

James Lehmer

Ten Steps to Linux Survival
Essentials for Navigating

the Bash Jungle

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95918-3

[LSI]

Ten Steps to Linux Survival
by James Lehmer

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt
Acquisitions Editor: Susan Conant
Production Editor: Shiny Kalapurakkel
Copyeditor: Sharon Wilkey

Proofreader: Molly Ives Brower
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Panzer

June 2016: First Edition

Revision History for the First Edition
2016-05-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ten Steps to Linux
Survival, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Introduction. v

0. Step 0: Don’t Panic. 1

1. Step 1: Getting In. 3
“sudo make me a sandwich” 5

2. Step 2: Getting Around. 7
Where Am I? 7
Listing Files 7
Changing Directories 9
Be Lazy 10

3. Step 3: Peeking at Files. 13
Cool cat 13
less Is More 14
tail Wind 15

4. Step 4: Finding Files. 17
find Files Fast 17
Location, Location, Location 20

5. Step 5: Search Me. 23
Getting a grep 23

iii

Introduction

And you may ask yourself, “Well, how did I get here?”
—Talking Heads, “Once in a Lifetime”

This is an excerpt of Ten Steps to Linux Survival.
For access to the complete report, please
see https://www.oreilly.com/learning/ten-steps-
to-linux-survival

Why Are We Here?
This report grew out of a series of “lunch-and-learns” on Linux that
I compiled for work. During that process, I ended up writing an
ebook, and then condensing it into a one-hour presentation that
focuses on the essentials needed for quick problem-solving on a
Linux system. I turned that presentation into an O’Reilly webcast,
and this report provides more details on those original 10 essentials.

Even in formerly “pure Windows” shops, Linux use is growing.
Linux systems are everywhere! They may appear as appliances
(machines) or, more likely, virtual machine (VM) images dropped in
by a vendor.

Common examples of Linux systems that may appear in your shop
as VMs or in the cloud include the following:

Web servers
Apache, Nginx, Node.js

Database servers
MongoDB, PostgreSQL

v

https://github.com/dullroar/ten-steps-to-linux-survival/releases
https://github.com/dullroar/ten-steps-to-linux-survival/releases
http://post.oreilly.com/rd/9z1z2kkrdp6dfvcu994f592tsd7a76ejd2snsbkl180
https://www.oreilly.com/learning/ten-steps-to-linux-survival
https://www.oreilly.com/learning/ten-steps-to-linux-survival

Mobile device management
Various MDM solutions, such as MobileIron

Security and monitoring systems
Security information and event management (SIEM) systems,
network sniffers

Source-code control systems
Git or Mercurial

As Linux use continues to grow, you need to know the basics. One
day you might be the only one in the office when things go south,
and you’ll have to fix them—fast. This guide will help.

In this report, I focus on diagnosing problems and getting a system
back up. I don’t cover these topics:

• Modifying the system, other than restarting
• Forensics, other than looking at logs
• Shell scripting
• Distro differences—for example, Ubuntu versus CentOS
• Anything in depth, as this is just to get your feet wet

Who Is This For?
The intended audience of this book is not seasoned Linux adminis‐
trators, or anyone with a passing knowledge of the Bash shell.
Instead, it is for people who are working in small Windows shops,
where everyone has to wear various hats. It is for Windows adminis‐
trators, network admins, developers, and the like who have no
knowledge of Linux but may still have to jump in during a problem.
Imagine your boss rushing into your office and saying this:

The main www site is down, and all the people who know about it are
out. It’s running on some sort of Linux, I think, and the credentials
and IP address are scrawled on this sticky note. Can you get in, poke
around, and see if you can figure it out?

In this report, you’ll learn the basic steps to finding vital informa‐
tion that can help you quickly get the site back up. By reading this
guide before disaster strikes, you will be better able to survive the
preceding scenario.

vi | Introduction

How to Prepare
In small shops, sometimes things just fall on you because no one else
is available. There is often no room for “It’s not my job” when pro‐
duction is down and the one person who knows about it is back‐
packing in Colorado. So you need to be prepared as the use of Linux
becomes more prevalent, turning “pure Microsoft” shops more and
more into hybrids. Linux is coming, whether you like it or not. Be
prepared.

First, pay close attention whenever you hear the word appliance used
in terms of a system. Perhaps it will be mentioned in passing in a
vendor presentation. Dig in and find out what the appliance image
is running.

