
Computational Basis for
Phylogenetics and Artificial

Intelligence in Fossil Evaluation
The Current and Future Role of Computer Sciences to

Paleontology and Evolutionary Sciences

by
Ruben Safir
April, 2017

A Master’s Thesis submitted to the Graduate Faculty of

Long Island University, Brooklyn Campus
In Partial Fulfillment of the Requirements for the Degree of

Masters of Sciences

MAJOR DEPARTMENT:
Technology, Innovation,
and Computer Science

Advisor:
Professor Christopher League

Chair:
Professor Mohammed Ghriga

2 The Future of Computational Math in Paleontology

Table of Contents
The Current and Future Role of Computer Sciences to Paleontology and Evolutionary Sciences...........1

The Digital Revolution in Biology and Evolutionary Sciences and the problems it presents for
Computer Scientists..3

Terminology...4
Graph Theory and Phylogenetics...5

Classical Graph Theory: Euler and the Königsberg Problem...5
Understanding and Coding Decision Trees..11
Dikstra's Shortest Path Algorithm and Introduction to Costs...21
Calculating Costs..30

Fossil Recognition and Pattern Recognition in Graphics..51
Hough Circle Transform...60
Dicom Cat Scan Format..63
3d Printing and File Formats..65

Applying Artificial Intelligence and Machine Learning to Fossil Data and Images................................66
CLIPS and Inference Engine classification and Decision Tree..66
Perceptrons and Learned Pattern Recognition..75
Summary and Conclusions...86

Final Notes:..91
Suggested Future Projects:...91

3 The Future of Computational Math in Paleontology

The Digital Revolution in Biology and Evolutionary Sciences and the
problems it presents for Computer Scientists

Like most areas of civilization, Paleontology has been undergoing a quiet revolution, not just with the
exciting discoveries in the field, but with the analysis of evolutionary processes by mathematical
algorithms. The discoveries of the evolutionary link between Dinosaurs and Birds has been confirmed
and argued through the application of cladistics and phylogenetics. In fact, one can argue that the
adaptation of computational analysis within the area of phylogeny makes analysis of cladistics possible,
and that makes the understanding of such discoveries within the context of known evolution theory
even more revolutionary than the fossil discoveries themselves. Computer algorithms, scanning
technology, and the application of artificial intelligence in the area of evolutionary sciences is at its
infancy. And yet, the use of computers has remarkably changed the field from the basic education of
Paleontologists, to the end analysis of fossils, and soft tissue. Computational Sciences has become the
language of paleontological discourse.

Through the use of computational mathematics, the field of Paleontology has been more tightly
integrated with genetics, and molecular biology. This cocktail has been added to the traditional fields
of geology, comparative anatomy, and biology. Paleontologist are far greater generalists than perhaps
any other area in the sciences. It also means that there is an opportunity for serious students of
computer sciences to make contributions to the field which previously had been unavailable.

The current crop of paleontologists come out of their primary education with familiarity with a group
of tools that have been developed over the last 2 decades in order to analyze fossils and their placement
within the evolutionary tree. While they have a deep understanding of the principles of cladistics and
phylogeny, along with statistics, their study of the mathematics and algorithms is short of what
computer science students experiences. Software used for their analysis includes AWTY, PAUP, TNT
and the R programming environment. Students are trained to use these applications, and discussions
revolve about how they are applied. There are long conversations about studies within mailing lists
and forums that attack and support the application of software.1 But within the textbooks and
references being used to learn the principles of the mathematics of Phylogeny, these text don't provide
the exacting rational proofs, nor do they provide the coding examples that exist in standard texts for
Computer Sciences. As an algorithms text, which essentially these Phylogeny books are, they fail in
communicating an organized body of knowledge, which for mathematics textbooks is a clear necessity
in order to enable students to comprehend the material as a whole. The difference in approach can be
traced to an antiquated idea that Biology is less exacting mathematically than other sciences. The

1 See the Dinosaur Mailing List out of USC. For example on March 28th, 2017, it was noted “Ah, so they didn't know
how to use TNT effectively. I'm not surprised based on what I found when adding Daemonosaurus and Chilesaurus to
their matrix. Stay tuned to my blog for more details...”

4 The Future of Computational Math in Paleontology

math, however, doesn't care about such notions. It's logic is formalized and its application has to be
made in all cases with understanding of the root logic. When compared to standard texts in Computer
Sciences, such as Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein's
“Introduction to Algorithms”, one can quickly see where parallel works in Paleontology are lacking in
clear explanation, detail and logic.

With Phylogeny texts clear definitions are lacking and the texts vary in nomenclature from section to
section. While these textbooks are encyclopedic on the topic, and are thick in its annotation, for
students of computer sciences, they lack the hierarchical organization of presentation that is customary,
and they fail to tie topics together into a formal continuum of knowledge. Worse that this, these text
books fail to present the material as a subset of a larger and well established body of computational
sciences, and graph theory. There is a lack of explicit proofs One might have to treck through original
papers in order to fully grasp the concepts which are laid out in the text. If one is to understand the
principles presented well enough to solve problems and code example algorithms, then they need to dig
deeper than what is presented in the materials.

This thesis hopes to clarify much of the fundamental mystery that exists in paleontology by laying out
some of the founding algorithms to the math and sciences that it uses and present it in a comprehensive
fashion in a single location. It can not cover the entirety of the field, as that would take years to write,
but it can put the computer scientist on the correct road and open up much of the black box that
currently is being used by students in this area. As such, we will break down the exploration of
paleontology into three themes:

1. Graph Theory and Phylogenetics/Cladistics

2. Pattern Recognition Algorithms and Theory

3. Artificial Intelligence and Expert Systems

Terminology

• Map: A geological representation of the world
• Graph: An diagram that represents an abstraction of states and processes that join states
• Vertex: A state in a graph
• Node: synonym for a vertex
• Edge: A line in a graph that represents a relationship between vertexes.
• Arches: Euler and Lugar's synonym for an Edge
• Cost: An abstract quantified measure of the processes needed to travel between states

5 The Future of Computational Math in Paleontology

Graph Theory and Phylogenetics

Classical Graph Theory: Euler and the Königsberg Problem

Classical graph theory in mathematics starts with Euler's “Seven Bridges of Königsberg” problem
which can be described as follows: Given the following geography of the city of Königsberg, see
below, the question arises, “Is it possible to travel through the city by crossing every bridge, never
crossing a bridge twice”.

As covered in George Luger’s standard text on artificial intelligence2 these kinds of problems are
graph problems and they perform state space searches, which are of critical import to paleontology.
We create what is called a state space graph in order to apply graph theory to the problem and try to
describe the graph in terms of predicates. A predicate is a type of question which follows specific
mathematical rules that can be described and applied in a mechanical fashion to draw conclusions.
According to Lugar, our graph is composed of nodes and arches. Nodes are states, and in this case
landing points. Arches (also called links or edges) are transitions. Normally we call “arches”,
“edges”. When we look at the city of Königsberg through this kind of filter, striping the nodes and
arches of any meaning of length or size, we can create an abstract map that looks as follows:

2 George Luger, Artificial Intelligence – Structures and Strategies for Complex Problem Solving, Pearson – Addison
Wesley, 6th Edition pg. 80

6 The Future of Computational Math in Paleontology

With this graph in mind we can note that for our problem it matters not if we cross a bridge one way or
the other. If we cross any bridge twice, then we know that such a proposed solution fails, that is we can
not walk the city by that path, to each node, without crossing a bridge twice. If we can not find any
such path, then we have answered our problem negatively. If we do find such a path, then we have
answered our query positively.

So what do we know? We know the following predicates:

First: crossing(Node1, Node2, Arch1) == crossing(Node2, Node1, Arch1)

This implies that no matter how we cross Node1 and Node2 its the same “bridge”.

Therefore we have the following sets of crossings:

1. crossing(I1,I2,B1)

2. crossing(I1,R1,B2)

3. crossing(I1, R1, B3)

4. crossing(I1,R2,B6)

7 The Future of Computational Math in Paleontology

5. crossing(I1,R2, B5)

6. crossing(R1,I2, B4)

7. crossing(I2,R2,B7)

Euler noted the following predicate as well, For any node that one enters on the path, you need to exit
through a unique arch. If you enter a node, you have to exit through a new and unused arch.
Therefore, each node must have an even number of arches. There are two exceptions to this rule, at the
beginning and at the end. If the beginning and the end are different nodes, then they must have an odd
number of attached arches.

This classical theory, originally published in 1736 in Latin, is the starting point to understand graph
theory. Since all of Paleontology involves evolutionary graphs, basic understanding of graph theory is
a prerequisite to understanding the fundamental theories behind cladistics and phylogeny. Let’s
examine a coding example for determining the Königsberg problem. For this paper, with will start
with C++ coding examples using GNU make and gcc.

Our makefile is as follows:

 1 XX:=gcc
 2 CXXFLAGS:=-Wall -ggdb -pg
 3 LDFLAGS:= -pg -pthread
 4
 5 konigsburg: euler.o nodes.o
 6 $(CXX) $(CXXFLAGS) $(LDFLAGS) -o konisgburg.exe euler.o nodes.o
 7
 8 euler: euler.cpp
 9 $(CXX) $(CXXFLAGS) $(LDFLAGS) -c euler.cpp
10
11 nodes: nodes.cpp nodes.h
12 $(CXX) $(CXXFLAGS) $(LDFLAGS) -c nodes.cpp
13
14 include make.deps
15 make.deps: *.cpp; ${CXX} ${CXXFLAGS} -M *.cpp >$@
16

Graphs have nodes (or vertices) and edges. Graphs can be directional, where traveling between points
can only go in a single direction, or bidirectional, such as our example. There can also be assigned
costs between vertices's. We can describe nodes within a class where each node object is a class
instance. And we can describe that class in nodes.h. For maximum flexibility, we can add C++
templates to nodes, which allow us to describe node instances according to any type of data we chose.

The simplest data structure can be a class of node with just two data members within it, name and data.
We drop this in the .h file, which when we use templates also includes most of the class code.

8 The Future of Computational Math in Paleontology

 1 /*
 2 * ===
 3 *
 4 * Filename: nodes.h
 5 *
 6 * Description: Basic Node for Euler Graph
 7 *
 8 * Version: 1.0
 9 * Created: 02/11/2017 06:14:42 PM
 10 * Revision: none
 11 * Compiler: gcc
 12 *
 13 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
 14 * Company: NYLXS Inc - LIU Thesis
 15 *
 16 * ===
 17 */
 18
 19 #ifndef NODES_H
 20 #define NODES_H
 21 #include<iostream>
 22 #include<string>
 23 #include<vector>
 24 namespace tree {
 25
 26 /*
 27 ¦* ===
 28 ¦* Class: Node
 29 ¦* Description: This class describes a single node and its data
 30 ¦* ===
 31 ¦*/
 32 template < class T >
 33 class Node
 34 {
 35 public:
 36
 37 /* ==================== LIFECYCLE ======================================= */
 38 Node (std::string n, T d): data{d}, name{n} {
 39
 40 }; /* constructor */
 41
 42 /* ==================== ACCESSORS ======================================= */
 43 std::string get_name()const{
 44 return name;
 45 }
 46
 47 /* ==================== MUTATORS ======================================= */
 48 /* ==================== OPERATORS ======================================= */
 49 /* ==================== DATA MEMBERS ======================================= */
 50 T data;
 51 protected:
 52
 53 private:
 54 std::string name;
 55
 56 }; /* ---------- end of template class Node ---------- */
 57
 58 /*
 59 ¦* ===
 60 ¦* Class: Edges
 61 ¦* Description: Bridges - usually I wouldn't make edges but we are being consistant
 62 ¦* with the Luger description of the problem.
 63 ¦* ===
 64 ¦*/
 65 template < class T >
 66 class Edge
 67 {
 68 public:
 69
 70 /* ==================== LIFECYCLE ======================================= */
 71 Edge (std::string n, T d): data{d}, name{n}{};
 72
 73 /* ==================== ACCESSORS ======================================= */
 74 std::string get_name(){

9 The Future of Computational Math in Paleontology

 75 return name;
 76 }
 77
 78 /* ==================== MUTATORS ======================================= */
 79
 80 /* ==================== OPERATORS ======================================= */
 81
 82 /* ==================== DATA MEMBERS ======================================= */
 83 T data;
 84 protected:
 85
 86 private:
 87 std::string name;
 88
 89 }; /* ---------- end of template class Edges ---------- */
 90 template< class node_type, class bridge_type>
 91 class Predicate{
 92 public:
 93 Predicate(Node<node_type>& in_a, Node<node_type>& in_b, Edge<bridge_type>& in_c)
 94 : a{in_a}, b{in_b}, c{in_c}{
 95 a.data++;
 96 b.data++;
 97 };
 98 Node<node_type>& a;
 99 Node<node_type>& b;
100 Edge<bridge_type>& c;
101 };
102
103 }//close of namespace tree
104
105 #endif

 1 /*

 2 * ===
 3 *
 4 * Filename: euler.cpp
 5 *
 6 * Description: Demonstration Program for Eulers Konisgburg problem
 7 *
 8 * Version: 1.0
 9 * Created: 02/12/2017 10:21:23 AM
10 * Revision: none
11 * Compiler: gcc
12 *
13 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
14 * Company: NYLXS Inc
15 *
16 * ===
17 */
18
19 #include "nodes.h"
20
21 int is_euler(tree::Node<int> ** city)
22 {
23 int odd = 0;
24 int size = 4;
25 for(int i=0;i<size;i++){
26 if((city[i]->data % 2) == 1)
27 {
28 odd++;
29 std::cout << odd << std::endl;
30 }
31 }
32 if(odd == 0 || odd == 2){
33 return true;
34 }
35 return false;
36 }

10 The Future of Computational Math in Paleontology

37
38 int main(int argc, char * argv[])
39 {
40 /*Create all the nodes */
41 /* data can be anything useful to describe a node. In this case
42 ¦* it will be an int to represent degree (or number of connections */
43
44 tree::Node<int> I1 {"Island 1", 0};
45 tree::Node<int> I2 {"Island 2", 0};
46 tree::Node<int> R1 {"Riverbank 1", 0};
47 tree::Node<int> R2 {"Riverbank 2", 0};
48
49 tree::Node<int> * city[] = {&I1,&I2,&R1,&R2};
50 /* For Edges, we use an open/close integer. zero is open. Once it is crossed
51 ¦* we can close it setting it to one */
52
53 tree::Edge<int> B1 {"Bridge 1", 0};
54 tree::Edge<int> B2 {"Bridge 2", 0};
55 tree::Edge<int> B3 {"Bridge 3", 0};
56 tree::Edge<int> B4 {"Bridge 4", 0};
57 tree::Edge<int> B5 {"Bridge 5", 0};
58 tree::Edge<int> B6 {"Bridge 6", 0};
59 tree::Edge<int> B7 {"Bridge 7", 0};
60
61 /* Creating all the predicates */
62 tree::Predicate<int, int> crossing_1 {I1, I2, B1};
63 tree::Predicate<int, int> crossing_2 {I1, R1, B2};
64 tree::Predicate<int, int> crossing_3 {I1, R1, B3};
65 tree::Predicate<int, int> crossing_4 {I2, R1, B4};
66 tree::Predicate<int, int> crossing_5 {I1, R2, B5};
67 tree::Predicate<int, int> crossing_6 {I1, R2, B6};
68 tree::Predicate<int, int> crossing_7 {I2, R2, B7};
69
70 std::cout << I1.get_name() << " " << I1.data << std::endl;
71 std::cout << I2.get_name() << " " << I2.data << std::endl;
72 std::cout << R1.get_name() << " " << R1.data << std::endl;
73 std::cout << R2.get_name() << " " << R2.data << std::endl;
74 std::cout << "Is it walkable ==> " << is_euler(city) << std::endl;
75
76
77
78 return EXIT_SUCCESS;
79 }

A few notes on this code are worth mentioning. Leveraging C++ templates is useful in the header files
in order to lay down the ground work for future graphs. This is particularly useful for work in the
biological sciences and paleontology specifically. Graphs that involve species, each species can be
viewed as a state within the process of evolution are described in edges. The mechanisms that allow for
transformation between species, that is the events that push evolution. The molecular biology involved
with genetic problems can vary, depending on the specifics of the problem being solved. There can be
a great variety of the types of events that are being described in these graphs. Graphs can be laid out
using parsimony, and within that space there can be different parsimony rules for different problems or
different investigators. Further, we can evaluated our graph with statistical analysis. We will be
looking at a means of developing such constructions. This specific code example, however, assumes
that the data type for nodes are of a generic integer type, and would need to be further adapted, perhaps
through C++ heredity, through leveraging the templates.

Understanding and Coding Decision Trees

The above code will swiftly tell you if any topographical map can be successfully traversed according
the the Königsberg postulate. The next logical step is to evaluate how one might transverse the graph

11 The Future of Computational Math in Paleontology

assuming that we have a solution, which in this case we don't. Several mechanism exist in the
literature. The first step involves identification of an odd-degreed node. We can build that fact directly
into our nodes so that every time we find a crossing that emulates from a node (each crossing is a
Predicate in our graph with one edge and two nodes), it increments the count of crossed edges for that
node. This count is an integer sum termed a degree stored within a node under this algorithm. Since
we are storing degrees within our node code objects, we can query nodes directly, in a round robin
fashion until we find an appropriate root (one with an odd numbered degree).

The next step finds all the predicates that include that node. We choose one, mark it as crossed, and
then examine the associated second node within that crossing. Repeat with the associated node until
either we run out of nodes, or when we reach a node with has no more associated uncrossed crossings.
We can then examine all the predicates and if there are any with are any that are uncrossed, then we
have a failure, and we need to back track and search the previous node for a different predicate. If
there is none that hasn't been crossed, then we back up again, until we either find a successful path or
reach our starting point with no further paths. If we exhaust all paths and none are successful, at that
point, we know the graph has no solution.

This is a basic algorithm for walking through a
decision tree. The tree is yet another type of a
graph, and we can see its form in the figure
captioned “Decision Tree for Euler Path”.
Volumes of important papers have been written
about means of optimizing such trees, searching
them, reorganizing them, analyzing their
properties and more. With each node the
complexity of the problem grows, minimally,
geometrically. Trees allow us to form
relationships between states, and since they
grow geometrically, we can store a large
number of states and reach individual states
quickly as we transverse through the tree. Each
node in our case, can have two or more choices
of crossings. For some problems, reaching an
exact decision path might be beyond our ability
to calculate within reasonable time. After all,
the trees grow geometrically. Under those
circumstances, heuristic methods then have to be introduced to bring approximate solutions.

