trees

held. We used the command rseed 0, which uses

the computer’s clock to generate a random seed

number, which is saved with the results of each

search, thereby facilitating repeated searches using

identical taxon entry sequences.

In each replicate search, a predetermined num-

ber of trees (x, as set with the hold/x command)

is retained in memory and branch swapping is

conducted successively on each of these trees. If a

shorter tree is discovered, all trees except the new

one are discarded, swapping is initiated on the

new tree, and a new set of daughter trees is

accumulated. For reasons discussed below, we also

note that if a shorter tree is not discovered, the

search terminates after all x trees in memory have

been subjected to swapping, and that the final

phase of every replicate search therefore consists

of a complete round of swapping through x trees

of the shortest length discovered in that search,

unless this set of trees constitutes an island

(D. Maddison 1991) of fewer than x trees. In the

latter case, the final phase of the search would

consist of swapping through all trees in the

island. However, every search of the zilla matrix

conducted during the course of the present ana-

lysis did lead to the accumulation of the maximum
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number of trees set by the hold/ command, so each

of these searches did end with a complete round of

swapping through that number of trees.

The output generated by each set of replicate

searches includes a record of the seed number that

was used to initiate each search, the minimum tree

length obtained by the search, and the number of

trees of that length that were accumulated. Also,

use of the tcount command causes the total number

of tree rearrangements examined in each set of

replicate searches to be reported (e.g. for mult*10,

the total for the 10 constituent replicates).

To determine the effectiveness of tree searches

under a variety of conditions, analyses were con-

ducted using a variety of settings for other com-

mands (see below). The output from all searches

conducted under each set of conditions was com-

bined into a common file, and duplicate searches

(i.e. those based on the same randomly drawn seed

number, which invariably yielded identical

results) were removed from consideration.

One setting that was varied among sets of one-

stage searches was the number of trees retained

and subjected to branch swapping, as specified

with the hold/ command. Analyses were conducted

with the following numbers of trees retained in

each search: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1 000,

2 000, and 5 000. Two other settings that were varied

among analyses are those that determine whether

polytomies are allowed in trees (using the poly

command) and, if so, the conditions for recognition

of potential resolutions as being supported by the

data (using the ambiguous or amb command).

A complete set of analyses (i.e. using each of the

hold/ settings listed above) was conducted with the

default settings in Nona for these commands, poly¼
(polytomies allowed), and ambiguous- (when poly-

tomies are allowed, branch collapsed to form a

polytomy if its length is zero under at least one

possible character optimization, i.e. a branch is

resolved only if it has unambiguous support).

Additional analyses also were conducted with the

alternative settings for these commands, either poly-

(polytomies disallowed), or ambiguous¼ (when

polytomies are allowed, branch collapsed only if

its length is zero under all possible optimizations,

i.e. a branch is resolved if it has ambiguous or

unambiguous support). When the poly- command

is invoked, the setting for the ambiguous command

is irrelevant, because polytomies are disallowed in

any case; therefore, apart from the default settings

of these commands, preliminary analyses were

conducted using only two of the three remaining

combinations of the settings determined by these

commands (poly¼, ambiguous¼, and poly- ambiguous-).

On the basis of results from the preliminary

analyses, intensive analyses were conducted with

these polytomy and ambiguity settings with 50,

100, and 2 000 trees held in memory (i.e. using the

commands ho/50, ho/100, and ho/2 000).

In addition to tree length, Nona and PAUP* both

report the number of tree rearrangements con-

ducted during the course of an analysis. In order to

compare these programs, including one of the two

versions of PAUP used by Rice et al. (1997), with

respect to the numbers of tree rearrangements that

they report when conducting comparable actions,

we selected one putative most-parsimonious tree

(i.e. length 16 218) from each of 10 sets that were

generated during the course of this study. Each of

the 10 trees was subjected to branch swapping, with

100 trees retained (i.e. 99 new trees propagated from

the first, and all 100 from each set subjected to

branch swapping), using Nona version 1.6, PAUP

version 3.1.1, and PAUP* version 4.0b10.

Because this swapping never yielded shorter trees,

this procedure resulted in a complete round of

branch swapping through exactly 1 000 trees with

each program, and the average number of rearran-

gements required to swap through one tree (signified

as r1avg) was calculated from the results of these ana-

lyses. With Nona, the default polytomy and ambi-

guity settings were used (poly¼ and amb-), and BB

(i.e. TBR) branch swapping was conducted, using

the commandmax*.With PAUP, TBR swappingwas

conducted with only minimal-length trees retained,

and ‘zero-length branches collapsed,’ and with

PAUP*, TBR swapping was conducted with bran-

ches collapsed if ‘maximum length is zero.’ It

should be noted that most-parsimonious trees are

not actually required for this procedure to be con-

ducted, because a starting tree of any length can

be used, with any number of trees retained and

subjected to branch swapping, under any particular

swapping regime, if it has been determined by a

prior round of swapping (or after the fact, from the
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results of such a procedure) that this particular tree

does not yield shorter trees when swapped under

the specified conditions.

Results from the various one-stage analyses

were compared in terms of two principal metrics,

the frequency of success and the search efficiency,

both of which are expressed with reference to a

particular tree length. Frequency of success is the

percentage of searches under a given set of con-

ditions that result in the discovery of trees as short

as the specified length. In most cases we specify

success with reference to most-parsimonious trees,

but when applied to a tree length greater than that,

such as two steps longer than most-parsimonious,

we apply this measure in a comprehensive

manner, so that it includes all searches that yielded

trees of the specified length or shorter.

Tree-search efficiency describes the results of a

search in terms of the number of tree rearrange-

ments required to discover a set of trees of a speci-

fied length. Like frequency of success, it can be

specifiedwith respect tomost-parsimonious trees or

longer trees, and in the latter case it includes sear-

ches that result in the discovery of trees of length

equal to or shorter than the specified length. In order

for greater efficiency to be specified by higher

numbers, search efficiency is defined as the ratio of

number of searches that result in trees of a given

length or shorter to the number of rearrangements

required to discover those sets of trees. Thus, if an

average of 1 billion branch swaps is required to

conduct each replicate search under a particular set

of conditions, and if an average of one of every four

such searches yields trees of a specified length or

shorter, the frequency of success for this tree length

is 25%, and the search efficiency for this length is one

set of trees for every 4 billion tree rearrangements.

In this chapter we sometimes discuss efficiency

informally, in terms of billions of rearrangements

required per successful search, and it should be

noted that with this parlance a higher number refers

to a lower efficiency. It should be noted as well that

frequency of success and tree-search efficiency are

expressed in terms of the number of searches that

obtain trees of a given length, not in terms of the

number of trees that are obtained. Thus, if two

searches are conducted, one with 50 trees retained,

and the other with 500 trees retained, each search

that yields one set of trees of a specified length is

counted as a single successful search, even though

each of the latter searches accumulates 10 times as

many trees as each of the former.

Search efficiency, as expressed in terms of tree

rearrangements, can be converted to efficiency in

terms of computer time elapsed, with the latter

expression reflecting processor speed and other

factors. Calculation of these indices in terms of the

number of rearrangements facilitates the pooling

of results generated here from several different

computers, and also facilitates comparisons

between these results and those obtained with

other computer platforms.

7.5.5 Phases of one-stage searches

For the purpose of interpretation of preliminary

results it is useful to distinguish twophases of branch

swapping that occur during conventional searches.

As noted above, conventional one-stage searches (as

conducted in Nona, PAUP*, and other programs)

begin with the generation of a Wagner tree, after

which branch swapping is conducted, starting with

this tree. Also noted above is the observation that for

any number x of trees held in memory and subjected

to swapping in searches of this sort (as determinedby

the Nona command hold/x), searches typically end

immediately after a phase of unsuccessful swapping

in which a set of x trees of some length is generated

and subjected to branch swapping without yielding

shorter trees. When several searches are conducted,

this is the point at which each search ends, prior

to the initiation of the next one. The number of

trees accumulated and subjected to swapping during

this phase of the search can be less than x if there are

fewer than x trees in an island, but with large data

sets, and with x set at a number that is likely

to be efficient for tree searches, this may occur only

rarely, and during the present study the accumula-

tion of fewer than the set maximum number of

trees never occurred with the zilla matrix, and

occurred only once with the three-gene matrix.

The following discussion assumes that every

search with hold/x involves a final phase of

unsuccessful swapping through x trees. Although

this is not necessarily the case, appropriate

adjustments could be made for other situations.
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Consider a search that is conducted with one

tree held in memory (hold/1). In this case, swapping

is initiated on a Wagner tree, and it proceeds as a

succession of trees are subjected to swapping, each

yielding a shorter tree before being subjected to a

complete round of swapping. The search ends

after it reaches the first tree in the progression that

is subjected to a complete round of swapping

without yielding a shorter tree.

Retrospectively, two phases of branch swapping

in this search can be recognized. The first (phase 1)

is the productive phase of the search, during which

shorter trees are discovered, and the second (phase

2) is the nonproductive phase, during which the

single shortest tree discovered by the search is

swapped completely without yielding any shorter

trees. If another search is initiated with the same

seed number, and with two trees retained (i.e. hold/

2), it proceeds through an identical sequence, except

that one additional tree is retained in memory, and

is subjected to swapping following the completion

of swapping on the solitary tree that did not yield a

shorter tree during the hold/1 search.

If phase 2 is again recognized as being initiated

when swapping begins on the first tree that is

swapped unsuccessfully, and if the second tree,

like the first, is swapped completely without

yielding a shorter tree, the search ends with

exactly one additional tree having been subjected

to branch swapping. In this case, the search with

hold/2 is no more successful than the search with

hold/1, and phase 1 of the two searches is identical,

while phase 2 for the second search is precisely

twice as long as phase 2 for the first search.

However, if swapping on the second tree yields

a shorter tree, the total number of rearrangements

during phase 2 of the two-tree search (which now

includes some successful swapping) is greater than

if it had not yielded a shorter tree. Thus, phase 2 of

any search with hold/1 is always unsuccessful, by

definition (being the phase during which the first

and only tree in the search is swapped unsuccess-

fully), but phase 2 of a search with more than one

tree held in memory may or may not be successful.

The final portion of phase 2 of any search ends

when a complete round of swapping is conducted

through a set of trees that is equal to the number

held in memory, but when more than one tree is

held in memory this portion of phase 2 may be

preceded by a period of successful swapping.

Thus, for any search that is conductedwith a given

seed number, with x trees held in memory, the

number of rearrangements required during phase

1 is identical for all numbers x, and the minimum

possible number of rearrangements duringphase 2 is

equal to the number that is required to swap through

x trees. Similarly, the average number of rearrange-

ments required during phase 1, for sufficiently large

numbers of searches conducted with randomly

selected seed numbers, should be identical during

phase 1with anynumber x treesheld inmemory, and

the degree to which the average number of rearran-

gements required during phase 2 exceeds the aver-

age number required to swap through x trees is a

reflection of the overall degree of success of these

searches in discovering shorter trees.

To formalize these expressions, let rhold=xavg be the

average number of rearrangements required to

conduct a complete search with any number x

trees retained, and let rxavg, which is the average

number of rearrangements required to swap

through x trees without discovering shorter trees,

be the minimum possible number of rearrange-

ments required during phase 2 of any search (i.e.

when phase 2 is unsuccessful). Because phase 2 of

any search commences when branch swapping is

initiated on the first tree that does not yield shorter

trees, the average number of rearrangements

during phase 1 is identical for any x, and it equals

rhold=1avg � r1avg. The average number of rearrange-

ments actually conducted during phase 2, for any x,

is the average total for a search with x trees held,

minus the average number of rearrangements

required during phase 1, or rhold=xavg � (rhold=1avg � r1avg).

We define the excess branch-swapping ratio as the

ratio of this number (i.e. the average number of

re arrangements during phase 2) to the minimum

possible for phase 2, or

rhold=xavg � ðrhold=1avg � r1avgÞ
rxavg

ð1Þ

This ratio is 1 when x¼ 1, by definition, because

phase 2 of such a search is the phase during which

unsuccessful swapping is conducted on a single tree,

and the number of rearrangements conducted dur-

ing this phase is precisely the minimum number
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possible. When x> 1, the minimum value for the

ratio in a given search is 1, and this ratio occurs when

all swapping during phase 2 is unsuccessful, i.e.

when a search with x> 1 finds trees no shorter than

are found when x¼ 1. However, this ratio exceeds 1

to the extent that the additional swapping with x> 1

results in the discovery of shorter trees.

With the zilla data set (see results, below), we

have determined that the second term in the

numerator of the excess branch-swapping ratio is

trivial in magnitude relative to the first when x is

greater than about 20, so (1), above, is approxi-

mately equal to rhold=xavg =rxavg. However, when x lies

between 1 and 20 the second term of the numerator

has a substantial effect on the ratio that is obtained.

The numbers required to compute this ratio, for

any number x, are simply the average number of

rearrangements required for searches with x trees

held in memory, and the average number of rear-

rangements to swap unsuccessfully through x trees.

Both can be obtained easily from Nona or PAUP*.

7.5.6 Two-stage searches

Two-stage analyses were conducted by subjecting

sets of trees obtained from various one-stage

searches to additional branch swapping, with

greater numbers of trees retained for swapping

than in the original searches. Of the available sets

of trees from the one-stage searches, the sets sub-

jected to additional swapping were those derived

from the most successful one-stage searches, i.e.

the shortest trees obtained from those searches,

plus sets of successively longer trees, as is common

in conventional two-stage analyses, where second-

stage swapping is conducted on the best available

trees obtained from first-stage swapping. This

creates certain complications in evaluating the

results. First, trees as short as 16 218 steps (i.e. trees

believed to be most-parsimonious for the zilla

matrix) were obtained from some of the one-stage

searches conducted with 50 trees held in memory.

These sets of trees, and sets up to four steps longer,

were subjected to additional swapping with var-

ious larger numbers of trees held in memory, to

determine the frequency with which continued

swapping on trees of various lengths yielded trees

of length 16 218.

Although the trees of length 16 218 were not

expected to yield shorter trees (and did not), and

although subjecting them to additional swapping

diminished the efficiencies that were ultimately

computed for the two-stage searches, because this

constituted additional but fruitless swapping, they

were nonetheless included in the second round of

swapping so that this procedure would accurately

reflect the additional swapping that normally

would be conducted in the analysis of a matrix for

which the length of shortest trees is not known. It

should also be noted that each episode of second-

stage swapping began with a set of 50 trees that

had already been subjected to swapping during

the first stage, and that all 50 of these trees were

swapped again, as part of the larger task of

swapping through a larger set of trees. This action

also diminishes the efficiency of the two-stage

searches, but it too reflects actions that normally

are taken in a two-stage conventional search.

The results of these searches were used to cal-

culate the efficiency of two-stage searches by

summing the number of rearrangements required

for the one-stage search that generated the sets that

were subjected to additional swapping, along with

the additional searches conducted in the second

stage, and dividing the total number of sets of trees

obtained of length 16 218 by this sum. In many

cases it was not feasible to conduct second-stage

swapping on all available sets of trees of a given

length obtained from the initial one-stage analysis,

and in these cases the sets actually subjected to

second-stage swapping were selected randomly

from the available sets, and success and efficiency

rates were calculated by pro-rating the observed

results. In this manner, the efficiencies of two-stage

searches were calculated for several combinations

of settings (number of trees held during primary

and secondary searches, various percentages of

trees from the primary searches subjected to sec-

ondary swapping, and various combinations of

polytomy and ambiguity settings).

7.5.7 Preliminary analyses to estimate
optimum search conditions

After most of the one- and two-stage analyses of

zilla had been conducted, and the most efficient
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settings had been determined, we computed

excess branch-swapping ratios for the various

combinations of settings to determine if this ratio is

a useful predictor of search efficiency. Having

determined that it is, we conducted preliminary

analyses with the three-gene matrix, in most cases

involving only 10 replicate searches for each

number of trees retained, and used these results to

determine the settings for more extensive one- and

two-stage analyses.

7.6 Comparability of branch swapping
with Nona and PAUP

BB (or TBR) swapping through 10 sets of 100 most-

parsimonious trees for the zilla data set, with the

multi-thread version of Nona version 1.6, using

one thread, and with the default settings poly¼
and amb-, involved an average of ca. 9.75� 106

rearrangements to swap through each tree. TBR

swapping through 10 sets of 100 most-parsimonious

trees propagated from the same 10 starting trees

required an average of ca. 9.95� 106 rearrange-

ments per tree with PAUP version 3.1.1, and

9.74� 106 with PAUP* version 4.0b10. On the basis

of these comparisons it appears that Nona, PAUP,

and PAUP* count tree rearrangements in approxi-

mately the same manner when conducting com-

parable branch-swapping processes, or at least

those processes which constitute the bulk of the

branch swapping reported here. Hence, it appears

that the numbers reported by Nona for this overall

study can be compared directly with those repor-

ted by PAUP and PAUP*.

Comparisons of other sorts also can be made

with the analysis conducted by Rice et al. (1997).

Those authors reported that they conducted a total

of 27.9 billion tree rearrangements in the course of

eight one-stage searches with large numbers of

trees held in memory. Their searches apparently

were aborted at various stages, but the overall

average for the eight searches was ca. 3.5 billion

tree rearrangements conducted per search. For the

present analysis, an average of ca. 3.8 billion

rearrangements was required for the completion of

each one-stage search with 200 trees retained in

memory, under the default polytomy and ambi-

guity settings in Nona (Table 7.1). With these set-

tings, and with 200 trees held in memory, about

4% of all searches yielded trees of length 16 220

or shorter. Thus, there is a rough equivalence

between our results and those reported by Rice et

al., who discovered trees of length 16 220 in at least

one of their eight one-stage searches (they reported

the discovery of trees of this length, but not the

number of times that this occurred among their

eight searches).

The present analysis involved over 2.17� 1014

(i.e. 217 trillion) tree rearrangements during one-

stage searches (Table 7.1), or about 7 778 times the

number of tree rearrangements reported by Rice

et al. We also conducted 4.80� 1013 (i.e. 48 trillion)

tree rearrangements in the course of our two-

stage analyses and the various preliminary ana-

lyses of the zilla matrix (details available on

request), for a total of more than 2.65� 1014 (i.e.

265 trillion) tree rearrangements, or about 9 500

times the number reported by Rice et al. In

addition to the analysis of the zilla matrix, we

conducted 1.85� 1013 (i.e. 18.5 trillion) tree rear-

rangements with the three-gene matrix of Soltis

et al. (2000), for a total of ca. 284 trillion tree

rearrangements, or more than 10 000 times the

number reported by Rice et al.

7.7 One-stage searches

A series of one-stage searches of the zilla matrix

conducted in Nona using the default polytomy

and ambiguity settings, with various numbers of

trees held in memory, indicates that while the

number of rearrangements required per search

increases with the number of trees held in memory

(Table 7.1, Fig. 7.1a), this increase is uneven in rate.

On a log-log graph of the relationship between

these variables, the increase in tree rearrangements

required per search is greatest between 10 and 50

trees held, and between 500 and 2 000 trees held.

Similarly, the average length of trees obtained by

these searches drops most steeply in the same two

regions (Fig. 7.1b), and the greatest excess branch-

swapping ratio occurs in both of these regions,

with one peak corresponding to 50 trees held

in memory, and a secondary peak correspond-

ing to 2 000 trees held (Fig. 7.1c). Preliminary

searches conducted with alternative polytomy and
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ambiguity settings reveal the same general rela-

tionship between number of trees held in memory

and average tree length obtained (Fig. 7.1b), as well

as between the number of trees held and the

greatest excess in rearrangements required per

search (Fig. 7.1c).

The average tree length obtained should

decrease with every increase in the number of trees

held, if all other factors are constant, but this was

not always observed to be the case. For example,

the average tree length obtained with the settings

poly¼ and amb¼ was substantially greater with five

trees held than with two trees held (Fig. 7.1b). We

attribute anomalies such as these to our use of

random taxon entry sequences, in combination

with limited sample sizes. Note that the most

complete set of analyses was conducted with the

settings poly¼ and amb-, and that the only anomaly

observed for this set of analyses was in the slightly

higher average tree length obtained with 5 000

trees held than with 2 000 trees held (Table 7.1,

Fig. 7.1b); in both of these cases only 765 analyses

were conducted. Fewer replicate searches were

conducted with the alternative settings, in some

cases amounting to only a small fraction of the

number of searches conducted with poly¼ and

Table 7.1 Results of one-stage searches with various numbers of trees held in memory under various combinations of polytomy and ambiguity-of-support

settings. Bold italics identifies the two search strategies in each column that are most successful as measured by average tree length obtained, percentage

of successful searches, or search efficiency

Polytomy and

ambiguity

settings, and

number of

trees

retained

Number of

searches

Total

number

of trees

examined in

all searches

(billions)

Average

number

of trees

examined

per search

(billions)

Average

tree

length

Discovery of trees of

length 16 218

Discovery of trees of

length� 16 220

Number (and

frequency,

in percent)

of successful

searches

Number of

trees

examined

per successful

search

(billions)

Number

(and

frequency,

in percent)

of successful

searches

Number of

trees

examined

per successful

search

(billions)

poly¼, amb-

1 3 664 216.8 0.059 16 237.881 0 (—) — 0 (—) —

2 11 640 838.8 0.072 16 237.380 0 (—) — 0 (—) —

5 3 614 414.9 0.115 16 236.707 0 (—) — 0 (—) —

10 3 606 673.4 0.187 16 236.101 0 (—) — 0 (—) —

20 3 221 1 673.7 0.520 16 233.084 0 (—) — 5 (0.155) 334.7

50 3 225 5 979.6 1.854 16 227.383 4 (0.124) 1 494.9 99 (3.070) 60.4

100 3 209 8 670.1 2.702 16 226.249 4 (0.125) 2 167.5 134 (4.176) 64.7

200 3 200 12 244.0 3.826 16 226.134 3 (0.094) 4 081.3 124 (3.875) 98.7

500 2 708 19 845.6 7.329 16 225.790 4 (0.148) 4 961.4 130 (4.801) 152.7

1 000 850 14 119.7 16.611 16 224.866 5 (0.588) 2 823.9 83 (9.765) 170.1

2 000 765 31 952.1 41.767 16 222.868 20 (2.614) 1 597.6 189 (24.706) 169.1

5 000 765 55 919.6 73.098 16 222.841 14 (1.830) 3 994.3 190 (24.837) 294.3

poly¼, amb¼
50 3 224 5 218.3 1.619 16 228.978 0 (—) — 35 (1.086) 149.1

100 1 628 4 926.7 3.026 16 226.187 2 (0.123) 2 463.4 55 (3.378) 89.6

2 000 765 29 881.8 39.061 16 223.529 18 (2.353) 1 660.1 145 (18.954) 206.1

poly-, amb-

50 3 226 4 953.5 1.535 16 229.513 1 (0.031) 4 953.5 17 (0.527) 291.4

100 1 629 5 315.6 3.263 16 226.012 2 (0.123) 2 657.8 73 (4.481) 72.8

2 000 388 14 651.9 37.763 16 224.054 6 (1.546) 2 442.0 70 (18.041) 209.3

Totals 51 327 217 496 — — 83 (n/ad) — 1 349 (n/a) —

d n/a, not applicable.
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amb-, and it is in these cases that the anomalies are

most prevalent.

Although the peak excess branch-swapping ratio

with the settings poly¼ and amb- was observed

with 50 trees held in memory, as it was with the

settings poly¼ and amb¼, the peak with the settings

poly- and amb- occurred with 100 trees held in

memory (Fig. 7.1c). This difference initially was

observed among preliminary sets of searches,

but it continued to be observed after more thor-

ough sampling was conducted with both 50 and

100 trees held in memory for all three

combinations of polytomy and ambiguity settings

(Table 7.1). Additional sampling with the two non-

default combinations of polytomy and ambiguity

settings was also conducted with 2 000 trees held in

memory (Table 7.1), and comparable series of one-

stage searches therefore exist for all three of these

combinations of polytomy and ambiguity settings

with 50, 100, and 2 000 trees held during searches.

With 50 and 2 000 trees held, the success rates and

efficiencies of searches conducted with the settings

poly¼ and amb- exceeded those with the other

two combinations of settings in the discovery of
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Figure 7.1 Rearrangements required, lengths of shortest trees discovered, and excess branch-swapping ratios (see text) for one-stage searches

of the 500-terminal rbcL data set (zilla), as conducted with Nona, with various numbers of trees held in memory and with various combinations

of polytomy and ambiguity-of-support settings. Most of the results depicted represent preliminary sets of 10–20 searches with each combination of

settings, but in some cases (particularly analyses with poly¼ and amb-) the results of more-extensive searches conducted during the course of

the overall study are depicted. (a) Average number of tree rearrangements required per search with poly¼ and amb-. (b) Average tree length

discovered in each search, with all three combinations of polytomy and ambiguity settings that were examined (&, poly¼ and amb-;

*, poly¼ and amb¼; ~, poly- and amb-). (c) Excess branch-swapping ratio (key as in b).
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most-parsimonious trees (Table 7.1) and for tree

lengths up to six steps longer than most-parsimo-

nious (Fig. 7.2), though in some cases slightly

greater efficiencies were observed with other

polytomy and ambiguity settings for the discovery

of longer trees (e.g. length 16 228 with 2 000 trees

held in memory, Fig. 7.2b). With 100 trees held in

memory, success rates in the discovery of most-

parsimonious trees were nearly identical under all

three combinations of polytomy and ambiguity

settings (ca. 0.125% of searches yielded trees of this

length; Table 7.1), and similar results also were

obtained for sets of trees of greater length (Fig. 7.2).

However, the efficiency of searches conducted

with 100 trees held in memory, in the discovery of

most-parsimonious trees, was greatest with the

settings poly¼ and amb- (Table 7.1). Thus, for all

three numbers of trees held in memory that were

examined intensively, the default polytomy and

ambiguity settings in Nona yielded the greatest

efficiency in the discovery of most-parsimonious

trees (though in some cases by narrow margins),

and consequently additional analyses were

conducted only with these settings.
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Figure 7.2 Success rates and efficiencies of one-stage searches of the 500-terminal rbcL data set (zilla), as conducted with Nona with various

numbers of trees held in memory and with various combinations of polytomy and ambiguity-of-support settings. Results are depicted for searches

with 50, 100, and 2 000 trees held in memory under all three combinations of polytomy and ambiguity settings that were examined, and with

5 000 trees held in memory with the settings poly¼ and amb- (see text); results of these searches are also provided in Table 7.1. Dashed lines,

50 trees held in memory; dotted lines, 100 trees held; solid lines, 2 000 trees held; alternately dashed/dotted lines, 5 000 trees held;

*, poly¼ and amb-; &, poly¼ and amb¼; ~, poly- and amb-. (a) Success rates for all tree lengths from 16 218 to 16 228, with success defined

as the frequency of discovery of trees of a given length or shorter among the searches conducted. (b) Search efficiencies for all tree lengths from

16218 to 16228, with efficiency defined as the number of tree rearrangements required per successful search, with success for each tree length

including sets of that length and shorter.
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Comparisons of success rates and efficiency

rates of one-stage searches, in the discovery of

most-parsimonious trees and trees up to 10 steps

longer, with the settings poly¼ and amb-, and for a

range of numbers of trees held in memory, are

depicted in Fig. 7.3. The greatest efficiency of

searches occurs with 50 trees held, and the effi-

ciency of searches with 2 000 trees held is slightly

less (Table 7.1; ca. 1.5 vs. 1.6 trillion rearrange-

ments required per set of most-parsimonious

trees). Success rates of searches with 2 000 and

5 000 trees held in memory are nearly equal for all

tree lengths examined (i.e. there is a plateau

between these points; Figs 7.2a and 7.3a), but

greater efficiencies consistently are observed

with 2 000 trees held than with 5000 (Fig. 7.3).

In light of the plateau in success rates between

2 000 and 5 000, and the limited number of searches

conducted with these settings, it is not surprising

that anomalies are evident in the slightly greater

success rates obtained for length 16 218 with 2 000

trees held in memory than with 5 000 trees held

(Table 7.1, Fig. 7.3a). This anomaly is also evident

in the relative success rates for some tree lengths

greater than the most-parsimonious (e.g. lengths

16 221 and 16 222, Fig. 7.3a). With fewer than 800

searches conducted with these particular settings

(though more than 110 trillion rearrangements

were conducted in these two sets of searches), we

attribute this anomaly to the effects of random

sampling of taxon addition sequences.