Second, note that even Microsoft is supporting Linux, and increasing
that support daily. First, it started with making Linux systems first-
class citizens on Azure. Now Microsoft is partnering with Docker
and Ubuntu and others, and that coordination looks like it is only
going to grow.

So now is the time to start studying. This report is a quick-help
guide to prepare you for limited diagnostic and recovery tasks, and
to get you used to how Linux commands work. But you should dig
further.

One place to turn next is my ebook. It helps you take the next steps
of understanding how to change Linux systems in basic ways. I’ve
also included some useful references at the end of this report. Past
that, obviously, O’Reilly has many good resources for learning
Linux. And the Internet is just sitting there, waiting for you.

Play with It!
The best way to learn Linux is to stand up an environment where
you can explore without fear of the consequences if you mess some‐
thing up. One way is to create a Linux VM; even a moderately provi‐
sioned modern laptop will comfortably run a Linux VM. You can
also create one in the cloud, and many vendors make that easy,
including DigitalOcean, Linode, Amazon Elastic Compute Cloud
(EC2), Microsoft Azure, and Google Compute Engine. Many of
these even offer a free level, perfect for playing!

Introduction | vii

https://github.com/dullroar/ten-steps-to-linux-survival/releases
http://shop.oreilly.com/category/browse-subjects/system-administration/linux-unix.do
http://shop.oreilly.com/category/browse-subjects/system-administration/linux-unix.do

Documentation and Instrumentation
To protect yourself in case you are thrown into the scenario outlined
at the beginning of this report, you should make sure the following
are in place at your shop:

The Linux systems are documented.
This should include their purpose, as-built documentation out‐
lining the distro, virtual or physical hardware specs, packages
installed, and so on.

These systems are being actively monitored.
Are they tied in to Paessler Router Traffic Grapher (PRTG),
SIEM, and other monitoring and alerting systems? Make sure
you have access to those alerts and monitoring dashboards, as
they can be a great source of troubleshooting information.

You have access to the system credentials.
Ideally, your department uses secure vault software to store and
share system credentials. Do you have access to the appropriate
credentials if needed? You should make sure before the need
arises.

Conventions
If a command, filename, or other computer code is shown inline in
a sentence, it appears in a fixed-width font:

ls --recursive *.txt

If a command and its output is shown on a terminal session, it
appears as shown in Figure P-1.

viii | Introduction

Figure P-1. cat command

All such blocks have been normalized to show a maximum of only
80 x 24 characters. This is intentional. Although most modern Linux
systems and terminal windows such as ssh can handle any geome‐
try, some systems and situations still give you the same terminal size
that your grandfather would’ve used. It is best to learn how to deal
with these by using less, redirection, and the like. In addition,
screenshots are shown from a variety of systems, to get you used to
the ways that command output and terminal settings can differ,
much more than under the default Windows Command Prompt.

The examples in this book typically show something like
myuser@ubuntu-512mb-nyc3-01:~ $ before the command (as in the
previous example). In other systems, you may simply see ~ # (when
logged in as root) or % (when running under csh). These command
prompts are not meant to be typed in as part of the command.
Although they may seem confusing in the samples, you need to get
used to looking at a terminal and “parsing” what is being displayed.
And in our scenarios, you won’t have control over the command
prompt format. Get used to it.

Typically, the screenshots are set up with the command entered at
the prompt at the top of the screen, the command output immedi‐
ately following, and in most cases a new command prompt waiting
for another command at the end, as in the preceding example.

In the few places, where a Linux command is shown in comparison
to a DOS command run under Windows Command Prompt, the

Introduction | ix

latter is shown in all uppercase to help distinguish it from the Linux
equivalent, even though Windows Command Prompt is case-
insensitive. In other words, cd temp is shown for bash, and CD TEMP
for CMD.EXE.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

x | Introduction

CHAPTER 0

Step 0: Don’t Panic

The first, essential step is to stay calm. If you are dragged into trying
to diagnose a Linux system and it isn’t your area of expertise, you
can only do so much. We’re going to be careful to keep from chang‐
ing system configurations, and we’re going to restart services or the
system only as a last resort.

So just try to relax, like Merv the dog (Figure 0-1). No one should
expect miracles from you. And if you do figure out the problem,
you’ll be a hero!