With phylogeny we are focused on a particular kind of a tree, the tree of life. Current evolutionary
theory is that life on earth began once, and all other life evolved from that single source. 3 It is indeed
an astonishing hypothesis which to this point has been never been successfully challenged, although
displacing these axioms have been tried by quacks and scientists for over 100 years. This describes a

3 Darwin, Charles, “The Origins of Species” , 24 November 1859

12 The Future of Computational Math in Paleontology

rooted tree. It’s updated version states that all of life is related, and the mechanism for these relations
are primarily based on the sequence of DNA which records the instructions for the development,
grown and function which is passed from one generation to the next. Over time, recording or
transcription errors occur which is essential for the adaptation of species to their environment. This
process has been under development for about 4 billion years. 4

Rarely will we examine the entire tree of life. The idea is almost absurd.
The fossil record is just a crack in the window of time. If one thinks about
the huge number of life forms on the planet right this moment, including
millions of ever changing bacterial forms, fungi, alga, plants, insects, over
10,000 species of living dinosauria, and synapsid (Mammals and like forms),
it should become clear that even the most well represented of species, say
like Tyrannosaurus Rex, is just the smallest number of individuals within a
species, of only a sliver of species from any given era or epoch.56

One needs to understand the nature of a decision tree in order to understand
the complexity of evolutionary calculations. It is necessary to examine
multiple possible trees and try to choose the most likely proper relationships
between species. For a Euler's Königsberg problem, let’s examine a possible
case where we can solve this problem. I name this imaginary city Rubensberg and it looks like the
figure marked “Rubensberg” below.

In this case, a causal look at the graph we
can see that we have two odd numbered
degreed nodes, Box A with five connectors
and Box D with one. That means we can
walk from one node to another, crossing
every bridge once, starting with Node A or
Node D. The complete graph can be
represented in C++ like this (Nodes are
capitalized and edges use small letters):

tree::Node<int> A {"Island A", 0};
tree::Node<int> B {"Island B", 0};
tree::Node<int> C {"Island C", 0};
tree::Node<int> D {"Island D", 0};
tree::Node<int> E {"Island E", 0};
tree::Node<int> F {"Island F", 0};
tree::Node<int> G {"Island G", 0};

tree::Node<int> * city[] = {&A, &B, &C, &D, &E, &F, &G};

4 Bard, Jonathan, “Principles of Evolution”, 2017, Garland Science

5 Allmon, Yaccobucci, editors, “The Fossil Record”, University of Chicago Press 2016
6 Brusatte, Stephen, Carr, Thomas, “The phylogeny and evolutionary history of tyrannosauroid dinosaurs”, Nature, Feb

2nd, 2016, online http://www.nature.com/articles/srep20252

Darwin - 1836

http://www.nature.com/articles/srep20252

13 The Future of Computational Math in Paleontology

/* For Edges, we use an open/close integer. zero is open. Once it is crossed
 * we can close it setting it to one */

tree::Edge<int> a {"Tunnel A", 0};
tree::Edge<int> b {"Tunnel B", 0};
tree::Edge<int> c {"Tunnel C", 0};
tree::Edge<int> d {"Tunnel D", 0};
tree::Edge<int> e {"Tunnel E", 0};
tree::Edge<int> f {"Tunnel F", 0};
tree::Edge<int> g {"Tunnel G", 0};
tree::Edge<int> h {"Tunnel H", 0};
tree::Edge<int> i {"Tunnel I", 0};
tree::Edge<int> j {"Tunnel J", 0};

/* Creating all the predicates */
tree::Predicate<int, int> crossing_1 {A,B,a};
tree::Predicate<int, int> crossing_5 {B,E,b};
tree::Predicate<int, int> crossing_10 {A,E,c};
tree::Predicate<int, int> crossing_4 {A,F,d};
tree::Predicate<int, int> crossing_3 {B,F,e};
tree::Predicate<int, int> crossing_2 {A,B,f};
tree::Predicate<int, int> crossing_6 {A,G,g};
tree::Predicate<int, int> crossing_7 {E,G,h};
tree::Predicate<int, int> crossing_8 {E,C,i};
tree::Predicate<int, int> crossing_9 {C,D,j};
tree::Predicate<int, int> * crossings[] = {&crossing_1 ,&crossing_2 ,&crossing_3
,&crossing_4 ,&crossing_5 ,&crossing_6 ,&crossing_7 ,&crossing_8 ,&crossing_9
,&crossing_10};

Our testing for the existence of a valid Euler path can use the same code as we had before. That leaves
us with process of actually walking through all possible paths, until we find one that is valid. It is
important to know that we can have more than a single valid path. If we start with one of the odd
nodes, lest say A in this case, we can systematically test each attached path, one at a time, and then
repeating the process until we either succeed or run out of paths. This lends itself to a stack and it can
look like the following code. The problem solved either when we reach the last odd node, or a node
that has no more valid paths. How do we know that we finished and how do we know we have a
correct result? First we check to see our final node is an odd node. How do we know if it is a valid
result (which I term as a true result)? Well, if we count all the connections that we crossed, if the
number of uniquely crossed connections are equal to the total number of connections, which in this
case is 10 tunnels (or bridges, etc), then we have a winning route. If not, its a failure and we need to
back track, and mark all the crossed connectors uncrossed on the way out. Here is an example code:

 1 /*
 2 * ===
 3 *
 4 * Filename: euler.cpp
 5 *
 6 * Description: Demonstration Program for Eulers Konisgburg problem
 7 * using a path decision tree
 8 *
 9 * Version: 1.0

14 The Future of Computational Math in Paleontology

 10 * Created: 02/12/2017 10:21:23 AM
 11 * Revision: none
 12 * Compiler: gcc
 13 *
 14 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
 15 * Company: NYLXS Inc
 16 *
 17 * ===
 18 */
 19
 20 #include "nodes.h"
 21 #include<vector>
 22 #include<stack>
 23 /*Create all the nodes */
 24 /* data can be anything useful to describe a node. In this case
 25 * it will be an int to represent degree (or number of connections */
 26
 27 tree::Node<int> A {"Island A", 0};
 28 tree::Node<int> B {"Island B", 0};
 29 tree::Node<int> C {"Island C", 0};
 30 tree::Node<int> D {"Island D", 0};
 31 tree::Node<int> E {"Island E", 0};
 32 tree::Node<int> F {"Island F", 0};
 33 tree::Node<int> G {"Island G", 0};
 34
 35 tree::Node<int> * city[] = {&A, &B, &C, &D, &E, &F, &G};
 36 /* For Edges, we use an open/close integer. zero is open. Once it is crossed
 37 * we can close it setting it to one */
 38
 39 tree::Edge<int> a {"Tunnel A", 0};
 40 tree::Edge<int> b {"Tunnel B", 0};
 41 tree::Edge<int> c {"Tunnel C", 0};
 42 tree::Edge<int> d {"Tunnel D", 0};
 43 tree::Edge<int> e {"Tunnel E", 0};
 44 tree::Edge<int> f {"Tunnel F", 0};
 45 tree::Edge<int> g {"Tunnel G", 0};
 46 tree::Edge<int> h {"Tunnel H", 0};
 47 tree::Edge<int> i {"Tunnel I", 0};
 48 tree::Edge<int> j {"Tunnel J", 0};
 49
 50 /* Creating all the predicates */
 51 tree::Predicate<int, int> crossing_1 {A,B,a};
 52 tree::Predicate<int, int> crossing_5 {B,E,b};
 53 tree::Predicate<int, int> crossing_10 {A,E,c};
 54 tree::Predicate<int, int> crossing_4 {A,F,d};
 55 tree::Predicate<int, int> crossing_3 {B,F,e};
 56 tree::Predicate<int, int> crossing_2 {A,B,f};
 57 tree::Predicate<int, int> crossing_6 {A,G,g};
 58 tree::Predicate<int, int> crossing_7 {E,G,h};
 59 tree::Predicate<int, int> crossing_8 {E,C,i};
 60 tree::Predicate<int, int> crossing_9 {C,D,j};
 61 tree::Predicate<int, int> * crossings[] = {&crossing_1 ,&crossing_2 ,&crossing_3 ,&crossing_4
,&crossing_5 ,&crossing_6 ,&crossing_7 ,&crossing_8 ,&crossing_9 ,&crossing_10};
 62
 63 int tunnel_count = 0;
 64
 65 int is_euler(tree::Node<int> ** city)
 66 {
 67 int odd = 0;
 68 int size = 7;
 69 for(int i=0;i<size;i++){
 70 // std::cout << "__LINE__ " << __LINE__ << std::endl;
 71 if((city[i]->data % 2) == 1)
 72 {
 73 odd++;
 74 std::cout << "Found odd number " << odd << std::endl;
 75 }
 76 }
 77 if(odd == 0 || odd == 2){
 78 return true;
 79 }
 80 return false;
 81 }
 82
 83 bool testnode(tree::Node<int>* in, int isodd)
 84 {

15 The Future of Computational Math in Paleontology

 85 if(tunnel_count == 10)
 86 {
 87 std::cout << "FINISHED Node==>" << in->get_name() << std::endl;
 88 return true;
 89 }
 90 //std::vector<tree::Predicate<int,int> *> attached;
 91 std::stack<tree::Predicate<int,int> *> attached;
 92 if(isodd == 1)
 93 {
 94 //start on the first crossing and find matching nodes from our selected odd node_path
 95 std::cout << "Starting Node==>" << in->get_name() << std::endl;
 96
 97 for(int index = 0; index< 10; index++)
 98 {
 99 //find all the attached nodes and crossings
100 if((crossings[index]->search_for_matching_node(in)) && (crossings[index]->c.data == 0))
101 {
102 std::cout << "\tPushing =>" << crossings[index]->c.get_name() << std::endl;
103 attached.push(crossings[index]);
104 }
105 }
106 //have we reached an end?
107 if(attached.size() == 0)
108 {
109 std::cout << "\tSize of Attached is =>" << attached.size() << " ";
110 std::cout << "\tTunnel Count is =>" << tunnel_count << std::endl;
111 if(tunnel_count == 10)
112 {
113 return true;
114 }
115
116 }
117 //Search the attached crossings for a working path
118 tree::Predicate<int,int> * tmp;
119 while((! attached.empty()) && (tunnel_count != 10))
120 {
121 //check all the paths
122 std::cout << "\t\tCurrent Node==>" << in->get_name() << std::endl;
123 tmp = attached.top();
124 std::cout << "\t\tTraveling Path==>" << tmp->c.get_name() << std::endl;
125 attached.pop();
126 tunnel_count++;
127 std::cout << "\t\tCurrent Tunnel Count is==>" << tunnel_count << std::endl;
128 tmp->c.data = 1;
129 //recursion
130 if(testnode(tmp->next(in), isodd) && (tunnel_count != 10))
131 {
132 std::cout << __LINE__ << "\t\tCurrent Node==>" << in->get_name() << std::endl;
133 std::cout << "\t\t\t\t***Returned TRUE***" << std::endl;
134 std::cout << "\t\t\t\t\tSize of Attached is =>" << attached.size() << std::endl;
135 }else{
136 if(tunnel_count == 10)
137 {
138 return true;
139 }
140 std::cout << __LINE__ << "\t\tCurrent Node==>" << in->get_name() << std::endl;
141 std::cout << "\t\t\t\t** returned FALSE **" << std::endl;
142 tmp->c.data = 0;
143 std::cout << "\t\t\t\t\t** tunnel marked unvisited **" << std::endl;
144 tunnel_count--;
145 std::cout << "\t\t\t\t\tCurrent Tunnel Count is ==>" << tunnel_count << std::endl;
146
147 std::cout << "\t\t\t\t\tNumber of attached paths is=>" << attached.size() << std::endl;
148 }
149 std::cout << "check while condition again do we have attached tunnels**" << std::endl;
150 }
151 std::cout << "\tOut of while loop : Size of Attached is =>" << attached.size() << " ";
152 std::cout << "For Node " << in->get_name() << std::endl;
153 // std::cout << __LINE__ << std::endl;
154
155 }
156
157 return false;
158 }
159
160 int main(int argc, char * argv[])

16 The Future of Computational Math in Paleontology

161 {
162 std::cout << A.get_name() << " " << A.data << std::endl;
163 std::cout << B.get_name() << " " << B.data << std::endl;
164 std::cout << C.get_name() << " " << C.data << std::endl;
165 std::cout << D.get_name() << " " << D.data << std::endl;
166 std::cout << E.get_name() << " " << E.data << std::endl;
167 std::cout << F.get_name() << " " << F.data << std::endl;
168 std::cout << G.get_name() << " " << G.data << std::endl;
169 std::cout << "Is it walkable ==> " << is_euler(city) << std::endl;
170
171 //Find an odd degree nodes
172 int cntr = 0;
173 int isodd =0;
174 // tree::Node<int> * cur;
175 tree::Node<int> * start;
176 std::stack < tree::Node<int> * > node_path;
177 //store the attached crossings for future reference
178 while(((city[cntr]->data % 2) == 0) && cntr < 7)
179 {
180 cntr++;
181 }
182 if(cntr == 7)
183 {
184 start = city[0];
185 }else{
186 start = city[cntr];
187 isodd = 1;
188 }
189
190 node_path.push(start);
191 std::cout << "TOP Node =>" << node_path.top()->get_name() << std::endl;
192 testnode(start, isodd);
193
194 return EXIT_SUCCESS;
195 }

 1 /*
 2 * ===
 3 *
 4 * Filename: nodes.h
 5 *
 6 * Description: Basic Node for Euler Graph
 7 *
 8 * Version: 1.0
 9 * Created: 02/11/2017 06:14:42 PM
 10 * Revision: none
 11 * Compiler: gcc
 12 *
 13 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
 14 * Company: NYLXS Inc - LIU Thesis
 15 *
 16 * ===
 17 */
 18
 19 #ifndef NODES_H
 20 #define NODES_H
 21 #include<iostream>
 22 #include<string>
 23 #include<vector>
 24 namespace tree {
 25
 26 /*

17 The Future of Computational Math in Paleontology

 27 ¦* ===
 28 ¦* Class: Node
 29 ¦* Description: This class describes a single node and its data
 30 ¦* ===
 31 ¦*/
 32 template < class T >
 33 class Node
 34 {
 35 public:
 36
 37 /* ==================== LIFECYCLE ======================================= */
 38 Node (std::string n, T d): data{d}, name{n} {
 39
 40 }; /* constructor */
 41
 42 /* ==================== ACCESSORS ======================================= */
 43 std::string get_name()const{
 44 return name;
 45 }
 46
 47 bool operator==(const Node first) const{
 48 if(first.get_name() == name)
 49 {
 50 return true;
 51 }
 52 return false;
 53 };
 54 bool operator==(Node *first) const {
 55 if(first->get_name() == name)
 56 {
 57 return true;
 58 }
 59 return false;
 60 };
 61
 62 /* ==================== MUTATORS ======================================= */
 63 /* ==================== OPERATORS ======================================= */
 64 /* ==================== DATA MEMBERS ======================================= */
 65 T data;
 66 protected:
 67
 68 private:
 69 std::string name;
 70
 71 }; /* ---------- end of template class Node ---------- */
 72
 73 /*
 74 ¦* ===
 75 ¦* Class: Edges
 76 ¦* Description: Bridges - usually I wouldn't make edges but we are being consistant
 77 ¦* with the Luger description of the problem.
 78 ¦* ===
 79 ¦*/
 80 template < class T >
 81 class Edge
 82 {
 83 public:
 84
 85 /* ==================== LIFECYCLE ======================================= */
 86 Edge (std::string n, T d): data{d}, name{n}{}; /*
constructor */
 87
 88 /* ==================== ACCESSORS ======================================= */
 89 std::string get_name(){
 90 return name;
 91 }
 92
 93 /* ==================== MUTATORS ======================================= */
 94
 95 /* ==================== OPERATORS ======================================= */
 96
 97 /* ==================== DATA MEMBERS ======================================= */
 98 T data;
 99 protected:
100
101 private:

18 The Future of Computational Math in Paleontology

102 std::string name;
103
104 }; /* ---------- end of template class Edges ---------- */
105 template< class node_type, class bridge_type>
106 class Predicate{
107 public:
108 Predicate(Node<node_type>& in_a, Node<node_type>& in_b, Edge<bridge_type>& in_c)
109 : a{in_a}, b{in_b}, c{in_c}{
110 a.data++;
111 b.data++;
112 };
113 Node<node_type>& a;
114 Node<node_type>& b;
115 Edge<bridge_type>& c;
116
117 //== is true if we have a single matching node
118 bool operator==(const Predicate *first) const
119 {
120 if((first->a == a) || (first->a == b)|| (first->b == a)
121 ||(first->b == b))
122 {
123 return true;
124 }
125 return false;
126 };
127 bool operator==(const Node<node_type> * first) const
128 {
129 if((*first == a) || (*first == b)|| (*first == a)
130 ||(*first == b))
131 {
132 return true;
133 }
134 return false;
135 };
136
137 bool search_for_matching_node(const Node<node_type> * first) const
138 {
139 if((*first == a)|| (*first==b) || (*first == a) || (*first == b))
140 {
141 return true;
142 }
143 return false;
144 };
145
146 Node<node_type> * next(const Node<node_type> * first)
147 {
148 if(*first == a){
149 return &b;
150 }
151 return &a;
152 }
153 };
154
155 }//close of namespace tree
156
157 #endif

The output traces the entire decision making tree:

Island A 5
Island B 4
Island C 2
Island D 1
Island E 4
Island F 2
Island G 2
Found odd number 1
Found odd number 2

19 The Future of Computational Math in Paleontology

Is it walkable ==> 1
TOP Node =>Island A
Starting Node==>Island A

Pushing =>Tunnel A
Pushing =>Tunnel F
Pushing =>Tunnel D
Pushing =>Tunnel G
Pushing =>Tunnel C

Current Node==>Island A
Traveling Path==>Tunnel C
Current Tunnel Count is==>1

Starting Node==>Island E
Pushing =>Tunnel B
Pushing =>Tunnel H
Pushing =>Tunnel I

Current Node==>Island E
Traveling Path==>Tunnel I
Current Tunnel Count is==>2

Starting Node==>Island C
Pushing =>Tunnel J

Current Node==>Island C
Traveling Path==>Tunnel J
Current Tunnel Count is==>3

Starting Node==>Island D
Size of Attached is =>0 Tunnel Count is =>3
Out of while loop : Size of Attached is =>0 For Node Island D

140 Current Node==>Island C
** returned FALSE **

** tunnel marked unvisited **
Current Tunnel Count is ==>2
Number of attached paths is=>0

check while condition again do we have attached tunnels**
Out of while loop : Size of Attached is =>0 For Node Island C

140 Current Node==>Island E
** returned FALSE **

** tunnel marked unvisited **
Current Tunnel Count is ==>1
Number of attached paths is=>2

check while condition again do we have attached tunnels**
Current Node==>Island E
Traveling Path==>Tunnel H
Current Tunnel Count is==>2

Starting Node==>Island G
Pushing =>Tunnel G

Current Node==>Island G
Traveling Path==>Tunnel G
Current Tunnel Count is==>3

Starting Node==>Island A
Pushing =>Tunnel A
Pushing =>Tunnel F
Pushing =>Tunnel D

Current Node==>Island A
Traveling Path==>Tunnel D
Current Tunnel Count is==>4

Starting Node==>Island F
Pushing =>Tunnel E

Current Node==>Island F
Traveling Path==>Tunnel E
Current Tunnel Count is==>5

Starting Node==>Island B
Pushing =>Tunnel A
Pushing =>Tunnel F
Pushing =>Tunnel B

Current Node==>Island B
Traveling Path==>Tunnel B
Current Tunnel Count is==>6

Starting Node==>Island E
Pushing =>Tunnel I

Current Node==>Island E
Traveling Path==>Tunnel I
Current Tunnel Count is==>7

Starting Node==>Island C
Pushing =>Tunnel J

Current Node==>Island C
Traveling Path==>Tunnel J
Current Tunnel Count is==>8

20 The Future of Computational Math in Paleontology

Starting Node==>Island D
Size of Attached is =>0 Tunnel Count is =>8
Out of while loop : Size of Attached is =>0 For Node Island D

140 Current Node==>Island C
** returned FALSE **

** tunnel marked unvisited **
Current Tunnel Count is ==>7
Number of attached paths is=>0

check while condition again do we have attached tunnels**
Out of while loop : Size of Attached is =>0 For Node Island C

140 Current Node==>Island E
** returned FALSE **

** tunnel marked unvisited **
Current Tunnel Count is ==>6
Number of attached paths is=>0

check while condition again do we have attached tunnels**
Out of while loop : Size of Attached is =>0 For Node Island E

140 Current Node==>Island B
** returned FALSE **

** tunnel marked unvisited **
Current Tunnel Count is ==>5
Number of attached paths is=>2

check while condition again do we have attached tunnels**
Current Node==>Island B
Traveling Path==>Tunnel F
Current Tunnel Count is==>6

Starting Node==>Island A
Pushing =>Tunnel A

Current Node==>Island A
Traveling Path==>Tunnel A
Current Tunnel Count is==>7

Starting Node==>Island B
Pushing =>Tunnel B

Current Node==>Island B
Traveling Path==>Tunnel B
Current Tunnel Count is==>8

Starting Node==>Island E
Pushing =>Tunnel I

Current Node==>Island E
Traveling Path==>Tunnel I
Current Tunnel Count is==>9

Starting Node==>Island C
Pushing =>Tunnel J

Current Node==>Island C
Traveling Path==>Tunnel J
Current Tunnel Count is==>10

FINISHED Node==>Island D

Understanding this basic algorithm is essential for understanding the bulk of the computational theory
on phylogeny and evolutionary computations. We are using multiple levels of comparisons, whether it
is genetic sequences or cladistic phenotypes. We need to examine multiple possible trees and apply
order to them to determine the ones that have the highest likelihood of representing the actual
historical progression of species.