As is evident from the shapes of the success

and efficiency curves in Fig. 7.3, success rates

in the discovery of trees longer than the most-

parsimonious rise unevenly with an increase in the

number of trees held, with the regions of steepest

increase between 10 and 100 trees held, and

between 500 and 2 000 trees held (Fig. 7.3a), and
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Figure 7.3 Success rates and efficiencies of one-stage searches of the 500-terminal rbcL data set (zilla), as conducted with Nona with various

numbers of trees held in memory, from 1 to 5 000, with the settings poly¼ and amb-; results from the same searches are also provided in

Table 7.1. (a) Success rates, as in Fig. 7.2. (b) Search efficiencies, as in Fig. 7.2.
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with nearly flat plateaus observed outside these

two regions.

As already noted, there are two peaks in effi-

ciency for searches yielding most-parsimonious

trees, corresponding to 50 and 2 000 trees held

(Table 7.1, Fig. 7.3b). Two peaks in efficiency are

also observed for tree lengths of 16 219 (i.e. one

step longer than the most-parsimonious; Fig. 7.3b),

with the peak for 50 trees held (ca. 214 billion

rearrangements required per set of trees) sub-

stantially higher than that for 2 000 trees held

(ca. 404 billion rearrangements). For trees of length

16 220, the peak with 2 000 trees held is nearly

absent and, for greater tree lengths it is absent.

Meanwhile, a second peak in efficiency appears

with fewer than 50 trees held in memory (e.g. for

length 16 221, there is a peak with five trees held).

This peak shifts to lower numbers of trees held

(i.e. to two and then to one) for successively longer

trees and, eventually, for trees around nine to ten

steps longer than the most-parsimonious, it sup-

plants the peak at 50 trees held, with the single

peak efficiency in the discovery of trees of length

16 228 corresponding to one tree held during

searches.

Thus, the greatest search efficiencies for trees

longer than the most-parsimonious occur with

relatively few trees held, and for most-parsimo-

nious trees the greatest search efficiency is observed

with 2 000 trees held in memory. Beyond this point

(i.e. with 5 000 trees held) individual searches are

only slightly more likely to yield most-parsimo-

nious trees, and because these searches involve

many more tree rearrangements they are sub-

stantially less efficient. Many more searches would

need to be conducted to determine with confidence

whether the most efficient searches for most-parsi-

monious trees occur with 50 or 2 000 trees held in

memory (or possibly with somewhat different

numbers of trees held). The similarity in overall

efficiency between these two settings, in contrast

with the substantially greater frequency of suc-

cessful searches with 2 000 trees held than with 50

trees held (ca. 1.8 vs. 0.12%; Table 7.1) is indicative of

the tradeoff between the number of searches con-

ducted and the intensiveness of each search.

The excess branch-swapping ratio appears to be

a reliable indicator of tree-search efficiency. With

the settings poly¼ and amb-, the peak search effi-

ciencies of one-stage searches are observed with

50 and 2 000 trees held in memory, and these are

the settings at which the greatest excess branch-

swapping ratios are observed (Fig. 7.1c). Fewer

combinations of settings were examined in depth

with alternative polytomy and support-ambiguity

settings, and the results of those analyses should

be interpreted with caution, but the excess branch-

swapping ratios are generally highest for those

settings that yielded the most efficient searches

(cf. Table 7.1, Fig. 7.1c). Thus, the amount of excess

swapping required during phase two of one-stage

searches appears to be a useful indicator of tree-

search efficiency, and it can be determined with

fewer searches conducted than are required to

discover most-parsimonious trees. This having

been said, it should be noted that the location of

the peak in the excess branch swapping ratio is of

greater importance than its height. With the set-

tings poly¼ and amb- the excess branch-swapping

ratio is substantially greater for 50 trees held in

memory than for 2 000 trees held, but the actual

search efficiencies of these settings are quite

similar in magnitude. Also, the excess branch-

swapping ratio is substantially greater with 100

trees held in memory for the settings poly- and

amb- than for poly¼ and amb-, but the latter com-

bination exhibits a greater search efficiency.

7.8 Two-stage searches

With two-stage searches, the principal settings

include the number of trees held in memory

during each of the two stages, and the percentage

of tree sets obtained during the first stage that are

subjected to additional branch swapping during

the second stage. In light of the many possible

combinations of these settings, plus the various

polytomy and support-ambiguity settings, and the

many individual searches that must be conducted

to examine the actual search efficiency with each of

the possible combinations of these settings, we

were not able to examine all possible combina-

tions. We concentrated our efforts on those com-

binations that appeared to be the most promising

on the basis of results of the one-stage searches,

and we also conducted less-intensive searches
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with a range of alternative settings to provide

preliminary indications of variation patterns in

success and efficiency rates.

Nine combinations of numbers of trees held

during the first and second stages of two-stage

searches eventually were examined in detail with

the settings poly¼ and amb- (Table 7.2, Fig. 7.4),

and one combination (50 trees held followed by

2 000 trees held) was examined with the settings

poly¼ and amb¼. In most cases, second-stage

swapping was conducted on tree sets of various

lengths that had been obtained during the one-

stage searches. However, the numbers of sets of

trees from the one-stage searches that had been

conducted with two trees held in memory (i.e.

those in the first six rows of combinations pre-

sented in Table 7.2) were insufficient to conduct

thorough two-stage analyses, so the available tree

sets obtained from the one-stage searches were

supplemented by the results of an additional series

of one-stage searches with two trees held.

Also, when only a few sets of trees of a given

length were available for second-stage branch

swapping (e.g. just seven sets of length 16 222 from

the one-stage searches with two trees held in

memory, and the settings poly¼ and amb-), they

were combined with sets of successively greater

length into a more inclusive set for examining

search success and efficiency. Hence, the shortest

tree sets subjected to second-stage swapping after

first-stage swapping with two trees held in memory

are those of length less than or equal to 16 224 (i.e.

from the most-parsimonious to six steps longer, a

category that included only 0.43% of available sets

of trees; Table 7.2), and the shortest tree sets sub-

jected to second-stage swapping after first-stage

swapping with 50 trees held in memory are those of

length less than or equal to 16 219 (Table 7.2).

As second-stage swapping proceeded on trees of

successively greater length (e.g. up to length 16 229

for tree sets derived from first-stage swapping

with two trees held in memory; Table 7.2), the

number of available tree sets for second-stage

swapping was substantially greater than the

number of tree sets of shorter length. For these

longer sets of trees, swapping was conducted only

with randomly selected tree sets from among those

that were available, and success rates and effi-

ciencies for these categories were calculated by

extrapolating from the results of these searches.

Calculations of search efficiencies for two-stage

searches took into account the rearrangements

required during the first stage of each search, the

percentage of trees available in each tree-length

category, the percentage of treeswithin each of these

categories that actually were subjected to second

stage swapping, and the number of rearrangements

required during the second stage. The latter factor

varies substantially among tree-length categories.

For example, for two-stage searches with 50

trees held during the first stage and 2 000 during

the second, with the settings poly¼ and amb-, the

average number of rearrangements required per

set of trees during the second stage was ca. 22.3

billion for those that started at length 16 219, and

ca. 33.2 billion for those that started at length

16 222. Although these numbers are substantially

different, both of them compare favorably with the

ca. 41.8 billion rearrangements required for one-

stage searches with 2 000 trees held and the same

ambiguity and polytomy settings.

Thus, when second-stage branch swapping in a

two-stage search is concentrated on a small sample

of relatively optimal trees derived from the first

stage, the number of rearrangements required per

tree set during the second stage can be small

(additional details available on request). However,

the total number of rearrangements required per set

of trees subjected to second-stage swapping also

includes the swapping that must be conducted

during the first stage to create the pool of sets of

trees for the second stage. When only a small per-

centage of the shortest tree sets obtained during the

first stage are subjected to second-stage swapping,

the swapping required during the first stage is

apportioned across a small number of sets of trees,

and therefore the total number of rearrangements

required per set (including first- and second-stage

swapping) is relatively large (Fig. 7.4a).

As the percentage of available sets of trees that are

subjected to second-stage branch swapping increa-

ses, the average number of second- stage rearran-

gements required per set increases, because trees of

successively greater lengths are now being sub-

jected to intensive swapping. However, the total

amount of branch swapping that was conducted
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Table 7.2 Results of two-stage searches with various combinations of polytomy and ambiguity-of-support settings, various numbers of trees held in memory during each stage, and various percentages

of available sets of trees from the first stage of each search subjected to branch swapping during the second stage. Bold italics in each row identifies the combination that yielded the greatest percentage

of successful searches and the combination that yielded greatest overall tree-search efficiency. Success rate is given as the percentage of second-stage searches yielding trees of length 16 218,

and efficiency as billions of trees examined per set of trees discovered of length 16 218. Numbers in parentheses give the percentage of total sets available

Number of

trees held,

stage 1/stage 2

Number of

sets swapped

in stage 2

Success rate and efficiency

Success Efficiency Success Efficiency Success Efficiency Success Efficiency Success Efficiency Success Efficiency

poly¼, amb-

� 16 224 (0.43) � 16 225 (0.92) � 16 226 (1.85) � 16 227 (3.55) � 16 228 (5.93) � 16 229 (9.07)

2/50 1 339 2.0 902.8 1.0 962.7 0.5 1 081.2 0.5 725.9 0.3 926.0 0.2 1 221.9

2/100 1 239 2.0 934.4 1.3 708.4 0.9 615.6 0.7 562.1 0.4 751.6 0.4 662.3

2/500 167 4.0 567.6 1.9 744.3 0.9 1 088.0

2/1 000 442 6.9 416.2 3.3 630.8 3.0 591.3 2.2 733.2 1.3 1 216.6 1.8 866.8

2/2 000 167 20.0 233.9 14.0 275.1 8.7 413.9

2/5 000 107 20.0 394.0 15.0 464.7

� 16 219 (0.87) � 16 220 (3.07) � 16 221 (6.51) � 16 222 (12.81)

50/1 000 214 39.3 571.8 13.4 532.0 7.2 556.6 4.4 607.5

50/2 000 214 53.6 439.4 27.9 302.2 18.3 306.1 11.7 383.8

50/5 000 128 53.6 496.9 32.4 356.4 20.5 408.8

poly¼, amb¼
� 16 219 (0.40) � 16 220 (1.09) � 16 221 (2.67) � 16 222 (6.22)

50/2 000 41 46.2 923.5 28.6 612.0 14.6 612.1 7.9 739.0



during the first stage is now apportioned among a

greater number of sets of trees that are subjected to

second-stage swapping, so the average number of

total rearrangements per tree set subjected to sec-

ond-stage swapping actually diminishes.

With increasing percentages of the available tree

sets subjected to second-stage branch swapping,

the average number of total rearrangements

required for each set approaches the average

number required for one-stage searches conducted
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Figure 7.4 Rearrangements required, success rates, and efficiencies of two-stage searches of the 500-terminal rbcL data set (zilla), as conducted

with Nona using the settings poly¼ and amb-, with various numbers of trees held in memory during each stage, and with various percentages of

tree sets from the first stage subjected to swapping during the second stage. Baseline data from comparable one-stage searches (cf. Figs 7.1–7.3,

Table 7.1) also are presented, as horizontal dotted lines through each panel, with numbers on the right indicating number of trees held;

all one-stage searches that were conducted but are not depicted in Fig.7.4b and 7.4c had lower success rates and efficiencies, respectively,

than those that are depicted. Portions of the data on two-stage searches are also presented in Table 7.2. Dashed lines, two-stage searches conducted with

50 trees held in memory during the first stage; solid lines, two-stage searches with two trees held in memory during the first stage. (a) Average

number of tree rearrangements required per set of trees subjected to two-stage search, with the number of trees held during each stage indicated in

the figure body for each set of results, and with number of trees held for baseline one-stage searches indicated on the right. (b) Success rates for

searches resulting in the discovery of trees of length 16 218, with labels as in (a). (c) Efficiencies of searches resulting in the discovery of trees of

length 16 218, with labels as in (a).
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with the same number of trees held as during the

second stage of two-stage searches, and in at least

some cases it overshoots that number and fewer

branch rearrangements are actually required (e.g.

Fig. 7.4a, in which the curve representing a two-

stage search with two trees held in memory in the

first stage and 1 000 in the second crosses the line

corresponding to a one-stage search with 1 000

trees held). The limit of this trend would occur if

second-stage branch swapping were conducted on

all tree sets derived from the first stage of a search.

For example, if a two-stage search were con-

ducted with 50 trees held during the first stage and

2 000 held during the second, and all tree sets

derived from the first stage were subjected to

second-stage swapping, the overall amount of

swapping (and the average per set swapped with

2 000 trees held) would be slightly greater than that

which is conducted during a one-stage search with

2 000 trees held, with the excess corresponding to

the 50 trees derived from each first-stage search

that are subjected to swapping a second time at the

beginning of each second-stage round of branch

swapping.

A similar relationship exists between the per-

centage of available tree sets that are subjected to

second-stage swapping and the frequency of

success in the discovery of most-parsimonious

trees. When only the shortest trees obtained by

first-stage swapping are subjected to second-stage

swapping, the percentage of tree sets that yield

most-parsimonious trees can exceed the percentage

obtained with one-stage searches by an order of

magnitude or more (Fig. 7.4b). The greatest fre-

quency of success obtained in one-stage searches,

specifically in those in which 2 000 or 5 000 trees

were retained in memory, is ca. 2% (Table 7.1,

Fig. 7.3a), while frequencies as great as 7%, 20%, and

more were obtained in two-stage searches when as

many as 12% of available tree sets were subjected to

second-stage searches, with the greatest success

rates observed when only the shortest trees

obtained during the first stage were subjected to

second-stage swapping (Table 7.2, Fig. 7.4b).

This increase in the percentage of searches

yielding most-parsimonious trees, relative to the

numbers obtained in single-stage searches, is also

evident in searches in which the greatest number

of trees held for branch swapping is as few as 50.

In two-stage searches using the default polytomy

and ambiguity settings in Nona, with two trees

held during the first stage, 50 trees held during the

second stage, and only the shortest 0.43% of

available sets of trees from the first stage subjected

to second-stage swapping (i.e. only tree sets of

length 16 224 and less), 2% of the tree sets sub-

jected to second-stage swapping yielded most-

parsimonious trees (i.e. length 16 218; Table 7.2),

while only 0.12% of single-stage searches with 50

trees held and with the same polytomy and

ambiguity settings yielded trees of this length.

In this case, the use of a two-stage search

strategy increases the success rate by a factor

greater than 16, and in other cases (e.g. with

50 trees held in the first stage, and 2 000 trees in the

second, as compared to a one-stage search with

2 000 trees held) the increase in success rate is by a

factor greater than 20.

It is evident, then, that the overall efficiency of

two-stage searches reflects a complex set of tra-

deoffs between the various factors of the search,

with a critical role played by the percentage of tree

sets obtained during the first stage that are sub-

jected to second-stage branch swapping. When

only a small percentage of the available sets is

subjected to second-stage swapping, the total

amount of swapping that is required for each of

these sets is large, because a complete accounting

of the swapping required with this approach

includes the large amount of first-stage swapping

that is required to generate each tree set that is

subjected to second-stage swapping. However, the

success rate for second-stage swapping that is

conducted on only a small percentage of the

available tree sets (i.e. the shortest trees available

from first-stage swapping) is also quite high.

These factors are integrated in the calculation

of overall search efficiencies (Table 7.2, Fig. 7.4c).

Before considering the results of particular search

strategies, a general feature of this figure should be

noted, which is that all of the two-stage searches

that were conducted were more efficient than any

of the one-stage searches. The combinations of

settings that were tested in two-stage searches

were not chosen at random, as the choice was

based on the results of one-stage searches, but on
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the basis of those results we are confident that no

combination of settings for single-stage searches

would yield results that were substantially superior

to the most efficient ones described above. Hence,

it appears that many combinations of settings for

two-stage searches, if chosen according to reason-

able criteria, will yield results that are superior to

even the most efficient one-stage searches.

Two-stage searches conducted with relatively

few trees held during the first stage (i.e. two trees),

and with relatively large numbers of trees (e.g.

2 000 or 5 000) held during the second stage exhibit

peak efficiencies when a relatively small percen-

tage of the tree sets obtained during the first stage

are subjected to second-stage swapping (Table 7.2,

Fig. 7.4c). For example, the peak efficiency for a

search with two trees held in the first stage and 500

in the second (i.e. a ‘2/500’ search) occurs when

only the most optimal 0.43% of tree sets derived

from the first stage are subjected to second-stage

searching. The peak efficiencies of 2/1 000, 2/2 000,

and 2/5 000 searches also occur when the most

optimal 0.43% of tree sets from first-stage search-

ing are subjected to second-stage searching. This

overall pattern is not surprising, because the

strategy implicit in searches of this sort is to con-

duct thorough searches on each of a very small

number of tree sets that have been examined in

only a cursory way during the first stage. Of the

various two-stage searches conducted, the most

efficient one is in this category (the 2/2 000 search)

with an efficiency of ca. 234 billion tree rearran-

gements required per set of most-parsimonious

trees obtained.

An alternative and similarly efficient strategy for

two-stage searches is to conduct relatively thor-

ough first-stage searches (i.e. with 50 trees held in

memory), and to conduct second-stage searching

on a relatively large percentage of the tree sets that

are obtained in the first stage. Among the combi-

nations that were examined, the 50/2 000 search

yielded the highest efficiency (ca. 302 billion rear-

rangements per set of most-parsimonious trees

obtained), with second-stage swapping conducted

on the most optimal 3.1% of tree sets obtained

during the first stage, and with second-stage

swapping on the most optimal 6.5% of tree sets

yielding nearly equivalent results. In searches of

this sort (including 50/1 000 and 50/5 000 sear-

ches), the first stage of branch swapping yields a

relatively large percentage of sets of most-

parsimonious and nearly most-parsimonious trees,

though at the cost of a considerable amount of

branch swapping. In light of these facts, it is not

surprising that the best results are obtained when a

relatively large percentage of these tree sets is

subjected to second-stage swapping.

It is notable that branch swapping during the

second stage of the two most efficient two-stage

searches (2/2 000 and 50/2 000) was conducted

with the same number of trees held in memory,

and that this number corresponds to one of the

two points of peak efficiency for one-stage sear-

ches (Figs 7.1 and 7.3b). With 50 trees held during

the first stage of the 50/2 000 two-stage analysis,

both settings (i.e. 50 and 2 000) correspond to the

two points of peak efficiency. For the 2/2 000

search, the greatest efficiency occurred when tree

sets of length 16 224 and shorter were subjected to

second-stage swapping (Table 7.2, Fig. 7.4c), and a

secondary point of peak efficiency for the dis-

covery of trees of this length and shorter occurs

when two trees are held in memory (Fig. 7.3b).

Thus, the two most efficient two-stage searches

utilize settings that are predicted by observed

points of peak efficiency for one-stage searches,

and two of these settings (50 and 2 000) correspond

to peaks in the excess branch-swapping ratio

(Fig. 7.1c). We note that one of the settings for the

most efficient two-stage search (i.e. two trees held)

was not predicted by the excess branch-swapping

ratio. It may be the case, however, that the most

efficient two-stage searches, even for large data

sets, often involve only cursory branch swapping

during the first stage. If so, the utility of large

numbers of such searches in identifying a few

promising starting points for second-stage branch

swapping may have more to do with breadth

of coverage (i.e. among possible taxon-entry

sequences) than with search efficiency per se.

7.9 Three-gene matrix

Preliminary analyses of the three-gene matrix,

using the same range of number of trees held in

memory as were examined with the zilla matrix
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(i.e. a range of settings from 1 through 5 000), and

the default Nona settings poly¼ and amb-, identi-

fied peaks in the excess branch-swapping ratio

corresponding to 20 and 200 trees held in memory,

with no evidence of a peak between 200 and 5 000.

When BB swapping is conducted, an average of

ca. 1.34� 107 tree rearrangements are required to

swap through a single tree, or about 1.4 times the

number required with the zilla matrix. On the basis

of the observed peaks in the excess branch swap-

ping ratio, two-stage searches with a variety of

settings were conducted, and most-parsimonious

trees were discovered eight times.

We regard the number of successful searches

sufficient to provide only a general estimate of the

optimal conditions for conducting a conventional

analysis of this matrix, and the maximum effi-

ciency obtainable by these methods, but the pre-

cision of these estimates is limited. The most

efficient two-stage searches require approximately

1.5 trillion tree rearrangements for the discovery of

each set of most-parsimonious trees, or about five

to eight times as many as are required for the zilla

matrix. This efficiency is obtained by two-stage

searches conducted with 200 trees held in memory

during the first stage, followed by second-stage

swapping, with 2 000 trees held in memory, on the

most optimal 3% of tree sets obtained during the

first stage. The preliminary analyses had suggested

a search-efficiency peak with 200 trees held in

memory, but not the apparent peak at 2 000. It is

possible that there is another peak that corre-

sponds to 5 000 trees held in memory, but we have

not conducted analyses with settings in that range.

7.10 Real time

The analyses of the zilla and three-gene matrices,

as described above, were conducted with Nona on

several different computers with a range of pro-

cessor speeds. One of these computers, a Pentium 4

with a 1.7 GHz chip speed, can conduct and

evaluate about 1.65� 106 tree rearrangements per

second. With a minimum of 2.34� 1011 rearrange-

ments required for the discovery of one set of

most-parsimonious trees (i.e. for a two-stage

2/2 000 search), this computer can discover a set

of most-parsimonious trees about once every

1.6 days. On the fastest standard desktop PCs

currently available, which have processor speeds

at least twice that of this computer, it should be

possible to discover approximately one set of

most-parsimonious trees for the zilla matrix per

day. Another computer that was used in the

present study, with a 75 MHz Pentium I chip, was

manufactured in 1994. On this computer, Nona

conducts about 8.10� 104 rearrangements per

second (about 5% of the number conducted

with the 1.7 GHz Pentium 4), and a set of most-

parsimonious trees for the zilla matrix can be dis-

covered with this computer, using conventional

search methods, about once per month. Thus, by

1997, when computers with processors about three

times as fast as the 75 MHz chip were available, as

was Nona, it was possible to discover a set of

most-parsimonious trees approximately once

every 2 weeks with the proper settings. Under

those circumstances, a year of processor time on a

conventional desktop computer would have been

sufficient to conduct a fairly thorough analysis of

the zilla matrix, including time for preliminary

analyses to determine the most efficient settings,

and afterward, for the discovery of a dozen or

more sets of most-parsimonious trees.

Why, then, did Rice et al. (1997), using a total of

about a year of processor time on three Sun

workstations, fail to discover shortest trees? We

will leave aside the matter of the search efficiency

of Nona vs. that of PAUP, and examine search

strategies. First, it is likely that Rice et al. used the

default ambiguity setting of PAUP, which closely

resembles the amb¼ setting in Nona. On the basis

of the results presented here, we would urge

investigators to use settings corresponding to the

amb- setting of Nona, in association with those

corresponding to poly¼.
Second, Rice et al. conducted one-stage searches

and, as demonstrated here, almost any two-stage

search with reasonable settings should outperform

a one-stage search. With the zilla matrix, the most

efficient two-stage searches are approximately five

times as efficient as the most efficient one-stage

searches (ca. 200–300 billion vs. ca. 1.5–1.6 trillion

rearrangements required for the discovery of one

set of most-parsimonious trees). In fact, the

exclusive reliance on one-stage searches is perhaps
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the greatest problem with the analysis of Rice et al.

As discussed below, we believe that investigators

should never rely on conventional one-stage sear-

ches when analyzing matrices for which multiple

sets of presumed shortest trees cannot be found in

a reasonable amount of time. Using currently

available hardware and software this corresponds

to matrices of ca. 150–250 taxa.

Third, Rice et al. conducted their one-stage

searches with large numbers of trees held in

memory, which allowed very few individual

searches to be conducted during the course of their

study. As demonstrated by our results, the most

efficient searches of the zilla matrix are those with

as few as 50 trees or even two trees held during the

first stage of a two-stage search, and the most

efficient one- and two-stage analyses never

involved swapping with more than 2 000 trees held

in memory.

7.11 Conclusions and recommendations

The present analysis of the 500-terminal rbcL

matrix, conducted with a variety of software set-

tings, demonstrates (unsurprisingly) that the

amount of branch swapping that is required to

complete a one-stage analysis increases with the

number of trees held in memory. However, the rate

of increase in the required amount of branch

swapping is uneven, and we have demonstrated

that the intervals in which the branch swapping

requirements ascend most steeply are those in

which the average tree length obtained descends

most steeply. The regions of greatest change in

these relationships correspond in turn to the points

at which the greatest excess branch-swapping ratios

are obtained, and these ratios are themselves pre-

dictive of peaks in search efficiency. This overall set

of relationships demonstrates that the optimal set-

tings for tree searches are those that require sub-

stantially more branch swapping than when fewer

trees are held for swapping, and hence those that

consume substantially more processor time.

Perhaps it should not be surprising that the

settings that require the greatest amount of branch

swapping are also those that are most efficient,

because the reason that these settings require so

much branch swapping is that they are successfully

discovering shorter trees, and subjecting them to

additional swapping. What might not have been

predicted, however, is that the increase in required

processor time—and tree-search efficiency—rises

so unevenly with an increase in the number of

trees retained for branch swapping. The general

significance of this phenomenon is that search

efficiencies under some software settings may

differ substantially, and in unpredictable ways,

from those obtained with what may appear to

be fairly similar settings (e.g. one-stage searches

conducted with 50 or 2 000 trees held in memory

are about three times as efficient in the discovery

of most-parsimonious trees as those conducted

with either 200 or 500 trees held; Table 7.1,

Fig. 7.3b).

This study also demonstrates that optimal set-

tings for one-stage searches are predictive to some

degree of optimal settings for two-stage searches.

This should not be surprising, since both stages of

a two-stage search are themselves one-stage sear-

ches. However, this relationship is important

because it allows a preliminary series of one-stage

searches to be predictive of optimal settings for

two-stage searches, which appear to be more effi-

cient than one-stage searches, in general, for the

analysis of large data sets. When conducting pre-

liminary one-stage analyses, searches with very

few trees held in memory (e.g. two) should be

included, because settings in this range may be

useful during the first stage of a two-stage search.

Using these various relationships, we have

discovered that the zilla matrix is quite amenable

to analysis using conventional methods. With

Nona running on a standard PC, and with

appropriately chosen software settings, a set of

most-parsimonious trees can be discovered in a

day or so of computer time. However, with

matrices substantially larger than zilla, conven-

tional searches on a single PC become impractical.

The 567-terminal three-gene matrix appears to lie

near the current limits of conventional cladistic

analysis with a single PC. Fortunately, alternative

methods such as tree fusion, tree drifting, sectorial

searches, and the parsimony ratchet are available.

On the basis of the present analysis, and our

experiences with other data sets, we believe that

conventional single-stage analyses are sufficient
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only with relatively small data sets. With a matrix

of up to 100 or perhaps 150 taxa, a good starting

point for exploratory analyses would be the

equivalent of approximately 100 one-stage analyses

with ca. 20 trees held in memory (i.e. hold/20;

mult*100 in Nona), with polytomies allowed, and

with unambiguous support required for each

dichotomous resolution (i.e. poly¼ and amb- in

Nona; if a user wishes to examine the diversity of

trees obtained under alternative polytomy or

ambiguity settings, additional branch swapping

might be conducted under those conditions after a

thorough search has been conducted using the

recommended settings). There can be no guarantee

that shortest trees have been discovered, even with

matrices this small, but if the shortest trees found

by the overall analysis are discovered by 10% or

more of the 100 searches in each set of analyses,

and if this occurs (with the same shortest tree

length discovered in each set of 100 analyses) on

repeated runs of mult*100, there is a good likeli-

hood that these are most-parsimonious trees for the

matrix. It may be advisable at that point to run a

series of additional one-stage analyses, with greater

numbers of trees held in memory (e.g. hold/50 or

hold/100), and if shorter trees are not discovered,

those that have been discovered can be accepted

provisionally as shortest trees for the matrix, but

more-extended swapping with a few of the optimal

sets obtained (i.e. limited two-stage searching) still

would be advisable. Note that this set of recom-

mendations is contingent upon the discovery of

trees of a given length by multiple individual

searches within each set of 100 one-stage searches.