Figure 0-1. Merv the dog sez, Don’t panic

1

CHAPTER 1

Step 1: Getting In

Before I get too far, let’s talk about how to connect to a Linux system
in the first place. If you have an actual physical machine, you can
use the console. In today’s day and age, this isn’t likely. If you are
running VMs, you can use the VM software’s console mechanism.

But most Linux systems run OpenSSH, a Secure Shell service, which
creates an encrypted terminal connection via TCP/IP, typically to
port 22. So, obviously, if you are connecting to an off-premise sys‐
tem, the appropriate firewall holes have to be in place on both sides.
This allows you to connect from anywhere you want to work.

On Windows, you generally use PuTTY to establish SSH sessions
with Linux systems. You typically need credentials as well, either
from that sticky note your boss found, or preferably via your com‐
pany’s secure credentials management system.

You also could connect using public/private key
pairs, but that is beyond the scope of this report.

When you start PuTTY, it looks like Figure 1-1.

3

http://www.openssh.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Figure 1-1. PuTTY prompt

You typically type in a user ID (in this example, myuser), followed
by the at sign, @, and then the system’s domain name or IP address
(in this example, demo1).

When you click the Open button, if this is the first time you are con‐
necting via SSH to a remote system, you will receive a warning simi‐
lar to the one in Figure 1-2.

Figure 1-2. PuTTY alert

4 | Chapter 1: Step 1: Getting In

Simply click Yes, and the remote host’s key fingerprint will be stored
so you don’t have to deal with this warning again. However, if you’ve
already answered that prompt when connecting from your com‐
puter and you see it again for the same remote system, that means the
remote machine’s IP address or other configuration has changed.
That is often OK—changing the hosting provider for your public
web server will trigger the warning for sure. However, if you know
of no such changes, it may be indication of a system compromise,
and you should abort the login and ask around.

You will then be presented with a password prompt, as shown in
Figure 1-3.

Figure 1-3. PuTTY password

Type in the password and hit Enter, and you should see something
similar to Figure 1-4.

Figure 1-4. Successful login

You’re in! Congratulations (or condolences, depending on how you
feel about this assignment).

“sudo make me a sandwich”
I’m going to take a brief intermission to discuss the sudo command.
It stands for super-user do. If a user is in the sudo user group, that
user is allowed to execute privileged commands. It is similar to
doing a RUNAS command in the Windows Command Prompt to run
a command under an elevated account.

Logging in remotely as root (system administrator) is frowned upon,
and in fact often forbidden for security purposes. Hence, you’ll need
to use sudo to run admin commands that you will see later.

“sudo make me a sandwich” | 5

When you try to run a command and get an Access Denied mes‐
sage, you can then try it with sudo—for example, sudo

cat /var/log/dmesg. The first time you run sudo, you will get the
lecture shown in Figure 1-5, which contains good words to live by
anytime you are running as an administrator on any system!

Figure 1-5. sudo lecture

Note that you have to enter your password when you invoke sudo.
Be clear, this is your user ID’s password, not root’s. This is to ensure
that a human being is in control and that someone else isn’t trying to
hijack your terminal session while you’re getting another cup of cof‐
fee.

Now that you know about sudo, you should get the punchline to this
comic, and hence the title of this section.

6 | Chapter 1: Step 1: Getting In

https://xkcd.com/149/
https://xkcd.com/149/

CHAPTER 2

Step 2: Getting Around

Now that you’re logged in, the first thing you’ll want to do is inspect
what is going on and how the system is configured. To do that, you
need to list files and directories, and move around within the filesys‐
tem. This chapter covers these basics.

Where Am I?
Some command prompts are set to show the current directory path.
Others are not, and it can be tough to remember where you are in
the filesystem. The pwd (print working directory) command shows
you:

bash-4.2$ pwd
/etc/init.d

Unlike in Windows, which is case-insensitive
(but case-aware), in Bash and in Linux in gen‐
eral, case matters. By convention, most Linux
commands are lowercase. If you try to type in an
uppercase PWD, you will get a Command Not
Found error.

Listing Files
In Bash, the ls (list) command is used to show directories and files.
It is similar to the DIR command in Windows Command Prompt.

Figure 2-1 shows a simple sample of an ls command.

7

Figure 2-1. ls command

Some ssh sessions use color highlighting, as
shown in these screenshots (in this case, green
means the file is executable). Some do not. So
don’t be surprised if you see colors!

To see a more detailed listing of the files and directories, you can use
the ls -l command, as shown in Figure 2-2.