21 The Future of Computational Math in Paleontology

Dikstra's Shortest Path Algorithm and Introduction to Costs

In basic graph theory, unlike in our example, crossings, or what is generally term as edges, can have
costs. An edge between two nodes can have costs, and the costs between different nodes have various
numeric representations, which can determine any abstraction, for example, distance, resistance,
likelihood for an event to happen, the number of hops in a network, or anything that can describe the
difference between two states. Each state is a node and between nodes are edges that have costs.
Trying to determine the shortest route between states or a group of states is an area of study in
computational math. The classic example which paleontologists need to be familiar with is the Dijkstra
algorithm. Dijkstra’s Algorithm is classically described in the seminal text, Cormen, et al,
“Introduction of Algorithms” which in the second edition is included in Chapter 24.3. Quoting
Cormen78

 Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G = (V, E) for the case in which all edge weights are nonnegative. In this
section, therefore, we assume that w(u, v) ≥ 0 for each edge (u, v) E.∈

Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the
source s have already been determined. That is, for all vertices v in S, we have d[v] = (s, v).

7 Cormen, Leiserson, Rivest, Stein “Introduction to Algorithms” Second Edition, The MIT Press, 2001
8 Dijkstra, E.W., “A Note on Two Problems in Connexion with Graph”, Numerische Mathematlk 1, pg269 - 27, 1959

22 The Future of Computational Math in Paleontology

The algorithm repeatedly selects the vertex u V - S with the minimum shortest-path ∈
estimate, inserts u into S, and relaxes all edges leaving u. 9

What this means is that we have a directed graph, such as this one based on Cormen:10

A couple of things should be noted about this chart. Unlike the previous one, the arrows mean that the
relationship between those two vertexes are directed, and one can only travel one way. This kind of
constraint is useful for paleontology and species don’t presume to devolve, although features can at
times be lost. Even whales that lose legs still have remnants.

In the Dijkstra algorithm we chose a starting point, which in this case is vertex A. We divide the graphs
total number of vertexes between vertexes that are visited and vertexes that are unvisited. We call the
set of visited vertexes as S and the unvisited are V - S where V is the complete set of vertexes for
graph G.

We examine all the vertexes that are attached to S (Just vertex A at the start) and compare all the costs.
Each examined vertex is marked with the cost from the current (or starting) position to the attached

9 Cormen, Leiserson, Rivest, Stein “Introduction to Algorithms” Second Edition, The MIT Press, 2001
10 Ibid.

S is the Set of Visited Vertexes
V is all the Vertexes in a graph
V-S is unvisited Vertexes

23 The Future of Computational Math in Paleontology

vertex. We then look for the attached vertex with the smallest cost, and chose that as our next “current’
vertex. So in this case, we look at vertex B and C. B is marked 10 and C is marked 5, and C is now
our current vertex.

Now we repeat with C as out start. Attached to C is B (which was marked previously with a value of
10), and D. B is remarked to 8. Why? Because C is valued currently at 5, and the cost from C to B is
3. 5 and 3 is 8. 8 is less than the current value of 10, so we mark it down to 8. This implies that the
cheapest way to B is through C. We now mark D with 7 (5 plus the cost of 2 between C and D). Our
lowest attached point is now D at 7. D is now marked as current.

Repeat from D. D is attached to E and A. A however is part of S (it has been visited and marked green
in our graph) and we don’t revisit. S is now a set of {A, C} and our current vertex, D being evaluated.
E is evaluated to 13. B is still evaluated at 8 and is now the minimum valued node and is marked
current. D is added to the set of V.

24 The Future of Computational Math in Paleontology

Repeat for B which has a value of 8. It is attached to the last free vertex, E which is currently valued at
13. The cost from B to E is 1, and since B is 8, we get 8 (which is B) + 1 (which is the cost from
B→E) we get a new minimum cost for E of 9. B is included in the Set of V and we now repeat with E

E is the last node and remains at its value of 9.

In theory, if we have proper cost analysis, and direction. We should be able to create a decision tree
through this algorithm that would produce the most correct cladogram between any number of species.
Unfortunately, things are never that simple.

Determining a proper cost is the key to using Dijkstra. Lets assume, for one useful example that we
have 10 species that we know are closely related, and we want to try to determine a most likely
evolutionary tree of said species. In this case, we can build a finite number of trees which represent
the complete set of possible relationships, assuming that we can have at most 2 species branching

25 The Future of Computational Math in Paleontology

from any other single species. We can find the most likely tree if we build the tree, starting by
evaluating just two species, and then adding a third. When we add a fourth species, we can now create
3 possible trees of 4 vertexes each. Each tree is related to the previous 3 node tree. We can determine
the cost from the 3 vertex tree to any of the three 4-vertex trees and apply Dijkstra's algorithm to the
graph. We can then add a 5th vertex, we can then create 6 more trees for each of the 3 previous cases,
and each with a cost in relationship to their parent. We can then apply Dijkstra again and determine the
shortest path according to latest diagram and data. And we can do so again for as many nodes that we
want, determining the shortest path for any x where N(x) is the designation for any vertex where the the
number of vertexes in the graph is the set of all x → {x} where x is an integer from 0 .. xmax.

Defining the cost determines the nature of the graph, and the evolutionary information that we can
extract from that data. One recent lectures from the Royal Tyrrell Museum in Drumheller, Alberta in
the 2017 lecture series which are available on their youtube channel evaluated just tooth morphology. 11
Those can be quantified and the degree of difference from species to another can be assigned points
based on morphology criteria. The differences between teeth from species to species is a subtraction of
these costs. Assigning them stepwise to trees can give a grand total of parsimony for the teeth for an
entire tree at each level. We can then compare those summations from proposed tree to proposed tree
and find the shortest path between and two trees, from 2 vertex trees to 10 vertex trees (since this is a
10 species problem). A shortest path is now the most likely correct tree and evolutionary path based
on our information.

As we can see, the number of trees that can serve as vertexes rises rapidly as each individual tree in our
graph increases in the number of species. This is worth looking at for a moment because of its
consequences to computational complexity and because it allows us to clarify some of the assumptions
we are making about evolutionary tree development which differs from classical tree graphs. Lets
assume for this example that we only have binary trees. When we add a node to our graph we are
adding it to an edge that we select, forming a new leaf, and internal unlabeled node. The common
evolutionary point of view says that species X splits and evolved into two new species, Y and Z. But
having such transitional forms in hand is like catching lightning in a bottle. That is why instead, when
we are adding new species to a tree, we add them to the edges, forming an unknown transitional node
which is unnamed, by splitting an existing edge, and extending a new edge from the transitional node
to our added species. This creates a large diagram which is on the following page

11 Derek Larson, “Morphology, Disparity, and Evolution of Theropod Teeth in the Late Cretaceous in Alberta”, The Royal
Tyrrell Museum Speaker Series, March 1, 2017, https://www.youtube.com/watch?v=SJh0Izvw2DM

26 The Future of Computational Math in Paleontology

27 The Future of Computational Math in Paleontology

This is the model that has been developed and is largely explored in the literature. Like any other
scientific model, it has limitations. It is possible, after all, that a species we are looking at is a
transitional form. Not all species are evolutionary dead ends. To make matters even more difficult,
there is a lack of consensus in the literature as to what standards are to being used to describe trees and
graphs. Sometimes the shapes of trees are to be considered, and sometimes they are not. As computer
scientists and mathematicians, our goal is often to simplify descriptions to the least restrictive
generalization in order to apply logical abstractions. But for evolutionary computations, one has to
read carefully the currently proposed tree structure, and not take for granted terminology without
seeing the formal definition. There is no consensus on terminology within these papers or even
textbooks.

For example, one might study rooted
bifulcrum trees, unrooted bifulcrum
trees, and trees that are unrooted but
can be rooted by any given species on
the tree, and others with an unlabeled
species at the root, and even trees that
represent time in the length of edges.
There are papers and theories that are
proposed that handle all these kinds of
cases. This adds to the confusion
when trying to gather the known
work on phylogenies into a
comprehensive whole body of
knowledge. It gets harder to connect
the dots. Most commonly, when one
sees a graph within articles on
paleontology, unlike the ones on
computations, we see a chart where
the nodes nearly disappear, such as this sample from Wikipedia: 12

That format is particularly useful because it is easy to render in HTML tables. Unfortunately, it takes
even more deep thought to translate from the graph models in theory to the visuals used in descriptions
of results. We will discuss this further in the upcoming section. Also, keep in mind that we have not
discussed how costs are determined. This is the bread and butter of phylogenies work, but is not
addressed at all with Dijkstra's Algorithm.

We can code Dijksta’s Algorithm in C++. Examples exist in the literature and around the internet. 13 A
fair example is this code which was borrowed from Stack Overflow:14

12 https://en.wikipedia.org/wiki/Sauropodomorpha March 2017
13 Robert Sedgewick https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf
14 https://stackoverflow.com/questions/3447566/dijkstras-algorithm-in-c/3448361

Wikipedia sample evolutionary diagram

https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPaths.pdf
https://en.wikipedia.org/wiki/Sauropodomorpha

28 The Future of Computational Math in Paleontology

working.addNode(Start, 0); // No cost to get to start.

for((node, cost) = working.popHead(); node != End; (node,cost) = working.popHead())
{
 // If we have already processed this node ignore it.
 if (finished.find(node))
 { continue;
 }

 // We have just removed a node from working.
 // Because it is the top of the list it is guaranteed to be the shortest route to
 // the node. If there is another route to the node it must go through one of the
 // other nodes in the working list which means the cost to reach it will be higher
 // (because working is sorted). Thus we have found the shortest route to the node.

 // As we have found the shortest route to the node save it in finished.
 finished.addNode(node,cost);

 // For each arc leading from this node we need to find where we can get to.
 foreach(arc in node.arcs())
 {
 dest = arc.dest();
 if (NOT (finished.find(dest)))
 {
 // If the node is already in finished then we don't need to worry about it
 // as that will be the shortest route other wise calculate the cost and add
 // this new node to the working list.
 destCost = arc.cost() + cost;
 working.addNode(dest,destCost); // Note. Working is sorted list
 }
 }
}

or this working example offered under the Creative Commons on www.geeksforgeeks.org by an
seemingly anonymous author: 15

// A C / C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph

#include <stdio.h>
#include <limits.h>

// Number of vertices in the graph
#define V 9

// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;

for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)

min = dist[v], min_index = v;

return min_index;
}

// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{

15 http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

http://www.geeksforgeeks.org/

29 The Future of Computational Math in Paleontology

printf("Vertex Distance from Source\n");
for (int i = 0; i < V; i++)

printf("%d \t\t %d\n", i, dist[i]);
}

// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{

int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i

bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized

// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)

dist[i] = INT_MAX, sptSet[i] = false;

// Distance of source vertex from itself is always 0
dist[src] = 0;

// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in first iteration.
int u = minDistance(dist, sptSet);

// Mark the picked vertex as processed
sptSet[u] = true;

// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)

// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX

&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];

}

// print the constructed distance array
printSolution(dist, V);

}

// driver program to test above function
int main()
{
/* Let us create the example graph discussed above */
int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},

{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};

30 The Future of Computational Math in Paleontology

dijkstra(graph, 0);

return 0;
}

Calculating Costs

While we use some form of the shortest path algorithm, such as Dijkstra’s algorithm for use to find the
best trees or paths for phylogenies, the increase in the number of permutations that could be vertexes
would challenge the computational power of even today's powerful multi-core workstations. It
becomes undoable to solve. Threaded coding technique in the application of algorithms can relieve
some of this computational burden but ultimately this is a practical constraint forcing paleontologists
to focus on statistical analysis. When you consider how much uncertainty is in the fossil record to begin
with, statistical models are essential. In the end though, such analysis are still a cost factors that can be
plugged in the Dijkstra’s algorithm. And that is why I believe that the lack of broader education on
basic graph theory is detrimental to the Paleontology field.

There is a general concept that the simplest means of explaining something is the most correct. This is
termed parsimony. In paleontology parsimony is defined as the evolutionary tree that requires the least
about of evolution. As early as 1963 Edwards and Cavalli-Sforza wrote: 16

In our isotropic space we may think of evolution as a branching random

walk, with a constant probability of branching and a constant rate of

walking: that is, after the elapse of a certain time interval, the pro-

bability distribution in space of the position of a population will be

normal, with mean at its original position and variance proportional

to the time elapsed. The constant of proportionality will depend on

many parameters, such as the population size and the type and intensity

of selection, and will usually be unknown. Since an evolutionary tree

uniting n points (without loops) is bound to contain n - 1 branching

points, the probability of branching is not a parameter which has to be

estimated, although it is worth noting that the theory of birth and

death processes may have some interesting things to say about the ex-

pected form of an evolutionary tree.

Now the probability density at a distance d spatially and t temporally

from a point in the space-time of p spatial dimensions is given by

16 Edwards, A. W. F., and Cavallli-Sforza, L. L., 1963a. The reconstruction of
evolution. Unpublished paper read at 142nd meeting of the Genetical Socie(Y
of Great Britain, London, July 1963. (Abstract in Anlt. hum. Genet., 27: 104-
105, and in Heredity, Land., 18: 553.)

31 The Future of Computational Math in Paleontology

 Each arm of a postulated evolutionary tree will have an expression of

this type associated with it, d being its spatial length and T proportional

to its temporal length. Thus the likelihood of the tree will be maximized

if the sum of these expressions, over all the arms, is minimized (since

we have changed the sign, and the branching points, being constant

in number, are irrelevant).17

If we want to determine a proposed cost between any pair of trees, then we need to assign some value
to the nodes. Since we are looking at trees, one proposed and most basic means of evaluations is to
review minimum tree parsimony for a specifically proposed tree. Since we will evaluate all the
possible trees for any specific number of species, then we can assign all of them parsimony values and
run Dijkstra’s algorithm.

A decent example of the method which for determining a parsimony value is included in standard texts,
including Felsenstein 18who works with a small set of characteristics in a binary comparison chart

Characteristics

Species 1 2 3 4 5 6

Alef 1 0 0 1 1 0

Bet 0 0 1 0 0 0

Gimel 1 1 0 0 0 0

Delad 1 1 0 1 1 1

Hey 0 0 1 1 1 0

This is a simple chart of 5 species with a mapping of 6 characteristics which are selected by the
wisdom of the modeler and investigator. Now, it is worth pointing out that this is where errors are
produced in understanding techniques. Mathematical models and algorithms are foolproof in that they

17 A. W. F. Edwards & L. L. Cavalli-Sforza, December 1964, “ Reconstruction of Evolutionary Trees” SYSTEMATICS
ASSOCIATION PUBLICATION NUMBER 6 PHENETIC AND PHYLOGENETIC CLASSIFICATION, pp. 67-76
18 Felsenstein, 2004, “Inferring Phylogenies” , Sinauer Associates Inc: pg2

32 The Future of Computational Math in Paleontology

are based on solid formal logic, which can be reduced to computational notation and computer
programming. The selection of data, on the other hand, and the appropriate use of models is easy to
error with. This case uses a simple binary characteristics. In the real world, we can easily have a much
more complex set of data. This, for example, is a view of the set of data used by Stephen L. Brusatte
and Thomas Carr, on their analysis of Tyrannosaurs with 366 characteristics across 32 species:

The full dataset can only be viewed as a database file or imported (as in this case) into a spreadsheet.
The R programming language has excellent facilities for viewing such data in matrices. There is a key
to the numeric codes in this example which describes the meaning of each column. All of this can be
found attached to his research paper for peer review. 19

One of the measured characteristics, characteristic 13, is the angle between the bottom of the
premaxilla (where the teeth are) and the snout. How important is this angle in distinguishing species is

19 Brusatte, Stephen L. and ,Carr, Thomas D “The phylogeny and evolutionary history of tyrannosauroid dinosaurs”,
2016/02/02/, Scientific Reports, http://www.nature.com/articles/srep20252#supplementary-information

33 The Future of Computational Math in Paleontology

a good question. Is it more likely to vary with individuals of a single species? This is a problem with
morphological data. We just don’t have a big enough fossil record to know and Paleontologist John
Harsshman wrote:

I tried comparing a few images of Tyrannosaurus and Dilong skulls, and there seems to be quite a lot of
variation. Some of the T. rex skulls do seem to show an inflection point, but others seem pretty smoothly
curved. 20

In Felsenstein’s simpler example, he starts with an arbitrary tree which is rooted by a unlabeled node
and evaluates each characteristic one by one, trying to determine on which edges need change to
happen for each of the species on the tree to have the proper state for a specific characteristic. This is
worth reviewing because while the process is simple, it is the foundation of other analytic theories. It
is also confusing and easy to forget. Lets look at a randomly proposed tree and the breakdown of the
distribution of Characteristic 1. Note, that in this example, we don’t know the state of the root node.
Alef, Gimel and Delad are all in state 1 for characteristic 1. We have a diagram that looks like this.