If the shortest trees obtained during the initial

sets of one-stage analyses are found in only a small

percentage of the individual searches, or if the

number of taxa exceeds 150 or so and is less than

300 or so, it is advisable to consider running two-

stage searches from the outset. Because the initial

stage of a two-stage search is a series of one-stage

searches, the analysis still begins, of course, with

one-stage searches, but will not end with them.

Preliminary analyses can be conducted with the

intention of calculating excess branch-swapping

ratios or, alternatively, a minimum of several

hundred one-stage searches should be conducted,

as described in the previous paragraph, with

perhaps 2–20 trees held in memory, and with the

best 5–10% of the tree sets obtained by these

searches subjected to second-stage searching, with

five to ten times as many trees held in memory

during the second stage as were held during the

first. Results from all searches that yielded shortest

trees eventually should be combined into a single

tree file, from which duplicate trees are eliminated

(e.g. using the unique or best commands of Nona),

and an attempt to swap through all of these trees

should be made, with the goal of discovering all

most-parsimonious trees for the matrix.

With matrices of more than 200 or so taxa, any

results obtained by convenitional searches should

be verified by conducting parallel searches using

the fastest available methods, such as those

described by Nixon (1999) and Goloboff (1999);

this approach was taken by Davis et al. (2004), who

found identical sets of trees for a series of matrices

with up to 218 terminals using conventional sear-

ches as well as the parsimony ratchet.

With matrices larger than 200–250 taxa, the use

of these alternative methods should be regarded as

essential, but conventional searches also should be

conducted whenever practicable, for there appear

to be some matrices in this size range that are more

amenable to analysis by conventional methods

than by the use of the more recently developed

methods. Indeed, it should be noted that a

parsimony ratchet analysis, as implemented in

WinClada (Nixon 2002), is initiated with a short

one-stage conventional search.

Thus, optimal approaches to the analysis of large

data sets may involve successive stages in which

various methods are employed (e.g. Tehler et al.

2003), including conventional searches during

early stages (e.g. numerous one-stage searches) to

generate sets of relatively short trees that are then

subjected to additional searching using other

methods. Goloboff (1999), for example, combined

multiple search methods, and of the strategies he

tested, the most efficient searches were those that

used tree drifting and sectorial searches to produce

suboptimal trees that were then subjected to

tree fusion to produce optimal trees. A similar

strategy was used by Tehler et al. (2003), but with

their matrix the parsimony ratchet, rather than

conventional searches, tree drifting, or sectorial
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searches, was required to produce suboptimal

trees with appropriate qualities (likely a sample of

trees from multiple islands) amenable to the dis-

covery of shortest trees with tree fusion.

When only one or a few personal computers are

available, it is currently possible to discover

shortest trees for matrices with up to 500–700

terminals using conventional methods alone, over

the course of several days or a few weeks. With

larger data sets, however, the success of such an

endeavor would be questionable. Thus, conven-

tional analytical methods are useful with smaller

data sets, and with larger ones they are likely to

continue to play an important role during the

preliminary stages of searches that also invoke the

more recently developed methods.
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CHAPTER 8

Parsimony and Bayesian
phylogenetics

Pablo A. Goloboff and Diego Pol

8.1 Introduction

Methods of phylogeny reconstruction are often

divided into statistical methods (which require an

explicit model of evolution) and non-statistical

methods. Among methods with an explicit statist-

ical justification, the most widely used are the

methods of maximum likelihood, resulting from

Felsenstein’s (1973, 1981c) work, and more recently,

Bayesian phylogenetic methods based on Monte

Carlo Markov chains, following Li (1996), Mau and

Newton (1997), and Larget and Simon (1999).

The aim of a statistically based method is to

estimate tree topologies and values of possibly

relevant parameters, as well as the uncertainty

inherent in those estimations. A method that could

do that with reasonable accuracy would be

attractive indeed. It is often claimed that it is

advantageous for a method to be based on a spe-

cific evolutionary model, because that allows

incorporating into the analysis the ‘knowledge’ of

the real world embodied in the model. Bayesian

methods have become very prominent among

model-based methods, in part because of compu-

tational advantages, and in part because they

estimate the probability that a hypothesis is true,

given the observations and model assumptions.

Early work on phylogenetics suggested the desir-

ability of probabilifying the falsehood or truth of

hypotheses. This includes early papers by Farris

(1973, 1977, 1978), who later reconsidered the

question of whether phylogeny estimation is to be

viewed as a statistical problem or not, and moved

to the position that phylogenetic inference is best

viewed in non-statistical terms (Farris 1983). When

he first approached phylogeny as a statistical

problem, Farris (1973, p. 250) pointed out that the

tree to be selected ‘‘should be the most probable

tree on the basis of available data,’’ and that

(for tree T and data X) this probability (normally

called posterior probability) can be calculated with

Bayes’ Theorem:

Pr(TjX) ¼ Pr(XjT)Pr(T)
Pr(X)

where Pr(T) is the prior probability of the

tree being analyzed (i.e. the probability, a priori

of any observation, of the tree being the true one),

the factor Pr(XjT) is the likelihood of the topology

(i.e. the probability of the data, given the tree), and

the denominator Pr(X) is the prior probability of

the observed data (calculated as
P

Pr(XjT)Pr(T)
for all possible topologies). Farris (1973) noted

that because the prior probability of each tree

topology can be assumed to be the same (equal

prior probabilities are usually called a flat prior),

and because Pr(X) is fixed for the given observa-

tions, the choice, equivalent to parsimony,

depends only on the likelihood of the tree. Farris

(1973) developed a very general model, with

minimal assumptions; under that model, the most

likely tree is equivalent to the most-parsimonious

tree. In the very same issue of Systematic Zoology,

Felsenstein (1973) laid the basis for his subsequent

developments of a very different model, with

much more specific assumptions (including

assumptions of Markovian evolution and Poisson

substitution), conceived mostly as applicable to the

evolution of DNA sequences. In the approach

of Felsenstein (1981c) the values of parameters

as well as branch lengths are jointly estimated
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in order to maximize the likelihood function of

a tree.

Bayesian approaches to phylogenetics have

taken Felsenstein’s methods a step further, and

instead of producing point estimations of all

parameters to maximize the likelihood, they have

suggested integrating the likelihood across the

different possible parameter values (i.e. branch

lengths and substitution model parameters):

Pr(XjT) ¼
Z
BT

Z
F

Pr(XjT,bT ,j)f(bT ,j) djdbT

where BT is the set of possible branch lengths (bT)
of topology T, F is the set of all possible substitu-

tion parameter values (j) of the model, and f(bT,j)
is the prior distribution of these parameters. Both

Farris (1973) and Felsenstein (1973) had considered

such a type of integration desirable, but noted that

a major problem with this approach is that it

involves the calculus of a multidimensional integ-

ral for every possible topology, which is exceed-

ingly complex and computationally demanding.

In order to overcome this problem, some

researchers (e.g. Farris 1973; Hasegawa and

Kishino 1989; Smouse and Li 1989) have attempted

to compute the Bayesian posterior probability of a

topology using the parameter values that max-

imize its likelihood factor (e.g. the maximum

likelihood estimate of branch lengths). However,

this approximation (as noted by Goloboff 2003, for

the case of maximum likelihood) ignores an infinite

number of additional hypotheses that result from

alternative sets of branch lengths (or other para-

meter values) for that topology.

Others, instead, have suggested calculating the

exact probabilities, integrating the likelihood of a

topology across all possible sets of branch lengths

(e.g. Rannala and Yang 1996) or other parameters

(e.g. Sinsheimer et al. 1996). The complexity of this

procedure, however, precludes its applicability to

data sets of more than a few sequences, and

therefore these methods were hardly ever used.

8.2 Markov chain Monte Carlo

Recently, three independent groups originally

applied Markov chain Monte Carlo methods

(MCMC) to approximate the posterior probabi-

lities of trees (Li 1996; Mau 1996; Mau and Newton

1997; Yang and Rannala 1997; Larget and Simon

1999; Mau et al. 1999; Newton et al. 1999; Li et al.

2000).

The idea in a MCMC is to make computationally

feasible the integration of the posterior probabilities

across the parameters of interest (e.g. topology,

branch lengths, substitution parameters). The chain

uses a proposal mechanism, which consists of gra-

dual modifications from a starting point (ideally,

randomly chosen), and it alternatively changes

some parameter values (e.g. topology, branch

lengths, substitution parameters), stochastically

and aperiodically. These proposals or transitions

are accepted with a probability given by the

Metropolis–Hastings algorithm (Metropolis et al.

1953; Hastings 1970; see Larget and Simon 1999 or

Huelsenbeck et al. 2002 for details) and the Markov

chain proceeds until it reaches a stationary state.

If the Markov chain is irreducible (i.e. it is pos-

sible for the chain to visit every possible set of

parameters and tree topologies) its stationary state

converges to the joint posterior probability

distribution of the parameters being modified

(Tierney 1994). Thus, the frequency with which a

given topology is visited in the Markov chain

approximates its marginal posterior probability

(Mau et al. 1999). Thus, the results of MCMC are

directly interpreted in probabilistic terms; they can

estimate the probability that a particular tree is the

true tree for these sequences, conditional on the

stochastic model of substitution (Li et al. 2000).

Additionally, since the posterior probability dis-

tribution is simultaneously estimated, measures of

uncertainty can be derived from the Markov chain.

The outcome of the stationary state of the

MCMC is a set of phylogenetic trees (with their

associated parameters). In phylogenetic applica-

tions of MCMC, the relative frequency of each

topology (irrespective of branch length and sub-

stitution parameter values) is interpreted as

its posterior probability (given the stochastic

model and data). Therefore, it seems straight-

forward to take the topology with the highest

posterior probability as the point estimate of the

true topology. This was clearly recognized by

several authors (Li 1996; Rannala and Yang 1996;
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Yang and Rannala 1997; Larget and Simon 1999;

Mau et al. 1999). The estimated tree was referred to

as the maximum posterior probability (MAP) tree

by Rannala and Yang (1996).

However, the availability of the approximation

of the posterior distribution of trees also allows

the evaluation of the variability of the estimates

(e.g. topology or any other parameter integrated by

the MCMC). As noted by Mau et al. (1999), sum-

marizing the distribution of MCMC trees indeed

presents a challenge and several methods have

been proposed for such purpose.

For instance, Mau et al. (1999) and Rannala and

Yang (1996) noted that a Bayesian ‘‘credible set’’

can be obtained as the collection of topologies

having the sum of their posterior probabilities

constrained to be no less than a specified value

(e.g. 0.95). Li (1996) also considered alternative

ways to estimate the posterior probability of

the true phylogeny from the MCMC results, such

as the use of the tree that has the minimum

topological distance to the majority (e.g. 90%) of

the MCMC trees, or the use of a majority-rule

consensus of the set of topologies generated

by MCMC.

In the latter option, the frequency of the clades

has been interpreted by most Bayesian phylogen-

eticists (e.g. Huelsenbeck et al. 2002) as the pos-

terior probability that the clade is true, following

ideas of Newton et al. (1999) and Larget and Simon

(1999). These authors propose summing the pos-

terior probabilities of the trees in which each clade

of the MAP is present as a way to summarize

uncertainty in the tree topology estimate. This

approach, which sums the frequency with which a

particular clade appears in the Markov chain in

order to estimate its posterior probability, is cer-

tainly the most commonly used way to summarize

MCMC results. This approach is implemented

in available software packages (e.g. MrBayes

of Huelsenbeck and Ronquist 2001; BAMBE, of

Simon and Larget 1998), and is frequently reported

in empirical analyses using Bayesian methods.

Here we will focus on some undesirable properties

found on this frequently used option to summarize

MCMC results. Other alternative ways to sum-

marize the results are less frequently used, and

they differ from this one in depending much more

on whether the chain has succeeded in finding the

actual MAP(s). As the chain is not conceived as a

search mechanism, but instead as a sampling

mechanism, it is extremely unlikely that it will find

the individual trees of maximum a posteriori

probability, except in very small data sets.

8.3 Problems with estimations of
monophyly by MCMC

In this section, the discussion will be within the

realm of the rules and goals postulated by

defenders of model-based methods. We also have

other general concerns about model-based

methods; these reflect a viewpoint not shared by

Bayesians, and are therefore discussed in the fol-

lowing section. While the MCMC can be used to

estimate any parameter of the evolutionary pro-

cess, we are concerned here with the estimates that

are relevant for phylogenetic studies: estimations

of monophyly of groups. Other parameters, such

as transition:transversion (ts:tv) ratios, while pos-

sibly the primary interest for other evolutionary

studies, are only of secondary interest to the phy-

logeneticist. Part of the attraction of MCMC

Bayesian methods is that the values estimated for

those other parameters, such as ts:tv ratios, do not

rely on estimation of a tree topology, an advantage

for such studies which we do not dispute. How-

ever, the fact that our examples show that there are

problems when the estimations of monophyly are

carried out in a certain way suggests that estab-

lishing proper estimations from MCMC is far from

automatic, and raises concerns about the validity

of the inferences of those other parameters as well.

The most common approach to estimating

probability of monophyly of a group X is by

summing the posterior probabilities of all the trees

where group X is monophyletic. This can be done

for the groups present in the individual tree

of highest posterior probability (as proposed in

Larget and Simon 1999), or for each of the groups

found in the analysis; these options make no dif-

ference for our argument.

Huelsenbeck et al. (2002, p. 674) claimed that,

since ‘‘Bayesian inference is based on the like-

lihood function, it should inherit many of the nice

statistical properties of the maximum-likelihood
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method.’’ The ‘‘nice statistical property’’ for which

likelihood has been held superior to parsimony is,

quintessentially, statistical consistency. Statistical

consistency has been proven for maximum

likelihood, but only as a byproduct of the con-

sistent estimation of the branch lengths between

taxa (see Rogers 1997; Chang 1996; with discus-

sion in Goloboff 2003). If the tree topologies are

estimated without estimating branch lengths—

integrating branch lengths for a given tree topo-

logy, as done in the Bayesian methods—then sta-

tistical consistency might be lost (as discussed in

Goloboff 2003). And even if Bayesian analysis used

optimal branch lengths (which would slow it

down considerably), the fact that posterior prob-

abilities of individual clades are estimated from

sums of posterior probabilities of the trees having

the clade still creates problems. So, the idea that

Bayesian analysis should automatically ‘‘inherit

the nice statistical properties of maximum

likelihood’’ is no more than wishful thinking;

Bayesian analysis with MCMC involves sub-

stantial modifications to maximum-likelihood.

Estimating the posterior probability for mono-

phyly of a given group as the sum of posterior

probabilities of the trees with that group may

create serious problems, and it is easy to see why.

Imagine that there is a single tree of highest like-

lihood1, where group X is not present. Imagine

that there are many trees of a likelihood only

slightly inferior, where group X is monophyletic.

The sum of the likelihoods of the trees with the

group may exceed the likelihood of the one tree

without the group, and then the method would

conclude that the group has a relatively large

probability of being monophyletic. While there are

many situations under which such an asymmetry

could occur, some of them are surprisingly simple.

Consider the case of Fig. 8.1, a 25-taxon data set,

with taxon A having only missing entries. The data

determine a perfectly pectinate tree, except for the

placement of A. The strict consensus for these data

(analyzed with either parsimony or likelihood) is

an unresolved bush, which does express the fact

that the monophyly of no group is actually sup-

ported by the data. Note that A can float in the

skeleton tree of the remaining taxa; each of the 45

trees with alternative placements of A has exactly

the same likelihood (and thus, under a flat prior on

tree topologies, the same posterior probability).

However, of all those trees, only two (A sister to

B, or A sister to C) make the group BC non-

monophyletic; the proportion of trees with the

group BC monophyletic is thus 43/45¼ 0.955. That

is almost exactly the posterior probability for

monophylyofBC estimatedbyMrBayes (seeFig. 8.1;

values on the branches are values reported by

MrBayes, numbers above the branches are the fre-

quencies of the groups in the 45 most-parsimonious

trees). The group BCD, instead, is made non-

monophyletic by two additional locations of taxon

A, so it is monophyletic in a proportion of 41/

45¼ 0.911. As one moves towards the middle of the

tree, the proportions of locations which make the

group non-monophyletic decreases: 6/45 for group

BCDE, 8/45 for groupBCDEF, etc. Past themiddle of

the tree, the proportions start increasing again. This

is reflected almost exactly in the posterior prob-

abilities reported by MrBayes. Since this is per-

fectly expected, the proposal mechanism used by

MrBayes seems—at least for data sets as simple as

this one—to provide a sample of the tree space

adequate to estimate the sums of posterior prob-

abilities for different groups; our criticism has

nothing to do with sampling problems, but simply

with the quantity that is being estimated. The (esti-

mated) sum of posterior probabilites of the trees

with and without a group provides a measure with

no apparent utility. Using such a measure leads to

the unfounded conclusion that, even whenwhat we

know about A is nothing, we can still estimate with

some precision its placement in the tree! That loca-

tion of A is determined rather by the priors on trees,

but that means that the priors on groups are highly

unequal. That an equal prior on trees may mean an

unequal prior on groups has been discussed by

Pickett and Randle (2005); Pickett and Randle also

note that using flat priors on some aspects of

a simulation may impose non-flat priors on other

aspects. While the non-flat priors on groups

(which undoubtedly exist) influence the posterior

1 Whether the likelihood is calculated as the likelihood for

optimal branch lengths, or the sum of the likelihoods for all the

branch lengths for the given topology, makes no difference to our

argument.
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probabilities reported by MrBayes, that is only part

of the picture; the other aspect is the shape of the

likelihood landscape, which is what our examples

show.

Admittedly, the example of Fig. 8.1 is contrived

in that no worker will attempt to analyze a matrix

where a taxon is represented only by missing

entries. But the same effects may come in much

ROOT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
X AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
W GGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
V GGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
U GGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
T GGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
S GGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
R GGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Q GGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
P GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
O GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
N GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
M GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
L GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
K GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
J GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
I GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAAAAAA
H GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAAAAAA
G GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAAAAAA
F GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAAAAAA
E GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAAAAAA
D GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAA
C GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
B GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
A ????????????????????????????????????????????????????????????????????????????????????

ROOT
X

W
95 V
93 91 U
96 88 86 T

88 82 82 S
88 78 77 R

82 74 73 Q
78 69 68 P

74 64 64 O
68 59 60 A

64 55 46 N
59 52 51 M

56 55 L
50 58 60 K

54  64 64 J
58  68 68 I

64  72 73 H
69 77 77 G

73 81 82 F
78 85 86 E

82  90 91 D
87  93 95 C

92 96 B
96

Figure 8.1 A data set with a taxon (A) scored only with missing entries. No group has any actual support, since the monophyly of any group can

be violated at no cost. The numbers on the branches are the posterior probabilities of monophyly, estimated by MrBayes with 100 000 generations,

using four chains, with a sampling frequency of 100, and a ‘burn-in’ of 250 (i.e. discarding the first 25 000 generations). The numbers above the

branches indicate group frequency in the most-parsimonious (dichotomous) trees. The numbers below the branches show the bootstrap frequencies,

as calculated by PAUP* (with 100 replications, analyzing each resampled data set with a branch-and-bound solution). Tree topology corresponds to

the analysis with MrBayes.
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more subtle flavors; for example, a sub-clade of a

larger clade that can connect with different root-

ings (all with about the same likelihood) to the rest

of a tree will produce, inside the clade with an

undetermined root, the same effect observed for

Fig. 8.1. This can also happen even for groups of a

relatively large size (which non-flat priors on

groups of different sizes do not easily explain), as

in the example of Fig. 8.2, analyzed with MrBayes

under the No Common Mechanism model

(¼parsimony). Under such a model, group N–Z is

well supported by the data, and group T–Z is not:

each of the characters that might support the

monophyly of T–Z becomes an ambiguous syn-

apomorphy when taxon M is the sister group of

N–Z (so that there are trees of best fit that do not

have T–Z as monophyletic). However, this hap-

pens only when M is the sister group of N–Z; for

each of the other (numerous) possible locations of

M in the rest of the tree, the group T–Z is required

to provide the best fit to the data. The group T–Z is

present in about 91% of the most-parsimonious

trees for the data set2. Not surprisingly, MrBayes

reports unsupported group T–Z as strongly sup-

ported, with a posterior probability of 0.93.

The examples of Figs 8.1 and 8.2 were not

derived from any model, and for this reason may

perhaps be dismissed by Bayesians as being irre-

levant. But the same effect can appear even in

simulated data, where there are no violations of

the model. The easiest way to produce the effect is

to mimic the conditions of Fig. 8.1. For this, we

used as the model tree a perfectly pectinate tree, as

in Fig. 8.3, with taxa A and B forming a mono-

phyletic group at the tip of the tree, and successive

terminals appearing as successive sister groups.

All the branches in the tree had a length of

ROOT   AAAAAAAAAA AAAAA
A      AAAAAAAAAA AAAAA
B      AAAAAAAAAA AAAAA
C      AAAAAAAAAA AAAAA
D      AAAAAAAAAA AAAAA
E      AAAAAAAAAA AAAAA
F      AAAAAAAAAA AAAAA
G      AAAAAAAAAA AAAAA
H      AAAAAAAAAA AAAAA
I      AAAAAAAAAA AAAAA
J      AAAAAAAAAA AAAAA
K      AAAAAAAAAA AAAAA
L      AAAAAAAAAA AAAAA
M      AAAAAAAAAA GGGGG
N      GGGGGGGGGG AAAAA
O      GGGGGGGGGG AAAAA
P      GGGGGGGGGG AAAAA
Q      GGGGGGGGGG AAAAA
R      GGGGGGGGGG AAAAA
S      GGGGGGGGGG AAAAA
T      GGGGGGGGGG GGGGG
U      GGGGGGGGGG GGGGG
V      GGGGGGGGGG GGGGG
W      GGGGGGGGGG GGGGG
X      GGGGGGGGGG GGGGG
Y      GGGGGGGGGG GGGGG
Z      GGGGGGGGGG GGGGG

Figure 8.2 A data set with a group (T–Z) unsupported but found in

many optimal trees, and thus with a high estimated posterior probability.

See text for details.

2 We calculated the frequency of group T–Z in most-

parsimonious trees by taking a pseudo-random sample of 1 000

most-parsimonious trees. We generated each by a Wagner tree

where both the insertion and addition sequenceswere randomized

(as implemented in TNT; Goloboff et al. 2004), followed by tree

bisection and reconnection (TBR) branch swapping. Randomiz-

ing the insertion sequence means that, for each taxon to be added

to form the Wagner tree, the pre-existing locations to insert the

new taxon are tried in a random order; this eliminates bias in tree

shapes in the resulting Wagner trees for poorly informative data.

B

C

D

E

F

G

H

I

J

0.744

3.00

0.883

0.799

0.769

0.03

A

Figure 8.3 Tree shape used in the simulations (results reported in

Fig. 8.4). Data were generated for trees with different numbers of taxa,

using a Jukes–Cantor model. All branches were of length 0.03, except the

branch leading to A, with a length of 3.0. The simulations generated

1 000 characters each. MrBayes analyses used 50 000 generations, with

three chains, sampling every 50 generations, and a burn-in of 250 (i.e.

discarding the first 12 500 generations). The posterior probabilities are

shown for four incorrect groups (for 50 taxa, average posterior probability

for 20 replications); note that the posterior probabilities decrease towards

the middle of the tree, just as in Fig. 8.1.
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0.03 (thus, a probability of no change along the

branch of 0.978; we used a Jukes–Cantor model),

except for the branch leading to taxon A, which

was very long (with a length of 3; that is, a prob-

ability of no change of 0.287). The model tree was

used to generate simulated data sets, with 1 000

characters, for different numbers of taxa. Since A

has a very long branch, it connects to the rest of the

tree with about the same likelihood at every pos-

sible location. The effect is therefore the same as

that of Fig. 8.1. In most of the simulations,

MrBayes reports a high posterior probablity that

the group BC is monophyletic, which is in fact

false. The estimated probability of monophyly of

the wrong group BC actually increases with the

number of taxa, since then the alternative locations

of A that make a significant contribution to the

sum of posterior probabilities for group BC also

increases. Because there is significant variability in

different simulated data sets, we used 20 replica-

tions for each of 5, 10, 20, 30, 40 and 50 taxa. The

results are shown in Fig. 8.4. While there is of

course some sampling error in our measurements,

the trends evident in Fig. 8.4 make it clear that the

high posterior probability attributed to the wrong

groups (often over 0.90) is not the effect of sam-

pling error or lack of convergence in the chains. As

the number of taxa increases, so does the apparent

confidence on the false groups (the more so for the

smaller groups), while the confidence on the true

groups decreases (the more so for the smaller

groups). Whereas the reference to smaller and

larger groups makes sense in these examples, with

pectinate trees, this does not mean that MCMC

analysis will in general favor groups of a given

size; the problem arises because of the relative

differences in likelihood (¼posterior probabilities,

since we used a flat prior on trees) of those trees

with and without each group, and this effect could

potentially happen for groups of any size. These

results could possibly derive as well from viola-

tions of the model, or from examining data for

several genes where some of the taxa have not

been sequenced for all the genes.

The examples are not intended to be realistic,

but they show unequivocally that the estimations

of posterior probabilities of individual groups may

lead to grossly mistaken conclusions, and in real

cases such an effect can easily be confounded by

other factors. For the simulated examples, a taxon
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Figure 8.4 Results for the simulations, using the model tree shown in Fig. 8.3, for different numbers of taxa. As the number of taxa increases, so

does the estimated posterior probability of the false groups (BC, BCD, etc.), the more so the smaller the group. All the averages reported correspond

to 20 replications for each number of taxa.
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with a branch as long as the branch leading to A

cannot be confidently placed anywhere in the tree;

every location will have roughly the same fit. The

most serious problem faced by Bayesian analysis is

not that it places A in some definite location (i.e.

in the middle of the tree), but rather that it leads

one to conclude that there is a very high prob-

ability that A is not placed as sister to B, which is

the one true placement. A proper method should

recognize, in cases like Fig. 8.3, that no conclusion

is possible. Note that our criticism of Bayesian

analysis, in this case, is not equivalent to Siddall’s

(1998) criticism of likelihood; Siddall (1998) criti-

cized likelihood because in his simulations it

separated long branches that were in fact sisters;

Swofford et al. (2001) showed in their reply that,

while likelihood indeed separates long sister

branches (for small numbers of characters), the

likelihoods of the alternative trees that place those

long branches together is only slightly inferior, so

that the maximum likelihood analysis actually

implies that no decision is possible. That is not the

case for the Bayesian results; they attribute a high

probability to false groups that should at least be

recognized as ambiguous.

8.4 Potential problems of the
statistical approach

Statistically justified, model-based approaches to

phylogeny have come to dominate the field in the

last decade, but many authors still feel that those

model-based justifications miss the mark. The

controversy, not surprisingly, has often involved

criticism and even misrepresentation from both

sides. Among the topics on which the debate has

centered are the questions of statistical consist-

ency, the complexity of the evolutionary models

used, the possible empirical basis of the evolu-

tionary models on which the inferences are to

be based, and whether epistemological consi-

derations support the use of specific models of

evolution.

The issue of consistency has been discussed

mostly in relation to the likelihood vs. parsimony

controversy (Steel et al. 1993; Siddall 1998; Farris

1999; Swofford et al. 2001). We consider that con-

sistency, since it is relevant, at best, only under

unrealistic conditions (i.e. infinite, or at least mas-

sive amounts of data evolving under the same

model3, with a perfect fit to the model), is not a

very relevant property at the time of deciding

among possible methods of phylogenetic infer-

ence. Even some statistically inclined phylogen-

eticists hold this point of view (e.g. Kim 1996;

Sanderson and Kim 2000). The focus of this chap-

ter is on Bayesian methods: Bayesians, with their

claim that Bayesian analysis, being based on like-

lihood methods, should inherit the ‘‘nice statistical

properties’’ of likelihood (see above), have adhered

(implicitly, at least) to the notion that consistency

is desirable. However, as we show later, the only

feasible implementation of Bayesian phylogenetic

analyses is likely to suffer from inconsistency.