Figure 2-2. ls -l command

From left to right, you see file permissions, owner, group, size, last
modified date, and finally the file or directory name. File permis‐
sions are beyond the scope of this report, but if you continue your
Linux education after reading this, you can learn more about them
in my ebook.

In Windows, a file is hidden by setting a file attribute (metadata) on
the file. In Linux, a file is hidden if its name starts with a period, or
dot. To show these dot files, you use the ls -a command shown in
Figure 2-3.

Figure 2-3. ls -a command

On the left you see . and .., which mean current directory and par‐
ent directory, respectively, just as in Windows. You also see previ‐
ously hidden files such as .bash_history and the .ssh directory (in
this example, blue denotes a directory).

8 | Chapter 2: Step 2: Getting Around

Finally, you can combine parameters. If you want to see a detailed
listing (-l) of all files (-a), recursively descending into every child
directory (-R), you simply combine them all (ls -alR), as shown in
Figure 2-4.

Figure 2-4. ls -alR command

Note the d in the far left column for ., .., and .ssh. This tells you
they are directories, and in terminal sessions that do not use color
highlighting, this d will be the only way you know which entries are
files and which are directories.

Changing Directories
To change to a different directory, use the cd (change directory)
command.

Linux uses the / character as the path delimiter,
unlike Windows, which uses \. This will trip you
up the first few times, especially because \ has a
different meaning in Bash (it is an escape char‐
acter).

Linux doesn’t use drive letters. Instead, all devices are mounted in a
single hierarchical namespace starting at the root (/) directory. You
will see examples of this later in this report.

Changing Directories | 9

On login, you are usually in the home directory, which is represented
by ~. It is similar to the user directories under C:\Users on Windows.
Hence, you will probably need to go elsewhere. Here’s a list of com‐
mon directories on Linux systems that are of interest:

/etc
System configuration files (often pronounced slash-et-see if
someone is instructing you what to do over the phone)

/var
Installed software

/var/log
Log files

/proc
Real-time system information—similar to Windows Manage‐
ment Instrumentation (WMI), but easier!

/tmp
Temp files, cleared on reboots

Remember, case matters! And use /, not \!

Changing to another directory with cd is simple, as you can see in
Figure 2-5.

Figure 2-5. cd /etc command

Be Lazy
Most modern interactive shells like Bash and Windows Command
Prompt allow for tab expansion and command history, at least for
the current session of the shell. This is a good thing in a crisis situa‐
tion, because it saves you typing, and thus, time.

10 | Chapter 2: Step 2: Getting Around

Tab expansion is like autocomplete for the command prompt. Let’s
say you have some files in a directory, as shown in Figure 2-6.

Figure 2-6. ls /var/log command

Without tab expansion, typing out something like this is slow and
error-prone:

cd unattended-upgrades

But with tab expansion, you can simply type cd un[Tab], where
[Tab] represents hitting the Tab key, and because only one directory
starts with un, tab expansion will fill in the rest of the directory
name for you.

One way that tab completion in Bash is different than in Windows
Command Prompt is that in Bash, if you hit Tab and there are mul‐
tiple candidates, Bash will expand as far as it can and then show you
a list of files that match up to that point. You can then type in more
characters and hit Tab again to complete it.

For example, in the previous example, if you wanted to list the
details of the pm-powersave.log.2.gz file, instead of typing out ls -l
pm-powersave.log.2.gz (27 keystrokes to type and possibly get
wrong), you could use tab expansion to get it in two simple steps:

Be Lazy | 11

1. Type ls -l pm-p[Tab]. This would expand to ls -l pm-

powersave.log., because only the files named pm-
powersave.log. begin with pm-p. In this case, I specified just
enough characters to distinguish between pm-powersave.log files
and those beginning with pm-suspend.log.

2. Type 2[Tab]. This would complete the rest, .gz, because only
one pm-powersave.log. file has a 2 in the next character location.

Thus, a total of 13 keystrokes, with two tab characters, saved typing
14 more!

Tab expansion is your friend, and you should use it as often as possi‐
ble. It gives at least three benefits:

• Saves you typing.
• Helps eliminate misspellings in long file and directory names.
• Acts as an error checker—if the tab doesn’t expand, chances are

you are specifying the beginning part of the name wrong.