The red area denotes the sections that are known to be in state 1 for character 1. The purple arrow
shows the unknown state of the root node. That implies that the character 1 could have flipped in one
of those two positions, with an equal chance for either. Either way, the Parsimony value for character 1
in this random tree is 1.

20 John Harshman, usenet, sci.bio.paleontology, 08 Oct 2016, phylogeny tyrannosauroid dinosaurs

34 The Future of Computational Math in Paleontology

Let’s look at Character 2. Gimel and Daled are in red and have a state of 1 for character 2. There are
several ways that we can produce this result, for which I showed you one. All of them require two flips
and have a parsimony value of 2, bringing our total parsimony value for this tree to 3.

The third characteristic is in state 1 for species Bet and Hey, This would require a single flip for an
additional parsimony value of 1. We can apply that flip in one of tow places as you can see with this
chart. So all together we have a total parsimony value of 4 (1 + 2 + 1).

Characteristic 4 is for Alef, Delad and Hey. These are disconnected on either side of the tree. If this
tree is valid, it might be an example of convergent evolution. It creates a more complex parsimony
hypothesis as we can see in the diagram:

35 The Future of Computational Math in Paleontology

There is no doubt that we have a parsimony of two here, but it is interesting to note that we can use
either the dark green marks or the light green marks. The dark green assumes that the unknown state of
the root is red (or 1). Our total is now 6

Characteristic 5 is the same as Characteristic 4, raising our total parsimony value to 8.

Character 6 is 1 only for Delad. We can only have one minimal means of doing that as we can see
from the last chart.

This gives us a total Parsimony value for this tree of 9.

The question arises, is this the lowest parsimony total we can acquire for any arraignment this set of
species. It so happens the answer is no. There is at least one other tree with this same set of species
and characteristics with a lower parsimony. However, we do we have a process that will find not only
the tree with the minimum parsimony, but also if we examine all the trees and evaluate them as
vertexes on Dijkstra’s shortest path algorithm, we can find the lowest parsimony by the shortest path.
If we build them up from simple organisms to complex ones, and directed over time, the shortest path
will give us the most likely evolutionary pathway, because the minimal total amount of evolutionary

36 The Future of Computational Math in Paleontology

change through the path is discovered, not just a specific tree without consideration for how that tree
was arrived at.

With straight parsimony, all changes in a character trait are equal. But in reality, this is not the case.
Many traits change more readily than others, and some traits might not even indicate a difference in
species. Size, for example, in human populations vary greatly, within the confines of normal. Even
size among populations can change greatly as, for example in recent generations, the Dutch population
has dramatically grown taller, gaining over eight inches in height over the past century and a half.21
The Dutch are not a new species, to the best of our knowledge. We noted that the variation of the angle
of the snout of the Tyrannosaurs seems to vary, and with this group, the shape of the nostrils and snout
largely separates them from other therapod lineages. 22 How does one account for such differences in
value?

Light can be shed on these these problems with multiple approaches, which can involve DNA
sequences and morphology. Computationally, the key matter is giving a variety of values to
characteristics and standardized costs for changes from one state to the next. The key algorithm for this
kind of evaluation grew from the increasing use of genetics and is known as the Sankoff Algorithm 23

In the case of Sankoff, we want to extrapolate unknown historical states as we derive them from a
known table of costs. An easy way to demonstrate the problem is to use the nucleotides of DNA and
values related to the chances of random exchanges. DNA nucleotides are either cytosine (C), guanine
(G), adenine (A), or thymine (T). The nucleotides bind DNA strands together by forming base pairs of
A with T, and C with G. We can create a chart of probable transformation that looks like this (after
Felsenstein)

from-to A C G T

A 0 2.5 1 2.5

C 2.5 0 2.5 1

G 1 2.5 0 2.5

T 2.5 1 2.5 0

The key to understanding the Sankoff algorithm is understanding that it recursively hunts for the state
with the minimal amount of costs all along the tree, memorizion of the data as we search, walking
through a tree of related entities, node by node. In this regard, it is similar to other algorithms which
use memoization that keep lists of known states to prevent duplication of efforts, but in this case, these
intermediate states themselves are of interest. 24

21 Gert Stulp, Louise Barrett, Felix C. Tropf, Melinda Mills, “Does natural selection favour taller stature among the tallest
people on earth?”, 8 April 2015, Proceedings of the Royal Society B 282

22 Stephen L Brusatte; Mark A Norell; Thomas D Carr; Gregory M Erickson; John R Hutchinson; Amy M Balanoff; Gabe
S Bever; Jonah N Choiniere; Peter J Makovicky; Xing Xu, “Tyrannosaur Paleobiology: New Research on Ancient
Exemplar Organisms”, September 17th, 2010, Science. 329, no. 5998: 1481

23 Felsentein pg 13.
24 Cormen et al pg 347

37 The Future of Computational Math in Paleontology

The function that does the recursion searches for all child nodes for the current node. If they exist then
it examines all the states for each child node, and finds the state combination with the most minimal
cost for each of the nodes possible states. Then it adds all the results for all the children together and
memoize this for each possible state in the node. When all the states are computed, start again with the
parent node. Let’s look at this in action. We are using the data as it is presented in Felsenstein but this
explanation is geared for the programmer who understands graph theory and algorithms.

We are examining a tree and trying to determine the minimal costs for this tree. Once this cost is
determined, the tree can be used as a node for the Dijkstra evaluation. We start on the first node, which
is a leaf in the upper right of the above chart. It has, like all the possible nodes in our tree, each state
for a possible species, an array of 4 states {A,C,G,T}. The values for this leaf node is A=>infinity,
C=>0, G=>infinity, and T=>infinity. The values of infinity can NEVER be minimal values (I guess in
theory they are positive infinity). That means this node is actually in a C state overall. So this species
has a phenotype of a C.

Our routine looks for child nodes, and if they don’t exist then in runs itself recursively on its parent
node, marked in light purple in the graphs below (fig 2).

38 The Future of Computational Math in Paleontology

Once we move up the tree and set the parent as the current node, it now proceeds to search for the
minimum costs for each possible state.

• It starts with the first property “A” and compare it to the child on the left.
• A comparison of A => A would be zero, but then we add the cost inherited from the child, which

is positive infinity, and it can not be a minimum.
• A=>C is 2.5 with the added inherited cost of 0 from the child gives us 2.5.
• A=>G is 1 but we again add the inherited positive infinity.
• A=>T is 2.5 but we again add the inherited positive infinity

The resulting minimum for A is therefore 2.5. Record this in the parent node.

• C=>A is 2.5 plus the inherited infinity is infinity
• C=>C is 0 plus 0 is 0
• C=>G is 2.5 plus infinity which is infinity
• C=>T is 1 plus infinity which is infinity

The resulting minimum for C is therefore 0. Record this in the parent node.

• G=>A is 1 plus the inherited infinity is infinity
• G=>C is 2.5 plus 0 is 2.5
• G=>G is 0 plus infinity is infinity
• G=>T is 2.5 plus infinity is infinity

The resulting minimum for G is therefore 2.5. Record this in the parent node.

39 The Future of Computational Math in Paleontology

• T=>A is plus infinity is infinity
• T=>C is 1 plus zero is 1
• T=>G is 2.5 plus infinity is infinity
• T=>T is 0 plus infinity is infinity

The resulting minimum is T is 1. Record this in the parent node.

Now we examine the next child node which has the cost array of {0, infinity, infinity, infinity} and
repeat the procedure:

• A=>A is 0 plus inherited cost of 0 is Zero.
• A=>C is 2.5 plus infinity is infinity
• A=>G is 1 plus infinity is infinity
• A=>T is 2.5 plus infinity is infinity

The resulting minimum for A is 0. We add the current A value of 2.5to this result for a total
minimum of 2.5.

• C=>A is 2.5 plus 0 is 2.5
• C=>C is 0 plus infinity is infinity
• C=>G is 2.5 plus infinity is infinity
• C=>T is is 1 plus infinity is infinity

The resulting minimum for C is 2.5. We add the current C value of 0 to this result for a total
minimum of 2.5.

• G=>A is 1 plus zero is 1
• G=>C is 2.5 plus infinity is infinity
• G=>G is 0 plus infinity is infinity
• G=>T is plus infinity is infinity

The resulting minimum for G is 1. We add the current G value of 2.5 for a total minimum of 3.5.

T=>A is 2.5 plus infinity is 2.5
T=>C is 1 plus the inherited infinity is infinity.
T=>G 2.5 is plus infinity is infinity
T=>T is 0 plus infinity is infinity
The resulting minimum for T is 2.5. We add the current T value of 1 for a total minimum of 3.5.

This gives the parent node a complete cost array of {2.5, 2.5, 3.5, 3.5}

This node is finished and we repeat the process

40 The Future of Computational Math in Paleontology

We drop to the parent node which is the root node in this example and run the same process again, first
on the left, which results in the array of {2.5, 2.5, 3.5, 3.5 }

• A=>A is 0 plus inherited cost of 2.5 is 2.5.

• A=>C is 2.5 plus 2.5 is 5

• A=>G is 1 plus 3.5 is 4.5

• A=>T is 2.5 plus 3.5 is 6

The resulting minimum for A is 2.5. Record 2.5.

• C=>A is 2.5 plus 2.5 is 5.0

• C=>C is 0 plus 2.5 is 2.5

• C=>G is 2.5 plus 3.5 is 6

• C=>T is is 1 plus 3.5 is 4.5

The resulting minimum for C is 2.5. We record it.

• G=>A is 1 plus 3.5 is 4.5

41 The Future of Computational Math in Paleontology

• G=>C is 2.5 plus 3.5 is 6

• G=>G is 0 plus 3.5 is 3.5

• G=>T is 2.5 plus 3.5 is 6

The resulting minimum for G is 3.5. We record it.

• T=>A is 2.5 plus 2.5 is 5

• T=>C is 1 plus the inherited 2.5 is 3.5.

• T=>G 2.5 is plus 3.5 is 6

• T=>T is 0 plus 3.5 is 3.5

The resulting minimum for T is 3.5. We record it to the node.

Now, when we check the right, however, we have an unknown condition on the right child. So now we
run the process on the unknown right child, making it current, and it finds values on the left

A comparison of A => A would be zero, plus infinity is infinity

A=>C is 2.5 with the added inherited cost of 0 from the child gives us 2.5.

A=>G is 1 but we again add the inherited positive infinity.

42 The Future of Computational Math in Paleontology

A=>T is 2.5 but we again add the inherited positive infinity

The resulting minimum for A is therefore 2.5. Record this in the parent node.

C=>A is 2.5 plus the inherited infinity is infinity

C=>C is 0 plus 0 is 0

C=>G is 2.5 plus infinity which is infinity

C=>T is 1 plus infinity which is infinity

The resulting minimum for C is therefore 0. Record this in the parent node.

G=>A is 1 plus the inherited infinity is infinity

G=>C is 2.5 plus 0 is 2.5

G=>G is 0 plus infinity is infinity

G=>T is 2.5 plus infinity is infinity

The resulting minimum for G is therefore 2.5. Record this in the parent node.

T=>A is plus infinity is infinity

T=>C is 1 plus zero is 1

T=>G is 2.5 plus infinity is infinity

T=>T is 0 plus infinity is infinity

The resulting minimum is T is 1. Record this in the parent node.

The right child is undefined so we trigger the process again, with no panic, on the child. Mark the
child current and run the procedure on it. It has a valid left which we mark in pink here.

43 The Future of Computational Math in Paleontology

A=>A is 0 plus inherited cost of 0 is Zero.
A=>C is 2.5 plus infinity is infinity
A=>G is 1 plus infinity is infinity
A=>T is 2.5 plus infinity is infinity
The resulting minimum for A is 0. Record 0

C=>A is 2.5 plus 0 is 2.5
C=>C is 0 plus infinity is infinity
C=>G is 2.5 plus infinity is infinity
C=>T is is 1 plus infinity is infinity
The resulting minimum for C is 2.5. Record 2.5.

G=>A is 1 plus zero is 1
G=>C is 2.5 plus infinity is infinity
G=>G is 0 plus infinity is infinity
G=>T is plus infinity is infinity
The resulting minimum for G is 1. Record 1

T=>A is 2.5 plus infinity is 2.5
T=>C is 1 plus the inherited infinity is infinity.
T=>G 2.5 is plus infinity is infinity
T=>T is 0 plus infinity is infinity
The resulting minimum for T is 2.5. Record 2.5

Now evaluate the right child:

44 The Future of Computational Math in Paleontology

A=>A is 0 plus inherited cost of infinity is infinity
A=>C is 2.5 plus infinity is infinity
A=>G is 1 plus 0 is 1
A=>T is 2.5 plus infinity is infinity
The resulting minimum for A is 1. Add 1 to the parent memoized value of 0 and record 1

C=>A is 2.5 plus infinity is infinty
C=>C is 0 plus infinity is infinity
C=>G is 2.5 plus 0 is 2.5
C=>T is is 1 plus infinity is infinity
The resulting minimum for C is 2.5. Add the parents memoized value of 2.5 and record 5.0

G=>A is 1 plus infinity is infintiy
G=>C is 2.5 plus infinity is infinity
G=>G is 0 plus 0 is 0
G=>T is 2.5 plus infinity is infinity
The resulting minimum for G is 0. Add the parent memoized value of 1 and record 1

T=>A is 2.5 plus infinity is infinity
T=>C is 1 plus the inherited infinity is infinity.
T=>G 2.5 is plus 0 is 2.5
T=>T is 0 plus infinity is infinity
The resulting minimum for T is 2.5. Add the parent memoized 2.5 and record 5.
This node is now {1, 5, 1, 5 }

With the end of those routine, recursion happens back to the red nodes left side. It runs routinely even
though the result looks a little differently. We are looking for the minimal values for all possible costs
and then adding them to the recorded values from the left side.

45 The Future of Computational Math in Paleontology

A=>C is 2.5 plus 5 is 7.5
A=>G is 1 plus 1 is 2
A=>T is 2.5 plus 5 is 7.5
The resulting minimum for A is 1. Add 1 to the parent memoized value of 2.5 and record 3.5
which is recorded.

C=>A is 2.5 plus 1 is 3.5
C=>C is 0 plus 5 is 5.0
C=>G is 2.5 plus 1 is 3.5
C=>T is is 1 plus 5 is 6
The resulting minimum for C is 3.5. Add the parent memoized value of 0 and record 3.5.

G=>A is 1 plus 1 is 2
G=>C is 2.5 plus 5 is 7.5
G=>G is 0 plus 1 is 1
G=>T is 2.5 plus 5 is 7.5
The resulting minimum for G is 1. Add the parent memoized value of 2.5 and the result for G
3.5.

T=>A is 2.5 plus 1 is 3.5
T=>C is 1 plus the inherited 5 is 6.
T=>G 2.5 is plus 1 is 3.5
T=>T is 0 plus 5 is 5
The resulting minimum for T is 3.5. Add the parent memoized 1 and record 4.5.
This red parent node is now {3.5, 3.5, 3.5, 4.5 }

When this evaluation is finished, the node is finished and the process ends. We now return to the Root
Node's right child evaluation. The end result looks like this

46 The Future of Computational Math in Paleontology

• A=>A is 0 plus inherited cost of 3.5 is 3.5
• A=>C is 2.5 plus 3.5 is 6.0
• A=>G is 1 plus 3.5 is 4.5
• A=>T is 2.5 plus 4.5 is 7.0

The resulting minimum for A is 3.5. Add 3.5 to the parent memoized value of 2.5 and record 6
which is recorded.

• C=>A is 2.5 plus 3.5 is 6
• C=>C is 0 plus 3.5 is 3.5
• C=>G is 2.5 plus 3.5 is 6
• C=>T is is 1 plus 4.5 is 5.5

The resulting minimum for C is 3.5. Add the parent memoized value of 2.5 and record 6.

• G=>A is 1 plus 2.5 is 3.5
• G=>C is 2.5 plus 2.5 is 5
• G=>G is 0 plus 3.5 is 3.5
• G=>T is 2.5 plus 3.5 is 6

The resulting minimum for G is 3.5. Add the parent memoized value of 3.5 and the result for G
7.

• T=>A is 2.5 plus 2.5 is 5
• T=>C is 1 plus the inherited 2.5 is 3.5.
• T=>G 2.5 is plus 3.5 is 6
• T=>T is 0 plus 3.5 is 3.5

The resulting minimum for T is 3.5. Add the parent memoized 4.5 and record 8.
This dark red parent node is now {6, 6, 7, 8 }

Sankoff’s Algorithm is very important in understanding how costs can be constructed for the purposes
of phylogenies. The most important thing to understand is that it is a recursive algorithm and we can
code it in C++ (and other languages) fairly quickly. It also lends itself particularly well for functional
programming idioms. A work up of Sankoff’s Algorithm that is expressed like the above diagrams can

47 The Future of Computational Math in Paleontology

be used to produce values representing trees. These values can then be used in Dijkstra’s shortest path
in order to determine cost between vertexes.

If you start by coding objects that represent traits with costs values, then you can embed those into
node objects. Just as we did in the decision tree, then we can stitch them together as a path and walk
the path recursively. So in the end, the algorithm uses elements of the decision tree in the Königsberg
problem, and elements like the Dijkstra problem, which results in values that can be used to create
stepwise addition of trees by the species for a further Dijkstra analysis in trying to determine the most
likely evolutionary paths. Furthermore, C++’s templating mechanism allows us to use any analysis we
choose for determining costs, from any statistical method or phenotype character trait.

Let’s start out by looking at an individual state object:

/*
 * ===
 * Class: State
 * Description: This describes a possible individual state or charactoristic
 * ===
 */
template<class cost>
class STATE
{

public:
/* ==================== LIFECYCLE ======================================= */
 /* constructor */
//r is the memoized value of the minimum cost of a single charactor when compared to the child nodes
explicit STATE<cost>(std::string const xa, cost xr)
:_nam{xa}, _r{xr}
{

std::cout << std::endl << "Building a state pair" << std::endl;
std::cout << "nam => " << nam() << "\tcost=> " << r() << std::endl;

};

/* ==================== ACCESSORS ======================================= */
std::string nam()const {return _nam;};
cost r() const {return _r;};
void r(cost b){_r = b;};
/* ==================== MUTATORS ======================================= */

void change(cost a, cost b){
_nam = a;
r(b);

}
/* ==================== OPERATORS ======================================= */
friend std::ostream & operator << (std::ostream & os, const STATE & obj)

{
os << std::endl << "name => " << obj.nam() << ":cost=> " << obj.r() ;
return os;

} /* ----- end of function operator << ----- */
STATE & operator = (cost b)
{

r(b);
return *this;

}

/* ==================== DATA MEMBERS ======================================= */
protected:

private:
std::string _nam;
cost _r;

}; /* ----- end of class State ----- */

A state has 2 data members, a name and a value. Using templating they can be of any kind of data
type, although in our example we use ints. We overloaded the output stream to make printing of the
values easy. And we overloaded the assignment operator to make the value assignment easy, something
we will be doing frequently in evaluating these values as we move through the tree.

These states are grouped together in C++ vectors. In our example we have 4 per node. This is not
etched in stone for the algorithm so I provide flexibility in its type and assignment.