The complexity of the inferential models used

has also appeared in the likelihood vs. parsimony

controversy. Although several likelihoodists

(Goldman 1990; Steel and Penny 2000; Lewis 2001)

had suggested that parsimony requires estimation

of many more parameters than maximum

likelihood, Goloboff (2003) reconsidered the pro-

blem and concluded that, if anything, parsimony

requires estimation of fewer parameters than tra-

ditional maximum likelihood methods (a similar

conclusion had been reached by Farris 1986, p. 22).

Bayesian phylogenetic methods could in theory

integrate uncertainty in some parameters during

the MCMC (thus not requiring ‘estimation’ of

those parameters). The problem is that the para-

meter space to be explored then becomes more

complex, so that the chain would have to be run

for much longer to insure convergence and an

adequate sampling.

Finally, the epistemological questions about

using evolutionary models and their empirical

basis are perhaps the problems that have been less

openly discussed in the literature. Several authors

have presented the controversy in terms of which

of the two approaches can be justified under Karl

3 Note that we say here ‘‘under the same model.’’ While it is

true that current-day techniques allow sampling of very long

DNA sequences, the chances of all the sites still obeying to the

same model decrease as the sequences become longer and

include different genes or gene regions (as pointed out by Pol

and Siddall 2001). The amount of data available for a given model

will always be in the order of a few kilobases.
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Popper’s philosophy (Popper 1968). Most notable

among recent philosophical defenses of model-

based approaches is perhaps the paper by de

Queiroz and Poe (2003). They argue that parsi-

mony can be justified as a Popperian approach

only by reference to specific models of evolution.

de Queiroz and Poe (2003) say that it is not true

that characters provide falsifiers of phylogenies

(which Farris 1983 had used to characterize phylo-

genetic hypotheses as falsifiable), because a phy-

logeny cannot per se make impossible any

particular character distribution. de Queiroz and

Poe (2003) argue that, having disposed of other

possible justifications, the only way to falsify a

phylogeny is to show that it is less probable than

its rival, and that parsimony can only be justified

as Popperian if coupled with specific evolutionary

models that specify those probabilities. But

de Queiroz and Poe (2003) have not actually dis-

posed of other possible justifications: they present

only part of Farris’ arguments. Farris (1983) had

made it clear that no character could provide

absolute falsification, and that the relationship

between falsifier and hypothesis is purely logical.

That is, if a given apparent character-state homo-

logy between two taxa is truly due to common

ancestry, then it follows that a phylogeny that

places them apart is truly false. Contra de Queiroz

and Poe (2003), a strictly logical justification of

parsimony, made without reference to a specific

evolutionary model, is possible. Probabilistic

models are necessary only to interpret the results

of a parsimony analysis probabilistically; they are

unnecessary otherwise.

The question of whether some apparent homo-

logies are more probably truly homologous than

others only enters the picture when we accept

statistical justification and specificmodels. Contrary

to some defenders of parsimony (e.g. Siddall and

Kluge, 1997; Kluge 1997, 2001; Kluge, Chapter 2 of

this volume), we do not argue that such a type of

justification is philosophically and intrinsically

flawed. Our concerns have to do with common

sense, more than with philosophy. If one knew

with certainty that sequence evolution is driven

exclusively by a reduced set of parameters,

and that those parameters remain very stable

over time, then model-based methods of phylo-

geny reconstruction would be perfectly justified.

Using those model-based methods would have

the advantage that they make it possible to

provide measures of uncertainty with a direct

interpretation.

The alternative is considering that sequence

evolution is driven by too many parameters, which

may change too much over time, and that the

samples (of sequences) we may expect to ever

obtain are far below what could reasonably allow

accurate inferences. Of course no one expects

inferences that are 100% error-free; but the prob-

lem is how much is too much. Philosophical

positions aside, many people who use parsimony

place themselves at the ‘too much’ side of the

scale, and tend to think that the probabilities estim-

ated by using specific models are likely to be so far

off that there is no point in trying to consider the

results in terms of real probabilities. All we can

expect is to simply provide the best explanation of

the data, and it is best to remain silent about the

probability of the resulting hypothesis being true.

When de Queiroz and Poe (2003) claim that par-

simony can be justified only by reference to some

specific model, they mean ‘‘parsimony as a statis-

tical method can be justified only by reference to

some specific model,’’ which is true in itself, but

then most proponents of parsimony do not view

parsimony as attempting to provide the tree with

the highest posterior probability: any attempt

to provide a figure representing an actual prob-

ability, in the case of a process as complex as

phylogeny, is no more reliable than a guess4. In

this sense, the number of things that model-based

methods try to estimate (statistically speaking) is

much greater, and then it is natural that research-

ers with no previous experience in the field are

attracted by estimation methods which are appar-

ently omnipotent.

To some extent, the two aims—providing the

best possible rationalization of the data by means

of a phylogeny, or providing the best statistical

4 Measures of support such as the Bremer support (Bremer

1994; Goloboff and Farris 2001) or resampling (Farris et al. 1996;

Goloboff et al. 2003b) are often interpreted as somehow measur-

ing the truth content of the hypothesis, but this is not correct: all

they measure is how much evidence supports the hypothesis.

156 P AR S IMONY , P HY LOGENY , AND GENOM I C S



estimation of the phylogeny—are both defensible

in their own right. The difference is not only

regarding whether a probabilistic model forms the

basis for inferences or not; the difference is also

about how the results are to be interpreted. Which

aim a particular worker prefers and pursues may

depend on many factors, actual personal interests,

or even peer pressure, among others. But, fashions

in science aside, the decision of whether using

phylogenetic methods based either on models or

pure logic depends also to a good extent on the

dose of skepticism the researcher holds. Several

defenders of model-based methods (e.g. Swofford

et al. 2001) have suggested that, in different fields

of science, the first approach is based on intuitive

methods and that, as the field becomes mature,

explicit statistical justifications replace the original

intuitive ones. This claim is not strictly true (or

testable, at least), and it is presented as if somehow

the current use of statistically justified methods

was evidence of maturity—when the alternative

interpretation, namely that the use of statistical

methods in phylogenetics is still premature and

unjustified, may be much more reasonable to some

workers. But how is one to decide whether the field

is mature enough, or whether our knowledge of

the mechanisms of evolution is detailed enough, to

justify using those models? The answer to this

need not be an all-or-none answer; there is instead

a gray area between those who believe that our

ignorance of evolutionary mechanisms is almost

total (a view which some supporters of parsimony

seem to hold), and those who believe that our

knowledge is so complete as to guarantee even the

most detailed inferences (as some likelihoodists

and Bayesians seem to believe). At what particular

point of this scale a particular worker finds him-

self/herself will depend on how he/she resolves a

large number of subtle issues; such a decision

requires reason and logic, but it cannot be

accomplished with a statistical test. This, of course,

is not to say that anything goes; for example, a

model-based method that may produce incorrect

estimations—even without violations of the model

from which it is derived—is clearly to be avoided.

Such is the case with estimations of posterior

probabilities of monophyly by MCMC, as we have

already seen.

Furthermore, whether the data can be modeled

reasonably will depend on the nature of the data.

While a Poisson model of substitution seems reas-

onable for some types of DNA sequence data, it

seems unfounded to apply such a model to mor-

phological data (although it has been attempted,

by Lewis 2001). It is unfounded because there is

very little ground to think that all characters of the

given organisms have about the same probability

of changing along a given branch of a tree, and

that alternative states in morphological characters

are like units turned on and off. Some vertebrates

have mammary glands, and some arthropods have

chelicerae, but within a given group of tetrapods,

who could claim that the chances of gaining

mamary glands are the same as—or even com-

parable to—the chances of gaining chelicerae? For

genomic data, which include so many different

types of transformations (insertions, deletions,

translocations, inversions, etc.), postulating reas-

onable models is also very difficult or impossible.

Therefore, for these types of data, only the parsi-

mony aproach has been used so far (starting from

Sankoff and Blanchette 1998), for no other

approach seems reasonable. Even the simplest

case, insertions/deletions, presents a serious chal-

lenge to modeling; although some programs (like

POY; Wheeler et al. 2003) have implemented

‘‘maximum likelihood models’’ for insertions/

deletions; these Poisson ‘‘models’’ are based sim-

ply on attributing some probability to an insertion

as a function of other parameters (like branch

‘‘length’’). Wheeler et al. (personal communica-

tion5) present the likelihood methods in POY as

‘‘interpretive tools, without any necessary rela-

tionships to the actual process of change in nat-

ure.’’ They point out themselves that this has a

meaning quite different from the use of Poisson

models in DNA sequences: in those models, a base

that is to replace another one exists outside the

sequence and therefore, given a certain chance of

replication error, there is a certain chance for

each possible base to be inserted. Thus, Poisson

5 Wheeler, W., Aagesen, L., Arango, C., Faivovich, J., Grant, T.,

D’Haese, C., Janies, D., Smith, W., Varon, A. and Giribet, G.

(unpublished manuscript). Dynamic Homology and Phylogenetic

Systematics: A Unified Approach using POY.
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substitution models are based on more than just

attributing arbitrary probabilities of change to

events; the probabilities postulated by those

models are based on some knowledge of the

mechanisms that govern the process of DNA

substitution, at least in the absence of selection and

constraints (whether the model is factually correct,

of course, is a different matter, but it is plausible

and coherent in itself). Gaps, on the other hand, are

not units to be incorporated into a string of DNA

being synthesized. A Poisson model for gaps,

while it seems natural given the widespread use of

Poisson models for DNA substitutions, may be

totally inadequate. Other likelihood ‘models’ of

insertions/deletions (e.g. Thorne et al. 1992; Miklós

et al. 2004; see De Laet, Chapter 6 in this volume,

for comments on these) do not use Poisson models,

but still are based on arbitrarily assigning prob-

abilities to the possible events. In those models, the

final probability is no more real than are the fig-

ures obtained by parsimony analysis. On the other

hand, analyzing sequences of unequal length by

prealigning them and then discarding positions

with gaps (a practice common among like-

lihoodists, and Bayesians) is probably even more

inadequate, so that we are again in a situation

where probabilities cannot really be assigned

meaningfully. Much the same can be said of other

types of chromosomal rearrangement.

8.5 Discussion

Strictly speaking, our simulations do not demon-

strate that the estimations of posterior probabilities

of individual groups produced by MrBayes are

inconsistent. That would require either running

data sets with infinite numbers of characters, or an

analytical treatment of the multidimensional integ-

ral across all possible trees. Neither of those is

possible. Admittedly, in cases like our simulations,

as the number of characters increases, the difference

in likelihood between the correct and alternative

placements of the long branch increases. Eventually

this difference might be so great as to make the

likelihood of the individual best placement of the

long branch (the correct one) higher than the sum of

the likelihoods of the alternative (wrong) place-

ments. However, as the number of taxa increases,

this situation becomes less and less likely, for the

sum of likelihoods of the alternative placements

increases as well. So, it is hard to predict what

would happen for infinite numbers of characters in

cases with very large numbers of taxa. However,

even if there is the potential for Bayesian estima-

tions of monophyly to provide correct topological

estimations for infinite numbers of characters, there

is still the problem that Bayesian analysis claims to

do much more than simply producing consistent

estimations: it also claims to measure the degree of

support of the conclusions, in a statistical sense.

Our examples show that it does not.

Several recent papers (Suzuki et al. 2002; Alfaro

et al. 2003; Cummings et al. 2003) have compared

bootstrap and clade credibility values. In terms of

the problem discussed above, some of those com-

parisons could never have been very informative,

despite large amounts of computational effort. For

example, the study of Cummings et al. (2003) used

over 15 years of CPU time, but examined only data

sets with four taxa. The problems pointed out here

with Bayesian analyses can arise only with larger

numbers of taxa, so Cummings et al.’s effort could

never have led to discovery of those problems.

Moreover, even for larger numbers of taxa, the

problem pointed out here could not have been

discovered by comparing posterior probabilities

with the bootstrap values produced by PAUP* (the

program used in essentially all published com-

parisons between bootstrap and Bayesian cred-

ibilities; Swofford 2002). When bootstrapping or

jacknifing, in the case of multiple trees for a

resampled matrix, PAUP* weights each group

found according to its frequency. This produces

exactly the same results as summing posterior

probabilities of monophyly: groups that are very

frequent in optimal or quasi-optimal trees always

appear as highly supported, regardless of their

actual support. Fig. 8.1 shows, below the branches,

the bootstrap values estimated by PAUP*; they

are almost exactly the same as Bayesian estimates.

The relative (although not universal) agreement

between bootstrap and Bayesian estimations has

been taken as mutual confirmation, but in fact

MrBayes and PAUP*’s implementation of boot-

strapping and jacknifing share similar biases.

Alternative implementations of resampling
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methods (such as the one in TNT; see Goloboff

et al. 2004) avoid this problem by producing the

strict consensus for each resampled matrix.

What happens with other ways to summarize

the results of a MCMC? As noted above, they

depend on whether the chain succeeded in finding

the individual trees of highest posterior prob-

ability. For larger numbers of taxa, it is extremely

unlikely that the chain will ever pass through the

optimal tree(s), let alone pass through the optimal

tree(s) enough times to estimate their posterior

probability with any accuracy. Although tree

bisection reconnection (TBR) forms the basis for

both tree search and MCMC algorithms, rearrange-

ments leading to worse trees are often accepted

under MCMC, while they are normally rejected in

a tree search. For equivalent numbers of rearrange-

ments, then, a tree search (specially one combining

different algorithms, like the methods in TNT; see

Goloboff 1999, for details) is much more likely than

a MCMC to find an optimal tree. Even if MCMC

and a tree search had the same chances of finding

an optimal tree for the same number of rearran-

gements, the numbers of rearrangements required

to find optimal trees during a search cannot ever

be achieved in Bayesian analyses. For example, in

the case of a relatively small matrix of 84 taxa

(from Goloboff 1995), TNT requires at least 5–10

million rearrangements to produce the first hit to

minimum length. For Chase et al.’s (1993) data

set (zilla, 500 taxa), it takes TNT an average of

about 500 million rearrangements to find an

optimal tree for the first time6; for the 854 taxa

used in Goloboff (1999), it takes about 5 000 million

rearrangements (about 18 min in an 800 MHz

machine). Running 5 000 000 000 generations of a

MCMC is impossible (in practical terms).

Suppose anyway that the chain succeeds in

finding the trees of maximum a posteriori prob-

ability a certain number of times. The posterior

probability of each individual tree will thus be

negligible (the more so the more taxa are included

in the analysis). In our view, such a low posterior

probability is perfectly reasonable, and illustra-

tes the fact that the statistical significance of

phylogenetic conclusions cannot be meaningfully

assessed in real cases. But statistically minded

phylogeneticists will likely show continued inter-

est in making probabilities more robust, i.e. in

producing more ‘acceptable’ values. The alter-

native is to identify a credible set of trees. A strict

consensus of the credible set of trees may contain

exclusively well-supported groups, but only to the

extent that the chain was run for long enough to

find some trees that are relatively close to optimal

trees. For the simulations carried out here (small

numbers of taxa, very clean data without viola-

tions of the model, chains quickly converging),

credibility sets of 90% still display, in many

cases, false groups. Only running very large

numbers of generations would avoid that problem,

but in the case of larger data sets this will be

impossible.
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CHAPTER 9

Maximum parsimony and the
phylogenetic information in
multistate characters

Mike Steel and David Penny

9.1 Introduction

In this chapter we investigate some of the statist-

ical issues that surround the maximum parsimony

(MP) method. Such issues have long been of

interest, since the pioneering work of Farris (1973)

and Felsenstein (1978). The latter was particularly

interested in the question of statistical consistency:

would MP select a correct tree under a simple

finite-state Markov model, as the number of char-

acters became large? Although much more is now

known about the (necessary and sufficient) condi-

tions for this to occur there is still a lot that isn’t.

More recently, there has also been interest in other

types of statistical questions. For example, when

will MP and maximum likelihood (ML) select the

same tree on any given data, and under what sort

of model(s) is MP an ML method?

This chapter considers this last question, and

describes some new sufficient conditions for such

an equivalence. We are particularly interested here

in settings that involve a large state space. Tra-

ditionally most of the biological studies involving

MP have involved a state space that is small

(typically 2 or 4 or 20) and fixed (independent of

the number of taxa). Indeed much standard soft-

ware for parsimony (including PAUP*) appears to

have problems dealing with a state space that has

size of more than (say) 64. However increasingly

there is interest in genomic characters such as

gene order where the underlying state space may

be very large (Rokas and Holland 2000; Moret et al.

2001, 2002; Gallut and Barriel 2002). For example,

the order of k genes in a signed circular genome

can take any of 2k(k� 1)! values. In these models

whenever there is a change of state—for example

a re-shuffling of genes by a random inversion (of

a consecutive subsequence of genes)—it is likely

that the resulting state (gene arrangement) is a

unique evolutionary event, arising for the first

time in the evolution of the genes under study. At

this point the reader may object that the observed

number of states in such a situation can never

exceed the number n of extant species and so this

is the only bound that matters. However when we

come to investigate the stochastic properties of MP

under simple models of state transition, it is the

potential rather than the observed number of

states that is important. Having a large state space

allows for a low level of predicted homoplasy,

leading to one of the links we report below

between MP and ML.

A related central question we consider in this

chapter is how many characters are needed to

unambiguously recover a phylogenetic tree? We

consider this both for random models of state

transition, and in the deterministic setting. We also

consider the question of when, on a fixed tree, we

can expect the most-parsimonious reconstruction

of a character to correspond exactly with its actual

evolution.

This chapter is organized so the first three

sections are largely ‘model-free’ (beyond

the assumption of evolution on a tree), and the

remaining three sections are based on simple

Markov models of character evolution. We begin

by recalling some background and definitions that
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are required to state our results, and by reviewing

some basic combinatorial properties of MP.

9.2 Preliminaries

Throughout this chapter, X will denote a set of n

extant species or individuals. A character (on X, over

a set R of character states) is any function w from X

into some finite set R. Throughout this chapter, we

let r denote the size of R. Suppose we have a tree

T¼ (V,E). We say that T is a tree on X if X is a

subset of V, and all vertices of T of degree 1 or 2

are contained in X. If, in addition, X is precisely

the set of leaves of T we say that T is a phylogenetic

X-tree, and if, furthermore, every vertex of T has

degree 3 we say that T is fully resolved. Two phylo-

genetic X-trees are regarded as equivalent if the

identity mapping from X to X induces a graph

isomorphism between the two trees. Further

background and mathematical details concerning

phylogenetic trees can be found in Semple and

Steel (2003).

The MP method for reconstructing a tree on X

from a collection of characters on X can be

described as follows.

Suppose we have a tree T¼ (V,E) on X, and a

character w :X!R. A function �ww : V ! R is said to

be an extension of w since it describes an assignment

of states to all the vertices of T that agrees with the

states that w stipulates at the leaves.

Let ch(�ww,T) :¼ j e¼ u,vf g[Ef : �ww(u) 6¼ �ww(v)gj. Given
a character w :X!R, the parsimony score of w on T,

is defined by

l(w,T) :¼ min
�ww:V!R, �wwjX¼w

ch(�ww,T)f g

where �wwjX denotes the restriction of �ww to X. A map

�ww that extends w and which minimizes ch(�ww, T) is
called a minimal extension (or most-parsimonious

extension) of w on T. Let

h(w,T) ¼ l(w,T)� jw(X)j þ 1

be the homoplasy of w on T. By necessity, h(w,T)� 0

and when h(w,T)¼ 0 we say that w is homoplasy-free

on T. This condition is exactly equivalent to a

statement that, informally, says the following:

regardless of where T is rooted, one can evolve

states down the tree (from the root to the leaves) in

such a way that (1) the leaf states are specified by w
and (2) there is no convergent or reverse evolution

(for a more formal rendition of this equivalence,

see Semple and Steel 2002).

Suppose we are given a sequence C ¼ (w1, . . . , wk)
of characters on X. The parsimony score of C on T,

denoted l(C, T), is defined by

l(C,T) :¼
Xk
i¼1

l(wi,T)

Any tree T on X that minimizes l(C,T) is said to be a

maximum parsimony (MP) tree for C, and the cor-

responding l-value is the parsimony or MP score of

C, denoted l(C). Similarly, we may define

h(C,T) :¼
Xk
i¼1

h(wi,T)

the total homoplasy of C on T, and the tree(s) on X

that minimize h are precisely the MP trees (since

h(C,T) ¼ l(C,T)þ constant, where the constant

depends on C and not T). This minimal value of h

we write as h(C).
As is well known, the problem of finding an MP

tree for C is computationally intractable (NP-hard),

as shown by Foulds and Graham (1982). One might

therefore ask for a more reasonable goal. For

example, is it possible to determine splits that are

shared by all (or some) MP trees? One sufficient

condition that allows for the identification of such

splits was described recently by David Bryant, and

can be stated as follows (from Bryant 2003,

Lemma B6). Recall that two binary characters are

compatible if there exists a tree T on which they are

both homoplasy-free (this is equivalent to the con-

dition that at most three (of the four possible) pairs

of states are assigned by these two characters).

Proposition 9.2.1. Suppose C ¼ (w1, . . . , wk) is any

sequence of binary characters on X. Let w be

any nontrivial binary character that is compatible

with all the characters in C. Then there exists an

MP tree T for C that contains the X-split defined by

w. Furthermore, if w is one of the characters in C
then every MP tree for C contains the X-split

defined by w.
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9.2.1 Bounds on the MP score of data

For a single character w : X ! R it is easily shown

that

min
T

l(w,T)f g ¼ jw(X)j � 1 (1)

and that

max
T

l(w,T)f g ¼ j(X)j �m (2)

where m is the largest number of species in X

that are assigned the same state (formally

m¼max{ j w�1(a) j : a [R}). In (1) and (2) T ranges

over all phylogenetic X-trees (or, equivalently,

over all fully resolved phylogenetic X-trees).

For a collection C of characters it is also useful to

determine lower bounds on l(C). We first recall an

easily computed lower bound. Form a graph by

taking X as the set of vertices, and placing an edge

between each pair of vertices (this produces the

‘complete graph on X’). Weight each edge {x, y}

by the number of characters f in C for which

f(x) 6¼ f(y), then construct a minimum-length-

spanning tree for this graph. This last task can

be accomplished using one of the well-known

polynomial-time techniques, such as Kruskal’s

algorithm or Prim’s algorithm. Let L(C) denote the

sum of the weights of the edges in this tree. Then,

l(C) � 1
2L(C): Furthermore, the factor of 1

2 is

(asymptotically) optimal for a lower bound based

on this approach due to Foulds (1984); however by

adopting a more complex polynomial-time

approach a slightly better approximation to l(C) is
possible (see Prömel and Steger 2000). Here we

describe a quite different type of lower bound,

which has the advantage of coinciding with l(C)
when the homoplasy h(C) is zero (in contrast to the

minimum-length-spanning tree bound, which does

not have this property in general).

Let F be a family of subsets of {1, . . . , k} with the

property that each number 1, 2, . . . , k appears in

the same number of sets from F . In this case we

say that F is uniformly covering. Let n(F ), or

more briefly n, denote this number of sets from

F that each number appears in (formally,

n(F ) ¼ j S [F : j [ Sf gj for each j [ {1, . . . , k}). One

natural example of such a family is the collection

F p of all subsets of {1, . . . , k} of fixed size

p (i.e. F p :¼ S � 1, . . . , kf g: jSj ¼ pf g), for which

n(F p) ¼ k�1
p�1
� �

. A second class of examples is where

F is a partition of {1, . . . , k} into nonoverlapping

subsets in which case n(F ) ¼ 1.

Given a sequence C ¼ (w1, . . . , wk) of characters

on X, and a set S � 1, � � � , kf g, let CS ¼ (wj : j [S)
and let

hF :¼
X
S[F

h(Cs)

The following result extends the ‘partition theorem’

of Hendy et al. (1980).

Proposition 9.2.2. Let F be a uniformly covering

family F of subsets of {1, . . . , k}, let C be a sequence

of characters. Then,

h(C) � 1

n(F ) h
F

Proof. Let T0 denote an MP tree for C, and

let h0(j) :¼ h(wj,T0). For S � 1, . . . , kf g, let

h0(Cs) :¼
P

j [ Sh
0(j). Thus, h0(Cs) � h(Cs) and so

h(C) ¼
Xk
j¼1

h0(j) ¼ 1

n(F )
X
S [F

h0(Cs) � 1

n(F )
X
S [F

h(Cs)

¼ 1

n(F ) h
F

where the second equality is justified by the

identity:

X
S [F

h0(Cs) ¼
X
S [F

X
j [ s

h0(j) ¼
Xk
j¼1

X
S:j [S

h0(j)

¼
Xk
j¼1

n(F )h0(j)

For applications one would construct a family F
of (small) subsets of X that cover each element of X

the same number of times, and compute h(CS) for
each small subset. As a special case, if we take

F ¼ F (2) (so that n¼ k� 1) and note that h(CS) � 1

whenever CS is incompatible, then we obtain the

following bound for any collection C ¼ (w1, . . . , wk)
of characters:

l(C) �
Xk
i¼1

(jwi(X)j � 1)þ In(C)

k� 1
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where In(C) is the number of pairs of characters in

C that are incompatible. The ‘partition theorem’

from Hendy et al. (1980), which states that if F is a

partition of {1, . . . , k} then l(C) �PS [F l(CS), also

follows directly from Proposition 9.2.2.

Note that the requirement of Proposition 9.2.2

that F covers each element of X the same number

of times can be weakened by adopting a linear

programming approach. That is, if we let h be

the minimal value of
Pk

i¼1 xi subject to the linear

inequality constraints, xi� 0 for all i¼ 1, . . . , k,

and
P

j [S xj � h(CS) for all S [F , then clearly

l(C) �Pk
i¼1 (jwi(X)j � 1)þ h.

9.3 How phylogenetically informative
is a single r-state character?

In this section we consider the question of to how

to quantify the phylogenetic information a single

r-state character carries (a priori, without regard to

other characters, or to the character’s fit on an

existing tree). Let w :X!R be a character. One

measure of the phylogenetic information content

of w, based on compatibility, is the following:

I(w) ¼ �log (p(w)) (3)

where p(w) is the proportion of fully resolved

phylogenetic X-trees for which w is homoplasy-

free. For example, if w assigns the same state to all

species in X or, at the other extreme, a separate

state to each species in X then I(w)¼ 0, as we

should expect, since every such character is

homoplasy-free on all trees.

A measure of phylogenetic content is only useful

if it can be readily computed. For the measure I

described in (3) it might seem tempting to

approximate this quantity by simulation: simply

generate fully resolved trees at random and count

what proportion of them allow w to be homoplasy-

free. However this turns out to be generally

impractical once X becomes large, for the obvious

reason: even if you simulate a huge number of

large trees at random, it is likely that few if any

of them will provide a homoplasy-free fit for w.
Fortunately it turns out that I can be easily

computed by a simple exact formula, and without

recourse to simulations. That such a formula exists

is truly remarkable, and is due to a little-known

but nontrivial result from Carter et al. (1980).

Using straightforward algebra one can easily

derive the following result from Theorem 2 of that

paper.

Proposition 9.3.1. Suppose that a character w
partitions a set of n species into classes of size

a1, a2, . . . , ar. Then

I(w) ¼
Xn�rþ1
j¼3

(1� bj) log (2j� 3)

where bj¼ j {i : ai� j} j .
For example, consider a character w that partitions

20 species into classes of size 6, 4, 4, 3, 2, and 1.

Then

I(w) ¼� 3 log (3)� 2 log (5)þ log (11)þ log (13)

þ � � � þ log (27)

In this example, b3¼ 4 (giving rise to the

� 3(¼ 1� b3) multiplier for log(3)), b4¼ 3,

b5¼ b6¼ 1, and bj¼ 0 for j> 6.