Another thing to remember about the interactive shell is command
history. Both Windows Command Prompt and Bash give you com‐
mand history, but Bash supports a rich interactive environment for
searching for, editing, and saving command history. However, the
biggest thing you need to remember in an emergency is simply that
the up and down arrows work in the command prompt and bring
back your recent commands so you can update them and re-execute
them. This saves typing and reduces errors—use it!

12 | Chapter 2: Step 2: Getting Around

CHAPTER 3

Step 3: Peeking at Files

Now that you know how to move around in the filesystem, it is time
to learn about how to inspect the content of files. In this chapter, I
show a few commands that allow you to look inside files safely,
without changing them.

Cool cat
The cat (concatenate) command dumps a file to the console, as
shown in Figure 3-1.

Figure 3-1. cat command

13

We will be using cat a lot in the rest of this report. Because most
Linux configuration and log files are text, this command is handy
for examining files, knowing that we can’t change them by accident.
The CMD.EXE equivalent is the TYPE command.

less Is More
The less command paginates files or output, with each “page”
based on the size of the console window.

In Bash, as in Windows Command Prompt, the output from one
command can be redirected, or piped, to another command by
using the | character. In Linux, where each command “does one
thing, well,” it is common practice to combine multiple commands,
piping the output from one command to the next to accomplish a
series of tasks in sequence. For example, later in this report you will
see how to use the ps command to produce a list of running pro‐
cesses and then pipe that output to the grep command to search for
a specific process by name. To demonstrate, although less can be
passed a filename directly, here’s how to pipe command output from
cat to less:

~ $ cat /etc/passwd | less

The output from less clears the screen, and then shows the first
page, as you can see in Figure 3-2.

Figure 3-2. less output

14 | Chapter 3: Step 3: Peeking at Files

The colon at the bottom of the screen indicates that less is waiting
for a command. After less displays its output, you have various
navigation options:

• Space, Page Down, or the down arrow scrolls down.
• Page Up or the up arrow scrolls up.
• / finds text searching forward (down) from the current cursor

position, until the end of the file is reached; for example, /
error.

• ? finds text searching backward (up) from the current cursor
position, until the beginning of the file is reached; for exam‐
ple, ?error.

• n finds next instance of the text you’re searching for (note that
the meaning of this is reversed when using ?).

• p finds previous instance of the text you’re searching for (note
that the meaning of this is reversed when using ?).

• q quits the less command and returns you to the prior view of
the console.

tail Wind
The tail command shows the last lines in a file. It is useful when
you’re looking at large log files and want to see just the last lines—
for example, right after an error has occurred. By default, tail will
show the last 10 lines, but you can adjust the number of lines dis‐
played with the -n parameter. For example, Figure 3-3 shows how to
display just the last five lines.

Figure 3-3. tail command

tail Wind | 15

The tail command can also “follow” a file, remaining running and
showing new lines on the console as they are written to the file. This
is useful when you’re watching a log file for a new instance of an
error message, perhaps as you are testing to see if you can trigger the
condition by visiting a web page on the site that is throwing an
error. Figure 3-4 shows an example using the -f parameter to follow
a log file.

Figure 3-4. tail -f command

16 | Chapter 3: Step 3: Peeking at Files

CHAPTER 4

Step 4: Finding Files

In the preceding chapter, you learned how to look inside files
without changing them. But how do you know which files to look
at? In this chapter, I cover searching for files, which can help narrow
the scope for your troubleshooting.

find Files Fast
The find command is one of the most useful commands in Linux.
The command works like this:

• Starting at location x
• Recursively find entries that match condition(s)
• Do something to each match

As a simple example, let’s say you’re in the /var/log directory, and
you want to find all files that end in .log. Because there may be a lot
of them, you will pipe the output to less so you can page through it.
Here is the command:

/var/log# find . -name *.log -print | less

17

Remember that I said the \ has a different
meaning in Bash, that it is an escape character?
Notice its use in this example, where it is pre‐
venting the Bash shell from expanding the wild‐
card character (*) into all matching files in the
current directory. Instead, by escaping it, the \
character is telling find to expand that wildcard
in the current directory and all of its children.

Figure 4-1 shows the first page of the output I got from that com‐
mand, awaiting our navigation via less.

Figure 4-1. find results

The find command has a lot more power than this simple example!
You can find files and directories based on creation and modifica‐
tion dates, file sizes, types, and much more. You can execute any
variety of actions on each one as you find them, including Bash
commands and shell scripts.