48 The Future of Computational Math in Paleontology

/*
 * ===
 * Class: Pstates
 * Description: vector of all possible states
 * ===
 */
template<class cost_type>
class Pstates
{

public:

/* ==================== LIFECYCLE ======================================= */
/* constructor */
Pstates (std::vector< STATE<cost_type> > x)

: _vstate{x}
{

for(auto& y : _vstate)
std::cout << std::endl <<"adding state " << y << std::endl;

};

~Pstates (){}; /* destructor */

/* ==================== ACCESSORS ======================================= */
const std::vector< STATE<cost_type> >& vstate() const{

return _vstate;
}
void vstate(std::vector< STATE<cost_type> > in){

_vstate = in;
}

/* ==================== MUTATORS ======================================= */

/* ==================== OPERATORS ======================================= */

const Pstates& operator = (const Pstates &other); /* assignment operator */
const Pstates& operator = (const std::vector< STATE<cost_type > > &other){

vstate(other);
return *this;

} ; /* assignment operator */
STATE<cost_type>& operator [] (unsigned int const index){

return (_vstate[index]);
} ; /* [] operator */

friend std::ostream & operator << (std::ostream & os, const Pstates & obj)

{
for(auto state_pair : obj.vstate())

std::cout << std::endl << "state pair" << state_pair;
return os;

} /* ----- end of function operator << ----- */

/* ==================== DATA MEMBERS ======================================= */
protected:

private:
std::vector< STATE <cost_type> > _vstate;

}; /* ----- end of class Pstates ----- */

The Pstates constructor takes a vector of type STATE<class> . Those are paired data in objects,

assigned to the vector and in fact there are a number of C++ libraries I could have employed including
enums and pairs. This method gives me a little more flexibility if I choose to alter the program, but
using standard libraries is certainly valid. One design choice here was that one needs to construct the

vector< STATE<class> > externally and feed it whole. Once the vector is created, of course, all

the tools for vectors can be leveraged both within the object construction as one builds this out, and
externally which bends the containment rules of object oriented programming, but I can live with it.

This syntax:

for(auto& y : _vstate)

std::cout << std::endl <<"adding state " << y << std::endl;

49 The Future of Computational Math in Paleontology

is relatively new to C++. These are the new auto variables that are available in C++ and allow one to
deduce the data type from the context of the expression, specifically the type of the data on the
initialization. This can be particularly useful for templates or allocators where the data type might well
change with the implementation, or just changed in debugging or normal development. If you change
your mind about the data type, auto remains correct.

Also, the for(:) syntax is known as a Range-for Statement.25 It gives the programmer access of each
member of a range, such as vectors. This syntax will be seen more and more in C++ code going
forward.

If you look at the STATE object, you will recall that the standard output object is conveniently
overloaded, and I can also use the assignment overload to conveniently use this syntax to edit the
values of STATE<class>.

Now we can construct our NODE object:

template<class unk>
class NODE{

public:
 //=========================LIFECYCLE===
 /* Constructor */

NODE(std::string xt , const unk &x , NODE<unk> *xcl= 0, NODE<unk> *xcr = 0, NODE<unk> *xp =
0):_trait{xt},_states{x}, _cl{xcl}, _cr{xcr}, _p{xp} {//child left, child right etc

std::cout << std::endl <<"Constructing node "<< trait() << std::endl << trait() << " has the following states => " <<
states() << std::endl;

};

NODE(const NODE &other); //copy constructor
 ~NODE();

 /* ==================== ACCESSORS ======================================= */
//no need for inline when you are defineing functions within the class definition

std::string trait()const{
return _trait;

}
unk states()const{

std::cout << std::endl << __LINE__ << ": sending _states" << std::endl;
 return _states;
 };

NODE<unk> * cl()const{
 return _cl;
 };

NODE<unk> * cr()const{
 return _cr;
 };

NODE<unk> * p()const{
 return _p;
 };

void states(const unk &x){
 _states = x;
 }

void trait(std::string xt){
 _trait = xt; //With genetics this is a A C G T although it is just a label

 }
void cl(NODE<unk> *xcl){ //This is the left child node in the tree

 _cl = xcl;
 }

void cr(NODE<unk> *xcr){//This is the right node child node in the tree
 _cr = xcr;
 }

void p(NODE<unk> *xp){//This is the parent node in the tree
 _p = xp;
 }
 /* ==================== MUTATORS ======================================= */

 /* ==================== OPERATORS ======================================= */

template <class T>
friend std::ostream& operator<<(std::ostream& os, const T&);

25 Bjarne Stroustrup, “The C++ Programming Language”, 4th Edition 2013, Addison-Wesley pg 233

50 The Future of Computational Math in Paleontology

template<class T>
friend std::ostream& operator<<(std::ostream& os, const NODE<T> &);

 protected:
 /* ==================== DATA MEMBERS ======================================= */

 private:
 /* ==================== DATA MEMBERS ======================================= */

 std::string _trait;
 unk _states;
 NODE<unk> * _cl, * _cr, * _p;

}; /* ----- end of template class NODE ----- */

NODEs have three attached NODEs linked together, a left child, a right child and a parent. This is a
little bit like a linked list. A complete list of NODEs allows for a graph, as it does in the decision tree
program, although we don’t even need a container. The attached NODEs default to 0, which allows for
testing. Ostream is overloaded

template <class T>
friend std::ostream& operator<<(std::ostream& os, const T&);

template<class T>
friend std::ostream& operator<<(std::ostream& os, const NODE<T> &);

With all our objects nicely constructed (and with room to grow them if need be later), the next thing to
build is the crawler. The crawler will be a recursive function. What needs to be recognized is that this
formulation is a standard binary tree, but upside down. Therefore,we can crawl the tree using a post-
order traversal. We can define the recursive function as follows:

Preliminary activity: Load the cost table for state. Load any node. Follow it's parents to the root.
Once we reach the root then do the following

1. Examine the upper left child. If it doesn't exist, examine the right hand child. If it doesn't
exist => exit the function..

2. If the left exists, examine its Pstates. If the Pstates are undefined, do a recursion passing the
child node as current. Otherwise, Examine your Pstates. Starting with the first character in the
current pState, compare it against each character in the child’s Pstates vector. Walk through all
the characters.

3. Look at the cost for each pairing. Add the cost to the child’s Pstate character value. Peek at the
nodes temporary buffer. If the sum is less than the buffer, write it to the buffer. Continue to the
next child Pstate character. Repeat through all the child’s Pstate characters.

4. This will give you the minimum cost + inherited value in the buffer. Add whatever value is in
the current Pstate's character value to the buffer and then write the sum to the Pstate character
of the current node. Write infinity to the temporary buffer. Continue to the next character for
the current nodes Pstate and repeat from 3.

51 The Future of Computational Math in Paleontology

5. Examine the right child. If it doesn't exist, exit the function. Otherwise examine the child's
Pstate. If the childs Pstate is undefined call recursion with the child marked as current (sent as
a param). Otherwise, repeat from step 3.

6. Return from function.

Fossil Recognition and Pattern Recognition in Graphics
Much of the debate relating to phylogeny involves the application of static data which is processed by
trained observers. This is where the field has been at for over twenty years. Field workers find bones in
rock, and highly trained preparers try to separate the rock from mineralized bone. Then paleontologists
measure, scan and draw the specimens, dividing observations into what is considered important
differentiation which are then processed through computational algorithms, not much different from
what is described above. But what has happened over the last 20 years has been nothing short of
astonishing. Soft tissue and soft tissue remnants have been found in Cretaceous era bone beds, and
even Jurassic age fossils like the famous German specimen of Archaeopteryx have soft tissue traces in
the surrounding rock. Hundreds of feathered dinosaurs have been found in China, and now that people
are looking, such specimens are now being found the Canadian Rockies, the Gobi Desert and even in
the collections standing in museums worldwide. Proteins have been found in Tyrannosaur bone tissue,
and several Dinosaur mummies have been found which have crops and soft tissue. We have
extrapolated the color of feathers from melanosome in feather impressions. One thing has become very
obvious, tearing the fossils from the rock is not always a good idea. Within the rock surrounding bones
is a huge amount of soft tissue information. Scanning technology is expanding, and the use of CAT
Scans, and Florescence techniques are literally shedding a whole new life to paleontological research.
Brain cases are a now a wide area of study and the dream is to go from encased rock to 3d graphics
printer, without being destructive to the specimen.

What we need to develop, as time moves on, is the ability to not only scan rock, but also identify likely
fossils and attempt to classify them by artificial intelligence, hopefully we remove much of the human
factor and its associated biases. Can this be done? Yes, and within a few short years we should have
such technology ubiquitously available. And with worldwide databases of fossils, we should be much
better and developing phylogeny maps of species and remove much of the human bias that now plagues
the field.

If we CAT scan a rock with a fossil within it, how can we identify the fossil? This is an enormously
important question which has an ethical wrinkle. Most CAT scans are using proprietary graphics
formats. Getting specimens into an international database is going to require ending the dependency of
these private formats and to get them into formats based on international copyright and patent free
formats, that is copyleft formats. The dependency on proprietary file formats for scanning equipment

52 The Future of Computational Math in Paleontology

is the biggest impediment of future software development for the community. The effort to go from
CAT scan to the 3d modeling program, Blender, is just too difficult and even the legality of tools is
questionable. Development of artificial intelligence is going to depend on patent free, and royalty free
international standards which allow for reading and manipulation.

From a technological perspective, consider the depth of the problem. Even the simplest graphic
recognition problem requires considerable thought and application of theory. How do we discover and
identify, for example, a black circle on a white sheet of 4 x 4 inch paper? Engineers have been
grappling with this problem for decades and its solution is the cornerstone for a broad swath of
computational problems from biometrics, driverless cars, facial recognition, and fossil evaluation.

So how does one identify a circle on a sheet of paper? Or a circle in a PNG file? The answer involves
the engineering principle of the Circle Hough Transform.26

The Hough Transform was a patented method for recognition of shapes patented by IBM in the 1960's.
It was later updated and has become quite famous in engineering circles. It involves introduction of the
concept of parameterized space within euclidean equations. This can best be shown by an example:

With a straight line we have the familiar equation of

y = mx + c where m is the slope and c is a translational constant. For any pair of x,y we can sock them
into this equation and plot them on the line with simple subsitution.

yi = mxi + c

As a specific example we can have a graph of

y = 3x + 2

where x is 2, y is 8.

 x is 3, y is 11.

 x is 4, y is 14 … and so on.

This has been coined as an equations in geometric space.

If we flip the equation and look at it from a different perspective we can develop another set of related
equations that are coined as “parameter space”. For any (xi,yi) we can treat m and c as variable for a
specific point. This is accomplished by using the parameterized form of the equation which might look
like this for a line

c = -mxi + yi

When we plot this equation, it is yet another line fixed on (xi,yi). The relationship between the
parametrized space and the geometric space is of interest within the theorem of Hough Transformance.
When we evaluate our previous example where x = 2 and y = 8, x is now the slope and y the
translational constant.

26 R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Communications of
the ACM, vol. 15, no. 1, pp. 11–15, 1972.

53 The Future of Computational Math in Paleontology

c = -m2 + 8

m c x y

0 8 2 8

1 6 2 8

2 4 2 8

3 2 2 8

4 0 2 8

5 -2 2 8

Here, m is the independent variable and c is the dependent variable within the parametrized form.

For each point on the geometric graph, we produce another line.

Let's add other points from the original equation of 3x+2 = y :

 point of (3, 11). This produces the parameterized line of: c' = -3m' + 11;

 point of (4, 14). This produces the parameterized line of c''=-4m'' + 14;

We can describe the data for these three lines in this color coded table and accompanying graph.

m c c' c'' x y x' y' x'' y''

0 8 11 14 2 8 3 11 4 14

1 6 8 10 2 8 3 11 4 14

0 1 2 3 4 5

-4

-2

0

2

4

6

8

10

Parameter Space

x=2, y=8

c

m

c

54 The Future of Computational Math in Paleontology

2 4 5 6 2 8 3 11 4 14

3 2 2 2 2 8 3 11 4 14

4 0 -1 -2 2 8 3 11 4 14

5 -2 -4 -6 2 8 3 11 4 14

In Parameter Space, the crossing points represent lines. If you have more than a single cross point, that
would represent more than one line. The relationship is 1:1 so that a single crossing point in Parameter
Space can only represent a single line, while all the lines that go through a crossing point infer a point
on the line which is determined by the crossing point.

Lets say we have a graph with a known set of positive points:

{ (2, 8), (4,7), (4,14) (0,2), (2,10), (-4,1), (0,7) }

Do we have lines from these points assuming they are pixels from a graphic?

When we plot them we get the following graph which is not clear.

0 1 2 3 4 5

-10

-5

0

5

10

15

20

Parameterized Space

c
c'
c''

m

c

55 The Future of Computational Math in Paleontology

We can convert them to parameter functions and see how many crossings we have

X Y Parameter
Functions

2 8 c = -2m + 8

4 7 c = -4m + 7

4 14 c = -4m + 14

0 2 c = 2

2 10 c = -2m + 10

-4 1 c = 4m + 1

0 7 c = 7

Lets analyze this “images” now though its parameters:

-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8

10
12
14
16

Positive Plots on an Image

find the line

Y

56 The Future of Computational Math in Paleontology

Every crossed point within the parameter graph represents a potential line. The only exception to this is
that vertical lines where in the geographic graph they would have a slope (m) of infinity and are
therefor parallel. In our example, I created these points as a demonstration from an image that has 2
lines and a single random point. The lines pixels can be described as y=3x+2 and y=3/2x+7. The
individual pixel is 4,7.

Since 2 points determine a line, our parameter space displays a bit of noise. Any crossing is a line, yet
not all these lines are intentional. The solution to determining intended lines is having a significantly
large sample of pixels. If we get, say, 40 crossings of a point, that is likely a representative of a real
line in the image.

How can we compute this?

Let's divide our parametric space in 100 x 100 pixel divisions and mark them (just as a random choice).

mi,cj

If we have N number of sampled points in geometric space, each point can be described as (Xn,Yn)
where

0 ≤ n ≤ (N -1)

where n starts at zero and indexes up to N-1.

If we stack them in a C++ vector, we can walk though each point and compute the parameter:

The line is c=mx +y

ci = -mixn + yn is a specific point. Find that division that this point is within

 0

 2

 4

 6

 8

 10

-2 -1 0 1 2 3 4 5

-2*x+8

-4*x+7

-4*x+14

0*x+2

-2*x+10

4*x+1

0*x+7

57 The Future of Computational Math in Paleontology

 { mj, cj } represents an area that is incremented

At the end of the vector we find the final values for the { mj, cj } pairs. Those with the
highest values represent lines.

Commonly, this transformation is performed using polar coordinates for lines using
angles (Θ).

ρ = x cos θ + y sin θ

where ρ = shortest distance from the origin to the line

θ = angle between the x-axis and the right angle from the origin to the line.

The domain of ρ and θ are bounded: 0 ≤ ρ ≤ R,

where R = maximum distance from a pixel to the origin of the image and 0 ≤ θ ≤ 2π.

Lines that pass through point (xn , yn) have parameters (ρ, θ) that satisfy

ρ = xn cos θ + yn sin θ 27

All the point on the line can be described by that line and that line is defined as a
function of θ, the angle, and radius).

f(θ, ρ) = L where L is a line.

27 Rhody, Harvey “Lecture 9: Object Description and Location –
Hough Transform”, October 6, 2005, Chester F. Carlson Center for Imaging Science
Rochester Institute of Technology

58 The Future of Computational Math in Paleontology

Any point P(x,y) can be described as two vectors, one along ρ, and one along L (that is
the line).

Let the vector along ρ be called Q

Let the vector along L be called R

a matrix of [Q, R] is associated one to one and onto with point P(x,y), which is vector
[x,y] for a parameters of θ, ρ.

The Parameter Space table now looks like this:

We can calculate the parameters for any point on the line with this formula.

 ρ = x cos θ + y sin θ

Using the line we defined previously

y = 3x + 2

ρ = x cos θ + y sin θ

59 The Future of Computational Math in Paleontology

where x = 2, 3, 4

Note: x is θ on this plot

Implementation of this algorithm, which is termed the normal, involves the same
technique as before, but our walk and polling of the parameter space involves a 180
degree sweep of the the parameter space.

This can simplify implementation of the algorithm by creating counters for each
parameter pair (θi, ρj) which divides up the space.

Now, for each (x,y) compute the parameter with:

ρ= x cosθ + y sinθ

60 The Future of Computational Math in Paleontology

Find the container closest to {θ, ρ} and increment it.

Hough Circle Transform

Of bigger interest is the extrapolation of the Hough Transform to the Hough Circle Transform. The
implementation of this algorithm has allowed for software to readily do facial recognition, and many
other applications. For fossils, it can be particularly useful for examining skulls which have many
circular features, particularity the orbit, and the shape of the premaxilla, the temporal fenestra and
more. For quite a while it has been a popular area of study and development because of the increasing
use of surveillance software, and facial recognition for cameras. This algorithm is also of interest
because it is included in the opencv library.28

The equation for a circle is as follows:

r² = (x – a)² + (y –b)²

We can see that unlike a line, a circle has three parameters, {a, b, r} where a and b are the (x, y) of the
center, and r is the radius of the circle. Without proving the math, we know that we can find the

parameter space by the following formula.29

x = a + r*cos(θ)
y = b + r*sin(θ)

Lets examine an example of parameter space evaluation. We can perform a method as follows:

 For each pixel(x,y) which is positive
 For each radius r = 10 to r = 60 // the possible radius
 For each θ // the possible theta in radians

 a = x – r * cos(θ); //polar coordinate for center

 b = y – r * sin(θ); //polar coordinate for center
 A[a,b,r] +=1; //voting
 end
 end
 end
θ is the interdependent variable and a and b is the dependent variables.

28 http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.html
aquired March, 2017
29 Carolyn Kimme, Dana Ballard, and Jack Sklansky. Finding circles by an array of accumulators.
Communication of the ACM, Volume 18, Number 2, February 1975.

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.html

61 The Future of Computational Math in Paleontology

Lets apply an example. Lets say I have a circle with a radius of 4 about the Origin (0,0).
We can have on this circle 3 points on the edges of (0,4), (4,0), (0,-4), among an infinite
number of other points. When I substitute these x and y values as pairs into the
parameter formula, I get 3 pairs of curves (one is repeated) that intersect at 0,0 like this:
Note that since we are looking for {0,0} I can combine the x and y graphs.

a = 0 - 4 *cos(Θ)
b= 4 - 4*sin(Θ)

a = 4 - 4 *cos(Θ)
b= 0 - 4*sin(Θ)

62 The Future of Computational Math in Paleontology

a = 0 - 4 *cos(Θ)
b= -4 - 4*sin(Θ)

The usage of image recognition software for evolutionary biology is one of the largest
areas of advancement and opportunity in the coming generation of computational
research and expertise. What drives this is the technological breakthroughs in the
scanning technologies, which are getting reduced in size, cheaper and increasingly
available to museums and research labs. A few years ago a dinosaur mummy with soft
tissue intact was discovered in the Dakotas. It was termed “Leonardo” and was scanned
with several tools as described by its website:30

What kind of Xrays were used to look inside the fossil?