Proposition 9.3.1 may be useful for deciding how

to construct and select between possible character

codings, for example for genomic data. Ideally we

would like I(w) to be as large as possible, and

achieving this may assist in tuning certain coding

procedures. Further aspects of this information

measure have also been explored recently using

simulations by Dezulian and Steel (2004). At this

point we will simply note an interesting con-

sequence of Proposition 9.3.1. Firstly, if we fix r,

the number of classes that X is partitioned into,

then I(w) is largest when all of the classes have

(approximately) the same size. Let Imax(n, r) be this

largest value of I(w) over all characters w that par-

tition a set of size n into r non-empty sets. We may

ask how this quantity varies as a function of r.

Clearly if r¼ 1 or r¼ n then Imax(n, r)¼ 0. Con-

sequently, there is some intermediate value,

between r¼ 1 and r¼ n, where Imax(n, r) is largest.

A plot of Imax(120, r) is shown in Fig. 9.1. Under the

I measure, the most informative character for
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n¼ 120 is one that partitions the taxa into 24

groups, each of size 5.

Other measures of the informativeness of a

character are possible and have been proposed; for

example, following Farris (1989), one can consider

the difference

d(w) ¼ max
T
fl(w,T)g �min

T
fl(w,T)g

where the terms on the right-hand side of this last

equation are given by (1) and (2). Note that if, as

above, we fix r, the number of classes that X is

partitioned into by w, then d(w) is largest when all

of the classes have (approximately) the same size.

Let dmax(n, r) be this largest value of d(w) over all

characters w that partition a set of size n into r non-

empty sets. We may ask how this quantity varies

as a function of r. Clearly if r¼ 1 or r¼ n then, as

with the measure based on I, we have dmax(n, r)¼ 0.

Note that if r divides n, then applying (1) and (2)

gives

dmax(n, r) ¼ n(1� 1

r
)� rþ 1

Maximizing this expression for r we find the

maximal value of this expression as r varies (over

the real numbers) occurs precisely when r ¼ ffiffiffi
n
p

.

For the example discussed above with n¼ 120 the

character that maximizes d partitions the taxa into

fewer groups (namely 10 or 12) than the 24-fold

partition that maximizes I.

9.3.1 Coding gene order as multistate
character data

It is instructive to consider the types of genomic

data for which we may expect, simultaneously,

both low homoplasy due to a large state space, and

yet phylogenetically informative characters.

For gene-order data, one approach (that has been

called ‘‘maximum parsimony on multistate encod-

ings’’) was proposed by Bryant (2000) and tested by

Wang et al. (2002). Suppose one has n genomes. We

will take these to be circular, and consider the genes

as signed (oriented) and we will suppose that the

genomes have been edited so that each of them

contains the set of N genes, which we can label 1, 2,

. . . , N. A circular gene ordering then can be regar-

ded as a signed circular permutation, for example (1,

� 4, � 3, � 2) (which is equivalent to (� 4, � 3, � 2,

1) or to (4, � 1, 2, 3), etc.). The coding procedure

considered by Bryant (2000) andWang et al. (2002) is

based on the observation that each gene order

induces a sequence of length 2N by considering the

gene that immediately follows each given gene in

either direction. Given a collection of genomes, this

allows one to define a sequence of characters w1, . . . ,
w2N (on a state space of size 2N) as follows. For each i

between 1 and N, set wi(j)¼	 k if 	k immediately

follows gene i in genome j; and for each i between

Nþ 1 and 2N, wi(j)¼	k if 	k immediately follows

gene— in genome j. For example, for j¼ (1, � 4, � 3,

� 2) the sequence (wi(j) : i ¼ 1, 2, . . . , 8) is (� 4, 3, 4,

� 1, 2, 1, � 2, � 3).

The method of Gallut and Barriel (2002) has a

similar flavor. In their approach each gene is

associated with the (unordered) pair of genes that

appear on either side of it. Thus if there are

n genomes, each consisting of N genes, then this

coding method produces N characters that have a

state space of size N
2

� �
.

Other methods of coding are also possible, and

these are currently being investigated (Dezulian

and Steel, unpublished work).

9.4 The smallest number of multistate
characters required for tree
reconstruction

In this section we consider two related questions:

given a fully resolved phylogenetic tree T with
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Figure 9.1 Distribution of �log of the number of fully resolved

phylogenetic trees on 120 species for a homoplasy-free character that

partitions the species into r equally sized sets.
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n leaves, what is the smallest possible number of

characters for which (1) T is the unique MP phyl-

ogenetic tree for these characters, and (2) T is the

unique phylogenetic tree for which the characters

have no homoplasy? If we call these two numbers,

respectively, n1(T) and n2(T) it is clear that

n1(T)� n2(T). It might be expected that both these

quantities would grow with the size of the tree, yet

it has recently been shown that this is not so,

provided no bound is placed on the size of the

state space. More precisely, we have the following

result, from Huber et al. (2002).

Theorem 9.4.1. For any fully resolved phylogen-

etic tree T, on any number of species, the quantities

n1(T) and n2(T) are at most 4.

When a bound is placed on the size of the state

space, then an elementary counting argument

shows that both n1(T) and n2(T) cannot be bounded

by any fixed number that is independent of the

number n of leaves of T. This begs the question:

how fast must n1(T) and n2(T) grow with n? In the

case of binary characters it is well known that

n2(T) ¼ n� 3

since every one of the n� 3 interior edges of the

fully resolved tree T must be distinguished by at

least one of the binary characters. Furthermore, for

r-state characters, it was shown by Semple and

Steel (2002) that

n2(T) � n� 3

r� 1

and it seems that this bound is fairly close to the

true value. The behavior of n1(T) has received less

investigation, and consequently little is known

about how large n1(T) might be. However the

following result shows that n1(T) must grow at

least logarithmically with n (at least for some trees).

Proposition 9.4.2. For any given state space size

r, there is a positive constant c such that for each n

there exists a fully resolved phylogenetic tree T

with n leaves, for which n1(T)� c � log(n).

Proof. Suppose that to each fully resolved phylo-

genetic X-tree T we can associate a sequences CT of

k characters on X for which T is the unique MP

phylogenetic tree. Then the number B(n) of fully

resolved phylogenetic trees on a set of size n must

be less or equal to the number of sequences of k

characters on a set of n species. This latter number

is rnk where n¼ jX j , which we may rewrite as

enk log(r). Now B(n) ¼Qn
i¼3 (2i� 5) and it can be

shown (using Stirling’s approximation for n!) that

for a constant b> 0 we have B(n)> ebn log(n).

Thus B(n)� rnk implies that k� c logn where c¼
b/log(r). This completes the proof.

It seems plausible that this lower bound on n1(T)

is not too far from the true value, even for binary

characters, and so we offer the following.

Conjecture 9.4.3. There exists a constant c> 0 such

that, for any fully resolved phylogenetic tree T,

there exists a sequence of at most bc � log (n)c
binary characters on X for which T is the unique

MP phylogenetic tree, where n denotes as usual

the number of leaves of T.

Proposition 9.2.1 places interesting constraints on

the sorts of sequences of characters that this last

conjecture requires. Namely, any split that is not in

T must be incompatible with at least one of the (at

most) c � log(n) characters in the collection promised

by the conjecture. Can such a small set of binary

characters be incompatible with virtually all

other binary characters? We end this section by

describing a result that shows that this is indeed

possible. The proof is given in Appendix 9.1.

Proposition 9.4.4. There exists a set C of log2(n)

binary characters on a set X of size n(¼ 2k) with the

following property: any binary character on X that

is compatible with every character in C is a trivial

character.

A further interesting feature of the type of data sets

that would be required to verify Conjecture 9.4.3

is that many of the characters would need to

have large homoplasy values on the tree T. The

effectiveness of such data sets in recovering trees is

in line with recent observations by Källersjö et al.

(1999).

9.4.1 Reconstructing ancestral states

In the previous section we considered the question

of defining a tree using parsimony. Now we

will consider the analogous question for the
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‘small parsimony’ (i.e. fixed-tree) problem. Given a

phylogenetic tree X-tree, T, and a character

w : X!R that has evolved on T, when are the

states that were present at the ancestral vertices of

the tree identical to the most-parsimonious recon-

struction? We will present a sufficient condition

(on the evolution of the character) that guarantees

the historical accuracy of the ancestral-state

reconstructions. Essentially this sufficient condition

is that substitutions that occur are ‘well-separated’

in the tree (that is, they do not occur too close to

each other in the tree). Apart from its intrinsic

interest, this result will also be useful later in pro-

viding a limiting Poisson distribution for the par-

simony score of a tree, under low substitution rates.

Theorem 9.4.5. Suppose that T is a phylogenetic

X-tree, and consider the assignment of states

w : V(T)! R corresponding to the evolution of

some character on T. Let w ¼ wjX be the observed

states on the extant set of species (leaves of T).

Suppose furthermore that the evolution of the

character is such that any two edges of T on which

a net transition occurs are separated by at least

three other edges of T. Then w is a minimal

extension of w on T; moreover it is the only min-

imal extension of w on T.

Proof. Suppose that T is a phylogenetic X-tree, and

w : V(T)! R. Suppose furthermore that for any

two edges {u, v} and {u 0, v 0} for which w(u) 6¼ w(v)
and w(u0) 6¼ w(v0) there are at least three other edges

separating {u, v} and {u 0, v 0}. Let w ¼ wjX. Then we

claim that w is the unique minimal extension of w
on T. To establish this claim, let w0 be a minimal

extension of w on T; we will show that for each

vertex v of T we have w0(v) ¼ w(v).
Let us root tree T on vertex v and direct all the

edges of T away from v. For any vertex u in this

rooted tree, let S(u) denote the set of states

assigned to u by applying the first pass of the

Fitch–Hartigan algorithm (Fitch 1971; Hartigan

1973) to the pair (T, w). We will establish the fol-

lowing. Claim: suppose that u is an internal vertex

of T and that v1, v2, . . . vk are the vertices of T that

are immediate descendents of u. Then

S(u) ¼ fw(v1), w(v2)g, if k ¼ 2 and w(v1) 6¼ w(v2)
fw(u)g, otherwise

�

The proof of this claim is by induction on the

height h of u (i.e. h is the number of edges separ-

ating u from a most distant descendant leaf). When

h¼ 1 the claim holds, since the assumption on w
implies that all but at most one (of the two or

more) descendant leaves of u has the same state

under w. Suppose the claim holds for all internal

vertices of height h and that u has height hþ 1.

By the assumption on w one of the following

two cases applies: (i) w(vi) ¼ w(u) for all i [ {1, . . . ,k};

(ii) w(vi) ¼ w(u) for all but at most one i.

In case (i), we may apply the induction

hypothesis to the vertices v1, . . . vk which each have

height at most h. It follows that w(u) [ S(vi) for all i.
Furthermore there is at most one vertex vi for

which S(vi) 6¼ fw(u)g since if there were two such

vertices, then we would obtain two edges on

which w changes state, yet which are separated

by only two edges in T. Consequently, by the

Fitch–Hartigan recursion we deduce that

S(u) ¼ fw(u)g.
Consider now case (ii). We may suppose that

w(v1) 6¼ w(u). Consider first the case where k> 2.

Applying the induction hypothesis to v1, . . . , vk and

invoking the assumption on w we have that

S(v1) ¼ fw(v1)g, and for all i> 1 we have

S(vi) ¼ fw(u)g. It now follows by the Fitch–

Hartigan recursion (remembering that k> 2) that

S(u) ¼ fw(u)g. Thus we have established the

second part of the claim. It remains to consider the

other possibility for case (ii), namely k¼ 2. Again

we apply the induction hypothesis on v1, v2
and invoke the assumption on w to deduce

that S(v1) ¼ fw(v1)g and S(v2) ¼ fw(v2)g; hence

S(u) ¼ fw(v1), w(v2)g, as required to justify the

claim.

Now let us take u¼ v, the vertex we have

selected as our putative root for T. Since T is a

phylogenetic tree, v has degree at least three, so by

the claim we have S(v) ¼ fw(v)g. However, since v

is the root of the tree for the recursion, S(v) is

precisely the set of states that can occur at v across

all possible minimal extensions of w on T (Hartigan

1973). Thus we have shown that all such minimal

extensions (in particular w0) assign vertex v the

state as that specified by w. Since we can repeat this

argument for any vertex v in T the theorem now

follows.
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Note that Theorem 9.4.5 is no longer true if we

weaken the edge-separation requirement from

three edges to two. For example, consider the tree

and character w shown in Fig. 9.2. Then the

extension w of w defined by making substitutions

precisely on the five (bold) edges incident with

leaves in state 0 as indicated in Fig. 9.2 is not a

minimal extension of w, even though each pair of

bold edges is separated by at least two other edges.

For this example, the minimal extension

is provided by assigning state 0 to all the interior

vertices of the tree. Note also that an ancestral-

state reconstruction satisfying the requirements

of Theorem 9.4.5 is not necessarily the ‘true’

reconstruction, it is merely the unique most-

parsimonious reconstruction. Nevertheless, as we

will see in the next section (Proposition 9.5.1),

certain stochastic models of character evolution

imply that this unique most-parsimonious recon-

struction is also likely to be historically accurate,

provided the substitution probabilities are uni-

formly small.

9.5 The Poisson model

In this section and the next we consider the sim-

plest tree-based model for the evolution of char-

acters with state space R, which we will refer to

here simply as the Poisson model on R (with para-

meters (T, p)). In this model, we have a tree T on X,

select any element x0 [X as a reference vertex, and

direct all edges of T away from x0. We will regard

the value from R assigned to vertex x0 as being

given (it would make little difference to the argu-

ments below if we allowed the state at x0 to

be random). The model assigns states from

R recursively to the remaining vertices of the tree

according to the following scheme: if e¼ {u, v} is an

edge of T directed from u to v and u has been

assigned state a, then, with probability 1� p(e) we

assign v state a, otherwise, with probability p(e) we

select uniformly at random one of the other r� 1

states (different to a) and assign this state to v. The

assignments are made independently across edges,

and the value p(e) is called the substitution prob-

ability associated with edge e. It is natural to con-

strain p(e) to lie in the interval 0, r�1
r

	 

; the reason

for the upper bound is that, if we realise this

model by a continuous-time Markov process, the

probability of a net substitution over any period of

time is always less than r�1
r . We will say that the

mapping e ! p(e) is admissible if the p(e) values all

lie within this allowed interval.

When r¼ 4, this model is essentially the same as

what is often referred to as the Jukes–Cantor

model. For general values of r, this model was

investigated in 1970 by Jerzy Neyman (1971), and

has more recently been studied by Paul Lewis

(2001) as a starting framework for likelihood ana-

lysis for certain morphological characters. This

model has been christened in the bioinformatics

literature under a variety of titles, including

the Neyman r-state model and the r-state

Jukes–Cantor model.

Given the pair (T, p) where T¼ (V, E) is a tree on

X, and p is an admissible assignment of transition

probabilities, and given a map w : V ! R, let

Pr(wjT, p) denote the probability that the vertices in

T take values specified by w under the Poisson

model on R with parameters (T, p). More formally,

Pr(wjT, p) ¼ Pr( \v [V�fx0g fZ(v) ¼ w(v)g), where Z(v)
is the random variable state assigned to v under the

model. By the assumptions of the model, we have

Pr(wjT,p)¼
Y

fu,vg[E:w(u) 6¼w(v)

p(e)

r�1

Y
fu,vg[E:w(u)¼w(v)

(1�p(e))

(4)

For any character w :X ! R, let

Pr(wjT, p) ¼
X
w [ c(w)

Pr(wjT, p)

where c(w) ¼ fw : V ! R : wjX ¼ wg.

1 0 0 1 0 01 1

0

Figure 9.2 Example showing that two-edge separation does not

suffice for Theorem 9.4.5.
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9.5.1 Distribution of the parsimony score

Theorem 9.4.5 has the following consequence for

the (limiting) distribution of the parsimony score

of a character under the Poisson model.

Proposition 9.5.1. Consider a process on a fully

resolved phylogenetic tree T with n leaves, and let

h ¼ maxfp(e) : e [Eg ffiffiffi
n
p

and

m ¼
X

e [E(T)

p(e)

Generate a character w by this process on T and let w
denote the states at all the vertices of T. Then,

for small values of h, the most-parsimonious

reconstruction of w is likely to be both unique and

historically accurate, and the parsimony score

L ¼ l(w,T) of a character w generated by this process

on T is closely approximated by a Poisson dis-

tribution with mean m. More precisely, for any value

of hwe have (i) Pr[w is the unique MP reconstruction

of w on T]� 1� 28h2, (ii) jPr(L ¼ k)� e�m mk

k! j < 32h2,

and (iii) S1k¼0jPr(L ¼ k)� e�m mk

k! j < 60h2.

To illustrate this result, suppose that a fully

resolved phylogenetic X-tree has n¼ 10 000 leaves,

and the substitution probability p(e) on each edge

is (say) 2� 10� 4. In this case we can take

h¼ 2� 10� 2, and so we may approximate L
closely by a Poisson distribution with mean 4.

Notice that, in Proposition 9.5.1, a small value of

h does not necessarily imply a small value for m if

the number of leaves in the tree T is large.

Proof of Proposition 9.5.1

Let A be the event that substitutions occur on some

pair of edges that are separated by two or fewer

edges. The number of ordered pairs of edges that

are separated by two or fewer edges is at most

(2n� 3) � (4þ 8þ 16) since (2n� 3) is the number

of edges of T and since (4þ 8þ 16) bounds

the number of edges of T that are separated by 0, 1

or 2 other edges from any given edge of T.

Thus the number of unordered pairs of edges

that are separated by two or fewer edges is at

most 1
2 � (2n� 3) � (4þ 8þ 16)< 28n, and so, by the

Bonferroni inequality,

Pr(A) < 28n � hffiffiffi
n
p
� �2

� 28h2 (5)

which, together with Theorem 9.4.5 establishes

part (i).

Let L� denote the random number of edges of T

on which there is a substitution. Thus L � L�, and
L� has a limiting Poisson distribution since it is the

sum of an increasing (with n) number of inde-

pendent 0/1 random variables, where the

probability that each variable takes the value 1

converges to 0 (with n). Moreover, Le Cam’s

inequality (Le Cam 1960) gives

X1
k¼0
jPr(L� ¼ k)� e�m

mk

k!
j < 2

X
e

p(e)2 (6)

By the law of total probability,

Pr(L ¼ k) ¼Pr(L ¼ kjAc)Pr(Ac)

þ Pr(L ¼ kjA)Pr(A) (7)

and

Pr(L� ¼ k) ¼Pr(L� ¼ kjAc)Pr(Ac)

þ Pr(L� ¼ kjA)Pr(A) (8)

where Ac is the complementary event of A.

Now, conditional on the event Ac, Theorem 9.4.5

guarantees that L ¼ L� (with probability 1); that is,

Pr(L ¼ kjAc) ¼ Pr(L� ¼ kjAc). Applying this iden-

tity to (7) and (8) gives

jPr(L ¼ k)� Pr(L� ¼ k)j ¼ jPr(L ¼ kjA)
� Pr(L� ¼ kjA)jPr(A) � Pr(A) < 28h2

where the last inequality is from (5). Furthermore,

(6) implies that

jPr(L� ¼ k)� e�m
mk

k!
j < 4h2

Combining these last two inequalities gives

jPr(L ¼ k)� e�m
mk

k!
j < 32h2
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which establishes part (ii). Similarly,

X1
k¼0
jPr(L ¼ k)� Pr(L� ¼ k)j

�
X1
k¼0
jPr(L ¼ kjA)� Pr(L� ¼ kjA)jPr(A)

� 2Pr(A) < 56h2

from which part (iii) now follows.

9.6 Links between MP and ML

Given a sequence C ¼ (w1, . . . , wk) of characters on

X, we put

Pr(CjT, p) ¼
Yk
i¼1

Pr(wijT, p),

L(TjC) ¼ sup
p

(Pr(CjT, p)),

Pr(CjT, p)mp ¼
Yk
i¼1

max (Pr(wijT, p)jwi [ c(i))

Lmp(TjC) ¼ sup
p

(Pr(CjT, p)mp)

where the supremum is taken over all admissible

choices of p and cðiÞ ¼ cðwiÞ is the set of extensions

of wi to V. Note that Pr(CjT, p) is the probability of

generating the k characters by independent and

identical evolution under a Poisson model with

parameters (T, p).

Similarly one has analogous definitions for the

‘no common mechanism’ Poisson model, in which

each character evolves independently under a

Poisson model on R but where p in the parameter

pair (T, p) for this model takes admissible values

that are permitted to vary freely between the

characters. Specifically, let

Pr(CjT, (p1, . . ., pk)) ¼
Yk
i¼1

Pr(wijT, pi)

and

Lncm(TjC) ¼ sup
(p1,..., pk)

(Pr(CjT, (p1, . . ., pk)))

where the supremum is taken over all k-tuples

(p1,. . .,pk) where each pi is admissible.

Recall that L(TjC) and Lncm are referred to as the

maximum (average) likelihood or ML score, and

Lmp(TjC) as the most-parsimonious likelihood or MPL

score, of T given C (cf. Barry and Hartigan 1987;

Steel and Penny 2000).

The distinction between these two forms of

likelihood is as follows: the ML score of T is the

largest probability (over all admissible choices of

substitition probabilities p) of generating the

observed sequence of characters at the leaves of T

but without specifying or conditioning on any

particular assignment of sequences of characters

at the interior vertices of the tree (these are

effectively ‘averaged over’). In contrast the MPL

score of T is the largest probability (over all

admissible choices of substitution probabilities p)

of generating any particular assignment of

sequence of characters to all the vertices of the

tree, so that the sequences assigned to the tips are

the observed sequences.

A tree T on X is said to be an ML tree or

an MPL tree for C if L(TjC) � L(T0jC) or Lmp(TjC) �
Lmp(T0jC), respectively, holds for all other trees T 0

on X. The problem of finding an MPL tree given

only C was recently shown to be NP-hard by

Addario-Berry et al. (2004) (where the method is

referred to as ‘‘ancestral maximum likelihood’’,).

Finding an MP tree from C is also NP-hard (Foulds

and Graham 1982); most likely so too is the prob-

lem of finding an ML tree for C.
We say that an MP, ML, or MPL tree for C is

irreducible if we cannot collapse any edge of T to

obtain another such tree for C.
We now describe three links between two tree

reconstruction methods, one of which (ML) is

based explicitly on an underlying Markov model

for the evolution of characters on a tree (the

Poisson model), while the other method—MP—is

based solely on a minimality principle.

9.6.1 Link 1: no common mechanism and an
extension

MP is an ML estimator for phylogenetic trees under

the ‘no common mechanism’ model described

above. In particular, a tree T maximizes Lncm(TjC)
precisely if T is an MP tree for C. This result, estab-
lished in Tuffley and Steel (1997), extended the result
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for r¼ 2 that was described by Penny et al. (1994).

Here we describe a further slight extension of this

result where we allow the size of the state space of

the Poisson model to vary from character to char-

acter. In this case it can be shown that a weighted

form of MP is an ML estimator for a phylogenetic

tree under the ‘no common mechanism’ model.

First recall that character-weighted parsimony is

directly analogous to standard MP; given a

sequence (w1, . . . , wk) of characters and a weighting

function w: {1, . . . , k} ! R � 0 we simply replace

l(C,T) by its weighted version lw(C,T) ¼
Sk
i¼1w(i)l(wi,T). We then have the following result.

Theorem 9.6.1. Suppose C ¼ (w1, . . . , wk) are

characters on X. Consider the model in which all

characters evolve independently on a phylogenetic

tree T and that each character wi evolves according
to some Poisson model on a state space of size ri
according to admissible edge parameters that are

free to vary from character to character. Then the

(average) ML method ranks phylogenetic trees on

X in exactly the same order as the weighted MP

method provided that each character wi is assigned
weight log(ri).

Proof. The proof relies on a key result from Tuffley

and Steel (1997): for any character w :X ! R, and

any phylogenetic X-tree T 0 we have

sup
p0

Pr(wjT0, p0) ¼ r�l(w,T
0) (9)

where the supremum is over all admissible p 0.
Consequently,

Lncm(T
0jC) ¼

Yk
i¼1

r�l(wi,T
0)

i

¼ exp (�
Xk
i¼1

log (ri)l(wi,T
0))

¼ exp (�lw(C,T0))

where w is the character weight function defined

by w(i)¼ log(ri). Consequently the tree(s) T 0 that
maximize Lncm(T0jC) are precisely the tree(s) that

minimize lw(C,T), as claimed.

Note that if the size (ri) of the state space for

character wi is unknown for some or all values of i,

then in an ML framework we might optimize these

variables (ri) subject to the obvious constraint

that ri� j wi(X) j . In that case Theorem 9.6.1 holds if

we replace the character weight log(ri) by

log( j wi(X) j ).

9.6.2 Link 2: large state space

In this section, we describe a quite different link

between MP and ML. In contrast to the afore-

mentioned link we consider here the ‘common

mechanism’ setting for which the two methods are

in general quite different, since they may select

different trees (Felsenstein 1973). However when

the number of states is sufficiently large, then once

again ML trees are always MP trees. As we will see

this may be relevant to the use of certain genomic

data (such as gene order) for inferring phylo-

genies, as in this case the underlying state space

may be very large. The proof of the following

result—which also relies on the identity (9)—can

be found in Steel and Penny (2004).

Theorem 9.6.2. Suppose C ¼ (w1, w2, . . . , wk) is a

sequence of k characters on X over a state space R

of size r � 4nk. Under the model in which the

characters evolve independently according to the

same Poisson model on R, any ML tree for C is an

MP tree for C.

9.6.3 Link 3: dense sampling of sequences

Let S¼ {S1, S2, . . . ,Sn} be a collection of aligned

sequences of length k on r� 2 states. Equivalently,

we may view S as a sequence CS ¼ (w1, . . . , wk)
where wi is an r-state character on X. If we

write Si as Si(l), . . . Si(k), then Si(l) ¼ wl(i) for

all i [ {1, . . . , n} and l [ {1, . . . , k}. Let dH denote

the Hamming metric on S, defined by setting

dH(Si, Sj)¼ j {l: Si(l) 6¼ Sj(l)} j . We will suppose that

the sequences in S are distinct: that is, dH(Si, Sj)> 0

for all i 6¼ j. Let GS be the graph with vertex set S
and with an edge connecting any two sequences

that differ in exactly one coordinate. Equivalently,

GS ¼ (S, E) where

E ¼ f(Si, Sj) : dH(Si, Sj) ¼ 1g
In the context of molecular genetics, GS is the

‘haplotype graph’ described, for example, in
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Excoffier and Smouse (1994). We say that S is

ample if GS is connected. It is easily shown that if S
is an ample collection of sequences then the set of

spanning trees of GS (i.e. the trees in GS on vertex

set S) is precisely the set of irreducible MP trees for

CS . Consequently, CS has MP score n� 1.

Theorem 9.6.3 below implies that when S is

ample, then any spanning tree for CS is also an

MPL tree for CS under this model. That is, we

cannot improve the MPL score by introducing

additional ‘Steiner points’ (hypothetical ancestral

sequences). As an aside, this result provides

another case where a particular instance of an

NP-hard problem (namely that described

by Addario-Berry et al. 2004) has a simple,

polynomial-time solution. We note also that the

Buneman complex (Buneman 1971) or, equival-

ently, the median network Bandelt et al. (1995) of a

collection of X-splits provides natural examples of

ample sets of sequences. The proof of the following

result can be found in Steel and Penny (2004).

Theorem 9.6.3. Suppose that S is ample. Then,

under the model in which the characters evolve

independently under the same Poisson model on

R, the MP trees and the MPL trees for CS coincide.
Furthermore, the MPL value is given by

Lmp(TjCS) ¼ 1

k(r� 1)
(1� 1

k
)k�1

� �n�1

where k is the length of the sequences, and r is the

size of the state space.

9.7 More general models; the probability
of homoplasy-free evolution

In this section we investigate a more general class

of Markov processes than the simple Poisson

model. For these models we ask the question of

how likely it is that a character has evolved with-

out homoplasy. This question has been invest-

igated for the two-state Poisson model (and pairs of

taxa) by Chang and Kim (1996). Here we consider

more general processes on a larger state space, and

for many taxa. Consequently we obtain bounds

rather than the exact expressions that are possible

in the simpler setting of Chang and Kim (1996).