Figure 4-2 shows another example, where I am looking for all log
files in /var/log and its child directories that were modified in the
last hour, using the -mmin (modified minutes) parameter set to -60
minutes. In this example no action parameter is given, so -print is
implied.

18 | Chapter 4: Step 4: Finding Files

Figure 4-2. find -mmin

You can also combine multiple search conditions and multiple
actions. For example, if you want to find all log files in /var/log that
were modified in the last minute (-mmin -1), and then print its path
(-print) and display the last two lines of each log file found (using
tail -n 2), you use the following:

sudo find . -mmin -1 -print -exec tail -n 2 \{\} \;

I will pick that apart for you. From left to right:

sudo

Because some of the log files are protected unless you are root.

find

Search for some files.

.

Starting in the current directory (in this example, that’s /var/
log).

-mmin -1

Find files that were modified in the last minute (-1).

-print

Print its full path.

-exec

For each file found, execute a command.

-tail -n 2

As you learned in the preceding chapter, tail shows you the
final lines of a file; by default, it shows the last 10 lines, but here
I have specified that it should show only the last 2 lines.

\{\} \;

Passing in the full path of the filename found to the tail com‐
mand.

find Files Fast | 19

That last little bit of magic is important, and you will do well to
memorize it for using -exec with the find command. The \{\} is
the syntax for “pass in the path of the file that was found” (it is
actually {}, but the \ characters are escaping the brackets because
they have special meaning to the Bash shell). The ; is terminating
the -exec parameter, so that other action parameters could follow
on the find command. It is similarly escaped by \ because the semi‐
colon also has special meaning to Bash. The intervening space
between \{\} and \; is required!

Figure 4-3 shows it in action.

Figure 4-3. find tail

Because of the usefulness of the find command,
I recommend you study it and play with it if you
get a chance.

Location, Location, Location
The locate command searches a list of all the filenames on the sys‐
tem. The filenames are gathered periodically by a service, so it does
not update in real time, but usually close enough. If you know the
name of a file you are looking for, perhaps the Apache access.log file
(which can change location depending on the Linux distro), you can
use the locate command to quickly find it. Because locate searches

20 | Chapter 4: Step 4: Finding Files

a pre-built list, it is much quicker for finding files by name than
using find -name.

The locate command isn’t “smart.” It is simply looking for any file
or directory with the string you pass it somewhere in the path. For
example, if you execute locate log | less in the root (/) direc‐
tory, you’ll see something like Figure 4-4.

Figure 4-4. locate results

Note that log appears somewhere in each path, but doesn’t necessar‐
ily lead to log files.

Location, Location, Location | 21

CHAPTER 5

Step 5: Search Me

In the preceding chapter, you learned to search for files by their
attributes, such as name, last modified time, and the like. In this
chapter, I show how to search inside a file, perhaps to find a specific
error message.

Getting a grep
The grep command (whose name comes from globally search a
regular expression and print) searches within files. It uses regular
expressions (regex) to match patterns inside the files. It can be used
to search within binary files, but is most useful for finding things
inside text files. There are lots of uses for this command in our crisis
scenario, such as searching for certain error messages within log
files, or finding every mention of a certain resource inside the
source files for an entire website.

There is an old joke by Jamie Zawinski:
Some people, when confronted with a problem, think, “I know, I’ll use
regular expressions.” Now they have two problems.

Some regular expressions are simple—for example, *, which you
should recognize as a valid wildcard in Windows Command
Prompt. Others can be mind-blowingly complex. For example:

^\(*\d{3}\)*(|-)*\d{3}(|-)*\d{4}$

This regular expression is an (incomplete) approach to matching US
phone numbers.

23

Because regexes are so inscrutable, sometimes I write a regex in a
program or a script, come back to it six months later, and have no
idea what it is doing. (Now I have two problems.) In this chapter,
you’re just going to look at a few simple examples.

Here are some samples of using regular expressions with grep. You
will look at the output of some of them in the following screenshots.

grep 500 access.log

Find any occurrence of 500 in access.log

grep '\s500\s' access.log

Find 500 surrounded by whitespace (space, tab)

grep '^159.203' access.log

Find 159.203 at beginning of lines (^)

grep 'bash$' /etc/password

Find bash at end of lines ($)

grep -i -r error /var/log

Find all case-insensitive (-i) instances of error in the /var/log
directory and its children (-r)

For that first example, you know that if a web program throws a
server-side error, by convention it will send an HTTP status code of
500 to the client (browser). Most web servers also write that to their
logs. So let’s look for 500 in Apache’s web log, as shown in
Figure 5-1.