The science team used several different types of radiation to create the Xrays of the
dinosaur mummy. The first they used was a water-cooled Xray tube. This is similar to
what is used to take Xrays of people, only it is about 5,000 times more powerful. This
kind of power was needed because it had to look through more than two feet of rock. Even
this wasn’t powerful enough, so the team took Leonardo down to Houston, Texas were
NASA made room for him in a special lead-lined jet hangar at the Johnson Space Center.
While there, the science team used Iridium and Cobalt radiation to look inside the fossil.
 ... The yellow container holds a small but highly radioactive isotope. The Cobalt in
particular was extremely powerful. The science team had to leave the building and hide
behind another building to be certain they were safe from the radiation. However, the most
powerful radiation used in the study of the fossil was used on Leonardo’s arm. A Linear
Accelerator fired radiation at the fossil at Stanford University’s SLAC (Stanford Linear
Accelerator Center) also known as the National Accelerator Laboratory. Yes, Leonardo is
important enough of a fossil to have these kind of resources used in the research!

How was the digital image of the fossil created?

The Dinosaur Mummy was the first dinosaur to be replicated in an entirely new way.
Because the skin on the surface of Leonardo was so fragile, if the mold necessary to make
casts, or replicas, of the fossil had been created in the same way it has been done for many
years, the skin would have been damaged or destroyed. This made the traditional method
of pouring silicon rubber on the fossil and peeling it off out of the question. The science
team had to come up with another way. The answer was a new technology called White
Light Scanning. A grid of light and shadow was projected on the fossil and special
cameras recorded this grid and the surface of the fossil in 3D. The resolution of the
cameras is thinner than a human hair, so that the digital information they provided shows
every fine detail of the original fossil. ... This information was then used by a computer to
control a machine called a rapid prototyper that was able to make a perfect replica of the
dinosaur mummy without any possibility of damaging the original fossil.

30 http://www.dinosaurmummy.org/guide-to-dinosaur-mummy-csi.html accesses March 2017

http://www.dinosaurmummy.org/guide-to-dinosaur-mummy-csi.html

63 The Future of Computational Math in Paleontology

They needed to ship the entire fossil, which weighs tons, from the Phillips County Museum, in
Montana, all the way to Texas to do scans. In March of 2017, Don Brickman of the Royal Tyrrell
Museum, in Drumheller Calgary, Alberta told me that they had set up florescence equipment in their
labs to do 3d imaging. This is a complete breakthrough in technology and we can expect that in the
future that CAT Scanners will likely become standard equipment in most labs. With the discovery of so
many soft tissue remains, the days of tearing up fossils is largely over without first doing analysis of
the possible soft tissue remains inside the surrounding rock.

In 2011, SLAC did a wonderful lecture on the analysis of Archaeopteryx.31 The presentation done by
Uwe Bergmann walks through several types of images, showing trace materials. But this leaves us
with several problems, the first being, what kind of image formats are being used to image fossils in
CAT scanners and other scanning technologies. How can we prepare these images for analysis and for
the analysis by artificial intelligence. There are no standards. In correspondence with Ramon Nagesan,
the PhD resident at the Royal Tyrrell, he explains the difficulty of currently working with CAT
Scanners data. He wrote,

The file type that is output from a CT scanner is a "diacom"(sic), these need to be converted
to either a jpeg or tif in a diacom(sic) converter, and then processed into an image stack in a
software called "ImageJ". These image stacks are then uploaded to "AMIRA" (FEI) for
processing into 3D models. I'm curious to see if you'll be able to streamline this process.

Dicom Cat Scan Format

Dicom is a huge copyright problem promoted as “the internet of medical information”. According to
its standards page, “It defines the formats for medical images that can be exchanged with the data and
quality necessary for clinical use. “32 It is controlled by The Medical Imaging & Technology Alliance
(MITA), a division of the National Electrical Manufacturers Association (NEMA). They claim to be
the leading organization and collective voice of medical imaging equipment conglomerate.33 They
claim to represent companies whose sales make up more than 90 percent of the global market for
advanced imaging technologies. They are not an open forum for digital standards but are created as a
profit center for a few select and well placed medical device companies.

There are, nevertheless, some free tools to access some of their formats. On the sourceforge network
there is Open Dicom Viewer34 which is licensed under GNU Library or Lesser General Public License
version 3.0 (LGPLv3). It is a Java application (written in Java 1.7).

Another tool is DCMLinux 35, and it is released under the GPL2. It promotes itself as, “a complete
PACS system, free of charge. Its core is an Ubuntu 10.04 system fully updated and it contains the

31 https://www6.slac.stanford.edu/community/past-lectures/archaeopteryx-bringing-dino-bird-life 2017 accessed
32 http://dicom.nema.org/Dicom/about-DICOM.html
33 http://www.medicalimaging.org/about-mita/ accessed in April 2017
34 https://sourceforge.net/projects/opendicomviewer/ accessed in April 2017
35 https://sourceforge.net/projects/dcmlinux/ accessed in April 2017

https://sourceforge.net/projects/dcmlinux/
https://sourceforge.net/projects/opendicomviewer/
http://www.medicalimaging.org/about-mita/
https://www6.slac.stanford.edu/community/past-lectures/archaeopteryx-bringing-dino-bird-life

64 The Future of Computational Math in Paleontology

DCM4CHEE as its PACS server. In the near future it will contain many other addons such as Weasis,
Oviyam, Care2x, etc.”

There is an “OpenSourced” C++ library for dicom with java and python hooks which looks promising
for new developers. Called Imebra36, and licensed under the GPL2, and it’s development is current.
“The Imebra SDK is a multiplatform, open source, C++ library for handling DICOM files, both raw
and compressed.” It actually has an impressive set of features and looks like it is worth development.

It’s main class is the imebra::DataSet class and it is fully documented. It is compiled with

cmake. You need to include imebra/imebra.h, to your source files to access the library. It uses
uniqueptr and can open files like this according to the official documentation:

std::unique_ptr<imebra::DataSet> loadedDataSet(imebra::CodecFactory::load("DicomFile.dcm"));
// Retrieve the first image (index = 0)
std::unique_ptr<imebra::Image> image(loadedDataSet->getImageApplyModalityTransform(0));

// Get the color space
std::string colorSpace = image->getColorSpace();

// Get the size in pixels
std::uint32_t width = image->getWidth();
std::uint32_t height = image->getHeight();

// let's assume that we already have the image's size in the variables width and height
// (see previous code snippet)

// Retrieve the data handler
std::unique_ptr<imebra::ReadingDataHandlerNumeric> dataHandler(image->getReadingDataHandler());

for(std::uint32 scanY(0); scanY != height; ++scanY)
{
 for(std::uint32 scanX(0); scanX != width; ++scanX)
 {
 // For monochrome images
 std::int32_t luminance = dataHandler->getSignedLong(scanY * width + scanX);

 // For RGB images
 std::int32_t r = dataHandler->getSignedLong((scanY * width + scanX) * 3);
 std::int32_t g = dataHandler->getSignedLong((scanY * width + scanX) * 3 + 1);
 std::int32_t b = dataHandler->getSignedLong((scanY * width + scanX) * 3 + 2);
 }
}

Dicom has a networking layer in the specification, something that PNG also made room for in its
specification. This is a template for views an image:

 // The transforms chain will contain all the transform that we want to
// apply to the image before displaying it
imebra::TransformsChain chain;

if(imebra::ColorTransformsFactory::isMonochrome(image->getColorSpace())
{
 // Allocate a VOILUT transform. If the DataSet does not contain any pre-defined
 // settings then we will find the optimal ones.
 VOILUT voilutTransform;

 // Retrieve the VOIs (center/width pairs)
 imebra::vois_t vois = loadedDataSet->getVOIs();

 // Retrieve the LUTs
 std::list<std::shared_ptr<imebra::LUT> > luts;
 for(size_t scanLUTs(0); ; ++scanLUTs)
 {
 try
 {

36 https://imebra.com/ accessed in April 2017

https://imebra.com/

65 The Future of Computational Math in Paleontology

 luts.push_back(loadedDataSet-
>getLUT(imebra::TagId(imebra::tagId_t::VOILUTSequence_0028_3010), scanLUTs));
 }
 catch(const imebra::MissingDataElementError&)
 {
 break;
 }
 }

 if(!vois.empty())
 {
 voilutTransform.setCenterWidth(vois[0].center, vois[0].width);
 }
 else if(!luts.empty())
 {
 voilutTransform.setLUT(*(luts.front().get()));
 }
 else
 {
 voilutTransform.applyOptimalVOI(image, 0, 0, width, height);
 }

 chain.add(voilutTransform);
}

// If the image is monochromatic then now chain contains the VOILUT transform

// We create a DrawBitmap that always apply the chain transform before getting the RGB image
imebra::DrawBitmap draw(chain);

// Ask for the size of the buffer (in bytes)
size_t requestedBufferSize = draw.getBitmap(image, imebra::drawBitmapType_t::drawBitmapRGBA, 4, 0, 0);

// Now we allocate the buffer and then ask DrawBitmap to fill it
std::string buffer(requestedBufferSize, char(0));
draw.getBitmap(image, imebra::drawBitmapType_t::drawBitmapRGBA, 4, &(buffer.at(0)),
requestedBufferSize);

3d Printing and File Formats

Likewise there are copyright and patent issues with 3d printers. A resent visit to Makerbot, the makers
of 3d printers who’s offices are located at 1 Metrotech Plaza, in Downtown Brooklyn, proved that they
have a rather large Tyrannosaur 3d model that they printed hung right next to the receptionist desk.
They have intense interest in getting scans for printing and they are using, according to the presenter,
Drew Lentz, STL files (StereoLithography) and the Wavefront .obj file. 37 The good news about these
formats is that they are both are open and adopted by numerous free and proprietary software solutions.
So everyone is interested, but these systems are generally not talking to each other. CAT Scans are the
biggest problem as their graphics formats are different from machine to machine and all are
proprietary, even secret formats at times.

Despite this, there is a growing number of CAT Scan and images in archives which have been created
and which are publicly available. The University of Texas High-Resolution X-ray Computed
Tomography Facility, has DigiMorph.Org, which is, “part of the National Science Foundation Digital
Libraries Initiative, develops and serves unique 2D and 3D visualizations of the internal and external
structure of living and extinct vertebrates, and a growing number of 'invertebrates.' The Digital
Morphology library contains more than a terabyte of imagery of natural history specimens that are

37 Object Files Specification http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf, accessed March 2017

http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf

66 The Future of Computational Math in Paleontology

important to education and central to ongoing cutting-edge research efforts. The Digital Morphology
library site now serves imagery, optimized for Web delivery, for more than 1000 specimens contributed
by almost 300 collaborating researchers from the world's premiere natural history museums and
universities.” Of course, copyright problems hinder this library, and it can benefit from a copyleft
license. 38

Applying Artificial Intelligence and Machine Learning to Fossil
Data and Images

With the growing numbers of 3d and 2d images of fossils, the use of artificial intelligence to analyze
these resources will revolutionize the field. Understanding some basic principles of AI will be essential
for future paleontologists.

There are a number of Artificial Intelligence paradigms that have evolved over the last 60 years. The
classic reference is George Luger – Artificial Intelligence. We can examine two very different kinds
of artificial intelligence systems, “Expert Systems” which can be demonstrated with CLIPS. Such
systems gain expertise, accumulate facts and data, and apply them to a series of rules which analyzes
the facts. CLIPS uses the Rete Algorithm to perform its search results and syntax. The system might
repeat itself, allowing for adaptation, that is learning. A typical example is the nodal learning task that
can be adapted for our needs. An excellent text for mastering this basic skill set is “Expert Systems:
Principles and Programming” by Joseph C. Giarratano and, Gary D. Riley.39

The second methodology which we will explore is neural net and perceptrons. The object here is to use
learning algorithms in order to recognize images of fossils for analysis and identification. We can
demonstrate the process by showing how systems can be taught to recognize shapes without
instruction. We can then discuss means to scale up the process to entire cat scans of fossils.

CLIPS and Inference Engine classification and Decision Tree

Lets look at the inference engine and the expert systems first. One can quickly mock up a standard
decision tree that allows for the input of data which is slowly organized into a hierarchical format for
discovery. This is a classic algorithm covered in multiple sources.

38 http://digimorph.org/aboutdigimorph.phtml accessed 2017
39 Joseph C. Giarratano, Gary D. Riley, Expert Systems: Principles and Programming, Third Edition, Course Technology,

1998

http://digimorph.org/aboutdigimorph.phtml

67 The Future of Computational Math in Paleontology

CLIPS is an inference engine that has its own syntax. It has templates and rules which use pattern
matching. It builds internal data structures to enforce its rules. It can interact with the external
environment in order to obtain facts that are evaluated by the rules. After applying all its rules on the
data, it reaches a state that it can report, and which might represent a result.

With a basic understanding, we can now look at the full code. There are a few things that the novice
CLIPS programmer needs to understand.

• At its heart and soul, CLIPS is a huge regular expression engine. In many regards, using it
reminds me Unix power tools like GAWK and even Perl. The top of every rule, CLIPS defrules
has a pattern that has to be matched according to a specific set of, not nearly obvious, rules.

• On the other hand, CLIPS leans heavily on the functional language paradigm. I think that the
authors of CLIPS view its shell like many LISP coders view EMACS.

• Getting started with CLIPS is easy. Learning it well, that can take a long time. It is a fickle
programming language and having a good programming text editor is vital to spotting the
inevitable lost parenthesis.

• Good programming languages shape the way that you think. CLIPS does this. After knocking
your head around with it for a while, you begin to see its roots in the Artificial Intelligence area.
Standard textbooks become easier to read and understand. And new possible solutions to
problems arise as you develop a sense of what it does.

• Every time you assert a fact into a scope, the entire scope is reevaluated in full. You can't
say this enough.

• Learning CLIPS means learning how its inference engine works.
• CLIPS has the ability to create modules that allow for results to be passed from one scope to

another.

In this case, we want a program that tries to determine a species by an accumulations of facts. It will
acquire those facts by interacting with individuals. In order to do that, it needs a template for a node
that can formulate questions. The syntax rules are available from the CLIPS online documentation.40

Each node of our decision tree needs to have a structure that links it with two other nodes, one for an
affirmative result, and another for a negative result. It requires space of a question that it asks the user.
We can create an adequate node design as follows. It can always be altered later if you decide you need
to store more information.

(deftemplate node
 (slot name)
 (slot type)
 (slot question)
 (slot yes-node)
 (slot no-node)

40 http://clipsrules.sourceforge.net/documentation/v630/ug.pdf accessed March of 2017

http://clipsrules.sourceforge.net/documentation/v630/ug.pdf

68 The Future of Computational Math in Paleontology

 (slot answer)
)

so in this case, we are creating facts which contain “nodes”. “nodes” are of types answers and
questions. They are linked to a yes or a no node, depending on which rules are triggered. We can
define out facts as follows:

(deffacts tree
(node (name root)(type decision)

(question "Does it have sharp teeth?")
(yes-node node2) (no-node node1))

(node (name node1)(type decision)
(question "Does it have horns?")
(yes-node node3) (no-node node4))

(node (name node2) (type answer) (answer tyranosaur))
(node (name node3) (type answer) (answer triceratops))
(node (name node4) (type answer) (answer diplodocus.))
(current-node root)

)

So we are creating initial facts which is represent a tree of 5 nodes, 2 of type decision, and 3 of type
answers.

The decision nodes are:
root
node1

Answer nodes are
node2
node3
node4

We are also creating a current fact that the current-node is root.

Next, we want to create rules for evaluating facts. Let’s make a rule that asks a question from the user
and collects answers. On the top part of the rule is a pattern match. This methodology for developing a
decision tree in CLIPS is borrowed from the Rete Algorithm.41 It has a syntax as follows:

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
 =>
 <action>*) ; Right-Hand Side (RHS)

41 Forgy, Charles L. "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem." Artificial
Intelligence. Carnegie-Mellon University, 1979. Web. 23 Mar. 2016.
<http://www.csl.sri.com/users/mwfong/Technical/RETE%20Match%20Algorithm%20-%20Forgy%20OCR.pdf>.

69 The Future of Computational Math in Paleontology

Rules (and the rest of CLIPS syntax) have LHS and RHS statements. LHS are matched in some way
which cause RHS statements to activate. The list of selected rules form what is called an “agenda” for
a module. And a module is a scoped area of a clips programing. Rules are fired, resetting the
“agenda”. It is notated in the CLIPS documentation that:

Redefining a currently existing deffacts causes the previous deffacts with the same name to
be removed even if the new definition has errors in it. There may be multiple deffacts
constructs and any number of facts (either ordered or deftemplate) may be asserted into the
initial fact-list by each deffacts construct.

Dynamic expressions may be included in a fact by embedding the expression directly
within the fact. All such expressions are evaluated when CLIPS is reset.

Redefining a currently existing defrule causes the previous defrule with the same name to
be removed even if the new definition has errors in it. The LHS is made up of a series of
conditional elements (CEs) that typically consist of pattern conditional elements (or just
simply patterns) to be matched against pattern entities. An implicit and conditional element
always surrounds all the patterns on the LHS. The RHS contains a list of actions to be
performed when the LHS of the rule is satisfied. In addition, the LHS of a rule may also
contain declarations about the rule’s properties immediately following the rule’s name and
comment (see section 5.4.10 for more details). The arrow (=>) separates the LHS from the
RHS. There is no limit to the number of conditional elements or actions a rule may have
(other than the limitation placed by actual available memory). Actions are performed
sequentially if, and only if, all conditional elements on the LHS are satisfied.

If no conditional elements are on the LHS, the rule will automatically be activated. If no
actions are on the RHS, the rule can be activated and fired but nothing will happen.

Our defrules look as follows: Notice the implementation of both a left and right side of the rule and the
use of variables (demarked with a ?syntax).

(defrule ask-decision-node-question
 ?node <- (current-node ?name)
 (node (name ?name)
 (type decision)
 (question ?question))
 (not (answer ?))
=>
 (printout t ?question "(yes or no) ")
 (assert (answer (read)))
)

(defrule bad-answer
 ?answer <- (answer ~yes&~no)
=>
 (retract ?answer)
)

70 The Future of Computational Math in Paleontology

The first question reads a node, which must match the type “decision” and loads the ?question field.
When it has such a matching node, it prints the question and awaits for yes or no, which is then asserted
as the answer. The next rule, bad-answer, retracts the answer from the agenda if it doesn’t match yes or
no .

The next rule we establish is designed to be triggered only when there is a match fact which is a node
of a type decision.

(defrule proceed-to-yes-branch
?node <- (current-node ?name)
(node (name ?name)
(type decision)
(yes-node ?yes-branch))
?answer <- (answer yes)

=>
(retract ?node ?answer)
(assert (current-node ?yes-branch))

)

If we match a node of type decision, then we assert that the new current-node to be the value in “?yes-
branch” of the matching node.