To introduce the more general class of Markov

processes, we note that many processes involving

simple reversible models of change can be mod-

eled by a random walk on a regular graph. To

explain this connection, suppose there are certain

‘elementary moves’ that can transform each state

into some ‘neighboring’ states. In this way we can

construct a graph from the state space, by placing

an edge between state a and state b precisely if it is

possible to go from either state to the other in one

elementary move. The graph so obtained is said to

be regular, or more specifically d-regular if each

state is adjacent to the same number d of neigh-

boring states.

For example, aligned sequences of length N

under the r-state Poisson model can be regarded as

a random walk on the set of all sequences of length

N over R; here an elementary move involves

changing the state at any one position to some

other state (chosen uniformly at random from the

remaining r� 1 states). Thus the associated graph

has rN vertices and it is N(r� 1)-regular.

As another example, consider a simple model of

(unsigned) genome rearrangement where the state

space consists of all permutations of length N

(corresponding to the order of genes 1, . . . ,N) and

an elementary move consists of an inversion of the

order of the elements of the permutation between

positions i and j, where this pair is chosen uni-

formly at random from all such pairs between

{1, . . . ,N}. In this case the state space has size N!

and the graph is d-regular for d ¼ N
2

� �
.

Both of the graphs we have just described have

more structure than mere d-regularity. To describe

this we recall the concept of a Cayley graph.

Suppose we have a (non-abelian or abelian)

group G together with a subset S of elements of G,
with the properties that 1G 6[S and s [ S ) s�1 [S.
Then the Cayley graph associated with the pair

(G,S) has vertex set G and an edge connecting g

and g 0 whenever there exists some element s [S for

which g¼ g 0 � s. To recover the above graph on

aligned sequences of length N over an r-letter

alphabet, we may take G as the (abelian) group

(Zr)
N and the set S of all N-tuples that are the

identity element of Zr except on one coordinate. To

recover the graph described above for unsigned

genome rearrangements we may take G to be the
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(non-abelian) symmetric group on N letters and S
to be the elements corresponding to inversions.

The demonstration that such graphs are Cayley

graphs has an important consequence: it implies

that they also have the following property. A graph

G is said to be vertex-transitive if, for any two ver-

tices u and v there is an automorphism of G that

maps u to v. Informally, a graph is vertex-transitive

if it ‘‘looks the same, regardless of which vertex

one is standing at.’’ Clearly a (finite) vertex-

transitive graph must be d-regular for some d, and it

is an easy and standard exercise to show that every

Cayley graph is vertex-transitive (however not

every vertex-transitive graph is a Cayley graph, and

not every regular graph is vertex-transitive). Thus,

there are three properly nested classes of graphs:

Cayley graphs 
 vertex-transitive graphs


 regular graphs

Given a connected graph G a (simple) random

walk on a graph is a walk on the vertices of G that,

from any given position, selects as its next state

one of the neighboring vertices (selected uniformly

at random). This random process forms a revers-

ible Markov chain. The proof of the following

result is given in Appendix 9.1.

Lemma 9.7.1. Suppose W0, W1, . . . is a random

walk on a d-regular graph G. Then, for any two

distinct vertices u, v, and any n � 0,

Pr(Wn ¼ vjW0 ¼ u) � 1

d
(10)

Furthermore, if G is vertex-transitive then

Pr(Wn ¼ ujW0 ¼ u) ¼ Pr(Wn ¼ vjW0 ¼ v) (11)

Consider now a continuous-time Markov process

(Xt ; t� 0) on a finite state space R, and with rate

matrix Q. Thus, for any two distinct states a, b, Qab

is the instantaneous rate at which state a changes

to state b. Suppose that for some fixed positive

integer d and some fixed positive real number q we

have the following property: for each state a [ R

there is some neighborhood N(a) � R� {a} of size
d for which, for all b 6¼ a we have

Qab ¼ q, if b [N(a)
0, otherwise

�
(12)

Associated with any such process there is a

corresponding graph with vertex set R and where

the edge set E is defined by E¼ {{a,b}: Qab 6¼ 0,

a 6¼ b}. Note that this graph is d-regular, and sub-

stitution events under a model satisfying (12) cor-

responds to a random walk on the associated

graph. Accordingly we will call any continuous-

time Markov process that satisfies (12) a d-regular

walk process. The equilibrium distribution of any

such process is uniform.

Lemma 9.7.2. Let (Xt; t� 0) be a d-regular walk

process. Then, for any two distinct states a, b, and
any values s, t� 0,

Pr(Xtþs ¼ bjXt ¼ a) � 1

d

Proof. For this Markov process, consider the asso-

ciated graph (R, E). Let M denote the random

number of transitions between states, during

the interval between time t and tþ s. Then

Pr (Xtþ s¼ b jXt¼ a) can be written asX
m�0

Pr(Xtþs ¼ bjM ¼ m,Xt ¼ a)

� Pr(M ¼ mjXt ¼ a): (13)

Now, Pr(Xtþ s¼ b jM¼m, Xt¼ a) is precisely the

probability that for a random walk Wn on the

graph (R, E) we have Wm¼ b conditional on

W0¼ a, and by Lemma 9.7.1 this is at most 1
d.

Applying this to the expression for

Pr(Xtþ s¼ b jXt¼ a) given by (13) completes the

proof.

The following result shows that for such a

Markov process if d is much larger than 2n2 (the

number of species) then any character generated

on a tree with n species will almost certainly be

homoplasy-free on that tree.

Proposition 9.7.3. Suppose characters evolve on a

phylogenetic tree T according to a d-regular walk

process. Let p(T) denote the probability that the

resulting randomly generated character w is

homoplasy-free on T. Then

p(T) � 1� (2n� 3)(n� 1)

d

where n¼ jX j .
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Proof. Consider a general Markov process on T

with state space R. Suppose that for each arc (u, v)

of T and each pair a, b of distinct states in R, the

conditional probability that state b occurs at v

given that a occurs at u is at most p. Then, from

Proposition 7.1 of Semple and Steel (2003) we have

p(T)� 1� (2n� 3)(n� 1)p. By Lemma 9.7.2 we may

take p ¼ 1
d. The result now follows.

As an example to illustrate Propostion 9.7.3

consider the simple model for random inversions

of (unsigned) gene orders mentioned above. If we

have L genes then d ¼ L
2

� �
and so if we have (say)

n¼ 10 genomes each consisting of the same set of

L¼ 100 (unsigned) genes that have evolved on

a phylogenetic tree, the probability that this char-

acter is homoplasy-free on that tree is at least 0.97.

9.8 Results for infinite and large
state spaces

Finally, we turn to the question of how many

characters we need to reconstruct a large tree if the

characters evolve under a Markov model on a

large state space.

Markov models for genome rearrangement such

as the (generalized) Nadeau–Taylor model

(Nadeau and Taylor 1984; Moret et al. 2002) confer

a high probability that any given character gener-

ated is homoplasy-free on the underlying tree,

provided the number of genes is sufficiently large

relative to jX j (Semple and Steel 2002). In this

setting the appropriate limiting model is to assume

that every time a substitution occurs a completely

new and unique state arises: such a model may be

viewed as the phylogenetic analogue of what is

known in population genetics as the ‘infinite

alleles model’ of Kimura and Crow (1964).

Mossel and Steel (2004a) recently investigated

such a ‘random cluster’ model on a phylogenetic

tree T, which operates as follows. For each edge e

let us independently either cut this edge—with

probability p(e)—or leave it intact. The resulting

disconnected graph (forest) G partitions the vertex

set V(T) of T into non-empty sets according to the

equivalence relation that u� v if u and v are in the

same component of G. This model thus generates

random partitions of V(T), and thereby of X by

connectivity, and we will refer to these partitions

as w and w, respectively. For an element x [X we

will let w(x) denote the equivalence class contain-

ing x. We call the resulting probability distribution

on partitions of X the random cluster model with

parameters (T, p) where p is the map e 7! p(e).

A central result from Mossel and Steel (2004d) was

that the number of characters required to correctly

reconstruct a fully resolved phylogenetic tree with

n leaves grows (with n) at the rate log(n) provided

upper and lower limits to p are specified (and the

upper limit is less than 0.5). More precisely, let us

suppose for the rest of this section that each value

p(e) lies between a value pmin and value pmax where

0< pmin� pmax< 0.5.

For this model Mossel and Steel (2004d) estab-

lished the following result: if one independently

generates at least

2

b
log

nffiffi
E
p
� �

(14)

characters under this model, where

b ¼ pmin
1� 2pmax

1� pmax

� �4

(15)

then with probability at least 1� E, T is the only

phylogenetic tree on which the characters are

homoplasy-free; furthermore T can be recon-

structed from the characters in polynomial time

(simulations conducted by Dezulian and Steel

(2004) show that even fewer characters may suffice

for accurate tree reconstruction than (14) requires,

although a logarithmic dependence on n is still

provably necessary).

We now provide a similar result for certain

regular walk processes on a finite state space. We

will show that for a subclass of d-regular walk

processes, and provided d grows at least as fast as

n2log(n) (where n is the number of leaves of T),

then we can generate enough homoplasy-free

characters to reconstruct T correctly.

First we describe a subclass of regular walk pro-

cesses. Suppose that R is a group, and for some

subset S (closed under inverses and not containing

the identity element of R) we have Qab¼ q if and

only if there exists some element s [ S for which

b¼ a � s, otherwise for any distinct pair a, b we

have Qab¼ 0. Such a process we will call a group
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walk process (on the generating set S). Clearly a group

walk process is a regular process, and the graph

(R, E) associated with the regular walk process is

the Cayley graph for the pair (R, S). Random walk

processes have a further useful property on trees:

for each arc e¼ (u, v) of T¼ (V, E) consider the

event D(e) that the state that occurs at v is different

from the state that occurs at u (i.e. there has been a

net transition across the edge). By Lemma 9.7.1

(and the fact that the Cayley graph for (R,S) is

vertex transitive), it follows that the events (D(e),
e [E) are independent. Let p 0min¼min{Pr(D(e)):
e [E}, p0max¼max{Pr (D(e)): e [ E}, and for any E> 0

let

cE ¼
1þ log( 1ffiffi

E
p )

b0E
(16)

where b0 ¼ p0min
1�2p0max

1�p0max

�4
:

�
We are now ready to state a result for certain

Markov processes on large (but finite!) state

spaces, which brings together several ideas pre-

sented above. Informally, Theorem 9.8.1 states

that, for a group walk process, a growth of around

n2log(n) in the size of the generating set is suffi-

cient (with all else held constant) for producing a

sequence of homoplasy-free characters that

define T.

Theorem 9.8.1. Suppose characters evolve inde-

pendently on a fully resolved phylogenetic tree T

according to a group walk process on a generating

set of size d, where

d � cE � n2 log (n)

with cE given by (16) and with pmax <
1
2. Then with

probability at least 1� 2E we can correctly recon-

struct the topology of T by generating d 2b0 log( nffiffi
E
p )e

characters and applying a method such as MP or

maximum compatibility.

As an example, consider the group walk process

for (unsigned) gene-order reversal mentioned

earlier. In this case, for L genes, we have d ¼ (L2).

Theorem 9.8.1 shows that provided L grows at the

rate (with n) at least some constant times n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log (n)

p
then one can hope to recover fully resolved phylo-

genetic treeswithn leaves froma (logarithmicwithn)

number of such independent gene-order characters.

Outline of the proof of Theorem 9.8.1. A detailed

proof of Theorem 9.8.1 can be found in Mossel and

Steel (2004b). Here we simply outline the argu-

ment and indicate how it depends on earlier

results.

Generate k ¼ 2
b0 log(

nffiffi
E
p )

l m
characters under a

group walk process satisfying condition (12) on a

rooted phylogenetic tree. Consider the event H that

all of these characters are homoplasy-free on T.

Since a group walk process is a regular walk pro-

cess, satisfying (12), using Proposition 9.7.3 it can

be shown that P½H� � 1� E. Furthermore the

probability that T will be correctly reconstructed

(using MP or maximum compatibility) from k

characters produced by a coupled random cluster

model (with b¼ b 0) is at least 1–E by (14) (recalling

that pmax <
1
2 ). Now, the original k characters

induce the same partitions as the coupled random

cluster characters whenever event H holds, and

P½H� � 1� E. Consequently, by the Bonferroni

inequality, the joint probability that event H holds

and that the k characters produced by the coupled

process recover T is at least 1 – 2E. Thus the

probability that the original k characters recover

T is at least this joint probability, and so at least

1 – 2E, as claimed.

We end this section by noting that a related

result—namely the statistical consistency of MP

for certain Markov processes on a sufficiently

large state space—was established in Steel and

Penny (2000). The main difference between that

result and Theorem 9.8.1 is that statistical con-

sistency is a limiting statement; it says that as the

number of characters becomes large, the prob-

ability of recovering the correct tree converges to

1. Theorem 9.8.1 meanwhile provides an explicit

bound on the probability of correctly recon-

structing the correct tree from a certain given

number of characters.

9.9 Concluding comments

MP has continued to provide mathematicians

with a rich variety of problems for study. Often

these problems have led to elegant and surprising

solutions, including the bichromatic binary tree

theorem (Carter et al. 1990; Erdo" s and Székely

1993; Steel 1993), the min-max theorem of Erdo" s
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and Székely (1992), and the guaranteed embed-

ding of MP trees in median networks due to

Bandelt et al. (1995). In this chapter we have

considered further problems, particularly those

concerning the statistical aspects of applying MP

to character data on a large state space, and for

which some solutions have been proposed.

However the reader would be wrong to conclude

that MP for even two-state character data is

completely understood. Indeed the following

problem is still open: under the two-state Poisson

process is there a value p> 0 so that MP is sta-

tistically consistent for all fully resolved trees

(having any number of leaves) under the con-

straint p(e)¼ p for all edges of the tree? The fact

that such a basic question is still open suggests

there still await challenges for investigators in

future.
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Appendix 9.1 Proof of
Proposition 9.4.4, and Lemma 9.7.1

Proof of Proposition 9.4.4. Let X ¼ f0, 1gk and let

C ¼ fAijBi, i ¼ 1, . . . kg where Ai :¼ fx [X : xi ¼ 1g
and Bi¼X�Ai. We claim that C has the property

described. To this end, suppose that A jB is an

X-split that is compatible with every character in C.
Let 1¼ (1, 1, . . . , 1) [ X. Without loss of generality

(by interchanging A and B, as well as Ai and Bi if

necessary) we may suppose that 1 [ A and, for

each i, 1 [ Ai. Note that, by definition, jAi j ¼ 2k� 1;

also we have Ai \ A 6¼ ; for all i. Thus the

compatibility of A jB with Ai jBi ensures that

for each i eitherAi � A or A� Ai or Bi � A (17)

We then consider two cases:

(i) jAj < 2k�1

(ii) jAj � 2k�1

In case (i) condition (17) and the equality

jAi j ¼ 2k� 1 ensures A � Ai for all i. But this

means that A¼ {(1,1, . . . ,1)} and so A jB is a trivial

character. In case (ii) condition (17) and the

equality jAi j ¼ 2k� 1 ensures that for each i either

Ai � A or Bi � A; in the first case we will let yi¼ 0

and in the second case we will let yi ¼ 1. Let

y¼ (y1, . . . , yk). Then A¼X� {y} and so again A jB
is a trivial character.

Proof of Lemma 9.7.1. We prove the first claim by

induction on n. The result trivially holds for n¼ 0,

and for n¼ 1 we have Pr(W1 ¼ vjW0 ¼ u) [ f0, 1
dg

since the graph is d-regular, and so (10) holds.

Suppose (10) holds for n¼ k. Then by the element-

ary theory of Markov chains,

Pr(Wkþ1 ¼ vjW0 ¼ u)

¼
X
w

Pr(W1 ¼ wjW0 ¼ u)Pr(Wk ¼ vjW0 ¼ w)

(18)

Letting N(u) denote the set of vertices that neigh-

bor u the right-hand term in (18) is

1

d

X
w [N(u)

Pr(Wk ¼ vjW0 ¼ w)

¼ 1

d

X
w [N(u)

Pr(Wk ¼ wjW0 ¼ v)

(19)

where the equality in (19) arises since the

chain-transition matrix is symmetric and so

Pr (Wk¼ v jW0¼w)¼Pr(Wk¼w jW0¼ v). Combin-

ing (18) and (19) we have

Pr(Wkþ1 ¼ vjW0 ¼ u)

¼ 1

d

X
w [N(u)

Pr(Wk ¼ wjW0 ¼ u) � 1

d

so that (10) holds for n ¼ kþ 1, establishing the

induction step and thereby the lemma.

The proof of (11) in Lemma 9.7.1 is similar but

easier.
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Parsimony and genomics
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CHAPTER 10

Using phylogeny to understand
genomic evolution

David A. Liberles

10.1 Introduction

As genome-sequencing projects have propagated,

comparative genomics has emerged as a method of

choice for understanding protein function. Simple

approaches for comparing sequences, like relative

entropy (Shenkin et al. 1991) or binary transforma-

tions of gene-content comparisons (Gaasterland and

Ragan 1998; Pellegrini et al. 1999) have been pre-

sented. However, phylogenetic methods that expli-

citly consider evolutionary history are not only more

powerful, but enable additional types of analysis

drawing on knowledge in parallel fields, such as

ecology, anthropology, and geology. This chapter

will focus both on methodological issues and on

their application to real genomic-scale problems.

Parsimony and maximum likelihood are two

phylogenetic approaches that are used and often

compared side by side. While the choice between

them has been contentious at times, they fre-

quently give similar results and, where they don’t,

they can complement each other. Maximum like-

lihood works well when a good model is available.

Parsimony works well when a good model does

not or cannot exist, as for very complex processes,

and also along very short branches where multiple

events per position (as in a sequence) are extre-

mely infrequent.

Both methods can be used to estimate ancestral

states in a phylogenetic tree. Fitch (1971) famously

provided an algorithm for parsimony reconstruc-

tion of ancestral character states in a rooted

phylogenetic tree. This approach is depicted in

Fig. 10.1. Variations on this approach, including

branch length weighting, have been implemented

more recently (Liberles 2001). Increasingly sophisti-

cated maximum-likelihood approaches for deter-

mining ancestral sequences have also been

developed (Yang et al. 1995b; Koshi and Goldstein

1996; Pupko et al. 2000, 2002). Parsimony-based

ancestral character reconstruction is fast and

can be performed easily in large-scale genomic

applications.

Both explicit ancestral sequence reconstruction

(from either parsimony or maximum likelihood)

and maximum likelihood methods can be used to

estimate the evolution that occurred along any

given branch of a phylogenetic tree. Using expli-

citly reconstructed ancestral sequences, one can

examine the difference between nodes connected

by a branch (see Fig. 10.2). This gives a recon-

structed picture of evolution that is predicted to

have occurred along any branch of interest in a

phylogenetic tree.

10.2 Gene sequence evolution

In a phylogenetic tree based upon gene sequences,

branches correspond to periods of evolution

following speciation events or to periods of evo-

lution following gene duplication or gene transfer

events. Genes related most recently by a node

representing a speciation event are called ortho-

logs, while genes related most recently by a node

representing a gene duplication event are called

paralogs. All such genes related by common

ancestry are called homologs. A species tree is

frequently derived from either the fossil record

or from sets of genes that are believed to be
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orthologous. Understanding the evolution of genes

in a genome in the context of the species tree

requires mapping of the gene tree (and the events

it represents) on to a species tree representing the

history of life on Earth. These concepts are dis-

played in Fig. 10.3.

10.3 Mapping gene trees onto
species trees

Several approaches are available for doing this

mapping. Goodman and coworkers (1979) intro-

duced a rigid parsimony approach to mapping

gene trees on to species trees. More recently, a

Bayesian approach has been developed (Arvestad

et al. 2003). In these approaches, fixed binary gene

and species trees are used. However, not all sec-

tions of a genome necessarily show the same

ancestral history, especially in periods where rapid

successive speciation events may have led to dif-

ferential fixation of shared ancestral polymorph-

isms, or where lateral gene transfer has been

common. An alternative soft parsimony-based

approach that allows for non-binary species trees

and uncertainty in gene trees has recently also

been developed (Steffansson 2004). Specifically,

A
C
G
T

A
G
C
T

A
C
C
T

1. A_CT

2. A(GC)CT

1. AC_T
2. AC(CG)T
4. ACCT

Figure 10.1 Ancestral sequences are calculated over a rooted phylogenetic tree according to the approach of Fitch (1971). At each of the two

nodes, the sequence obtained after each step is indicated.

Sequence 1

Sequence 4

Sequence 3
Sequence 2

Figure 10.2 In looking for significant events that have occurred

between sequence 1 or 2 and sequence 3 or 4, pairwise comparison or

phylogenetic analysis to determine evolution along a branch are possible.

The pairwise comparisons will average over four branches, while

phylogenetic methods allow individual analysis of each of the four

branches (for example, the differences between reconstructed ancestral

sequences at nodes connected by a branch). If a function-changing event

occurred somewhere along the dashed branch, analysis considering only

that branch will have a lower signal-to-noise ratio than the pairwise

comparison, increasing the chance of detection.

Ordered set of actions for Fitch parsimony on a rooted tree

1. Going up the tree from the extent species, at each node take the intersection of possible characters from the descendants.
2. If the intersection is a null set, then take the union. Do this for all nodes until you reach the root. You now have the preliminary nodal set.

Now work back down the tree.
3. At a node, if the preliminary nodal set contains all of the characters present in the final set of the ancestor, go to 4, otherwise go to 5.
4. Eliminate all characters from the set that are not in the final set of the immediate ancestor. Continue with the next node.
5. If the set was formed by a union, go to 6, otherwise go to 7.
6. Add to the set any characters not present that appear in the final set of the immediate ancestor. Continue with the next node.
7. Add any characters not present that are present in both the final set of the immediate ancestor and the current set in at least one of the

two descendants. Continue with the next node.
8. Finally, eliminate possible links involving mutations to characters added in steps 3–7.
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this approach considers gene trees that map on to

non-binary nodes in species trees with different

resolutions as equally parsimonious to those that

resolve non-binary nodes consistently throughout

the gene tree. Further work will continue to

improve methods for mapping of real data on to

relevant species trees, as well as improve the spe-

cies trees themselves.

With the framework that has been established

above, it is now possible to analyze various geno-

mic data in the context of species trees. Koonin and

coworkers (Koonin et al. 2004; see also Chapter 11

in this book) have done this with gene content,

with quite interesting results. The analysis from

Koonin’s work is based upon complete genomes.

This allows a definitive statement about presence

and copy number, or absence of genes from a

genome. Gene families, like those found in

HOVERGEN (Duret et al. 1994), the Master Catalog

(Benner et al. 2000), and The Adaptive Evolution

Database (TAED; Liberles et al. 2001), are based

upon gene or domain families, or independently

evolving units in the case of the Master Catalog.

Independently evolving units are pieces of a gene

that are found as a self-contained gene in at least one

organism or secondarily are found in conjunction

with gene segments that are self-contained in

another species. Families based upon genes or

independently evolving units permit an assessment

of more species (including those without complete

genomes), but only allow a statement of presence

and minimum copy number, not of absence. This

can all be combined to give an increasingly com-

prehensive picture of the genes common to various

last common ancestral points in the tree of life,

which is presented in Chapter 11 (see also Koonin et

al. 2004) using a Dollo parsimony approach

(allowing gene loss but not de novo gene gain) to

gene content from various completed genomes.

Such approaches contrast with the non-

phylogenetic analyses done using a binary trans-

formation of gene-content data from various

complete genomes, called, ironically enough, phy-

logenetic profiling (Pellegrini et al. 1999). This is

used as a method to identify functions in bacterial

genes without known functions. The principle

behind phylogenetic profiling is that proteins per-

forming basic interacting functions for an organism

will be conserved together. Nonidentical profiles

can actually be analyzed using a parsimony analy-

sis over a species tree (Liberles et al. 2002). Incor-

porating phylogeny into the analysis improves its

performance, but the method is still not trustworthy

for blind prediction of gene functions without

additional information from databases or experi-

ments (Marcotte et al. 1999; Liberles et al. 2002).

10.4 Understanding gene function

Phylogeny can also be used to understand gene

function in other ways. Within-sequence evolu-

tion in gene families can be understood in a

Rat alpha 1

Rat alpha 2

Mouse alpha

Human alpha

Rat beta

Mouse beta

Human beta

Salmon protein

Mouse

Rat

Human

Salmon

(a)

(b)

Figure 10.3 (a) A gene tree is indicated for an idealized gene family.

Gene duplication events are shown with white circles, while speciation

events are shown in various shades of grey. Orthologs are proteins

related by a speciation event at the last common ancestor in a

phylogenetic tree, while paralogs are related by a gene duplication

event. With respect to each other, rat alpha 1 and rat alpha 2 are

paralogs, as are the alpha and beta proteins with respect to each

other. All mammalian proteins are co-orthologs of the salmon protein,

as are both rat alpha proteins with respect to the mouse and human

alpha proteins. (b) The species tree for rat, mouse, human, and

salmon is shown. Speciation nodes that correspond to each other

are indicated in the same shades of grey in a mapping of the gene

tree from (a) on to this species tree.
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phylogenetic context. This of course includes

evolutionary divergence of both paralogs and

orthologs.

To begin with paralogs, Ohno (1970) saw gene

duplication as the driving force for innovation.

Gene duplication, under a purely neutral mecha-

nism, led to relaxation of selective constraint on

both duplicate copies. Both were then free to

explore sequence space until one copy no longer

achieved the basic function necessary in the

genome. That copy remained free to evolve, while

the other copy became constrained to uphold the

ancestral function. Possible fates for the freely

evolving copy were neofunctionalization (the

evolution of a new function) and pseudogenization

(the loss of gene function).

This theory has been extended by Lynch and

coworkers (Force et al. 1999), who have proposed a

third fate: subfunctionalization. Subfunctionaliza-

tion occurs when part of the sequence or its reg-

ulatory regions becomes modified or inactivated in

one copy while another region becomes modified

or inactivated in the other copy. Both copies are

then required in the genome to perform the

ancestral function. Subfunctionalization can also

be viewed as a transition state to neofunctional-

ization, where the sequence freed from constraint

in each copy can evolve to either optimize the

original activity or develop a new activity.

Neofunctionalization, however, is not limited to

paralogs. Both paralogs and orthologs can evolve

new functions under neutral or positive selection

pressures. An innovative combination of phylo-

geny, ancestral sequence reconstruction, and

evolutionary theory was presented by Messier and

Stewart (1997) in examining the evolution of pri-

mate lysozyme orthologs.

Under a neutral evolutionary model, the rate of

substitution at nucleotide positions that can

change the encoded amino acid (called the non-

synonymous nucleotide substitution rate, Ka, or

dN) should be equal to the rate of substitution at

nucleotide positions where substitution does not

change the encoded amino acid (called the

synonymous nucleotide substitution rate, Ks, or

dS). Most protein-encoding genes in a comparison

of closely related species show a Ka/Ks ratio sig-

nificantly less than 1. This is not surprising and is

indicative of negative selection or conservation.

Most proteins have been optimized over millions

of years of evolution for a given function. There-

fore, any given mutation is more likely to decrease

fitness and be selected against, reducing the rate of

substitution at such sites. In rarer cases, in which

adaptation involving modification of protein func-

tion is one of several possible causes, mutations

increase fitness and are selected for, resulting in

Ka/Ks
 1. This is called positive selection.

10.5 Case studies of gene-family
evolution

We now turn back to the innovation of Messier

and Stewart (1997). Lysozyme is a bacterioly-

tic enzyme that is widespread among species.

Colobine monkeys are the only primates with a

foregut, where bacteria ferment edible plant

material before passing digested food to a true

stomach with high levels of lysozyme. Other pri-

mates have a ‘simple stomach’ with a different

anatomy. Instead of just comparing the Ka/Ks

ratios between extant species, Messier and Stewart

also calculated ancestral sequences at various

nodes in the phylogenetic tree and calculated Ka/

Ks ratios over the tree along these branches. This

implicated not just the branch leading to colobine

monkeys as being under positive selective pressure,

but also, unexpectedly, the branch leading to

hominids (see Fig. 10.4). The events driving this

positive selectionduring the emergence of hominids

are not clear, but may correspond to dietary chan-

ges. Leptin, another dietarily important protein, also

appears to have been under positive selective pres-

sure at the same time (Benner et al. 1998).