Figure 5-1. grep command

I use the '\s500\s' regular expression in this command to make
sure that only instances of 500 surrounded by spaces (or tabs) are
found. Web logs tend to put the HTTP status code in its own col‐

24 | Chapter 5: Step 5: Search Me

umn, and I don’t want to see extraneous 500s that are part of
response sizes, time-zone offsets, or whatnot.

Perhaps you’re being attacked by a block of IP addresses, maybe a
bunch of botnets running on some cable modems. The IP block
attacking you is 159.203, so let’s find all log lines that start with that
client address, as shown in Figure 5-2.

Figure 5-2. grep 159.203 command

In this case, note that the regular expression starts with ^, which
means to look for the following pattern only at the beginning of
each line in the log file.

Similarly, you can look for patterns at the end of each line as well.
The /etc/passwd file holds every user ID on a Linux system. (Don’t
worry, it no longer holds the password, but once upon a time, it
did!) Each user is defined by a line in the file, and the last entry on
each line indicates the “shell” in which they run. Some user IDs are
defined to not be allowed to have interactive logins, and so they
might have something like /bin/false or /usr/sbin/nologin as their
shell.

But user IDs that can log in will have bash or csh or similar. So if
you want to find all user IDs that can log in interactively, you could
use the command in Figure 5-3, which looks for bash at the end of
the line by specifying the $ in the regular expression.

Figure 5-3. grep bash command

Getting a grep | 25

You then see that root and myuser are the only IDs allowed an inter‐
active login on this system.

Finally, because you’re trying to find out what is wrong with the
Linux system you’ve been thrown into, perhaps you want to see each
instance of the word exception in the log files. You could do that
with something like this:

grep -i -r 'exception' /var/log | less

Here’s what each part of that command does:

grep

Searches through files

-i

Ignores case (makes the search string case-insensitive)

-r

Recursively searches through all directories

'exception'

Looks for the string exception

/var/log

Starts in the /var/log directory

| less

Pipes the output through less so you can look at it one “page”
at a time

Figure 5-4 shows the first page of the output.

26 | Chapter 5: Step 5: Search Me

Figure 5-4. grep exception results

In this case, you see a bunch of authorization failures in the first
page of output from the /var/auth log. If the problem you are chas‐
ing includes an authentication error, perhaps on your website, this
would show a good path to keep continuing down. Many times you
have to change your search phrases multiple times and use your
“tech intuition” to decide which errors are worth following further.
Troubleshooting is often more of an art than a science, so “Use the
Force, Luke.”

Getting a grep | 27

About the Author
Jim Lehmer has been “in computers” for over three decades. He has
held various software development roles, including programmer,
systems programmer, software engineer, team lead, and architect.

Besides bragging about his wife, Leslie, his five children, and four
grandchildren, his hobbies include reading, writing, running, hik‐
ing, and climbing.

Acknowledgments
Thanks to my coworkers, who inspired and attended the lunch-and-
learn sessions from which my ebook, webcast, and this report grew
—especially Aaron Vandegriff and Rob Harvey. I received excellent
advice and promotion from Professor Allen Downey, for which I am
grateful. I am thankful to my editor at O’Reilly, Dawn Schanafelt,
with her eye for detail and helpful suggestions. Finally, I owe more
than I can repay (as usual) to my wife, Leslie, who deserves shared
credit for putting up with me during the nights and weekends I
obsessed over this project.

	Cover
	Copyright
	Table of Contents
	Introduction
	 Why Are We Here?
	 Who Is This For?
	 How to Prepare
	 Play with It!
	 Documentation and Instrumentation
	 Conventions

	Chapter 0. Step 0: Don’t Panic
	Chapter 1. Step 1: Getting In
	 “sudo make me a sandwich”

	Chapter 2. Step 2: Getting Around
	 Where Am I?
	 Listing Files
	 Changing Directories
	Be Lazy

	Chapter 3. Step 3: Peeking at Files
	 Cool cat
	 less Is More
	 tail Wind

	Chapter 4. Step 4: Finding Files
	 find Files Fast
	 Location, Location, Location

	Chapter 5. Step 5: Search Me
	 Getting a grep

	
	About the Author