The next rule we define, defrule, walks the opposite path, down the no node:

(defrule proceed-to-no-branch
?node <- (current-node ?name)
(node (name ?name)
(type decision)
(no-node ?no-branch))
?answer <- (answer no)
=>
(retract ?node ?answer)
(assert (current-node ?no-branch))

)

When we reach a leaf node on the decision making tree we need a rule to see if our result is correct:

(defrule correct
?node <- (current-node ?name)
(node (name ?name) (type answer)(answer ?value))
(not (answer ?))
=>
(prinout t "I guess it is a " ?value crlf)

)

(defrule answer-node-guess-is-correct
?node <- (current-node ?name | (node (name ?name) (type answer))
?answer <- (answer yes)

71 The Future of Computational Math in Paleontology

=>
(assert (ask-try-again))
(retract ?node ?answer))

(defrule answer-node-guess-is-incorrect
?node <- (current-node ?name)
(node (name ?name) (type answer))
?answer <- (answer no)

=>
(assert (replace-answer-node ?name))
(retract ?node ?answer))

A complete working formulation, which is adapted from the example presented by Gary Riley and
Joseph Giarratano: in “Expert Systems Principles and Programming,Third Edition” looks like this:42

 1 (deftemplate node
 2 ¦ ¦ (slot name)
 3 ¦ ¦ (slot type)
 4 ¦ ¦ (slot question)
 5 ¦ ¦ (slot yes_node)
 6 ¦ ¦ (slot no_node)
 7 ¦ ¦ (slot answer)
 8)
 9
 10 (deffacts tree
 11 (node (name root)(type decision)
 12 (question "Does it have sharp teeth?")
 13 (yes_node node2) (no_node node1))
 14 (node (name node1)(type decision)
 15 (question "Does it have horns?")
 16 (yes_node node3) (no_node node4))
 17 (node (name node2) (type answer) (answer tyranosaur))
 18 (node (name node3) (type answer) (answer triceratops))
 19 (node (name node4) (type answer) (answer diplodocus.))
 20 (current_node root)
 21)
 22
 23 (defrule ask_decision_node_question
 24 ¦ ¦ ?node <- (current_node ?name)
 25 ¦ ¦ (node (name ?name)
 26 ¦ ¦ ¦ ¦ ¦ ¦ ¦ (type decision)
 27 ¦ ¦ ¦ ¦ ¦ ¦ ¦ (question ?question))
 28 ¦ ¦ ¦ ¦ ¦ ¦ ¦ (not (answer ?))
 29 =>
 30 ¦ ¦ (printout t ?question "(yes or no) ")
 31 ¦ ¦ (assert (answer (read)))
 32)
 33
 34 (defrule bad_answer
 35 ¦ ¦ ?answer <- (answer ~yes&~no)
 36 =>
 37 ¦ ¦ (retract ?answer)
 38)
 39

42 Joseph C. Giarratano, Gary D. Riley, Expert Systems: Principles and Programming, Third Edition, Course Technology,
1998

72 The Future of Computational Math in Paleontology

 40 (defrule proceed_to_yes_branch
 41 ?node <- (current_node ?name)
 42 (node (name ?name)
 43 (type decision)
 44 (yes_node ?yes_branch))
 45 ?answer <- (answer yes)
 46 =>
 47 (retract ?node ?answer)
 48 (assert (current_node ?yes_branch))
 49)
 50
 51 (defrule proceed_to_no_branch
 52 ?node <- (current_node ?name)
 53 (node (name ?name)
 54 (type decision)
 55 (no_node ?no_branch))
 56 ?answer <- (answer no)
 57 =>
 58 (retract ?node ?answer)
 59 (assert (current_node ?no_branch))
 60)
 61 (defrule correct
 62 ?node <- (current_node ?name)
 63 (node (name ?name) (type answer)(answer ?value))
 64 (not (answer ?))
 65 =>
 66 (printout t "I guess it is a " ?value crlf)
 67)
 68
 69
 70
 71 (defrule answer_node_guess_is_correct
 72 ?node <- (current_node ?name)
 73 (node (name ?name) (type answer))
 74 ?answer <- (answer yes)
 75 =>
 76 (assert (ask_try_again))
 77 (retract ?node ?answer)
 78)
 79
 80
 81 (defrule answer_node_guess_is_incorrect
 82 ?node <- (current_node ?name)
 83 (node (name ?name) (type answer))
 84 ?answer <- (answer no)
 85 =>
 86 (assert (replace_answer_node ?name))
 87 (retract ?node ?answer)
 88)
 89
 90 (defrule ask_if_answer_node_is_correct
 91 ?node <- (current_node ?name)
 92 (node (name ?name) (type answer)
 93 (answer ?value))
 94 (not (answer ?))
 95 =>
 96 (printout t "I guess it is a " ?value crlf)
 97 (printout t "Am I correct? (yes or no) ")
 98 (assert (answer (read)))
 99)

73 The Future of Computational Math in Paleontology

100 (defrule answer_node_guess_is_correct
101 ?node <- (current_node ?name)
102 (node (name ?name) (type answer))
103 ?answer <- (answer yes)
104 =>
105 (assert (ask_try_again))
106 (retract ?node ?answer))
107
108 (defrule answer_node_guess_is_incorrect
109 ?node <- (current_node ?name)
110 (node (name ?name) (type answer))
111 ?answer <- (answer no)
112 =>
113 (assert (replace_answer_node ?name))
114 (retract ?node ?answer)
115)
116
117 (defrule ask_try_again
118 (ask_try_again)
119 (not (answer ?))
120 => (printout t "Try again? (yes or no) ")
121 (assert (answer (read)))
122)
123
124 (defrule one_more_time
125 ?phase <- (ask_try_again)
126 ?answer <- (answer yes)
127 =>
128 (retract ?phase ?answer)
129 (assert (current_node root))
130)
131
132 (defrule no-more
133 ?phase <- (ask_try_again)
134 ?answer <- (answer no)
135 =>
136 (retract ?phase ?answer)
137 (save-facts "dinos.dat" local node)
138)
139
140 (defrule replace_answer_node
141 ?phase <- (replace_answer_node ?name)
142 ?data <- (node (name ?name) (type answer) (answer ?value))
143 =>
144 (retract ?phase)
145 ; Determine what the guess should have been
146 (printout t "What is the animal? ")
147 (bind ?new_animal (read))
148 ; Get the question for the guess
149 (printout t "What question when answered yes ")
150 (printout t "will distinguish " crlf " a ")
151 (printout t ?new_animal " from a " ?value "? ")
152 (bind ?question (readline))
153 (printout t "Now I can guess " ?new_animal crlf)
154 ; Create the new learned nodes
155 (bind ?newnodel (gensym*))
156 (bind ?newnode2 (gensym*))
157 (modify ?data (type decision)
158 (question ?question)
159 (yes_node ?newnodel)

74 The Future of Computational Math in Paleontology

160 (no_node ?newnode2)
161)
162 (assert (node (name ?newnodel)
163 (type answer)
164 (answer ?new_animal)
165)
166)
167 (assert (node (name ?newnode2)
168 (type answer)
169 (answer ?value)
170)
171)
172 ; Determine if the player wants to try again
173 (assert (ask_try_again))
174)

The running output looks like this. As we can see, the system does learn and build a database, but this
method is slow. It can be adapted to pull into comma separated tables of information, if it is thought
out carefully. Systems like EXPECT43 used to do this with PTP connections and chats for dial up and
analog modems.

 [ruben@flatbush Documents]$ clips -f ./species.clps
 CLIPS (6.30 3/17/15)

…

; Determine if the player wants to try again
 (assert (ask_try_again))
)
CLIPS> (run)
CLIPS> (reset)
CLIPS> (run)
Does it have sharp teeth?(yes or no) no
Does it have horns?(yes or no) yes
I guess it is a triceratops
I guess it is a triceratops
Am I correct? (yes or no) no
What is the animal? Stegasaurus
What question when answered yes will distinguish
 a Stegasaurus from a triceratops? does it have spikes on its tail
Now I can guess Stegasaurus
Try again? (yes or no) yes
Does it have sharp teeth?(yes or no) no
Does it have horns?(yes or no) yes
does it have spikes on its tail(yes or no) no
I guess it is a triceratops
I guess it is a triceratops
Am I correct? (yes or no) no

43 EXPECT http://www.tcl.tk/man/expect5.31/expect.1.html accessed April 2017

http://www.tcl.tk/man/expect5.31/expect.1.html

75 The Future of Computational Math in Paleontology

What is the animal? Achelousaurus
What question when answered yes will distinguish
 a Achelousaurus from a triceratops? spikes on the frill
Now I can guess Achelousaurus
Try again? (yes or no) yes
Does it have sharp teeth?(yes or no) no
Does it have horns?(yes or no) yes
does it have spikes on its tail(yes or no) yes
I guess it is a Stegasaurus
I guess it is a Stegasaurus
Am I correct? (yes or no) yes
Try again? (yes or no) yes
Does it have sharp teeth?(yes or no) no
Does it have horns?(yes or no) yes
does it have spikes on its tail(yes or no) no
spikes on the frill(yes or no) yes
I guess it is a Achelousaurus
I guess it is a Achelousaurus
Am I correct? (yes or no) yes
Try again? (yes or no) no

Perceptrons and Learned Pattern Recognition

Artificial Intelligence, and all intelligence, actually, requires feedback from stimulation. Attempts
have been made to create artificial software systems that can reproduce the properties of our biological
neural system. In truth, I think that much of what we have learned about intelligence in living things
has outstripped these models, but nevertheless, many decent proposals have evolved with usable results
which are being unleashed in the world. Most of this can be classified as machine learning. For
example, with the Hough Transformation, we program our systems with basic logic needed to
recognize and identify shapes. But do we have to? Can we create systems where the machine, through
feedback and regulated change, can find shapes and learn to do that on their own, without the math?
This question has been explored for decades, and the answer is yes. There are a wide range of
questions where machines can learn from repeated patterns by themselves. These systems are being
explored in self-driving cars, walking robots, and robotic vacuums. They can learn, essentially, by trial
and error.

76 The Future of Computational Math in Paleontology

Work on this was started as early as 1943 with McCulloch an Pitts44. Perceptrons are a process that
has inputs, side effects and outputs. It’s not very different, despite all the advanced mathematical
symbols about it in discussion, from the models we have seen elsewhere and everywhere.

You have two sensors tagged S0 and S1. They receive input signals of some sort. They are connected
to a summation node which is connected to the sensors through a weighted multiplier. The summation
of weights is then sent to a functor which determines if the signal is “on” or “off”, which is passed as a
result.

The summation node (∑w) adds together the weights of all the attached sensors. The result of this
(which is termed “dot multiplication” in vector math), is then put through a step function which we can
define as follows:

f(x) = { 0 if x < t, 1 if x ≥ t }
where t is an arbitrary threshold

Step equations can be difficult to deal with mathematically but we can readily substitute them with a
near approximation with a sigmoid function that looks like this:

 f(x)= 1

1+e−x

44 McCulloch and Pitts, “A Logical Calculus of the Idea Immanent in Nervous Activity” , 1943, Bulletin of Mathematical
Biophysics Vol. 5, pg 115-133

77 The Future of Computational Math in Paleontology

 This gives us a nice binary result in most
cases. Perceptrons also get a dummy
input with an input of 1 (Sψ = 0) with its
own weight. A single perceptron might
not seem so exciting, but when multiple
perceptrons are put together in a variety of
arrays and organizations, and when linked
into feedbacks, they are capable of
extraordinary feats of machine learning.
One of the things they do most well is
pattern recognition of graphics, which is
perfect for fossil identification from CAT

scans for which we have libraries being built up.

A basic perceptron can be worked up in C++ rather quickly and we can build such a library and link
them together. I would build a perceptron object to look like the following sample code:

 1 /*

 2 *
===
==
 3 *
 4 * Filename: perceptron.h
 5 *
 6 * Description: Basic Unit for AI machine learning
 7 *
 8 * Version: 1.0
 9 * Created Mon Mar 27 22:33:19 EDT 2017
10 * Revision: none
11 * Compiler: gcc
12 *
13 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
14 * Company: NYLXS Inc - LIU Thesis
15 *
16 *
===
==
17 */
18
19 #ifndef PERCEPTRON_H
20 #define PERCEPTRON_H
21 #include<iostream>
22 #include<string>
23 #include<vector>
24 namespace tree {
25
26 /*
27 ¦*
===
==
28 ¦* Class: Perceptron

78 The Future of Computational Math in Paleontology

29 ¦* Description: This class describes a single node and its data
30 ¦*
===
==
31 ¦*/
32 template < class T, class W >
33 class Perceptron
34 {
35 public:
36
37 /* ==================== LIFECYCLE
======================================= */
38 Perceptron (T s1, T s2, W w1, W w2, T thresh): sensor_1{s1},
sensor_2{s2}, weight_1{w1}, weight_2{w2}, threshold{thresh} {
39 weighted_sum();
40 }; /* constructor */
41
42 /* ==================== ACCESSORS
======================================= */
43 T get_sum()
44 {
45 return sum;
46 };
47 T get_threshold()
48 {
49 return threshold;
50 };
51 /* ==================== MUTATORS
======================================= */
52 int functor()
53 {
54 if(sum < get_threshold())
55 {
56 return 0;
57 }else{
58 return 1;
59 }
60 }
61 /* ==================== OPERATORS
======================================= */
62 /* ==================== DATA MEMBERS
======================================= */
63 T data;
64 protected:
65
66 private:
67 T sensor_1;
68 T sensor_2;
69 W weight_1;
70 W weights_2;
71 T threshold;
72 T sum;
73 T weighted_sum()
74 {
75 sum = (sensor_1 * weight_1) + (sensor_2 * weight_1);
76 return sum;
77
78 };
79
80 }; /* ---------- end of template class Perceptron ---------- */

79 The Future of Computational Math in Paleontology

81
82
83 }//close of namespace tree
84
85 #endif

This is a basic set up for a single Perceptron. A single Perceptron can imitate a logic circuit fairly
easily. A logic circuit takes two binary inputs and results in a single output. For example, if we want a
logical AND then we can create a truth table that looks like this:

0=F, 1=T AND Truth Table

0 1

0 0 0

1 0 1

/*
 *
===
==
 *
 * Filename: perceptron.h
 *
 * Description: Basic Unit for AI machine learning
 *
 * Version: 1.0
 * Created Mon Mar 27 22:33:19 EDT 2017
 * Revision: none
 * Compiler: gcc
 *
 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
 * Company: NYLXS Inc - LIU Thesis
 *
 *
===
==
 */

#ifndef PERCEPTRON_H
#define PERCEPTRON_H
#include<iostream>
#include<string>
#include<vector>
namespace network {

 /*
 *
===
==
 * Class: Perceptron
 * Description: This class describes a single node and its data
 *
===
==

80 The Future of Computational Math in Paleontology

 */
 template < class T, class W >
 class Perceptron
 {
 public:
 /* ==================== LIFECYCLE
======================================= */
 Perceptron (std::vector<T> s1, std::vector <W> w1, float thresh):
sensors{s1}, weights{w1}, threshold{thresh} {
 sensors.push_back(1);
 weighted_sum();
 }; /* constructor */

 /* ==================== ACCESSORS
======================================= */
 W get_sum()
 {
// std::cout << "Called get sum" << std::endl;
 return sum;
 };

 float get_threshold()
 {
 return threshold;
 };

 /* ==================== MUTATORS
======================================= */
 int functor()
 {
 if(sum < get_threshold())
 {
 return 0;
 }else{
 return 1;
 }
 }
 /* ==================== OPERATORS =======================================
*/
 /* ==================== DATA MEMBERS
======================================= */
 T data;
 protected:

 private:
 std::vector<T> sensors;
 std::vector<W> weights;
 float threshold;
 float sum = 0;
 float weighted_sum()
 {
 if(sensors.size() != weights.size())
 {
 std::cerr << __LINE__ << " You broke my perceptron by failing to
give a weight for the bias";
 exit(1);
 }
 for (int i = 0; i < static_cast<int> (sensors.size()) ; i++)
 {
 std::cout << "sensor =>" << sensors[i] << std::endl;

81 The Future of Computational Math in Paleontology

 std::cout << "weight =>" << weights[i] << std::endl;
 sum += weights[i] * sensors[i];
// std::cout << "sum =>" << sum << std::endl;
// std::cout << "get sum =>" << get_sum() << std::endl;

 };
 return sum;
 };

 }; /* ---------- end of template class Perceptron ---------- */

}//close of namespace network

#endif

We switched the parameters to vectors so that they can be more flexible and we attached to our
Perceptron object with methods to do the dot multiplication for sensors and added the bias. We can run
out Perceptrons through testing by emulating the logic circuits.

/*
 *
===
==
 *
 * Filename: learn.cpp
 *
 * Description: Learn with a Neuronet and Perceptrons
 *
 * Version: 1.0
 * Created: 03/29/2017 04:14:13 PM
 * Revision: none
 * Compiler: gcc
 *
 * Author: Ruben Safir (mn), ruben@mrbrklyn.com
 * Company: NYLXS Inc
 *
 *
===
==
 */
#include "perceptron.h"
const float LEARN_RATE = 0.2;
const int PRECISION = 3;
const int NUMWIDTH = PRECISION + 3;

void tt(std::vector<int> truth_table){
 std::cout << std::endl << "__Truth Table__" << std::endl;
 for(auto x : truth_table)
 {
 std::cout << x << "\t";
 }
 std::cout << std::endl;

82 The Future of Computational Math in Paleontology

}
int main (int argc, char ** argv)
{
 std::vector<int> * sensor_inputs[4] = {
 new std::vector<int> {0,0},
 new std::vector<int> {0,1},
 new std::vector<int> {1,0},
 new std::vector<int>{1,1}
 };

 std::vector<float> weight_inputs = { 0.4, 0.4, 0.0 };
 std::vector<int> truth_table(4);
 for(int i = 0; i<4; i++){
 network::Perceptron <int, float> p_and
(*sensor_inputs[i],weight_inputs, 0.5);
 std::cout << "AND sum =>" << p_and.get_sum() << std::endl <<
std::endl;
 std::cout << "AND threshold =>" << p_and.get_threshold() <<
std::endl;
 std::cout << "AND Functor =>" << p_and.functor() << std::endl <<
std::endl;
 truth_table[i] = p_and.functor();
 }

 tt(truth_table);

 weight_inputs[0] = 0.6;
 weight_inputs[1] = 0.6;
 weight_inputs[2] = 0.0;
 for(int i = 0; i<4; i++){
 network::Perceptron <int, float> p_or
(*sensor_inputs[i],weight_inputs, 0.5);
 std::cout << "OR sum =>" << p_or.get_sum() << std::endl;
 std::cout << "OR threshold =>" << p_or.get_threshold() <<
std::endl;
 std::cout << "OR Functor =>" << p_or.functor() << std::endl;
 truth_table[i] = p_or.functor();
 }
 tt(truth_table);

 weight_inputs[0] = -0.4;
 weight_inputs[1] = -0.4;
 weight_inputs[2] = 0.0;
 for(int i = 0; i<4; i++){
 network::Perceptron <int, float> p_or
(*sensor_inputs[i],weight_inputs, -0.5);
 std::cout << "NAND sum =>" << p_or.get_sum() << std::endl;
 std::cout << "NAND threshold =>" << p_or.get_threshold() <<
std::endl;
 std::cout << "NAND Functor =>" << p_or.functor() << std::endl;
 truth_table[i] = p_or.functor();
 }
 tt(truth_table);

 return 1;
}

83 The Future of Computational Math in Paleontology

We created a truth table called TT which we feeding into four different Perceptron objects, one of
AND, NAND and OR. Adjusting the weights, and thresholds for each Percetron gives us a desired
outcome. Of course, this is all fixed and we did all the intelligence. The system becomes more
exciting when the Perceptrons are are put in arrays and the weights are fed back to the system
depending on the result.