Coupling ancestral sequence reconstruction to

phylogeny in searching for periods of positive

selection pressure allows more-precise dating of

such selective regimes and increases the power in

detecting them, when compared with pairwise

calculation involving extant sequences (again,

see Fig. 10.2). Of course, it is also possible to

evaluate such scenarios using a likelihood-based

approach involving nested models. This was done

by Yang (1998) for the lysozyme data set of

Messier and Stewart (1997), largely confirming the

original results.
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Another interesting case study is that of

myostatin. Myostatin has been implicated in the

double-muscling phenotype in cattle and other

mammals, where some breeds of cattle have twice

the number of a specific type of muscle fiber due to

mutation in myostatin. From comparative

sequencing of various ruminant species (relatives

of cattle), myostatin was found to be under posi-

tive selective pressure during the divergence of

bovids and Antilopinae (sheep, goats, and close

relatives; Tellgren et al. 2004). This was demon-

strated using the approach of Messier and Stewart

(1997) as well as that of Yang (1998), as seen in

Fig. 10.5. From this analysis, a key protein regu-

lating skeletal muscle appears to have changed

function as ruminants diverged, possibly enabling

phenotypic divergence. Interestingly, this protein

has also been under positive selective pressure

following gene duplication in teleost fish (Liberles

et al. 2001) and may be a more general selectable

regulator for modulating muscle mass. The

myostatin gene itself encodes a signal peptide, a

regulatory propeptide, and the mature protein.

Positive selective pressures in ruminants have

acted on both the regulatory propeptide and the

mature protein. The more detailed molecular and

structural basis of this positive selection is cur-

rently under further investigation.

In another interesting case study, perhaps

inspired by Jurassic Park (Crichton 1990), Chang

et al. (2002) sought to reconstruct a visual pigment

of the last common ancestor of alligators and birds,

which also is the last common ancestor with car-

nivorous dinosaurs (see Fig. 10.6). Through ana-

lysis of the ancestral protein’s function, insight

in to the visual capabilities of this long-extinct

Douc langur

Hanuman langur

Purple-faced langur

Dusky langur

Francois’ langur

Proboscis monkey

Guereza colobus

Angolan colobus

Patas monkey

Vervet

Talapoin

Allen’s monkey

Rhesus macaque

Olive baboon

Sooty mangebey

Lar gibbon

Orangutan

Gorilla

Human

Chimpanzee

Bonobo

Figure 10.4 The phylogenetic tree of primate lysozyme sequences from

Messier and Stewart (1997) is shown. After reconstruction of ancestral

sequences and calculation of Ka/Ks ratios along each branch, the two

branches shown with thick lines showed evidence of positive selection

pressures for adaptation of the encoded lysozyme protein.

Duiker

Sheep

Goat

Ibex

Tahr

Impala

Eland

Gaur

Cow

Pronghorn

Pig

Figure 10.5 The phylogenetic tree of ruminant myostatin sequences

from Tellgren et al. (2004) is shown. After reconstruction of ancestral

sequences and calculation of Ka/Ks ratios along each branch,

the three branches shown with thick lines showed evidence of

positive selective pressures for adaptation of the encoded myostatin

protein.
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organism are possible. Using only four ingroup

species (American alligator plus three birds:

domestic pigeon, chicken, and zebra finch) plus a

collection of outgroup species, the ancestral

sequence was reconstructed for the ancient arch-

osaur using a phylogenetic approach. Only three

positions were found to be ambiguous by method

and several variants of the ancestral protein were

considered. Ancestral proteins were ultimately

synthetically reconstructed in the laboratory and

the ambiguous positions proved not to be func-

tionally important. The visible absorption maxima

were measured, and the maximum of the protein

from the ancient archosaur was red-shifted com-

pared with values reported for most extant birds

and reptiles. The further implication was that the

ancient archosaur had dim-light vision and may

have been nocturnal rather than diurnal.

The pioneering approach of Jermann et al. (1995)

to study the evolution of function of ribonucleases,

which was adopted by Chang et al. (2002), is an

increasingly important combination of computa-

tional phylogenetics and experimental molecular

biology/functional genomics used to study protein

function. This can be coupled to periods of high

Ka/Ks ratio or rapid sequence evolution, where any

functional changes are assessed before and after

periods of positive selective pressure. Ultimately,

such approaches may be powerful, not just for

understanding nature, but also for identifying key

residues that can then be used in protein engi-

neering.

The case studies presented above represent

a small number of the growing set of examples

studied individually in detail (see Yang and

Bielawski 2000). As genome and individual gene-

sequencing data have amassed, it has also been

possible to apply Ka/Ks phylogenetic methods

systematically.

10.6 Large-scale analysis

The first approaches to search for positive selection

in large data sets did not use phylogeny. An early

pairwise comparison of 363 mouse and rat homo-

logs yielded only interleukin-3 as being under

positive selection pressure (Wolfe and Sharp 1993).

A subsequent systematic comparison by Gojobori

and coworkers (Endo et al. 1996) examined 3 595

gene families from GenBank. Positive selection in

at least half of the pairwise comparisons was seen

as evidence for a gene family under positive

selective pressure. Using these criteria, only 17

gene families were identified. CDC6, snake neuro-

toxin, and prostatic steroid-binding protein were

the only eukaryotic examples, the latter two in

chordates.

A systematic approach using methodology

similar to that of Messier and Stewart (1997) was

applied to Master Catalog families (Benner et al.

2000) in chordates and higher plants. Following a

parsimony mapping of gene trees on to species

trees, this was collected in a phylogenetic context

in the original version of The Adaptive Evolution

Database (TAED) (Liberles et al. 2001). On the

chordate side, 5305 gene families were analyzed

with 280 families containing 643 positively selected

branches spanning over 63 branches of the

National Center for Biotechnology Information

(NCBI) taxonomy (Benson et al. 2004). A picture for

a greater role for positive selection was beginning

to emerge. The approach used in the original

calculation of this database was approximate,

but it was still likely to be conservative, given that

it averaged over all sites in a protein.

508 nm

Domestic pigeon (502–505 nm)

Chicken (503–507 nm)

Zebra finch (501–507 nm)

American alligator (499 nm)

Green anole (491 nm)

Human (495 nm)

Figure 10.6 From Chang et al. (2002), the ancestral sequence for

an archosaur visual pigment was determined, indicated by the circled

node. In their study, additional outgroup sequences besides green

anole and human were included. The optimal absorption spectra of

proteins from the extant species are indicated. The archosaur

sequence was synthesized experimentally and its optimal absorption

was determined to be slightly red-shifted compared to the extant

sequences.
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10.7 Positive selection, protein
structure, and coevolution

From many protein structure-function studies, we

know that some residues play key scaffolding roles,

other residues are involved in surface interactions

with solvent, and additional residues perform cat-

alysis, binding, and other functions. In a protein

where function is being modified, probably only a

subset of these residues corresponding to the nature

of the modification is likely to be under positive

selective pressure, while the remainder are not.

Further, structure itself can drive positive

selective pressure. This can represent a real

change, such as coevolving sites modifying a

binding affinity. This can also be driven by com-

pensation in interacting residues for slightly dele-

terious substitutions. As has been seen before for

other cases, using phylogeny seems to be the best

way to detect intramolecular covariation, from the

co-occurence of such sites along such branches

separating parsimony-reconstructed ancestors (as

in Fukami-Kobayashi et al. 2002). This information

can actually be used in both structure prediction

and phylogenetic reconstruction.

The intermolecular coevolution of proteins can

also be studied phylogenetically. Both adaptation

and compensatory covariation can explain the

correlated evolution of residues in a protein.

One interesting case where this has been detected

is the evolution of the interaction between leptin

and the extracellular domain of its receptor in

higher primates. Both show high Ka
Ks periods

in several branches during the diversification of

primates (Benner et al. 1998). Interestingly, both

proteins appear to have evolved new gene

expression patterns during this period due to the

action of transposition in enhancer and splicing

regulatory regions of the respective genes (Bi et al.

1997; Kapitinov and Jurka 1999).

This type of analysis can be extended to

whole pathways, combining genes under positive

selection with information on either metabolism or

protein interaction. A list of 19 proteins showing

evidence for positive selection in Helicobacter pylori

was published recently (Davids et al. 2002).

Around the same time, a protein–protein interac-

tion map for H. pylori based upon the two-hybrid

system was published (Rain et al. 2001). From

mapping one data set on to the other, two path-

ways with multiple positively selected hits were

identified (H. Ardawatia and D. A. Liberles,

unpublished observations). While the significance

of this is still under investigation, this type of

approach can increasingly link sequence evolution

in the context of phylogeny with the growing field

of systems biology.

10.8 Continuous-character ancestral-
state reconstruction

Beyond sequence evolution, parsimony and phy-

logeny have other applications in genomics. Both

gene expression and mRNA splicing are important

processes regulating how the genome is converted

to the proteome. Their regulation, evolution, and

ultimately the species-specific effects caused by

this combination are, so far, less well understood

than sequence evolution.

Data from large-scale gene expression studies

and also the relative abundance of alternative

mRNA transcripts are continuous rather than dis-

crete characters (as in individual sequence posi-

tions). The reconstruction of continuous characters

over a phylogeny using the principle of parsimony

can be turned in to a minimum-evolution-type

distance method (Rossnes 2004). The methodology

here is similar (but not identical) to continuous-

parsimony approaches like Wagner parsimony

(see Kluge and Farris 1969) extended to a rooted

tree, without any assumptions of ordered numerical

transitions that may not be appropriate for gene

expression data. The implementation by Rossnes

(2004) is shown by example in Fig. 10.7. A range

of values consistent with parsimony or minimum

evolution is obtained. The midpoint of this range

can be selected if conservatism is desired or an

unchanging model of regulatory evolution is

anticipated.

Subsequently, looking for branches with

significantly different changes in value can be

coupled to a traditional reconstruction and branch

analysis of the regulatory sequences (upstream

regions in the case of gene expression). This can

be used to reduce the signal-to-noise ratio in

identifying sites with important functional roles
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in regulating gene expression or mRNA splicing.

Additionally, the reconstructed nodes can be used

to address gene expression or relative mRNA

abundances of differently spliced variants in

ancient organisms. This is shown in Figs 10.7 and

10.8. If one evaluates the absorption maxima of

Chang et al. (2002), using this approach one obtains

a value that is less red-shifted than the sequence

evolution gives. However, a fuller characterization

of the statistical properties (including variance

estimates) of this approach is required to assess

any possible incompatibilities of the two results.

On the side of gene expression, Pääbo and

coworkers (Enard et al. 2002) have produced an

innovative data set with comparative expression

levels of the same genes in human, chimpanzee,

orangutan, and rhesus macaque. This data set has

been utilized generally to detect significant chan-

ges in expression of genes expressed in human

brain relative to the other primates, compared to

the changes in liver-expressed genes (Enard et al.

2002; Gu and Gu 2003). Interspecific data sets like

this, motivated by phylogenetic knowledge, will

become increasingly common, paving the way for

analyses like that described above.

On the mRNA-splicing side, ASD, the Alter-

native Splicing Database, has been established for

comparative genomics purposes (Thanaraj et al.

2004). This database contains alternative-splicing

events available from alignments of expressed

sequence tag (EST)/cDNA data sets from human,

mouse, rat, cow, chicken, zebrafish, fruit fly,

nematode, and mustard weed. As data become

available from more closely related species, this

data base will become increasingly amenable to

phylogenetic analysis.

Starting with a set of the most closely related

species, human and the rodents mouse and rat,

Modrek and Lee (2003) showed that the most

common splice forms were much more conserved

than the alternative-splice forms. The alternative

forms were viewed as an opportunity for evolu-

tionary innovation. Extending this work, it was

shown that the rare splice variants that were con-

served were under strong conservative selective

pressure (Resch et al. 2004). This implies that these
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Figure 10.7 For reconstruction of continuous character traits, like

relative expression or splice-site usage values, a minimum-evolution

distance method has similar properties to a parsimony reconstruction.

After going up and then down the tree, the ranges that minimize the

total branch length of the tree are indicated next to the nodes.

Ultimately midpoint values can be selected if conservatism is desired or

if a homogeneous or non-episodic model of evolution is believed.

Several measures of along-branch change and significance are possible.
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Figure 10.8 For reconstructed ancestral states of a continuous

character, an idealized branch with significant change is shown with a

dashed line. The discrete molecular characters that are candidates for

regulating the process can be reconstructed simultaneously (for example,

regions upstream of a gene for gene expression, or intron/exon boundary

sequences for alternative mRNA splicing). In this case, one might point

to a CT!GG substitution as a candidate for driving the change seen

along the dashed branch. This method benefits from an improvement in

signal-to-noise ratio, as previously indicated in Fig.10.2.
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splicing patterns have been present in the last

common ancestor of the species studied. Extending

this analysis phylogenetically as databases like

ASD grow in their species coverage will enable a

more systematic evolutionary analysis of the role of

alternative splicing in cellular biology and regu-

lation. This will ultimately allow a quantifiable

view of the role of new splice variants in the

generation of evolutionary molecular innovation

leading to adaptation.

10.9 Conclusion

Ultimately, evolution of various biological pro-

cesses including gene content, gene-sequence

evolution, gene expression, and mRNA splicing

can be collected in a phylogenetic context after

mapping onto a species tree. This will enable an

understanding of the molecular genomic events

underpinning phenotypic evolution. Parsimony

will remain a valuable method for pursuing this

research goal.
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CHAPTER 11

Dollo parsimony and the
reconstruction of genome evolution

Igor B. Rogozin, Yuri I. Wolf, Vladimir N. Babenko and
Eugene V. Koonin

11.1 Introduction

The Dollo parsimony method, which was first

formalized by J. S. Farris in 1977 (Farris, 1977a, b),

is based on the assumption that a complex char-

acter that has been lost during evolution of a

particular lineage cannot be regained. When

applicable, this principle leads to a substantial

simplification of evolutionary analysis and pro-

vides for unambiguous reconstruction of evolu-

tionary scenarios, which may not be attainable

with other methods. In this chapter, we describe

applications of Dollo parsimony to the quantita-

tive analysis of the dynamics of genome evolu-

tion. Dollo parsimony is the method of choice for

reconstructing evolution of the gene repertoire of

eukaryotic organisms because, although multiple,

independent losses of a gene in different lineages

are common, multiple gains of the same gene are

improbable. This contrasts with the situation in

prokaryotes where the widespread occurrence of

horizontal gene transfer makes multiple gains

possible, thereby invalidating the Dollo principle.

We apply Dollo parsimony to reconstruct the

scenario of evolution for the genomes of crown-

group eukaryotes by assigning the loss of genes

and emergence of new genes to the branches of

the phylogenetic tree, and delineate the minimal

gene sets for various ancestral forms. A similar

analysis, with rather unexpected results, was

performed to infer gain vs. loss of introns in

conserved eukaryotic genes. We discuss the

applicability of the Dollo principle for these and

other problems in evolutionary genomics.

11.2 Dollo parsimony for molecular
data in the pre-genomic era

Dollo’s Law, also known as the Law of Phylo-

genetic Irreversibility or the Law of Irreversible

Evolution, is an important tenet of evolutionary

theory, formulated by the Belgian biologist Louis

Dollo (1893). It basically states that organisms

cannot re-evolve along lost pathways, but must

find alternate routes because the same fortuitous

combination of mutational events, being com-

pletely random, will never repeat. Dolphins, in

other words, will never again walk on land with

re-evolved pelvic appendages that derive from

their current remnant structures that correspond to

legs of land animals. They might, however, evolve

walking appendages that derive from other bio-

logical provenance, especially if there were some

selective advantage to do so, say, if the oceans

began to dry up. While some non-Darwinian

theorists have attempted to use Dollo’s Law to

promote their cause, Dollo was simply seeking to

explain convergence of form in diverse species

(e.g. sharks, ichthyosaurs, and dolphins): ichthyo-

saurs and dolphins look so similar because they

have converged to the same (hydrodynamically

favorable) shape through independent, parallel

paths of degradative evolution.

TheDollo parsimonymethodwas first formalized

by Farris (1977a). In its simplest form, the algorithm

explains the presence of the complex, derived

state 1 by allowing only one forward change 0! 1

(where 0 is the primitive ancestral state) and as

many reversions 1! 0 as are necessary to explain
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the observed pattern of states. The method

attempts to minimize the required number of

1! 0 reversions. In molecular studies, Dollo par-

simony analysis was often applied for analysis of

restriction sites because the loss of an existing

restriction site is more probable than a parallel

gain of the same site at any particular location

(DeBry and Slade 1985).

11.3 Genome evolution

Comparative genomics has already changed our

understanding of genome evolution. In what

might amount to a paradigm shift in evolutionary

biology, genome comparisons have shown that

lineage-specific gene loss and horizontal gene

transfer (HGT) are not inconsequential freak

incidents of evolution but rather extremely com-

mon phenomena. To a large degree, these pro-

cesses have shaped extant genomes, at least those

of prokaryotes (Doolittle 1999; Koonin et al. 2000;

Gogarten et al. 2002; Snel et al. 2002; Mirkin et al.

2003). The extent of gene loss occurring in certain

lineages of prokaryotes, particularly parasites, is

astonishing: in some cases, >80% of genes in the

genome have been lost over approximately 200

million years of evolution (Moran 2002). HGT is

harder to document, but a strong case has been

made for its extensive contribution to the evolution

of prokaryotes (Ochman et al. 2000; Koonin et al.

2001; Gogarten et al. 2002; Mirkin et al. 2003). Gene

exchange between phylogenetically distant eukar-

yotes does not appear to be an important evolu-

tionary phenomenon. In contrast, the contribution

of gene loss to the evolution of eukaryotic genomes

was probably substantial, although the level of

genome fluidity observed in prokaryotes is

unlikely to have been attained in eukaryotic evol-

ution. A comparison of the genomes of two yeasts,

Saccharomyces cerevisiae and Schizosaccharomyces

pombe, showed that, in the S. cerevisiae lineage, up

to 10% genes have been lost since the divergence of

the two species (Aravind et al. 2000). In eukaryotic

parasites with small genomes, such as the micro-

sporidia, much more extensive gene elimination

appears to have occurred (Katinka et al. 2001).

In contrast, the extent of gene loss in complex,

multicellular eukaryotes remains unclear, although

the small number of unique genes in the human

genome when compared to the mouse genome

(and vice versa) suggests considerable stability of

the gene repertoire in mammals (Waterston et al.

2002).

11.4 Orthologous and paralogous
genes

Sequencing of multiple genomes from diverse

taxa provides the data required for quantitative

analysis of the dynamics of genome evolution.

A prerequisite for such studies is a classification of

the genes from the sequenced genomes based on

homologous relationships. The two principal

categories of homologs are orthologs and paralogs

(Fitch 1970; Sonnhammer and Koonin 2002; Storm

and Sonnhammer 2003). Orthologs are homologous

genes that evolved via vertical descent from a

single ancestral gene in the last common ancestor

of the compared species. Paralogs are homologous

genes, which, at some stage of evolution, have

evolved by duplication of an ancestral gene.

Orthology and paralogy are two sides of the same

coin because, when a duplication (or a series of

duplications) occurs after the speciation event

that separated the compared species, orthology

becomes a relationship between sets of paralogs,

rather than between individual genes; genes that

belong to such orthologous sets are sometimes

termed co-orthologs (Sonnhammer and Koonin

2002).

Robust identification of orthologs and paralogs

is critical for the construction of evolutionary

scenarios, which include, along with vertical

inheritance, lineage-specific gene loss and, pos-

sibly, HGT (Snel et al. 2002; Mirkin et al. 2003).

The algorithms for the construction of these

scenarios involve, in one form or another, tracing

the fates of individual genes, which is feasible only

when orthologous (including co-orthologous)

relationships are known. In principle, orthologs,

including co-orthologs, should be identified by

phylogenetic analysis of entire families of homo-

logous proteins, which is expected to define

orthologous protein sets as clades (e.g. Sicheritz-

Ponten and Andersson 2001). However, for

genome-wide protein sets, such analysis remains
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labor-intensive and error-prone. Thus, procedures

have been developed for identification of sets of

probable orthologs without explicit use of phylo-

genetic methods. Generally, these approaches are

based on the notion of a genome-specific best hit

(BeT), i.e. the protein from a target genome that

has the greatest sequence similarity to a given

protein from the query genome (Tatusov et al.

1997; Huynen and Bork 1998). The central

assumption is that orthologs have a greater sim-

ilarity to each other than to any other protein from

the respective genomes due to the conservation of

functional constraints. Of course, evolutionary

history and sequence similarity can be at odds in

some cases, which would invalidate this model

(Storm and Sonnhammer 2003). The extent to

which this occurs in practice is in fact not known,

again due to the enormity of proteome-scale

phylogenetic surveys.

When multiple genomes are analyzed using the

BeT approach, pairs of probable orthologs detected

on the basis of BeTs are combined into orthologous

clusters represented in all or a subset of the ana-

lyzed genomes (Tatusov et al. 1997; Montague and

Hutchison 2000). This approach, amended with

procedures for detecting co-orthologous protein

sets and for treating multidomain proteins, was

implemented in the database of Clusters of

Orthologous Groups (COGs) of proteins (Tatusov

et al. 1997, 2003). The current COG set includes

approximately 70% of the proteins encoded in

69 genomes of prokaryotes and unicellular eukar-

yotes (Tatusov et al. 2003). The COGs have been

extensively employed for genome-wide evolu-

tionary studies, functional annotation of

new genomes, and target selection in structural

genomics (Koonin and Galperin 2002 and refer-

ences therein). Recently, we extended the system

of orthologous protein clusters to complex, multi-

cellular eukaryotes by constructing clusters of

euKaryotic Orthologous Groups (KOGs) for seven

sequenced genomes of animals, fungi, micro-

sporidia, and plants; namely humans (Hs), the

nematode Caenorhabditis elegans (Ce), the fruit

fly Drosophila melanogaster (Dm), two yeasts,

S. cerevisiae (Sc) and S. pombe (Sp), and the green

plant Arabidopsis thaliana (At) (Tatusov et al. 2003;

Koonin et al. 2004).

11.5 Matrices of character presence/
absence and Dollo parsimony

A simple but critically important concept that was

introduced in the context of the COG analysis is

a phyletic (phylogenetic) pattern, which is the

pattern of representation (presence/absence) of the

analyzed species in each COG (Tatusov et al. 1997;

Koonin and Galperin 2002). Similar notions have

been independently developed and applied by

others (Gaasterland and Ragan 1998; Pellegrini

et al. 1999). The COGs show a wide scatter of

phyletic patterns, with only a small minority

(approximately 1%) represented in all included

genomes. Similarity and complementarity among

the phyletic patterns of COGs have been success-

fully employed for prediction of gene functions

(Galperin and Koonin 2000; Koonin and Galperin

2002; Myllykallio et al. 2002; Levesque et al. 2003).

Phyletic patterns can be formally represented as

strings of ones for presence of a species and zeros

for absence of a species; Table 11.1, which can be

easily input to a variety of algorithms. The evolu-

tionary parsimony methods are among those that

naturally apply to this type of data. Pairs of

neighboring genes and intron positions also can be

represented as a character matrix and used for

parsimony analysis (see discussion below).

A Dollo parsimony tree can be constructed using

a matrix of gene (pair of genes/intron) presence/

absence and the data-dependent reliability of the

tree topology can be assessed in the standard

manner using the bootstrap method. The presence

vs. absence of a gene in a genome can be naturally

treated in terms of character states. The Dollo

model is based on the assumption that each

derived character state (in this case, the presence

of a gene) originates only once, and homoplasies

exist only in the form of reversals to the ancestral

condition (absence of a gene) in accord with

the Dollo principle as formalized by Farris (1977a).

In other words, parallel or convergent gains of

the derived condition are assumed to be highly

unlikely (or impossible, for practical purposes).

The Dollo parsimony principle also can be

applied in the opposite direction: assuming a

particular species tree topology, a parsimonious

scenario of evolution can be constructed. Such a
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scenario is, essentially, a mapping of different

types of evolutionary events on to the branches of

the phylogenetic tree. Obviously these scenarios,

which naturally also include the reconstruction of

the character states in all internal nodes of the tree

and in the root (when the root position is known),

can be of major value for understanding the

evolution of the analyzed taxa.

However, in the context of evolutionary genomics,

the Dollo principle cannot be assumed to be

valid by default. The specific biological context

must be examined in order to ascertain whether or

not the elementary evolutionary events involved

could violate phylogenetic irreversibility by pro-

ducing homoplastic character gains. Extensive

HGT shown to occur during evolution of prokar-

yotes obviously has the potential to violate the

Dollo principle: the ‘same’ gene (more precisely,

a member of the same set of orthologous genes;

a COG) can be readily regained via HGT after

being lost from the given lineage. In this case,

it does not matter whether or not the gene

regained via HGT comes from the same lineage as

the original (lost) gene because, in this type of

analysis, a COG is treated as the basic character.

Thus, Dollo parsimony cannot be used for recon-

structing evolution of prokaryotic genomes; some

form of weighted parsimony should be applied

instead (Snel et al. 2002; Kunin and Ouzounis 2003;

Mirkin et al. 2003). Since the relative weights of

different elementary events, i.e. lineage-specific

gene loss and HGT, are unknown and probably

differ between genes as well as between lineages,

evolutionary scenarios produced using these

parameters are ambiguous and have to be assessed

using external criteria (Mirkin et al. 2003).

With eukaryotes, however, the situation is quite

different. Although acquisition of bacterial genes

via HGT had been an important contribution to the

evolution of eukaryotic genomes, at least prior to

the emergence of multicellular forms (Doolittle

et al. 2003), gene exchange between eukaryotic

lineages themselves does not appear to occur at an

appreciable rate. Therefore, as far as evolution of

eukaryotic genomes is concerned, Dollo parsimony

yields unambiguous parsimonious scenarios that

include only two types of elementary event: loss of

genes (or other characters, such as introns or pairs

of genes) and emergence of new characters.

In the studies summarized below, we used the

PAUP* (Swofford 2002) and DOLLOP (Felsenstein

1996) programs. An important difference between

the implementations of Dollo parsimony in these

programs should be noted: PAUP* produces

unrooted trees while DOLLOP reconstructs rooted

trees (Swofford et al. 1996). Where root inferences

are reported, the latter program was used.

11.6 Dollo parsimony tree based on
gene content: application to a crucial
problem in animal evolution

The relative positions of nematodes, arthropods

and chordates in the phylogeny of animals remain

Table 11.1 Matrix of presence/absence of genes in eukaryotic genomes. For each the number of the KOG and the (predicted) protein function

are shown. 1 indicates that the given gene (KOG) is represented in the given species and 0 indicates absence of the gene in the given species. Species

abbreviations: At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Ec, Encephalitozoon cuniculi; Hs, Homo

sapiens; Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe

Species KOG2207, 3 0-5 0

exonuclease

KOG4125,

acid trehalase

KOG0006, E3

ubiqutin-protein

ligase

KOG0090,

signal-recognition

particle

receptor b-subunit

KOG0050,

mRNA splicing

factor CDC5

At 1 0 0 1 1

Ec 0 0 0 0 1

Sc 0 1 0 1 1

Sp 0 0 0 1 1

Ce 1 0 1 1 1

Dm 1 1 1 1 1

Hs 0 1 1 1 1
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uncertain (for review see Hedges 2002). The

traditional tree topology joins arthropods with

chordates in a coelomate clade, whereas nema-

todes, which lack a coelome (a true body cavity),

occupy a basal position (e.g. Raff 1996). However,

the current leading hypothesis, which is based on

phylogenetic trees for 18S rRNA and some addi-

tional comparisons of protein-coding genes, joins

nematodes with arthropods in a clade of molting

animals, Ecdysozoa (Aguinaldo et al. 1997; Giribet

et al. 2000; Peterson and Eernisse 2001; Mallatt and

Winchell 2002). The complete genome sequences of

the nematodes, insects, and vertebrates provide

for the possibility to extend phylogenetic studies to

the genomic scale, in order to address this major

issue in animal evolution (Mushegian et al. 1998;

Blair et al. 2002; Wolf et al. 2004).