The outcome of our testing programming looks as follows:

1.sensor =>0

2.weight =>0.4

3.sensor =>0

4.weight =>0.4

5.sensor =>1

6.weight =>0

7.AND sum =>0

8.

9.AND threshold =>0.5

10. AND Functor =>0

11.

12. sensor =>0

13. weight =>0.4

14. sensor =>1

15. weight =>0.4

16. sensor =>1

17. weight =>0

18. AND sum =>0.4

19.

20. AND threshold =>0.5

21. AND Functor =>0

22.

23. sensor =>1

24. weight =>0.4

25. sensor =>0

26. weight =>0.4

27. sensor =>1

28. weight =>0

29. AND sum =>0.4

30.

31. AND threshold =>0.5

32. AND Functor =>0

33.

34. sensor =>1

35. weight =>0.4

36. sensor =>1

37. weight =>0.4

38. sensor =>1

39. weight =>0

40. AND sum =>0.8

41.

42. AND threshold =>0.5

43. AND Functor =>1

44.

45.

46. __Truth Table__

47. 0 0 0 1

48. sensor =>0

49. weight =>0.6

50. sensor =>0

51. weight =>0.6

52. sensor =>1

53. weight =>0

54. OR sum =>0

55. OR threshold =>0.5

56. OR Functor =>0

57. sensor =>0

58. weight =>0.6

59. sensor =>1

60. weight =>0.6

61. sensor =>1

62. weight =>0

63. OR sum =>0.6

64. OR threshold =>0.5

65. OR Functor =>1

66. sensor =>1

67. weight =>0.6

68. sensor =>0

69. weight =>0.6

70. sensor =>1

71. weight =>0

72. OR sum =>0.6

73. OR threshold =>0.5

74. OR Functor =>1

75. sensor =>1

76. weight =>0.6

77. sensor =>1

78. weight =>0.6

79. sensor =>1

80. weight =>0

81. OR sum =>1.2

84 The Future of Computational Math in Paleontology

82. OR threshold =>0.5

83. OR Functor =>1

84.

85. __Truth Table__

86. 0 1 1 1

87. sensor =>0

88. weight =>-0.4

89. sensor =>0

90. weight =>-0.4

91. sensor =>1

92. weight =>0

93. NAND sum =>0

94. NAND threshold =>-0.5

95. NAND Functor =>1

96. sensor =>0

97. weight =>-0.4

98. sensor =>1

99. weight =>-0.4

100. sensor =>1

101. weight =>0

102. NAND sum =>-0.4

103. NAND threshold =>-0.5

104. NAND Functor =>1

105. sensor =>1

106. weight =>-0.4

107. sensor =>0

108. weight =>-0.4

109. sensor =>1

110. weight =>0

111. NAND sum =>-0.4

112. NAND threshold =>-0.5

113. NAND Functor =>1

114. sensor =>1

115. weight =>-0.4

116. sensor =>1

117. weight =>-0.4

118. sensor =>1

119. weight =>0

120. NAND sum =>-0.8

121. NAND threshold =>-0.5

122. NAND Functor =>0

123.

124. __Truth Table__

125. 1 1 1 0

When perceptrons are stacked in a multi-leveled they become more dynamic in their behavior. A single
perceptron is cable of 2 outcomes, and any system it analyzes is limited to some version of a step
function adjusted by the weighted average of its inputs. Regardless of the domain of inputs from
sensors or the number, it still can only chart a step response to adjustments of its weights. However,
when linked together with full connectivity, it can have a much broader graph of responses. A
schematic of our network might look like the figure below. What is important to note that the biases,
marked in red, are usually set to a 1, and the weights can vary. We can greatly expand this model to
allow for image recognition. Image recognition is the first step to automated analysis by artificial
intelligence. In work by Michael A. Nielsen 4546, he used handwriting samples are are 28 by 28 pixel
images.

45 Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015
46 Raiko, Valpola, LeCun, “Deep Learning Made Easier by Linear Transformations in Perceptrons”, Proceedings of the

15th International Conference on Artificial Intelligence and Statistics (AISTATS) 2012, La Palma, Canary Islands.
Volume XX of JMLR: W&CP XX. C, 2012

85 The Future of Computational Math in Paleontology

For each image, for which there is 784 pixels, we apply a sensor to each pixel data. Then add a middle
layer of percetrons, with 15 perceptrons, which then outputs to 10 perceptron nodes that represents a
digit, each node representing a digit from 0-9. If yes then we have an image of a '3', we can ascribe to
the network random weights for both levels and read the bytes. We have a target of
{0,0,0,1,0,0,0,0,0,0}. When we run our network, we get results that will likely differ from this target.
We calculate the difference between our result and the target, which we can call delta, and apply a
function of that difference to to our weights, attempting to cause a correction. Then we can run the
analysis again until we approach a correct answer for the image, and then train the next image. It is
important to run analysis on a batch of images until they are correctly identified. The result is that our
perceptron network can recognize hand written numbers. And by expanding this concept, we identify
scanned images of fossils for identification.

How to calculate the delta and adjust for error is a matter of much discussion and mathematics.
Neilson uses a summation method that is described as follows:

 What we'd like is an algorithm which lets us find weights and biases so that the output
from the network approximates y(x) for all training inputs x. To quantify how well we're

Fully Connected Neural Network

86 The Future of Computational Math in Paleontology

achieving this goal we define a cost function (Sometimes referred to as a loss or objective
function.) ...

Here, w denotes the collection of all weights in the network, b all the biases, n is the total

number of training inputs, a is the vector of outputs from the network when x is input, and
the sum is over all training inputs, x. Of course, the output a depends on x, w and b, but to
keep the notation simple I haven't explicitly indicated this dependence. The notation ∥v ∥
just denotes the usual length function for a vector v. We'll call C the quadratic cost
function; it's also sometimes known as the mean squared error or just MSE. Inspecting the
form of the quadratic cost function, we see that C(w,b) is non-negative, since every term
in the sum is non-negative. Furthermore, the cost C(w,b) becomes small, i.e., C(w,b)≈0,
precisely when y(x) is approximately equal to the output, a, for all training inputs, x. So
our training algorithm has done a good job if it can find weights and biases so that
C(w,b)≈0. By contrast, it's not doing so well when C(w,b) is large - that would mean that
y(x) is not close to the output a for a large number of inputs. So the aim of our training
algorithm will be to minimize the cost C(w,b) as a function of the weights and biases. In
other words, we want to find a set of weights and biases which make the cost as small as
possible. We'll do that using an algorithm known as gradient descent.47

It is worth noting that Dr Christopher League has published in his gitlab archive a slightly different
method for determining delta and applying it which looks like this:48

float delta_rule(perceptron& p, vector<float>& input, float target)
{
 float output = feed_forward(p, input);
 float error = target - output;
 for(unsigned i = 0; i < p.weights.size(); i++) {
 float delta = LEARN_RATE * error * input.at(i);
 p.weights[i] += delta;
 }
 return error;
}

float train_one_round(perceptron&p, vector<vector<float>>& inputs, const
vector<float>& targets)
{
 assert(inputs.size() == targets.size());
 float error = 0;
 for(unsigned i = 0; i < inputs.size(); i++) {
 error += fabs(delta_rule(p, inputs[i], targets[i]));
 }
 error /= inputs.size();
 cout << " err = " << setw(NUMWIDTH) << error << " " << p << '\n';
 return error;
}

47 Ibid. chapter 1
48 https://gitlab.liu.edu/cs691s17/public/blob/master/perceptrons/perceptrons.cc

C(w,b)≡1/(2n)∑x∥y(x)−a∥2.

https://gitlab.liu.edu/cs691s17/public/blob/master/perceptrons/perceptrons.cc

87 The Future of Computational Math in Paleontology

We obtain output from feeding the perceptron with its existing threshold and weights a sensor input to
obtain an summation result. The error itself is then reported as an average. We keep doing this until
our error approaches a reasonable limit, and then stop.

Summary and Conclusions

Within a couple of months prior to the publication of this paper a paper was released that shook up the
Paleontology world. Using the existing software available the authors proposed that the phylogeny of
the base clades of Dinosauria was perhaps wrong. 49 Traditionally, and one can see this when you visit
the New York Museum of Natural History where the halls are segregated by these clades, the class is
divided by the shape of the hip, with theropods, and sauropods grouped together, and Ornithischia,
including groups like triceratops, duckbills like Edmontosaurus, and in the others.

For 130 years, dinosaurs have been divided into two distinct clades—Ornithischia and
Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major
dinosaurian groups that challenges the current consensus concerning early dinosaur
evolution and highlights problematic aspects of current cladistic definitions. Our study has
found a sister-group relationship between Ornithischia and Theropoda (united in the new
clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined
Saurischia) forming its monophyletic outgroup. This new tree topology requires
redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In
addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution,
suggests that hypercarnivory was acquired independently in herrerasaurids and theropods,
and offers an explanation for many of the anatomical features previously regarded as
notable convergences between theropods and early ornithischians.

This lead to some difficult conversation among experts on phylogenies on the Dinosaur mailing list out
of the University of Southern California (dinosaur-l@usc.edu), and on usenet. Much of it got right
down to the brass tacks of how these relationships are computed. Discussions questioned the basics of
the terms “cost” and “model”. David Marjanovic wrote on the topic:

"Modeling"?

What modeling?

The distinctive feature of the method called "parsimony" or
"maximum parsimony" (a somewhat misleading name) is that it
doesn't use a model of evolution at all, if that's what you
mean. It's nonparametric. That's the method Baron et al.
used; it's all TNT does, actually (unlike PAUP*, which can
also use distance methods and maximum likelihood).

49 Matthew G. Baron, David B. Norman & Paul M. Barrett (2017)
A new hypothesis of dinosaur relationships and early dinosaur evolution.
Nature 543: 501–506 doi:10.1038/nature21700

mailto:dinosaur-l@usc.edu

88 The Future of Computational Math in Paleontology

Would you like to talk about the advantages and disadvantages
of "maximum parsimony" and model-based methods? There's an
interesting conversation to be had there.

Further conversations involved costs, neutral transformations, genetic drift, and the terminology was
repeatedly a problem. For example, note this discussion of costs by Dr R. Sean Norman of the
University of South Carolina:

You talk about the cost of a genetic or phenotypic change.
 What is more appropriate is to talk about the fitness of the
organism that has that change. High costs combined with even
higher reproductive advantage still confer greater fitness
value than low cost with even lower reproductive advantage.
 Cost is only one factor in life. People do buy fantastically
expensive consumer goods when far cheaper ones will serve the
function just as well or even better. 50

Both of these quotations demonstrate just how much distance there is now between the biologists and
paleontologists in the field and the mathematicians and computer scientists who are compiling the
theory and producing the technology that is being used in the field. Central to these misunderstandings
is the need for deep rooted and profound understanding of graph theory and costs. The shortest path
theorems are being overrun in favor for parsimony models and statistical models, all of which have a
place in analysis, but compose only part of a larger mathematical picture. This problem of focus in a
model causing a constraint of vision for the purposes of problem solving is not uncommon, and
certainly not uncommon in computer sciences. The most famous example that I can think of, and one
directly related to discussion of the proposed phylogeny classification changes in the Dinosauria root is
the story by Trey Harris of the 520 mile email problem, which I will republish here with permission:

 From trey@sage.org Fri Nov 29 18:00:49 2002
Date: Sun, 24 Nov 2002 21:03:02 -0500 (EST)
From: Trey Harris <trey@sage.org>
To: sage-members@sage.org
Subject: The case of the 500-mile email (was RE: [SAGE] Favorite impossible
 task?)

Here's a problem that *sounded* impossible... I almost regret posting the
story to a wide audience, because it makes a great tale over drinks at a
conference. :-) The story is slightly altered in order to protect the
guilty, elide over irrelevant and boring details, and generally make the
whole thing more entertaining.

I was working in a job running the campus email system some years ago when
I got a call from the chairman of the statistics department.

50 https://groups.google.com/forum/#!original/sci.bio.paleontology/pvwttT99FSw/PNNmpPoqAQAJ viewed March, 2017

https://groups.google.com/forum/#!original/sci.bio.paleontology/pvwttT99FSw/PNNmpPoqAQAJ

89 The Future of Computational Math in Paleontology

"We're having a problem sending email out of the department."

"What's the problem?" I asked.

"We can't send mail more than 500 miles," the chairman explained.

I choked on my latte. "Come again?"

"We can't send mail farther than 500 miles from here," he repeated. "A
little bit more, actually. Call it 520 miles. But no farther."

"Um... Email really doesn't work that way, generally," I said, trying to
keep panic out of my voice. One doesn't display panic when speaking to a
department chairman, even of a relatively impoverished department like
statistics. "What makes you think you can't send mail more than 500
miles?"

"It's not what I *think*," the chairman replied testily. "You see, when
we first noticed this happening, a few days ago--"

"You waited a few DAYS?" I interrupted, a tremor tinging my voice. "And
you couldn't send email this whole time?"

"We could send email. Just not more than--"

"--500 miles, yes," I finished for him, "I got that. But why didn't you
call earlier?"

"Well, we hadn't collected enough data to be sure of what was going on
until just now." Right. This is the chairman of *statistics*. "Anyway, I
asked one of the geostatisticians to look into it--"

"Geostatisticians..."

"--yes, and she's produced a map showing the radius within which we can
send email to be slightly more than 500 miles. There are a number of
destinations within that radius that we can't reach, either, or reach
sporadically, but we can never email farther than this radius."

"I see," I said, and put my head in my hands. "When did this start? A
few days ago, you said, but did anything change in your systems at that
time?"

"Well, the consultant came in and patched our server and rebooted it.
But I called him, and he said he didn't touch the mail system."

"Okay, let me take a look, and I'll call you back," I said, scarcely
believing that I was playing along. It wasn't April Fool's Day. I tried
to remember if someone owed me a practical joke.

90 The Future of Computational Math in Paleontology

I logged into their department's server, and sent a few test mails. This
was in the Research Triangle of North Carolina, and a test mail to my own
account was delivered without a hitch. Ditto for one sent to Richmond,
and Atlanta, and Washington. Another to Princeton (400 miles) worked.

But then I tried to send an email to Memphis (600 miles). It failed.
Boston, failed. Detroit, failed. I got out my address book and started
trying to narrow this down. New York (420 miles) worked, but Providence
(580 miles) failed.

I was beginning to wonder if I had lost my sanity. I tried emailing a
friend who lived in North Carolina, but whose ISP was in Seattle.
Thankfully, it failed. If the problem had had to do with the geography of
the human recipient and not his mail server, I think I would have broken
down in tears.

Having established that--unbelievably--the problem as reported was true,
and repeatable, I took a look at the sendmail.cf file. It looked fairly
normal. In fact, it looked familiar.

I diffed it against the sendmail.cf in my home directory. It hadn't been
altered--it was a sendmail.cf I had written. And I was fairly certain I
hadn't enabled the "FAIL_MAIL_OVER_500_MILES" option. At a loss, I
telnetted into the SMTP port. The server happily responded with a SunOS
sendmail banner.

Wait a minute... a SunOS sendmail banner? At the time, Sun was still
shipping Sendmail 5 with its operating system, even though Sendmail 8 was
fairly mature. Being a good system administrator, I had standardized on
Sendmail 8. And also being a good system administrator, I had written a
sendmail.cf that used the nice long self-documenting option and variable
names available in Sendmail 8 rather than the cryptic punctuation-mark
codes that had been used in Sendmail 5.

The pieces fell into place, all at once, and I again choked on the dregs
of my now-cold latte. When the consultant had "patched the server," he
had apparently upgraded the version of SunOS, and in so doing
downgraded Sendmail. The upgrade helpfully left the sendmail.cf
alone, even though it was now the wrong version.

It so happens that Sendmail 5--at least, the version that Sun shipped,
which had some tweaks--could deal with the Sendmail 8 sendmail.cf, as most
of the rules had at that point remained unaltered. But the new long
configuration options--those it saw as junk, and skipped. And the
sendmail binary had no defaults compiled in for most of these, so, finding
no suitable settings in the sendmail.cf file, they were set to zero.

One of the settings that was set to zero was the timeout to connect to the

91 The Future of Computational Math in Paleontology

remote SMTP server. Some experimentation established that on this
particular machine with its typical load, a zero timeout would abort a
connect call in slightly over three milliseconds.

An odd feature of our campus network at the time was that it was 100%
switched. An outgoing packet wouldn't incur a router delay until hitting
the POP and reaching a router on the far side. So time to connect to a
lightly-loaded remote host on a nearby network would actually largely be
governed by the speed of light distance to the destination rather than by
incidental router delays.

Feeling slightly giddy, I typed into my shell:

$ units
1311 units, 63 prefixes

You have: 3 millilightseconds
You want: miles
 * 558.84719
 / 0.0017893979

"500 miles, or a little bit more."

The issue here is understanding costs and basic algorithms. Working so intently with Networking
paradigms it becomes difficult to imagine a real event which could affect the basic algorithms which it
was based on. Specifically here, a bug in the software created a cost burden which produced a result
which was seemingly impossible under network theory and practice. Can the same thing be true for the
morphology of the hip of dinosaurs. I think so. I know it is possible, but the answer is unknown.
Hopefully this paper discloses some of the many issues and questions that face the field in the near
future. But the solutions to specific problems are delightfully beyond the scope of this paper.

Final Notes:
This paper was written with Free Software as defined by the Free Software Foundation. Software used
includes:

• LibreOffice
• GIMP
• DIA
• GCC
• Look
• GVIM
• Apache
• Okular
• make

92 The Future of Computational Math in Paleontology

• pan

I’d like to give a tip of the hat to my friend Richard Stallman, and John Tennant for their inspirational
work in bringing education and light to humanity.

Please see http://openscience.org/

Please see the Royal Tyrrell Museum in Drumheller, Alberta Canada and enjoy their online lecture
series.

The Dinosaur Mailing list is at http://dml.cmnh.org/about.html

usenet paleontology and programming resources: sci.bio.paleontology, comp.lang.c++, and sci.math

Suggested Future Projects:

1. Audit of current software such as TNT for debugging and algorithm verification

2. Bayesian analysis and its place within Shortest Path Analysis

3. Image recognition of Scanned Images

4. DICOM software development and creating a batch program to go from DICOM to PNG to
STL for 3d printing

5. R programming development for Stepwise analysis from raw data dumps

6. Perceptron Neural Net on Fossil Image Recognition

7. Parallel Processing implementation of Sankoff with the new threads library in C++

http://dml.cmnh.org/about.html
http://openscience.org/