We addressed this problem both by traditional

phylogenetic analysis of numerous sets of ortho-

logous genes and by using patterns of gene

presence/absence in orthologous sets for tree

construction, which is the most straightforward

technique in the category of so-called genome-tree

methods (Fitz-Gibbon and House 1999; Snel et al.

1999; Wolf et al. 2002). Presence/absence of a gene

in a set of species can be naturally treated as a

binary character and the table of such characters

can be subjected to either parsimony or distance

phylogenetic analysis. After constructing such a

character matrix for the complete set of KOGs, we

applied the Dollo parsimony method. The rooted

tree produced using Dollo parsimony confidently

supported the coelomate topology (Fig. 11.1).

Otherwise, however, this tree was at odds with the

prevalent taxonomic view (Hedges 2002) in that

an animal–plant clade, as opposed to an animal–

fungus clade with plants as an outgroup, was

observed. This deviation of the gene-content trees

from the currently accepted phylogeny is probably

due to the varying amount of gene loss in different

eukaryotic lineages; in particular, massive gene-

loss in yeasts. As discussed previously in the

context of prokaryotic genome analysis, the

topology of gene-content trees seems to reflect

a combination of the phylogenetic signal and other

trends in genome evolution that are not necessarily

linked to phylogeny, such as parallel gene loss

associated with life-style similarities (Wolf et al.

2002). The clustering of humans with flies in the

gene-content tree points to the congruence in gene

repertoires of these animals. In this particular case,

the majority of phylogenetic trees for orthologous

gene sets point in the same direction, suggesting

that the coelomate clade could, after all, reflect the

actual course of animal evolution (Wolf et al. 2004).

11.7 A parsimonious scenario of gene
gain and loss in eukaryotic evolution

As discussed in the previous section, the Dollo

parsimony tree based on gene presence/absence

shows some conflicts with the accepted phyloge-

netic tree of the eukaryotic crown group, the

principal clades of which have been established

with considerable confidence. In particular, some

conflicting observations notwithstanding, the

consensus of many phylogenetic analyses points

to an animal–fungus clade, grouping of micro-

sporidia with the fungi, and a coelomate (chordate–

arthropod) clade among the animals (Blair et al.

2002; Hedges 2002; Wolf et al. 2004). Assuming this

tree topology and treating the phyletic pattern of

each KOG as a string of binary characters (1 for the

presence of the given species and 0 for its absence

in the given KOG), the parsimonious scenario of

gene loss and emergence during the evolution of

the eukaryotic crown group was constructed.

In the resulting scenario, each branch was

associated with both gene loss and gain of new

genes, with the exception of the plant branch and

the branch leading to the common ancestor of

At

Sp

Sc

Ce

Hs

Dm

100%

100%

100%

99%

Figure 11.1 Dollo parsimony tree of the eukaryotic crown group based

on gene presence/absence. The bootstrap values are indicated for each

internal branch. The species abbreviations are as in Table 11.1.
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fungi and animals, to which gene losses could

not be assigned without an additional outgroup

(Fig. 11.2). There is little doubt that, once genomes

of early-branching eukaryotes are included, gene

loss associated with these branches will become

apparent. The principal features of the recon-

structed scenario include massive gene loss in the

fungal clade, additional elimination of numerous

genes in the microsporidia, emergence of a large

set of new genes at the onset of the animal clade,

and subsequent substantial gene loss in each of the

animal lineages, particularly in the nematodes and

arthropods (Fig. 11.2). The estimated number of

genes lost in S. cerevisiae after its divergence from

the common ancestor with the other yeast species,

S. pombe, closely agreed with a previous estimate

produced using a different approach (Aravind et al.

2000).

The parsimony analysis described above

involves explicit reconstruction of the gene sets of

ancestral eukaryotic genomes. Under the Dollo

parsimony model, an ancestral gene (KOG) set is

the union of the KOGs that are shared by the

respective outgroup and each of the remaining

species. Thus, the gene set for the common

ancestor of the crown group includes all the KOGs

in which Arabidopsis co-occurs with any of the

other analyzed species. Similarly, the recon-

structed gene set for the common ancestor of fungi

and animals consists of all KOGs in which at least

one fungal species co-occurs with at least one

animal species. Clearly, these are conservative

reconstructions of ancestral gene sets because,

as mentioned above, gene losses in the lineages

branching off the deepest bifurcation could not

be detected. Under this conservative approach,

3 413 genes (KOGs) were assigned to the last

common ancestor of the crown group (Fig. 11.2).

More realistically, it appears likely that a certain

number of ancestral genes have been lost in all or

all but one of the analyzed lineages during sub-

sequent evolution, such that the gene set of the

eukaryotic crown group ancestor might have been

close in size to those of modern yeasts, or even

larger (i.e. 6 000–7 000 genes).

11.8 Dollo parsimony applied
to evolution of eukaryotic
gene structure

Most of the eukaryotic protein-coding genes

contain multiple introns that are spliced out of the

pre-mRNA by a distinct, large RNA–protein

complex, the spliceosome, which is conserved in

all eukaryotes (Dacks and Doolittle 2001). The

positions of some spliceosomal introns are

conserved in orthologous genes from plants and

animals (Marchionni and Gilbert 1986; Logsdon

et al. 1995; Boudet et al. 2001). A recent systematic

analysis of pairwise alignments of homologous

3 491
520

Dm Hs Ce Sc Sp At
13 688

162
4 503

541 —
3 711

398
37

1 358
193

422
–

55

Ec

3 260
5 361

5 000 3 048

3 835

3 413

15
802

1 679
299 1 969202

842 586

267

Gain
Loss

Figure 11.2 Scenario of gene gain and loss during evolution of the eukaryotic crown group derived using Dollo parsimony under a fixed tree topology.

The numbers in boxes indicate the inferred number of KOGs in the respective ancestral forms. The numbers next to branches indicate the number of gene

gains (emergence of KOGs; top) and gene (KOG) losses (bottom) associated with the respective branches; a dash indicates that the number of losses for a

given branch could not be determined. Proteins from each genome that did not belong to KOGs as well as LSEs (lineage-specific gene family expansions)

were counted as gains on the terminal branches. The species abbreviations are as in Table 11.1.
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proteins from animals, fungi, and plants suggested

that 10–25% of introns are ancient (Fedorov et al.

2002; Rogozin et al. 2003). However, intron dens-

ities in different eukaryotic species differ widely,

and the location of introns in orthologous genes

does not always coincide, even in closely related

species (Logsdon et al. 1998). Likely cases of intron

insertion and loss have been described (e.g.

Rzhetsky et al. 1997; Logsdon et al. 1998), and

indications of a high intron-turnover rate have

been obtained (Lynch and Richardson 2002). It has

been suggested that the proportion of shared

intron positions decreased with increasing evolu-

tionary distance and, accordingly, intron con-

servation could be a useful phylogenetic marker

(Nei and Kumar 2001). However, the evolutionary

history of introns and, the selective forces that

shape intron evolution remain mysterious.

Although recent comparisons have revealed the

existence of many ancient introns shared by

animals, plants, and fungi (Fedorov et al. 2002), the

point(s) of origin of these introns in eukaryotic

evolution and the relative contributions of intron

loss and intron insertion in the evolution of

eukaryotic genes remain unknown.

We used the KOG data set for evolutionary

analysis of intron–exon structure in eukaryotic

genes on a genomic scale. For the purpose of this

analysis, orthologs from two additional eukaryotic

species, the mosquito Anopheles gambiae (Ag) and

the apicomplexan malarial parasite Plasmodium

falciparum (Pf), were included in the KOGs using

the COGNITOR method (Tatusov et al. 1997).

Many of the KOGs contain multiple paralogs

from one or more of the constituent species due

to lineage-specific duplications; among these para-

logs, the one showing the greatest evolutionary

conservation (defined as the mean similarity

to KOG members from other species) was selected

for evolutionary analysis. For a pair of introns

to be considered orthologous, they were required

to occur in exactly the same position in the

aligned sequences of KOG members. Altogether,

684 KOGs were examined for intron conservation;

these comprised the great majority, if not the

entirety, of highly conserved eukaryotic genes that

are amenable for an analysis of the exon–intron

structure over the entire span of crown group

evolution. The analyzed KOGs contained 21 434

introns in 16 577 unique positions; 5 981 introns

were conserved among two or more genomes.

Most of the conserved introns were present in only

two species, but a considerable number was found

in three genomes, and several introns were shared

by four to seven species (Table 11.2). A simulation

of the intron distribution in the analyzed sample of

orthologous gene sets by random shuffling of the

intron positions showed that approximately 1% of

the observed number of introns shared by two

species was expected to occur by chance, whereas

none were expected to be shared by three or more

species (Table 11.2). It has been proposed that

introns insert into coding sequences non-randomly

but primarily into ‘‘proto-splice sites’’ (Dibb and

Newman 1989). Although the proto-splice model

has been questioned as inconsistent with the

observed distribution of intron phases (Long and

Rosenberg 2000), we considered the potential effect

of non-random intron insertion on the apparent

evolutionary conservation of intron positions.

For this purpose, random simulation was repeated

with intron insertion allowed in 10% of the

positions in the analyzed genes. Obviously, this

led to an increase in the expected number of

Table 11.2 Conservation of intron positions in orthologous gene sets from eight eukaryotic species

Number of introns� total

Number of species . . . 1 2 3 4 5 6 7 8

Observeda 13 406 2 047 719 275 104 25 1 0

Expected 21 368 33 0 0 0 0 0 0

Expected� 10% 20 083 662 8 0 0 0 0 0

a The probability that intron sharing in different species was due to chance, P(Monte Carlo) < 0.0001 (this applies both to the analysis of all alignment

positions and to the test with 10% of the positions allowed for intron insertion).
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shared introns in two or more species, but the

excess of introns found in the same position

remained substantial and highly statistically sig-

nificant (Table 11.2). These observations suggest

that a substantial majority of introns located in the

same position in orthologous genes from different

eukaryotic lineages are indeed orthologous, i.e.

originate from an ancestral intron in the same

position in the respective gene of the last common

ancestor of the compared species. Nevertheless,

the simulation results under the proto-splice site

assumption show that the applicability of Dollo

parsimony in this case could be limited. We should

note that the magnitude of error introduced by

the assumption of irreversible character gain

depends directly on the nature of the biological

phenomenon involved; in this case, how specific

the proto-splice signal is.

The matrix of shared introns in all pairs of ana-

lyzed eukaryotic genomes revealed an unexpected

pattern (Table 11.3). The number of conserved

introns did not drop monotonically with increasing

evolutionary distance among the compared

organisms. On the contrary, human genes shared

the greatest number of introns with the plant

Arabidopsis instead of with any of the other three

animals included in the comparison. In the con-

served regions (which give more accurate results

given the alignment uncertainties in other parts of

genes), 24% of the intron positions in the analyzed

human genes were shared with Arabidopsis (these

comprised approximately 27% of the Arabidopsis

introns) compared to approximately 12–17% of

introns positions shared by humans with the fly,

mosquito, or worm (Table 11.3). The difference

becomes even more dramatic when the numbers of

introns conserved in Arabidopsis and each of the

three animal species are compared: approximately

three times more plant introns have a counterpart

at the same position in orthologous human genes

than in the fly or worm orthologs (Table 11.3).

Although yeast S. pombe and the apicomplexan

protist Plasmodium have few introns compared to

plants or animals, the same asymmetry was

observed for these organisms: the numbers of

introns shared with Arabidopsis and humans are

close and are two or three times greater than the

number of introns shared with the insects or the

worm (Table 11.3).

We then examined the evolutionary dynamics of

introns in greater detail by using phylogenetic

analysis. It should be noted that the comparative

data on intron positions are as conducive to the

representation as a character matrix as the phyletic

pattern data. Specifically, intron positions were

represented as a data matrix of intron presence/

absence (encoded, as usual, as 1/0). An example

of such a matrix for intron positions in one of

the conserved gene clusters (KOGs) is shown in

Fig. 11.3. To reconstruct the genome-wide scenario

of gene-structure evolution, the matrices for all

analyzed KOGs were concatenated to produce one

alignment, which consisted of 16 577 columns of

ones and zeros. The Dollo parsimony tree that we

reconstructed from the matrix of intron presence/

absence obviously did not mimic the species tree,

Table 11.3 Conservation of intron positions in eukaryotic orthologous gene sets: the matrix of pairwise interspeicies comparisions

Pf Sc Sp At Ce Dm Ag Hs

Pf 971 2 48 137 50 46 54 145

Sc 46 7 3 3 3 4 6

Sp 839 209 98 114 111 308

At 5 589 353 255 254 1 148

Ce 3 465 315 312 948

Dm 1 826 787 802

Ag 1 768 771

Hs 6 930

The diagonal shows the total number of introns in the 684 analyzed genes from the given species. Species abbreviations: At, Arabidopsis thaliana;

Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Hs, Homo sapiens; Ag, Anopheles gambiae; Pf, Plasmodium falciparum; Sc,

Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe.
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with humans and Arabidopsis forming a strongly

supported lineage embedded within the metazoan

clade, and another anomalous group formed

by yeast S. pombe and Plasmodium (Fig. 11.4). The

topology of these trees supported the notion,

already suggested by the pairwise comparisons

summarized in Table 11.3, that ancestral introns

have been, to a large extent, conserved in plants

and vertebrates, but have been extensively lost in

fungi, nematodes, and arthropods. Clustering of

Plasmodium with S. pombe, to the exclusion of the

other yeast species, S. cerevisiae, seems to be due to

the fact that Plasmodium shared approximately as

many introns with S. pombe as with worm and

insects, but that the total number of introns in

S. pombe was substantially lower than in animals

(Table 11.3). Thus, conservation of intron positions

does not seem to be a good source of information

for inferring phylogenetic relationships across long

evolutionary distances.

Having shown that evolution of introns in

eukaryotic genes did not follow the species tree,

we applied Dollo parsimony in the opposite

direction: given a species tree topology, construct

the most-parsimonious scenario for the evolution of

gene structure, i.e. the distribution of intron-gain

Intron
positions  33       55                           144     169                  233

Pf     MSR RTKKVGLTGKYGTRY GSSLRKQIKKIELMQ HAKYLCTFCGKTATK RTCVGIWKCK--KCK RKVCGGAWSLTTPAA VAAKSTIIRLRKQKE EAQKS

At     MTK RTKKARIVGKYGTRY GASLRKQIKKMEVSQ HNKYFCEFCGKYSVK RKVVGIWGCK--DCG KVKAGGAYTMNTASA VTVRSTIRRLREQTE S

Sc     MAK RTKKVGITGKYGVRY GSSLRRQVKKLEIQQ HARYDCSFCGKKTVK RGAAGIWTCS--CCK KTVAGGAYTVSTAAA ATVRSTIRRLREMVE A

Sp     MTK RTKKVGVTGKYGVRY GASLRRDVRKIEVQQ HSRYQCPFCGRLTVK RTAAGIWKCSGKGCS KTLAGGAWTVTTAAA TSARSTIRRLREMVE V

Ce     MAK RTKKVGIVGKYGTRY GASLRKMAKKLEVAQ HSRYTCSFCGKEAMK RKATGIWNCA--KCH KVVAGGAYVYGTVTA ATVRSTIRRLRDLKE

Dm     MAK RTKKVGIVGKYGTRY GASLRKMVKKMEITQ HSKYTCSFCGKDSMK RAVVGIWSCK--RCK RTVAGGAWVYSTTAA ASVRSAVRRLRETKE Q

Ag     MAK RTRKVGIVGKYGTRY GASLRKMVKKMEITQ HAKYTCTFCGKDAMK RSCVGIWSCK--RCN RVVAGGAWVYSTTAA ASVRSAVRRLREM

Hs     MAK RTKKVGIVGKYGTRY GASLRKMVKKIEISQ HAKYTCSFCGKTKMK RRAVGIWHCG--SCM KTVAGGAWTYNTTSA VTVKSAIRRLKELKD Q

 33 55 144 169 233
Pf 1 0 1 0 0
At 0 1 1 0 0
Sc 0 0 0 0 0
Sp 0 0 0 1 0
Ce 0 0 0 0 0
Dm 0 0 1 0 0
Ag 0 0 1 0 0
Hs 0 0 1 0 1

⇓ ⇓

⇓

⇓

⇓

⇓

⇓

⇓

⇓

Figure 11.3 Examples of conservation and variability of intron positions in orthologous eukaryotic genes. The data are for KOG0473, ribosomal protein

L37. The intron positions are shown directly on the alignment and the conversion of the intron-alignment mapping into a presence/absence matrix is

illustrated. 1 indicates the presence of an intron and 0 indicates the absence of an intron in the given alignment position (shown at the top). The species

abbreviations are as in Table 11.3.

100%

Dm

Ag

Hs

Ce Sc

Sp

At

Pf

100%

100%

100%

99%

Figure 11.4 Dollo parsimony tree of the eukaryotic crown group based

on comparison of intron positions. The bootstrap values are indicated

for each internal branch. The species abbreviations are as in Table 11.3.
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and -loss events among the tree branches. This

approach is completely analogous to the con-

struction of the scenario for gene gain and loss

described above. The resulting schema suggests an

intron-rich ancestor for the crown group, with

limited intron loss in the animal ancestor, but

massive losses in yeasts (particularly S. cerevisiae),

worm, and insects (Fig. 11.5). The differences in

the relative rates of intron gain and loss in the

terminal branches are remarkable; there is a huge

excess of gains over losses in humans and S. pombe,

and an equally obvious excess of losses in insects

and S. cerevisiae, whereas C. elegans shows nearly

identical numbers of gains and losses. All introns

shared by Plasmodium and any of the crown-group

species (at least 210) are assigned to the last com-

mon ancestor of alveolates and the crown group,

which lived some 1.5–2.0 billion years ago (Hedges

2002). Thus, a substantial fraction of the introns in

extant eukaryotic genomes appear to be inherited

from a common ancestor of the crown group and

the alveolates, i.e. almost from the very onset of

eukaryotic evolution. At present, loss of ancestral

introns in Plasmodium cannot be documented

because Plasmodium is the outgroup to the crown-

group species; neither can losses be assigned to the

internal branch that leads to the ancestor of the

crown group. Hence we produced a conservative

estimate of the number of the most ancient introns

in the analyzed gene set, which is likely to be

a substantial underestimate given that Plasmodium

is a parasite with a highly degraded genome

and low intron density. Sequencing and analysis

of genomes of other early-branching eukaryotes

is expected to substantially increase the number of

introns that have survived since the dawn of

eukaryotic evolution.

11.9 Dollo parsimony analysis of
prokaryotic gene order

As discussed above, Dollo parsimony is hardly

applicable to the analysis of evolution of prokar-

yotic gene repertoires because extensive HGT

leads to gross violations of the irreversibility

principle. However, it might be possible to come

up with (nearly) irreversible, Dollo-compatible

characters even in the case of prokaryotic genome

evolution. Elements of gene order are, perhaps,

the most obvious candidates for the role of such

characters in this category. Genome colinearity is

preserved only in closely related bacteria and

archaea because rearrangements continuously shuffle

prokaryotic genomes, gradually breaking ances-

tral gene strings. Nevertheless, many operons—

groups of co-expressed, functionally linked pro-

karyotic genes (usually, three or four; Jacob et al.

1960)—are highly conserved (Mushegian and

Koonin 1996; Watanabe et al. 1997; Dandekar

et al. 1998). The elementary unit of gene-order

342
662

Dm Ag Hs Ce Sc Sp At Pf
377
639

170
4 377

1 141
2 307

394
35

4
438

73
4 187

—
761

1 461
244

119
543

48
731

34
175

–
1 265

1 214
3

–
210

1 475

1 616

2 099

2 523

405

210

1 306

Loss
Gain

Figure 11.5 The parsimonious evolutionary scenario of intron gain/loss for the most likely topology of the eukaryotic phylogenetic tree. Intron gains

and losses are mapped to each species and each internal branch. The numbers next to branches indicate the number of inton losses (top) and gains

(bottom) associated with the respective branches; dashes show branches for which losses could not be inferred from the available data. The (minimal)

number of introns inferred to have existed in the analyzed set of genes in the respective ancestral forms is indicated in a box next to each internal

node of the tree. The species abbreviations are as in Table 11.3.
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conservation is a contiguous (or tightly linked)

gene pair. Independent formation of the same gene

pair in several genomes of distantly related pro-

karyotes is extremely unlikely. The possibility of

HGT of operons should be considered more

seriously in light of the so-called ‘selfish-operon’

concept, which posits that operons are often trans-

ferred between species as single units (Lawrence

and Roth 1996; Lawrence 1999). Depending on the

strength of the selfish-operon trend, this could lead

to significant regaining of lost characters (gene

pairs) and, accordingly, to violations of the Dollo

assumption. Nevertheless, phylogenetic analysis

using conserved gene pairs as characters for

genome comparison appears to be an attractive

possibility. Due to the (relatively) high rate of

intragenomic rearrangements, the gene-order trees

are, at least in theory, especially suitable for

resolving the phylogeny of closely related species.

We identified pairs of genes (COGs) whose

physical proximity is conserved in several

genomes. The presence/absence matrices of these

pairs were analyzed using Dollo parsimony

and neighbor joining, which produced essentially

the same topology (Wolf et al. 2001). The results

were also very similar to the results of distance-

tree analysis of prokaryotic gene orders reported

by Korbel and coworkers (Korbel et al. 2002). The

resulting tree topology showed a good separation

between archaea and bacteria and also reproduced

well-established, tight bacterial clades, but had a

poor resolution at deep branching points. Fur-

thermore, some of the groups seemed to result

from preferential HGT between certain prokaryotic

lineages (Wolf et al. 2001). Thus, the effect of HGT

could be too significant for Dollo parsimony to be

an appropriate method for tree construction in

this case.

11.10 Genomics and Dollo parsimony:
validity of the Dollo principle for
different types of genomic data

Dollo parsimony assumes that each derived char-

acter state originates only once, and homoplasies

exist only in the form of reversals to the primitive

condition. Obviously, this is not an absolute but a

probabilistic notion. It is not physically impossible

for dolphins to re-evolve feet or for yeast to

re-evolve the lost system for post-transcriptional

gene silencing (Aravind et al. 2000) but it appears

exceedingly unlikely that these features could

reappear in the same form as the lost ones, at least

to be considered the same character. A loose

thermodynamic analogy seems to fit: movement of

a single molecule is completely time-reversible,

but the Second Law of Thermodynamics virtually

guarantees that any regular configuration of

molecules would be irreversibly destroyed by

thermal motion. The probabilistic nature of the

Dollo law suggests that there would be a con-

tinuum of characters differing in their degree of

(ir)reversibility. Indeed, regain of a lost gene seems

to be impossible, for all practical purposes, barring

HGT. By contrast, regain of an ancestral amino

acid at a particular site is quite likely, especially

given sufficient evolutionary distance separating

the compared sequences. The specific problems

discussed here cover this entire range. In the case

of the eukaryotic gene repertoires, gene loss clearly

is irreversible and, accordingly, Dollo parsimony,

which simplifies the analysis and allows for more

reliable conclusions than other methods of evolu-

tionary reconstruction, is the approach of choice.

In the case of intron positions, the Dollo approach

can be applied also, but the probability of multiple

gains might not be negligible (depending on the

biology of the process, which is not yet sufficiently

understood), and caution is due. By contrast,

Dollo parsimony is not applicable to the study of

evolution of prokaryotic genomes due to massive

HGT. For the same reason, the attempt to use

conserved gene pairs as Dollo characters was not

particularly successful either.

With the further growth of genomics and sys-

tems biology, the numbers of characters potentially

suitable for phylogenetic analysis will continue to

grow. Examples of new types of information that

are becoming amenable to this type of analysis

include various characteristics of gene expression

and protein–protein interaction networks. The case

studies described here indicate that Dollo parsi-

mony is a useful and potentially powerful meth-

odology of evolutionary genomics, but that its

applicability always needs to be gauged against

the biology of the specific systems under analysis.
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Hennig, W. (1950). Grundzüge einer Theorie der phylo-

genetischen Systematik. Berlin, Deutscher Zentralverlag.

Hennig, W. (1966). Phylogenetic Systematics. Urbana, IL,

University of Illinois Press.

Higgins, D.G. and Sharp, P.M. (1988). CLUSTAL: A

package for performing multiple sequence alignment

on a microcomputer. Gene 73: 237–244.

Huber, K.T., Moulton, V. and Steel, M. (2002). Four

characters suffice to convexly define a phylogenetic tree.

Research Report UCDMA2002/12, Christchurch,

New Zealand, Department of Mathematics and

Statistics, University of Canterbury.

Huelsenbeck, J.P. and Lander, K.M. (2003). Frequent

inconsistency of parsimony under a simple model of

cladogenesis. Syst. Biol. 52: 641–648.

Huelsenbeck, J.P. and Ronquist, F. (2001). MrBayes:

Bayesian inference of phylogeny. Bioinformatics 17:

754–755.

Huelsenbeck, J.P., Bull, J.J. and Cunningham, C.W.

(1996). Combining data in phylogenetic analysis.

Trends Ecol. Evol. 4: 152–158.

Huelsenbeck, J., Ronquist, F., Nielsen, R. and Bollback, J.

(2001). Bayesian inference of phylogeny and its impact

on evolutionary biology. Science 294: 2310–2314.

Huelsenbeck, J.P., Larget, B., Miller, R.E. and Ronquist, F.

(2002). Potential applications and pitfalls of Bayesian

inference of phylogeny. Syst. Biol. 51: 673–688.

Huelsenbeck, J., Larget, B. and Alfaro, M. (2004). Bayesian

phylogenetic model selection using reversible jump

Markov chainMonteCarlo.Mol. Biol. Evol. 21: 1123–1133.

Hull, D.L. (1967). Certainty and circularity in evolu-

tionary taxonomy. Evolution 21: 174–189.

Hull, D.L. (1974). Philosophy of Biological Science.

Englewood Cliffs, NJ, Prentice-Hall.

Hull, D.L. (1975). Central subjects and historical narra-

tives. History and Theory: Studies Philos. Hist. 14: 253–274.

Hull, D.L. (1977). The ontological status of species as

evolutionary units. In Foundational Problems in Special

Sciences (eds R. Butts and J. Hintikka), pp. 91–102.

Dordrecht, D. Reidel Pub. Co.

R E F E R ENC E S 207



Hull, D.L. (1981). Historical narratives and integrating

explanations. In Pragmatism and Purpose: Essays Presented

to Thomas A. Goudge (eds L.W. Sumner, J.G. Slater and

F. Wilson), pp. 172–188, 308–310. Toronto, University of

Toronto Press.

Hull, D.L. (1982). Exemplars and scientific change.

Proc. Biennial Mtg. Phil. Sci. Assoc. 2: 479–503.

Hull, D.L. (1989). The Metaphysics of Evolution. Albany,

NY, SUNY Press.

Huson, D.H. and Steel, M. (2004). Phylogenetic trees

based on gene content. Bioinformatics 20: 2044–2049.

Huynen, M.A. and Bork, P. (1998). Measuring genome

evolution. Proc. Natl. Acad. Sci. USA 95: 5849–5856.

ICZN (1999). International Code of Zoological Nomenclature,

4th Edn. London, International Trust for Zoological

Nomenclature.

Jacob, F., Perrin, D., Sanchez, C. and Monod, J. (1960).

L’Operon: groupe de genes a expression coordonee par

un operateur. C. R. Seance Acad. Sci. 250: 1727–1729.

Jenner, R.A. (2004). The scientific status of metazoan

cladistics: why current reserach practice must change.

Zool. Scripta 33: 293–310.

Jermann, T.M., Opitz, J.G., Stackhouse, J. and Benner, S.A.

(1995). Reconstructing the evolutionary history of the

artiodactyl ribonuclease superfamily. Nature 374: 57–59.

Jiang, T.L. and Lawler, E.L. (1994). Aligning sequences

via an evolutionary tree: Computational complexity

and approximation. In Proceedings of the 26th ACM

Symposium on the Theory of Computing, pp. 760–769.

New York, ACM.
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